- — 9

e ————

~ DTIC FILE copy

ADA EVALUATION PROJECT

REUSE OF ADA
SOFTWARE MODULES D T ' "

ELECTE
MARO 1 1990

De

Prepared for

HEADQUARTERS UNITED STATES AIR FORCFE
Assistant Chief of Staff of Systems for Command, Control,
Communications, and Computers
Technology & Security Division

AD-A218 684

Prepared Ig
Standard Automated Remote to AUTODIN Host (SARAH) Branch
COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base
Oklahoma City, OK 73145 - 6340
Commercial (405) 734-2457
AUTOVON 884 - 2457/ 5182

20 JUNE 1988

P

= 90 02 28 010

THIS REKPORT IS THE TENTH OF A SERIES WHICH
DOCUMENT THE LESSONS LEAHNED IN THE USE OF ADA IN A

CONMUNICATIONS ENVIRONMENT.

\ \ ABSTRACT

Software module reuse using Ada is discussed in the context
of the Standard Automated Remote to AUTODIN Host (SARAH)
Software Development Project. Reuse concepts are presented
including designing, finding, and implementing reusable Ada

componsnts. Reuse in the SARAH project is discuased in.

terms of reuse goals, accomplishments, and problanms
encountaered achieving reuse goals (including design
comprises that had to be made). Current impediments to
software rsuse are presanted along with suggestions about
how they might be improved. Recommendations are given with
rauference to the current scope of potential reuse benefits.

Accesion For

NTIS CRAL!

OTIC TAB 0
Unaniow.coed .
Justiticanc

TIAIRMENT "A” per Capt. Addison [—~-<"= =

—

TInker AFB, (0, .4 m/mA By
2/28/%0 oG Dis B’{Bio}:;“‘”'z’—‘*

| ———

Availlabibty Codes

v Avad andlor
Dist Special

-t |

Ada EvaXuation Report Series by CCSO

Ada Training
Design Issues
Security

Micro Compilers
Ada Environments
Transportability
Runtime Execution
Modifiability
Testing

Module Reuse
Project ¥anagement

Summary

March 13, 1986

May 21, 1986
May 2%, 1986
December 9,

December 9,

1986
1986

March 19, 1987

March 27, 1987

April 20, 1987

June 10, 1988

Juky 5, 1988
Summer 1988

Fall 1988

INTRODUCTIO....O...ooo..’o-......o.o......‘..o.oo.......

1.1,
1.2.
1.3.
1.4.
t.5.

THE ADA BVALUATION TASK..'onooc.oolo.'.o'ooot....o.

PURPOSE....-.‘...I...
BACKGROUND -- WHY REU

SE.u.l...O..O...Q..'l..'.....l

SCOPE AND CONSTRAINTSQOQonoo....o.co.....oo-o-o....

FORMAT. ccevvevnncanns

@ @ 6 0 5 2 00 0 005 0 5 00 0 50 P00 el

co.chTSOOto.ooo-co0-Q.o.ooc.c...o....-.o..c.-..n.ccl..l

2.1.

2.3.

2.4.

2.5,

REUSE GOALS

3.1.

3.2.

FUNDAMENTALS.........
2.1.1. WHAT TYPES OF
2.1.2. COUPLING AND C

MODULES CAN BE REUSED.sccecees
OHESIONOOQn.o..o.o-oo.c.oooo.o

2.1'3. HODULE SIZE v' REUSABILITY 8 & 8 0 8 6 8 s b s oS e e

DESIGNING REUSABLE MODULES..¢c.vecescecsccocccnsse
2'2". SYSTP}U‘ !ODULARIZATION ® & ¢ 5 2 5 9 0 S b e 60 P o s s

2.2.2. ISOLATION OF I
2.2.3. SPECIFICATION

FINDING RZUSABLE MODU
2.3.1. MODULY LIBRAR!
2.3.2. COMUEKRCIAL PAC
2.3.3. OTHER DoD ORGA

IMPLEMENTING RuUSAnLE

2.4.1. IDENTIFY CTAND.
204.2- qODIVY H\)D""“;

MPLEMENTATION DEPENDENCIES...
OF MODULES.e.vievesrconcsncnns
LES .ot eeoeenconssasscsonnsn
ES/REPOSITORIESeeceevecces .
KAGES ... teevsecenconcesnos
NIZATIONS. ceoeosvecocenan
MODULES e e eeeeceoooocacoaoncas
DAT=S POR RBUSE EARLY...evceee
T FIT (IP NECESSARY).¢eeeso.e

REUSE 0? CONCB‘PT;; r) LDR‘S.I‘...’....'-........I.O

USE OF EXISTING R=USA

5.1e¢1. LARG--3CALE &%

or T“H 8‘“‘“ P.oJ‘cT..oooono..onnnco..oooo.-

Bl"r: uoDULgs"...'..........'..
’ISE: GOALS (TOP-LEVEL).....‘...

3.1.2. SMALL-SCALE HEUSE GOALS (LOW-LEVEL) cocecces
DESIGNING SARAH MODULES TO BE REUSABLE...cccoececeses

REUSE ACCOMPLISHNENTS OF THE SARAH PROJECT...cccccceeccn

4.1.
4-2'

USE OF PREVIOUSLY EXI
REUSE OF SARAH DEVELO

STING MODULES.ceccevecccsncnns
PED HODULBSQQOQOQQto..-t'o.'..

WHY RBUSE GOALS3 CAB BE DIPPICULT TO ACCOMPLISH.:.veecaveen

5.1.
5.2.

DESIGNING AND WRITING

REUSABLE CODE TAKES LONGER...

REUSE GOALS CAN CONPLICT WITH OTHER DESIGN GOALS...

5.2.1., CONPFLICT WITH
5.2.2. CONFLICT WITH
) . CONFPLICT WITH
. SARAH's REUSE

\

. e

3

4

5. BALANCF REUSE

LEMS OBTAINING RE
1. NO STANDARD Ta
2
3
4

VI A TN\
e » }- < 2K}

SIZING GOALS.cceeceetacronsens
EXECUTION SPEED GOALS.eecec.sn
STANDARDIZATION GOALS.cveoasen
DESIGN CONPLICTS. . eecevvecrens
GOALS WITH OTHER DESIGN GOALS.
USABLE MODULES...cceceeescsven
KONOMY ...ccccoecocosccsosnnons

...'

e o o o o
W N = =

L]
.
.
S)

. L] .
* & 2 0 * s &
. e o .

. *
S~ OO\

L]
-

* o @
o

00008

o8
ee.8
0.8

«e9
e e9
-
eee9
s 10

..10
.10
sl

e 12
ee12
«e12
.
e 13
o 13
o 13
oo 14
.14
.14

NO STANDARD DESIGN METHODOLOGY FOR REUSE......15
. NO STANDARD FOR RATING QUALITY/RELIABILITY....15
. NEED BETTER REUSE LIBRARIES/REPOSITORIES......15

6. PINAL WORDS WITH RECOMMENDATIONS...ccccocceeccccsccccsscaslb
6.1. INTER-ORGANIZATIONAL REUSE MOSTLY FOR SMALL MODJLES..16
6.2. INTRA-ORGANIZATIONAL REUSE POSSIBLE ON LARGER SCALE..16
6.3. NEW STANDARDS REQUIRED TO MAKE REUSE COMMONc.0+0.17

Appendices

A. REPBRBHCBS........l..'........'.....Ol.'...'0...-.........17

t{. INTRODUCTION

1.1. THE ADA EVALUATION TASK

This paper is one ir a series which seeks to help potential Ada
devalopsrs gain practical insight into what is required to
successfully develop Ada software. With this goal in mind, Air
Staff tasked the Command and Control Systems Office "7CS0) to
evaluate the Ada larnguage while devseloping real-time
communications software. The task involves writing pagpers on
various aspects of Ada development such as %training, Ada cesign,
environments, and security issues. This paper discusses Ada
module reuse issu=a.

CCSO chose the Stardard Automated Remote to AUTODIN (Automattic
Jigital Networx) Host (3ARAH) project as the vehicl.e dbasis o
the Ada evaluation. SARAH is a small to medium s-ze projec
(approx. 50,000 lines of executa'ie source code) whkich furctions
as a standard intelligent terminal for AUTODIN users and i3 used
to help eliminate punched cards and pape: %tape as a
transmit/receive medium. The development environmer{ for G5ARAH
consists of a number of IBM PC ATs and Zerith 2-248
microcomputers. Source code is developed, compiled, ard
integrated on these machines. The compiler and symbolic debugger
used are from Alsys, Inc. The SARAH softwuare runs on IBY¥ PC ATs,
Zenith 2-248s, and Zenith 2-200s (TZMPEST microcomputers which
are somewhat compatible with the PC ATs and Z-248s).

cr ty <

1.2. PURPOSE

The purpose of tnis paper is to provide a forum for CCSO tn shars
knowledge about Ada module reuse gained from experience ar.d
axposure tn the itnpic.

1.5. BACKGROUND -- WHY REUSE

Yany subfunctions irn new software systems are similar, if rot
identical, to those in previously developed systems. 1f softwure
were properly designed, those subfunctions could be rsused 10
produce naw systems faster, more reliably, and at lower cost!l.

dritirg the same and similar code over and over is time consuming
and costly. For example, military command and control systams
cnould potantially save time and morney by reusing the graphics arnd
display software that nas been rewritten for many of thesse
systems?, Ir addition to improved productivity and reduced cost,
software reude has potential %o:

a. Increase reliability. Reused code and its accompanying
design will have been extensively exercised and "tested
under fire."

b. Facilitate rapid prototyping.?

Sefore the advent of Ada, reuse was generally not formally
practiced. Some of the inhibiting factors were:

a. Language standardization was inadequate.

b. Languages were technically limited.

c. Reuse incentives were not present.

d. Indexing and retrieval of existing modules was difficult.!

Ada was designed with reuse in mind and addresses the first two
factors. The language has features intended to facilitate reuse.
Language standardization is very important. Subsets and
supersets, characteristic of othar languages, are not allowed
(enforced by compiler validation). Other important features are
packages and generics. Packages provide a specification portion
that allows interfaces to be precisely defined. Generics provide
a %to0l for customizing existing code to more easily fit into new
applications, without changes to the generic module itself.

Software modules are infiltrated with application~-specific
characteristies. Two different systems may both use a binary
Ytable search algorithm, bDut inevitabdly something will be
different about them (the type of records stored, the size and
type of the table, dependence on hardware, compiler, or data
representation, etc). This is a major part of the problem that
#e are trying to solve. By nature software deals with specific
problems. The objective is to find ways to use common building
blocks (reusable software modules) to build solutions to these
specific problems.

1.4. SCOPE AND CONSTRAINTS

The primary mission of CCSO personnel who contributed to this
paper is to develop software, not to conduct the research
nacessary to give a complete treatment to this topic. Treatment
is limited to areas of concern to CCSO personnel. This excludes
most treatment of legal issues such as copyright and liability
concerns associated with software module reuse.

This paper addresses the reuse topic from two standpoints:

2. Reuse of existing softwarae modules.

b. Devalopmant nf reusadbla modulaes.

Code generation and 4th generation languages are considered by
some %0 be types of reuse but are not addressed in this paper.

1.5. FORMAT

The first major section of the paper after this introduction, the
CONCEPTS section, overviews some terms and concepts important to
reéuss. Reading this section may make the rest of the paper more
meaningful. It may be skipped, however, without missing any data
or descriptions from the SARAH project. Sections 3 and 4 talk
explicitly about SARAHs reuse experisences. Section % also
includes somse discussions and examples taken from JSARAA
exXperiences.

2. CONCEPTS

2.1. FUNDAMENTALS

2.1.1. WHAT TYPES OF MODULES CAN BE REUSED

Most modules that have been properly designed are reusable to
some extent. Modules with hardware or operating systemn
dependences are more difficult to reuse unless on the same
hardware or operating system.

In the interest of developing common terminology, we coin the
following metric:

Reusability = cost to create a new module /
cost to reuse an existing module

The cost to create a new module is the traditional expenditure to
create a software mondule. The cost to reuse an existing module
ircludes obtaining the module, making changes to the module, and
additions or adjustments to the system to make it work. The best
case #ould be when cost to reuse approaches zero, Reusability
would then be very high. As cost to reuse approaches the cost to
create, reusability approaches 1. When this occurs there i3 no
apparent economic advantage to reuse. Other benefits that have
not been factored into the equation may also rneed Lo be
considered (i.e. reliability, training for reuse, etc.).

2.1.2. COUPLING AND COQHESION

Coupling is a measure of the degree of interconnections between
modules’. This is a very important characteristic in determining
how reusable a module will be. When considering a module for
reuse, we are concerned with the dependencies of the module
(upward coupling). In Ada, this can be ascertained by looxing atl
a module's "with" statements. These telkl the analyst what other

modulas must be available for the module of interest to be
compiled.

Intuitively, few dependencias (low coupling) increases the
potential for reuse. The lowest degree of coupling possible is
none; the only dependencies would be the Ada predefined language
environment itself. In this case, reuse of the module would
require nothing more than compiling and using it.

Cohesion is a corollary to coupling. High cohesion indicates
that a module's internal elements are tightly bound and related
to one another; they are functionally and logically dependent3.
This is an important characteristic of object oriented systems.
Components designed in %this way are likely to exhibit low~
coupling and be more rsusablae.

2.1.3. MODULE SIZE vs REUSABILITY

The size of reusable software modules can range from cods
segments to major subsystams. A hierarchy of module sizes could
be defined as follows :

a. Subsystem

b. Component

c. Moduls

d. Tool

e¢. Code segment

Tool packages are a group (usually grouped in an Ada package) of
mostly small routines that perform a certain class of functions.
A good example of a tool package is a string manipulation
package. Tool packages are excellent candidates for reuse since
the routines are usually small, general, and not dependent on the
context or the Ada runtime system (important attributes for
reusability).

There are a number of benefits to using tool packages. They save
programmer time and reduce memory requirements. The goal is to
use the same tool many times; therefore the function it performs
does not have to be duplicated. Tool usage also adds consistency
and reliability to the system.

System wide tool usage can have the disadvantage of increasing
coupling of the subsystems. Any time a %tool package is used by a
subsystem, the tool package becomes a dependency of the
subsysten.

Some have commented that module size (proportional to payoff)
tends %o be inversely proportional to reuse potential4. Among
the raasons for this are that larger, subsystem size, modules
tend to have more depandencies (coupling). These dependencies
must be addrsssed if the component is to be reused. The
component can be changed to remove the depandencies, the dependad

upon modules can be reused along with the module of interest, or
the module of interest can be rewritten.

Dependencies need not prevent the reuse of svbsystems. Since the
payoff to reusing these large modules can be high, the cost of
fitting the module may be a small price to pay.

As before, the reusability equation can be consulted. If the
cost of fitting the subsystem approaches the value of the
benefit, then the reusability of the subsystem may be
questionable.

2.2. DESIGNING REUSABLE MODULES
Some important characteristic of reusable modules follow:
a. Object oriented groupings,

b. Low-coupling with the other system mcdulss, high
cohesion.

¢c. Implementation dependent characteristics are minimized,
identified, and isoclated {this includes dependences or
characteristics of the Ada runtime environment {data
representation, execution speed, etc), and
characteristics of operating systems and hardware).

d. Be general.

e. Be fully specified.

2.2.1. SYSTEM MODULARIZATION

The system design should be decomposed into subsystems that are
grouped by the class of operations they perform and the type of
data they manipulats. An example might be to group all the
operations and types dealing with reading and writing to disks,
or the grouping of all the operations on a certain type of
me3sage correspondencs. This is the foundation of OJObject
Oriented Design (00D)3» 5, 6., This can be contrasted to the nmore
traditional functional top-down design that bases decomposition
on steps in a data flow.

Object oriented grouping results in modules which are 1less
coupled, more cohesive, and thus easier to maintain and more
practical to reusese. Modules will be more general (thus more
reusable) since 00D tends to put off data flow details. (Many
systems will require a disk management subsystem but few will
have the same data flow requirements as the original system.)
Older design methods tend to create more application-specific
modules.

2.2.2. ISOLATION OF IMPLEMENTATION DEPENDENCIES

Since many subsystems will have implementation dependencies, to
make Lthese subsystems reusable, these implementation dependencies
should be isolated and identified in a separate package. In this
way 1€ the subsystem is reused (or the entire system is ported)
with a new compiler and/or operating system, rewriting t%the
implementation~dependent package should render the subsysten
r=usabls.

Ar example of this may be a disk management subsystenm. Somse
parts of this subsysten w1ll need to bs familiar with filename
le%ails, do operating system calls to access the disks, etc.
These parts of the subsystem will have to be rewritten if the
entirs disk sabsys»em is reused. They should be identified and
isolated in a separa‘te package to make the modifications easier
vo identify and accomplish.

2.2.3. SPECIFICATION OF MODULES

Reuse will never really catch on unless modules are fully
specified, in terms of not only their functionality but also
their performance.

Areas to be addressed in specifying a reusable module includs:

a. All inputs.
- all allowable ranges for inputs (i.e. constraints).
- all input modes (IN, OUT, IN OUT).

b. All outputs.
- all allowable ranges for outputs.
- outpuis in terms of inputs ('transfer function').
- exception conditions, and when and why they are raised,
and what, if any, internal action is taken.

¢c. Furctionality.

- interactions between inputs and outputs (whereby the
internal action of the process is described in detail -
in other fields, this is known as the ¢transfer
function).

d. Performance.
- RAM executable code requirements (static or quisescent
RAY requirements).
- RAM heap requirements (dynamic RAM requirements).
- Tasking.
- the number of tasks running internally (minimumn,
typical andmaximum), and atwhat priority.
- the minimum, typical, and maximum time units for the
execution of each procedure (be it a sequential or
tasking-related).

The abova are obviously very dependent upon implementation
(compiler, compiler options, and hardware target), and therefore

they should be devtailed in terms of the implasmentation. For
example "valuas were obtained using an ALSY3 compiler, bound with
JNCALLED => Lud0Vy, optimized for sesxecutiorn time; run-time
performarce was evaluated on an [BM PC AT running at 8MHz."

4% some stage in the future (hopefully), some enterprising agency
will publish normalization tables so that the performance on one
machine/compiler can be translated into a corresponding
performance on another machine/compiler, +thus establishing
predictabls performance, an area that needs more atteniion in the
field >f softwarse.

Variabie or marginal reguirements should be expressed in tsrms of
&

unit entit.ies. ¥or example, 1f a reusable editor was Deing
specified, it may have heap requirements stated as follows:

36 bytes / line;

5 bytes / page (plus 66 lines);
4000 bytes / open file (Text Window);
512 bytes / open file (File buffer);

7his woula allow a potential user to calculate thet for a worst
case situation of five files open, each file havirng 10 pages
(3,300 lines), ne would require: 86%3,300 + 5(5%10 + 4000 + 512)
= 307 {bytes of heap. This would allow him to make a decision as
to suitability of tne module for his specific requirement.

3imilarly, all rur-time requirements should be specified in terms
of minimum, typical, and maximum values. The potential user
could “her perform calculations to assess the most suitabls of a
range of available modulses. Consider a package designed for
commurications functions. Unless the user can calculate that it
will axecute (on his particular hardware) at the required rate,
e Wwill rot b2 abla: to use it. It's no use using an avallablse
commuri.cations package if it can't keep up with the data
truarnsmission speed. And it's no use trying to use ii{ unless you
can have at least a calculated chance of it working. The essencs
is *tae ability to calculate, this i3 devermined by %the quality
of ths performance specifications of the module.

2.3. FINDING REUSABLE MODULES

2.3.1. MODULE LIBRARIES/REPOSITORIES

dodule repositories are ore source of Ada moduls=ss. The most well
Known repository among SARAH personnel i3 the Ada Joftware
Rapository (also krow as 3I1M7<L20). As of 3eptember, 1987 this

rapository contained 1,515 filus or about 805,000 lines of source
codead, 3{%':2u20 information is available on DDN. The DDN addruss
for subscribing to Ada Software Repository is <ADA-UVW-
R is) 45 At sL20 ARPAY .,

1

2.3.2. COMMERCIAL PACKAGES

We know of two sources of commercially available Ada softvare
modules. The GRACT package from EVB software EngineoringG. and
the WIZARD package from Grady Booch9. Both are large boxes of
tools and data structures. Each comes in variations to fit many
differant application environments.

2.3.3. OTHER DoD ORGANIZATIONS

3irce Ada is being used across the DoD, it's possible that
arother Dod organization has already written some modules that
Y71 can use. 4Yxchanging source code between DoD organizations
aho1ld bHe encouragead. Caution should be exercised, however,
2=cause most existing codaea is too application specific to be
rausabdle. In geaneral, modules are reusable only if they were
properly designed to be reusable.

2.4. IMPLEMENTING REUSABLE MODULES

2.4.1. IDENTIFY CANDIDATES FOR REUSE EARLY

It's important to identify the modules you plan to reuse as early
in the project as possible. This is especially true for larger
{subsystem size) modules. (See the discussion of the FLIPS
project (paragraph 4.2) which utilized the SARAH VDT subsystem.)

2.4.2. MODIFY MODULES TO FIT (IF NECESSARY)

Often, modules to be reused must be modified to fit the
application. Or, for lavrger modules, depended upon units may
have %0 be reused also or rewritten.

The typical method of reusing a subsystem should probably dbe to
maxe the Ada package specifications of the depended upon packages
part of the subsysten. Commonly the depended upon packages
provide low-level services such as input/output. If the
subsystem is ported to a new operating system envivronment, the
package bodies will need to be rewritten. If not, the depended
upor packages may be reused (with changes if necessary).

Ideally, incorporation of an existing module can occur without
being concerned about how a module works (what's in the package
body). Interfacing to Ada modules occurs via the specification
part of the module (the package specification). If the module is
properly designed, reuse may be accomplished without changing or
being concerned about the internals of the moduls.

2.5. REUSE OF CONCEPTS AND IDEAS

Reuse of ideas (coding and design ideas) can be just as important
a reuse concept as reuse of code. In many cu3es ideas can be
reused when the code itself is too application-specific to bde
reused. This is a fundamental concept to computer science. It's

the next beat thing to actual reuss. Much time can be saved
reusing an idea that worked, vather than develop a method from
scratch.

3. REBUSE GOALS OPFP THE SARAH PROJBCT

3.1. USE OF EXISTING REUSABLE MODULES

This section discusses our goals for reusing existing software
specifically for the SARAH project.

3.1.1. LARGE~SCALE REUSE GOALS (TOP-LEVEL)

SARAH'S top-level design was developed using an object-orisnted
metho%ology. The exact approach used is described in an earlier
paper!.

The design consists of several major subsystems. These are
gditor, Print, Disk, VDT (inchuding a screen manager, a sound
manager, and key manager), Message Masks, and the Communication
Subsyastems (transmit processing, receive processaing, line
protocol, etc). Whan these subsystems were defined, we hoped
we would be able to find an existing subsyastem to satisfy the
requirement for one ov more of then.

After some preliminary searching, we concluded that the only
subsystem we had any reasonable chance of finding was an editor.
So, our large-scale goal for use of existing software became to
find and incorporate an editor into the system.

3.1.2. SMALL-SCALE REUSE GOALS (LOW-LEVEL)
For our low-level designs, we wanted to utilize existing tool
packages whevre we could.

Qur goal at this time became to Limit our use of tool packages to
those that would most exploit the benefits. The most important
banefit to us was the potential for reducing the memory
requirement. This was a significant conatraint from the start.
Our Personal Computer (PC) target has limited memory and Ada has
a terndency to generate large executable files!!. We were also
interested in the time savings since our project was working
under a short suipense.

Wa also planned to write some of our own tool packages, mainly
for the purpoae of enforcing certain system data standards and
for consistent operations on these data objects. We expected to
reap savings in storage and development time from these also.

de started searching for a string manipulation package and began
designing ouvr own tool packagss.

3.2. DESIGNING SARAH MODULES TO BE REUSABLE

This section addresses our goals for making SARAH software
rausable. Among these design goals were that the system be
portable, and that as many modules as possible be reusabla.
These goals are different, yet they have similarities, especially
as pertains to reusing larger (subsystem size) modules. of
course these design goals were secondary to the primary design
goal of satisfying the system requirements with an understandabdle
and maintainable system.

Using an object oriented method!'0, we modularized the system into
indepsndent subsystems, each one with a different class of
responsibility. These areas were Disk Manager, Print Manager,
VDT Manager (Visual Display Terminal) Editor, Validation, and
Communications. A Mask subsystem evolved and became separate from
the ©ditor (Mask is used to create messages in valid Defense
Tommunications Agency formais). Each subsystem was designed to be
solaly and completely responsible for its area of responsibility.
o overlap was allowed.

Following OOD principles, each subsystem was designed to be as
cohesive as possible. For example, VDT Manager was designed %o
have all the types and functions needed to do any type of screen,
sound, or keyboard operation, within SARAH. Also, no other
subsystem is allowed to access these resources for which VDT
danager is responsible. In this way, we hoped, VDT Manager would
be reusable as a complete cohesive entity; available for a new
sysiem t0o easily develop its own user-friendly interface.

Bach subsystem was designed %to isolate and identify
implementation dependent areas. An example of this is the Disk
Manager subsystem. SARAH runs on PCs with the MS-D0S (or PC DOS)
operating system. This means that Disk Manager must be aware of
some of the characteristics of this operating system (filename
formats, directory formats, legal drive characters, etc.) During
the design of Disk MYanager an attempt was made to isolate all of
these implementation-dependencies in a package called Disk
Definitions. The reason was that if SARAH was ported Yo a new
operating system, say UNIX (or the Disk Manager subsystem was
rsused in a UNIX environment), the only major change needed to
Disk ‘Tanager would be a rewrite of Disk Definitions.

4. REUSE ACCONPLISHHMENTS OF THE SARAH PROJECT

4.1. USE OF PREVIOUSLY EXISTING MODULES
The SARAH project used few existing reusadble modules. The

string-manipulation package obtained from the Ada Software
Repository was the only existing module (along with a few code

10

segments) that we usad. This package was about 250 executable
source lines. We had to make a minor modification, but it proved
to be reliable.

We searched the Ada Software Repository and called around looking
for an editor but couldn't find one. We eventually quit looking
and began writing our own.

We did not use any commercially available modules.

The MNobile Information Management System (MIMS) project at Offutt
Air Force Base sent us a copy of their source code. We did not,
however, use any of this code in SARAH.

4.2. REUSE OF SARAH DEVELOPED MODULES

Shortly before the completion of the first release of SARAH, a
new Ada project was started elsewhere in CCSO. This project is
called the Flight Information Processing System (r" IPS). FLIPS
is being developed with the same compiler (Alsys Ada for PCs) and
for the same tavrget (Zenith Z2-248). This project was plianned
from the start to reuse as many of the SARAH modules as possible
to speed development. In fact, one of the FLIPS analysts was
sent over to work with the SARAH project for four months to gain
experience with the SARAH subsystems.

So far, the FLIPS projsect has incorporated nine SARAH packages
into their system. This is roughly 2,500 lines of code making up
about 60% of their current prototype version. These packages
consist of the SARAH VDT Manager subsystem and the Buffer Manager
package (SARAHs central manager for memory allocation and
deallocation).

About three weeks were spent incorporating these modules into the
FLIPS design (using two people). FLIPS personnel estimate that
it would have taken at l1east six to eight months to create this
code from scratch. Although none of these modules were adapted
without change, FLIPS developers wers genevally happy with the
reusability of these subsystems.

They also commented that reuse of these modules was possible
primarily through the personal experience of their analyst who
worked with SARAH. "Without ¢this familiarity,” they commented,
"much more time probably would have been spent identifying and
modifying these modules. A cataloging system and a genevally

standard method of documenting modules would be a great halp to
future systems development.”

One catch that the FLIPs personnel had to auccept when using

VDT Manager was using Buffer Manager as wvwell. This is becauss,
like most of the other SARAH subsystem, VDT Manager ias dependent

"

upon 3uffer Mdanager. This problem is more fully discussed in
paragraph 5.2.1.

A number of other interested DoD agencies have received copies of
the SARAH source cods. The subsystem generating the most
interest is the VDT "anager. So far, we haven't receivsd any
feedback on the reuse of these modules.

5. WHY REUSE GOALS CAN BE DIPFICULT TO ACCOMPLISH

5.1. DESIGNING AND WRITING REUSABLE CODE TAKES LOKNGER

Reusable code does not happen by accident. It takes more time to
write reusable code than it takes to write code just to satisfy
the requirements of the given application. Some think it takes
many times longer.

This is one of the major impediments to the development of
reusable code. Projects are usually run on tight schedules.
Satisfying project requirements and meeting project milestones
are usually given more importance than designing the system
modules to be reusable for the next project.

Making design of reusable code a high project priority is the
only way around this problem. Take the time to train personnel in
how to design and write reusable code; then give them the time
to do so. Recoup of this investment will occur two or three
projects down the road when the organization has established a
useful pool of good quality, reusable modules. As this pool
grows, and reuse becomes a way of doing business, benefits can
multiply.

5.2. REUSE GOALS CAN CONFLICT WITH OTHER DESIGN GOALS

5.2.1. CONFLICT WITH SIZING GOALS

Reusable modules are often larger than their applicationspecific
counter parts. Combine this with the fact that Ada tends to
generate larger executable files than most 1anguages11, and you
run into potential conflicts with sizing goals.

3ome projects may not have this problem. In this day of cheap
memory and expensive labor, the development and maintenance time
saved using reusable modules can easily outweigh the cost of
memory.

But a project with strict sizing requirements, like many embedded
systems, will have to look hard at this potential conflict. The
savings available from using reusable modules may have to be
compromised to satisfy sizing requirements.

12

One type of reuse that has the potential to save memory is the
use of %tool boxes (tool packages). An efficient, reliable tool
box can pravent the need for redundant routines in the systenm.

5.2.2. CONFLICT WITH EXECUTION SPEED GOALS

Modulas designed for reuse may run slower than modules designed
for speed. However, this is not always the case; a well
designed, well thought out reusable module may run very
efficiently. A vrule of thumb, however, is that generality is
inversely proportional to power4 {efficiency). This needs to bs
considered both when using an existing reusable module ot
designing a reusable module for time critical code segments.

The average system executes a small portion of its code much more
frequently than the rest of the code. This very frequently
executed code may be the only part of the system in which the
potential loss of speed is more significant than the benafits of
reuse.

The rigid performance requirements of many real-t‘me embedded
mission-critical applications (interrupt control, cyclic
execution, cyclic execution, predictadble timing, sturage control,
and flexible scheduling) conflict with the goal of developing
reusable software components?2,

5.2.3. CONFLICT WITH STANDARDIZATION GOALS

System designers may want to introduce standard types and
3tandard tools for use across the system. Reasons for these
standards can be to reduce code size, rvreduce labor costs, or to
introduce an element of consistency to important systen
parametfers.

Use of standard types and tools increases the coupling of the
system and thus reduces the reusability of the individual modules
of the system. This was a major design conflict with SARAH and
is described in the next section.

5.2.4. SARAH's REUSE DESIGN CONFLICTS

The major design factor which reduces the reusability of SARAH
subsystems i3 a high degree of coupling between them and systenm
tool packages. The reason for this coupling is to satisfy both
sizing and standardization goals.

The package to which most SARAH subsystems is coupled is the
Buffer Manager. The major reason for the existence of <this
package i3 to prevent progressive memory fragmentation fron
multiplying until the system fails. This danger exista becausse
neither the 143 DOS operating system or the Alsys Ada run time
environment provides any type of garbage collection function.
3ince SARAH is designed to handle message traffic 24 hours a day
for indefinite periods of time, this problem had to be addressed.

Buffer Yanager 1is the centrul point for allocation and
deallocation of memory. By ensuring that all memory buffers

13

allocated are of constant size, Buffer Manager effectively
removes the fragmentation prodlem,

3uffer Janagevr also acts as a tool package for standardizing file
formats. All linked-list work vequired for creating and
modifying files is accomplished using its tools.

3limination of the fragmentation potential and standardizing file
formats and file manipulation tools were important design goals.
Achievement of these goals have contributed greatly to the
success of the system. However, their achievement was
accomplished at{ the cost of reducing the reusability of most of
S1e SARAH subsystems.

5.2.5. BALANCE REUSE GOALS WITH OTHER DESIGN GOALS

Systam designers are nearly always faced with decisions on how
best Lo resolve conflicting design goals. Reuse is certainly a
design goal with potential to conflict with other design goals.

SARAH designers were faced with just these types of decisions.
Some vreusability was sacrificed to achieve system standardization
20als as described above. However, some efficiency goals were
sacrificed in a effort to achieve some degree of reusability and
transportability.

One example of this is the communications subsystenm. The
communications protocol coulXd have been written in assembler
language +to increase speed and reduce memory requirements.
However, our goal of achieving reusability for this subsystem
prevailed and the protocol was written in Ada using the task
model. (It should be noted that this loss of speed and space
will probably become less significant when more efficient
compilers become available.)

5.3. PROBLEMS OBTAINING REUSABLE MODULES

5.3.1. NO STANDARD TAXONOMY

A method of classifying and categorizing modules is essential if
reuse i3 to be successful on any significant scale (particularly
on an inter-organizational basis). Both the Grace and Wizard
commercial products have implemented their own taxononmy
methods3, 9. But no standard taxonomy has been recognized by the
software community.

A taxonomy method must allow selection of modules based not only
on function (e.g. queue, stack, binary search, etc.) but also on
precision, robustness, generality, and/or timespace performancea.
An example of one taxonomy method now in usse is the one used for
EVB's Grace package: the attributes used in classifying their
modules are bounded/unbounded/limited iterator/ non-iterator,
managed/unmanagad, protected/sequential/guarded/
controlled/multiple/multi-guarded, operation concurrent/object
concurrent, priority/non-priority, and balking/non-balking. As

14

JPu can see, thece i3 & lot more to classitying a module than by
i%s busic furction. A gtandard needs to be developed, accepted,
ard taught. 3uch uar arcomplishment would cuarry us great strides
towards not only more 3uccessful reuse programs but also to help
us be more precise during the design process.

5.3.2. NO STANDARD DESIGN METHODOLOGY FOR REUSE

The desigr methodology that best supports reuse i3 a muclh debated
topic. Most believe that Object Oriented Design (00D) best
3upports reuse since it bases the modular decomposition of a
software system on the classes of objects the system manipulates
rather than on the functions the systen performssv '
Although 00D is widely discussed, it's not widsly used (yet).
1ost still use the de facto standard Structured
Analysis/Structured Designé. There is much division among
software engineers as to the implementation of 00D; soms ’eel
that Ada is perfectly suited for use with oop3, 12, '3, 14, :
others with a narvrower definition of 00D feel that it's not
other languages must be used to achieve successful rauses'
Much worx is being done in this area and for good re-30on; we need
a standard design methodology that fosters reuse. The High Order
Language Working Group provided a standard language but not a
standard design methodology.

m‘ U
FSe

in the absence of a standard design methodology for support of
reuse and other modern design goals, we formulated our own
methodolOgy. For a description see the Ada evaluation paper
titled "An Architectural Approach to Developing Ada Software
Systems!O, "

5.3.3. NO STANDARD FOR RATING QUALITY/RELIABILITY

The lack of a standard for rating the quality and reliability of
reusable modules i3 a deterreunt to reuse. One of the major
inhibitors to reuse is fear of the unknown. Few developers will
risk their reputation by including in their system modules they
suspect of being of dubious quality or reliability. Consumers
Jnion does rnot test software modules. None, except a harndful of
commercial vendors, prov1de any sort of guarantee with a software
malile. S a0 % H3 established and used by softwarve
libraries to reduce the risk of using existing software modules.

5.3.4. NEED BETTER REUSE LIBRARIES/REPOSITORIES

Part of the Softwarse Technology for Adaptable Reliabdble Systens
(STARS) program is to foster the creation of reuss libraries!
The SIMTEL20 library at the White Sands Missile Range is orne
result of this effort. Other libraries are also being developsd
at universities and DoD organizations.

The problem with these libraries stems partly from two of the
previously identified problems: lack of anccepted or adsquate

taxonomy method and lack of a way of rating modulsea on the basis
of quality or reliability. We can state from exporience that

these 4two deficiencies alone render the SIMTEL20 library of far
less value than iis potential,

An ideal 1library would contain many modules; utilize a standard
taxonony method; utilize a method for rating the quality and
reliability of the modulas; and would have a browse feature to
allow users to examine abstracts, 00D documentation, and source
code for any modules of interestléd,

6. PINAL WORDS WITH RECOMMENDATIONS

6.1. INTER-ORGANIZATIONAL REUSE MOSTLY FOR SMALL MODULES

A% the current state of the discipline, inter-organizational
rs2use is a viable option for tool boxes containing common
algorithm-size modules. String manipulation packages, searches,
sorts, stacks, queues, lists, filters, pipes, pattern matching
routires, etc. would all fall into this category.

We recommend that these be purchased rather than searched for in
a reuse library/repository (although we have no experience with
commercial modules, others do14). Users that purchase modules
will more easily find the exact module they need and will have
more confidence in the quality of the moduls. The Grace and
Wizard productsa’ 9 are both comprehensive packages of common
algorithms. They contain not one but many versions of each
algorithm; so you can, utilizing their taxonomy systen, select
the one that best fits your application.

6.2. INTRA-ORGANIZATIONAL REUSE POSSIBLE ON LARGER SCALE

"The major source of reusable modules is within companies and
from software module subindustries!8." This quote from Grady
Booch is a reasonable statement for subsystem size modules;
especially when you consider the obstacles to reusing modules of
this size.

Legal problems are simplified when modules are reused within
organizations (both liability and copyright considerations).
Confidence in the quality of a module is inecreased when you have
Yunch with the people who designed and wrote it. Problems in
anderstanding and implementing the moduls can be mors easily
worked out when you can walk over and talk to the authors (or use
other organizasional lines of communication). Company coding and
design standards are more easily maintained, the target/host
hardware is more likely to be the same, maintenance of the module
igs easier to coordinatse, some parsonnal may even work on both the
project that created the subsystem and the project wanting to
reuse it (as was the case with the SARAH and FLIPS projects), and
the price is right.

16

To exploit the advantages of intra-organizational reuse, many
organizations are creating their own libraries of reusable Ada
modules'4., CCSO is on the road to just such an accomplishment.
An organizational reuse library can contain modules created
within the organization, purchased modules, and modules obtained
from repositories (once they have been used and tested).

6.3. NEW STANDARDS REQUIRED TO MAKE REUSE COMMON

The software development discipline must mature to the point of
being able to effectively reuse software modulses; few would argue
with this. What's needed for reuse are some of the sane things
neseded to push our discipline ftowards maturity: Standards.

The DoD, with its STARS program, is leading the way towards
establishing needed standards. A standard programming language
was a significant step. Postering the development of cods
libraries is also important though currently a m.:h less maturs
effort. Support of education and research thrcugh the Sofiware
Engineering Institute is another important 3TARS effort L

But we have not gone far enough. We need a standard taxonomy for
categorizing modules, standards for specifying modules, and
standards for rating the quality and reliability of modules. Somse
semblance of a standard design methodology which supports both
designing reusable modules and reusing existing modules would be
a welcomed contribution.

The mechanism for establishing these standards is not clear. It
took an act >f government +t0o establish Ada as a standard
programming language. But MS DOS became a de facto standard
micro computer operating system without government action.

Proper standards can help propel the status of software rsuse

from an art to a science, an important step for 3oftware
Engineering.

A. REFERENCES

1. 3oftware Engineering Institute, "Ada Adoption Handbook,
version 1," May 1987, pp 53-55.

2. Harold C. Brooks. Personal Communication. January 1987.

3. Grady Booch, "Software Engineering with Ada,’
Benjamin/Cummings Publishing Company, Inc., 1983.

Textbook;

4. Ted Biggerstaff and Charles Richter; "Reusability Framework,
Assesament, and Directions,” I[EEE Software, March 1987, pp 41-49.

17

5. Bertrand Meyer, “"Reusability: The Case for Object-Oriented
Design,” IEEE Software, March 1987, pp 50-64.

6. I. Sommerville, "Software Engineering, Second Edition;"” Text-
book; Addison-Wesley Publishing Company, 1985, Chapter 4.

7. C2MUG Bulletin, Sep/Oct 1987, pp 5-6.

8. Grace Software, EVB Software Engineering, Ine., 5303 Spectrum
Drive, Frederick, MD, 21701.

9. Wizard Software, 835 S. Moore St., Lakewood, CO, 80226

10. Command & Contvrol Systems Office Ada Evaluation Paper #2
"An Architectural Approach to Developing Ada Software Systems,"
day 21, 1986.

117. Command & Control Systems 0ffice, Ada Evaluation Paper #7,
"Runtime Z%xecution Considerations for Ada Software Devslopment,”
March 27, 1987

12, Anthony Gargaro, "Reusability Issues and Ada,"” IEEE
Software, July 1987, pp 43-51.

13. &d Berard, "Creating Reusable Ada Software,” Presentation
given at the Sunbelkt SigAda meeting, August 1987, Central State
University, Oklahomna.

14. Harold B. Carstensen, Jr., "A Real Example of Reusing Ada
Software,” Magnavox Electronic Systems Company, 1313 Production
Road, F+t. Wayne, Indiana, 46808,

15. Jean E. Sammet, "Why Ada is Not Just Another Programming
Language,” Communications of the ACM, August, 1986, pp 722-731.

16. Gail B. Kaiser and David Garlan; "Melding Software Systems
from Reusable Building Blocks," IEEE Sof4ware, July 1987, pp 17-
42.

t7. Col Joseph Green, Jr., USAF Director of the Softwarse
Technology for Adaptable Reliable Systems (STARS) program,
"Rational for the New STARTS Program”, Presentation given at
Computer Resources and Data Configuration Management Workshop,
Bellevue, Washington, September 15-19, 1986.

18. Grady Booch, "On the Concepts of Object Oriented Design,"

presentation given at the Sunbelt SigAda meeting, March 3, 1988,
Phillips Research Center, Batlesville, Oklahoma.

18

