
BIC FILE COPY
ADA EVALUATION PROJECT

REUSE OF ADA

SOFTWARE MODULES DI IC
ELECT

MARO0 1 1990

Prepared for

00 HEADQUARTERS UNITED STATES AIR FORCE
Assistant Chief of Staff of Systems for Command, Control,

Communications, and Computers
00 Technology & Security Division

aua

Prepared os (SRHbBac
Standard Automated Remote to AUTODINHot(A H)Bac

COMMAND ANI) CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145-6340
Commercial (405) 734-2457

AUTOVON 884 -2457 /5152

20 JUNE~ 1988

90 02 28010

THIS RKPORT IS THE TENTH OF A SERIES WHICH
DOCURET THE LT0SSOS LgARIKD ITYXHEUSE OF ADA IN A

COM MUNICATIOIS EVIRO.MT.

ABSTRACT

Software module reuse using Ada is discussed in the context
of the Standard Automated Remote to AUTODIN Host (SARAH)
Software Development Project. Reuse concepts are presented
including designing, finding, and implementing reusable Ada
components. Reuse in the SARAH project is discussed in
terms of reuse goals, accomplishments, and problems
encountered achieving reuse goals (including design
comprises that had to be made). Current impediments to
software reuse are presented along with stggestions about
how they might be improved. Recommendations are given with
reference to the current scope of potential reuse benefits.

Akcesion For

NTis CRA.lDTIC TAB

Uani t.,ced c
JuSfi'fcah%7.,

STATE2,ENT "A" per Capt. Addison
Tinker AFB, OK MCSC/)xTA by,,.1 J9TELECON 2/28/90 C I

Avaabioisty Codes
it SAv i. al

01st SPec.Jl

'i-

/C

Ada Evaluation Repor t Series Uz CCSO

Ada Training March 13, 1986

Design Issues May 21, 1986

Security May 23, 1986

Micro Compilers December 9, 1986

Ada Environments December 9, 1986

Transportability March 19, 1987

Runtime Execution March 27, 1987

Modifiability April 20, 1987

Testing June 10, 1988

Module Reuse July 5, 1988

Project Management Summer 1988

Summary Fall 1988

• , " m m n -- -- . . .

T A B L R 0 F C 0 9 T 8 N T S

1. INTRODUCTION
1.1. THE ADA EVALUATION TASK.. 1
1.2. PURPOSE 1
1.3. BACKGROUND -- WHY REUSE o............ ..
1.4. SCOPE AND CONSTRAINTS 2
t.5. FORMAT 3

2. COICEPTS 3
2.1. FUNDAMENTALS 3

2.1.1. WHAT TYPES OF MODULES CAN BE REUSED 3
2.1.2. COUPLING AND COHESION............................. 3
2.1.3. MODULE SIZE vs REUSABILITY 4

2.2. DESIGNING REUSABLE MODULES...... 5
2.2.1. SYSTEM NODULARIZATION o . .5
2.2.2. :SOLATION OF iMPLEMENTATION DEPENDENCIES 6
2.2.3. SPECIVICATION OF MODULES 6

2.3. FINDING RIUSABLE MODULES 7
2.3.1. MODULE LIBRARIES/REPOSITORIES..................7
2.3.2. COMXKRC: AL PACtAGES............................ 8
2.3.3. OTIER DoD ORGANIZATIONS......................... 8

2.4. IMPLEMENTING AUGAMLE NODULES 8
2.4.1. IDENTIFY 7AND.DATS FOR REUSE EARLY...........8
2.4.2. MODIVY MOD '01 TO FIT (IF NECESSARY) 8

2.5. REUSE OF CONCEPT I IDKAS.....................8

3. REUSE GOALS OP THK SARAH POJdC? 9
3.1. USE O EXISTING NUJABL MODULES 9

3.1.1. LAkit-CALE eRKSE GOALS (TOP-LEVEL) 9
3.1.2. SMALL-SCALE a(USE GOALS (LOW-LEVEL) 9

3.2. DESIGNING SARAH MODULES TO BE REUSABLE...............10

4. REUSE ACCOMPLISEUMNTS OF THE SARAH PROJECT o...... 10
4.1. USE OF PREVIOUSLY EXISTING MODULES10
4.2. REUSE OF SARAH DEVELOPED NODULES-................... 11

5. WY REUSE GOALS CAN BE DIFFICULT TO ACCONPLISH............ 12
5.1. DESIGNING AND WRITING REUSABLE CODE TAKES LONGER.....12
5.2. REUSE GOALS CAN CONFLICT WITH OTHER DESIGN GOALS 12

5.2.1. CONFLICT WITH SIZING GOALS....................12
5.2.2. CONLICT WITH EXECUTION SPEED GOALS 13
5.2.3. CONFLICT WITH STANDARDIZATION GOALS 13
5.2.4. SARAH's REUSE DESIGN CONFLICTS 13
5.2.5. BALANCE REUSE GOALS WITH OTHER DESIGN GOALS...14

5.3. PROBLEMS OSTAINING REUSABLE MODULES 14
5.3.1. NO STANDARD TAXONOMY 14
5.3.2. NO STANDARD DESIGN METHODOLOGY FOR REUSE 15
5.3.3. NO STANDARD FOR RATING QUALITY/RELIABILITY....15
5.3.4. NEED BETTER REUSE LIBRARIES/REPOSITORIES......15

6.1. INTER-ORGANIZATIONAL REUSE MOSTLY FOR SMALL RODULES..16
6.2. INTRA-ORGANIZATIONAL REUSE POSSIBLE ON LARGER SCALH..16
6.3. NEW STANDARDS REQUIRED TO MAKE REUSE COMMON 17

Appendices

A. REFERENCES............*....................... *.1

1. INTRODUCTION

1.1. THE ADA EVALUATION TASK

This paper is one in a series which seeks to help potential Ada
developers gain practLcal insight into what is required to
successfully develop Ada software. With this goal in mind, Air
Staff tasked the Command and Control Systems Office '"'CSO) to
evaluate the Ada larguage while developing real-time
communications software. The task involves writing papers on
various aspects of Ada development such as training, Ada design,
environments, and security issues. This paper discusses Ada
module reuse issues.

CCSO chose the Standard Aatomated Remote to AUTODIN Auto:m.at
Digital Network) Host (SARAH) project as thi. vehicle bas-s for
the Ada evaluation. SARAH is a small to medium s. ze proiect
(approx. 50,000 lines of executan .e source code) which functions
as a standard intelligent terminal for AUTODI, users and i3 used
to help eliminate punched cards and pap6e tape as a
transmit/receive medium. The development environmer.t for SARAH
consists of a number of IB9 PC ATs and Zenith Z-248
microcomputers. Source code is developed, compiled, a rd
integrated on these machines. The compiler and symbolic debugger
used are from Alsys, Inc. The SARAH software runs on IBM ?C ATs,
Zenith Z-248s, and Zenith Z-200s (TiMEST microcomputers which
are somewhat compatible with the PC ATs and Z-248s).

1.2. PURPOSE

The purpose of tnis paper is to provide a forum for CCSO tn share
knowledge abo:it Ada module reuse gained from experience ar-,
exposire to the topi,.

1.3. BACKGROUND -- WHY REUSE

,'.any subfunct ions in new 3oftware systems are similar, if no-
identical, to those in previously developed systems. If software
were properly designed, those subfunctions could be ruused to
produce new systems faster, more reliably, and at lower costl.

Writing the same and similar code over and over is time consuming
and costly. For example, military command and control systems
could potentially save time and money by reusing the graphics and
display software that has been rewritten for many of these
systems 2 . :r, addition to improved productivity and reduced cost,
software reuse has potential to:

| | in p

a. Increase reliability. Reused code and its accompanying
design will have been extensively exercised and "tested
under fire."

b. Facilitate rapid prototyping. 3

Sefore the advent of Ada, reuse was generally not formally
practiced. Some of the inhibiting factors were:

a. Language standardization was inadequate.

b. Languages were technically limited.

c. Reuse incentives were not present.

d. Indexing and retrieval of existing modules was difficult.1

Ada was designed with reuse in mind and addresses the first two
factors. The language has features intended to facilitate reuse.
Language standardization is very important. Subsets and
supersets, characteristic of other languages, are not allowed
(enforced by compiler validation). Other important features are
packages and generics. Packages provide a specification portion
that allows interfaces to be precisely defined. Generics provide
a tool for customizing existing code to more easily fit into new
applications, without changes to the generic module itself.

Software modules are infiltrated with application-specific
characteristics. Two different systems may both use a binary
table search algorithm, but inevitably something will be
different about them (the type of records stored, the size and
type of the table, dependence on hardware, compiler, or data
representation, etc). This is a major part of the problem that
we are trying to solve. By nature software deals with specific
problems. The objective is to find ways to use common building
blocks (reusable software modules) to build solutions to these
specific problems.

1.4. SCOPE AND CONSTRAINTS

The primary mission of CCSO personnel who contributed to this
paper is to develop software, not to conduct the research
necessary to give a complete treatment to this topic. Treatment
is limited to areas of concern to CCSO personnel. This excludes
most treatment of legal issues such as copyright and liability
concerns associated with software module reuse.

This paper addresses the reuse topic from two standpoints:

a. Reuse of existing software modules.

b. Development of reusable modules.

2

Code generation and 4tn generation languages are considered by
some to be types of reuse but are not addressed in this paper.

1.5. FORMAT

The first major section of the paper after this introduction, the

CONCETS section, overviews some terms and concepts important to
reuse. Reading this section may make the rest of the paper more

meaningful. It may be skipped, however, without missing any data
or descriptions from the SARAH project. Sections 3 and 4 talk

explicitly about SARAIls reuse experiences. oectLorl 5 also
includes some discussions and examples taken from 3ARAH
experiences.

2. CONCEPTS

2.1. FUNDAMENTALS

2.1.1. WHAT TYPES OF MODULES CAN BE REUSED

Most modules that have been properly designed are reusable to
some extent. Modules with hardware or operating system

dependences are more difficult to reuse unless on the same

hardware or operating system.

In the interest of developing common terminology, we coin the

following metric:

Reusability = cost to create a new module /
cost to reuse an existing module

The cost to create a new module is the traditional expenditure to
create a software module. The cost to reuse an existing module
includes obtaining the module, making changes to the module, and
additions or adjustments to the system to make it work. The best
chse would be when cost to reuse approaches zero, Reusability

would then be very high. As cost to reuse approaches the cost to
create, reusability approaches 1. When this occurs there is no
apparent economic advantage to reuse. Other benefits that have
not been factored into the equation may also need to be
considered (i.e. reliability, training for reuse, etc.).

2.1.2. COUPLING AND COHESION
Coupling is a measure of the degree of interconnections between
modules 3 . This is a very important characteristic in determining
how reusable a module will be. When considering a module for
reuse, we are concerned with the dependencies of the module
(upward coupling). In Ada, this can be ascertained by 1oo~ing at
a mod-ale's "with" statements. These tell the analyst what other

3

modules must be available for the module of interest to be
compiled.

Intuitively, few dependencies (low coupling) increases the
potential for reuse. The lowest degree of coupling possible is
none; the only dependencies would be the Ada predefined language
environment itself. In this case, reuse of the module would
require nothing more than compiling and using it.

Cohesion is a corollary to coupling. High cohesion indicates
that a module's internal elements are tightly bound and related
to one another; they are functionally and logically dependent 3 .
This is an important characteristic of object oriented systems.
Components designed in this way are likely to exhibit low-
coupling and be more reusable.

2.1.3. MODULE SIZE vs REUSABILITY
The size of reusable software modules can range from code
segments to major subsystems. A hierarchy of module sizes could
be defined as follows:

a. Subsystem
b. Component
c. Module
d. Tool
e. Code segment

Tool packages are a group (usually grouped in an Ada package) of
mostly small routines that perform a certain class of functions.
A good example of a tool package is a string manipulation
package. Tool packages are excellent candidates for reuse since
the routines are usually small, general, and not dependent on the
context or the Ada runtime system (important attributes for
reusability).

There are a number of benefits to using tool packages. They save
programmer time and reduce memory requirements. The goal is to
use the same tool many times; therefore the function it performs
does not have to be duplicated. Tool usage also adds consistency
and reliability to the system.

System wide tool usage can have the disadvantage of increasing
coupling of the subsystems. Any time a tool package is used by a
subsystem, the tool package becomes a dependency of the
subsystem.

Some have commented that module size (proportional to payoff)
tends to be inversely proportional to reuse potential 4 . Among
the reasons for this are that larger, subsystem size, modules
tend to have more dependencies (coupling). These dependencies
must be addressed if the component is to be reused. The
component can be changed to remove the dependencies, the depended

4

upon modules can be reused along with the module of interest, or
the module of interest can be rewritten.

Dependencies need not prevent the reuse of subsystems. Since the
payoff to reusing these large modu3es can be high, the cost of
fitting the module may be a small price to pay.

As before, the reusability equation can be consulted. If the
cost of fitting the subsystem approaches the value of the
benefit, then the reusability of the subsystem may be
questionable.

2.2. DESIGNING REUSABLE MODULES

Some important characteristic of reusable modules follow:

a. Object oriented groupings,

b. Low-coupling with the other system mciules, high
cohesion.

c. implementation dependent characteristics are minimized,
identified, and isolated (this includes dependences or
characteristics of the Ada runtime environment (data
representation, execution speed, etc), and
characteristics of operating systems and hardware).

d. Be general.

e. Be fully specified.

2.2.1. SYSTEM MODULARIZATION
The system design should be decomposed into subsystems that are
grouped by the class of operations they perform and the type of
data they manipulate. An example might be to group all the
operations and types dealing with reading and writing to disks,
or the grouping of all the operations on a certain type of
message correspondence. This is the foundation of Object
Oriented Design (OOD)5, 5, 6. This can be contrasted to the more
traditional functional top-down design that bases decomposition
on steps in a data flow.

Object oriented grouping results in modules which are less
coupled, more cohesive, and thus easier to maintain and aore
practical to reuse. Modules will be more general (thus more
reusable) since OOD tends to put off data flow details. (Many
systems will require a disk management subsystem but few will
have the same data flow requirements as the original system.)
Older design methods tend to create more application-specific

modules.

5

2.2.2. ISOLATION OF IMPLEMENTATION DEPENDENCIES
Since many subsystems will have implementation dependencies, to
make these subsystems reusable, these implementation dependencies
should be isolated and identified in a separate package. In this
way if tho subsystem is reused (or the entire system is ported)
with a new compiler and/or operating system, rewriting the
implementation-dependent package should render the subsystem
rt-usable.

An example of this may be a disk management subsystem. Some
otrts of this subsystem will need to be familiar with filename
-etails, do operating system calls to access the disks, etc.
These oarts of the subsystem will have to be rewritten if the
entire disk subsystem is reused. They should be identified and
isolated in a separate package to make the modifications easier
to identify and accomplish.

2.2.3. SPECIFICATION OF MODULES
Reuse will never really catch on unless modules are fully
specified, in terms of not only their functionality but also
their performance.

Areas to be addressed in specifying a reusable module include:

a. All inputs.
- all allowable ranges for inputs (i.e. constraints).
- all input modes (IN, OUT, IN OUT).

b. All outputs.
- all allowable ranges for outputs.
- outputs in terms of inputs ('transfer function').
- exception conditions, and when and why they are raised,

and what, if any, internal action is taken.

C. Functionality.

- interactions between inputs and outputs (whereby the
internal action of the process is described in detail -
in other fields, this is known as the transfer
function).

d. Performance.
- RAM executable code requirements (static or quiescent

RAX requirements).
- RAM heap requirements (dynamic RAM requirements).
- Tasking.

- the number of tasks running internally (minimum,
typical andmaximum), and atwhat priority.

- the minimum, typical, and maximum time units for the
execution of each procedure (be it a sequential or
tasking-related).

The above are obviously very dependent upon implementation
(compiler, compiler options, and hardware target), and therefore

6

thej ;hoi1i bt; dkit1l le. d in t4rms of the implementation. For

example "v " Ilu'.i. w-re obtained using an ALSY3 compiler, bound with
,j';CA L D => ,,; M, U V ", , optimized for execution time; run-time
performance was evaluated on an !BM PC AT running at 8MHz."
At some stage in the future (hopefully), some enterprising agency

will publish normalization tables so that the performance on one
machine/compiler can be translated into a corresponding
performance on another machine/compiler, thus establishing

predictable performance, an area that needs more attention in the

field)f software.

VarLable or marginal requirements should be expressed in terms of
un ,t entit'es. For example, if a reusable editor wus being
specified, it may have heap requirements stated as follows:

86 bytes / line;
5 oytes / page (plus 66 lines);

4000 bytes / open file (Text Window);
512 bytes / open file (File buffer);

'his woula allow a potential user to calculate th&t for a worst
case situation of five files open, each file having 10 pages

(3,300 lines), he would require: 86*3,300 + 5(5*10 + 4000 + 512)
- 307 Kbytes of heap. This would allow him to make a decision as
to suitability of the module for his specific requirement.

.imilarly, all run-time requirements should be specified in terms
of minimum, typical, and maximum values. The potential user
could then perform calculations to assess the most suitable of a

range of available modules. Consider a package designed for
communications functions. Unless the user can calculate that it

will execute (on his particular hardware) at the required rate,
he will not be able to use it. It's no use using an available
comrnur.i ,ations package if it can't keep up with the data
t rinsmission speed. And it's no use trying to use it unless you
can have at least a calculated chance of it working. The essence

ns te ability to calculate, this is determined by the quality
of the performance specifications of the module.

2.3. FINDING REUSABLE MODULES

2.3.1. MODULE LIBRARIES/REPOSITORIES
Aodule repositories are one source of Ada modules. The most well
known repository among SARAU personnel is the Ada Software
Rpository (also krow an 3 1 A?'L20). As of 3eptember, 1 9tS7 t his
repo.itory contained 1,)1 files or about 8053,000 lines of source
codi'i. 3i -'.,'L,20 informatir, is available on DDN. The DDN address

for subscribing to Ada Software Repository is <ADA-JW-

.>i.' *".;'.' .~; 2 . ,;L2). Ah PA >

7

2.3.2. COMMERCIAL PACKAGES
We know of two sources of commercially available Ada software
modules. The GRACE package from EVB software Engineering6, and
the W:ZARD package from Grady Booch 9. Both are large boxes of
tools and data structures. Each comes in variations to fit many
different application environments.

2.3.3. OTHER DoD ORGANIZATIONS
: ;.ce Ida is being used across the DoD, it's possible that
another DoD organization has already written some modules that
you can use. Exchanging source code between DoD organizations
shouli be encouraged. Caution should be exercised, however,
b-cause most existing code is too application specific to be
r-usable. In general, modules are reusable only if they were
properly designed to be reusable.

2.4. IMPLEMENTING REUSABLE MODULES

2.4.1. IDENTIFY CANDIDATES FOR REUSE EARLY
It's important to identify the modules you plan to reuse as early
in the project as possible. This is especially true for larger
(subsystem size) modules. (See the discussion of the FLIPS
project (paragraph 4.2) which utilized the SARAH VDT subsystem.)

2.4.2. MODIFY MODULES TO FIT (IF NECESSARY)
Often, modules to be reused must be modified to fit the
application. Or, for larger modules, depended upon units may
have to be reused also or rewritten.

The typical method of reusing a subsystem should probably be to
make the Ada package specifications of the depended upon packages
part of the subsystem. Commonly the depended upon packages
provide low-level services such as input/output. If the
subsystem is ported to a new operating system environment, the
package bodies will need to be rewritten. If not, the depended
upon packages may be reused (with changes if necessary).

Ideally, incorporation of an existing module can occur without
being concerned about how a module works (what's in the package
body). Interfacing to Ada modules occurs via the specification
part of the module (the package specification). If the module is
properly designed, reuse may be accomplished without changing or
being concerned about the internals of the module.

2.5. REUSE OF CONCEPTS AND IDEAS

Reuse of ideas (coding and design ideas) can be just as important
a reuse concept as reuse of code. In many ca3es ideas can be
reused when the code itself is too application-specific to be
reused. This is a fundamental concept to computer science. It's

. . . . " " ' ' I I I I II I3

the next best thing to actual reuse. Much time can be saved
reusing an idea that worked, rather than develop a method from
scratch.

3. REUSE GOALS OF THE SARAH PROJECT

3.1. USE OF EXISTING REUSABLE MODULES

TLhis section discusses our goals for reusing existing software
specifically for the SARAH project.

3.1.1. LARGE-SCALE REUSE GOALS (TOP-LEVEL)
SARAH's top-level design was developed using an object-oriented
methodology. The exact approach used is described in an earlier
paper 1 .

The design consists of several major subsystems. These are
Editor, Print, Disk, VDT (including a screen manager, a sound
manager, and key manager), Message Masks, and the Communication
Subsystems (transmit processing, receive processing, line
protocol, etc). When these subsystems were defined, we hoped
we would be able to find an existing subsystem to satisfy the
r~quirement for one or more of them.

After some preliminary searching, we concluded that the only
subsystem we had any reasonable chance of finding was an editor.
So, our large-scale goal for use of existing software became to
find and incorporate an editor into the system.

3.1.2. SMALL-SCALE REUSE GOALS (LOW-LEVEL)
For our low-level designs, we wanted to utilize existing tool
packages where we could.

Our goal at this time became to limit our use of tool packages to
those that would most exploit the benefits. The most important
benefit to us was the potential for reducing the memory
requirement. This was a significant constraint from the start.
Our Personal Computer (PC) target has limited memory and Ada has
a tendency to generate large executable filesl I. We were also
interested in the time 3avings since our project was working
under a short suzipense.

We also planned to write some of our own tool packages, mainly
for the purpose of enforcing certain system data standards and
for consistent operations on these data objects. We expected to
reap savings in storage and development time from these also.

We started searching for a string manipulation package and began
designing our own tool packages.

9

3.2. DESIGNING SARAH MODULES TO BE REUSABLE

This section addresses our goals for making SARAH software
reusable. Among these design goals were that the system be
portable, and that as many modules as possible be reusable.
These goals are different, yet they have similarities, especially
as pertains to reusing larger (subsystem size) modules. Of
course these design goals were secondary to the primary design
goal of satisfying the system requirements with an understandable
and maintainable system.

Using an object oriented method1 0 , we modularized the system into
independent subsystems, each one with a different class of
responsibility. These areas were Disk Manager, Print Manager,
VDT Manager (Visual Display Terminal) Editor, Validation, and
Communications. A Mask subsystem evolved and became separate from
the Editor (Mask is used to create messages in valid Defense
'Communications Agency formats). Each subsystem was designed to be
solely and completely responsible for its area of responsibility.
'Jo overlap was allowed.

Following OOD principles, each subsystem was designed to be as
cohesive as possible. For example, VDT Manager was designed to
have all the types and functions needed to do any type of screen,
sound, or keyboard operation, within SARAH. Also, no other
subsystem is allowed to access these resources for which VDT
Aanager is responsible. In this way, we hoped, VDT Manager would
be reusable as a complete cohesive entity; available for a new
system to easily develop its own user-friendly interface.

Each subsystem was designed to isolate and identify
implementation dependent areas. An example of this is the Disk
Manager subsystem. SARAH runs on PCs with the MS-DOS (or PC DOS)
operating system. This means that Disk Manager must be aware of
some of the characteristics of this operating system (filename
formats, directory formats, legal drive characters, etc.) During
the design of Disk Manager an attempt was made to isolate all of
these implementation-dependencies in a package called Disk
Definitions. The reason was that if SARAH was ported to a new
operating system, say UNIX (or the Disk Manager subsystem was
reused in a UNIX environment), the only major change needed to
Disk M4anager would be a rewrite of Disk Definitions.

4. REUSE ACCOEPLISHRENTS OF THE SARAH PROJECT

4.1. USE OF PREVIOUSLY EXISTING MODULES

The SARAH project used few existing reusable modules. The
string-manipulation package obtained from the Ada Software
Repository was the only existing module (along with a few code

10

segments) that we used. This package was about 250 executable
source lines. We had to make a minor modification, but it proved
to be reliable.

We 3earched the Ada Software Repository and called around looking
for an editor but couldn't find one. We eventually quit looking
and began writing our own.

We did not use any commercially available modules.

The Mobile Information Management System (MIMS) project at Offutt
Air Force Base sent us a copy of their source code. We did not,
however, use any of this code in SARAH.

4.2. REUSE OF SARAH DEVELOPED MODULES

Shortly before the completion of the first release of SARAH, a
new Ada project was started elsewhere in CCSO. This project is
called the Flight Information Processing System (.F'PS). FLIPS
is being developed with the same compiler (Alsys Ada for PCs) and
for the same target (Zenith Z-248). This project was planned
from the start to reuse as many of the SARAH modules as possible
to speed development. In fact, one of the FLIPS analysts was
sent over to work with the SARAH project for four months to gain
experience with the SARAH subsystems.

So far, the FLIPS project has incorporated nine SARAH packages
into their system. This is roughly 2,500 lines of code making up
about 60% of their current prototype version. These packages
consist of the SARAH VDT Manager subsystem and the Buffer Manager
package (SARAHs central manager for memory allocation and
deallocation).

About three weeks were spent incorporating these modules into the
FLIPS design (using two people). FLIPS personnel estimate that
it would have taken at least six to eight months to create this
code from scratch. Although none of these modules were adapted
without change, FLIPS developers were generally happy with the
reusability of these subsystems.

They also commented that reuse of these modules was possible
primarily through the personal experience of their analyst who
worked with SARAH. "Without this familiarity," they commented,
"much more time probably would have been spent identifying and
modifying these modules. A cataloging system and a generally

standard method of documenting modules would be a great help to
future systems development."

One catch that the FLIPs personnel had to accept when using
VDT Manager was using Buffer Manager as well. This is because,
like most of the other SARAH subsystem, VDT Manager is dependent

11

upon Buffer Manager. This problem is more fully discussed in
paragraph 5.2.1.

A number of other interested DoD agencies have received copies of
the SARAF source code. The subsystem generating the most
interest is the VDT r-anager. So far, we haven't received any
feedback on the reuse of these modules.

5. WHY REUSE GOALS CAN BE DIFFICULT TO ACCOMPLISH

5.1. DESIGNING AND WRITING REUSABLE CODE TAKES LONGER

Reusable code does not happen by accident. It takes more time to
write reusable code than it takes to write code just to satisfy
the requirements of the given application. Some think it takes
many times longer.

This is one of the major impediments to the development of
reusable code. Projects are usually run on tight schedules.
Satisfying project requirements and meeting project milestones
are usually given more importance than designing the system
modules to be reusable for the next project.

Making design of reusable code a high project priority is the
only way around this problem. Take the time to train personnel in
how to design and write reusable code; then give them the time
to do so. Recoup of this investment will occur two or three
projects down the road when the organization has established a
useful pool of good quality, reusable modules. As this pool
grows, and reuse becomes a way of doing business, benefits can
multiply.

5.2. REUSE GOALS CAN CONFLICT WITH OTHER DESIGN GOALS

5.2.1. CONFLICT WITH SIZING GOALS
Reusable modules are often larger than their applicationspecific
counter parts. Combine this with the fact that Ada tends to
generate larger executable files than most languages11 , and you
run into potential conflicts with sizing goals.

Some projects may not have this problem. In this day of cheap
memory and expensive labor, the development and maintenance time
saved using reusable modules can easily outweigh the cost of
memory.

But a project with strict sizing requirements, like many embedded
systems, will have to look hard at this potential conflict. The
savings available from using reusable modules may have to be
compromised to satisfy sizing requirements.

12

One type of reuse that has the potential to save memory is the
use of tool boxes (tool packages). An efficient, reliable tool
box can prevent the need for redundant routines in the system.

5.2.2. CONFLICT WITH EXECUTION SPEED GOALS
Modules designed for reuse may run slower than modules designed
for speed. However, this is not always the case; a well
designed, well thought out reusable module may run very
efficiently. A rule of thumb, however, is that generality is
inversely proportional to power 4 (efficiency). This needs to be
considered both when using an existing reusable module or
designing a reusable module for time critical code segments.

The average system executes a small portion of its code much more
frequently than the rest of the code. Thi3 very frequently
executed code may be the only part of the system in which the
potential loss of speed is more significant than the benefits of
reuse.

The rigid performance requirements of many real-t4me embedded
mission-critical applications (interrupt control, cyclic
execution, cyclic execution, predictable timing, sturage control,
and flexible scheduling) conflict with the goal of developing
reusable software components 1 2.

5.2.3. CONFLICT WITH STANDARDIZATION GOALS
System designers may want to introduce standard types and
standard tools for use across the system. Reasons for these
standards can be to reduce code size, reduce labor costs, or to
introduce an element of consistency to important system
parameters.

Use of standard types and tools increases the coupling of the
system and thus reduces the reusability of the individual modules
of the system. This was a major design conflict with SARAH and
is described in the next section.

5.2.4. SARAH's REUSE DESIGN CONFLICTS
The major design factor which reduces the reusability of SARAH
subsystems is a high degree of coupling between them and system
tool packages. The reason for this coupling is to satisfy both
sizing and standardization goals.

The package to which most SARAH subsystems is coupled is the
Iluffer Manager. The major reason for the existence of this
package is to prevent progressive memory fragmentation from
multiplying until the system fails. This danger exists because
neither the M3 DOS operating system or the Alsys Ada run time
environment provides any type of garbage collection function.
Since SARAH is designed to handle message traffic 24 hours a day
for indefinite periods of time, this problem had to be addressed.

Buffer Manager is the central point for allocation and
deallocation of memory. By ensuring that all memory buffers

13

allocated are of constant size, Buffer Manager effectively
removes the fragmentation problem.

3uffer Manager also acts as a tool package for standardizing file
formats. All linked-list work required for creating and
modifying files is accomplished using its tools.

Elimination of the fragmentation potential and standardizing file
formats and file manipulation tools were important design goals.
Achievement of these goals have contributed greatly to the
success of the system. However, their achievement was
accomplished at the cost of reducing the reusability of most of
the SARAH subsystems.

5.2.5. BALANCE REUSE GOALS WITH OTHER DESIGN GOALS
System designers are nearly always faced with decisions on how
best to resolve conflicting design goals. Reuse is certainly a
design goal with potential to conflict with other design goals.

SARAH designers were faced with just these types of decisions.
Some reusability was sacrificed to achieve system standardization
goals as described above. However, some efficiency goals were
sacrificed in a effort to achieve some degree of reusability and
transportability.

One example of this is the communications subsystem. The
communications protocol could have been written in assembler
language to increase speed and reduce memory requirements.
However, our goal of achieving reusability for this subsystem
prevailed and the protocol was written in Ada using the task
model. (It should be noted that this loss of speed and space
will probably become less significant when more efficient
compilers become available.)

5.3. PROBLEMS OBTAINING REUSABLE MODULES

5.3.1. NO STANDARD TAXONOMY
A method of classifying and categorizing modules is essential if
reuse is to be successful on any significant scale (particularly
on an inter-organizational basis). Both the Grace and Wizard
commercial products have implemented their own taxonomy
methods 8 , 9. But no standard taxonomy has been recognized by the
software community.

A taxonomy method must allow selection of modules based not only
on function (e.g. queue, stack, binary search, etc.) but also on
precision, robustness, generality, and/or timespace performance8 .
An example of one taxonomy method now in use is the one used for
EVB's Grace package: the attributes used in classifying their
modules are bounded/unbounded/limited iterator/ non-iterator,
managed/unmanaged, pro tec ted/sequential/guarded/
control led/multiple/multi-guarded, operation concurrent/object
concurrent, priority/non-priority, and balking/non-balking. As

14

you car see, thurs L:; a lot more to classifying a module than by
it- basic functio. A 9tan .rd needs to be developed, accepted,
and taught. 3uCh ar. inicompllshment would carry us great strides
towards not only ,gore ssccessful reuse programs but also to help
us be more precise during the design process.

5.3.2. NO STANDARD DESIGN METHODOLOGY FOR REUSE
The design methodology that best supports reuse is a mic debated
topic. lost believe that Object Oriented Design (OOD) best
supports reuse since it bases the modular decomposition of a
software system on the classes of objects the system manipulates
rather than on the functions the system performs3 , 5, 6
kjthough O0D is widely discussed, it's not widely ust-d (yet).
A ost still use the de facto standard Structured
Analysis/Structured Design 6 . There is much divi sion among
software engineers as to the implementation of OOD; some feel
that Ada is perfectly suited for use with OOD 3 , 12, 13, 14, 15,
others with a narrower defini tion of OOD feel that it's no. ard
other languages must be used to achieve successful reuse 5' 16.
Xuch work is being done in this area and for good re aon; we need
a standard design methodology that fosters reuse. The High Order
Language Working Group provided a standard language but not a
standard design methodology.

:n the absence of a standard design methodology for support of
reuse and other modern design goals, we formulated our own
methodology. For a description see the Ada evaluation paper
titled "An Architectural Approach to Developing Ada Software
Systems1 O.

5.3.3. NO STANDARD FOR RATING QUALITY/RELIABILITY
The lack of a standard for rating the quality and reliability of
reusable modules i:3 a deterrent to reuse. One of the major
inhibitors to reuse is fear of the unknown. Few developers will
risk their reputation by including in their system modules they
suspect of being of dubious quality or reliability. Consumers
Jnion does not test software modules. None, except a handful of
commercial vendors, provide any sort of guarantee with a software

! - " - ') established and used by software
libraries to reduce the risk of using existing software modules.

5.3.4. NEED BETTER REUSE LIBRARIES/REPOSITORIES
Part of the Software Technology for Adaptable Reliaole Systems
(STARS) program is to foster the creation of reuse libraries 1 7 .
The SIMTEL20 library at the White Sands Missile Range is one
result of this effort. Other libraries are also being dtveloped
at universities and DoD organizations.

The problem with these libraries stems partly from two of the
previously identified problems: lack of anccepted or adequate
taxonomy method and lack of a way of rating module3 on the basis
of quality or reliability. We can state from experience that

15

these two deficiencies alone render the SIIATEL20 library of far
less value than its potential.

An ideal library would contain many modules; utilize a standard
taxonoray method; utilize a method for rating the quality and
reliability of the modules; and would have a browse feature to
allow users to examine abstracts, OOD documentation, and source
code f.or any modules of interest 1 4 .

6. FINAL VORDS WITH RECOMNENDATIONS

6.1. INTER-ORGANIZATIONAL REUSE MOSTLY FOR SMALL MODULES

At the current state of the discipline, inter-organizational
riuse is a viable option for tool boxes containing common
algorithm-size modules. String manipulation packages, searches,
sorts, stacks, queues, lists, filters, pipes, pattern matching
routines, etc. would all fall into this category.

We recommend that these be purchased rather than searched for in
a reuse library/repository (although we have no experience with
commercial modules, others do 1 4). Users that purchase modules
will more easily find the exact module they need and will have
more confidence in the quality of the module. The Grace and
Wizard products8 , 9 are both comprehensive packages of common
algorithms. They contain not one but many versions of each
algorithm; so you can, utilizing their taxonomy system, select
the one that best fits your application.

6.2. INTRA-ORGANIZATIONAL REUSE POSSIBLE ON LARGER SCALE

"The major source of reusable modules is within companies and
from software module subindustries 18 ." This quote from Grady
Booch is a reasonable statement for subsystem size modules;
especially when you consider the obstacles to reusing modules of
this size.

Legal problems are simplified when modules are reused within
organizations (both liability and copyright considerations).
Confidence in the quality of a module is increased when you have
lunch with the people who designed and wrote it. Problems in
understanding and implementing the module can be more easily
worked out when you can walk over and talk to the authors (or use
other organizational lines of communication). Company coding and
design standards are more easily maintained, the target/host
hardware is more likely to be the same, maintenance of the module
is easier to coordinate, some personnel may even work on both the
project that created the subsystem and the project wanting to
reuse it (as was the case with the SARAH and FLIPS projects), and
the price is right.

16

To exploit the advantages of intra-organizational reuse, many
organizations are creating their own libraries of reusable Ada
modules1 4 . CCSO is on the road to just such an accomplishment.
An organizational reuse library can contain modules created
within the organization, purchased modules, and modules obtained
from repositories (once they have been used and tested).

6.3. NEW STANDARDS REQUIRED TO MAKE REUSE COMMON

The software development discipline must mature to the point of
being able to effectively reuse software modules; few would argue
with this. What's needed for reuse are some of the same things
needed to push our discipline towards maturity: Standards.

The DoD, with its STARS program, is leading the way towards
establishing needed standards. A standard programming language
was a significant step. Fostering the development of code
libraries is also important though currently a m-h less mature
effort. Support of education and research through the Software
Engineering Institute is another important STARS effort 17.

But we have not gone far enough. We need a standard taxonomy for
categorizing modules, standards for specifying modules, and
standards for rating the quality and reliability of modules. Some
semblance of a standard design methodology which supports both
designing reusable modules and reusing existing modules would be
a welcomed contribution.

The mechanism for establishing these standards is not clear. it
took an act)f government to establish Ada as a standard
programming language. But XS DOS became a de facto standard
micro computer operating system without government action.

Proper standards can help propel the status of software reuse
from an art to a science, an important step for Software
Engineeri.ng.

A. REFEREICES

1. Software Engineering Institute, "Ada Adoption Handbook,
version 1," May 1987, pp 53-55.

2. Harold C. Brooks. Personal Communication. January 1987.

3. Grady Booch, "Software Engineering with Ada," Textbook;
Benjamin/Cummings Publishing Company, Inc., 1983.

4. Ted Biggerstaff and Charles Richter; "Reusability Framework,
Assessment, and Directions," IEEE Software, March 1987, pp 41-49.

1-7

5. Bertrand Meyer, "Reusability: The Case for Object-Oriented
Design," IEEE Software, March 1987, pp 50-64.

6. I. Sommerville, "Software Engineering, Second Edition;" Text-
book; Addison-Wesley Publishing Company, 1985, Chapter 4.

7. C2 MUG Bulletin, Sep/Oct 1987, pp 5-6.

8. Grace Software, EVB Software Engineering, Inc., 5303 Spectrum
Drive, Frederick, NID, 21701.

9. Wizard Software, 835 S. 14oore St., Lakewood, CO, 80226

10. Command & Control Systems Office Ada Evaluation Paper #2
"An Architectural Approach to Developing Ada Software Systems,"
May 21, 1986.

11. Command & Control Systems Office, kda Evaluation Paper #7,
"Runtime Execution Considerations for Ada Software Development,"
Aarch 27, 1987

12. Anthony Gargaro, "Reusability Issues and Ada," IEEE
Software, July 1987, pp 43-51.

13. Ed Berard, "Creating Reusable Ada Software," Presentation
given at the Sunbelt SigAda meeting, August 1987, Central State
University, Oklahoma.

14. Harold B. Carstensen, Jr., "A Real Example of Reusing Ada
Software," Magnavox Electronic Systems Company, 1313 Production
Road, Ft. Wayne, Indiana, 46808.

15. Jean E. Sammet, "Why Ada is Not Just Another Programming
Language," Communications of the ACM, August, 1986, pp 722-731.

16. Gail E. Kaiser and David Garlan; "Melding Software Systems
from Reusable Building Blocks," IEEE Software, July 1987, pp 17-
42.

17. Col Joseph Green, Jr., USAF Director of the Software
Technology for Adaptable Reliable Systems (STARS) program,
"Rational for the New STARTS Program", Presentation given at
Computer Resources and Data Configuration Management Workshop,
Bellevue, Washington, September 15-19, 1986.

18. Grady Booch, "On the Concepts of Object Oriented Design,"
presentation given at the Sunbelt SigAda meeting, March 3, 1988,
Phillips Research Center, Batlesville, Oklahoma.

18

