
*

DTIC FLE Copy
ADA* EVALUATION PROJECT

TRANSPORTABILITY ISSUES

FOR ADA* SOFTWARE DEVELOPMENT

DTIC

)MAR 0 1 1990

Prepared for O(I00

HEADQUARTERS UNITED STATES AIR FORCE
Assistant Chief of Staff of Systems for Command, Control,

NCommunications, and Computers
Technology& Security Division

Technology~)dE~

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145-6340
COMMERCIAL (405) 734-2457/5152

AUTOVON 884- 2457 / 5152

* Ada is a registered trademark of the U.S. Government

(Ada Joint Program Office)

19 March 1987

90 02 28 006

T A B L E O r C O N T E N T S

1. INTRODUCTION ... 1
1 .1 . THE ADk EVALIIJA2I ON T S

1 .2. BACKGROUND I
1 .3. PURPOSE 2

I .41. SCOPE AdD c O,3RRAIN T S

2. TRANSPORTABILITY ISSUES 4
2.1 . THE b ' I[S.. 4

.2. DA'S ROL .. 4
-3. HE COSTS OP 'RAINSPORPABILITY 5

2.4. A HTDDSN "T AP ... 6
-. 5. -.ANA 4', lE5'P TRk[lIN G 7

3. DESIGN FOR TRANSPORTABILITY 8
3.1. RANSPDRTA [LITY R -,Qi[R f,,HENTS.......................... 85.3. DESIG N 'I THODS .. 9

5.3. INPORIA'ION HIDING AND ABSTRACTION 9

4. LANGUAGE ISSUES ... 43
4 .1. CODING SAIDAR. . ..
4.2. DYNA-I C ALLOCATION 10
4 3. DISCRETE TYP ES 1 0
4.1 . TASK IN ... 12
4.5. E]LABORAP[ON ORDER 15
4 6. PRAGf:. ... 1 5

5. TRANSPORTABILITY EXPERIENCES WITH SARAH 16
5. 1 . THE LOG ICAL KERNEL .. 1 6
5.2. iN ORIAT[ON HIDING 16
5.3. STANDARD PRE -DEINED PACKAGES 17

6. SUNMARY AND RECOMMENDATIONS 20
6 . 1 . SUJ ,'IARY .. ?0
6.?. RE DAT IONS.. 21

Appendices

A. REFERENCES ... 22

nr-

STAT EENT "A" per Capt. Addison L,,:.
Tinker AFB, OK NCSC/XPTA
TELECON 2/28/90 CG

,TD

[.)It_,,,_

L IS T 0OF F [CGU RES

4-1: Example of Possible Elaboration Problems................... 14

5-1: SARAH Logical Kernel....................................... 19

THIS REPORT IS THE SIXTH OF A SERIES WHICH

DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA IN A
COMMUNICATIONS ENVIRONMENT.

ABSTRACT

This paper discusses Ada transportability. The
first section of the paper provides some background
information on the Ada evaluation task and defines
the scope of the paper.

The second section of the paper looks at some of
the main issues associated with transportability.
The benefits of producing transportable software
are covered along with some of the hidden costs and
problems. The manager's role in developing
transportable software and the effect of using the
Ada language are discussed.

The third section looks at design issues. This
do tion a f&U0 nat if transportabiiiTy is not
defined as a requirement early in the development
process, then the resulting software will not be
very transportable. Design methods and software
engineering principles that can aid in the
development of transportable software are covered.

Section four addresses language issues. The need
for well defined coding standards and programmer
training is highlighted. Language issues that
pose the greatest threat to transportability are
covered in detail and references are provided to

give the reader a more in-depth coverage)f the
Sit b ec t .

The fifth section discusses some of the experiences
that the Standard Automated Remote to Automatic
Digital Network (AUTODIN) Host (SARAH) team
encountered in developing transportable Ada
software. The usp of a logical kernel approach,
standard pre-defi.,, packages, and information
hiding are discusse

The final section summarizes some of the main
points and provides some recommendations on the
development of transportable Ada software.

Ada Evaluation Report Series y CCSO

Ada Training March 13, 1986

Design Issues May 21, 1986

Security May 23, 1986

Micro Compilers December 9, 1986

Ada Environments December 9, 1986

Transportability March 19, 1987

Runtime ×xecution March 27, 1987

Modifiability Winter 36-87

Project Management Spring 87

Module Reuse Fall 87

Testing Fal 87

Summary Fall 87

4. INTRODUCTION

1.1. THE ADA EVALUATION TASK

Phis paper is one in a series which seeks to help potential Ada

developers gain practical insight into what is required to
succio3fdlly develop Ada software. With this goal in mind, Air
Staff tasked the Command and Control Systems Office (CCSO) to
evaluate the Ada language while developing real-time
com-,'nicatioas software. The task involves writing papers on
various aspects of Ada development such as training, Ada design,

environments and security issues. This paper discusses
transportability issues.

CCSO chose the Standard Automated Remote to AUTODIN (Automatic
Digital Network) Host (SARAH)l project as the vehicle for the Ada
evaluation. SARAH is a small to medium size project (approx.
40,000 lines of executable source code) which will function as a
standard intelligent terminal for AUTODIq users and will be used
to help e Lim inate punched cards and paper tape as a
transmit/receive medium. The development environment for SARAH
consists of a number of IBH PC AT, Zenith Z248, a"d Zenith Z150
microcomputers. Source code is compiled on the PC ATs : Z248s
using Alsys Ada compilers and the object code can be targetX' t)
any of the development microcomputers configurations. The SARAH
software will run on a range of PC XT, PC AT, and compatible
microcomputers under the ISDOS operating system (version 2.0 or
higher) .

1.2. BACKGROUND

The ,ipi ra i ng cost of software, the ever increasing need for
'ir.er arid more comple x softw1ire systems, a ti rapid advance -

.input,er hardware techno Ilogy have motivated planner:3 to look
c oPsely a t the uestion of software transportability.
Traditional ly, software applications have been rewritten or
extensively ncdifiei if the application needed to be transported
to another machine. This approach has been costly and has played
a major part in what is often termed the 'software crisis-- .
Faced with the problem of spiraling software costs and a
projected lack of trained software professionals, the U.S.
Department of Defense initiated the Ada program. Ada provideo a
good set of tools for producing transportable software but there
are many other issues that must be considered if transportability
goals are to be realized.

Trinsporting entire applications to other target environment.s can
provide large cost benefits but there are also costs associated
with producing transportable software. 3oftware that has been
de:3igned to be transportable could be slower, larger in size, and
couild take longer to produce. Planners need to consider these
hidden costs while determining the transportability requirements.

- mmmnmml | 1

After the requirements have been established, design and coding

standards should be established and adhered to by all members of
the development team. Transportability must be considered
throughout the development cycle or the software will not exhibit
the degree of transportability specified in the requirements.

One of the design and development goals for the SARAH project is
transportability. The SARAH software is targeted to a range of
Ioff the shelf' microcomputers. Because of the large cost of
producing software and falling hardware costs, the SARAH planner3
foresaw the need to build a system that could easily be
transported to new microcomputer architectures when they becalme
available.

1.3. PURPOSE

"The purpose of this paper is to:

d Provide details on the design and development issues

associated with producing transportable Ada software.

o Outline some of the effects that transportable software
may have on runtime execution, size, and the development
times.

0 Highlight some of the experiences and lessons learned
during the design and development of transportable SARAI{
software. /

1.4. SCOPE AND CONSTRAINTS

The terms transportability and software reuse are often used

interchangeably. This paper discusses transportability of Ada
software; but what does the term transportability actually mean
and how does it differ from reusability? A good definitLon of
software transportability is: "the capability of an application
to be used again in a different target environment than the one
for which it was originally developed 5 . This is different from
the definition of reusability which implies that components of
the application are used in some new application. Indeed,
software could be very portable but the components of the
software may not be reusable because of tight coupling between
the modules. Issues associated with reusability will be covered
in a subsequent paper.

Since the SARAH software is currently still under development,
the total effects of transportability cannot be fully determined.
Software developed for SARAH has only been targeted to IBM PC AP,

IB. PC XT, Zenith Z150, Zenith Z248, and compatible

microcomputers. During initial research and experimentation,

some experience was gained in transporting Ada code between a

Digital Equipment Corporation VAX 11/780, a Burroughs XE 550
Megaframe, a Zenith Z150 microcomputer, and an TB1 PC AT.

3

2. TRANSPORTABILITY ISSUES

This eection of the paper addresses several important issues
associated with transportability. The benefits of developing
transportable software, the effects of using the Ada language,
manager education, and some of the costs associated with
transportability are discussed.

2.1. THE BENEFITS

Overall software costs can be significantly reduced by producing
transportable software. If complete applications can be moved to
different target environments with very little modification, then
significant cost benefits can be achieved. The Ada Europe
guidelines on transportability provide a formula for assessingtransportability:

cost of re-implementation on new target
T = I -

cost of original implementation

The value of -1 must be a positive frnction if any benefits ,tre to
be gained by moving an application to another target environment.
If transportability is a development goal, then designers should
aim at producing a system that will achieve a high portability
fraction for the life of the software.

implementors should aim at developing systems where the life of
the software is longer than that of the target machine. Software
applications are becoming larger and more complex and so the
costs associated with developing such software are increasing
dramatically. At the same time, hardware costs are falling and
hardware performance is improving. 3ince software is one of the
major costs of a system, planners are concerned about protecting
the software investment. One way to achieve this is throutgh
transportability. When hardware becomes unmaintainable or i
performance upgrade is required, the software should allow for

. w ... ct a.w 'ri, h Ittle change.

2.2. ADA'S ROLE

'he rising costs of software development and maintenance was a

driving force for establizhin the Ada pro-rpm. Mqny of the
language features and language management practices were defined
to aid software transportability. For example, Ada provides
support for concurrent operation directly with the language.
Multi-tasking has traditionally been the domain of the assembly
programmer who used special facilities in the operating system or
runtime executive to provide concurrency. S ince real-time
tauking applications were very dependent on the inderlyin
hardware and operating system, they were not very transportable.
The Ada tasking model allows progr-immers to develop multi-tasking

'1

applications without having to re!3ort to using machine dependent
code. As will be discussed later in this paper, the development
ofP transportable multi-tasking "Ipplications in Ada is not witheut
its problems but Ada provide:3 the faci lities for dealing with
many of the problems associated with developing transportaihte
multi-tasking applications.

A major obstacle to transportability has been tht large namber)f
languages in use and the number of subsets and supersets of these
languages. The compiler packages were generally provided by the
hai "ware vendors who would provide additional features to help
market their products. The result was that even though an
application was coded in, say, C OBOL, the code could not be
compiled on another implementation because the version of ?OBOL
on the new machine (lets say COBOL+4-) had different featires
from the COBOL on the existing machine. kda has an advantage
over these older languages because Ada is a strictly Co-ntrollei
stindard and so there can be no subsets or supersets of the
language. The U.S. Department of Defense has enforced lansua-e
control through its Ada validation procedures and by trademarking
the Ada namp..

The Nda language alone will not yield transportable software .
The language is simply a vehicle for implementing thp design. If

software is to be transportable, then appropriate planning needs
to be done early in the project and the transportability goals
must be considered throughout the development oycle.
Transportability just 'won't happen' simply because the ,da
language is used for developseut

2.3. THE COSTS OF TRANSPORTABILITY

Tne development of transportable software La not without its
cos ts. Some of the costs that must be considered are:

0 Size of restiltLng code,

o ,Speed of execution, and

o Development time.

In gc.eral, a software applicat ion that has been designed t be
transportable will be larger. For example, if an qpplination is
to work with a number of different operating systems, a layer of
abstraction will be needed to hide the operating system features
from +he modules in th0 application. In SARA}{, the operating
system filenaming conventiong are niddern In a , called
Disk _ Defs. The rest of the application knows nothing of the
filenaming conventions (i.e. how many characters are allowed for
the disk drive name, the characters used as delimiters etc.);
Disk Defs does the conversion from the filename record structure
used internally and the conventions used by the operating system.
The benefit of this approach is that if a different operating
system is used, then only Disk Defs needs changing. However,

th is added layer of abstract ion will add to the amount of code
required and hence the overall size of the application. -he
ex tent of the 6ize increase will, to a la rge degree, depend on
the skill of the designers and programmers.

.xecution F 2ed mnay not be :.3 fast if the software is3 designed t~
be highly 'ansportable. Working through an additional L ay er o f
abatra-'on will1 ultimately sl1o w d o wn t he a ppIi c a t io n. To
ilIlus .rate, cons ider the f ilenami ng example once again. A simple
s t rin g t y pe could have been ui-ed as the data structure fo r
iilename objectsq. The structure of this3 type would be globally
visible to all SARAH modules. Lach module in the application
cou-4i Lhen perform string manipulation to change the filen-amp
parameters (e.g., the drive narne, directory path name, e tc.).
There are several other security and engineering implications
that must be considered wi tI th is approach but th-ere is li t tle
-ou bt tha t the approach would. be f as ter than us ing a control led
type which has its own set of tools to perform conve-rsor.

Design and development time will be longer if transportability is
a najor gual. for development. be3igners and progrimmers need tD
be trained to develop transportable software. There are many
S-p e ctsz of the Id i languape and s p ec if ic dIesi jen t e 7h n i 0:; t h -
.1is At beP unrid er st o od i f t he resulting so)f t w %re i L- t o he
tr 11.1p')r t-Ih)1 P .h is: d (Ii t 1o ri itI trai rii rig taken time. Inr ad di t i)n

to t r a i -i i rig f o r t r a n s p r t ab i i i t y , 1e :3 i g n Ai rid c ol i rig t i in e (- j 1 1 bea
i sogtef r- '11 o re t im e w il g ee ne rally b e r e q u ired du_1r ing dePsig ,,n tor
consider transportability criteria. klso, the time taken to code
the ies-,ign w il1 be Longer because Of the additionoral restrict ions
that are pot on the programmer.

2.4. A HTIDDEN TRAP

~.of vendlor supplied predefined packat.es can reduce potential
transportability. Vendor suppliled predefined pack-igei -ire those

lelver.Iwith the compiler ind for which there is no aivailable
coro ode. T h ey are aniogou.3 to) the .3t:ndard koda predefl nedl

PnIckaoges, such Uas Text >). S3everal compa,-nies now provide their
o)wn preiefinel packages. "or example, Nlsys Tria. of Waltham
pr J-VI lea3 two s-uch packages. One packatge provides. low level)is3k

)peratine, 7ystemn " D0 's) fu n cti o ns a nd t he o t her p)r oviPes b it,

: n mianry a p pli a t ionrs thesie low le velI f en t -ir - a r n e cess a r y
bpecas ise the s tand ard Ada packages such as Text (0 don't provide

q Ithe re iui red features. For example, i f the contents Of a 11:31

i rectiry ire required, then the programnmer must resort e ither to
writing, a low levelI procedure for doing t h is o r u se a vePn do r
3 Up plI tel pa c ka ge.

t anj jo r i an ge r is9 t h at i f these p ac ka g es a re u s ed fo r
levetopmenit, t hePn the fac i i t i es prov iled by the vendor pqackagCs
hi vP t -, b e p rov i h A y t P d. oer up 9r (!;r t he n ow (-)i pomp i (-r
m p I a infe t a t i o n) i f t h (4 n p p ; i a t i on i i t 0) h)e C I) M p) I , 'a? 1 m3 m I

another compiler. Since these packages are non-standard, the
interfacing specifications could be different and quite a lot of
work may need to be done to move the application. Developers
need to be extremely careful in the use of these vendor supplied
predefined packages or the product will be difficult to transport
t, different compiler implementations. The SARAH designers
realized the dangers of these packages and their use has been
restricted to areas wbere the features are absolutely necessary.

The problem may even be worse in the future because many vendors
are beginning to provide other more complex packages. For
example, Alsys has indicated that a Math package will be
available in the next release of the compiler. Other companies
3uch as Meridian are planning to provide support for everythiag
from light pens to dynamic string handling. To avert th iq
potentially devastating transportability problem, secondary
standards for the more common packages such as string handling,
mathematics, and data bases need to be quickly defined. If this

is not done, there will be a proliferation of vendor supplied
packages and transportability will suffer.

2.5. MANAGEMENT TRAINING

Manager education is important if transportability goals are to
be realized. Management must understand that if transportability
is identified as a development requirement, then there will be
some trade-offs in terms of size, cost, and execution speed.
*oreover, the manager must unrerstand that transportability must
be considered throughout the development cycle; transportability
is not something that can be added at the end of the project. One
of the current myths about Ada is that its use will ensure
product portability. Managers should be shown that Ada is no
better than any other language unless the correct procedures and
practices are applied during design and development. Considering
the possible pitfalls, transportability is seen as an important
tupic and should most definitely be covered in Ada manager
training courses.

7

3. DESIGN FOR TRANSPORTABILITY

Design plays a major part in whether or not software will be
transportable. Some of the factors that must be considered are:
the need for transportability, tee design methods that support
transportability, and the modern software engineering practircei
th',t must be applied if transportabLlity goals ,ire to be
achb oved .

3.1. TRANSPORTABILITY REQUIREMENTS

If transportability is an important criteria for the software
being developed, then it should be established as one of the
system requirements. This should be done early in the project and
tracked throughout the development cycle. A major question that
should be answered is: What degree of transportability are we
looking for and what payoffs do we expect?

The degree of transportability needs to be established after
considering the trade-offs. A requirement that specifies that
the software will be transportable is meaningless. One hundred
percent transportability is almost impossible to achieve. Do we
want the software to be transportable to a certain class of
machine or should the software function independent of operating
system characteristics? Is transportability even a criteria that
we should be looking at? There are many cases where
transportability is not particularly important and so the costs
of making the software transportable may outweigh the advantages.
Planners and developers need to properly define the
transportability criteria required for a project so that a
definite direction can be established early in the development
cycle.

Transportability is a SARAH requirement. The main
transportability requirement for SARAH is that the software
should be easily transportable to other microcomputers as they
become available. Since the advances in microcomputer technology
are rapid and the cost of 'off the shelf' microcomputers is
steadily falling, the life of the SARAH software needs to be
longer than the life of the hardware. Indeed, since the project
started, additional targets have been identified. Initially, the
software was to only be targeted to the Zenith Z150, but since
then there has been a requirement to add the Z248, 3200, and the
Sperry PC to the list. No doubt, the release of the new Z386
which uses the advanced 80386 microprocessor will also end up
being one of the target machines. In addition to different
microcomputer hardware, the SARAH planners saw the need to make
the application operating system independent. Although the MDOS
operating system is currently a defacto standard for
microcomputers, during the life of the software there may be a
need to host the software on a machine that uses a different
operating system (e.g. UNIX).

3.2. DESIGN METHODS

An object oriented approach 7 to design can help identify and

group objects and procedures that will not be transportable. One
of the major benefits of this approach is that the resulting Ada

code maps well to the design. For example, an object oriented
approach may allow the designer to identify the printer control
codes as objects which would not be transportable between
different systems. These objects and the functions that
manipulate the objects could be put into a separate package so
that if the new system has a printer that uses different (ontrol
codes, then only the one package needs changing. The prog-ammer
involved in transporting the software to another system is spared

the frustration of sorting through all the code to find the
parameters that need to be changed for the new printer. Ada
packages and object oriented techniques therefore play a big part
in encapsulating and isolating machine dependencies. In a large

system, these packages may be logically collected into a
subsystem which contains all the machine dependent code. This
approach will be described in more detail later in this paper.

kithough an object oriented approach can be helpful in design,

this does not mean that an object oriented approach is the only
methodology that should be used to design Ada software.
Certainly other design paradigms and methodologies need to be

10considered in the total design approach

3.3. INFORMATION HIDING AND ABSTRACTION

Information hiding and abstraction are important software

engineering principles that can aid in producing transportable
Ada software. kda has various language features and constructs
that support these principles. For example, packages can allow
for implementation independent specifications and can help
localize and hide machine dependencies.

Abstract interfaces are important for transportability. To
i lustrate this point, consider a driver for a mouse device.
:)everJI functions mind procedures are needed by user programs to
interface to the mouse. For example, the user programs need
finctions and procedures to provide information on which button
was pressed and to provide grid co-ordinates. The details of how
this is implemented should be hidden from the user so that if the
software is transported to another system with a different mouse
device, only the implementation details within the mouse package
need change; the interface to the rest of the system remains
intact. The modules that use the mouse package interface with

the package specification which does not change.

----- ---- a In N Im ~ m N N N (3

4. LANGUAGN ISSUES

Language issues related to transportability are covered in detail

in several publications 2 3 5. This section will cover some of

the issues that the SARAH team has identified as critical for

transportability.

4.1. CODING STANDARDS

Specific coding standards need to be established and used
throughout development if the resulting software is to be
transportable. Planners need to look at the published guides on
transportability 2'3 and establish the appropriate design and
coding standards in the project documentation. Management should
then ensure that programmers comply with the coding standards.
The SARAH project used DOD-STD 2167 as the documentation standard
and the design and coding standards for SARAH were defined in the
SARAH Software Standards and Procerures Manual (SSP.i).

Programmers must be educated in using a coding style that is
consistent with the transportability objectives. Most basic Ada
training courses discuss the language features but do not give
specific instruction on transportability objectives. There are
many language issues that need to be addressed and programmers
cannot be expected to produce portable code if they are not made
aware of these issues. Once the coding standards have been
defined, the programmers should be instructed on the specific
transportability objectives of the project, the techniques that
must be employed (as defined in the standards manual), and why
the techniques are important if the application is to be
transportable.

4.2. DYNAMIC ALLOCATION

Dynamic allocation is one area where portability problems can
arise so care needs to be taken to identify the potential
problems. One of the main problems is that there is uncertainty
as 3 to how much storage is taken by dynamically allocated objects.
As such, an application that runs on one machine may raise
the Storage Error exception on another implementation.

Another problem is that different compiler implementations
deallocate objects at different times. The Ada Language Reference
lanual (LRM)o does not specify when deallocation should take
place. As such, software that dynamically deallocates objects may
not execute in the same way under different implementat ions.
Thi. could cause major problems for transporting real time
software. This problem can be overcome to a large extent by the
use of a 'free list' approach 5 .

4.3. DISCRETE TYPES

1 ')

Potential portability problems can arise because discrete types

have a range that is machine dependent and because Ada does not
dictate that range checks must be done on subexpressions.

If an application is to be transportable, then type names
Sihort Integer and Long Integer should not be used explicitly.

Rather, range constraints should be used to define integers. To

illustrate, consider the following example. Software is produced
on a 32 bit machine which will support an integer range of over

four billion. The programmer uses the following type

declaration:

subtype CountType is LongInteger;

'Jow, the application needs to be transported to an 16 bit machine
which has an integer range of -32767 to 32767. On this

implementation Long Integer is not defined. Before the software
will run on the new machine, all the declarations that ised

LongInteger will have to be changed. Also, this is a poor
programming practice because, in general, the whole integer range

is not required. Rather than define the explicit integer type,

the programmer could have defined:

type CountType is range 1..50;

The range of Count Type is now restricted, but more importantly,

the declaration is now transportable. For the 16 bit machine,

the base integer type is Integer and so Count Type will be

defined as a sixteen bit integer. The 32 bit machine had
Long _ Integer defined as its base type and so Count Type will be

defined as a 32 bit integer. Code changes are therefore not

reqaired when the application is moved to the new machine.

Another potential transportability problem arises because Ada

does not call for range checks on subexpressions. A

subexpression could therefore have a value outside that specified
for its type. To illustrate this point with an example: we

again develop our application on a 16 bit machine and use:

type CountType is range 1 .. 50;

MyCount : CountType := 12;

and then use the expression:

74y_Count := MyCount**2 - MyCount*10;

The result of the calculation (24) is within the range of
Count Type and the program runs fine on the 16 'it machine. When
the program is transported to an 8 bit machine, Numeric Error is
raised at run time. What happened? Because Ada does not call

for range checks on subexpressions, the base integer type is
u:,ed. In the case of the 16 bit machine, the base type Integer

w'tis u ed and so, when the subexpression My Count**2 was

11

evalaated, the result was 144 and this was within range. 9 ut,
for the eight bit machine, Short _ Integer was the base type and so
1.11 was out of range and Numeric Error was raised. k3 such, we
created a runtime problem when we transported the application to
an 8 bit machine. This situation can be potentially dangerous,
because it renders the software unreliable.

If the programmer was aware of the transportability problems that
could arise, he may have factored the expression:

1y Count z= MyCount*(MyCount - 10);

Now the expression would work equally well on both
implementations.

Although the previous example discussed eight and 16 bit
implementations, the same type of problem can occur when
transporting Ada software between any machines with any different
size data words. Similar problems can also arise when using
floating point or fixed point numbers. The main aim of this
section has not be-n to outline all the transportability problems
that could arise through Ada types, but rather to show there are
potential problems. More in-depth coverage of these problems can
be obtained from several other publications 2 3 5.

4.4. TASKING

The development of transportable real-time software that contains
tasking can be very difficult. Concurrent processing has
traditionally been seen as the arena of assembly programmers who
specialize in interfacing applications to operating systems or
runtime executives. Ada provides support for concurrency within
the language but, even so, issues associated with multi-tasking
in real time systems pose major obstacles to transportability.

A major problem is that execution speeds vary from machine to
machine. If software depends on execution speed, the transported
application may behave differently on the new target. When using
Ada, there are several issues that must be carefully considered.
For example, differences in scheduling algorithms, the different
lengths of task queues, and the order of task activation all
provide potential transportability problems.

Ada compilers need not implement the task scheduling alorithm in
the same way. The Ada Language Reference Manual(LRM) does not
specify which type of task scheduling should be implemented.
For example, not all of the current compilers use a time slicing
algorithm. In the case of the Alsys Version 1.3 compiler, task
s3witching occurs only at task synchronization points '. If 4n
application was developed assuming that a time slice algorithm
would be used and this application was moved to an implementation
where task switching occurs only at synchronization points, then
there is a high probability th:it one of the tasks would take

control of the processor and not allow other tasks to execute.
The code would have to be modified to insert synchronization
points at strategic locations (possibly by adding delay
statements) so that the tasks would switch and so simulate the
action of time slicing.

The length of task queues can vary between different compilers.
Ada does not specify the length of these queues. If the number
o f elements that can be queued up to an entry point is less on
the new target system, there is a possibility that some events
could occur in a different order than that originally planned
for. This can be a very serious problem because the application
cou ld become unreliable after it is transported to the new
target. As such, designers and programmers should not make any
assumptions on how big the task queues will be on a particular
implementation. If a large number of elements are to be queued,
then for the sake of transportability, an independent queuing
system should be used.

No assumption should be made about the order of task activation.
The LRM deliberately leaves this issue undefined. The Ada Europe
Guidelines 2 indicate that making such an assumption could "..lead
to a runtime surprise". To ensure transportability for
applications which rely on a specific order of task activation,
the activation and execution sequence should be performed by the
application. The same could also be said for task termination.
In the SARAH system, the application itself controls when tasks
will execute and when they will be terminated. This not only
aids in providing a more transportable application but it also
reduces potential testing and maintenance problems.

4.5. ELABORATION ORDER

All library units and unit bodies must be elaborated before a
main program can be executed; but Ada does specify the order of
elaboration for unit bodies. Even so, the elaboration order may
vary with different implementations.

Consider the example in Fig 4-1. Printer Params contains some
implementation specific printer constants. Printer Driver gets
these implementation specific values from the Printer_ Params
package. The LRM specifies that Printer _ Params must be
elaborated before Printer Driver. Also, the body of
Printer Params must be elaborated after its specification.
However, an implementation is free to elaborate the body of
Printer Params before or after the elaboration of Printer Driver.
If the body of Printer Driver is elaborated before the body of
Printer Params, then CharactersPer Line will not be initialized.
By reversing the elaboration order, CharactersPer Line will be
correctly initialized to 80. If Ada software is to be reliable
after it is transported, designers and programmers must look
closely at possible elaboration problems during development.

13

package PrinterParams is

type LengthType is range 1-.132;

Line-_Length :Length_Type;

end PrinterP.arams;

package body Printer Pararns is

begin

LineLength :=80;

end PrinterPirans;

with Printer Params;

package Printer-Driver is

Characters Per Line PrinterPararns.LengthType
Printer Parans.LineLength;

end PrinterDriver;

Fig. 4-1: Example of Possible K~laboration Problems

1ll

4.6. PRAGMAS

Every effort should be made not to use implementation defined
pragmas. Pragmas are directives to the compiler and are
characterized as language defined and implementation defined.
Implementation defined pragmas may have different meanings for
different implementations. If these pragmas are used, their use
should be well documented and the documentation should highlight
the parts of the code where the pragmas are used. Preferably, the
pragma should be encapsilated in one of the packages which
conta~rn machine dependencies.

15

5. TRANSPORTABILITY EXPERIENCES WITH SARAH

As discussed earlier, transportability requirements for SARAH
were established early in the development cycle. This section
describes the approach used and highlights some of the main
transportability feature* of the SARAH system.

5.1. THE LOGICAL KERNEL

Early in the design phase, the SARAH designers identified a
logical kernel to aid in transportability. As shown in Fig 5-1,
the kernel shields the application from the machine and DOS
dependencies. When transporting the application to another
target environment, only the code in the kernel packages needs to
be changed.

The kernel consists of a logical grouping of packages. For
example, the machine dependent code for the Print _Manager
subsyatem is encapsulated in a package cal led Prin-er Ke-nel.
This package is a part of the PrintManager subsystem, but it is
also identified as a part of the logical SARAH Kernel. If the
Print Manager subsystem is to be reused, then the entire
subsystem can be removed along with its kernel package. The
programmer would then need to modify the Printer Kernel package
for the new target. If the entire SARAH application is to be
reused (or transported), then the programmer needs to look at all
.- I ,1cka6,J that are defined in the SARAH Kernel, one of which
would be the Printer Kernel package.

5.2. INFORMATION HIDING

Information hiding was used extensively in the design of SARAH so
that specific low level information could be hidden from the
majority of the software elements. As discussed earlier, the usc
of information hiding and abstraction are important software
engineering principles that need to be applied when developing
transportable software.

3ARAH provides several good examples of how information hiding
and abstraction have been used to promote transportability. For
example, the SARAH system is not tied to the filenaming
conventions of the operating system. The SARAH subsystems that
use disk input/output operate with a Filespec _Type. The structure
of this type is invisible to all of the subsystems except
Disk d4anager. Even within Disk Manager, the only package that
knows anything of the DOS filename structure is Disk Defs (which
incidentally is a SARAH Kernel package). As such, redundant
informat ion is hidden from those elements that do not
specifically need the information. The result is that the
application is more easily transported because the implementation
dependent information has been localized.

16

The Visual Display Terminal Manager (VDT Manager) subsystem also

makes good use of information hiding to promote transportability.
To implement a fast windowing scheme, VDT Manager resorted to
using direct screen addressing. However, the details of how this
i3 implemented is hidden in a kernel package. The SARAH
subsyst 's that need to write to the screen use abstract
interfaces that show no relationship to the physical properties
o f the display. Func t ions and procedures such as
OpenTransient Window and DisplayHelpFile are provided for the
subsystems that interface to the VDT Manager. By hiding the
implementation details and providing abstract package interfaces,
the VDT Manager designers were able to enhance the potential
transportability of the SARAH system.

5.3. STANDARD PRE-DEFINED PACKAGES

T he SARAH developers attempted to use standard pre-defined
packages wherever possible. These packages are well defined and
st;indardtzed as part of the Ada language. As such, they must be
provided with all validated compilers and so aid in producing
transportable software. As discussed earlier, some vendors
supply their own predefined packages. The SARAH team was careful
not to use these packages unless there were significant benefits
to be gained. For example, since the standard input/output
ptukages do not provide facilities for reading disk directories,
these facilities needed to be supplied by some other means.
After a careful look at the trade-offs involved in developing the
routines 'in-house' or using the Alsys DOS package, the team
members chose to use the DOS package. The Alsys DOS package was
seen as a part of the logical kernel and in each case where
routines were used from this package, the team carefully examined
all possible options.

Although there were definite transportability benefits to using
the standard Ada packages, the SARAH team was concerned about
their effect on execution speed and code size.

Care needs to be taken when considering u~ing the standard
predefined packages if execution speed is ciitical. Since the
SARAH system is user oriented, there is a large amount of
interaction between the user and the system. The display
features a number of windows and an arrangement of bar and pull
down menus. Initial experiments with the standard TEXT 10
package showed that the routines provided could not be used to
efficiently implement the user interface. Using TEX -10 would
have used an unacceptable amount of the total available computer
p)wer. A separate subsystem, called VDTanager, was developed
to provide the user interface.

The :4ize of the resulting code is also an issue when using the
:itritl,'rd pre-defined packages. For example, the Alsys Version
I . v om)pi ler adds some 26,000 bytes to the size of the
execi table file if TEXT [0 is used in the application. If only
one or two routines are required, then this is a high price to

17

pay, particularly if the amount of memory is limited (as it is
with the Z150 SARAH target). For this reason, SARAH does not use
TTEXT 10. In the future, compilers may employ 'smart' linkers and
so only the required code will be added to the executable file.
Until then, care needs to be taken when considering the standard
pre-defined packages if code size is an important consideration.
This is one of the transportability trade-offs that needs to be
made.

1:3

Fig. 5-1: SARAH Logical Kernel

6. SURNARY AND RECOMMENDATIONS

6. 1. SUMMARY

Transportability can dramatically reduce overall software costs.
If entire software applications can be reused without significant
modification, then enormous cost benefits can be achieved.
indeed, as our systems become larger and hardware cost9 continue
to fall, economic pressures will dictate that the software must
be easily transportable to new target systems. Requirements will
indicate that the software must have a longer life than the
hardware.

Transportability must be addressed early in the project. To be
sure, transportability is not something that can be built in
after the software is developed. Planners need to establish the
transportability requirements for a project and the objectives
n~eel to be clearly defined. Once the objectives are defined,
specific design and coding standards need to be provided for the
project. These stan4Ra rds mast then be adhered to throughout the
development cycle.

"angers must be aware that although the Ada language will
support the development of transportable software, Ada's use will
not guarantee transportability. Ada must be viewed as a tool for
.eveloping transportable software. affective design techniques,
well defined goals, and the skill of the software developers3
will all have a major bearing on transportability. There are
many language and design issues that must be considered when
ievelopine transportabl" Ada software.

?- rin.;portability has its hidden costs,. 3ome of the costs
i -i soc ted w i th prod uc i ng t ra n s po r t a b 1 (e s o f t wa re a re i ic r e a.s ad

• le :i e, slower execution speeds, and increased development
')At5. tlariners and managers must understandl that there will be
tcr-le-offs to be made, and that these trade-offs will be closely
-oiplei to the portability objectives. The degree that these
hi 1pen costs will affect the project will to a large extent
depend on the experience and skill of the designers and
pro.grammers on the development team.

. . . ., i i I I I I I 2 C I

6.2. RECOMMENDATIONS

Recommendations are:

o Avoid using non-standard pre-defined packages wherever
possible.

0 1f transportability is a production goal, then
transportability issues must be addressed early in
the development cycle.

Managers, designers, and programmers must be educated
in transportability issues.

o The kda community should quickly establish secondary
language standards to prevent the proliferation of
vendor predefined packages.

a Transportability criteria should be closely studied and
considered when establishing of the coding and design
standards for a project.

21

A. REFERENCES

[1] "SARAH Operational Concept Document", Command and Control
Systems Office, US Air Force, 5 September 1986.

[2] WALLIS P.J.L., WICHMAN B.A., NISSEN J.C.D, et al, "Ada
Europe Guidelines for the Portability of Ada Programs",
ACA Ada Letters Voll No 3 (March-April 1982) pp 44-61.

[3] "Ada Portability Guidelines", National Technical
Information Service, No. AD A160 390, March 1985.

[4] HOWE R.G., HAZLE M. et al, "Program Managers Guide to Ada",
USAF, ESD-TR-85-159, May 1985.

[5] AUSNIT C., BRAUN C., et al, "Ada Reusability Guidelines",
National Technical Information Service, No. AD A161 259, April
1985.

[61 U.S. Department of Defense, "Reference Manual for the Ada
Programming Language", ANSI/MIL-STD 1815A, Jan 1983.

[7] BOOCH G., "Software Engineering with Ada", Benjamin/Cummings,
Menlo Park, California, 1983.

[8] NISSEN J., WALLIS P., "Portability and Style in Ada",
Cambridge University Press, 1984.

[9] "Defense System Software Development", DOD-STD-2167,
Department of Defence, Washington D.C. 20301.

[10] "An Architectural Approach to Developing Ada Software

Systems", Command and Control Systems Office, Tinker Air Force
Base, Oklahoma, 21 May 1986.

[11] BROGSOL B., AVAKIAN A.S., GART M.B., "Alsys Ada Compiler
for tne IBM PC", Proceedings of First International Conference on
Ada Language Applications for the NASA Space Station, June 1986.

[12] "Usage and Selection of Ada Microcomputer Compilers",
Command and Control Systems Office, Tinker Air Force Base,
Oklahoma, 9 December 1986.

2?

