AD-A218 683

~
0Te Fice copy (7

ADA* EVALUATION PROJECT

2N
.

TRANSPORTABILITY ISSUES
FOR ADA* SOFTWARE DEVELOPMENT

DTIC

FELECTE
MARO 1 1390

Prepared for D

HEADQUARTERS UNITED STATES AIR FORCE
Assistant Chief of Staff of Systems for Command, Control,
Communications, and Computers
Technology & Security Division

Sab leatel
Appioved for putlic @ ;
. Disuibutop Unluted

-

[nmmmou “STATEMENT K \

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch
COMMAND AND CONTKOL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base
Oklahoma City, OK 73145 - 6340
COMMERCIAL (405) 734-2457/5152
AUTOVON 884 -2457/5152

* Ada is a registered trademark of the U.S. Government
{Ada Joint Program Office)
19 March 1987

00 02 28 006

[NTRODUCTION. c ¢ et tocencavsecceccns cececens teseresercesencacal

f.1. THY ADA EBVALUALION TASH . ittt ittt i neneeentsenssonanss 1
1.2. BACKGROUND e et et ettt it enoetnneennsessonnes e e e e e 1
1.3, PURPOSE . et e it tis it s ttottenasassosseosoanonssossnneees 2
1.4, SCOPE AND CONSTRAINTS..... et et et e e e 2
TRANSPORTABILITY ISSUBS. ...ttt cnnacas -
S Ol 0 - It N L . vevesd
2.2, ADA'3 ROLM i iiiinnnenennan et e et et 4
2.3, THE COSTS OF TRAHSPORTABILITY . it et ierieeaerensnoaneans 5
2.4 A HIDDEN MRAP . vt it ittt ettt et n e e s oenensnoeeoersoenas 5
2.5, MANAGEMBENT TRAINING ittt ie it iieetneeeesnsoronnsense 7
DESIGN FOR TRANSPORTABILITY..e.cceeeseencenncacconccnccca ...8
3.1. TRANSPOIRTABILITY REQIJIREMENTS . e v ettt ittt et noeennenans 8
B2, DESLGN TETHODS e e v vt it et ittt e e vsnoeenosonsoeeseneenns 9
3.%. INFORJATION HIDING AYD ABSTRACTION. ..o ei vt 9
LANGUAGE ISSUES........ ceecsnena et eccttsescscsannns ceceeene 10
4.1, CODING S TANDARD S, L ittt it et s s annesososesososonsaos 10
4.2. DYNALIT ALLOCA PTION . i ittt it it e it e s ar ot onoanosonsos 10
4.3, DISCREDE TYPES. t ittt ittt eeeeneeesotesossesnssosssssae 10
4.1 B T 1 e 12
4.5, KLABORATION ORDMR. ..o et ittt et vt nncenenannsoosensnas 13
4.6, PRAGHAG . . it ittt ittt s ettt eeteaososasosasasasesasanas 15
TRANSPORTABILITY EXPERIENCES WITH SARAH.............. eeesa16
5.1, THE LIGICAL KERNEL . ettt et ot e o et aeneesocesaseaseenenas 16
5.2. INFORMATION HIDING...... A 15
5.3. STANDARD PRE-DESINED PACKAGKES. .. .ttt ittt eans 17
SUMMARY AND RECOMMENDATIONS. ...ttt anncerecscncscnasanse .20
Bl SUMITARY ettt ittt it et sastnnanssnosnesassnsanenaas 20
6.2, RECOMMENDA L LONS . i ittt i ittt it e e et et et aoetacanasns 21

Appendices

A.

REFERENCEScceceeesccecaccccsncncsnosnancanananss ceeaccnns 22

———— e

ACCosigr €

Nr T

U'v)J Ty d

Jusiig oy,

SIATEIE:'NT "A" per Capt. Addison
Tinker AFB, OK MCSC/XPTA
TELECON 2/28/90 CG

[SHRE KUY
Ayt
D 1

.
v t

A

———

TR S~

—— '—"“‘—"“——--Q_V

By D G L0

LIST

Example of Possible Elaboration Problems......... .

SARAH Logical Kernel

0

F P I GURTES

S

THIS REPORT IS THE SIXTH OF A SERIES WHICH

DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA IKN A
CONMUNICATIONS ENVIRONMENT.

ABSTRACT

This paper discusses Ada transportubility. The
first section of the paper provides some background
information on the Ada evaluation task and defines
the scope of the paper.

The second section of the paper looks at some of
the main 1issues associated with transportability.
The benefits of producing transportable software
are covered along with some of the hidden costs and
problems. The manager's role in developing
transportuble software and the effect of using the
Ada language are discussed.

The third section looks at design issues. This
secbion argues Lhat if transportabiiity 18 not
defined as a requirement early in the development
process, then the resulting software will not be
very transportable. Design methods and software
engineering principles that can aid in the
development of transportable software are covered.

S3ection four addresses language issues. The need
for well defined coding standards and programmer
training is highlighted. Language issues that
pose the greatest threat to transportadbility are
covered in detail and references are provided to
give the reader a more in-depth coverage of the
subject.

The fifth section discusses some of the experiences
that the 3tandard Automated Remote to Automatic
Digital Network (AUTODIN) Host (SARAH) teanm
encountered in developing transportable Ada
software. The use of a logical kernel approach,
standard pre-defi-..ca packages, aund information
hiding are discusse:

The final section summarizes some of the main
points and provides some recommendations on the
development of transportable Ada software.

Ada Evaluation Report Series by €CSO

Ada Training
Design Issues
Security

Micro Compilers
Ada Environments
Transportability
Runtime %Wxecution
Modifiability
Project Management
Module Reuse
Testing

Summary

March 13, 1986
May 21, 1986

May 23, 1936
December 3, 1986
December 9, 1986
March 19, 1987
March 27, 1987
Winter 86-87
Spring 87

®all 87

Fall 37

Tall 87

*. INTRODUCTION

1.1. THE ADA EVALUATION TASK

"his paper is one in a serieg which seeks to help potential Ada
developers gain practical 1insight into what is required to
succeusdfully develop Ada software. With this goal in mind, Adir
3taff tasked the Command and Control Systems Office (CC30) to
eva.uate the Ada language while developing real-time
commanications software. The task involves writing papers on
various aspects of Ada development such as training, Ada design,
environments and security issues. This paper discusses
transportability issues.

CCSO chose the Standard Automated Remote to AUTODIN (Automatic
Digital Hetwork) Host (SARAH)' project as the vehicle for the Ada
evaluation. SARAH is a small to medium size project (approx.
40,000 lines of executable source code) which will function as a
standard intelligent terminal for AUTODIN users and will be used
to help eliminate punched cards and paper tape as a
trunsmit/receive medium. The development environment for SARAH
consists of a number of IBM PC AT, Zenith 22483, and Zenith 2150
microcomputers. 3Source code is compiled on the PC ATs -.d 7248s
using Alsys Ada compilers and the object code can be targeic. tn
any of the development microcomputers configurations. The SARAH
software will run on a range of PC XT, PC AT, and compatible
microcomputers under the MSDOS operating system (version 2.0 or
higher).

1.2. BACKGROUND

The spiraling cost of software, the ever increasing need for
iarger and more complex softwnre syastems, anl rapid advancea in
tomputer hardware technology have motivated planners to ook
closely at the question of software transportability.
Traditionally, software applications have been rewritten or
extenaively mcdified if the application needed to be transported
to another machine. This approach has been costly and has piayed
a major part in what is often termed the 'software crisis’'’.
Faced with the problem of spiraling software costs and a
projected lack of trained software professionals, the 1U.S.
Department of Defense initiated the Ada progranm. Ada provides a
good set of tools for producing transportable software but there
are many other issues that must be considered if transportabiiity
goals are to be realized.

Trunsporting entire applications to other target environments can
provide large cost benefits but there are also costs associated
with producing transportable software. Software that has been
designed to be transportable could be slower, larger in size, ani
could take longer to produce. Planners need to consider these
hidden costs while determining the transportability requirements.

.

After the requirements have been established, design and coding
standards should be established and adhered to by sll members of
the development team. Transportability must be considered
throughout the development cycle or the software will not exhibit
the degree of transportability specified in the requirements.

One of the design and development goals for the SARAU project 1is
transportability. The SARAH software i3 targeted to a range of
'off the shelf’ microcomputers, Because of the large cost of
producing software and falling hardware costs, the SARAH planners
foresaw the need to build a system that could easily be
transported to new microcomputer architectures when they became
available.

1.3. PURPOSE
“The purpose of this paper is to:

o} Provide details on the design and development issues
associated with producing transportable Ada software.

o Outline some of the effects that transportable software

7 may have on,runtime execution, size, and the development
times. '

o] Highlight some of the experiences and lessons lesarned
during the design and development of transportable SARAH
software. / . J

!

1.4. SCOPE AND CONSTRAINTS

The terms transportability and software reuse are often used
interchangeably. This paper discusses transportability of Ada
software; but what Jdoes the term transportability actually mean
and how does it differ from reusability? A good definition of
software transportability is: "the capability of an application

to be used again in a different target environment than the one
for which it was originally developed"S. This is different from
the definition of reusability which implies that components of
the application are used in some new application. Indeed,
software could be very portadble but the components of the
software may not be reusable because of tight coupling between
the modules. Tssues associated with reusability will be covered
in a subsequent paper.

Since the SARAH software is currently still under development,
the total effects of transportability cannot be fully determined.
Software developed for SARAH has only been targeted to TBM PC AT,
IBM PC XT, Zenith 2150, Zenith 127248, and compatible
microcomputers. During initial research and experimentation,

some experience was gained in transporting Ada code between a
Digital Equipment Corporation VAX 11/780, a Burroughs XE 550
Megaframe, a Zenith Z150 microcomputer, and an 13" PC AT.

I

2. TRANSPORTABILITY ISSUES

This fsection of the paper addresses several important issues
associated with transportability. The benefits of developing
transportable software, the effects of using the Ada language,
manager education, and some of the costs associated with
transportability are discussed.

2.1. THE BENEFITS

Overall software costs can be significantly reduced by producing
transportable software. If complete applications can be moved to
different target environments with very little modification, then
significant cost benefits can be achieved. The Ada EBurope
guidelines on transportability provide a formula for assesgssing
transportability:

cost of re-implementation on new target

cost of original implemeatation

The value of 7 must be a positive frauction if any benefits are to
be gained by moving an appiication to another target environment.
[f transportability is a development goal, then designers should
aim at producing a system that will achieve a high portability
fraction for the life of the software.

Implementors should aim at developing systems where the life of
the software is longer than that of the target machine. Software
applications are becoming larger and more complex and so the
costs associated with developing such software are increasing
dramatically. At the same time, hardware costs are falling and
hardware performance is improving. Since software is one of the
major costs of a system, planners are concerned about protecting
the software 1investment. One way to achieve this i3 through
transportability. When hardware becomes unmaintainable or =a
performance upgrade is required, the software should allow for
wiuvewtginb Lo LG noew target haloiw.re with 1li+t+le change.

2.2. ADA'S ROLE

The rising costs of software development and maintenance was a
driving force for establiching the Ada nrogrem, Many of the
ianguage features and language management practices were defined
to aid software transportability. FPor example, Ada provides
support for concurrent operation directly with the language.
Multi-tasking has traditionally been the domain of the assembly
programmer who used special facilities in the operating system or
runtime executive to provide concurrency. Since real-time
tusking applications were very dependent on the underlying
hardware and operating system, they were not very tranasportable.
The Ada tasking model allows3 programmers to develop multi-tasking

applications without having to resort to using machine dependent
code. As will be discussed later in this paper, the development
0of transportablie multi-tasking applications in Ada is not withou?
its problems but Ada provides the facilities for dealing witthn
many of the problems associated with developing tranaportahie
multi-tagking applications.

A major obstacle to transportability has been the large number
languages in use and the number of subgsets and supersets of the
languages. The compiler packages were generally provided by =+
hai1 lware vendors who would provide additional features to he
markxet their products. The result was that even thcocugh

application was coded in, say, COBOL, the code couid not be
compiled on another implementation because the version of 20301
on the new machine {lets say C0OBOL+++) had different features
from the COBOL on the existing machine. Ada has an advantage
over these older languages becausce Ada is 2 strictly contralied
standard and so0 there can be no subsets or supersets of the
language. The U.5. Department of Defense has enforcedl lansgsuaze
control through its Ada validation procedures and by trademarking
the Ada name.

O e

\1)

J
s
ne
N
4
g

jo B ce

The Ada language alone will not yield transportable softwara’,
The language i3 simply a venicle for implementing the design. L f
software i3 to be transportable, then appropriate planning needs
to be done early in the project and the transportability goals
must be considered throughout the development cycie.
Transportability just 'won't happen' simply because the ida
language is used for developmeut.

2.3. THE COSTS OF TRANSPORTABILITY

The development of transportable software (s not without its
coats. Some of the costs that must be considered are:

0o Uize of resulting code,
0 3peed of execution, and

o Development time.
In general, a software application that has been designed t5 he
transportable will be larger. For example, if an apnlication 1is
to work with a number of different operating systems, a layer of
abstraction will be needed to hide the operating system features
from *he modules in the application. In SARAH, the operuating
system filenaming conventions are nidden in a paciace called
Disk Defas. The rest of the application knows nothing of the
filenaming conventions (i.e. how many characters are sallowed for
the disk drive name, the characters nsed as delimiters eta.);
Disk_Defs does the conversion from the filename record structure
used internally and the conventions used by the operating systen.
The benefit of this approach is that if a different operating
Sydstem is used, then only Disk Defs needs changing. However,

(%2}

this added layer of abstraction will Add to the amount of code
regaired and hence the overall size of the application. The
extent of the size increase will, to a large degree, depend on
the skill of the designers and programmers.

Zxecution e 2ed may not be a3 fagt if the software is designed to
be highiv *ransportable. Working through an additional layer of
abstra.*_.on will ultimately slow down the application. 7o
illus.rate, consider the filenaming example once again. A simple
string type could have been ucred as the data structur=2 for
iilename objects. The structure of thia type would be globalily
viasible to all SARAH modules. Yach module in the appliication
couid then perform string manipulation to change the filename
parameters (e.g., the drive name, directory path name, etc.).
There are 3everal other security and engineering implications
that must be considered with this approach but there 13 1littie
dcubt that the approach would be faster than using a controlled
t7ype which has its own gset of tools to perform conversions.

Jesign and development time will be longer if transportability 1is
3 major goal for development. Designers and programmers need to
be trained to develop transportable software. There are many
143p2cts of the Ada language and specific desnign technigues that
maa3t be underatood 1f the resulting softwnure i3 to bae

tranaportabilie. Thia additional training takes time. In addition
to traianing for transportability, design and coding time could be
ioager. “More time will generally be regquired during design to

consider transportability criteria. Also, the time taken to code
the design will be longer because of the additional restrictions
that are put on the programmer.

2.4. A HIDDEN TRAP

Jae of vendor 3supplied predefined packages can reduce potential
tranaportability. Vendor gsupplied predefined packages are those
leiivered with the compiler and for Wwhich there 138 no availabie
aource code. They are anaiogous to the standard Ada predefined
packagay such as Text I0. JSeversi companies now provide their

awn preriefinedi packages. Tor exampie, Alsys ‘nc. of Waltham M4
provides two such packages. Ine prcxage providea low level Disk
Yperating System (DOS) functiona and the other provides bit

manipuiation facilities.

in many applications these low level features are necessary
because the standard Ada packages such as Text [0 don't provide
411 the rejquired features. ¥or example, if the contents of A disk
iirectory are required, then the programmer must resort either to
writing a 1loaw level procedure for Jdoing this or use a vendor
supplied package.

Y major danger 1is that if these packages are used for
ievelopment, then the facilitieg provided by the vendor packages
nave to be provided by the dewvelaoper (or the new compiler
implementation) if the appitcation 11 to bhe compiied u3ing

another compiler. Since these packages are non-standard, the
interfacing specifications could be different and quite a lot of
work may need to be done teo move the application. Developers
need to be extremely careful in the use of these vendor supplied
predefined packages or the product will be difficult to transport
t. different compiler implementations. The SARAH designers
realized the dangers of these packages and their use has been
restricted to areas where the features are absolutely necessary.

The problem may even be worse in the future because many vendors
are beginning to provide other more complex packages. For
example, Alsys has indicated that a Math package will be
available in the next release of the compiler. Other companies
3uch as Meridian are planning to provide support for everytniag
from light pens to dynamic string handling. To avert this
potentially devastating transportability problem, secondary
standards for the more common packages such as string handling,
mathematics, and data bases need to be quickly defined. [f thi

is not done, there will be a proliferation of vendor supplied
packages and transportability will suffer.

2.5. MANAGEMENT TRAINING

danager education i3 important if transportability goals are to
be realized. Management must understand that if transportability
is identified as a development requirement, then there will te
some trade-offs in terms of size, cost, and execution speed.
1oreover, the manager must undevstand that transportability must
be considered throughout the development cycle; transportability
is not something that can be added at the end of the project. OJne
of the current myths about Ada is that its use will ensure
product portadbility. Managers should be shown that Ada is no
better than any other language unless the correct procedures and
practices are applied during design and development. Considering
the possible pitfalls, transportability 1is seen as an important
topic and should most definitely be covered in Ada manager
training courses.

5. DESIGN POR TRANSPORTABILITY

Cesign plays a major part in whether or not software will be
transportable. Some of the factors that must be considered are:
the need for transportability, trhe design methods that support
transportability, and the modern software engineering practicen
th+t muat be applied if tranaportability goals nare to be
achieved.

3.1. TRANSPORTABILITY REQUIREMENTS

1f transportability is an important criteria for the software
being developed, then it should be established as one of the
system requirements. This should be done early in the project and
tracked throughout the development cycle. A major question that
should be answered is: What degree of transportability are we
looking for and what payoffs do we expect?

The degree of transportability needs to be esatablished after
considering the trade~offs. A requirement that specifies that
the software will be transportable (s meaningless. One hundred
percent transportability is almost impossible to achieve. Do we
want the software to be transportable to a certain class of
machine or should the software function independent of operating
system characteristics? Is transportability even a criteria that
we should be 1looking at? There are wmany cases where
transportability is not particularly important and so the costs
of making the software transportable may outweigh the advantages.
Planners and developers need to properly define the
transportability criteria required for a project so that a
definite direction can be established early in the development
cycle.,

Transportability 1s a SARAH requirement. The main
tranaportability requirement for SARAH is that the software
should be easily transportable to other microcomputers as they
become available. 3ince the advances in microcomputer technology
are rapid and the cost of 'off the shelf' microcomputers is
steadily falling, the life of the SARAH software needs to be
longer than the life of the hardware. Indeed, since the project
started, additional targets have been identified. Initially, the
software was to only be targeted to the Zenith Z150, but since
then there has been a requirement to add the 2248, 2200, and the
Sperry PC to the 1list. No doubt, the release of the new 77386
which uses the advanced 80386 microprocessor will also end up
haing one of the target machines. In addition to different
microcomputer hardware, the 3ARAH planners saw the need to make
the application operating system independent. Although the M3DOS
operating systenm is currently a defacto standard for
microcomputers, during the 1ife of the aoftware there may be a
need to host the software on a machine that uses a different
operating system (e.g. UNIX).

3.2. DESIGN METHODS

An object oriented approach7 to design can help identify and
group objects and procedures that will not be transportable. One
of the major benefits of this approach is that the resulting Ada
code maps well to the design. For example, an object oriented
approach may allow the designer to identify the printer control
codes as objects which would not be transportable between
different systems. These objects and the functiors that
manipulate the objects could be put into a separate package so
that if the new system has a printer that uses different control
codes, then only the one package needs changing. The programmer
involved in transporting the software to another system is sgpared
the frustration of sorting through all the code to find the
parameters that need to be changed for the new printer. Ada
packages and object oriented techniques therefore play a big part
in encapsulating and isolating machine dependencies. In 8 large
system, these packages may be logically collected into a
subsystem which contains all the machine dependent code. This
approach will be described in more detail later in this paper.

Although an object oriented approach can be helpful in design,
this does not mean that an object oriented approach is the only
methodology that should be used to design Ada software.
Certainly other design paradigms and methodologies need to be
considered in the total design approach “.

3.%. INFORMATION HIDING AND ABSTRACTION

Information hiding and abstraction are important software
engineering principles that can aid in producing transportable
Ada software. Ada has various language features and constructs
that support these principles. For example, packages can allow
for implementation independent specifications and can help
localize and hide machine dependencies.

Abgstract interfaces are important for transportability. To
illustrate this ponint, consider a driver for a mouse device.
several functiong nand procedures are needed by user programs to
interface to the mouse. For example, the user programs need
fanctions and procedures to provide information on which button
was pressed and to provide grid co-ordinates. The details of how
this is implemented should be hidden from the user so that if the
software is transported to another system with a different mouse
device, only the implementation details within the mouse package
need change; the interface to the rest of the system remains
intact. The modules that use the mouse package interface with
the package specification which does not change.

4. LARGUAGR ISSURS

Language issues related to,tqgnaportability are covered in detail
in several publications® e This section will cover some of
the issues that the SARAH team has identified as critical for

transportability.

4.1. CODING STANDARDS

Specific coding standards need to be established and used
throughout development if the resulting software is to Dbe
transportable. Planners need to look at the published guides on
transportability"3 and establish the appropriate design and
coding standards in the project documentation, Management should
then ensure that programmers comply with the coding standards.
The 35ARAH project used DOD-STD 2167 as the documentation atandard
and the design and coding standards for SARAH were defined in the
SARAH Software 3tandards and Procerures Manual (SSP.1).

Programmers must be educated in using a coding style that is
consistent with the transportability objectives. Most basic Ada
training courses discuss the language features but do not give
specific instruction on transportability objectives. There are
many language issues that need to be addressed and programmers
cannot be expected to produce portable code if they are not made
aware of these 1issues. Once the coding standards have been
defined, the programmers should be instructed on the specific
transportability objectives of the project, the techniques that
must be employed (as defined in the standards manual), and why
the techniques are important if the application i3 to be
tranaportable.

4.2. DYNAMIC ALLOCATION

Dynamic allocaticn is one area where portability problems can
arise 8o care needs to be taken to identify the potential

problems. One of the main problems is that there is uncertainty
a3 to how much storage i3 taken by dynamically allocated objects.
As such, an application that runs on one machine may rvaise

the 3torage Brror exception on another implementation.

Another problem is that different compiler implementations
deallocate obgects at different times. The Ada Language Reference
danual (LRM) does not specify when deallocation should take
place. As such, software that dynamically deallocates objects may
not execute in the same way under different implementations.
This c¢could cause major problems for transporting real time
software. This problem can be overcome to a large extent by the
use of a 'free list' approach?.

4.3. DISCRETE TYPES

Potential portability problems can arise because discrete types
have a range that is machine dependent and because Ada does not
dictate that range checks must be done on subexpressions.

I[f an application is to be transportable, then type names
Short Integer and Long_Integer should not be used explicitily.
Rather, range constraints should be used to define integers. To
illustrate, consider the following example. Software is produced
on a 32 bit machine which will support an integer range of over
four billion. The programmer uses the following type
declaration:

subtype Count Type is Long_ Integer;

low, the application needs to be transported to an 16 bit machine
which has an integer range of -32767 to 32767. On this
implementation Long Integer is not defined. Before the software
will run on the new machine, all the declarations that used
Long Integer will have to be changed. Also, this is a poor
programming practice because, in general, the whole integer range
is not required. Rather than define the explicit integer type,
the programmer could have defined:

type Count Type is range 1..50;

The range of Count Type is now restricted, but more importantly,
the declaration is now transportable. For the 16 bit machine,
the base integer type 1is Integer and so Count_Type will be
defined as a sixteen bit integer. The 32 bit machine had
Long Integer defined as its base type and so Count_ Type will be
defined as a 32 bit integer. Code changes are therefore not
required when the application is moved to the new machine.

Another potential transportability problem arises because Ada

does not <¢all for range checks on sSubexpressions. A
subexpression could therefore have a value outside that specified
for its type. To illustrate this point with an example: we

again develop our application on a 16 bit machine and use:

type Count_Type is ranmge 1..50;

My Count : Count Type := 12;
and then use the expression:

My Count := My Count®*2 - My Count*10;
The result of the calculation (24) is within the range of
Count Type and the program runs fine on the 16 it machine. When
the program is transported to an 8 bit machine, Numeric_Error is
raised at run time. What happened? Because Ada does not call
for range checks on subexpressions, the base integer type is

uszed, In the case of the 16 bit machine, the base type Integer
w13 uaed and so, when the subexpression My_j)ount**B was

11

evaluated, the result was 144 and this was within range. But,
for the eight bit machine, Short_Integer was the base type and so
144 was out of range and Numeric_Error was raised. A3 such, we
created a runtime problem when we transported the application to
an 8 bit machine. This situation can be potentially dangerous,
because it renders the software unreliable.

If the programmer was aware of the transportability problems that
could arise, he may have factored the expression:

My Count := My Count*(My Count - 10);

Now the expression would work equally well on both
implementations.

Although the previous example discussed eight and 16 bit
implementations, the same type of problem can occur when
transporting Ada software between any machines with any different
size data words. Similar problems can also arise when using
floating point or fixed point numbers. The main aim of this
section has not be-n to outline all the transportability problems
that could arise through Ada types, but rather to show there are
potential problems. More in-depth coverage of these problems can
be obtained from several other publications

4.4. TASKING

The development of transportable real-time software that contains
tasking can be very difficult. Concurrent processing has
trauditionally been seen as the arena of assembly programmers who
specialize in interfacing applications to operating systems or
runtime executives. Ada provides support for concurrency within
the language but, even so, 133sues associated with multi-tasking
in real time systems pose major obstacles to transportability.

A major problem is that execution speeds vary from machine to
machine. 1If software depends on execution speed, the transported
application may behave differently on the new target. When using
Ada, there are several issues that must be carefully considered.
For example, differences in scheduling algorithms, the different
lengths of task queues, and the order of task activation all
provide potential transportability problems.

Ada compilers need not implement the task scheduling algorithm in
the same way. The Ada Language Reference Manual(LRM)® does not
specify which type of task scheduling should be implemented.
For example, not all of the current compilers use a time slicing
algorithm. ITn the case of the Alsys Version 1.3 compiler, task
3Wwitching occurs only at task synchronization points . If an
application was developed assuming that a time slice algorithm
would be used and this application was moved to an implementation
where task switching occurs only at gynchronization points, then
there is a high probability that one of the tasks would take

control of the processor and not allow other tasks to execute.
The code would have to be modified to insert synchronization
points at strategic locations (possibly by adding delay
statements) so that the tasks would switch and so simulate the
action of time slicing.

The length of task queues can vary between different compilers.
Ada does not specify the length of these queues. If the number
of elements that can be queued up to an entry point is less on
the new target system, there is a posgibility that some events
could occur in a different order than that originally planned
for. This can be a very serious problem because the application
could become unreliable after it is transported to the new
target. As such, designers and programmers should not make any
assumptions on how big the task queues will be on a particular
implementation. If a large number of elements are to be queued,
then for the sake of transportability, an independent queuing
system should be used.

do assumption should be made about the order of task activation.
The LRM deliberately leaves this issue undefined. The Ada Burope
Guidelines? indicate that making such an assumption could “..lead
to a2 runtime surprise”. To ensure transportability for
applications which rely on a specific order of task activation,
the activation and execution sequence should be performed by the
application. The same could also be said for task termination.
In the S5ARAH system, the application itself controls when tasks
will execute and when they will be terminated. This not only
aids in providing a more transportable application but it also
reduces potential testing and maintenance problens.

4.5. ELABORATION ORDER

All library units and unit bodies must be elaborated before a
main program can be executed; but Ada does specify the order of
elaboration for unit bodies. Even so, the elaboration order may
vary with different implementations.

Consider the example in Fig 4-1. Printer Params contains some
implementation gspecific printer constants. Printer_Driver gets
these implementation specific values from the Printer Params
package. The LRM specifies that Printer Params must be
elaborated before Printer_ Driver. Also, the body of
Printer Params must be elaborated after its specification.
However, an implementation is free to elaborate the body of
Printer Params before or after the elaboration of Printer_Driver.
If the body of Printer Driver is elaborated before the body of
Printer Params, then Ch;racters_Per Line will not be initialized.
By reversing the elaboration order, Characters_Per Line will be
correctly initialized to 80. If Ada software is to be reliable
after it is transported, designers and programmers must look
closely at possible elaboration problems during development.

13

package Printer_ Params is
type Length Type is range 1..132;
Line Length : Length Type;

end Printer Params;

package body Printer Params is
begin
Line Length := 80;

end Printer Params;

with Printer Params;
package Printer Driver is

Characters_Per_Line : Printer_ Params.Length_Type
:= Printer_ Params.Line_ Length;

end Printer Driver;

e m e e m e = e am i e e = o e e e dm e e e m o = e v = wm e e e m e e e e e e . wm e = e e = -

Fig. 4-1: Example of Possible Klaboration Problems

14

4.6. PRAGMAS

Every effort should be made not to use implementation defined
pragmas. Pragmas are directives to the compiler and are
characterized as language defined and implementation defined.
Implementation defined pragmas may have different meanings for
different implementations. If these pragmas are used, their use
should be well documented and the documentation should highlight
the parts of the code where the pragmas are used. Preferably, the
pragma should be encapsulated in one of the packages which
contain machine dependencies.

5. TRARSPORTABILITY EXPERIENCES WITH SARAH

As discussed earlier, transportability requirements for 3ARAH
were established early in the development cycle. This section
describes the approach used and highlights some of the main
transportability features of the SARAH system.

5.1. THE LOGIcCAL KERNEL

Early in the design phase, the SARAH designers identified a
iogical kernel to aid in transportability. As shown in Fig 5-1,
the kernel shields the application from the machine and DOS3
dependencies. When transporting the application to another
target environment, only the code in the kernel packages needs to
be changed.

The kernel consists of a logical grouping of packages. For
example, the machine dependent code for the Print_ WManager
subsy3tem 1is encapsulated in a package called Printer Kernel.
This package is a part of the Print Manager subsystem, but it is
also identified as a part of the logical SARAH Kernel. If the
Print Manager subsystem is to be reused, then the entire
subsystem can be removed along with its kernel package. The
programmer would then need to modify the Printer_Kernel package
for the new target. If the entire SARAH application is to be
reused (or transported), then the programmer needs to look at all
tue¢ pachageu that are defined in the GARAH Kernel, one of which
would be the Printer_Kernel package.

5.2. INFORMATION HIDING

Information hiding was used extensively in the design of SARAH so
that specific low level information could be hidden from the
majority of the software elements. As discussed earlier, the usc
of information hiding and abstraction are important software
engineering principles that need to be applied when developing
tranaportable software.

3ARAH provides several good examples of how information hiding
and abstraction have been used to promote transportability. For
example, the SARAH system is not tied to the filenaming
conventions of the operating system. The SARAH subsystems that
use disk input/osutput operate with a Filespec_Type. The structure
of this type 1is invisible to all of the subsystems except
Disk_ 4anager. WKven within Disk Manager, the only package that
knows anything of the DOS filename structure is Disk_Defs {which
incidentally is a G5ARAH Kernel package). As such, redundant
information is hidden from those elements that do not
specifically need the information. The result is that the
application is more easily transported because the implementation
dependent information has been localized.

The Visual Display Terminal “anager (VDT_Manager) subsystem also
makes good use of information hiding to promote transportability.
To implement a fast windowing scheme, VDT Manager resorted to
using direct screen addressing. However, the details of how this
i3 implemented is hidden in a kernel package. The SARAH

subsyst s that need to write to the 8Screen use abstract
interfaces that show no relationship to the physical properties
of the display. Functions aad procedures such as

Open Trunsient Window and Display Help File are provided for the
subsystems that interface to the VDT Manager. By hiding the
implementation details and providing abstract package interfaces,
the VDT_Hanager designers were able to enhance the potential
transportability of the SARAH systenm.

5.3. STANDARD PRE-DEFINED PACKAGES

The SARAH developers attempted to use standard pre-defined
packages wherever possible. These packages are well defined and
standardized as part of the Ada language. As such, they must be
provided with all validated compilers and so aid in producing
transportable software. As discussed earlier, some vendors
supply their own predefined packages. The SARAH team was careful
not to use these packages unless there were significant benefits
to be gained. For example, since the standard input/output
pacxages do not provide facilities for reading disk directories,
these facilities needed to be supplied by some other means.
After a careful look at the trade-offs involved in developing the
routines 'in-house' or using the Alsys DOS package, the teanm
members chose to use the DOS package. The Alsys DOS package was
seen as a part of the logical kernel and in each case where
routines were used from this package, the team carefully examined
all possible options.

Although there were definite transportability benefits to using
the atandard Ada packages, the SARAH team was concerned about
their effect on execution speed and code siaze.

Care needs to be taken when considering u3zing the standard
predefined packages if execution speed is ciritical. Since the
SARAH system 1is user oriented, there is a large amount of
interaction between the user and the system. The display
features a number of windows and an arrangement of bar and pull-
down menus. Initial experiments with the standard TEXT IO
package showed that the routines provided could not be used to
efficiently implement the user interface. Using TEXT IO would
have used an unacceptuble amount of the total available computer
power. A geparate subsystem, called VDT Hanager, was developed
to provide the user interface. -

The size of the resulting code i3 Alao an issue when using the
3tandard pre~-defined packages. For example, the Alsys Version
1.4 compiler adds some 26,000 bytes to the size of the
executable file if TKXT [0 ia used in the application. If only
one or two routines are required, then this is a high price to

17

pay, particularly if the amount of memory is limited (as it is
with the Z150 SARAH target). For this reason, SARAH does not use
TEXT I0. 1In the future, compilers may employ 'smart' linkers and
30 only the required code will be added to the executable file.
Until then, care needs to be taken when considering the standard
pre~defined packages if code size is an important consideration.
This is one of the transportability trade~offs that needs to be
made.

13

ADMIN VERSION

SARAH KERNEL

OPERATING SYSTEM

HARDWARE

COMMUNICATIONS

SARAH Logical Kernel

13

6. SUMMARY AND RECOMMENDATIONS

6.1. SUMMARY

Transportability can dramatically reduce overall software costs.
If entire software applications can be reused without significant
modification, then enormous cost benefits c¢can be achievel.
"Tndeed, a3 our systems become larger and hardware costs continue
to» fall, economic preasures wWwill Adictate that the software must
be easily transportable to new target gsystems. Requirements will
indicate that the software must have a longer 1life than the
hardware.

Transportability must be addressed early in the project. To Ve
sure, transportability is not something that can be built in
after the software is developed. Planners need to establish the
transportability requirements for a project and the objectives
neetl to be ciearly defined. Once the objectives are defined,

specific design and coding standards need to be provided for the
project These standards must then be adhered to throughout the
Jevelopment cycle.

anagers must be aware that although the Ada language will
support the Jdevelopment of transportable software, Ada's use will
not guarantee trunsportability. Ada must be viewed a3z a tool for
Jevelnping transportable software. sffective design techniques,
wall defined goals, and the skill of the software developers
wiil all have a major bearing on transportability. There are
many l1anguage and design issues that must be considered when
jeveioping transportadble Ada software.

Tranasportability haa 1its hidden costs. S5ome o»f the costs
4330ci1ted with producing transportable goftware are increased
~yle size, slower execution speeds, and incresased development
toasts. Planners and managers must understand that there will be
tr4de2-2ffs to be made, and that these trade-offs will be closely
coupied to the portability objectives. The degree that these
niiien costs will affect the project will to a large extent
lepend on the experience and skill of the designers and
programmers on the development team.

6.2. RECOMMENDATIONS

Recommendations are:

Avoid using non-standard pre-defined packages wherever
possible.

If transportability 1is a production goal, then
transportability 1issues must be addressed early in
the development cycle.

Managers, designers, and programmers must be educated
in transportability issues.

The Ada community should quickly establish secondary
language s3tandards to prevent the proliferation of
vendor predefined packages.

Transportability criteria should be closely studied and
congidered when establishing of the coding and design
standards for a project.

A. REFERENCES

{1] "SARAH Operational Concept Document”, Command and Control
Systems O0ffice, US Air Force, 5 September 1986.

[2] WALLIS P.J.L., WICHMAN B.A., NISSEN J.C.D, et al, "Ada
Europe Guidelines for the Portability of Ada Programs”,
ACA Ada Letters Voll No 3 (March-April 1982) pp 44-61.

(3] "Ada Portability Guidelines", National Technical
Information Service, No. AD A160 390, March 1985.

[4] HOW® R.G., HAZLE M. et al, "Program Managers Guide to Ada",
JSAFP, ESD-TR-85-159, May 1985.

(5] AUSNIT C., BRAUN C., et al, "Ada Reusability Guidelines",
National Technical Information Service, No. AD A161 259, April
1985.

L6] U.S. Department of Defense, "Reference Manual for the Ada
Programming Language", ANSI/MIL-STD 1815A, Jan 1983.

(7] BOOCH G., "Software Engineering with Ada", Benjamin/Cummings,
Menlo Park, California, 1983.

(8] NISSEN J., WALLIS P., "Portability and Style in Ada",
Cambridge University Press, 1984.

(9] "Defense System Software Development”, DOD-STD-2167,
Department of Defence, Washington D.C. 20301.

[10] "An Architectural Approach to Developing Ada Software
Systems”, Command and Control Systems Office, Tinker Air Force
Base, Oklahoma, 21 May 1986.

[11] BROGSOL B., AVAKIAN A.S., GART M.B., "Alsys Ada Compiler
for tne [BM PC", Proceedings of First International Conference on
Ada Language Applications for the NASA Space Station, June 1986.

{12] *"Usage and Selection of Ada Microcomputer Compilers"”,

Command and Control Systems Office, Tinker Air Force Base,
Oklahoma, 9 December 1986.

22

