
ADA* EVALUATION PROJECT DEC FILE CO
RUNTIME EXECUTION CONSIDERATIONS

FOR ADA* SOFTWARE DEVELOPMENT

DTIC
ELECTE

S MARO 1990 1D
Prepared for c0D

HEADQUARTERS UNITED STATES AIR FORCE
Assistant Chief of Staff of Systems for Command, Control,

Communications, and Computers
Technology & Security Division

00

N

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145- 6340
COMMERCIAl, (405) 734-2457 / 5152

AUTOVON 884- 2457 / 5152

*Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)

27 March 1987

90 02 28 007

THIS REPORT IS THE SEVENTH OF A SERIES WHICH
DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA IN A

COMMUNICATIONS ENVIRONMENT.

ABSTRACT

This paper discusses Ada run-time execut ,i>n i3sucs.
Information is provided on execution sp-ed, lnad
handling ability, and static and dynamic memory
considerations. The examples provided in the paper
are based largely on run-time experiences gained
through the development of the Standard Automated
Remote to Automated Digital Network (ATTJDI';) Host
(SARAH) workstation.

The first section of the paper proviles some
background information of the Ada evaluation task

and run-time execution. The scope and constraints
of the paper are also addressed.

The second section of the paper deals with
execution speed. The effect of the compiler
implem-ntation on executinn speed is cov- r-1 along
with several methods that can be employed to reduce
risk.- In addition, the section focuses on design
considerations that need to be addressed when
d-eveloping real-time software.

The third section focuses on load handling ability.
oeveral examples are provided to illustrate how Ada
can be used to enhance load handling ability. In
particular, the use of Ada tasking is addrssed.
Other issues that are covered in this section
include the use of prototyping, experimentation,
and the importance of effective device management
on load handling.

The fourth section looks at static memory
considerations. Several aspects of how static
memory requirements can be reduced ar- covered.
The question of compiler maturity is addressed as
are Ada language issues.

Dynamic memory considerations are addresqed in
section five. Examples are provided showing how
the SAR.AH designers dealt with the proble-m of
memory fragmentation, memory allocation, and memory r1
deallocation. -

The final section provides a summary of the main
points covered in the paper and provides specific
re-commendation on run-time execution.

STATD ,M T "A" por Capt. Addison i- - Y

TInker AFB, OK MCSC/XPTA It) t
TELECON o 2oo CG

-"/______-_____I

Ada Evaluation Report Series -1Y- CCSO

Ada Training March 13, 1986

Design Issues May 21, 1986

Security May 23, 1986

Micro Compilers December 9, 1986

Ada Environments December 9, 1986

Transportability March 19, 1987

Runtime Execution April 10, 1987

Modifiability Spring 87

Project Management Spring 87

Module Reuse Fall 87

Testing Fall 87

Summary Fall 87

T A B L E O F C O N T E N T S

1. INTRODUCTION ... 1
1 .1 . THE ADA !EVALiJATION TASK I
1 .2 . PURPOSE ... 1
1.3. BACKGROUND .. 2
1.4. SCOPE AND CONSTRAINTS 2

2. EXECUTION SPEED .. 4
2.1. SARAH SPEED REQUIREMENTS 4
2.2. COMPILER 1iSUES. ... 4

2.2.1. Language Comparisins 5
2.2.2. Speed Optimization 5
2.2.3. Benchmarking 6

2.3. DESIGN CONSIDERATIONS 6
2.3.! Transportability 7
2.3.2. Use of Tasking 7
2.3.3. Design Structure 7

2.4. ADA LANGUAGE FEATURES 9

3. LOAD HANDLING ABILITY 11
3.1. SARAH LOAD HANDLING REQUIREMENTS 11
3.2. HARDWARE EFFECTS 11
3.3. DEVICE MANAGEMENT 11

3.3.1. Language F-atures That Support Device Managem.11
3.3.2. Device Allocation Priorities 1,
3.3.3. Task Switching 15

3.4. THE IMPORTANCE OF DESIGN 15
3.5. PROTOTYPING AND EXPERIMENTATION 14
3.6. DEVELOPMENT AND CODING ISSUES 14

4. STATIC MEMORY CONSIDERATIONS 16
4 . 1 . SARAH' s MENORY CONSTRAINTS 16
4.2. LANGUAGE CHARACTERISTICS 1 6
4.3. COMPILER ISSUES 16

4.3 .1 - Smart Bind ers 1 7
4.3.2. Sm art Linkers 17
4.3.3. Efficient Generic Instantiations 18
4.3.4. Virtual Memory Techniques 13

5. DYNAMIC MEMORY CONSIDERATIONS 19
5.1. SARAH's DYNAMIC MEMORY CONSTRAINTS 1 9
5.2. LANGUAGE FEATURES FOR DYNAMIC MEMORY CONTROL 19
5.3. GARBAGE COLLECTION 19
5.4. MEMORY MANAGEMENT WITHOUT GARBAGE COLLECTION 19
5.5. COMMON TOOLS PACKAGES 20

6. SUMMARY AND RECOMMENDATIONS 21
6.1. SUMM ARY ... 21
6.2. RECOMMENDATIONS 23

Append ices

A. REFERENCES.. 24

L I S T 0P F IGU R ES

2-1: S3ARAH User View 10

3-1: SARAH Communications Workstation 15

1. INTRODUCTION

1.1. THE ADA EVALUATION TASK

This pappr is on in a series which seeks to h-lp pot-ntia]. da
developers gain practipal insight into what is required t
successfully develop Ada software. With this goal in mind, kir
Staff tasked the Command and Control Systems Office (CCSO) to
evaluate the Ada language while developing real-time
communications software. The task involves writing papers on
various aspects of Ada development such as training, Ada design,
environments, and security issues. This paper discusses the run-
time execution issues.

CCSO chose the Standard Automated Remote to AUTODII (Automatic
Digital Network) Host (SARAH)' project as the vehicle basis for
the Ada evaluation. SARAH is a small to medium size project
(approx. 40,000 lines of executable source code) whLch will
function as a standard intelligent terminal for AUTODIN users and
will be used to help eliminate punched cards and paper tape as a
transmit/receive medium. The development environment for SARAH
consists of a number of IBM PC AT, Zenith Z-150, and Z-249
microcomputers. The source code produced is compiled on the PC
ATs, and Z-248s using Alsys Ada compilers and the object code can
be targeted to all three microcomputers. The SARAH software will.
run on a range of PC XT, PC AT, and compatible microcomputers
under the MS-DOS operating system (version 2.0 or higher).

1.2. PURPOSE

The purpose of this paper is to:

o Discuss some of the language features provided by Ada
to enhance run-time execution.

0 Discuss some of the language characteristics that must
be considered in the context of run-time execution.

0 Discuss those run-time issues that had to be considered
by the SARAH design team.

o Discuss some constraints caused by com pil r
immaturi ties.

o Provide design and coding recommendations to help the
designer and coder enhance the run-time execution of
their system given language features, language
characteristics, and compiler constraints.

1 .3. BACKGROUND

Efficient run-time execution is one of the major goals for the
design and development of most software systems. Consequently,
run-time execution requirements usually are, and should be,
defined in the project requirements document.

The source of run-time execution requirements are the user's
requirements and the constraints of the environment that the
system will operate within. There may be time constraints,
memory constraints, device constraints, and/or processor
constraints.

The SARAH designers were confronted with all of these constraints
to at least some degree. Since SARAH is a real-time on-line
communications system, definite time constraints exist. The
target environment is an IBM PC compatible (both XT and AT) and
memory is limited to 640K. The system must manage a number of
relatively slow devices (disk drives and printers), therefore
numerous device constraints exist. Processor constraints result
mainly from the 8088 target which runs at a slow 333,000
instructions per second.

In addition, as a communications terminal, SARAH terminals will
be subjected to large variations in load. The system will often
be online with no other activities; at other times there may be
many simultaneous demands.

For these reasons, this paper is divided into chapters covering
execution speed, load handling, program memory requirements,
dynamic memory requirements, and device management.

Compiler maturity is a recurring topic throughout the paper.
This is a consequence of the effect of less than compltply
mature compilers on the development effort and the related effect
on the performance of the final product. The Reference Manual for
the Ada Programming Language (commonly referred to as the LR)
does not specify the size or speed of the object code, or the
relative execution speed of different language constructs.
Therefore, purchase of a validated compiler does not, of itself,
guarantee anything in ti,c way of performance. Performance
generally increases with the maturity of the compiler.

It should be noted, the advent of Ada has pushed the science of
compiler development forward quickly. Ada compilers are much
larger and more complex than most traditional compilers (300,000
lines of source code to implement an Ada compiler is nnt
uncommon). Consequently, most compilers progress through a
maturing process after their first release.

1.4. SCOPE AND CONSTRAINTS

The SARAH design team is developing a system to run under the, MS-
DO" (MicroSoft Disk Operating System). The Ada compiler that is
being us'd for the project is the Alsys, Inc., AlsyCOMP 003 which
is hosted on the IBM PC AT and selected compatible

m icroc a patfrs. Much of our Pxperisnc, with Ada, 'spfcially in
the area of run- time topics, is limited to this application.
Some experienice was also gained through early experimentation and
training on a Burroughs XE550 (hosting the Telesoft Version 1.4
and 2.1 compilers), a Digital Equipment Corporation VAX 11/780
(hosting the SOFTECH Ada Language System), and an Intellimac
IN700U (hosting the Verdix Ada Development System).

...

3

2. EXECUTION SPEED

Execution speed is an important run-time characteristic that must
be considered when designing and developing software. There are
many factors that affect execution speed. For example, the
maturity and quality of the compiler implementation, the design
approach, the target hardware, and language features will all
hayv- a bearing on how fast the code will execute.

2.1. SARAH SPEED REQUIREMENTS

Execution speed is an important requirement for the SARAH system.
The system must provide full duplex synchronous communications 't
20O0 baud, vet still allow the user to simultaneously perform
message preparation/editing functions. One of the major
execution speed criteria is that the host must not have to wait
on SARAH when it is trying to transmit data. Execution speed
should be sufficient to satisfy this basic requirement, yet still
allow the user to prepare and edit messages without noticing the
effect of the background communications task.

A major factor that must be considered when addressing speed
rPjui rei ents is th- target hardware. SARAH is designed to run
on a range of IBM PC XT and PC AT compatible microcomputers. Mor-
spcifically, the requirements identify the Zenith Z-150 (a PC XT
compatible computer) and the Z-248 (a PC AT compatible computer)
as th- initial targets. Execution speed that is acceptable on a
Z-249 may appear very slow and sluggish on the less powerful Z-
I Li0 3sy St -m.

Many prjects use a 'software first' approach, where the hardware
is selec ted after the software requirements have been
es tablish,d. This is a preferable app--oach because the software
dpsign need not account for any hardware limitations. However,
for the SARAH project, the estblishment of a standa rd
m icrocimputer cntract ensured that there would be a large
communi ty of Z-15u users. As such, the SARAH developers were
tasked with ensuring that the SARAH application would exhibit
s tisfactory exccutinn speeds on the Z-150 system. This is a
major challenge.

2.2. COMPILER ISSUES

The, quali ty of codc produced by the compiler will have a .argr-
bearing on s cution speed. As such, the project team need3 to
have a thorou'gh kncwlcdg- of the charactristics of the conpil-r
to b used. Therer have been many questions as to how Ada code
compar ,s with cnd pr-duced by compile rs of other languugs.
Ano th(er coimmon question has been: "How do we determine wh-the r
thr cod. will ex-cut- fast enough for our applicr tion?" PhP:4
issu s will be discussed in this section.

.... ,, , i I i I I I4

2.2.1. Language Comparisons

Code produced by Adn cnmpilers can be as fast as that produced by
compi lers of nther modern High Order Languages (HOLs).
Brnchmark t-3ts c irnparLng Ada against 'C' and Turbo Pa:3cu1 on a
IBM PC AT show that Ada code can be at least as fast as the
other languages, and in many cases much faster. 3 Th- results of
thrse tests were obtained using a non-optimizing Ada compiler;
therefore, further improvement can be expected. k gcrat deal of
research and development effort is being applied to the question
of Ada cods_. optimization. As Ada compilers mature, the quality
of code produced should be as good as, if not better than, the
code produced by compilers of other languages.

2.2.2. Speed Optimization

The complexity and size of the Ada language has created probl-rs
for compiler developers and so the Ada community has had to wait
patiently until suitable compilers were made available. Mnst of
tne early compilers did not employ code optimization and many
compilers produced code that showed poor execution speeds.
Developers are now beginning to 'fine tune' their compilers and
provide code optimization. For example, Alsys Inc. has been
continually refining their PC AT compiler since its release. Low

v-l optimization will be included in their Version 3 reliase,
due in fourth quarter of 1987.

dh' -t l nguagce itself provides some problims for vendnrs
int-njing to provid- code optimizaticn. Several papers 1 2 ' 3 have
b en writt-n on Ada optimization problems. Some of the Ada
fatu1res that cau-e problems for optimizers are exception
h-ind i nc, separa te compilation, tasking and generics.
Restrictions imposed by the language on limitirg the bounds for
r-orlr.ring to the innermost enclosing frame can hinder the
developer in providing some very profitable optimizations. To
illustrate, consider the following code segment:

begin

for i in I .. 10 loop
begin

Total := Total + i * Factor(IntValue);
end;

end loop;

-- some other code

end;

Th I 'al culat Lon for Total is within the inner frame. A great
deal of execution time could be saved if, during optimization,
the fu'nc tion Factor(Int _Value) could be moved outside the loop
and cal ilated just once. Ada fcrbids this and so, in this case,
a v-ry beneficial optimization is lost. If in-line inclusion of
subprograms is ised to increase execution speed, there woald be
many s3itiations where inner frames (such as the one described in

• ., I "I5

the example) would be used. As such, many of the speed benefits
would be lost because of the restrictions imposed on
optimization. The future will tell how well these problems can
be overcome and whether Ada can produoe superior code for real
time applications.

2.2.3. Benchmarking

Benchmark testing can establish whether or not a particular
compiler will produce code that will allow the appli.t-tion to
execute at an acceptable speed. Benchmarking is important for a
number of reasons:

o Compiler Selection. Benchmarking allows developers to
select a compiler that best meets the needs of the
project.

o Identifying Compiler Strengths and Weaknesses.
Benchmarking gives the developer a measure of code
performance which can be used for making well founded
design and development decisions concerning execution
spe .-J

The information provided by benchmark tests can have a large
affect on the overall design and development approach. For
example, the Ackermann's function 8 gives a good indication on how
efficiently procedure calls are implemented. If the results of
this test are poor, then consideration needs to be given to
designing a system where procedure calling will not adversely
affect execution spe -d. Benchmark test programs can be obtained
through several sources. 1 0

Although benchmark tests can be valuable for determining compiler
characteristics, performing the tests 'in house' may take a
considerabl- amount of time and expertise. As such, developers
may b- better advised to look at published benchmark
reports.- ?S 5 Organizations such as the Special Interest Group
on Ada (;lGAda) P? rformance Issues Working Group are compiling
b,-nchmark t-st ro-su] ts that may prove valuable.

2.5. DESIGN CONSIDERATIONS

Softwarr- d,:ii e-n have a major effect on execution speed.
DesignP r- n..d L- lonk at various trade-offs and these decisions
nr- to b- a': d , s, ii facts and good judgment. Sound design
deci.;inn:, (.an only be made if the designers are aware of the
probl,m: an,1]imi tations they may face; this information can be
obtai n -d through -xpc rimentation, prototyping, and benchmarking.
Snrn- nf the design considerations that must be made when
developing Ada applications where execution speed is important
are: thi , ffrct -in t.ransportability, the use of tasks, and the
effect of the design structure.

2.3.1. Transportability

A design trade-off that needs to b cnsidered is

transportability versus execution speed. To enhance
transportability, the SARAH designers at t mpted to usr th
standard predefined packages wherever possible. However, in some
cases, their use would have seriously affected execution speed.
For example, early experiments showed that Text TO would not be
satisfactory for the SARAH user interface. The 113 r int-rfac
was designed to consist of a number of windows and pull dnwn
menus (see Fig 2.1). The Text TO routines proved t. be too slow
and lacked the functionality needed to implemont this type of
interface. As such, an independent VDT Manager which directly
accesses screen memory was designed. This approach is not as
transportable as would have been the case had Text 1O been used,
but was a necessity because of the execution speed requirements.

2.3.2. Use of Tasking

Most current implementations of the Ada tasking model ar
inefficient. As such, when designing Ada applications where
execution speed is important, tasking effects need to be
considered. For example, Burger and Nielsen 9 show that using DEC
Ada (version 1.2) on a VkX 8600, a simple rendezvous between
producer and consumer tasks takes 503 microseconds, whereas a
simple procedure call takes 11 microseconds. Use of procedures
instead of tasks (in cases where possible) may be a trade off
that needs to be considered when performance issues are being
addressed. Two design methodologies that specifically look at
this issue are the Process Abstraction Methodology for Embedded
Large Applications (PAMELA)1 4 and the Modular Approach for
Software Construction, Operation, and Testing (MASCOT35). 1 5

PAMELA provides a number of rules for identifying whether a task
or procedure should be used for a particular process.

The first design of the SARAH Communications subsystem used a
number of tasks. During an early design walk-through tasking
effects were addressed. The designers used tasks to interface
with the low-level communications driver and intended to pass one
character at x time to the driver by way of task rendezvous. The
interface was to operate at 2400 baud and so a character would
have to be received (and perhaps transmitted) at intervals of
just over 4000 microseconds. At the time, Alsys Inc. indicated
that a simple rendezvous consisting of two context switches would
take about 3000 microseconds. When the overall system overheads
were considered, a quick calculation showed that SARAH would

- v-m-n o- able to receive data at the required rate, much less
do any of the other functions that were required. Armed with
this information, the designers reconsidered their approach to
using tasks. The number of tasks and rendezvous were reduced.

2.3.3. Design Structure

Ada has many language features that complement mod-rn software
engineering practices. For example, Ada packages are useful for

7

developing systems that make good use of abstraction and

information hiu irig. The use of these features can produce well
structured designs which aid software understandability,
modifiability, and hence, maintainability. Design methodologies
such as Object Oriented Design (OOD) 7 provide a 'cook book'
approach to establishing this type of design structure. Although
these designs may be theoretically correct, the overall design
structure should be analyzed thoroughly to determine how the
structure might impact execution speed.

Once the structure is defined and the concurrent modules are
identified, a design walkthrough should be conducted to estimate
execution requirements and to set task priorities. The results of
previous experiments, benchmark tests, and simulations can be
important for cstimating how much processor time should be
allocated to the various modules. For identifying concurrent
modules, the SARAH designers made use of the concurrency view of
multi-view design approach. 1 By performing design walk-
throughs, potential execution problems can then be determined
early in the developm-nt cycle.

2.4. ADA LANGUAGE FEATURES

The language itself plays a large part in how fast the code will
execute. Language features can be used to advantage to improve
execution speed; however, there are also those features that tend
to slow execution speed.

One Ada language feature that can be used to improve speed is the
access type. If a compiler implementation used a 'pass by value'
scheme for parameter passing in procedures and functions, a
significant speed overhead can be imposed when passing large data
objects. Rather than passing the complete object, an access
object can be created as an access type. Reference to the object
is then made by way of an access value (a pointer). For example,
if we had a large amount of data to be passed as a parameter in a
procedure, we could define the data object as an access type.
Instead of passing all the data each time the procedure was
call d, a pointer to the data object could be passed. This
approach can significantly reduce the overhead associated with
passing large amounts of data as parameters in functions and
procedures where the compiler uses a 'pass by value' scheme for
parampt-r passing.

Run-time checks in Ada have a negative effect on execution speed.
Ada has a number of predefined exceptions which may be raised
implicitly. The run-time checking associated with these
exceptions imposes a run-time overhead. The effect of run-time
checks)n ex-u A. ')n speed varies with -ach co mpil r
implementation. if there is some compelling reason to do so, the
run-time checks can be suppressed using pragma SUPPRESS.

Benchmark tests performed with the Alsys PC AT compiler3 show
that there is a significant increase in execution sp~ed when th-
programs are rur with 'checks off.'

.... -- -- , nmmnmmll • M ~ m I

In add ition to the predefined exceptions, kda allo ws for user-
defined exceptions; however, ideally, these should have little
effect on execution speed unless the exception is raised. The Ada
designers were careful in defining user defined exceptions so
that no overhead would be imposed on execution speed.12 Thy
even provided a scheme that could be us-d to Pffici-ntly
implement exceptions. 1 7 The Language Reference Manual does not
specify how exceptions will be implemented and so there is no
guarantee that the compiler will not impose a speed overhead.
Developers need to check on the efficiency of exception handling
and the effect that exceptions may have on execution speed.

Another Ada feature that can cause problems if not properly used
is generics. Execution problems can arise if care is not taken
in how and where generic units are instantiated. For example,
if a generic is defined inside one of the procedures, the generic
will be instantiated each time the procedure is called. If the
procedure is called many times, then severe performance problems
will result.

.......

-0 0

CLC

c CL

= 0)

00F-7

00
T I-

00

X-U-

100

3. LOAD HANDLING ABILITY

Load handling ability refers to the ability of a system to handle
a number of active tasks simultaneously. These tasks are not
necessarily Ada tasks and need not be implemented in software.
For example, the printer could perhaps be seen as a task. The
application software communicates with the printer, loads the
print buffer, and then continues to execute in parallel with
printer operation. When considering load handling, all aspects
of the system need tc be considered, not just the software.
Indeed, device management plays a large part in load handling.
Load handling ability is an important consideration for digital
communications. These systems are required to simultaneously
transmit and receive data while providing other functions such as
queuing, print operations, data storage, and data retrieval.

3-- SARAH LOAD HANDLING REQUIREMENTS

For the SARAH application, effective load handling is crucial.
SARAH employs multitasking to allow for concurrent m-ssage
preparation/editing, communications functions, and printing. The
loading imposed by the number of active tasks and the load
changes that occur during the day must be considered. In
addition, the loading effects impose9 by the SARAH peripherals
must be considered. The communications version of SARAH must
manage the resources of two printers, two floppy disk drives, a
winchester drive, and a full duplex synchronous communications
interface (see Fig 3-1).

3.2. HARDWARE EFFECTS

The target hardware has a major effect on load handling ability.
The initial requirement for SARAH specified the Zenith Z-150 as
th target microcomputer. Since then, the requirements have been
changed to include the more powerful Z-200 and Z-248
microcomputers. In future, SARAH may be required to run on the Z-
386 which uses the very powerful 80386 microprocessor. The
ability of the SARAH application to handle load will improve with
each generation of hardware. However, designers must be careful
to ensure that the software will operate effectively across the
full range of target hardware.

3.3. DEVICE MANAGEMENT

3.3.1. Language Features That Support Device Management

Ada tasking can be used to advantage in device management for
improved load handling. There are several features of the Ada
tasking model that can be used to advantage. For example, timed
entry calls can be used to communicate with device driver tasks
so that information exchange only need occur when the device is
ready to accept or provide data. If this technique is employed,
the system does not have to wait on the slower devices. Also,

11

task priorities can be applied to help fine tune the system for
optimum throughput. Effective use of task constructs can aid in
device management and hence load handling.

Ada tasks can be used for device allocation and deallocation. A
simplified example f using a selective accept in a task to

control resource pool zllocatioii follows:

select
when Resource Available =>

accept Allocate do
-- grant resource to calling task

end Allocate;

-- if resources are exhausted set
-- resource available to false

or
accept 'tee do

-- rcturn resource to pool

end Free;

-- set Resource Available to true

end select;

The selective acceFr allows rendezvous to either the "Allocate"
entry point or the "Free" entry point when the boolean object
"Resource Available" is teue. If Resource Available is false,
only rendezvous to Free are allowed (Allo-cate is a "guarded
accept"). The above construct can be particularly useful #hen
working with operating system device drivers that are not re-
entrant (like '4S DOS). In these cases, calls to access devices
may not be queued against the device drivers, they must b,
lisit-d to on at a time. Other, more complex, examples of how
taske can be used for controlling resource allocation can be
found in various other publications.

1 8' 9

3.3.2. Device Allocation Priorities

As demonstrated, Ada tasks can be used for the allocation and
deallocation of resources; however, many applications need to be
able to prioritize the device management. Fo. example, as
discussed, one of the major speed and load handling requirements
for SARAH is that th- host computer must not have to wait on
SARAH when the host is transmitting data. SARAH must therefore
place the highls3t priority on receiving the datta and storing it
to the winchester disk. This means that when device allocation
is considered, thr writes to the winchester disk must take
precedence. Moreover, multiple requests for disk drive access
may be pending at any time. The SARAH Disk "4anager subsystem
utilizes a disk resource control task which controls the priority
an d I isk r-source allocation for the floppy drives ani the
winchester drive.

Ad a does no t providr an effective mchanism for alloc atin
priorities to task entry point9. However, task entry families
can b- used to -,nst c t a pri.oritizing scheme. ',any of these
techniques have been a sed in thc development of the device

management routines for SARAH. Designers can meet load handling
requirements (particularly those associated with devices) by
using tasks for device management and assigning appropriate
priorities to task entry points.

3.3.3. Task Switching

The method employed by the compiler for task switching can play a
large part in how well the system will handle load requirements.
Many compilers do not currently implement time-slicing for
switching control between tasks. Instead, these compilers
employ a scheme where the tasks switch only at synchronization
points (i.e. at rendezvous points, delays, and task activation).
This can severely affect device allocation and load handling
because, if tasks are used to manage the resources, some devices
may get a much higher proportion of the total executinn time than
was intended by the designers. Delay statements can be
strategically placed in the code to simulate a true time slicing
scheme. To illustrate the problem, consider the device
allocation problems in SARAH. The SARAH workstation is required
to provide background printing as well as providing
communications. However, the communications task is a mach
higher priority than the printer task. The system must be tuned
to comply with the communications throughput requirements but
must still allow sufficient resources to provide printing and
message preparation/editing facilities.

3.4. THE IMPORTANCE OF DESIGN

Design is important for load handling. If .ne application is to
handle the load requirements, this must be considered during the
design phase. One of the more important claracteristics of load
handling is throughput. Throughput can be defined as the number
of transactions that can be accomplished per second. 2 1 Careful
consideration to module throughput during the design phase can
provide significant load handling benefits.

Load handling should be considered early in the design phase.
When considering throughput, all aspects of total system design
should be considered, not just the software elements. For
example, load handling ability could be improved by the use of
additional processors or by using different peripheral devices.
A system may be required to provides full duplex synchronous
communications and so must continually output d&ta or
synchronization characters. This puts additional load on the
main processor. Early in the design phase, consideration should
be given to using an external hardware device which would pr.ovide
the synchronous communications interface and so reduce these
loading effects. This approach was used for SARAH, where a
communication board with its own processor was used to provide
synchronous communications.

13

3.5. PROTOTYPING AND EXPERIMENTATION

Prototyping and experimentation can aid in the development of
real time systems where load handling is an important
consideration. Without knowledge of how well the compiler
implementation supports various language features and how the
hardware will perform in different situations, designers and
programmers will have difficulty in developing a system which
will effectively handle load requirements.

Prototypes can be used to test loading effccts. Once the basic
design structure has been established, prototypes should be
developed to test for throughput and load handling ability. This
is particularly important if tasks are used in the system. Task
priorities need to b- established and the tasking implementation
checked to see if it will support the load requirements. Compiler
problems and impl-mentation specific details need to be
identified. These problems can provide developers with some
rather challenging and expensive surprises if they are not
identified early in the development cycle. Many of the problems
that are found during the coding and testing phases can be
identified durLng the design phase if prototyping and
experimntation ar' employed.

3.6. DEVELOPMENT AND CODING ISSUES

The low-level dr sign and coding phases can have a big effect on
load handling. Even though good design techniques may be used
and the macro-structure of the software fully supports the load
handling requirements, decisions made by the programmer who is
coding the drsign cnuld have an enormous impact on throughput and
load handling ability. Programmers and designers need to be well
trained in th- u3,: of language featur:s and structures to gain
maximum performance from an application. Indeed, the development
team needs t,- know which language features support load handling
and how these should be used.

The way in which a programmer uses language features tn iiwplement
the design is important. Consider the eyample of a module that
provid-s disk rpad and writ- facilities for other parts of an
application. The designer may have considered all the problems
that c,-,,id impede,:]oad handling ability and correctly established
read and write priorities for the different devices. When the
progr.amm-r codes the design, instead of writing blocks of data
to the d Lsk, the system is set up to update the disk one
character at a time. The large amount of additional processing
and the additional disk accesses can place a considerable
overhead on th- system. There are many deci3ions that must be
left until the low-level design and coding phases. These
decrsi, n. caa hav- a major effect ,)n load handling.

14

ca
0

4-

00

LLz

D LLJ UILA a.

LL C

~~mOf

wD 0

0- W,

D I--

LlU-

15

4. STATIC MEMORY CONSIDERATIONS

4.1 . SARAH's MEMORY CONSTRAINTS

SARAH is currently targeted to the IBM PC XT and compatible
microcomputers and is therefore restricted to 640 Kilobytes of
total memory. This mast be sufficient to hold the entire SARAH
executable file (about 300 Kilobytes, resulting from about 17,000
lines of source code for the first prototype) and provide
sufficient dynamic storage to allow the system to function.
Memory usage is a definite concern within the SARAH project; the
first prototype is already pushing this memory limit.

4.2. LANGUAGE CHARACTERISTICS

Ada executable files require more memory than other traditional
languages. A size lifference of 20%-30% can be expected and is
attributable to characteristics of the language.

Ada is a large language. Included in the language are numerous
predefin-d library units (mostly packages) and many of them are

7large. En additiLon, the Ada run-time environment has additional
work to do in the way of cross checks, type checks, and error
checks. For these reasons, the Ada run-time environment is
larger than in nther languages and the size of the run time is
usually the reason for the size difference of the executable
files.

4.3. COMPILER ISSUES

"Immature" Ada compilers may generate executable files 1D0%
larger than the 3ame application in FORTRAN or other traditional
languages. ExcessLve size of the compiler's run-time environment
and/or excessive source-to-object code expansion are usually the
culpri ts. For exampl-, during Ada Expo'86 (held at Charles3ton WV
in November 1996), Northrop Wilcox provided information on
probl-ins that th-y had encountered during the developm-nt of the
Manoeuver Control System. Some of the system software was to be

targr ted to a emh-dd] computer system which could support one
m gabyte of ROS m inory. The compiler that they were using
produced '4 bytea of cod- fr -ach Ada source line. Since tho
application cons i. ted of some 34,000 lines of source code, the
1 ,9b,000 byt.s of o bject cod- produced by the compiler was w-ll
above the I ,009,000 bytes that the target computer could support.
Th- company boaiht 'i mor" naturo compiler which provided a much
irnproveA ',pans nrI ratio. The code was then able to fit within
th- availabl, m n n;,n constraints and the system was deliverd to
the cust m(-r.

Ada cmp l rs ar beginning to produce mor efficient code.
However, ther- are mariy ar-is that compiler implementors should
concentratr on wh'n L ning ani enhancing their compilers for mor-
efficient memory utilization. Some of these are covered in the
ft i owing .3ectii,-n .

16

4.3.1 . Smart Binders

Smart binders are capable of excluding those parts of the run-
time library not needed for a particular application. For
example, the part of the run-time library that supports tasking
is large. If tasking is not used in the application it should be
left out. The Alsys compiler, used by the SARAH team, does not
make this determination; but, it provides a similar effect by
allowing the programmer to choose a non-tasking library when the
development library is created.

4.3.2. Smart Linkers

Smart linkers link only those parts of library packages that are
actually used by the application. Some compiler developers are
already working at providing this feature. Some of the reasons
for this requirement are that both the standard predefined
packages and packages reused from repositories contain program
modules and types which may not be used by an application. An
example is the pre-defined package "Text IO". Text IO is an
extremely large and commonly used package. On most current
implementations, when Text 10 is made visible, the entire package
is linked into the run time regardless of how many (or how few)
Text 10 functions and procedures are called. On the Alsys
compiler, the use of Text O adds about 26,640 Kilobytes bytes
to the size of the executable file.10

To reduce system memory requirements, the SARAH designers elected
to do without Text IO. Instead, for disk accesses we used the
predefined package SequentialIO (which requires 9600 Kilobytes
plus 1056 each time it is instantiated), and for accessing the
screen we wrote our own packages (we call it VDT Manager). This
approach appears to work well; but, because of bugs in the
current implementation the Alsys Sequential 10 package (version
1 .3) and the memory constraints of our target, the use of
Sequential 1O was eliminated for the first SARAH prototype. The
veni or-supplied predefined package "DOS" (non- transportable) is
currently being used for disk accesses.

Soue compiler implementors have attempted to circumvent the
Text 10 problem by supplying their own subset of Text_ 10. For
exa mple, the Meridian's compiler comes with the package
'Ada I0. .19 '22 Alsys 20 ' 2 3 also includes some extra environment
packages not defined in the Ada Language Reference 1 1anual, they
are: DOS, DOSE, and Unsigned (these can be used for Input/Output,
7.,3 DOS error control, and low-level work).

In the interest of transportability (One of the major goals of
the language), use of these packages should be avoided when
possible. When vendor supplied packages are used in an
application, the application is then tied to the vendor's
compiler. The system will not compile on other compilers without
r-writing those parts of the system which utilize the vendor
packages or writing a package which emulates the vendor package.

17

4.3.3. Efficient Generic Instantiations

A new copy of generic package bodies is linked into the run tirne
each time they are instantiated with some current
implementations. This problem should diminish as new compiler
versions are released. Aore sophisticated versions will be smart
enough to utilize most of a single body of a generic, even if
it's instantiated with various different types.

4.3.4. Virtual Memory Techniques

The use of virtual memory techniques, such as overlays ani
paging, is a traditional method used to reduce memory
requirements of the executable portions of larger software
systems. Their use, however, is not defined in the Language
Reference Manual 6 ani, to our knowledge, none of the currently
released compilers employ virtual memory techniques. Some
compiler developers may eventually provide virtual memory
capabilities.

Arguments aainst using virtual memory methods include:

o System slow-down if the virtual memory area is a device
(e.g. a disk drive).

o They are no longer required as they were a few years ago
since memory is now relatively cheap.

Unfortunately, cheap memory does not help the 'ARAH team with the
problem of trying to fit the system into a Z-150. MS DOS on the
L-150 generally limits addressable memry to 640 Kilobytes.

13

5. DYNAMIC MEMORY CONSIDERATIONS

5.1. SARAH's DYNAMIC MEMORY CONSTRAINTS

Available lynamic (or working) memory in SARAH is limited t

what's left over after the operating system loads (MS DOS), the

executable file loads about 300 (ilobytes for the- SARAH
prototype), and the run time initializes during elaboration.

Since the total memory available in a PC XT compatibl> is 64D
Kilobytes, memory availability is a definite constraint with

SA R A H.

Besides the dynamic memory requirements of the Alsy a run

time, the SARAH application requires memory to read Inss&,.e files
from disk, accept message files from the communications line,

create messages in the editor, maintain the printer queue, etc.

5.2. LANGUAGE FEATURES FOR DYNAMIC MEMORY CONTROL

Ada provides features needed to conduct run-time allocation ard

deallocation of memory. Memory can be explicitly allocated for

access objects with the "new" statement. MIemory is explicitly

d eall ocated by use of the generic procedure "uncheckc-3

deallocation." ('4emnory is implicitly allocated and dealloated

tnw ugh sibprogran calls, subprogram recursinn, and run-tim , -

cr-at i n and term inaticn of task objects.)

5.3. GARBAGE COLLECTION

GJa'b4 c- collection is not implemented nn most of the curr0ently

9vailable Ada compilers (garbage coll-ction is the very resource
iut~nsiv process o)f packing allocated memory to prevent loss of

i able memory due to memory fragmentation caused by run-time

allncatton and deal Ilocation). Garbage collection is not defined
in the Language Reference Manual and most implementors have

.,ho3- n to c onc en t ra t e on those features whi c n are.

Jnf rtunately, because of the way the language is defin-d,
operatting sy t,-ms do not have the information available to them
reqaired to conduct garbage collection. Lack of garbage

c "-11ction can b- a problem for many applications, particulArly

th ose that are on-line for extended periods of time when

f'i mentati-n problems tend to multiply.

A cnuple of compiler implementors do prov'de garbage collection.
0thera are -xpect-dJ to follow as the compiler maturing process

continues. 'Many implementors choose not to employ garbage
roil 11- tinn because of the high overheads (processor time

involved .

5.4. MEMORY MANAGEMENT WITHOUT GARBAGE COLLECTION

'h- 3ARAH designers implemented a memory management package to
w oCk ,ir und th lack n f garbage collc t ion (called

1)

Buffer Manager). Since a requirement of SARAH workstations is to
remain on-line for extended periods of time, it's especially
important that available dynamic memory not be diminished by
fragmentation. One way to avoid memory fragmentation when
allocating and deallocating access types is to use a common
buffer size. The SARAH Buffer Manager accomplishes this.
Buffer _Manager is the central point for allocation and
deallication of buffers in the system; all buffers allocated are
of the same type and consequently the same size (To handle
variations in buffer requirements, buffer types are defined as a
variant record.).

There are oth -2 ways to get around the problem of not havir.
garbage collection. Garbage collection can be conducted using
Ada constructs. On- way of doing this is to load all the memory
(available for dynamic allocation to access objects) into a huge
array at boot time and then allocate and deallocate from the
array. If the application packs the array to eliminate empty
holes, memory buffers can be provided in any size increments. A
warning: this is no small undertaking, besides requiring a
complex set of algorithms, a large portion of processor time will

2be required. A second method is to employ a free-list approach

5.5. COMMON TOOLS PACKAGES

A common tools package is a functional grouping of commonly used
tools into a library package to reduce memory requirements. The
package Buffer Manager referred to in the above section is also
good example of a common tools package. Tools are provided in
Buffer Manager to build and manipulate linked-lists of buffers.
Use of this common tools package reduces the memory requirements
over what would be required if system components conducted their
own linked-liat manipulations. This also helps to ensure the
integrity of internal lists by using consistent list control
algorithms. This central buffer control arrangement also
provides an ideal environment for policing buffers. If memory
runs short due to one of the system components failing to turn in
its buffers, the culprit - hould be easy to iientify if Buffer
Manager maintains a record of who checked out the buffe's.

(c);nm n tools packages also support the software engineering goals
of modifiability, modularity, abstraction, information hiding,
and unI ffm ity.

...

20

6. SUMMARY AND BECOMMENDATIONS

6.1. SUMMARY

Compiler issues are a major consideration for run-time execution.
The maturity of Ada compilers remains a major issue For
developers. Most current compilers do not provide an efficient
task model implementation. As such, many developers are careful
in their use of tasks. There are several guidelines that should
be established for the use of tasking. For example, because of
the inefficiencies associated with task communications, task
rendezvous should be kept to a minimum. In addition to problems
with tasking, many compilers produce large executable object
files and provide little support for dynamic memory management.

Prototypes, experimentation, and the use of benchmark test
results can hclp reduce the risks associated with run-time
execution. Developers need to be aware of compiler and language
limitations, and the characteristics of the target hardware and
peripheral devices. Prototypes can help establish whether a
particular implementation will be able to handle the load
requirements. Benchmark test results are becoming available for
various compiler implementations and can be very beneficial for
determining the best approach for developing real-time software
where run-time execution requirements are important. [f
prototypes and test results are used early in the developm-nt
process, risks associated with run-time execution can be
eliminated and so save expensive software re-works during the
coding and testing phases.

Good design practices, together with a thorough knowledge of the
target environment and development tools, help to eliminate
potential problems early in the development cycle. There are
several design methods that can be used to enhance run-time
characteristics. For example, the PAMELA methodology addresses
task utilization and object-oriented methods can be useful for
developing flexible systems where module interfaces are
minimized. The software design should be flexible enough to
allow for 'fine tuning' during later stages of development.
However, the manner in which the 'fine tuning' will occur needs
to be planned during the design. There are many trade offs that
must be considered during the design phase. For example, a trade
off between transportability and execution speed may need to be
made. These decisions need to be made early and be based on firm
requi remen t s.

Ada has many language features that aid in enhancing run-time
characteristics. For example Ada tasks can be used for device
management and to enhance load handling ability. Use of access
types can enhance both storage and speed characteristics of the
system. The Ada language is a very rich and complex language,
and although programmers can write code after a short training
period, considerably more time and experience is needed to design
and develop systems that will execute efficiently in a real-time
environment.

21

Several features of the Ada language are an impediment to run-
time execution. Ada has many features that have not been
available in the more traditional languages such as FORTRAN,
COBOL, and Pascal. Features such as exception handling,
tasking, and generics have caused problems for compiler
optimization. Some of the problem lies in the complexity of the
language and the lack of experience in providing optimizations
for these more advanced features. Future Ada compilers should
produce more efficient code than is currently being produced.
However, some constraints on optimization are directly
attributable to the limitations imposed by the language
designers.

22

6.2. RECOMMENDATIONS

Based on our experiences in developing the SARAH system, there
are several recommendations that should be made regarding run-
time execution. These are:

o Use good design practices.

o Experiment and develop fast prototypes before deciding
on the final design structure.

o Identify compiler strengths and weaknesses to facilitate
'fine tuning' for run-time performance.

o Ensure that the run-time execution characteristics are
considered during the design phase.

o Use common buffer sizes to work around the lack of
garbage collection if your compiler does not have it.

o Employ common tools packages to reduce memory
requirements by reducing redundant routines.

o Avoid instantiating generics inside packagpj,
subprograms, or tasks.

o Avoid using tasks when subprograms can be used as
effectively.

o Minimize the number of tdsk rendezvous.

o Know your operating system and/or hardware limitations
(device drivers re-entrant?, etc.).

23

A. RKFRREICES

[I] "SARAH Operational Concept Document," Command and Control
Systems Office, US Air Force, 5 September 1986.

[2] " Ada Portability Guidelines," National Technical Information

Service, No. AD A160 390, March 1985.

[3] BROGSOL B., AVAKIAN A.S., GART M.B., "Alsys Ada Compiler for

the IBM PC AT," Proceedings of First International Conference on
Ada Language Applications for the NASA Space Station, June 1986.

[4] BARBACCI M.R., HABERMANN N., SHAW M., "The Software
Engineering Institute: Bridging Practice and Potential," IEEE
Software, Nov 1986, pp 4-21.

[5] WEIDERMAN N., HABERMANN N., et al, "Evaluation of Ada
Environments: Executive Summary Chapter 1 Chapter 2," Software
Engineering Institute, August 1986.

[6] U.S. Department of Defense, "Reference Manual for the Ada
Prog.izarmia Language," ANSI/MIL-STD IblbA, Jan 1983.

[7] BOOCH G., "Software Engineering with Ada," Benjamin/Cummings,
Menlo Park, California, 1983.

[8] WICHi4ANN B.A., "Ackermann's Function in Ada," ACM Ada
Letters Vol VI No 3 (May/June 1986), pp 65-67.

[9] BURGER T.M., NIELSEN K.W., "An Assessment of the Overhead
Associated with Tasking Facilities and Task Paradigms in Ada,"
AC 4 Ada Letters Vol 'II No I (Jan, Feb 1987), pp. 49-58.

[10] "Usage and Selection of Ada Microcomputer Compilers,"
Command and Control Systems Office, Tinker Air Force Base,
Oklahoma, 9 December 1986.

[II] "Architectural Approach to the Design and Development of
Ada Software," Command and Control Systems Office, Tinker Air
Force Base, Oklahoma, 21 May 1986.

[12] BAKER T.P., RICCARDI G.A., "Implementing Ada Exceptions,"
IEEE Software, September 1986, pp.42 -51

[15] K[RCHGASSNER W. et al, "Optimization in Ada," Ada Letters,
Vol.3, No.3, Nov - Dec 1983, pp. 45-50.

[14] CHERRY G.W., "The PAMELA Designer's Handbook," Thought
Tools, Reston VA.

[15] "Special Issue on MASCOT," Software Engineering ,Journal,
IEE Savoy Place London, Vol I No 3, May 1986.

[161 NISSEN J.C.D., WALLIS P.J.L., WICHMANN B.A., et al, "Ada-
Europe Guidelines for the Selection and Specification of Ada
Compilers," ACM Ada Lettecs Vol III No 1 (July-Aug 1985) pp 2 '7 -
50.

24

[1'7] ICHBIAH J.D., et al, "Rational for the Design of the Ada
Programming Language," SIGPLAN Notices, 14.6B, June 1979.

[18]. A. J. Wellings, D. Keeffe, G.M. Tomlinson, "A Problem with Ada
and Resource Allocation," 25 October 1983, Ada Letters,
Jan/Feb, 1984.

[19] Meridian Compiler User's Manual, January 1987.

[20] Alsys Compiler User's Manual, July 1986.

[21] Boris Beizer, "Software Performance," Handbook of Software
Engineering, Van Nostrand Reinhold Company, 1984.

[22] Bruce A. Bergman, William H. Murray, & Chris H. Pappas, "Ada
Compilers: Mission-Critical Software for the PC - Part 1,"
Computer Language, Dec 1986,

[23] Bruce A. Bergman, William H. Murray, & Chris H. Pappas, "Ada
Compilers: Mission-Critical Software for the PC - Part 2,"
Computer Language, Jan 1987,

25

