AD-A218 682

won-cosmonmoscs DG FILE o)/

RUNTIME EXECUTION CONSIDERATIONS
FOR ADA* SOFTWARE DEVELOPMENT

DTIC

FLECTE @
MARO 11390 §

UQD
Prepared for

\

HEADQUARTERS UNITED STATES AIR FORCE
Assistant Chief of Staff of Systems for Command, Control,
Communications, and Computers
Technology & Security Division

DISTRIZUTI -H STATI 71T &
App:oved {10 pullic releaze
Distiiputicn Ualiiuited 2

Prepared b
Standard Automated Remote to AU'I‘(g,DlN Host (SARAH) Branch
COMMAND AND CONTROL SYSTEMS OFFICE (CCS0O)
Tinker Air Force Base
Oklahoma City, OK 73145 - 6340
COMMERCIAL (405) 734-2457 / 5152
AUTOVON 884 -2457/5152

*Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)
27 March 1987

90 02 2% 007

—\

THIS REPORT IS THE SEVEKTH OF A SERIES WHICH
DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA IN A
COMMUNICATIONS ERVIRONMENT.

ABSTRACT

Thias paper discusses Ada run-time executinn i3sues.
[nformation is provided on executinn speed, load
handling ability, and static and dynamic memary
considerations. The examples provided in the paper
are based largely on run-time experiences gained
through the development of the Standard Autamated
Remote to Auntomated Digital Network (AUTODIY) Host
(SARAH) workstation.

The first section of the paper proviles some
background information of the Ada evaluation task
and run-time execution. The scope and constraints
of the paper are also addressed.

The second section of the paper deals with
execution speed. The effect of the compiler
implementation on execution speed 1is covered alang
with several methods that can be employed to reduce
risk.vIn addition, the section focuses on design
congsiderations that need to be addressed when
developing real-time software.

"The third section focuses on load handling ability.
ceveral examples are provided to illustrate haow Ada
can be used to enhance load handling ability. In
particular, the use of Ada tasking is addresged.
Other 1issues that are covered in this section
include the use of prototyping, experimentating,
ani the importance of effective device management
an lsad handling.

The fourth section looks at static memory
considerations. Several aspects of how static
memoary requirements can be reduced are covered.
The question of compiler maturity is addressed as
are Ada language issues.

Dynamic memory considerations are addresaed in

section five, Examples are provided showing how 2 ~+
the SARAH designers dealt with the problem of J°% d
. . . ‘ e 0
memory fragmentation, memory allocation, and memory)
deallocation. -1 a
I

The final sectinon provides a summary »f the main

points covered in the paper and provides specific FEx Cal(

recommendation 0n run-time execution. A

STATEMEXT "A" per Capt. Addison ‘

TInker AFB, OK MCSC/XPTA .

TELECON 2/28/90 ca 1
|

e

Ada Evaluation Report Series by C€CSO

Ada Training March 13, 1986
Design Issues May 21, 1986
Security May 23, 1986
Micro Compilers December 9, 1986
Ada Environments December 9, 1986
Transportability March 19, 1987
Runtime Execution April 1G, 1987
Modifiability Spring 87
Project Management Spring 87

Module Reuse Fall 87

Testing Fall 87

Summary Fall 87

INTRODUCTION. . e ieeeecaceeaccccancnccccnccoonsracoacsosancosal

T.1. THE ADA FBVALUATTION TASK e e ot ottt tnotoneesseeesssocsnoees i
1.2, PURPOSE ¢t ittt ittt oteoeereetsosssceecennssenss C e e e 1
1.3. BACKGROUND...... ce e et et ettt et et 2
1.4. SCOPE AND CONSTRAINTS...eveeawen e e et e e ce et 2
EXECUTION SPEEBD.ccccccencenceeccnncccnccsncnncananas P |
2.1. SARAH SPEED REQUI REMEN TS e v v v et v e v ntnneeneeencssnssasea 4
2.2. COMPILER SUBS i e e s e et es e st e n s e s s e e e e 4
2.2.1. Language COmMPATrISOANS vt ittt e veeeretnenssossnsss 5
2.2.2. Speed Optimization..coie i iiei it 5
2.2.3. BenchmarKing..eeeeoeoeoeeaosecsanensaa ceerveeedh
2.3, DESIGN CONSIDERATIONS .t ieeensresneoas e e et e e ceeaeh
ety Transportabilityeeeeeeereneeieennonenoansonsnsesd
2.3.2. Use of TasKinge:eeoeeosooeoeoesonoertoesosssnssas 7
2.3.%., Design Structure.scer e s e eertnreeoessnnsoannasnas 7
2.4. ADA LANGUAGE FEATURES . ¢etevvoeenan et s et e et e !
LOAD HANDLING ABILITY.c.vccerveosncscocaconca csecesanssncensall
3.1. SARAH LOAD HAWDLING REQUIREMENTS ..ttt i ieeneonneens 11
3.2. HARDWARE EFFECTS .t it ettt eeeossenoconnsennnes et e 11
3.3, DEVICE MANAGEMBENT..... Ceeees . et et e et e st 11
3.3.1. Language Features That Support Device Managem. 11
3.3.2. Device Alloncation Priorities...c.e.ieeneeeennn. 12
3.2.%. Task Switching...ooeer oo v ieereenronnnes e
3.4. THYE [MPORTANCE OF DESIGN..... C e et ettt e 13
3.5. PROTOTYPING AND EXPERIMENTATION....... c e et .14
3.6. DEVELOPMENT AND CODING ISSUES:es it vineaanannn P I
STATIC MBEMORY CONSIDERATIONS .cccccccscanceccenncenncacecealb
4.1. SARAH's MEMORY CONSTRAINTS. S s ettt e e et 16
4.2. LANGUAGE CHARACTERISTICS..N..”.. cesesenens .16
4.3, CCOCMPILER ISSUEBS..... et s e asrasas et et eas et aanana 16
1.3.1. Smart BinderS.ieceesescesesosscoscorsssansaseececald
4.3.2. Smart Linkers..... ceeseaas cee e ceeserenan vee 17
4.3.3. EBEfficient Generic InstantiationNSeeesececeeees.! B
4.3.4. Virtual Memory Technigques..ciiiciiecenananaas W18
DYNAMIC MEMORY CONSIDERATIONS...cccceeeccesccnccencssasceal9
5.1. SARAH's DYNAMIC MEMORY CONSTRAINTS....... Cecesrenaens 19
5.2. LANGUAGE FEATURES FOR DYNAMIC MEMORY CONTROL:teseassa19
5.3%. GARBAGY COLLECTION..... S essenssessetenss s sset s ecnn 19
5.4. MEMORY MANAGEMENT WITHOUT GARBAGE COLLECTION«eessseast9
5.5. COMMON TOOLS FPACKAGE S . iietesessesorsecnocanannos ceres20
SUMMARY AND RECOMMEBEDATIONS..cicecccescecscncscncssvoanseall
6.1. SUMMARY veeenwreneeenn s e s s s e e s e es e s e s s e e s e 2
h.2. RECOMMENDAT ION S . eeeiestosoaessnsosssonsoeonns seseeresel }

Appendices

A‘ REFEREHCES.....'-..'.........‘-...‘-....’...I...-I-...-.....24

LIST
SARAH User View

SARAH Communications

.--.--;--a--.o--..o-.-- ----- ..-...---10

Workstation....e:ececeeeeveeeeecoeceaelh

1. INTRODUCTION

{.1. THE ADA EVALUATION TASK

This paper is one in a gseries which seeks to help pntential Ada
developers gain practirsl insight into what 1is required ¢t»n
successfully develonp Ada software. With this goal in mind, Air
Staff tasked the Command and Control Systems Office (CCSO) to
evaluate +the Ada language while developing real-time
communications software. The task involves writing papers on
various aspects of Ada development such as training, Ada design,
environments, and security issues. This paper discusses the run-
time execution issues.

CCSO chose the Standard Automated Remote to AUTODIN (Automatic
Digital Network) Host (SARAH)1 project as the vehicle basis for
the Ada evaluation. SARAH is a small to medium size project
(approx. 40,000 lines of executable source code) which will
function as a standard intelligent terminal for AUTODIN users and
will be used to help eliminate punched cards and paper tape as a
transmit/receive medium. The development environment for SARAH
consists of a number of IBM PC AT, Zenith Z-150, and Z-248
microcomputers. The source code produced is compiled on the PC
ATs, and 72-248s using Alsys Ada compilers and the object code can
be targeted to all three microcomputers. The SARAH software will
run on a range of PC XT, PC AT, and compatible microcomputers
under the MS-DOS operating system (version 2.0 or higher).

1.2. PURPOSE

The purpose of this paper is to:

0 Discuss some of the language features provided by Ada
to enhance run-time execution.

o} Discuss some of the language characteristics that must
be considered in the context of run-time execution.

o Discuss those run-time issues that had to be considered
by the SARAH design team.

o Discuss some constraints caused by compiler
immaturities.

2} Provide design and coding recommendations to help the
designer and coder enhance the run-time execution of
their system given language features, language
characteristics, and compiler constraints.

..

1.3. BACKGROUND

Efficient run-time execution is one of the major goals for the
design and development of most software systems. Consequently,
run-time execution requirements usually are, and shnuld be,
defined in the project requirements document.

The source of run-time execution requirements are the user's
requirements and the constraints of the environment that the
system will operate within. There may be time constraints,
memory constraints, device constraints, and/or processor
constraints.

The SARAH designers were confronted with all of these constraints
to at least some degree. Since SARAH is a real-time on-line
communications system, definite time constraints exist. The
target environment is an IBM PC compatible (both XT and AT) and
memory is limited to 640K. The system must manage a number of
relatively slow devices (disk drives and printers), therefore
numerous device constraints exist. Processor constraints result
mainly from the 8088 target which runs at a slow 333,000
instructions per second.

In addition, as a communications terminal, SARAH terminals will
be subjected to large variations in load. The system will often
be online with no other activities; at other times there may be
many simultaneous demands.

For these reasons, this paper is divided into chapters covering
execution speed, load handling, program memory requirements,
dynamic memory requirements, and device management.

Compiler maturity is a recurring topic throughout the paper.
This is a conseguence of the effect of less than completely
mature compilers on the development effort and the related effect
on the performance of the final product. The Reference Manual for
the Ada Programming Language (commonly referred to as the LRM)
does not specify the size or speed of the object code, or the
relative execution speed of different language constructs.
Therefore, purchase of a validated compiler does not, of itself,
guarantee anything in tlLe way of performance. Performance
generally increases with the maturity of the compiler.

It should be noted, the advent of Ada has pushed the science of
compiler development forward quickly. Ada compilers are much
larger and more complex than most traditional compilers (300,000
lines of source code to implement an Ada compiler is not
uncommon). Consequently, most compilers progress through a
maturing process after their firgst release.

1.4. SCOPE AND CONSTRAINTS

The S5ARAH design team is developing a system to crun under the MS-
DO3 (MicroSoft Disk Operating System). The Ada compiler that is
being used for the prnject is the Alsys, Inc., AlsyCOMP 003 which
is hosted on the IBM PC AT and selected compatible

microcompaters. Much of our experience with Ada, ¢specially in
the area of run-time topics, is limited to this application.
Some experience was also gained through early experimentation and
training on a Burroughs XE550 (hosting the Telesoft Version 1.4
and 2.1 compilers), a Digital Kquipment Corporation VAX 11/780
(hosting the SOFTECH Ada Language System), and an Intellimac
IN7000 (hosting the Verdix Ada Development System).

L I I I I I I I I I I T T S O S S Ty

——1

2. EXECUTION SPEED

Execution speed is an important run-time characteristic that must
be considered when designing and developing software. There are
many factors that affect execution speed. For example, the
maturity and quality of the compiler implementation, the design
approach, the target hardware, and language features will all
have a bearing on how fast the code will execute.

2.1. SARAH SPEED REQUIREMENTS

BFxecution speed is an important requirement for the 3SARAH system.
The system must provide full duplex synchronous communications it
2400 baud, vet still allow the user to simultanenusly perform
message preparation/editing functions. One of the major
execution speed criteria is that the host must not have to wait
on SARAH when it i3 trying to transmit data. Execution speed
should be suflicient tn satisfy this basic requirement, yet still
allow the user to prepare and edit messages without noticing the
effect 2f the background communications task.

A major factor that must be considered when addressing speed
regquirements 1s the target hardware. SARAH is designed to run
on a range of IBM PC XT and PC AT compatible microcomputers. dore
specifically, the requirements identify the Zenith Z-150 (a PC XT
compatible computer) and the 2-248 (a PC AT compatible computer)
as the 1initial targets. Wxecutinn speed that is acceptable con a
Z-248 may appear very slow and sluggish on the leas powerful Z-
150 system.

Many projects use a 'software first' approach, where the hardware
is s8elected after the software requirements have been
establish«d. This 1is a preferable appuonach because the software
design need not account for any hardware limitations. However,
far the 35ARAH proaject, the estesblishment of a standari
microcoamputer contract ensured that there would be a large
community of Z-150 users. As such, the 3ARAH develnpers were
tasked with ensuring that the SARAH application would exhibit
3atisfactnrey executinn speeds on the 7Z-150 system. This is a
major challenge.

2.2. COMPILER ISSUES

The quality nf code produced by the compiler will have a large
bearing on execution speed. A3 such, the project team needs to
have a thocough knowledge of the characteristics of the compiler
to be used. There have been many questions as to how Ada conde
chnmpares with conde produced by compilers of other languuges.
Annther cnmmon question has been: "How do we determine whether
the cnde will execute fast enough for nur applicetion?” Theae
igsues will be discussed in thias section.

2.2.1. Language Comparisons

Cnde prnduced by Ada compilers can be as fast as that produced by
compilers of Ather maodern High Order Languages [(HOLs).
Benchmark teats compacing Ada against 'C' and Turbn Pasczl on a
13M PC AT show that Ada code can be at least as fast as the
other languages, and in many cases much faster. The results of
these tests were obtained using a non-optimizing Ada compiler;
therefore, further improvement can be expected. A great desal nf
research and development effort is being applied to the guestion
of Ada code optimization. As Ada compllers mature, the quality
of code produced should be as good as, if not better than, the
cnde produced by compilers of other languages.

2.2.2. Speed Optimization

The complexity and size of the Ada language has created probl-oms
for compiler developers and so the Ada community has had to wait
patiently until suitable compilers were made available. Most of
tne early compilers did not employ code optimization and many
compilers produced cnde that showed poor execution speeds.
Develnpers are now beginning to '"fine tune' their compilers and
provide code optimization. For example, Alsys Inc. has been
continually refining their PC AT compiler since its release. Low
level optimization will be included in their Version 3 relrcase,
due in fourth quarter of 1987.

Jne Ada language itself provides some probiems for vendors
intenling to provid= code optimizaticn. Several papers “° have
been written on Ada optimization problems. Some of the Ada
features that cau.e problems for optimizers are exception
handline, separate compilation, tasking and generics.
Reatrictions imposed by the language on limitiug the bourds for
renocdering to the innermost enclosing frame can hinder the
Jeveloper in providing some very profitable optimizations. To
illustrate, congider the following code segment:

begin

for i int .. 10 loop
begin
Tntal := Total + i * Factor(Int Value);
end; -
end loop;

--some other code
end;

The calculation for Total is within the inner frame. A great
deal of execution time could be saved if, during optimization,
the funztinn Factor{Int Value) could be moved outside the lanp
and caleculated just once. Ada ferbids this and so, in this case,
a v~ry beneficial nptimization is 1lnst. If in-line inclusion of
fqubprograms 1is nsed to increase e¢xecution speed, there would be
many situations where inner frames (such as the oane described in

s e

the example) would be used. As such, many of the speed benefits
would Dbe lost because of the restrictions imposed on
optimization. The future will tell how well these problems can
be overcome and whether Ada can produce superior code for real
time applications.

2.2.3. Benchmarking

Benchmark testing can establish whether or not a particular
compiler will produce code that will allow the applic.tion tao
execute at an acceptable speed. Benchmarking is important for a
number of reasons:

o Compiler Selection. Benchmarking allows developers to
select a compiler that best meets the needs of thue
project.

o] Identifying Compiler Strengths and Weaknesses.

Benchmarking gives the developer a measure of code
performance which can be used for making well founded
design and development decisions concerning execution
speed.

The information provided by benchmark tests can have a large
affect on the overall design and development approach. for
example, the Ackermann's function® gives a good indication on how
efficiently procedure calls are implemented. If the results of
this test are poor, then consideration needs to be given to
designing a system where procedure calling will not adversely
affect executinn speed. Benchmark test programs can be obtained
through several sources.

Although benchmark tests can be valuable for determining compiler

characteristics, performing the tests 'in house' may take a
considerable amnunt o~f time and expertise. As such, developers
may bﬁ9 better advised to look at published benchmark

reports."’S Organizations such as the Special Interest Group
on Ada (5I13Ada) Performance Issues Working Group are compiling
benchmark test results that may prove valuable.

2.35. DESIGN CONSIDERATIONS

Software design can have a major effect on execution speed.
Desipgners need Lo lnak at various trade-offs and these decisions
need to be based on snlid facts and gnod judgment. Sound design
decisions can only be made if the designers are aware of the

problems and limitatinons they may face; this infarmation can be
obtained through experimentation, prototyping, and benchmarking.
Soame of the design considerations that must be made when
developing Ada applications where execution speed i3 important
are: the «ffect on transportability, the use of tasks, and the
effect of the desipgn structure.

D

s

2.3.1. Transportability

A design trade~-aoff that necds to VLe considered is
transportability versus execution speed. To enhance
transportability, the SARAH designers attempted to use the
standard predefined packages wherever possible. However, in some
cases, their use would have seriously affected execution speed.
For example, early experiments showed that Text 10 would not be
satisfactonry for the SARAH user interface. The user intecface
was designed to consist of a number of windows and pull dnwn
menus (see Fig 2.1). The Text IO routines proved to be tnn slow
and lacked the functionalitv needed to implement this type of
interface. As such, an independent VDT Manager which directly
accessgses screen memory was designed. This approach is not as
transportable as would have been the case had Text IO been used,
but was a necessity because of the execution speed requirements.

2.3.2. Use of Tasking

Most current implementations of the Ada tasking madel are
inefficient. As such, when designing Ada applications where
execution speed is important, tasking effects need to be
considered. For example, Burger and Nielsen”’” show that using DEC
Ada (version 1.2) on a VAX 8600, a simple rendezvous between
prnducer and consumer tasks takes 503 microsgseconds, whereas a
simple procedure call takes 11 microseconds. Use of procedures
instead of tasks (in cases where possible) may be a trade off
that needs to be considered when performance issues are being
addressed. Two design methodologies that specifically look st
this issue are the Process Abstraction Methodology fnor Embedded
Large Applications (PAMELA)'# and the Modular Approach for
Software Construction, Operation, and Testing (MASCOT3).
PAMELA provides a number of rules for identifying whether a task
or procedure should be used for a particular process.

The first design of the SARAH Communications subsystem used a
number of tasks. During an early design walk-through tasking
effects were addressed. The designers used tasxs to interface
with the low-level communications driver and intended to pass one
character at A~ time to the driver by way of task rendezvous. The
interface was to operate at 2400 baud and so a character would
have to be received (and perhaps transmitted) at intervals of
just over 4000 microseconds. At the time, Alsys Inc. indicated
that a simple rendezvous consisting of two context switches would
take about 3000 microseconds. When the overall system overheads
were considered, a quick calculation showed that SARAH would
Lot =ven v- able to receive data at the required rate, much less
do any of the other functions that were required. Armed with
this informatinon, the designers reconsidered their approach tn
using tasks. The number of tasks and rendezvous were reduced.

2.3.3. Design Structure

Ada has many language features that complement modern software
engineering practices. For example, Ada packages are useful for

developing systems that make good use of abstraction and
information hiaing. The use of these features can produce well
structured designs which aid seftware understandability,
modifiability, and hence, maintainability. Design methodologies
such as Object Oriented Design (00D)’ provide a 'cook book
approach to establishing this type of design structure. Although
these designs may be theoretically correct, the overall design
3tructure should be analyzed thoroughly to determine how the
structure might impact execution speed.

Once the structure is defined and the concurrent modules are
identified, a design walkthrough should be conducted to estimate
execution requirements and to set task priorities. The results of
previous experiments, benchmark tests, and simulations can be
important for cstimating how much processor time should be

allocated tn the various modules. For identifying concurrent
modules, the SARAH designers made use of the concurrency view of
multi-view design approach.1 By performing design walk-

throughs, potential execution problems can then be determined
early in the development cycle.

4

2.4. ADA LANGUAGE FEATURES

The language itself plays a large part in how fast the code will
execute. Language features can be used to advantage to improve
executinn speed; however, there are also those features that tend
to slow execution speed.

One Ada language feature that can be used to improve speed is the
access type. If a compiler implementation used a 'pass by value'
scheme for parameter passing in procedures and functions, a
significant speed overhead can be imposed when passing large data
objects. Rather than passing the complete object, an access
object can be c¢reated as an access type. Reference to the object
is then made by way of an access value (a pointer). For example,
if we had a large amount of data to be passed as a parameter in a
procedure, we could define the data object as an access type.
Instead of passing all the data each time the procedure was
called, a pointer to the data object could be passed. This
approach can significantly reduce the overhead associated with
passing large amnaunts of data as parameters in functions and
procedures where the compiler uses a 'pass by value' scheme for
parameter passing.

Run-time checks in Ada have a negative effect on execution speed.
Ada has a number of predefined exceptions which may be raised
implicitly. The run-time checking associated with these
exceptions imposes a run-time overhead. The effect of run-time
checks »nn ex+cuivion 3s3peed varies with each compiler
implementation. If there is some compelling reason to do so, the
run~time checks can be suppressed using pragma SUPPRESS.
Benchmurk tests performed with the Alsys PC AT compiler3 show
that there is a gsignificant increase in execution apeed when the
programs are rur with ‘checks off.'

In addition to the predefined exceptions, Ada allows for user-
defined exceptions; however, ideally, these should have little
effect on execution speed unless the exception is raised. The Ada
designers were careful in defining user defined exceptions so
that no onverhead would be imposed on executinn speed. They
even provided a scheme that could be used to efficiently
implement exceptions.17 The Language Reference HManual does not
specifv how exceptions will be implemented and so there is ne¢
guarantee that the compiler will not impose & speed overhead.
Developers need to check on the efficiency of exception handling
and the effect that exceptions may have on execution speed.

Another Ada feature that can cause problems if not properly used
is generics. Kxecution problems can arise if care is not taken
in how and where generic units are instantiated. For example,
if a generic is defined inside one of the procedures, the generic
will be instantiated each time the procedure is called. 1If the
procedure is called many times, then severe performance problems
will result.

O

SUOIJUBAUO) BulweN MOpUIAN "MBIIA 19S) “1-Z 2inby

R s R

S3LON
e 2| MOPUIM m_wx.
Dowashs ayl, :
V8B i \ — _
__wmrmsu 2F MOPUIAA 310N
'nor smojje) N
m uondo m_fm MOPUIM

lllllllllllll

snyels

\ waysAs —\| MOPUIAA UMO(Q [{Nd
udass diay

Syyads e spiaih
uonI3IIS NuUdW

10

MOPUIAA 3dwold

SIYyl 1e 3jigm
passaid A3y (4 O NolLNgiylsia
~ MOPUIM NUSIN
JAI3O3Y
LIANSNYYL
/4 H_\
N5 .. > % 1071
3IQH SSVID XY % % 7 ; 7 7 \%n\w:
& % % x 7oAl
'SILON I¥dIH XL H

suvis == [Es e

(s

3. LOAD HARDLING ABILITY

Load handling ability refers to the ability of a system to handle
a number of active tasks simultaneously. These tasks are not
necessarily Ada tasks and need not be implemented in software.
For example, the printer could perhaps be seen as a task. The
application software communicates with the printer, lnads the
print buffer, and then continues to execute in parallel with
printer operation. When considering load handling, all aspects
of the 3gystem need tc be considered, not just the snftware.
Indeed, device management plays a large part in load handling.
Lnad handling ability is an important consideratinn for digital
communications. These systems are required to simultaneously
transmit and receive data while providing other functions such as
queuving, print operations, data storage, and data retrieval.

3.1. SARAH LOAD HANDLING REQUIREMENTS

For the SARAH application, effective load handling is crucial.
SARAH employs multitasking to allow for concurrvent message
preparation/editing, communications functions, and printing. The
loading imposed by the number of active tasks and the lnad
changes that occur during the day must be considered. In
addition, the loading effects imposed by the SARAH peripherals
must be considered. The communications version of SARAH must
manage the resources of two printers, two floppy disk drives, a
winchester drive, and a full duplex synchronous communications
interface (see Fig 3-1).

3.2. HARDWARE EFFECTS

The target hardware has a major effect on load handling ability.
The initial requirement for SARAH specified the Zenith Z-150 as
the target microcomputer. Since then, the requirements have been
changed to include the more powerful Z-200 and Z-248
microncomputers. In future, SARAH may be required to run on the Z-
3836 which uses the very powerful 80386 microprocessor. The
ability of the SARAH application to handle load will improve with
each generation of hardware. However, designers must be careful
tn ensure that the software will operate effectively across the
full range of target hardware.

3.3. DEVICE MANAGEMENT

3.3.1. Language Features That Support Device Management

Ada tasking can be used to advantage in device management for
improved load handling. There are several features of the Ada
tasking model that can be used to advantage. For example, timed
entry calls can be used to communicate with device driver tasks
sn that information exchange only need occur when the device is
ready to accept or provide data. If this technique is emplayed,
the system does not have to wait on the slower devices. Also,

1"

s

task priorities can be applied to help fine tune the system for
optimum throughput. Effective use of task constructs can aid in
device management and huence load handling.

Ada tasks can be used for device allocation and deallocation. A
simplified example .7 using a_selective accept in a task to
control resource pool :llocation’ follows:

select
whenr Resource Available =)
accep? Allocate do
-- grant resource to calling task
end Allocate;
-- if resources are exhausted set
-- resnurce_available to false
or

accept -~ree
r rn resource to pool
end Free;

-- set Resource Available to true
end select;

The selective accept allows rendezvous to either the "Allocate"
entry point or the "Free" entry point when the boonlean object
"Resocurce Available” is true. If Resource Available is false,
only rendezvous to Free are allowed (Allocate is a "guarded
accept”). The above construct can be particularly useful when
working with operating system device drivers that are not re-
entrant {(like S DOS). In these cases, calls t2 access devices
may nct be queued against the device drivers, they must be
limited t=2 one at a time. Other, more complex, examples of how
tasks can be uged for controlling resource allocation can be
feund in various other publications. =

3.3.2. Device Allocation Priorities

As demonstrated, Ada tasks can be used for the allncatinn ani
deallocation of resources; however, many applications need to be
able tn prioritize the device management. For example, as
discussed, nne of the major speed and load handling requirements
for SARAY is that the hnst computer must not have to wait on
3ARAY when the honst is transmitting data. SARAH must therefore
place the highest priority on receiving the data and storing it
tn the wWwinchester disk. This means that when device allocation
i3 considered, the writes t2 the winchester disk must take
precedence. Moreover, multiple requests for disk drive access
may be pending at any time. The SARAH Disk Hanager subsystenm
utilizes a disk resource contrnl task which contronls the priority
anil disk resource allncatinan for the floppy drives ani the
wincheater drive.

Ada dnes nnt provide an effective mechanism fnar allncatin
priorities to task entry points. However, task entry families
can be used tn construct a prinritizing scheme. tany nf these
techniques have been uased in the development »f the device

management routines for SARAH. Designers can meet load handling
requirements (particularly those associated with devices) by
using tasks for device management and assigning appropriate
priorities to task entry points.

3.3.3. Task Switching

The method employed by the compiler for task switching can play a
large part in how well the system will handle load requirements.
Many compilers do not currently implement time-slicing for
switching control between tasks. Instead, these compilers
employ a scheme where the tasks switch only at synchronization
points (i.e. at rendezvous points, delays, and task activation).
This can severely affect device allncation and 1load handling
because, if tasks are used to manage the resources, some devices
may get a much higher proportion of the total executinn time than

was intended by the designers. Delay statements can be
strategically placed in the code to simulate a true time slicing
scheme. To illustrate the problem, consider the device

allocation problems in SARAH. The SARAH workstation is required
to provide background printing as well as providing
communications. However, the communications task is a much
higher priority than the printer task. The system must be tuned
to comply with the communications throughput requirements but
must still allow sufficient resources to provide printing ani
message preparation/editing facilities.

3.4. THE IMPORTANCE OF DESIGN

Design is important for load handling. If -—he applicatinsn is to
handle the lcad requirements, this must be considered during the
design phase. One of the more important claracteristics of load
handling is throughput. Throughput can be defined asﬁghe number
of transactinns that can be accomplished per second.” Careful
consideration to module throughput during the design phase can
provide significant load handling benefits.

Load handling should be considered early in the design phase.
When considering throughput, all aspects of total system design
should be considered, not just the software elements. For
example, load handling ability could be imprnved by the use of
additional processors or by using different peripheral devices.
A system may be required to provides full duplex synchronous
communications and 80 must continually output dasta or
synchronization characters. This puts additional load sn the
main processor. Early in the design phase, consideration should
be given to using an external hardware device which would provide
the synchronous communications interface and so reduce these
lonading effects. This approach was used for SARAH, where a
communication board with its own processor was used to provide
synchronous communications.

e

3.5. PROTOTYPING AND EXPERIMENTATION

Prototyping and experimentation can aid in the development of
real time sSystems where 1load handling 18 an important
consideration. Without knowledge of how well the compiler
implementation supports various language features and how the
hardware will perform in different situations, designers and
programmers will have difficulty in developing a system which
will effectively handle load requirements.

Prototypes can be used to test loading effects. Once the basic
design structure has been established, prototypes should be
developed to test for throughput and load handling ability. This
is particularly important if tasks are used in the system. Task
priosrities need tn be established and the tasking implementation
checked to see if it will support the lnad requirements. Compiler
problems ard implementation specific details need to Dbe
identified. These problems can provide developers with some
rather challenging and expensive surprises if they are not
identified early in the development cycle. Many of the problems
that are found during the coding and testing phases can be
identified during the design phase if prototyping and
experimentation are employed.

3.6. DEVELOPMENT AND CODING ISSUES

The low-level design and coding phases can have a big effect on
load handling. Even though good design techniques may be used
and the macro-atructure of the software fully supports the laad
handling requirements, decisions made by the programmer who 1is
coding the Jdegign c¢nuld have an ennormous impact nn throughput and
1load handling ability. Programmers and designers need to be well
trained in the use of language features and structures t» gain
maximum performance from an application. Indeed, the development
team needs to know which language features support load handling
and how these should be used.

The way in which a programmer uses language features t» iuwplement
the design ia important. Consider the exampie of a module that
provides disk read and write facilities for other parts of an
application. The Jdesigner may have considered all the problems
that <2culd impede lnad handling ability and correctly established
cead and write prioritiea for the different devices. When the
programmer codes the design, instead of writing Dblocks of data
to the disk, the system is set up to update the disk one

character at a time. The large amount of additional processing
and the =additional disk accesses can place a considerable
nverhead non the system. There are many decisions that must be
left until the 1low-level design and coding phases. These

decisions can have a major effect on lonad handling.

e

(NOILVLSHYOM Disva)

NOILVLSHYOM SNOILVIINNIWINOD HVYVS ‘L-€ 2inbyy

JAlNa Y3ILNIYd
YILSIHONIM 501
JLAS W OL
YILNIYd
% Y3LNdWOD0YIIN r $195M100Yd

alemyjos
uonesedasd

diemyyos S3AIMQ abessapy
Buissaroug As10

suonedIUNWWOo) AddO1d

15

e

4. STATIC MEMORY CONSIDERATIORS

4.1. SARAH's MEMORY CONSTRAINTS

SARAH is currently targeted to the IBM PC XT and compatible
microcomputers and is therefore restricted to 640 Kilobytes of
total memory. This must be sufficient to hold the entire 3ARAH
executable file {about 300 Kilobytes, resulting from about 17,000
lines of socurce code for the first prototype) ani provide
sufficient dynamic storage to allow the system to function.
Memnpry usage is a definite concern within the SARAH project; the
first prototype is already pushing this memory limit.

4.2. LANGUAGE CHARACTERISTICS

Ada executable files reguire more memory than other traditinnal
languages. A size difference of 20%-30% can be expected and is
attributable to chavracteristics of the language.

Ada is a large language. Included in the language are numerous
predefined library units (mostly packages) and many of them are

large. In addition, the Ada run-time environment has additional
work to dn in the way of cross checks, type checxs, and erroc
checks. For these reasons, the Ada run-time environment 1is

larger than in nther languages and the size of the run time is
usually the reason fonr the size difference of the executable
files.

4.3. COMPILER ISSUES

"Immature" Ada cnmpilers may generate executable files 120%
larger than the same application in FORTRAN or other traditional
languages. Bxcessive size of the compiler's run-time environment
and/or excessive source-to-object code expansion are usually the
culprits. Yoy example, during Ada Expo'86 (held at Charleston WV
in November 1986), HNorthrop Wilcox provided information on
problems that they had encountered during the development of the
Manoeuver Contrnl System. Jome of the system software was to be
targeted to> a embedded computer system which could suppert one
megabyte of RUMN memory. The compiler that they were u3sing
produced 54 bytes nf cede f>r ~ach Ada source line, Since the
application consisted of some 34,000 lines of source code, the
1,336,000 bytes nf oabject code produced by the compiler was well
above the 1,000,007 bytes that the target computer could support.
The nompany bought 1 mnre mature compiler which pravided a much
improvel «xpansa.nn ratin. The code was then able to fit within
the available memncy constralints and the system was delivered &0
the custamer.

Ada cnmpilers are heginning to produce more efficient code.
Hhwever, thecre are many areas that compiler implementors should
concentrate on when tuning anl enhancing their compilers for mare
efficient memory utilization. 3nome af these are covered 1in the
faiinwing sectinnas.

16

4.%3.1. Smart Binders

Smart binders are capable of excluding those parts of the run-
time 1library not needed for a particular application. For
example, the part of the run-time library that supports tasking
is large. If tasking is not used in the application it should be
left out. The Alsys compiler, used by the SARAH team, does not
make this determination; but, it provides a similar effect by
allowing the programmer to choose a non-tasking library when the
development library is created.

4.3.2. Smart Linkers

Smart linkers link only those parts of library packages that are
actually used by the application. Some compiler developers are
already working at providing this feature. Some of the reasons
for this requirement are that both the standard predefined
packages and packages reused from repositories contain program
modules and types which may not be used by an application. An
example is the pre-defined package "Text IO0". Text IO is an
extremely large and commonly used package. On most current
implementations, when Text 10 is made visible, the entire package
is linked into the run time regardless of how many (or how few)
Text IO functions and procedures are called. On the Alsys
compiler, the use of Text 10 adds about 26,640 Kilobytes bytes
to the size of the executable file.

To reduce system memory requirements, the SARAH designers elected
tn dn without Text I0. Instead, for disk accesses we used the
predefined package-%equential_lo (which requires 9600 Kilobytes
plus 1056 each time it is instantiated), and for accessing the
screen we wrote our own packages (we call it VDT Manager). This
approach appears to work well; but, because of bugs in the
current implementation the Alsys Sequential I0 package (version
1.3) and the memory constraints of our target, the use of
Sequential I0 was eliminated for the first SARAH prototype. The
vendnc-supplied predefined package "DOS" (non-transpartable) is
currently being used for disk accesses.

Some compiler implementors have attempted to circumvent the
Text I0 problem by supplying their own subset of Text I0. For
example, the Meridian's compiler comes with the package
"Ada 10."'92,22 AlsysZo' also includes some extra environment
pacnges not defined in the Ada Language Reference ilanual, they
are: DOS, DOSE, and Unsigned (these can be used for Input/Output,
13 DOS error control, and low-level work).

In the interest of transportability (One of the major goals of
the language), use of these packages should be avoided when
possible. When vendor supplied packages are used in an
anplication, the applicationn is then tied to the vendor's
compiler. The sy3tem will not compile on nther compilers without
rewriting those parts of the gystem which utilize the vendonr
packages or writing a package which emulates the vendor package.

1

4.3.3. Efficient Generic Instantiations

A new copy of generic package bodies is linked into the run time
each time they are instantiated with some curcent
implementations. This problem should diminish as new compiler
versions are released. More sophisticated versions will be smart
enough to utilize most of a single body of a generic, even if
it's instantiated with various different types.

4.3.4. Virtual Memory Techniques

The use of virtual memory techniques, 9such as overlays and
paging, is a traditional method used to reduce memory
requirements of the executable portions of larger software
systems. Their use, however, is not defined in the Language
Reference Manual and, to our knowledge, none of the currently
released compilers employ virtual memory techniques. Some
compiler developers may eventually provide virtual memory
capabilities.

Arguments azainst using virtual memory methods include:

0 System slow-down if the virtual memory area 1s a device
(e.g. a disk drive).

06 They are no longer required as they were a few years ago
3ince memnry is now relatively cheap.

Unfortunately, cheap memnry does not help the SARAH team with the
problem of trying to fit the system into a Z-150. MS DOS on the
%2-150 generally limits addressable memory to 640 Kilobytes.

s

5. DYNAMIC MEMORY CONSIDERATIONS

5.1, SARAH's DYNAMIC MEMORY CONSTRAINTS

Available dynamic {(Aar working) memory in SARAH is limited t-»
what's left nver after the operating system loads (4SS DOS), the
executable file lnada (about 300 rilobytes for the SARAH
prototype), and the run time initializes during elaboration.
3ince the total memory available in a PC XT compatible is 649D
Xilobytes, memory availability is a definite constraint with
SARAH.

Besides the dynamic memory requirements of the Alsy "a run
time, the SARAH application requires memory to read messa,e files
from disk, accept message files from the communications line,
.reate messages in the editor, maintain the printer queue, etc.

5.2. LANGUAGE FEATURES FOR DYNAMIC MEMORY CONTROL

Ada provides features needed to conduct run-time allocation and
deallocatinn of memory. Memory can be explicitly allncated for
access objects with the "new” statement. IMemory is explicitly
deallncated by wuse of the generic procedure "uncheckel
deallncation.” {Memory is implicitly allocated and deallocated
tnryugh subproagram 2alls, subprogram recursicrn, and run-time
creatiosn and terminaticn of task objects.)

5.3. GARBAGE COLLECTION

Gacbage ¢collectinn is not implemented on maost of the currently
available Ada compilers (garbage coll~ction is the very resource
intensive proce3s ~f packing allocated memory tn prevent lass »f
uaable memory due to memory fragmentation caused by run-time
allncation and drallocation). Jarbage collectinn is nnt defined
in the Tanguage Reference Manual and most implementors have
chmas3en tn c¢oncentrate on those features whicn are.
Jnfortunately, becaugse of the way the language is defin-d,
nperating systems do not have the information available to them
required to conduct garbage collection. Lack of gartage
¢ 1lectinn can be a problem for many applicatinns, particularly
those that sare an-line for extended periods of time when
fragmentation problems tend to multiply.

A ncouple nf compiler implementors do prnonv ' de garbage collection.
Ythners are expected tn fnllnw as the compiler maturing process
cnntinues. "Many implementnrs choose not to employ garbage
nallectinn because of the high overheads (processor time)
involved.

I

5.4. MEMORY MANAGEMENT WITHOUT GARBAGE COLLECTIGN

The 3ARAH designers implemented a memory managemen! package to
A rcx acvound the lack of garbag= collectian {(called

1)

f

Buffer_Manager). Since a requirement of SARAH wWworkstations is to
remain on-line for extended periods of time, it's especially
important that available dynamic memory not be diminished by
fragmentation. One way to avoid memory fragmentation when
allocating and deallocating access types is to use a common
buffer size. The 3ARAH Buffer Manager accomplishes this.
Buffer Manager 1is the central point for allacation and
deallncation of buffers in the system; all buffers allocated are
of the same type and consequently the same size (To handle
variations in buffer requirements, buffer types are defined as a
variant recard.).

There are other ways to get around the problem of not having
garbage collection. Garbage collection can be conducted using
Ada constructs. One way of doing this is to load all the memory
(available for dynamic allocation to access objects) into a huge
arrvay at boot time and then allocate and deallocate from the
array. If the application packs the array to eliminate empty
holes, memary buffers can be provided in any size increments. A
warning: this 1is no small undertaking, besides requiring a
complex set of algorithms, a large portion of processor time will
be required. A second method is to employ a free-list apprcach®.

5.5. COMMON TOOLS PACKAGES

A common tonls package 1is a functional grouping of commonly used
tonls into a library package to reduce memory requirements. The
package Buffer Manager referred to in the above section 1s also
good example of a common tools package. Tools are provided in
Buffer Manager t» build and manipulate linked-lists of buffers.
Use of this common tonls package reduces the memory requirements
over what would be required if system components conducted their
own linked-1list manipulations. This also helps to ensure the
integrity of internal lists by using consistent list control
algorithms. This central buffer control arrangement also
provides an ideal environment for policing buffers. If memory
runs short due to one nf the system components failing to turn in
its buffers, the culprit should be easy to identify if Buffer
Manager maintains a record of whn checked out the buffers.

Cammon tnola packages also support the software engineering gcals

of modiifiability, mndularity, abstraction, information hiding,
and unifoarmity.

20

6. SUMMARY AND RECOMMENDATIONS

6.1. SUMMARY

Compiler issues are a major concideration for run-time execution.
The maturity of Ada compilers remains a major 1is3sue for
developers. Most current compilers do not provide an efficient
task model implementation. As such, many developers are careful
in their use of tasks. There are several guidelines that should
be established for the use of tasking. For example, because of
the inefficiencies associated with task communicationsg, task
rendezvous should be kept to & minimum. In addition to problems
with tasking, many compilers produce large executable object
files and provide little support for dynamic memory management.

Protatypes, experimentation, and the use of benchmark test
results can hclp reduce the risks associated with run-time
execution. Developers need to be aware of compiler and language
limitations, and the characteristics of the target hardware and
peripheral devices. Prototypes can help establish whether a
particular implementation will be able to handle the 1load
requirements. Benchmark test results are becoming available for
various compiler implementations and can be very beneficial for
determining the best approach for developing real-time software
where run-time execution requirements are important. [f
prototypes and test results are used early in the development
process, risks associated with run-time execution can be
eliminated and so save expensive software re-works during the
coding and testing phases.

Gnod design practices, together with a thorough knowledge of the
target environment and development tools, help to eliminate
potential problems early in the development cycle. There are
several design methods that can be used to enhance run-time
characteristics. for example, the PAMELA methodology addreusses
task utilization and object-oriented methods can be useful for
develnping flexible systems where module interfaces are
minimized. The software design should be flexible enough to
allow for 'fine +tuning' during later stages of development.
However, the manner in which the 'fine tuning' will occur needs
to be planned during the design. There are many trade offs that
must be considered during the design phase. For example, a trade
off between transportability and execution speed may need tn be
made. These decisions need to be made early and be based on firm
requirements.

Ada has many language features that aid in enhancing run-time
characteristics. For example Ada tasks can be used for device

management and to enhance 1load handling ability. Use of access
types can enhance both storage and speed characterisiics of the
system. The Ada language i3 a very rich and complex language,

and although programmers can write code after a short training
perind, considerably more time and experience is needed to design
and develop systems that will execute efficiently in a real-~time
environment.

21

Several features of the Ada language are an impediment to run-

time execution. Ada has many features that have not been
available in the more traditional languages such as FORTRAU,
COBOL, and Pascal. Features such as exception handling,

tasking, and generics have caused problems for compiler
optimization. Some of the problem lies in the complexity of the
language and the lack of experience in providing optimizations
for these more advanced features. Future Ada compilers should
produce more efficient code than is currently being produced.
However, some constraints on optimization are directly
attributable to the limitations imposed by the languagse
designers.

L R I I I I N A I T I O S I I I Y I T T T I SN Y T 'Y

22

-.-...---Il-l-ll-l-lI--I--I---III-I-------f

6.2. RECOMMENDATIONS

Based on our experiences in developing the SARAH system, there
are several recommendations that should be made regarding run-
time execution. These are:

0 Use good design practices.

o] Kixperiment and develop fast prototypes before deciding
on the final design structure.

o Identify compiler strengths and weaknesses to facilitate
'"fine tuning' for run-time performance.

o) Ensure that the run-time execution characteristics are
considered during the design phase.

o) Use common buffer sizes to work around the lack of
garbage collection if your compiler does not have 1it.

n Employ common tools packages to reduce memory
requirements by reducing redundant routines.

o] Avnid instantiating generics 1inside packages,
subprograms, or tasks.

0 Avoid using tasks when subprograms can be used as
effectively.

o) Minimize the number of task rendeszvous.

0 Know your operating system and/or hardware limitations
(device drivers re-entrant?, etc.).

® 6 5 4 ¢ 4 8 ¢ 8 8 S 6 2 B ¥ P R S G N S S S . G B e e s e e e s

23

A. REFERERCES

(1] "SARAH Operational Concept Document,” Command and Control
Systems Office, US Air Force, 5 September 198¢.

[2] " Ada Portability Guidelines,” National Technical Information
Service, No. AD A160 3390, March 1985.

[3] BROGSOL B., AVAKIAN A.S., GART M.B., "Alsys Ada Compiler for
the IBM PC AT," Proceedings of First International Conference on
Ada Language Applications for the NASA Space Station, June 19854,

[4) BARBACCI M.R., HABERMANN N., SHAW M., "The Software
Engineering Institute: Bridging Practice and Potential," IEEE
Software, Nov 1986, pp 4-21.

[5] WEIDERMAN N., HABERMANN N., et al, "Evaluation of Ada
Environments: Executive Summary Chapter 1 Chapter 2," Software
Fngineering Institute, August 1986.

[6] U.S. Department of Defense, "Reference Manual for the Ada
Programmiag uanguage,” ANSI/MIL-S%D 1154, Jan 1383.

(7] BOOCH G., "Software Engineering with Ada," Benjamin/Cummings,
Menln Park, California, 1983.

[8] WICHWMANN B.A., "Ackermann's Function in Ada," ACM Ada
Letters Vol VI No 3 (May/June 1986), pp 65-67.

(9] BURGER T.M., NIELSEN K.W., "An Assessment of the Overhead
Associated with Tasking Facilities and Task Paradigms in Ada,”
AC4 Ada Letters Vol VII No 1 (Jan, Feb 1987), pp. 49-58.

[10] "Usage and Selection of Ada Microcomputer Compilers,”
Command and Control Systems Office, Tinker Air Force Base,
Oklahoma, 9 December 1986.

[11] "Architectural Approach to the Design and Development of
Ada Software,” Command and Control Systems Office, Tinker Air
Force Base, Oklahoma, 21 May 1986.

[12] BAKER T.P., RICCARDI G.A., "Implementing Ada Exceptions,"”
I¥EY Software, September 1986, pp.42 -51

[13] KIRCHGASSNER W. et al, "Optimization in Ada," Ada Letters,
Vol.3, No.3, Nov - Dec 1983, pp. 45-50.

[14] CHERRY G.W., "The PAMELA Designer's Handbook," Thought
Tonls, Regton VA.

[15] "Special Issue on MASCOT," Software Engineering Journal,
IKE Savoy Place London, Vol 1 No 3, May 1986.

[16] NISSEN J.C.D., WALLIS P.J.L., WICHMANN B.A., et al, "Ada-
Burnpe Guidelines for the Selection and Specification of Ada

Compilevrs," ACM Ada Lettecs Vol IIL No 1 (July-Aug 1983) pp 27-
50.

24

—:-----IIIlIlIlIIIllllllIIIIlllllIllllllllll.ll.ll.llllll#

—

a .

Programming Language," SIGPLAN Notices, 14.6B, June 1979.

Jan/Feb, 1984.

[19] Meridian Compiler User's Manual, January 1387.

[20] Alsys Compiler User's Manual, July 1986.

[21] Boris Beizer, "Software Performance," Handbook of 3o0ftware

Engineering, Van Nostrand Reinhold Company, 1984.

[22] Bruce A. Bergman, William H. Murray, % Chris H. Pappas,
Compilers: Mission-Critical Software for the PC - Part

Computer Language, Dec 1986,

[23] Bruce A. Bergman, William H. Murray, & Chris H. Pappas,
Compilers: Mission-Critical Software for the PC - Part

Computer Language, Jan 1987,

25

L17] ICHBIAH J.D., et al, "Ratinnal far the Design of the Ada

(18]. A. J. Wellings, D. Keeffe, G.M. Tomlinson, "A Problem with
and Resource Allocation," 25 October 1983, Ada Letters,

Ada

"Ada

