
DTIC FILE COPY

ADA* EVALUATION PROJECT

AN ARCHITECTURAL APPROACH TO

DEVELOPING ADA* SOFTWARE SYSTEMS

DTIC
[C- iC' F E.-
MAR 0 11990

Prepared for 0
00
to0 HEADQUARTERS UNITED STATES AIR FORCE

cAssistant Chief of Staff for Information System

To" Technology & Security Division
N

< ---

Prepared by
Standard Automated Remote to AUTODIN Host (SARAH) Branch

COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)
Tinker Air Force Base

Oklahoma City, OK 73145- 6340
AUTOVON 884- 2457 / 5152

Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)

21May 1986

90 02 , 0

THIS REPORT IS THE SECOND OF A SERIES WHICH
DOCUMENT THE LESSONS LEARNED IN THE USE OF ADA IN A

COMMUNICATIONS ENVIRONMENT.

ABSTRACT

This paper reports on the impact of the Ada
environment and philosophy on the software design
process.

The report first describes problems with the
currently accepted software lifecycle model, and
then proposes a different model. The recommended
Spiral Model of Software Development is based on
work done by TRW Corporation.

The next section describes the process used to
select design methodologies. The fundamental goals
are to produce software systems that are adaptable,
reliable, and understandable -- and to produce them
in an efficient ma-ner.

After problems are discussed with the currently
used and available design methodologies, an
alternative design approach is described. This
Architectural Model of Software Development is a
multi-dimensional, or multiple view, approach using
several distinct methodologies.

Finally the paper gives an example of applying both
the Spiral Model and the Architectural Model to a
software development project. The paper states
that both the Spiral Model and the Architectural
Model are not in themselves methodologies;
Instead, they provide the framework for applying
existing software engineering principles. This
paper will, hopefully, stimulate interest in
developing an automated, full lifecycle methodology
based on some of the ideas presented.

STATMEN T "A" per Capt. Addison

Tinker AFB, OK MCSC/XPTA

TELECON 2/28/90 CG

L i ,

I LI

Ada Evaluation Report Series by CCSO

Ada Training March 13, 1986

Design Issues May 21, 1986

Security May 23, 1986

Module Reuse Summer 86

Micro Compilers Fall 86

Ada Environments Fall 86

Transportability Winter 86-87

Modifiability Winter 86-87

Runtime Execution Winter 86-87

Testing Spring 87

Project Management Spring 87

Summary Spring 87

TABLE OF CONTENTS

1. INTRODUCTION o .* .*

1.2. PURPOSE *..........o....... 1
1.3. ASSUMPTIONS AND CONSTRAINTS. o ... 2

2. LIFECYCLE DEVELOPMENT MODELS........................ o.3
2.1. WATERFALL MODEL....... o * 3

2.2. SPIRAL MODEL. o o6
2.3. SARAH LIFECYCLE DEVELOPMENT MODEL8

3. CONSIDERATIONS FOR CHOOSING A DEVELOPMENT APPROACH10

3.1. METHODMAN STUDY o. 10
3.2. METHODOLOGY REQUIREMENTS 11
3.3. EVALUATTON CRITERIA 12

4. DEVELOPMENT METHODS FOR ADA.............................. 14

4.1. METHODMAN METHODOLOGIES................. 14

4.2. ADA SPECIFIC METHODOLOGIES 15
4.3o SELECTING A METHODOLOGY o 16

5. THE ARCHITECTURAL MODEL OF SOFTWARE DESIGN GN.............. 17
5.1. MULTIPLE VIEWS. 17

5.1.1. UNDERSTANDING.. 17

5.1.2. COMPLEXITY o 20

5.2. ARCHITECTURAL VIEW OF SOFTWARE DESIGN o....20
5.2.1. TOPOGRAPHICAL VIEW o 22

5.2.2. USER VIEW 24

5.2.3. CONCURRENCY VIEW 27

5.2.4. HIERARCHICAL VIEW 29

6. APPLYING THE MULTIPLE VIEW MODEL 32
6.1. SPIRAL LOOP 1 32

6.1.1. CONTEXT o.....o.......... o32

6.1.2. RISK ANALYSIS o o 35
6.2. SPIRAL LOOP 2 .. 35

6.2.1. USER VIEW.36
6.2.2. TOPOGRAPHICAL VIEW 40
6.2.3. HIERARCHY................... 42

6.2.4. CONCURRENCY 44

7. BENEFITS OF USING THE SPIRAL AND ARCHITECTURAL MODELS 47
7.1. ENHANCED COMMUNICATION 47

7.2. MANAGEMENT VISIBILITY 47

7.3. PROBLEM ANALYSIS AND UNDERSTANDING 47
7.4. CONCURRENCY SUPPORT sooo.. -48

7.5. WORKLOAD DISTRIBUTION 48

7.6. REUSABILITY AND BOTTOM-UP SUPPORT 48
7.7. COMPLEXITY MANAGEMENT 49

8. CONCLUSIONS AND RECOMMENDATIONS 50
8.1. CONCLUSIONSo.. .o.....o..50

8.2. RECOMMENDATIONS 50

Appendices

A. REFERENCES...52

LIST OF FIGURES

2-1: Waterfall Model ... 4
2-2: Spiral Model 7

5-1: Floor Plan ... 185-2: Artists View, o....................o.... 19
5-3: Multi-View Model o ... 21
5-4: Topographical View 23
5-5: User View 25
5-6: Concurrency View 28
5-7: Hierarchical View 30

6-1: SARAH External Interconnect 33
6-2: Interconnect Narrative. 34
6-3: User View, Windows..... 3 7

6-4: User View, Help 39
6-5: Topographical View....... o A1

6-6: Structure Chart... 4
6-7: Concurrency Chart........o.-o.45

1. INTRODUCTION

1.1. BACKGROUND

This paper documents the work and thought processes done in

choosing ways to design an Ada language project -- a project that
has a tight schedule. The resulting software system must work
well.

So that potential Ada developers zould gain a practical insight
into what was required to successfully develop Ada software, the
Air Staft tasked the Command and Control Systems Office (CCSO)
with evaluating the Ada language while developing real-time
digital communications software. The evaluation was to consist of
a number of evaluation papers, one of which was to deal with
design. CCSO chose the Standard Automated Remote to AUTODIN
(Automatic Digital Network) Host (SARAH) project as the basis
for this evaluation.

SARAH is a small to medium size project (approx. 40,000 lines of
source code) which will function as a standard intelligent
terminal for AUTODIN users and will be used to help eliminate
punched cards and paper tape as transmit/receive media. The
development environment for SARAH consists of the SOFTECH Ada
Language System (ALS) hosted on a Digital Equipment Corporation
VAX 11/780, ALSYS Ada compiler for the IBM PC-AT, a Burroughs
XE550 Megaframe and several IBM compatible PC-XT and PC-AT
microcomputers. The ALS environtnent is the focal point of this
integrated development environment. The source code developed on
the XE550 and microcomputer workstations is maintained by the ALS
ccnfigucation control system and will be transferred to the PC-
ATs for final compilation and targeting. The SARAH software
targets are the IBM compatible PC-AT and PC-XT microcomputers.

Because the system must be reliable, maintainable, and reusable
it was decided to use modern software engineering concepts and
methodologies to the greatest extent possible. The draft
Software Volume of the Air Force Information Systems Architecture
also recommends the use of Ada and formal software engineering
methodologies in the development of Air Force software systems.

The Department of Defense (DoD) language that best enabled
implementation of software engineering concepts was Ada. What
remained to be chosen was what design methodology would be best
suited to analyze and design the system. As we will describe,
this decision was not easy.

1.2. PURPOSE

The purpose ot this paper is to share our experiences with the

1

rest of the Ada community so others may learn from them. If we
can provide some ideas that help to further the work being done
on design methodologies, so much the better.

1.3. ASSUMPTIONS AND CONSTRAINTS

The assumptions and constraints are as follows:

o One possible constraint is the size of the SARAH
project. Since the SARAH project team is small (10
persons), and since it will only be some 40,000 lines
of coae, some of the experiences reported in this paper
may not be appropriate for larger groups and larger
projects.

o The evaluation is based on a limited time budget for
writing the paper. More research could be done in the
area.

o The SARAH team members have a variety of previous
experience. Some members have had very little software
experience. Others are very experienced in system
design and have a good working knowledge of some design
methodologies.

o Since the SARAH project is at the analysis/design stage
of development, the final effectiveness of the concepts
presented in this paper cannot be fully evaluated at
this time. At the completion of the SARAH project, a
summary paper will reflect on how well the design
approach worked.

2

2. LIFECYCLE DEVELOPMENT MODELS

When managing and controlling the development of software it is
necessary to conceptualize the process of development. This
process of abstraction is necessary for the human mind to grasp
the essence of complicated physical processes. Indeed, software
development is one of the most complex endeavors attempted by
society. Over the years there have been a number of different
models for understanding the development and post development
support of software. The model that has received widest support
is the waterfall model. There have existed some other models
such as:

o Stagewise Modell4

o Parnas Information Hiding Approach
1 5

o The Twoleg Modello

o Evolutionary Model
1 7

o Automation paradigm
1 8

Of this group of classical models, the waterfall model has been
most widely accepted in the Department of Defense. We will,
therefore, limit our discussion of older models to the waterfall
model.

2.1. WATERFALL MODEL

Th; worr-l model ha3 he the mon'- -mmon approach for
addressing the entire software lifecycle in Air Force wide policy
and documentation. For example, the new DOD-STD-2167 is based
upon this approach to building software. The typical graphic
representation of this model is shown in Figure 2-1.

The waterfall approach has been used 1i'c il1i, f-r a large
number of projects; however, the model has often been criticized,
particularly by the Ada community. Some of the criticisms
include:

o no provision for quick prototyping

o no mechanism for risk analysis

o inappropriate reviews

o does not effectively support modern software
enyineering practices

z.z

0III

* 1-0 u

C)-

z L&.

4u

Each of these suggested problems will be discussed:

For softw-> projects where the risk of an incorrect user
interfa,- will seriously jeopardize the usefulness of the
software, a quick prototype should be developed prior to full
scale development. Ada provides the features necessary for quick
.j-ototyping; however, the waterfall model does not provide a
flexible framework for this type of development. Using the
watertall model, it is necessary many times to build the system
twice before the entire problem is fully understood. During the
analysis phase, the end user is often unclear of the exact system
requirements and the developer may have his own (different)
perception of how the system should work. Problems in
specification may not be discovered until the integration and
testing phases. The developers must then go back to the analysis
phase to introduce additional or changed requirements.

The pure top-down or waterfall process does not allow a group to
look at high risk issues until late in the development process.
Generally, some risk analysis is conducted at the major reviews,
but this is not formalized. In large projects, a great amount of
effort may have been needlessly expended prior to the review.
This can greatly raise the risk of the entire project. Although
a look-ahead step can be introduced into the model, resources
cannot be easily directed to high risk areas so that further
development does not continue until the major risks are properly
assessed. In essence, with the waterfall model, all development
must progress through each phase in parallel.

The reviews associated with the waterfall have often been
criticized as being more appropriate for hardware development
than for software. A major review in a waterfall approach is the
Critical Design Review (CDR). The CDR marks the beginning of the
coding phase; however, most of the important decisions are
generally made well before this review. For example, with Ada,
the overall system architecture and interfaces are of major
importance. If the high level design is well defined, the
detailed design and coding phases become largely mechanical.
This is even more true if the software is developed with a large
number of reusable components. Reviews should be structured so
the most important elements of the design are reviewed prior to
applying the bulk of the development resources.

The waterfall model does not provide the flexibility to allow for
modern software engineering practices such as software component
reuse and automated development. Software component reuse should
be considered during the analysis and design phases. To enhance
productivity, a sottware designer must be aware ot the software
components available so that the systems requirements can be
structured to make use ot these components. As such, the
analysis and design phases become more integrated and much less
detined than those depicted in the waterfall model. Moreover,

5

with the introduction of knowledge based software development
tools, a iodel with defined analysis and design phases may no
longer be applicable.

The watei-fall model can be used effectively in some situations,
but it is not appropriate for the development of all software.
Consideration needs to be given to the relative risk of the
development, and the components and environment in which the
software project is to be done. An even more generic model may
be needed so that various approaches can be integrated into the
overall development model. Fortunately, some very good work has
recently been done in the area of lifecycle models. A new model
that we found to be excellent will now be discussed.

2.2. SPIRAL MODEL

As discussed above, software developers require a more flexible
lifecycle model than is currently provided by the waterfall
model. The spiral model5 provides this flexibility. This
model was developed by Barry Boehm (TRW Defense Systems Group)
and is beginning to gain a high degree of acceptance from within
the software community. The graphical representation of the
model is shown in Figure 2-2.

In the graphic of the model, the radial dimension represents the
added incremental cost incurred in completing the developmental
steps. The angular dimension represents the progress made in
completing each cycle of the spiral. The basic premise of the
model is that a certain sequence of steps is repeated while
developing or maintaining a software system. The steps are first
done at a very high level of abstraction, then each loop of the
spiral represents a repeat of the steps at successively lower
levels of abstraction.

6

SP

.5.

3of
wN

AM
L6

The spiral model is appealing for a number of reasons. First,
there is a definite planned examination of project risk at each
major abstraction level. Second, the model accommodates any
mixture of specification oriented, process oriented, object
oriented, simulation oriented, or other approaches to software
development. In certain situations, it can reduce down to one of
the other more common models. For example, the waterfall model
is an important special case for the development of systems where
user interface and performance risks are minimal. The model
provides a flexible framework for developing software systems
using modern software engineering techniques, automated
environments,and advanced programming languages such as Ada.

There are, however, a number ot areas which should be addressed
before the spiral model can be considered as a standard model for

software development. These are:

o the model does not match the current world of
government contract software acquisition.

o the model places a great deal of reliance on the
ability of software developers to identify and manage
sources of project risk.

o the spiral model process steps need further elaboration
to ensure that all of the participants in a software
project are operating in a uniform and consistent
context.

Hopefully, future work done by groups such as STARS (Software
Technology for Adaptable, Reliable Software -- a DoD initiative)
and the Software Engineering Institute will consider some of the
problems associated with the spiral model and provide specific
guidelines on how the model can be applied in a number of
different cases.

2.3. SARAH LIFECYCLE DEVELOPMENT MODEL

SARAH development was somewhat constrained by the MIL-STD 2167
documentation standard. Since the standard is based on the
waterfall model, the SARAH designers needed to ensure that the
development approach was compatible with the specified phases of
development, reviews, and documents. Although this made it more
difficult to make use of the Spiral model, it was possible to
apply a spiral approach within this framework. Risk analysis was
performed throughout the design and an evolutionary approach was
used for the high risk sections of the project. A detailed
dccount of how the spiral model was used for the SARAH project is
included in a later section of this paper.

To summarize, although current documentation standards for
government projects are based on a waterfall approach (i.e. DoD-
STD-2167), considerable benefits can be gained by implementing
some of the spiral model features within this framework. If the

8

full benefit of advanced software development technology is to be
realized, a large amount of work needs to be done in the area of
lifecycle development models and associated documentation
standards. The waterfall model should be considered only as a
special case within the spiral framework. The developer should
be able to choose from a range of other applicable models so
software production can progress at a satisfactory rate, with
relevant reviews, and with sufficient risk analysis and
management.

9

3. CONSIDERATIONS FOR CHOOSING A DEVELOPMENT APPROACH

In addition to a good lifecycle model as described in the last

section, it is necessary to choose a model and/or methodologies
to use for the design phase of the lifecycle.

The complexity level of today's software is increasing at an
alarming rate because of the ever increasing requirements for

more advanced systems. Development and support of software for
major systems is one of the most complex human endeavors, often

requiring hundreds of people for five or more years at costs

exceeding $100M (for example, the B-lB program)22. This level of

complexity is beginning to exceed that manageable by humans
without special tools to assist in managing the complexity. Some

of the observable symptoms of trying to create and manage these
highly complex software systems without the proper tools are

severe time and cost overruns and extremely high costs for post
development software support.

A partial solution for this problem of complexity is to use a
development methodology that helps the system designers manage
complexity, better understand the software system, and better
communicate that understanding to users, programmers, and

software maintainers. In fact, the draft Software Volume of the
Air Force Information Systemi Architecture specifies that such
methodologies should be used.

3.1. METHODMAN STUDY

When the DoD was planning for the implementation of the Ada
language and environment, they knew that well defined design
methods would have to be used for the development of Ada
software.

Although several methodologies were then being used for the
design and development of software, there had been no comparative
studies for these methods. There was a lack of information on how
applicable these methods would be for the development of Ada

software systems. In addition, although some software
organizations were applying design methods to software
development, a large proportion of the industry was unfamiliar
with this approach. The DoD subsequently sponsored methodology
research to promote the use of methodologies for Ada software
development.

The DoD sponsored methodology study was named Methodman I0 . The

first draft of the Methodman document was completed by Peter
Freeman and Anthony Wasserman in November 1982 and consisted of
the following three papers: -

o Ada Methodologies: Concepts and Requirements

o Ada Methodology Questionnaire Summary

10

o Comparing Software Design Methods for Ada:
A Study Plan

The Methodman study has made a significant contribution to the
software community. Methodman provides a comprehensive set of
requirements and evaluation criteria for selecting and creating
development methodologies.

3.2. METHODOLOGY REQUIREMENTS

The Methodman study states that a development methodology should
support the four fundamental goals of software engineering:
modifiability, efficiency, reliability, and understandability.
Since requirements change over the life of a software system, the
development methodology must provide maintainers wich the
flexibility to easily change the design and implementation. In
addition, if the design is well structured and flexible, the
performance and storace characteristics of the system can be more
easily "fine-tuned" to enhance efficiency. Another major
requirement for a software system, and hence the development
methodology, is understandability. If a design is not
understandable, then maintenance and development costs will be
high. There have been many instances where time and cost
overruns have been experienced because the developers could not
communicate their design to users. If a design is
understandable, then problems can be detected early in the
development process.

Freeman and Wasserman expand these basic requirements to include
a number of specific requirements. Methodman indicates that a
development methodology should:

o cover the entire developmental process

o enhance communications between users and developers

o support problem analysis and understanding

o support top down and bottom up development

o support software validation and verification

o support the development organization

o support system evolution

o provide automated support aids

o be teachable and transferable

o be open ended

A development methodology should also directly support software

11

reuse. A major problem experienced by software developers is
productivity. One method of increasing productivity is to use
reusable software components. Curre.itly, most software is being

generated in a line by line fashion and a large amount of the

available programmer resources are being used to redevelop soft-
ware that had already been developed for other systems. This is

necessary because the languages used for the older systems are
machine dependent and the software modules are very dependent on

one another. The Ada language provides features such as generics
and packages which can be used to produce reusable modules.
However, if the development methodology does not support reuse,
then these reusable elements will be difficult to implement into

a design.

An important requirement for methodologies is that they allow for
automated tool support. Productivity can be significantly
improved through the use of automated support aids for analysis,
design, and maintenance. A great deal of attention has been
given to automating functions such as configuration management;
however, there have been few attempts to provide Computer Aided

Design (CAD) for Software. A major reason for this is that there
are currently few development methods which can be effectively
supported by automated aids. Most ot the current development
methodologies were not created with automated support as a
requirement and so most attempts at providing CAD for these
methodologies have been less than satisfactory.

A development methodology should provide the means to effectively
manage complexity. The methodology should provide the designer

with a means of abstracting the solution so that only the
features relevant to a particular abstraction level need be

addressed at a certain point in time. For example, consider the
design of an electronic mail system. At the highest level of

abstraction the designer knows that the system must be able to
communicate with a packet switching network. Other considerations

at this high level of abstraction may include a message
preparation facility, a mail directory system, and a display
manager. However, deciding how the software will physically
address the communications port would introduce additional and
unnecessary complexity at this level of abstraction. The
methodology must allow the designer to layer a design so that the
complexity of a particular layer does not become uncontrollable.

3.3. EVALUATION CRITERIA

We have covered some of the major requirements for a development
methodology but what should we look for when choosing a
methodology for a particular project? When evaluating
methodologies, look for:

o support of functional hierarchy

o support for data hierarchy

12

o defined interfaces

o control flow

o data flow

o data and procedural abstraction

o support for concurrency

The methodology should not be planar; rather it should support
data and functional hierarchy. The methodology should provide a
mechanism for showing data and control flows at different levels

of abstraction.6 In addition, a depth or hierarchical view
should be provided so that module dependencies and system
structure can be shown.

The methodology should not constrain the software designer to one
type of abstraction -or programming paradigm. Most current
methodologies support only one major form of abstraction. As
such, all aspects of the solution must be viewed from a single
perspective. Real world solutions require the designer to consi-
der both functional and object groupings. For example, if a car
designer was forced to only take an object oriented approach to
design, he would be able to identify the major objects such as
the engine, drive train, steering, and braking systems. However,
some form of procedural or process abstraction would have to be
applied to determine how all these components function together.
Also, the designer needs to look at concurrent processes. For
example, will the braking system operate in parallel with the
engine operation or will the brake system require the engine to
be running before the braking system is effective?

Similarly, a software system consists of a number of objects
which work together to provide a defined functionality. In
addition to procedural and data (or type) abstractions, a
methodology for Ada should provide a concurrency abstraction
mechanism.

To summarize, the interfaces between software modules should be
well defined and show data flow, control flow, and
synchronization. Well defined interfaces promote modularity and
component reuse. In addition, if the interfaces are well
defined, development time can be reduced because the time taken
for system integration and testing will be less. Maintenance
costs will also be lower because the maintainers will have a
better understanding of the system and will be able to more
easily determine the overall effects of software modification.

13

4. DEVELOPMENT METHODS FOR ADA

The use of a development methodology for the production of Ada
software systems is extremely important. As software systems
become larger and more complex, some method must be used to
manage software development. To manage complexity, the software
development methods must support software engineering principles
and goals. For example, the principles of abstraction and
information hiding allow developers to concentrate on the overall
system architecture without being distracted by the lower level
implementatior, features. Since Ada was based on modern software
engineering principles, major benefits can be gained if tne
language features are used to construct software systems. A
development methodology for Ada should therefore allow designers
to implement solutions which make good use of these features.

4.1. METHODMAN METHODOLOGIES

As stated in the previous section, the Methodman study provided
evaluation criteria for selecting Ada applicable methodologies,
and a summary of 24 design and development methodologies that
cou]d be ucpd for developing Ada software. Of th- mcthcdologies
listed in Methodman, the following have gained widest support:

o Structured Analysio Design Technique (SADT)2 1

o Jackson System Development (JSD)
8

o Structured Analysis Structured Design (SA/SD)
20

These methodologies were not developed with Ada in mind. As
such, they provide a generic design which could be coded in a
number of different languages. One of the disadvantages of this
approach is that the methodology may not take advantage of
special features available in a particular language. In fact,
this has happened with Ada. Many of the Ada abstract concepts
that support software engineering principles are not considered
as part of the design methodologies.

O the Methodman methodologies, JSD is seen as the most
applicable for Ada development. JSD provides good lifecycle
coverage from analysis to maintenance and provides an effective
mechanism for designing real-time concurrent applications.
However, one of the major criticisms of JSD is that it is a
proprietary methodology so there are very few training courses
available. In addition, the diagrams produced do not easily
allow designers to communicate designs to users.

Structured Analysis/Structured Design has been very popular for
developing software systems implemented with older languages such
as Pascal and COBOL; hiowever, the Structured Desig,. pJLtionl Uf
the methodology does not effectively allow designers to use the
more advanced Ada features such as tasks and packages. Although

14

Structured Design is not effective for Ada development, several
organizations are using the Structured Analysis element of SA/SD
to analyze system requirements. This analysis phase is generally
followed by a design phase which uses an Ada design methodology.
If this approach is used, the transformation from analysis to
design needs to be addressed in detail. Many times the thinking
that resulted in the creation of the Data Flow Diagrams (i.e.
analysis) is very "cold" when it comes time to map the ideas into
the real-world implementation of Structure Charts (i.e. design).
Our experience has shown that this step can be difficult.

4.2. ADA SPECIFIC METHODOLOGIES

Since the release ot the Methodman document, several other
methodologies have been developed. Of these, the following have
been the most popular:

o Object Oriented Design (OOD)7

o Process Abstraction Methodology for Embedded
Large Applications (PAMELA)11

These methodologies are Ada specific and so make direct use of
t.ne ianguage features.

OOD has been very popular for developing Ada applications. In
fact, OOD has received a kind of "cult" following. OOD provides
a very elegant mechanism for data abstraction and provides a
"cook book" approach for design. Indeed, the relative ease of
application has been a major reason for OOD's popularity. The
OOD methodology is based largely on the principle of data
abstraction. Data abstraction is very important for system
development since it reduces the amount of coupling between
modules and helps manage complexity. However, OOD does not
readily support process abstraction and so is not very effective
for developing real-time concurrent applications. In addition,
OOD covers only the design phase of the software lifecycle and so
some other mechanism must be applied, such as Structured
Analysis, for the analysis phase. As discussed, the transition
from analysis to design could be difficult if this approach is
used. In summary, OOD provides several excellent design features;
however, OOD should not be adopted as the "eternal cure-all" for
software design.

The PAMELA methodology was designed to allow for the development
of large, real-time embedded systems. Based largely on the
principle of process abstraction, PAMELA has been used
successfully by a number of organizations to develop real-time
Ada systems. PAMELA is a relatively new methodology and as such
has been prone to a-large number of changes. Some of PAMALA's
positive aspects include its applicability for automation and the
easy transition between analysis and design. However, PAMELA
does not effectively support a bottom up approach to development
and does not support an effective mechanism for data abstraction.

15

4.3. SEL&cTING A METHODOLOGY

There is currently no single methodology that satisfies the needs
of all software development projects. Several of the
methodologies that had almost become defacto standards in some
areas are now proving to be incomplete. For example, many groups
had adopted classical SA/SD or SADT as the ultimate solution for
the analysis and design phases. However, newer thinking and
newer language capabilities, spurred largely by activity in the
Ada language community, showed that these methodologies could not
effectively support the design of systems using advanced language
features. As such, the Ada community has moved towards Ada
specific methodologies. These methodologies provide many of the
features needed to develop Ada software systems; however, there
is currently no one methodology that is applicable for the
development of all Ada applications.

The approach taken for the SARAH project was to study the
existing methodolonies and select a methodology which would best
serve SARAH development. Since the SARAH requirements called for
a multi-tasking system, some degree of process abstraction was
required. To accomplish this, the SARAH designers decided that
features from PAMELA, JSD, and Buhr 1 2 would be needed to
implement the concurrent and process oriented elements of the
system. In addition, an object oriented approach was required
for grouping the major functions and data elements. This was
required for a number of reasons. First, software reuse was an
important consideration and this approach would more easily allow
existing software to be integrated into the system, and SARAH
software to be used on later projects. Second, since the SARAH
system would process sensitive data, carefully controlled data
abstraction was needed to protect data within the system.

Armed with the system requirements and the requirements for the
development methodology, we established the guidelines for
developing the SARAH system. We found that none of the existing
methodologies would accommodate the methodology requirements. As
such, the relevant features were taken from a number of
methodologies and these were integrated into a multi-view
development model. The resulting model is presented later as the
Architectural Model of Software Design.

To summarize, the research, development, and refinement of
methodologies is not yet complete, or even mature. Even so, the
methodologies that are available can be used effectively to
develop superior software systems which are transportable,
maintainable, and reliable. In the future, many more
methodologies will be developed and these will be supported by
intelligent Computer-Aided Design workstations. Organizations
need to keep current with methodology research so that new
advanced methods can be integrated into the overall software
development strategy as they become available.

16

5. THE ARCHITECTURAL MODE. OF SOFTWARE DESIGN

When examining the existing methodologies and design
representations, we found that none of them corresponded all that
well to the way system designers seemed to approach a software
design. In order to represent on paper (or computer screen) an
accurate representation of the software design process, what we
needed was a different model.

5.1. MULTIPLE VIEWS

We have a traditional saying that "a picture is worth a thousand
words". When we examine the engineering disciplines, we find
that they all make extensive use of graphical reoresentations
(abstractions) of the problem, or project, on which they are
working. This is because they have found that the human mind
can, indeed, assimilate the abstract concept represented by a
picture must faster than trying to use words.

5.1.1. UNDERSTANDING

Taking the concept a bit further, two pictures should be worth
even more, and so on -- at least up to a reasonable point. If we
look at the work of an Architectural Engineer, we will find that
if the object trying to be described is the design of a house, we
will be provided with several graphical representations of that
object. One such abstraction of a house is shown in Figure 5-1.

We can see that it certainly gives us some information about what
the resultant house will be like -- but, it does not give us a
complete understanding. Were we in the market for a home, we
would probably not give the go-ahead to build based on this one
graphical representation. If we combine our knowledge gained
from the first picture with the information in Figure 5-2, we
have a much better idea of what we will get.

17

~~1 -16

Ph~i~~~ ~ ~ N~.4JLp 'Y

Figure 5-1. Floor Plan

18

Figure 5-2. Artist's View

19

5.1.2. COMPLEXITY

Another reason an Architect will use multiple views of a
structure is to manage the problem of complexity. Even the
graphical representation of a house would be unwieldy if a single
picture had to show everything about the structure. We typically
find that the architect prepares a "user" view (elevation) that
is a drawing of what the house will look like from the outside.
Another user view (floor plan) will show how the living space is
organized.

The Architect will also prepare a graphical representation of the
plumbing for the house, and a separate graphical representation
for the electrical wiring. These pictures allow the plumbing and
electrical contractors to efficiently do their jobs. Each can
look at the appropriate plan, and quickly comprehend what is
needed -- all without having to sort through data that is not
relevant to what they need to do.

5.2. ARCHITECTURAL VIEW OF SOFTWARE DESIGN

When we examine most computer software design methodologies, we
see that virtually all of the accepted methodologies use at least
one form of graphical representation of the design. This
graphical representation is typically joined with some narrative
text to further enhance the reader's understanding of the
concepts.

We have found that when we want to fully describe a software
design -- especially when we want to design in software
engineering concepts to be implemented in Ada -- no single design
representation was adequate.

We also found that our system designers tended to have several
ditferent, but concurrent, abstract views of the system they were
designing. After some examination of what was happening, we have
come to the conclusion that their analytical process was most
similar to that of the structural architect described above.
Instead of having the elevation for the user view, and having
plumbing and electrical plans, the designers had abstract
concepts for the menu system (a user view), the connectivity (or
topography), the concurrency (where applicable), and the
structure (or hierarchy) of the system they were designing. What
was missing from the design process was an overall structure in
which to explicitly acknowledge the existence of these abstract
views, and workable graphical representations for them.

Thus our alternater or architectural, view of system design
involves multiple abstract views of the system being designed.
Figure 5-3 is a graphical representation of the Architectural
Model.

20

CL

0

qx--

21~

Each of the four views of the system places emphasis on different
qualities and characteristics of the system, and has meaning when
viewed alone. However, the real value is the synergistic effect
of using all the views together to understand and represent the
system. Additionally, we have found that being able to
explicitly examine one view at a time greatly helps the
management of complexity.

In one sense, using the Architectural Model of Software Design
can be likened to watching a sculptor at work. After shaping the
object a little, the sculptor will look at it from the side.
Seeing some change that is needed, more sculpting will be done.
Then a look at the other side or maybe the top is needed. Then,
a little more sculpting is done. Then, another look, etc.

In order to understand the significance of each of the four
views, more needs to be said about each of them.

5.2.1. TOPOGRAPHICAL VIEW

First, we will take the cube of Figure 5-3 and rotate it so that
we can view the face that shows us the Topographical view. The
topography is a representation showing what the major components
of the system are, and how they are connected. This abstraction
is not so much concerned with the physical structure and
dependencies of the software units; it is primarily focusing on
functionality, and the major relationships between.

The primary goals in showing a topographical representation of
the system are:

o Show the most important functional and data groupings
in the system at the current level of abstraction.

o Create a graphical representation of the system that
will be understandable by people not currently involved
in the design (e.g. users, software maintainers, etc.).

o Manage system understanding complexity by separating
one of the abstract ways in which we think about
software systems.

Figure 5-4 shows the cube rotated so that the topographical view
is visible to us. The notation shown is basically a number of
"clouds" that represent our understanding of major groupings of
either logical functions or data and objects.

22

• d0

\ \ 4
• ' " 4
\ '4
\ '4

234

'4 \ 4

\ w

,. j 0

\ ,i

,44,

23

This type of abstraction borrows heavily from the basic concepts
behind using the classical Data Flow Diagrams. There are some
basic difterences:

o The topographical notation is not strictly limited to
functional decomposition and representation of data
transforms; it may show groupings by data and object
considerations.

o It can show control where appropriate.

o It can be later combined with the knowledge gained from
the hierarchical view to create a view of the system
that shows not only a logical abstraction, but a
physical representation of the system being created.

The topographical representation is similar to the classical Data
Flow Diagram (DFD) in that one of the logical ways to first
analyze a system is to identify major functions and data flows
between them. Therefore, this well-accepted type of abstraction
is ot great value.

One of the primary things to note about the topographical
representation is that it is generally a very flexible
abstraction. The general rules we use are simply:

o Limit the number of clouds to less than seven.

o Try to limit the number of data and control lines shown
to less than about fifteen.

There are no rules about what may be in a cloud, or what a line
between clouds must mean. We simply are using this picture as a
way to understand the system, and to convey that understanding to
other people on the system development team.

We feel we can responsibly have a relaxed rule set because the
topographical view is not the only graphical representation of
the system -- we have three other graphical representations to
help us understand the system, and in which to share the
complexity of understanding the system.

5.2.2. USER VIEW

We will now rotate our design cube to look at the user view.
Figure 5-5 is a representation of doing this. You will note
that there appears to be a system menu shown on the face of the
cube. The reason a menu was chosen was because the most common
user view of a software system is the menu.

24

1%i

'4i

'4 '4
CA cn

V, :t c

0

.Iu D-

'4 L

'54

25

The purposes of the User View in the Architectural Model are to:

o Force the system designers to examine and design the
human interface.

o Help understand the system by having an explicit
representation of the user view.

o Manage system understanding complexity by separating
one of the abstract ways in which we think about
software systems.

Most ot the existing software development methodologies do not
consider the user view of the system as an integral part of the
design process. The human interface is most times tacked on to
the system after all else has been designed (and many times coded
and tested). To this approach we strongly disagree. The way in
which a software system interacts with the user can have dramatic
influences on how that system is structured and organized (i.e.
designed).

During the earlier days of our profession we had our hands full
just trying to get a handle on how to manage the complexity of
getting the basic functional processes done. There was certainly
at least a subconscious desire to not make the situation more
complex by adding yet another thing to consider while figuring
out how a system was to be built.

With the Architectural Model, we find that having the many
separate graphical representations allows us to adequately
consider the user view of the system without complicating the
other parts of the system design. In fact, we have found that,
quite to the contrary, the design of the user interface early in
the design process actually enhances our intuitive understanding
of the system. This actually helps so much with the other
aspects of the system design that the time spent on the user view
is more than saved by the shortened times spent on the other
portions of the design.

The above considerations are just from the point of view of
putting together a system that functionally works, and that is

well organized, reliable, and maintainable. If we want to
consider how well the system is accepted by the end user, then we
must put some hard work into the user interface. A good analogy
might be the auto industry. The "art" group comes up with an
auto design they believe will be pleasing to the eye of the
buyer. They also try to arrange the instrumentation, etc. so
that it will be easy to see and use. The engineers try their
best to provide all the functionality specified by the "art"
group. They also try to use al-l the state of the art mechanical
innovations, and fit them all into the package done by the "art"
group. Sometimes they can't make it fit, so the "art" folks make
changes to accommodate the engineers. Thus, the engineering
aspects and the artistic design aspects of an automobile do

26

affect each other during the early design. So it is also with
software.

Consider an automobile company that refused to think about what a
car would look like until after the frame, engine, drive train,
etc. had already been put together? They probably wouldn't sell
many.

The user view should consider and show what the system will look
like to the user. This may be in the form of defining menus,
screens, windows, or help messages. We have found that actually
drawing "screen" on paper, and then filling it in to pictorially
show what the user would see,to be very workable. It is
interesting to see how the team's understanding of the system is
developed when they are forced to "operate" the system by paging
through paper "menus" and "screens".

An additional benefit of having this graphical representation is
the ability to communicate with the future users of the system on
a level that they can really understand. In the past, showing a
user a data flow diagram or structure chart might well have
impressed them that we software people were "smart" and that
building software was "magic". Why not show them what the screen
will look like when they get the system? They will certainly
identify missing or misunderstood requirements faster from seeing
menus and screens than from other "technical" graphical
representations of the system.

5.2.3. CONCURRENCY VIEW

As we rotate our multiple view cube yet another time, we see the
face labeled Concurruncy View (Figure 5-6). The notation shown
on the cube face may not be as familiar as those previously
discussed.

The goals of the concurrency view are:

o Show in a graphical representation which processes can
run concurrently.

o Show any dependencies related to concurrency. For
example, process "A" can run concurrently with process
"X"; but, process "X" must be running before process
"A" can run.

o Provide an explicit representation, forum for
discussion, and means to communicate to others the
relevant concurrency factors for the system.

0 Manage system understanding complexity by separating
one ot the abstract ways in which we think about
software systems.

27

z

0

LA

28

The traditional design models do not allow the designer to
annotate concurrency at different levels of abstraction. Indeed,
it is another one of those things that a designer would have to
"keep in the back of his head" while documenting the system using
most other design models.

Most traditional business applications have had no need to design
concurrent operations. Because concurrency usually meant
assembly language programming at a level very close to the
hardware (i.e. complexity and non-transportability), no one would
consider concurrent process unless it was an absolute
requirement. With the advent of many multiprocessor computers
and a DOD standard Ada language, that situation is changing.
Even when the functional system requirements do not mandate
concurrency, the system designer must consider using concurrent
operations to enhance system efficiency, system modularity,
system reliability, and maintainability.

On the example of Figure 5-6 the vertical line on the left is the
concurrency line. Anything connected to it with a perpendicular
line is considered on the concurrency line. That is, those
processes that operate concurrently. The lines connected to the
concurrency line at angles other than ninety degrees represent
processes that can become concurrent. Visually, you can imagine
the line pivoting so that it lays on top of the concurrency line.
It can also pivot back out and again become non-concurrent.
Second level dependencies are shown in a similar fashion with
angled lines joined to a second level concurrency line.

5.2.4. HIERARCHICAL VIEW

It we rotate the Architectural Model cube to the fourth face, we
see the hierarchical view. This view is shown in Figure 5-7.
This view of the system represents the organization, packaging
and structure of the software.

The goals of using this view and its graphical representation are
to:

o Show module dependencies.

o Show visibility of program units and data.

o Provide a tool that enhances a structured way of
discussing and representing the mapping of the design
into the Ada language.

o Provide a graphical representation that will help
communicate the system structure to secondary design
groups and programmers.

0 Manage system understanding complexity by separating
one of the abstract ways in which we think about
software systems.

29

I-

zz

LA

4)

9' I30

Although there is some similarity between this abstract
representation and the invocation or structure charts of
classical Structured Design (SD), there are also sicnificant
differences:

o SC structure charts have only two basic types of
program unit notation. Those mapped into the two types

of program units found in most of the existing high
order languages -- main program, or sub-programs. The
Ada language has a much richer selection of basic
program units (e.g. packages, tasks, generics, etc.).
It is important to indicate not only the hierarchy of
the system, but also the type of program unit, and the
visibility.

o The traditional SA/SD approach dictates a complete
functional decomposition (using data flow diagrams),
and then an abrupt transition to design (using
structure charts). Most people demonstrate a very
difficult time making this transition. With the
constructs and program units available in Ada, coupled
with proper structure notation, the design of the
system program and data hierarchy can be done at each
of the levels of abstraction along with the other
graphical representations of the Architectural Model.

The notation used for the system hierarchy is based upon work

done by Burkhardt and Lee published in Ada Letters 9 . Since their

work was very well thought out, we quickly replaced our more
priaitive notation.

The main features are that internal program units (procedures,
tasks, generics, etc.) can be shown in the parent program unit if
little detail is needed, or they can be shown as separate
expanded units below the parent when appropriate. With dotted
lines showing the "withing" process added to the basic structure,
it is easy to visually examine and evaluate data and progr=
visibility and dependencies.

To summarize, our experience has shown that it is helpful to have
both the topographical and the hierarchical charts visible to the
design team at the same time. Although all the views are often
used and have their own relative merit, these two are by far the
most used.

31

6. APPLYING THE MULTIPLE VIEW MODEL
TO SOFTWARE DEVELOPMEMT

in order to enhance the understanding of the concepts we have

been presenting, it should be beneficial to go through the steps

used in the actual design of the SARAH communications
workstation.

In order to have some rough idea of what SARAH would be, it was
decided to first make a "mini" loop through the Spiral Model.

This would allow some data and thoughts to be organized enough to
allow a "go-ahead" decision to be made.

6.1. SPIRAL LOOP 1

As with most projects, the very first thing that must be done is
to develop the rough idea for the software system into a viable

concept of operations that can be used as a basis for further

discussions. Another reason for doing some initial analysis and
thinking on the project is to gather enough ideas and information
so that risks and potential problems can be evaluated before the

decision is made to expend more resources.

6.1.1. CONTEXT

As a vehicle for discussion, and as an initial attempt to
graphically portray the overall context of the SARAH system, the
design group created the diagram in Figure 6-1. This graphic
shows the software system in the central box, and shows the major
interfaces and data flow to devices that are external to the

SARAH software. If other existing software systems were
involved, they would also be shown on this chart.

This external interconnect graphic is a one-time exercise. As
the system design progresses through lower and lower levels of
abstraction, the external interconnect situation does not change.

Therefore, there are no lower levels of this system
representation. In essence, the central box labeled SARAH is

what is designed when the decision is made to go forward with
full scale design and development.

It is important to note that the graphic itself does not quite go
far enough to communicate the overall system concepts. Thus, a
narrative description of each of the data lines, and for each box

on the chart was also done. A representative example of this
narrative description is shown in Figure 6-2.

32

r 0.

0.

0

-C

Q.I-

U.' z
0 z

0

-Fo
E z

-~2 Ej

E mwe4u

CIL

IA-

33

SARAH Workstation Physical Devices Cont

8. Display:

-- Display can be a monochrome or color monitor. If a color
-- monitor is used, a Color Graphics Adapter will be
-- required.

9. Host:

-- Host ca. be AFAAiPE, 4ode I, or IS/A AMPE. The host must be

-- able to speak Mode I or the SARAH asychronous protocol.

The Data To/From SARAH Physical Devices

1. Floppy_B_Data:

-- FloopyB Data will consist of transmitted messages, the SARAH
-- Floppy Table of Contents, updates to the SARAH Floppy Table of

-- Contents, and a hidden diskette validity indicator.
-- FloppyB Data may also be any Floppy_AData data.

2. Floppy AData:

-- FloppyA Data will normally consist of ASCII text files,
-- wordprocessing files, the SARAH Floppy Table of Cohtents,
-- hidden diskette validity indicator. Floppy_A_Data may also be
-- any Floppy BData.

3. Log/Stats:

-- The LogStats printouts consist of any of the system
-- statistics or message log information collected for the SARAH
-- workstation. Log/stats printout may be divided into three
-- categories: Receive Message Log, Transmission Message Log, and
-- bystem Statistics and Messages.

-- (a.) The Receive Message Log is used to record information
-- about messages received from AUTODIN or a host processor.
-- It consists of the internal SARAH message number, the time
-- received, the message header, the file time and the delivery
-- destination.

-- (b). The Transmission Message Log is used to record
-- information about messages transmitted from the SARAH
-- workstation. It consists of the internal message number,
-- the time sent, the message header, the text file name on the
-- SARAH input diskette.

Figure 6-2. Narrative for SARAH External Interconnect

34

6.1.2. RISK ANALYSIS

The resulting representation of the SARAH system is the initial
basis for making a risk assessment for the project. The primary
risks identified were:

o Procurement lag time for both hardware and Ada
compilers needed for the project.

o Performance issues with the target hardware (Zenith Z-
150 and other IBM PC compatible machines) -- doing
concurrent communications and other work such as text
editing might be too slow on this class of machine.

o Long learning curve for the Ada language and environ-
ment.

o Possibly excessive time needed to accomplish DOD
standard documentation for a relatively small project.

The initial graphic representation of the overall SARAH system
was very helpful in promoting an overall understanding of the
scale of the project.

6.2. SPIRAL LOOP 2

After the commitment was made to proceed with full scale design
and development of SARAH, then it was time to start into the
second loop of the Spiral Model. Within this loop we planned to
apply the Architectural Model at the highest abstraction level.

Upon completion of the design of the highest abstraction level,
the Ada coding for the system structure should be possible.
While being used to test the high level software system
organization as visualized in the design, this code can also
serve as the structure for an early prototype.

It was decided that a prototype showing at least the user
interface and high level menus would be invaluable in further
refining requirements with the user. It might also give
management some visibility into what the project group is doing,
providing them with some assurance that what comes out at the end
of the project is what they want. The prototype would end the
second loop through the Spiral. Then risks would again be
assessed, and any adjustments to the schedule, the design, or the
overall approach could be made before starting the next loop of
the spiral to go down another level of abstraction.

35

6.2.1. USER VIEW

One of the first views to be considered was the user view. Not
only did we feel it was important to have the system functionally
correct, we wanted the system to be easily usable by both novice
and experienced users.

It might be noted here that although this paper is presenting the
four different views of the Architectural Model one at a time,
the design and development team would many times be looking at
several of the views at the same time. That is the value of
having the different abstractions: One can look at any one on
its own, or look at two or more together to see the
correspondence in design.

A sample of the documentation generated for the user view is
shown in Figures 6-3 and 6-4. Some of the highlights of the
graphic in Figure 6-3 are:

o It indicates that a general windowing approach is to be
used for the user interface. This was picked because
it was judged to be the most user friendly (i.e.
intuitively workable) means of managing a screen.

0 The picture shows that there will be several major
types of windows used, and it describes their purpose.

o A help window is described. This will ensure that help
information is generated while the system design is
done. The "wait until the last minute" help system
might not be done as well as one considered throughout
the life of the design.

o The "Note Window" is the primary abstraction to handle
concurrent process communication with the operator.
For instance, while the operator is doing text editing,
the communications task could need to send a "note" to
the operator. This would appear in the note window.
It would not immediately overwrite the text work being
done on the main part of the screen. The operator
could acknowledge the note by simply pressing the F9
key, which is dedicated to note acknowledgment. The
text work on the screen is not disturbed.

36

40 0

CL - - -- -- --

\, A cl C

00

c.- C

0

00

0 C

E 'o
3 M

0D 0 U

LU 37

Figure 6-4 is a lower level user view of the SARAH system. It
shows a lower level menu selection (the DD Form 173 option within
the Edit menu). The approach taken by the designers to document
the system was to create the help text for all the menu options.
Each menu selection would have its own sheet of paper showing the
corresponding help window(s).

This process serves several purposes:

1) It forces the designers to thoroughly think through the
system requirements (i.e. what the system is to do).

2) It provides a form of documentation that is readily
understandable by the future user of the system.

3) It ensures that the help information is developed early
in the design so that it can be "fine tuned" throughout the
design process to be most meaningful to the user.

4) It aids in communicating an understanding of the system
design to people involved in the project development.

38

0 00_ _

CL 00
0 a

(x c

w %0.

IA Cm 2
m mA

CL IA 0
%11 14 I

A 1 0 -

E EL E39

6.2.2. TOPOGRAPHICAL VIEW

The Topographical View that represented the first level of
abstraction in the system design process is shown in Figure 6-5.
This graphical representation of the SARAH system is primarily
showing:

o The major grouping of functions that make up the
system. (Note: major data, or object oriented,
groupings did not show up until the next level of
abstraction).

o The major intertaces between the groupings of
functions. These interfaces can be both control and
data.

This picture is a very helpful tool for talking through the
thought process that is necessary to design a software system.
We found it was quite common to have both this representation and
the graphic for the hierarchical view on the screen at the same
time.

Note: Since both the project budget and long procurement times
did not allow acquisition of automated design tools, we had to
make the best use of what tools were available. The group found
it very useful to draw the graphical representations on
transparent sheets, and use an overhead projector to view them
together. The "screen" used was a white, eraseable, marker
board. This allowed doing the rough modification on the marker
board. When things were a little more permanent, they could then
be drawn on the transparency.

40

411

CL

o do

CL

a 96

cQ.1~O L04C.

OC

41 1

414

6.2.3. HIERARCHY

One of the two graphical representations that spent the most time
being discussed was the hierarchical view. It is shown in Figure
6-6.

The highlights of this graphic are:

o It shows how the system design is to map into the Ada
language.

o It allows a forum for discussion of what Ada structures
would be most beneficial for data security, code
reusability, system reliability, system understandabil-
ity, and ease of future post development software
support. We feel it necessary to discuss these
concepts at the highest levels of abstraction. With
other languages, the packaging decisions can be made at
lower levels of system abstraction. In order to make
use of the power of Ada, this process must be done at
the very beginning, too.

o It shows compilation dependencies.

o It makes program and data visibility readily apparent.
Creating this graphical representation the first time
showed us several major problems with how we had
visualized the Ada implementation.

42

ilplay TaIg f

Puttfnl -
I%

AY

vor 7

I%

SnlWidwPft)vint-s Olik

Pullt Oo~

can" Ii Sys

ItsomI

"443

6.2.4. CONCURRENCY

concurrency should be considered for two reasons:

1) Whenever the system requirements explicitly make it
necessary.

2) Anytime an Ada system is being developed. Some functions
may be best abstracted using concurrent processes.

Tne graphical representation for the Concurrency View of the
Architectural Model is shown in Figure 6-7. This shows a view of
the system concurrency for the highest level of abstraction.

The central vertical line is the concurrency line. Everything
connected to it with a horizontal line is considered to be on the
line (i.e. concurrent). Those structures that are attached to
the concurrency line with a slanted line may become concurrent at
times.

The graphical understanding is that the slanted line could fold
upward so that it becomes one with the concurrency line. it
could also fold back down again to become non-concurrent.

The two functions of train.ait and receive are connected to a
second vertical line. This representation is to show
dependencies. It says "transmit and receive tasks may become
concurrent, but only when the communications task is concurrent".

Graphically, we can see that if the slanted line to the
communications task folds up to become concurrent, that it would
also superimpose the second vertical line on the concurrency
line. This would then allow the slanted lines going to
"transmit" and "receive" to fold into the concurrency line.

We should point out that the design group had a good bit of
trouble agreeing on a graphical representation for concurrency.
Additionally, the group had difficulty in determining when a task
was concurrent. Was it when the task is created (in the Ada
environment, when elaborated)? Was it when it was formally
initialized with an explicit rendezvous? Was it when it was
available and waiting for work (on the system ready queue)? Or
was it when the task was actively doing the job it was designed
to do?

Part ot the problem is that there seems to be little formal work
available on the theories of how to think about concurrency
issues. Hopefully, in a few more years, the design texts and
methodologies will adequately address concurrency.

44

MAIN-

Figure 6-7. Concurrency Chart

45

The best way our design group found to deal with the problem was
to look at the idea of logical groupings and dependencies. In

Figure 6-7 the I/O System was shown as always concurrent because
the entire system was totally dependent on this program unit. If
it were not there, nothing could work. The units on the right
side of the line are, however, asynchronous in their nature. Any
one of them could be completely taken out of the system, and the
remainder would still operate.

Thus, at least two units ha,7e to be concurrent for anything
meaningful to happen (i.e. Main and I/O System). The units

labeled Edit, Utilities, and Communications can become concurrent
when and if they are needed. The units labeled Transmit and

Receive can become concurrent when needed, but only if Communica-
tions is already concurrent.

46

7. BENEFITS OF USING THE SPIRAL AND ARCHITECTURAL MODELS

7.1. ENHANCED COMMUNICATION

In general, graphical representations convey much more
information than verbal descriptions. Another fact is that the

normal thought processes of good system designers lead them to

view a new system using several distinctly different, yet relatea

abstractions.

The Architectural Model ot Software Development capitalizes on

both of these factors: The model uses four different graphical

representations of a system. We believe that these four

representations (along with the written narrative that supports

the topographical graphic) greatly enhance the ability of the

original design team to communicate their understanding of the

system to others -- programmers, users, and management.

7.2. MANAGEMENT VISIBILITY

With some approaches to system design, management has to be very

confident in the abilities of the designers because the team will

not have a great deal ot documentation to show until they have
progressed well into the design. Most managers feel a bit

nervous when the designers say "trust me".

This model provides at least some products that should be very

meaningful to management even early in the design process.

Management should be very interested in examining the user view

documentation so they can know what the product will do in terms

they can communicate with the customers of the system.

With the use of the Spiral Model for the lifecycle, and the

Architectural Model for the design, it works out very nicely to

develop an early prototype to further demonstrate the human

interface concepts. Additionally, with Ada as the implementation

language, the coding that does the system control for the

prototype can, in fact, be the coding for the final system. As

analysis, design, and coding progress throughout the Spiral, the
"dummy" and "prototype" program units are replaced with "real"

program units. This results in far fewer surprises when the

"final integration" takes place.

7.3'. PROBLEM ANALYSIS AND UNDERSTANDING

At first look, it is natural to think that the process of

considering all the-different views and documenting them would

tend to be confusing. We must admit that the learning curve to

become familiar with the objectives of taking each separate view,

and learning the graphical notation is not trivial. However,

once the basics have been assimilated, we found the overall

47

design process is faster, more accurate (less backtracking), and
far less stressful.

Indeed, this pattern is quite common for most worthwhile things.
We often hear the "no pain - no gain" philosophy. For instance,
a powerful language like Ada has a very steep learning curve.
But once one has made it to the top of the curve, greater
productivity, reliability, etc., is possible than with simpler
languages.

The human mind is complex, and we probably never come close to
fully understanding how it works. However, we feel the
Architectural approach to design is closer to the normal thought
processes than any of the existing single models. This aproach
may be a bit more complex to learn, but if you take the time to
learn it, life is made much easier.

7.4. CONCURRENCY SUPPORT

The only fairly popular design methodology we have encountered
that explicitly addresses concurrency is Jackson System Design.
Because this proprietary model strives to show concurrency and
all the other aspects of a system in one graphical
representation, we had trouble in understanding the system.
Additionally, the fact that it is proprietary makes it more
difficult to learn about and to use.

The Architectural Model does address concurrency as a separate
abstraction. This feature is going to become more and more
important as Ada becomes the language of choice for most
projects.

7.5. WORKLOAD DISTRIBUTION

By considering all facets of the system design at the higher
abstraction levels, the final shape (i.e. structure or hierarchy)
of the system is known early; the final appearance (i.e. user
view) is known early. This means that the system components can
be divided among different design groups with a high confidence
level that everything fits together when it is done.

Additionally, when the Spiral Model and Ada are used, actual
coding can start early in the design process. This eliminates
the need for bringing on a group of coders late in the
design/production lifecycle. Several good coders can be employed
during the entire design.

7.6. REUSABILITY AND BOTTOM-UP SUPPORT

In order to take advantage of reusable code it is necessary to do
some amount of bottom-up design work. The basic "tools" and
"building blocks" must be identified early.

48

The basic qualities of the hierarchy view and the topographical
view allow an object oriented approach to determining tools (i.e.
functions, procedures, tasks, etc.) and tool sets (i.e.
packages). These tools can then either be acquired from an
existing Ada library (if they exist), or provide food for hungry
Ada programmers.

7.7. COMPLEXITY MANAGEMENT

As our software systems get more and more complex, techniques to
help us manage complexity become of paramount impcrtance. Just
as the building architect uses separate pictures to represent
different portions of the building design, so the Architectural
Model uses different pictures to show different things about the
software system design.

The partitioning of the system design into discrete abstractions
allows each abstraction to be examined without the mental
"clutter" present when using only one system abstraction. Having
the separate graphical representation for each abstraction
greatly enhances the communication of the system design.

49

8. CONCLUSIONS AND RECOMMENDATIONS

8.1. CONCLUSIONS

Based upon the work done to design a software system using the
Ada language the following conclusions have been drawn:

o The Spiral Model of Software Development is a much
superior way of representing the real processes
associated with the lifecycle management of software
systems.

o The Department of Defense standards for lifecycle
management (DoD Std 2167 and associated documents) are
more closely tied to the waterfall lifecycle model.
Although we have been assured by the people responsible
for 2167 that the intent is to allow other lifecycle
models, the fact has not been publicized widely.
Groups who do not take the time to check with the
people responsible may inadvertently be forced into the
waterfall model.

o The Architectural Model for Software Design is much
superior to any single model or methodology we have
found. Its different system abstractions are helpful
in working through the design and understanding of the
system. They are also very good at communicating that
understanding to others.

o The Architectural Modrl for Software Design is not in
itself a methodology; it provides the framework for
applying existing software engineering principles. It
will hopefully stimulate interest in developing a full

lifecycle methodology based on the model.

8.2. RECOMMENDATIONS

Recommendations are:

o The DoD is currently evaluating changes needed to DoD
Std 2167 based on lessons learned when implementing
Ada. The DoD should seriously consider the Spiral
Model of Software Development when they are reviewing
the needed changes to DoD Std 2167. They should find
it helpful in understanding an overall structure for

production and management of DoD software systems.

o Organizations should not blindly standardize on one
methodology; rather, methodologies should be chosen to
best support specific projects.

o A multi-view, Architectural Model should be used for
software design to help manage complexity and aid in

50

overall understanding.

0 More work should be done on models for system design
and understanding -- specifically in the area of using
multiple abstractions to aid in partitioning
complexity, and in the area of providing an integrated
system with automated support.

51

A. REFERENCES

[11 Boehm B.W., "Keeping a lid on Software Costs", Computer
World, January 28, 1982.

[2] "Software Technology for Adaptable, reliable Systems (STARS)
Program Strategy", Department of Defense, ACM SIGSOFT Software
Engineering Notes, April, 1983.

[31 "Report of the DoD Joint Service Tack Force on Software
Problems", prepared for the Deputy Under Secretary of Defense
for Research and Advanced Technology, July, 1982.

[4] "DoD Digital Data Processing Study - A Ten-Year Forecast",
Electronic Industries Association, Government Division,
October, 1980.

[51 Boehm B.W., "A Spiral Model of Software Development and
Enhancement", TRW Defense Systems Group.

[6] Ward P.T., "The Transformation Schema: An Extension of the
Data Flow Diagram to Represent Control and Timing", IEEE
Transactions on Software Engineering, Vol. SE-12 No. 2, February
1986.

[7] Booch G., "Object Oriented Development", IEEE Transactions
on Software Engineering, Vol. SE-12 No. 2, February 1986.

[81 Cameron J.R., "An Overview of JSD", IEEE Transactions on
Software Engineering, Vol. SE-12 No. 2, February 1986.

[91 Burkhardt B. and Lee M., "Drawing Ada Structure Charts",
ACM Ada Letters, Vol VI No. 3.

[101 "Methodman", Ada Joint Program Office, National Technical
Information Service (NTIS), accession number AD A123 710.

[11] Cherry G.W., "The PAMELA Designer's Handbook", Thought
Tools, Reston Virginia.

[121 Buhr R.J.A., System Design with Ada, Englewood Cliffs,
New Jersey:Prentice-Hall, 1984.

[131 "Draft Air Force Information Systems Architecture
Volume VII ", HQ US Air Force/SITI, 18 February 1985.

[141 Benington, H. D., "Production of Large Computer Programs,"
Proc. ALnnals of the History of Computing, Oct. 1983, pp. 350-
361.

[151 Lehman, M. M., "A Further Model of Coherent Programming
Processes," Proceedings, Software Process Workshop, IEEE, Feb.

52

1984, pp. 27-33.

[16] Parnas, D. L., "Designing Software for Ease of Extension
and Contraction," IEEE Trans. S1W Engr., March 1979, pp. 128-137.

[17] D. D. McCracken and M. A. Jackson, "Life Cycle Concept
Considered Harmful," Software Engineering Notes, ACM, April 1982,
pp. 29-32.

[18] Balser, R., T. E. Cheatham, and C. Green, "Software
Technology in the 1990s: Using a New Paradigm," Ccmputer, Nov,
1983, pp39-45.

[19] Department of Defense, Defense System Software
Delvelopment, 9 May 1985, Space and Naval Warfare Systems
Command.

[201 E. Yourdon and L. L. Constantine, Structured Desijn,
Englewood Cliffs, NJ: Prentice-Hall, 1979.

[21] D. T. Ross and K. E. Schoman, Jr., "Structured analysis for
requirements deflninion," IEEE £rans. Foftware Eng., col. SE-3,
no. 1, pp69-84, Jan. 1977.

[221 "Keeping a Lid on Software Costs", Barrw W. Boehm, Computer
World, January 28, 1982.

GENERAL

"Final Report, Joint Logistics Commanders' Workshop on Post
Deployment Software Support for Mission-Critical Computer
Software", June 1984.

"Analysis and Design For Ada :oftware", EVB Software Engineering,
Inc., 1983.

"Top Level Requirements for Software Engineering Automation for
Tactical Embedded Computer Systems (SEATECS)", Naval Ocean
Systems Center, August 31, 1982.

"Proceedings of the Air Force Information Systems Architecture
Workshop", Air Force/SITI, August 1984.

"Air Force Information Systems Architecture, Vol I -- Overview",
Headquarters Air Force/SI, May 1985.

53

