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1 Introduction

A prior2ty scheduler controls access to a resource in accordance with some
priority assignment. Each task is assigned a priority: whenever there is con-
tention for a resource, access is granted to the task with the highest priority
among those competing. Priority schedulers are frequently employed in real-
time systems to allocate the processor among tasks that must produce results
in a timely manner [6, 12].

A priority inversion occurs when a lower-priority task delays execution
of a higher-priority task [5, 9]. For example, a task holding a write lock for
some data will delay a task attempting to acquire a read lock for that data. If
the holder of the write lock has a lower priority than the task attempting to
acquire the read lock, then a lower-priority task is delaying a higher-priority
task and a priority inversion has occurred.

The possibility of priority inversions creates difficulties for the designer
of a real-time system. Not only must a task compete for resources with
higher-priority tasks, but during a priority inversion, it loses resources to
lower-priority ones. When a high-priority task rH is delayed by a lower-
priority task 7 L, then ry effectively competes with all tasks assigned priorities
at least that of rL, rather than with only those tasks assigned priorities at
least that of 7H. Since TL can be an arbitrary task, establishing that 7H

will meet a response-time goal requires reasoning involving all tasks in the
system rather than just the subset with priority at least that of rH.

One approach to coping with priority inversion is to modify task priorities
dynamically so that priority inversions are bounded and short in length [5,
10]. In these priority inheritance protocols, a task's priority is elevated to a
level that is the maximum of its original priority and the priority of any task
that is being delayed by it. Thus, priority in t "-ns are permitted, but only
in a carefully controlled way.

In this paper, we explore approaches to prevw.ing priority inversion that
do not involve modifying task priorities. In Sections 2 and 3, we formalize
priority inversion and give sufficient conditions for its prevention. Based on
these, sc ne iew protocols to prevent priority inversions from occurring are
derived in Sections 4 and 5. The protocol of Section 4 is appropriate for sys-
tems where the times that tasks hold resources can be bounded; the protocol
ot bcction 5 is appropriate for database systems, where tasks (transactions)
can be aborted. In Section 6, we consider conditions for avoiding priority
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inversions in systems where there are multiple independent schedulers, each
making allocation decisions for some subset of the resources. Section 7 puts

our work in context and discusses some unsolved problems.

2 System Model

Formalizing priority inversion requires that we formalize the notions of pri-
ority assignment and delay. To do this, we model a system as a set of tasks

T = {rl, 72 ,..., 7,,} where a task is any computation that can be scheduled.
Thus, our use of the term task is synonymous with alternatives such as pro-
cess, job, and transaction.

2.1 Task Priorities

A priority assignment is an irreflexive, partial order' on T such that T >- r'
whenever task 7 has higher priority than r'. Observe that this definition

allows tasks to have incomparable priorities. Therefore, it is possible that

neither r >- r' nor r' >-- r holds for some pair of tasks -r and 7'. By assigning

incomparable priorities to tasks, the number of constraints imposed by a

priority assignment is reduced, avoiding the possibility of extraneous priority
inversions.

Define the peer group of a task r as the set of tasks r' such that either
r' >- r or i-' is incomparable to 7. In the absence of priority inversions, we

need only consider r and tasks that are in its peer group in analyzing whether
r will satisfy given response-time constraints. This is because only tasks in
the peer group of r can cause r to be delayed.

2.2 Resources

Tasks can cause each other to be delayed in a variety of ways. Some of these

are explicit, such as when one task awaits a message sent by another or when

a lock held by one task prevents another from acquiring that lock. Other

causes of delay are implicit. For example, the presence of finite-capacity,

time-multiplexed resources, such as memory, processors, and I/O devices,

'An irreflexive partial order on a set is an asymmetric, irreflexive, transitive relation

on pairs of elements from that set.
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can lead to the (implicit) delay of a task requiring use of a resource by the
task using that resource.

For our purposes we can abstract from tliese particulars, postulating that
a system comprises a set of resources and a scheduler 2. A task obtains accets
to a single unit of a resource r by invoking the

request (r)

operation and relinquishes that access by invoking the

release(r)

operation of the scheduler. Execution of a request operation delays the in-
voker until that request can be granted. Whether a request is granted is
determined by the scheduler. A task may have only one outstanding request
at a time. Thus, if multiple units of a resource or several different resources
are needed for execution, a task must request and acquire them sequentially.
We discuss the possibility of a task requesting multiple resources through a
single operation in Section 7.3.

Request and release operations are not always explicitly invoked by tasks.
Sometimes, these operations are invoked implicitly as part of some other sys-
tem operation. For example, an operation to receive a message will implicitly
invoke a request operation that is granted when the message becomes avail-
able for receipt. In other cases, request or release might not be invoked
by tasks at all, instead being invoked due to other activity in the system.
Consider a multiprogrammed processor that uses an interval timer to force
task switches. An execution of the interval-timer interrupt handler can be
regarded as (i) performing a release and a subsequent request for the task
that was executing when the timer-interrupt occurred and then (ii) granting
the request for the task that is next selected for execution on the processor.

Our request/release model turns out to be quite general. It can even
be used to describe situations in which tasks are delayed because of some
application-dependent aspect of the system state. For example, it is not
unusual for a concurrent program to contain some form of conditional wait

2 Most real systems have multiple schedulers, but postulating a single scheduler is not
a limitation. It is always possible to model the effect of a collection of schedulers by using
a single scheduler that makes allocation decisions using only information that would be
available to the relevant scheduler.
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statement that delays a task until the program variables satisfy some Boolean
expression. (Most synchronization primitives are instances of conditional
wait statements.) We can model such a conditional wait by regarding it as a
request on a virtual resource. The request is granted if the Boolean expres-
sion is true; otherwise, the request is delayed. Execution of any assignment
statement in another task that makes the Boolean expression true is treated
as a release on the resource.

2.3 Delay

We model task delays by a binary relation. A task r, waits for task r at
time t, denoted ri -+ ri, if and only if ri is delayed at time t in its request

for some resource and r can release that resource. Note that a task could be
waiting for (any of) a set of tasks T, each of which can release the resource
being requested. The definition of -- allows us to decompose this situation

into a conjunction of waits-for relations:

-r.__ T =A (7i -~ r).()t t
t rET

We assume that a grant/delay decision can be made at the time of a
request and that a delay always can be attributed to some set T of tasks.
For example, if there are multiple units of the resource available, the delay is
attributed to the set of all tasks that have been granted but not yet released
the resource. And, in the case of a request for a virtual resource associated
with a conditional wait, the set T contains all those tasks that can execute
assignment statements that make true the Boolean condition being awaited.

3 Characterizing Priority Inversion
In order to characterize priority inversion, we must reason about the transi-
tive closure of the waits-for relation. We say that a task ri implicitly waits
for task 7. at time t, denoted ri " j.-., if and only if either 7, -+ r or there

t t

exists rk such that (r, 7'* 'k) A (7k - 7j).
t t

Priority inversion has occurred at time t when progress of a task is blocked
by the actions of a lower priority task. Thus, a system contains a prior-
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Figure 1: Four-Task Composite System Graph.

ity inversion at time t if and only if there exist tasks r, and 7- such that
(,- - r,) A (r, >.- r.

t

It will be convenient to represent the priority assignment and waits-for
relations in effect at a given time t as graphs. The directed graph corre-
sponding to a priority assignment >- on a set of tasks T is P = (T, Ep)
where Ep = {(u, v) I v >- u}. Thus, the nodes of P represent tasks and an
edge is drawn from a task to all higher priority tasks. Similarly, the waits-
for relation at time t can be represented as the directed graph W = (T, Ew)

where Ew = {(u,v) I u - v}. Here, edges are drawn from a task to all

other tasks that it waits for.
Given these graphs, the system state at a time t can be represented by a

composite system graph, G = (T, EpUEw). Figure 1 depicts such a graph for
a system of four tasks. Single-arrow edges represent waits-for relations and
double-arrow edges represent priority relations. Thus, the graph depicts the
situation where there are four tasks such that r2 >-- rl >- 73 and (r, --+ r2),t

(72 -r4), (74 -* r3). Note that there can be multiple edges between a pair

of nodes.
The following theorem uses a composite system graph to characterize the

existence of a priority inversion at time t. It is based on directed cycles
containing exactly one priority edge. We call such cycles r-cycles.
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Theorem 1 A composite system graph G describes a priority inversion if
and only if G contains a directed cycle involving exactly one priority edge
(' -cycle).

Proof Without loss of generality, let r , ... --- r be a 7r-cycle of
G. By definition of --*, we have r, --+ -r,. From priority edge r. :=> r,, we have

the relation ri >- rj. Thus, the system contains a priority inversion according
to the definition given above. The result that a priority inversion implies a
rr-cycle in G follows trivially from the construction of a composite system
graph. 0

The system depicted in Figure 1 contains two priority inversions, corre-
sponding to the two r-cycles (r3 :=> rI --+ 2 -+ r4 --* r3 and r3 => r 2 -- + -r-

-r3). Task r3 is responsible for delaying tasks r7, r2, and r4 and has lower
priority than r and r2.

From Theorem 1, we conclude that any condition that prevents a com-
posite system graph G from having a 7r-cycle is a sufficient condition for
avoiding priority inversions. Examples of such conditions are the following:

1. No Priority Assignment. If all tasks were incomparable, then the pri-
ority grapi wz.udd be empty and a 7r-cycle could never form.

2. No Delay. Without delay, the waits-for graph would be empty, guar-
anteeing the absence of the 7r-cycles.

3. Preemption. A waits-for relation persists until a task relinquishes a
resource. Preemption causes a task to relinquish a resource, so pre-
emption can change the waits-for relation in a way that prevents a
7r-cycle from forming.

4. No 7r-Cycle. The waits-for and the priority relations must form in a
particular fashion for priority inversion to exist. Theorem 1 establishes
the relevant property as a ir-cycle.

Note that preemption both removes and adds elements to the waits-for
relation. By preempting a resource r that had been granted to a task r, and
granting r to r7, all waits-for relations from 7. to other tasks are removed
and waits-for relations from rs to all tasks that have access to the resource
are added.

= .. • ,, , , , i I I I '' 1 I7



Any strategy for preventing priority inversions ultimately must be based
01n avoiding the , -cycle condition of Theorem 1. In the strategies that follow.
WC e1 just this by ensuring that at least one of the sufficient conditions above

holds. First. in Section 4. we show how by eliminating the possibility of
certain waits-for relations. a -.r-cycle is avoided. Thus, this strategy is based
on condition 4. No , -Cycle. Then, in Section 5. we show an application
of preemption by giving a timestamp-based concurrency controller. This
strategy is based on condition 3, Preemption.

4 Applying the Theory: Developing Reser-
vation Protocols

The 7r-cycle condition of Theorem 1 can be prevented by having each task
reserve in advance the interval during which it will hold a resource and us-
ing that information to prevent certain waits-for relations from forming. If
reservations from a low-priority task never overlap with reservations from
a higher-priority task, then priority inversions become impossible. In this
section, we develop protocols that exploit this insight for avoiding priority in-
versions. The method by which we obtain these protocols is more important
than the protocols themselves. Deriving the protocols provides an opportu-
nity for us to show how our theory can be used to obtain policie.- for avoiding
priority inversions from conditions that ensure r-cycles are impossible.

Let Hi = {r 1r >-- 7,} be the set of tasks that have higher priority than
7, and let I, = {r 1 -(r >-- r,) A -(7, >- 7)} be the set of tasks incomparable
to r,. Thus, the peer group for a task r, is PG, = H, U I,. For each resource
r. assume that each task 7i is able to compute hold'(t), the upper bound on
the amount of time that 7, will hold r the next time (with respect to t) it is

granted r, and next"(t), the lower bound on the next time (with respect to t)
7, will request r. During the interval between when task 7-i requests resource
r' and when it releases r, define neztr(t) to e ,ual t. And, if r, holds r at time
t then define holdS(t) to be an upper bound on the remaining amount of
time -r, will hold r. The reservation protocols we derive require that at times
of allocation decisions, the scheduler be able to interrogate a set of tasks
for their neXtr(t) values for a set of resources. We are assuming that the
communication delays between tasks and the scheduler are negligible with

• - • , , i II I I I I



respect to hold[(t and next (t). In case they are not, the allocation policies
"an be easily modified to account for them.3

An allocation policy can be derived from any program invariant 4 that
precludes formation of =-cycles. Not only must the program invariant imrly

,hat thlere is no ,'-cycle present in the current state. but also that the current
-rate is not one from which formation of a ,r-cvcle is inevitable. Therefore.
it iifces that the program invariant imply the stronger condition that there
is no ,-cvcle present in the current state and that the current state is not
,one from which formation of a -- cycle is possible. Although such a stronger
program invariant could rule out safe scates, it is usually easier to construct
and maintain.

In order to construct a program invariant that rules out the possibility of

future 7r-cycles. define the predicate r - r, to mean: given the resources 7,

has allocated at time t, it is possible r, - ri will hold for some t' such that

t' > t. Thus, letting R,(t) be the set of resources that T has allocated at
time t.

"t' def

(t' > t) A (3r: r E R,(t): (holdr(t) + t > t') A (next'(t) < t')).

Note that if , -7 ,. then at time t there is some resource r e R,(t) and r has
t

been requested bv r-. Therefore, if r -- r,, then, by definition, holdr(t) > 0~t
and next'(t) = t. and so:

?t
)j 7 , 7) (2)

4.1 Policy 1

In a system where resources are shared infrequently, the most common ir-

cycle would involve just two tasks r, and r, (say) such that 7 - 7, A 7 7,.1 t
An obvious program invaril'.nt to choose is the negation of this predicate:5

3In any implementation, holdS(t) and nezti(t) would need only be computed on-
demand at times of resource allocation. They can be based on empirical data collected
during previous executions or on an a priori analysis of the code that is being executed.

4,.k program invariani is an assertion about the program state that is not invalidated

by program execution.
%'Wp write .4 D B to denote the logical implication, .4 implies B.
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(V7,,1 D , -( >7- r,)) (3)
t

Howwer, (3) does not imply that there can be no ,-cycle in the composite
system graph. The following predicate does:

(V7,, Tj: 7j I 7i D -(7) >- 7,)) (41
t

So, we strengthen (3). First. note that since >- is asymmetric, we ha.ve:

(Vqir,: 7i >- rj :) -(rj >- 7r,)) (5)

Thus.

(V7,, 7: rj -+ r D ri >-r_) (6)
t

implies (3), and so if (6) also implied (4) then (6) would imply there can be
no r-cycle in the composite system graph. We now show that (6) implies
(4).

Assume (6) holds. Since >- is a transitive relation, we have from (6) and
the definition of -..* that:

t
(V 7,.r 7 r: 7 -.-+ r, D ri >- r ,)

t

The last equation together with (5) imply (4). Thus, (6) implies that there
can be no -- cycle in the composite system graph and can be used in con-
structing the program invariant.

Replacing 7, 7 , according to (2) we get:
t

?t
(Vr,,r.: . + 7, D ri >- rj) (7)

Unfortunately, (7) does not imply that the current state is one from which
later formation of 7r-cycles is impossible. For example, suppose a task r, can
allocate a resource r that a task 71 will later request and 7) >- ri holds. If 7,

allocates r, then (7) is not invalidated. However, if -, subsequentl:" attempts
to allocate r. then (7) is invalidate because the request cannot be granted
(without preempting r from 7,). So, (7) was not strong enough to prevent
sbsequent formation of a rr--cvcle.

We can strengthen (7) by weakening its antecedent:

.. . ., .. , i l! II I I II =0



V 7,,7): ( t': t < t': 7, __+ 7,) 7- " >, 7 ,)
t

By construction, this does prevent the possibility of rr-cycles forming in
subsequent states. Taking the contrapositive. substituting for the definition

of -- ,and performing some algebraic manipulations in order to eliminate

t'. results in the following strengthening:

11: (V-r,., 7: -(7i >- r,) D (Vr: r E R.(t): hold'(t) + t < netr(t)))

Thus. we can use 1, as a program invariant for ensuring that 7r-cycles cannot
form during execution.

To ensure that 11 holds throughout execution, we must show that it is
true initially and that execution does not invalidate it. Assuming that tasks
are initially started with no resources allocated to them, R,(O) will be empty
for all tasks r,, and so i1 is initially true. To ensure that I, is not invalidated
by execution, assume that it is true and some task ri requests a resource r'.

Let ok(r'. 11) denote those system states in which r' could be added to Ri(t).

Then. any policy that ensures a condition C(r', ri) holds before r' is granted
to 7,, such that

C(r', 7,) A 11 D ok(r',Ii)

is valid, will ensure that 1 holds throughout execution (hence the formation
of -r-cvcles is precluded).

Using the definition in [4] of wp for assignment statement
R,(t) := R,(t) U {r'}, we compute that

ok(r',2') = wp(R,(t) := R,(t) U {r'},11).

Thus, for

C(r', r)4_1 (Vrj: -'(ri >- rj) D hold"(t) + t < next"'(t))

we have

C(r', ,) A 11 D ok(r',I,).

because

C(r', r,) A I1 = wp(R,(t) "= Ri(t)U {r'}, 1 ).
11I



Tlerefore, provided C(; '. 7,) t1odC before r' is granted to r, we can conclude
that 11 is not invalidated by program execution. This can be done by ensuring
that the scheduler never grants r' to ri unless C(r', ri) holds. Rearranging
terms in the definition for C(r', 7,) results in the following (equivalent) policy:

Policy 1 The request of task i for resource r' at time t is granted if

hold"'(t) < min (neXtr'(t) - t).
I riEPG,"

Otherwise, the request is delayed.

In word3. a task is granted a resource r' only if it will release r' before any
task in its peer group requests r'. Note that the incomparable tasks must be
involved in the allocation decision-it is necessary that 7j range over I, as
well as H,.

Policy I is rather conservative. It does not allow waits-for edges to de-
velop between incomparable tasks in fear of a cycle developing indirectly
between two comparable tasks. However, if the priority assignment is a total
order and PCi = Hi, then a reservation is made with respect to all tasks
with higher priority, just as we would expect.

4.2 Policy 2

Another predicate that implies there can be no 7r-cycle in the composite
system graph is the following:

(y r. , ,: r -r , n r -- ,, r ^- 7 r j - k ( 8)

This is because all r-cycles coutain an instance of Figure 2. Rewriting (8)
and replacing r, - r, according to (2) we get:

t

?t ?t

(Vr,, r,: 7 - r, D -(3rk, 7t: t -- r, A r)--- *rk)) (9)
t t

Although this predicate ensures that no r-cycle exists in the current
state, it does not imply that the current state is one from which formation of
7-cvcles is impossible. As in the derivation of Policy 1, it is not difficult to
construct a scenario where (9) is preserved up until the point when a state is
reached where a 7r-cycle is inevitable. And, as before, the problem is solved

12



Figure 2: Bad Composite System Graph.

by strengthening. In particular, observe that -'(3T, t 2 : t < t2 : I1 t r,)

implies -(3rl: -r - r) and that -(37A, t1, t 2: t < t : t2: r. :!3 rk) implies
t tl

-,(3h: 7., T7k). We can use these facts to strengthen (9) by strengthening

its consequent:

(Vri, 7j: 7j >- 7"i D

-(37,,]t, t1,t 2: t < t < t 2: rt r, A 7j ! rk)) (10)
t tl

By using two separate times ti and t2, we characterize scenarios where r, is
delayed due to a later allocation by rl.

Substituting in (10) according to the definition of --+ , we obtain:
t

(Vr,, r,: rj >- ri D

-(3rk, rtl,t2,ri, rk: t < tj <_ t2 A ri E Ri(t) A rk E Rk(tl):

hold'(t) + t > t 2 A t2  ne t' (t) A

hold rh(ti) + t1 > t2 A t2 >_ nezt (tj)))

Using algebra to eliminate variable t2 and moving the negation inside the
quantification, results in the following strengthening:

(VT,, 7: 7, >- r,.1

13



( Vk, r, tl,r,,rk: t < t, A r i E Ri(t) A rk E Rk(ti):
hold" (t) + t < next"(t) V holdrk(ti) + t1 < neXtrk(t 1 ) V

holdr'(t) -4- t < nextr,(tt) V holdrh(tl) + ti next '(t)))

Deleting three of the disjuncts in the consequent then results in the following
strengthening.

(Vi-,, 73: 7J >- Tj

(V7k, tt,,ri, rk: t < t, A ri E Ri(t) A rk E Rk(tl):

hold:'(t) + t < neXtr (tl)))

Any subset of the disjuncts could have been deleted, with other choices lead-
ing to different policies.

We can further simplify by removing references to 7k and t1 . We do
this by strengthening based on the following observations. First, because
Rk(t) g R holds, replacing references to Rk(t) by R results in a stronger
consequent. Second, because t < ti, we conclude that neztk (t) < next"' (tI),
and so replacing t, in hold (t) + t < next'7(ti) by t results in a stronger
consequent. We, therefore, obtain:

12: (VYn, -rj: 7. - 7 D

(Vri, rk: ri E R(t) A r; E R: hold" (t) + t < nezt" (t)))

To ensure that 12 holds throughout execution, we show that it is true
initially and that execution does not invalidate it. Assuming that tasks are
initially started with no resources allocated to them, R,(O) will be empty for
all tasks ri, and so 12 is initially true. To ensure that 12 is not invalidated
by execution, assume that it is true and some task ri requests a resource r'.
We desire a condition C(r',;rj) such that

C(r', r,) A 12 D ok(r', 12)

is valid. Again, using the definition of wp for assignmeut statement
R,(t) := Ri(t) U {r'}, we can verify that any choice for C(r', r,) must im-
ply:

(Vr, rk: rk E R: r >.- ri D hold'(t) + t < neXtr(t))

Rearranging terms in the definition for C(r', r,) results in the following (equiv-
alent) policy:
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Policy 2 Let R be the set of all shared resources. The request of task r, for
resource r' is granted if

holdr'(t) min (min(nezt"k (t) - t)).
rjEHj rkER

Otherwise, the request is delayed.

Thus, a task is granted a resource r' only if it will release r' before any
higher-priority task requests any resource.

One way Policies 1 and 2 can be compared is by considering the composite
systems graphs one policy allows and the other policy avoids. In a system
with a total order priority assignment, Policy 1 is superior, while in a system
where there are many incomparable tasks and few shared resources, Policy 2
is appropriate. Depending on the application, there may be other properties
of the possible composite systems graphs that can be exploited in order to
derive a better resource allocation policy.

5 Applying the Theory: Developing a Con-
currency Control Protocol

We now consider a strategy in which the ir-cycle condition of Theorem 1 can
be prevented in a database system by designing a timestamp-based concur-
rency controller that prevents priority inversions. Other database concur-
rency controllers that avoid priority inversions use locking [1, 101. Thus, by
applying our theory, we have been able to derive the first timestamp-based
concurrency controller for avoiding priority inversions.

5.1 Serializability and Priority Inversion

A task accesses a database by encapsulating its reads and writes on the data-
base within a transaction. A concurrency controller schedules these transac-
tions so that their execution is serializable-that is, each transaction either
commits or aborts, and execution of the committed transactions is equiv-
alent to executing them in some serial order. A transaction ri precedes a
transaction rj in a history h, written r,<rj, if in all serial executions equiv-
alent to h, r, executes before rj. Serializability of a set of transactions T
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can be characterized in terms of a serialization graph, G = (T, Ec) where
Ec = f{(t. t,) Iu<v}. By definition, < is an irreflexive partial order, so G is
acyclic.

By allowing only serializable executions, a concurrency controller ensures
that the serialization graph G never contains cycles [2]. For example, suppose
some operation a, of ri was executed before a conflicting operation 3, of r,
where two operations conflict if their execution order cannot be interchanged
without altering the effects of one or the other. In this case. a concurrency
controller effectively adds an edge from 7, to rj in G. If two more conflicting
operations, -Yi of ri and 6j of 7j, are to be executed, then -yj must execute
before 6j, since to do otherwise would add an edge in G from rj to ri, creating
a cycle.

Delays

One way to ensure that a serialization graph never contains cycles is by de-
laying execution of transactions. Henceforth, we will assume that if ri -r

due to a delay introduced by a concurrency controller, then r,<ri. This is
a reasonable assumption because were it not true, then there would exist
an equivalent serial execution in which ri precedes -i- yet the concurrency
controller delays some operation ai of r, until operation 1j of rj completes.
Such a delay would be capricious, since all the operations of ri could execute
before any operation of rj and yield the same result as when ai is delayed. It
is, therefore, not surprising that all the concurrency control algorithms that
we know of satisfy this assumption.

By delaying transactions, a concurrency controller can cause priority in-
versions. Define a priority-ordered concurrency controller to be one that
ensures

POCCI: For all transactions ri and rj, if 7-j starts before 7i completes and
7> >- 7,, then r, < 7.

POCC1 ensures that higher-priority transactions are ordered before concur-
rently executed lower-priority ones.

We now show that a priority-ordered concurrency controller cannot intro-
duce priority inversions: By assumption, delay edges that are in a composite
system graph and can be attributed to the concurrency controller have cor-
responding conflict edges in the serialization graph. By POCCI, for every
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priority edge in the composite system graph there is a corresponding conflict
edge in the serialization graph. Thus, there is a wr-cycle in the composite
system graph only if there is a cycle in the serialization graph. Since a con-
currency controller ensures the absence of cycles in the serialization graph.
there can be no 7r-cvcle in the composite system graph.

Aborts

In addition to delaying transactions, some concurrency controllers avoid cv-
cles in the serialization graph by aborting transactions. Aborting a transac-
tion can cause a priority inversion-for example, when a lower-priority trans-
action causes a higher-priority transaction to abort. In terms of our model,
aborting a transaction can be regarded as having it wait for some (virtual)
resource held by other transactions. This is sensible because a transaction
r that is aborted by the concurrency controller and later rescheduled does
no useful work prior to its restart, and, in our model, a transaction that can
do no useful work is considered blocked.

Whether or not aborting r will cause a priority inversion depends on the
priorities of transactions holding the virtual resource that is being requested
by (and is blocking) 7a. The set B , of transactions holding this virtual
resource are those that, had they not executed at all, would not have led to
r being aborted. Thus, if each transaction in B,, is in the peer group of 7.,

then aborting 7, to avoid a cycle in the serialization graph does not create a
priority inversion. Let C be the set of transactions involved in cycles in the
serialization graph, and let A be the subset of C that are aborted in order
to remove those cycles. Then, B. C C - A holds, and we have:

POCC2 : A concurrency controller that aborts a transaction r. will avoid

priority inversions provided B. is a subset of the peer group of r.

5.2 Timestamp-based Concurrency Controllers

Timestamp-based concurrency controllers work by assigning a unique time-
stamp ts(r) to each transaction ri. These timestamps are used to totally
order transactions. The ordering is such that if ts(ri) < ts(rj), then there is
an edge in the serialization graph from r to Tr.

Timestamp-based concurrency controllers both delay transactions and

abort transactions. In order to ensure that such a concurrency controller does
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not introduce priority inversions, two conditions suffice. The first condition
is that the concurrency controller be priority-ordered, since being priority-
ordered implies that delays will not introduce priority inversions. The second
is that aborts do not introduce priority inversions. We now consider each of
these conditions in detail.

A timestamp-based concurrency controller can be made priority-ordered
by suitable assignment of timestamps. This is because POCC, requires that

certain edges exist in a serialization graph. Since the concurrency controller
adds such edges by assigning timestamps, it suffices to ensure that

POTS: If 7) starts before ri completes and rj >-- ri, then ts(r1 ) < ts(rj).

It is not hard to assign such timestamps. For simplicity, assume integer
priorities; extension to general priorities is straightforward. Also assume
there exist P priority levels 1,2 ..... P, where level t, >.- tj if and only if

ei > e.,, and assume that timestamps are real numbers. Let

maxc be the largest timestamp of all committed transactions,

mino be the smallest timestamp of all active transactions of
priority i, and

max2 be the largest timestamp of all active transactions of pri-
ority i.

If no transactions of priority i are active, then the value of mina and maz?
is defined to be I, where min(x, _L) = max(x, _L) = x. Initially, maxc = 0.0
and for all priority levels f, min, ma4 = I. A timestamp s for a new

transaction with priority p can be computed by finding upper and lower
bounds for its value and selecting a unique value in that interval. To be
able to commit, the value of s must be larger than mar"; to satisfy POTS, it
must be larger than the timestamps assigned to all transactions with higher-
priority and smaller than the timestamps assigned to all transactions with
lower priority. This is implemented by the code in Figure 3.

Having ensured that the concurrency controller is priority-ordered, it only
remains to ensure that aborts do not introduce priority inversions. Suppose
operation aj from transaction ri is submitted before a conflicting operation
.3, from r). If ts(r,) > ts(r,), then executing these operations in the order
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low := max[max c, max': 1 < f < p];
high := min[mina: p < f < P];
if (high = _) then s := low + 1

else s := (low + high)/2;
rnnin:= rin[minat, s];

max := max[inaxa, s];

Figure 3: Timestamp Allocator

they are submitted would create a cycle in the serialization graph. Thus, the
concurrency controller must abort either ri or rj to avoid this cycle. From
POTS, if 7rs >- r, then ts(rj) < ts(7;) holds, so, according to POCC 2, no
priority inversion can result by aborting ts(ri). The following rule, there-
fore, describes a rule for aborting transactions without introducing priority
inversions.

Priority Abort Rule: If ai from transaction ri is submitted heforze con-
flicting operation 3j from 7j and ts(r,) > f_( 7 ',), then r, is aborted to
avoid a cycle in the serialization graph.

Notice that this rule is the opposite of what is traditionally used in timestamp-
based concurrency controllers [2]. Traditionally, the transaction that submit-
ted the last operation (e.g. rj above) would be aborted because this elim-
inates all cycles introduced by that operation. For example, suppose that
ts(7,) = i and the following sequence of operations are submitted, where
rj[xJ denotes an operation by transaction r to read x and wi[x] denotes an
operation by transaction r, to write x:

r2[x] r3[X] WI[X].

Performing w, [xj would introduce two cycles in the serialization graph--one
involving 71 and 72, the other involving 7 1 and r3. The traditional abort rule
would abort rl, but would create a priority inversion if r, >- r2 or rl >- r3.
The Priority Abort Rule would abort both r2 and 73 and cannot cause a
priority inversion because of the way timestamps are assigned.

6 Actually, if both operations are writes, the second write can be ignored and no conflict

occurs till.
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Implementing the Priority Abort Rule is not completely straightforward.
See [7] for a detailed explanation of such an implementation.

6 Systems with Multiple Schedulers

It is not uncommon for system resources to be partitioned into disjoint sub-
sets, where each subset is controlled by an independent scheduler. For ex-
ample, it is typical for the processors of a system to be scheduled by a CPU
scheduler, disk drives to be scheduled by some device driver module, and
database accesses to be scheduled by the concurrency control module of a
database manager. A database transaction would interact with all three
separate schedulers during its execution.

Although using multiple, independent schedulers simplifies construction
of a system, it complicates the avoidance of priority inversions. This is be-
cause a scheduler's decision to delay granting some resource to a task must
be made using only partial information about the system state, and a delay
caused by one scheduler might cause a priority inversion with tasks being
delayed by other schedulers. To see this, consider a system with schedulers
S and S2 and tasks 7i, rj, and rk, where ri >- rk. Further, suppose that
an allocation decision by S, leads to r --- r and an allocation decision by

S2 leads to 7j -- rk. This is a priority inversion since (ri -", rk) A (r, >- rk).

Notice that neither S1 nor S2 maintains sufficient local information to detect
or prevent this priority inversion.

We can enjoy the benefits of separate schedulers if, by analyzing each
scheduler in isolation, freedom from priority inversions can be ensured. An
obvious local criterion for correctness of a scheduler S is that S prevent pri-
ority inversions among tasks that have requested but not released resources
from S. The two-scheduler example of the previous paragraph illustrates
that this criterion by itself is not sufficient to ensure freedom from priority
inversion-both S, and S2 avoided such local priority inversions. We, there-
fore, now investigate useful conditions to ensure that avoiding local priority
inversions is sufficient for avoiding all priority inversion.

Consider a system in which there is a set of independent schedulers and
a single priority assignment that is known to all.7 Define r, S-+ rj to hold if

t

7The case where schedulers do not share a common priority assignment is discussed in
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and only if r, -1- r and scheduler S is delaying r,'s request for some resource.
t

The local state of a scheduler S can be characterized by a directed graph
Gs = (T, Es) where Es = {(u. v) I v >- u V u s, v}. Thus, Gs includes all

of the priority edges of the composite system graph but only a subset of the

waits-for edges. A local priority inversion exists for scheduler S if and only
if GS contains a 7r-cycle.

Since the composite system graph for a system with multiple schedulers
is given by G = (T, Us Es), a system contains a priority inversion at time t

if and only if Us Gs contains a r-cycle. However, as illustrated in the two-
scheduler example above, existence of a r-cycle in Us Gs does not imply a

-cvcle in Gs for some scheduler S. The following theorem shows that this
discrepancy is linked to specifying priority assignments with partial orders.

Theorem 2 A system with multiple schedulers is free from priority inversion
if the priority assignment is a total order and each scheduler avoids local
priority inversions.

Proof: By contradiction. Assume that the system has a priority inversion
characterized by the r-cycle

-r, -=> 7j -- -- . . -- r k  - Tt 7-*" "-- i

in the composite system graph. For each rk --+ rt in the wr-cycle, we conclude
T >- rk because every pair of tasks is related by the priority assignment

and no scheduler allows a local priority inversion. By the transitivity of >--,
we have i >-- r. But, from r, # r, we conclude 7j >- ri and obtain the
contradiction that ri >- r. and r >- r.

Even in systems where the priority assignment is a partial order, it is pos-
sible to design schedulers that use only local information yet still manage to

avoid all priority inversions. The strategy is for schedulers to be conservative

and never permit a local configuration necessary for a 7r-cycle to develop. An
example of such a strategy is given by the following theorem.

Theorem 3 If a task r, is never allowed to wait when there exists r such that

r, >- rj, then the system is guaranteed to be free from all priority inversions.

Section 7.2.
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Proof The stated allocation policy prevents executions that lead to 7,

7, - for any r. Since this is a necessary configuration for a --cycle, the
system cannot contain priority inversions.

A symmetric policy, which prevents r -- j = 7, configurations, also
works. However. both policies may degenerate to "do not allocate any re-
source to any task," a policy that is not very useful. The simple system with
three tasks 7i, rj, 7k and a priority assignment where 7, >- 7, and 7k >- 7,

illustrates the problem with the first policy. Suppose all three tasks share a
single processor. Task -r cannot be scheduled since this allocation decision
would lead to (7 -7 r) A (rj >- r,), a priority inversion. Task r, cannot

be scheduled since it would lead to rk -- r, which violates the schedulingt
policy that a task (rk) is never allowed to wait when there exists a task (r,)
with lower priority. Finally, task 7k cannot be scheduled for the symmetric

argument. In other words, none of the three tasks can run even though two
have incomparable priorities!

In many systems, the priority assignment is encoded by associating an
integer priority fI(r) with each task r. If each task is assigned a unique
priority, then the result is a total order and Theorem 2 implies that avoiding
local priority inversions is sufficient for avoiding all priority inversions. How-
ever, constructing a total order from a partial order can require introduction
of fictitious priority relations-avoiding priority inversions that involve these
fictitious relations is unnecessary. Thus, we now consider the case where a
unique priority is not assigned to each task, but I does satisfy the follow-

ing less-restrictive conditions, which define a partial order (as opposed to an
irreflexive partial order).

P1. U1(r) > [-I(r') if and only if r >- 7'

P2. FI(r) = 'I(r') implies -(r >- r') A -(r' >- r).

Observe that for a given priority assignment, a mapping that satisfies

P1 and P2 might require adding some fictitious priority relations, but would

require adding fewer priority relations than if rI defined a total order. The
following theorem asserts that even though II defines a partial order, due

to P1 and P2, avoiding local priority-inversions suffices to avoid all priority

inversions.
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Theorem 4 If a task 7 is only allowed to wait for a task 7' for which
rI(7) -I(7') then the system is guaranteed to be free from all priority int'er-
S-ons.

Proof: By contradiction. Assume a priority inversion characterized by
the -- cvcle

7 7i ...-- 7 k  7 -- . .---+ 7 7

in the composite system graph. From the allocation policy, 7k -- -r1 implies
rI(r,) 2! fI(7k) for any two tasks 7k and 71 in the 7r-cycle. By transitivity.
we have l(r,) > rl(r 3 ). By the hypothesis, T3 >- r, and thus by I'l we have
rI(7,) > I(7,), a contradiction. 0

Note that the problem illustrated above for the policy of Theorem 3
no longer exists. One possible mapping that corresponds to the priority
assignment of the example is II(r,) = 1. 11(rj) = fl(7k) = 2. Since tasks
7, and 7k have equal priority levels, either one could be scheduled without
risking a priority inversion in the global system state.

7 Discussion

The characterization of priority inversion given above is useful only to the
extent that the formal model on which it is based correctly captures the
relevant aspects of reality. We, therefore, now discuss the suitability of our
model and the relaxation of certain of its restrictions.

7.1 Priority Assignments as Partial Orders

We have elected to formalize priority assignments using irreflexive partial
orders rather than mappings from tasks to integers (as is done in many
operatirg systems). This selection was made because irreflexive partial orders
are more expressive. For example, there is no mapping of tasks to integers to
5tate that a task r, competes on an equal footing with both r2 and 73 but r 3

has priority over r2. Such a mapping T would have to satisfy 4(71) = T((72).

,(r-) = T(r 3 ) and 11(r 3) > qf(r 2 ). Also, using an irreflexive partial order
avoids introducing fictitious priority relations, which, in turn, avoid fictitious

priority inversions.
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When irreilexive partial oilers are used to specify priority assignments.
there are two possible interpretations for the case where two tasks have in-
comparable priorities. One is that these tasks do not compete for resources:
the other is that these tasks compete for resources but on an equal footing.

In either case, if two tasks are incomparable then, by definition (see Sec-
tion 2.1) each wiI be in the neer group of the other. At first, including in
the peer group for -r tasks that do not compete for resources with 7 might
seem troubling. However, if two tasks do not compete for resources, then it
doesn't matter whether one is in the peer group of the other-an:; analysis
based on that peer group will be no more complicated by the presence of the
non-competing task.

Using irreflexive partial orders to specify priority assignment, does have
drawbacks. As showi- in Section 6, using individual schedulers that ensure
freedom from local priority inversion does not by itself guarantee that a sys-
tem will be free of priority inversions. However, Theorem 4 shows that if
the priority assignment is restricted to one that could be represented by a
mapping from tasks to integers, guaranteeing freedom from local priority in-
versions does guarantee freedom from all priority inversions. Thus, in systems
with multipie, independent schedulers. there are advantages to employing the
less-expressive formulation of priority assignment.

7.2 Static and Global Priority Assignment

One limitation of our model is the assumption of a single, static priority
assignment. This rules out systems where a task's priority is a function of the
system state. It also rules out systems with multiple independent schedulers
that each assign different priorities to tasks. A time-varying or dynamic

priority structure can be modeled as a sequence of priority assignments,

>-1, >-2, .t,

where >-t is the priority assignment in effect at time t. The formal characteri-
zation of priority inversion in Section 3 remains valid with this extension, but
the protocols of Sections 4 and 5 requir modification. This is because if the

priority assignment is not static, priority inversions can be caused simply by
changing the priority assignment; with a static priority assignment, a nriority

inversion can onl" occur from ap (ungranted) request operation. A.-oiding
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priority inversions for a dynamic priority structure, therefore, requires that
changes to the priority assignment be coupled with the waits-for relation.

Our definition of priority inversion does not work for the case where dif-
ferent schedulers can assign different priorities to tasks. To understand the
problem, consider a system with two resources-a processor and a communi-
cations channel-and two tasks rI and 72. Suppose the priority assignment
>-p used by the processor has -r >-p r2 and the priority assignment >-c used
by the channel has r2 >-c 1. It is Dossible for rl -7 r2 due to an allocation

decision by the communications channel and for 72 - r1 due to an allocation~t
decision by the processor. We believe that this scenario should not be con-
sidered a priority inversion because no task is being prevented from using a
resource by a task that has a lower priority for the use of that resource. How-
ever, (r 1 >- r72 ) A (71 - 2 ) holds, which means there is a priority inversion

according to the definition of Section 3.

7.3 Multiple-unit Resource Requests

Another limitation of our model is the requirement that tasks request in-
dividual resources sequentially. As a result of this limitation, we have not
had to define what constitutes a priority inversion when a task can request
multiple resources simultaneously. There is good reason for this omission-it
is not clear what the correct definition should be. Consider a system con-
sisting of two processors P and P2 and three tasks rI, r2 and 73. Further,
suppose r >- 72, 1 requires two processors, and r2 and -r3 each require a
single processor. It seems reasonable to claim that r2 executing on P, while
P2 is idle constitutes a priority inversion, since -2 holds a resource required
by higher-priority task 1rI. What is not clear is whether r3 executing on P
while P2 is idle should al.o be considered a priority inversion. On the one
hand, no task holds resources required by a higher-priority task, suggesting
that this should not be considered a priority inversion. On the other hand,
if this is not considered a priority inversion then the seemingly harmless act
of putting idle processor P2 to work executing r2 should not be considered
a priority inversion, either. Yet, -2 now holds a resource required by r,
implying that a priority inversion exists.
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7.4 Bounded Priority Inversions

This paper has been concerned with avoiding priority inversions completely.
However. it is sometimes acceptable for priority inversions to occur, provided
they are bounded in duration. Suppose a task is being delayed by some
lower priority task. If the duration of this delay has a known bound. then we
could view the situation as if the delay were included in the fixed overhead
associated with allocating the resource. So, by adding to the cost of a request
operation any delay due to a priority inversion, an analysis using peer groups
would remain valid (despite the priority inversion). The priority inheritance
protocols in [10], for example, provide a way to bound priority inversions
under certain circumstances; the protocols of [8] prevent priority inversions
of unbounded duration.

Define a D-bounded priority inversion to be a priority inversion whose
duration is not longer than D and an unbounded priority inversion to be one
whose duration cannot be so bounded. Avoiding all but D-bounded priority
inversions can be easier and less costly than avoiding all priority inversions 8

For example, detection can be used to eliminate all but P-bounded priority
inversions-tasks run their course and periodically a protocol is executed
to detect and eliminate priority inversions that may have formed.9 The
frequency with which the detector runs determines the upper bound D on
the duration of priority inversions.

In theory, it is easy to build a detector for priority inversions. The detector
must construct the composite system graph from the information available
Lo schedulers. In a distributed system with multiple independent schedulers.
a distributed snapshot algorithm [3] would have to be employed for this
purpose. Priority inversion detection is then simply a matter of checking for
y-cycles in the composite system graph of a snapshot. Note, however, that
a priority inversion might have vanished by the time it is detected because
occurrence of a r-cycle is not a stable property [3]. Such "ghost" priority
inversions do not cause problems, however, because they are not unbounded
priority inversions.

'Analyzing a scheduling protocol to determine a bouud D can be a hard problem,
however [101.

9Elimination of the priority inversion requires either that resource allocations to tasks
be preemptable or that task executions be abortable.

26

. . . . ,. =-.= -..= nn umnm mmnmm l II II M im



8 Conclusions

This paper gives a formal characterization of priority inversion and gives a
set of sufficient conditions for its avoidance. Based on these conditions, we
have been able to derive new protocols to avoid priority inversion. We have
also been able to give conditions to avoid priority inversion in systems with
multiple schedulers that do not communicate.

The existence of a theory characterizing priority inversions makes it possi-
ble to design both general and application-specific protocols to avoid priority
inversions. The theory also permits the consequences of system design deci-
sions to be better understood. For example, we were surprised to find that
choosing between an irreflexive partial order and an integer mapping repre-
sentation of priority assignment can be significant. We were also surprised
that the definition of priority inversion is elusive for systems in which mul-
tiple resource requests are possible or in which independent schedulers use
different priority assignments.
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