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Parameter Estimation in Linear Filtering
. by
G. Kallianpur and R. S. Selukar *
University of North Carolina at Chapel Hill
Supposc on a probability space (Q,F,P ) a partially obscrvabic random process
(x,,y,),t2 0: is given wheic only the seccnd component (y,) is observed. Furth-
crmore assume that (x;,y,) satisfy the following system of stochastic differential

equations driven by independent Wiener processes (W (1)) and (W (1))

de, = =Bx,de + dW ((¢), x9=0

dv, = ox, dr + dW 5(1), yo=0; a,Be (ahb),a> O

We obtain a large deviation inequality for the muaximum likclihood cstimator
. (m.le.) of the unknown parameter 8= (e,3). This incquality cnables us 10 prove
the strong consistency, asymptotic normality and covergence of the moments of the
m.le.. The method of proof can be extended to obtain similar results when multi-
dimensional instead of one dimeasional processes are considercd and 6 is a k-

dimensional vector.

Key words: Kalman filtering, identification, large deviation
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Parameter Estimation in Linear Filtering

I. Introduction Suppose on a probability space (Q,F,P ) a partially observ-
able random process (x,,y,),r2 0; is given where only the sccond component
(y,) is observed (both the components could be vector valued). Furthermore
assume that (x,,y,) satisfy the following system of stochastic diffcrential cquations

(SDE):

de, = Fx,dr + GdW (1), xp= X,

dy,

H x, dt + dW (1), yo= 0; (1.

where (W (1)) and (W ,(t)) are independent standard Wicner processes and
F,G,H are nonrandom matrix valued functions of appropriatc order. The initial
value X, is assumed to be a Gaussian random variable independent of both

(W (1)) and (W (¢)).

The estimation of unknown parameters in H ,G and F, bascd on observations
(¥,,0€ t< T) is known as "system identification”. It appears that this problem of
system identification was first considered by Balakrishnan (1973). who proved the
weak local consistency of the maximum likelihood estimator (m.l.c.) under suitable
regularity and identifiability assumptions. Later Bagchi and Borkar(1984) showed
the strong global consistency of the m.le., for a slightly more general model. In
their case the signal process could be an infinite dimensional process of the follow-
ing kind:

!

X = | Si_gDdW (s)
0

where S, 12 0, is a strongly continuous semigroup with generator A on a scpar-
able Hilbert space H, W, is a Brownian motion on a scparable Hilbert space K,

and D is a bounded linear operator from K to H. The obscrvation process v, .




.2

however, is finitc dimensional and satisfies the following SDE:

14

yo= [ Cxgds+ Wyr)
0

where C is a bounded lincar operator from H to R9 and W, is 29 valued
Brownian motion independent of W . The vector of unknown system parameters
0 is assumed to be a point from a compact set in R k.,

Under suitable stability, controllability and differentiability assumptions they
prove the strong consistency of the m.le. of 8. No discussion of the rate ot con-

vergence is provided.

It was Kutoyants(1984) who first considered the question of asymptotic nor-
mality of the m.l.ec. in this setting. However, he only considered the following spe-

cial case of the model in (1.1):

dx,

—Bx,dr + dW (1), x4=0

dv, = ax,dt + dW (1), yp=0;, a,Be (a.b),a> 0. (1.2)

(All the processes involved in (1.2) arc assumed to be onc dimcensionzly. fn the
above model, when B is a known constant, he obtained a large deviation incquality
for the m.l.e. of & which in turn implies the strong consistency, asymptotic normal-

ity and the convergence of moments.

Here we extend this rcsuilt to the m.le. of the bivariate paramecter 6= (OL’B).
It should be emphasized that Kutoyants’s technique can not be applicd o this
bivariate estimation problem (not cven for the univariate estimation of 3 when & is
a known constant) since a spccial type of dependence of the filtered signal (which
appears in the likelihood ratio) on the unknown parameter o is very cssential for
his approach. In the case of the above model the dependence of the filtered signal
on the unknown parameter 0 is not of this particular type and thus his technique is

no longer applicable. This comment is bricfly explained in a remark (Remark 3.2)




-3

at the end of this article. On the other hand it will be clear that the method we
have used can be applied without any major modification to the general model con-
sidered in (1.1) if, besides identifiability, the following two conditions are satisticd:
i) The parameter space ® is an open, bounded subset of R k.

ii) The eigenvalues of the matrix F lic in the open left-half of the complex planc.

(However, the computations become quitec cumbersome.)

The main result along with the necessary notation is given in Section 2 and the

proof which is based on Theorem 3.1 is givenin Section 3.

2. Notation and Statements of Results From now on, unless mentioned other-
wise, the signal and observation processes x,,y,,t2 0; will refer to the solution of
the SDE in (1.2). Also assurae that the bivariate parameter 8= (o,3) is an ele-
ment of ®@ = (a,p)x(a,b),a > 0, b < o . The letter C (with or without a
subscript) will denote a positive constant independent of T (the time paramecter); il
need not be the same in two different expressions.

For 0 < r let X, be the conditional expectation of x, given the observa-

tions up to time 7 ie.,
5 =E(x, 1FY) (2.1

where FY, is the o- field generated by {y,, 0< s<r } and all the P-null sets;

furhermore let

[R]
tJ

dv, = dy, — ax, dt. «

Then it is well-known that (v,) is @ Wiener process and morcover the process (X))

satisfies the SDE,
dt, = -Bx,dt + g, dv,, xy3=0;

where a, is the (unique) solution of a (deterministic) differential cquation known

as the Riccati equation. More preciscly, a, is the solution of the following




nonlinear differential cquation:

%at = 1-0a%q,’-2Bq,. ay=0.

All these tacts

5= =B+ V o+ p?
: .
o

It is also known that as t > o, @, 9 ag, a

can be found in Liptser & Shiryayev (1978, Vol II, 16.2). Now we muake a sympli-
fying assumption commonly made in the literature (sce, ¢.g., Kutovants (1984, pp
103)). We assume that the system has rcached the steady state i.c. we assume that

X, satisfies the SDE given below:

df,:—B.f,d[+O(aedV,, ‘fO:O (2.3)
Then from (2.2) and (2.3}, it is casy to verify that
!
s ) — ba(tl-
x,(0,y) = Ol“agj e~ 0ol S)dys (2.4)
0

where bg = v o+ B2

Let Crt dcnote the space of real valued continuous functions defined on [0,7 |
endowed with the sup-norm topology and let Cy be the G-field of Borel sets in
Cr. Furthermore, let PTO denote the measure induced by the paths

(y,0€s<T ) on (Cr,Cr).
Then in view of the relation

dy, = ou%,(0,y) dt + dv,5, (2.35)

® is a Wiener process, it follows that PT9 is equivalent to the

and the fact that v,
standard Wicner measure fy defined on ( Cr,Cy ). Furhcermore the density

or the likelihood function of the data ( y,,0< s< T ) at 0 is given by

T T T
o (] at(8y)d [ atei8y)%d
(v) = exp ax(0,v)dy, — o X, (0,v) dr ). (2.6)
duW 0 : ‘ 0 ‘

l\)"-—‘

The verification of this fact is quitc straight forward; for cxample it follows from
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the combination of two results (Theorems 7.3.1 and 7.3.2, '76) trom Kalhanpur
pp [

(1980).

Let 67(y) be the mle. of 8 based on ebservations (v,), 0 < ¢ < T ic., the
maximum, over the parameter space, of the above likelihood ratio 1s ataned 9,
Suppose H g, Ry and G g are trace class operators (R g is sclf-adjoint) detined on

L3{0.T ] with respective kernels ¢

o

Ho(t.s) = = ).[I+B(t-s)—Va3+B3(t—.s')]e_"“:’“:”"' (27
Noa+ B

if 0€ s< 1< T and equal to zero otherwise;

-Bu-s _ e—ﬁ(l+3‘)
Rglt.s) = 38 L0 s < T 2N

and

Golr.s) = (1+-\7—_%-_E’-)[1+B(t—s)]e"“.“irﬂi“‘” (1 9)
o+ B

if 0< s< 1< T and equal to zero otherwise.
* * . R . .
Let H and G denote the corresponding adjoint operat ~rs. Then it is casy 1o ver-

ify the following:

i) lim = trace[HRH '+ HH"] = G,2< oo

T Do

ii) lim %trace[GRG*+GG']= 0,2 < oo

T 9o

and

i) lim %zraee[HRGwHG‘]: Gy < oo

T —oo
Also if £ denotes the 2x2 symmetric matrix with £;;=06,%, Z,.=6," and

;= 04y, then itis casy to check that X is strictly positive dcefinite.
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Theorem 2.1 The m.l.e. of 8 has the following properties

1) éf is a strongly cosistent estimator of 9.

iy As T tends to infinity the distribution of ~ T (ér - 8) converges 1o the normal distribu-
tion with zero mean and covariance matrix =V, Furthemore. for every p> O, e poth
moment of the norm of ~ T (é,--e) converges to the pth moment of the norm of thiy
normal variable.

iiiy For h> O and large T. T> T,
POT{ Iv_f (é["‘g) [> h }-_— B()CXP(—h()/l:)

where B b > 0 are constants.

3. Proof: The result is proved by verifying the conditions of the thecorem given
below (Theorem 3.1y which is a modified version of a result by Ibragimov &
Hasminski(1981) (Thcorem 10.1, Ch.1). In this version the conditions of the
theorem are stated in terms of the logiikelihood function rather than the likelihood
function and morcover the statement is simplificd to suit this particular cxample ol
bivariate parameter estimation. The proof of this modified version can be casihh
deduced from a more general result from Kallianpur and Sclukart 1989,

For stating Theorem 3.1 we first need some notation:

For 6 € © and observations (y,), 0< 1< T: let

dP g’
[(0) = I7(B.y) = In (v). .
dply
Then from (2.6).
T | T
[(8) = [ af,(8.y)dy, — = [ a’i(B.y)" d (39
Y -0

Supposc that 8= (a.B). an clement of ©, is the true paramcter. For cach
T > 0, define a random function Zy(u) with domain U . a subset of R*. as

follows:
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Ur =T (®-8)=\T (a~a.h-a)x (a=B.h-P (3.3
and foru € Uy,

Zolu) =10+ == ) - 1(8 (3.4)
NT

(Clearly Z¢+ and Uy depend on the true parameter 6 but this dependenc s

suppressed for notational convenienee.)

Theorem 3.1 Assume thar the random functions Z (1) satsty the followory three
conditions:

)

EglZ7(u)=Zp(w)P< CMY ly—w i
1

1) Forue Uy andT large, T > T,
1 _ , 5
Eeexp(—J:Z»,'(u))S exp(—C lul~).

111) As T — ~ the finite dimensional distributions of Z (i) converge [0 the finite

dimensional distributions of Z (u) where for u € R :,
, 1,
Z(u)y=uYg- Tu Agu,

here Y g is a zero mean bivariate normal variable with invertible covariance matrix Ny,
(Note that Z (1) ic a real valued, continuous random function defined on R which
attains its maximum at a unique ( random) point A~ lYe.)

Then the m.le. 7 is a consisten: estimator of @ and NT ( 07 — ) converges. in distri-

butica, to Ay~ 'Y o, Moreover. for h> O and large T, T> T,
Pol (NT (8;-0)1> h = Byexp(=hyh?)
where B o,b o> () are constants.  This implies that for allp 2 0,

im EINT (8, -0) W = E A"y i

T — o
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We shall verify the conditions of Theorem 3.1 using several lemmas. The first two

lemmas are technical; Lemma 3.1, (i) gives a bound on the higher moments ot the
I . . . -

L - norm of a square integrable Gaussian process in terms ol its sceond moment

and Lemma 3.1, (i) bounds its moment generating function. The lemma is proved

using some simple propertics of the Karhunen-Loeve expansion of the square

integrable Gaussian processes. The details of the proof can be found in Sclu-

kari 1989) (Lemmas 4.1 & 4.2, Ch.3).

Let (Y, )}.0€t< T bea zero mean Gaussian process such that

l

E |

Let D (r,5) be the covariance function of the process and D be the corresponding

Y,2dt < oo
)

covarince operator. It is well-known that D is a self-adjoint trace class operator and

T
trace (D) = EJ (Y dr. (.
0

oY)
i

Lemma 3.1 ¢ Forallk 2 |1

T k T k
E([Yrd) < kX(E(] ¥, 2dr)]
0 0

ti
! ! (D)
2 race
3 — < < QA AT S
E exp( fo Y, “dt) € expi YT ||}

where |\D || is the operator norm of D .

In the next femma we collect some useful properties of an integral operator detined
on L2%[0,T]. The proof of this lemma is simple and so it is ommitied.
For A> 0 and m a non-negative integer, et L be an integral operator

dcfined on L 2[().TJ with kernel L (f,s) given by,




Lit,s)=(t=s)™" e *""S) (0< 5< 1< T
= () otherwise.

That is, for f e L*[0.,T].

T

(Lf)t)y= | Lits)f(s)ds.
0

L is a special casc of Volrerra operator. Let L {1 be the operator norm of L and
L™ denote the adjoint of L. Then LL  isa self-adjoint trace class operator and it

is easy to check that

T
Trace(LL") = f f Lz(t,s)ds dr
00
T T
= Tj WM e M gy —j uimel o= 2hu gy
0 0
Lemma 3.2
DL s v LmrD
xm*-l

2
F(2m+1) T

iy Trace(LL ") < ——
(Z‘A')-m-rj

FTQm+1H) T
(2)‘)2m+1 2

. 2
iv) him 1 Trace(LL ) = w

iiiy Forlarge T, Trace(LL Y2

v) If L { and L 5 are rwo Volterra operators of the ubove tvpe then the operator LL ~ is
also a Volterra operator which is a finite linear combination of the operators of the above

Iype.

Remark 3.1 Note that the operator norm of L has a bound independent ot T and
the trace of LL " is of the same order as that of T. It is obvious that statcments ol
the above lemma can also be obtained for an operator M which is a lincar combi-

nation of L;s.
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Let X,(8.y) = o £,(0,y). Then, using (2.4),

4

X,(8,v)=(-p+ \ a3+[32)j PR ATy dv,. (3.6)
0
From (3.2)
T 1 T
1By = [ X,By)dy, - —[ X @ y)di
4] - 0
Therefore
Zou) = [(0+—=) - [(6)
vNT
T
= [ 1X.(8
0
1 T
- [ X AOr =)= X0y ldn

0

If we complete the square in the second term of the RHS and rcarrange the terms
we get,

T
T(u)-f [X,(0+ _,y) X.(6,y)]dv,®

T )
f ,(6+T,L-4.T:,y)—)?,(9,y)/ dt (3.7
0

tol-—-

where dv,ez dy,—)?,(e,y) dr. Recall that under Py, v,® is a standard
Wicner process.

From now on, unless stated otherwise, all the expectations arc taken w.r.t. the

truc probability measure PeT. Also, in order to simplify the notation we may

—.y) and dv, = dv,°®

sometimes write, Z(u) = Zr(u), )2,(u) = X,(9+ N~

The next lemma verifics the first condition of Theorem 3.1,

Lemma 33 For u,welUr, ulwis M,
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E(Zr(u)y-—Zp(w) )< CMYlu-wt

where C depends onlvona and b. Recallthat ©® = (a,b)x(a.,b).

Proof From (3.7),
T

Zr(u)=Zr(w)= [ [X,(u) = X, (w)]dv,
0

19 ] —

.
[ (1R (w)= X000 P = [ X owr = X,00) ] )t
0

= TERM 1 - -i—TERMZ say.

re

Then,
E(Z(u) - Z(w))J' < 16{ E(TERM 1)4 + Tlé—E(TERM 2)? ). (3.%)
Consider E(TERM 1)4:

.
E(TERM 1)* = E([ [X(u)- X, (w)]dv, |}
0

;
< 16E ([ [ X (u) = X(w) PP ar
0

(Follows from Burkholder’s martingale incquality and the faci that (v, ) is a

Wiener process under Py’ )

T
< 64([ E(X,(u)~X/(w) [ dr ) (3.9)
0
becausc of Lemma 3.1 (i).
Note that from (3.6),
{
Xquj—Xpw)= | (L, = L,)(t;s)dv, (310
0

where L, =L « is given as follows:

“ B+ -2
NT




B,(t-s)

L,(t,si=A, e for 0 s <t < T

= () otherwise;

A, = A (Bt —2) + (B )2 (1 I
= = —(P+—=)+ {(P+ =)+ (a+—=)"}"
u ot B+ =)+ B+ ) R
and
1 u <
2 1 2.2
B, =B = +—=)2+ at+ —— “.
D= B = (B =) ek =)
T
(Note that u = (u,u;) is apointin Ur < R %)
Now recall that (sce (1.2))
dy, = ax, dr+dW (1) (3.1

where the ’signal’ (x,) and the observation 'noise’ (W (1)) arc independent. Let
R (1,s) denote the covariance function of x, ic. K(t,5) = E(x,x,). Then since

X, is the familiar Ornstein-Uhlenbeck process it follows that

-Bu-si _ e—B(l+s)
Rits)= . (312

2B

If R is the integral operator with the kernel R (#,5). Then it is casy 1o check that

R = R R |® where R is the Volterra operator with kernel
R, (t,s) = e=BU=s) for 0< s<t< T

Therefore, by Lemma 3.2, R is a trace class operator and

2
IR ] < - 1313

From (3.10), (3.11) and the independence of (x,) and (W (1)) it follows that

T
[ E(Xu)-X,(w) [ dr
0
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= [ [ [ (Lu=L,i(tv) R(vis)(Ly, = Ly,)(t.s)ds dv dr

0 0 0
T 1

+ [ | (Ly-L,)Hes)ds dr.
0 0

= Trace {(L,~L,)R(L,~L,)" }+ Trace{(L,—L J(L,~L,)"]

where L, denotes the integral operator with kernel L, (1,5) and (L) s
adjoint.

Next using (3.13) and the fact that, for any two trace class operators J and /5,
Trace(JJ,) € Trace(Jy). 1] (3.14)

where 11/, (1= the operator norm of J,, it follows that

IN

T

-~ A o) 7 *
[ EIX(u)-Xw)Fdi < (1+ E?)Tmce(Lu-quL“—Lw)
0

T 1!
= (1+-—25)J’ f (LM—LW)?'([,.S‘)CI'S dr.
B 0 :

IA

C {(ul—w1)2+(u2—w2)3} (3.15)

The last step is obtained using Taylor’s theorem and Lemma 3.2 as follows:

(u1-wy) 9
L,(e,s)—L,(t,5)= 7 aaL!(I'S)
(uy=wy) 9
— L
N 3B £(1,5)
U
where u € (0+ —,0+ .__)x(B+ _,B+ )c ©. (u may depend on ¢ and

VT’

s.) Therefore

(L,—L.,)%t,s)

J

< — - + - W, —VL + '—_L (
= [(uy=wp+ (Uymwsy) ]ggg{( g)+ ( r.s)}

Ja 28
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< —;—[(ul—wl)2+ (U= w2 ] ((C+Cot=s5)+Cy(r=5) rexp(=C (1=

C;s are positive constants which depend on a> 0 and b only. (Recall thut

©=(a,b)x(a.b)) Therefore
T 1

2 ]
(=) [ [ (Ly=L,)(t.s)ds di
000

< %—l (1‘1“W1)2+ (uz—wz)z]

T
xj J' (C1+Cy1=5)+C5(1=5)2) exp(=C 4(1-5)) }ds dr
00

< Hi—w 112 T
- T
(Follows from Lemma 3.2 (i1) and Remark 3.1) Thus, from (3.9) and (3.13) 1t fol-
lows that

E(TERM 1)* < C llu—-wii*. (3.16)
Now consider TERM 2:

T

[ X )= X00) P = [ Xuw) = X,00) [} de
0

(TERM 2)*

0

T
([ (X (w)=X(0)]+ [X,(w)=X,(0)]) dr)*
0

IA

T
X (J ()2,(14) - )2,(w))zdt)2.
0

We have used the identity (.7(2—)*2)= (x+y)(x~y) and thcn applicd the

Cauchy-Schwartz incquality. Thus, again applying the Cauchy-Schwartz incqualhity,
T
E(TERM2)* < (E ([ ([X,(u)=X,(0)]+ [X,(w)=X,(0))*dt)’
0

T L
x E([ (X, (u)=X,(w)2d)*)?
0
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1
2

< {16(CA* [ Nu=018+ lw=018]) x C lu—w I1* )=

(Using Lemma 3.1 (i) and thc calculations done for TERM 1.) Thus, since
fu U, Tw < M,

E(TERMD) < CM* llu-wll*, (317)

Now the statement of the lemma follows from (3.8), (3.16) and (3.17).

Lemma 3.4 Forue Ur andT large,
E exp(%ZT(u)) < exp(—=Clu 1)

where C "> 0. depends on a and b only.

Proof : From (3.7)

Eexp(%ZT(u))

T T
1 - 5 5 - 2
Eexp(— [ (X(u)=X,(0)]dv,°~ <] (R = X0y P )
0 0

IA

T T
1o . | : .
(Eexp (5[ [Relw)=X,(0) ] dv,®- %j [ %)= %,00) i
0 0

T 1
Eexp(- 5[ [Xi(u)=X,(0) P dr))?
(]

X

(By the application of the Cauchy-Schwartz inequality.) Note that the first term of

the product in the bracket is a density (w.r.t. Pg’ ). Therefore

,,l._.

.
Eexp(%ZT(u))S {I.Eexp(—-%-j [ X (u)=X,00) ) diy ).
0

The RHS above can be casily bounded by applying Lemma 3.1 (ii) since

?’;,:[)f,(u)—)fl(O)l is a Gaussian process. Let F(r,s) be the covariance
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function of this process and £ be the corresponding covariance operator. Then

traceF
E exp(— < ————
CXP( Zr(u)) = exp( 16 1+2V1F 1 )-

From the calculations made in order to bound E (TERM 1)2 in Lemmu 3.3 (with
u=u and w=10) we can make the following obscvations:

) F=(L,-LoR (L,~Lgy)"+(L,-Lg)(L,~-Ly)"

iy HFI1g C’

iiiy TrF = Tr(L,—Ly)R (L,—Lg)"+Tr(L,~Lo)(L,~Ly)" and since the

first term is always positive,

TraceF 2 Trace(L, - Lg)(L,—Lo)* = C Il 1l%

where C> 0.

In order to see (iii) first recall that

T ¢
Trace(L,—Lo)(L,~Lo)" = [ [ (Lu-Lo)z,s5)dsdr
00
Now
(1)
L,(t,s)=Ly(t,s) = T%_—_a_a(;Lﬁ(t’s)
(u3) 9
+ \/T —aB—LE(I,S)

Uy Uny
— a)x(B+ — B)C ©. (u may depend on ¢ and s.) There-

where y € (0+ — Nt

fore

(L,—Lg)*t,s)

4 )
2 = [(u)?+ (up)? ]{tnf(—L9)2+ mf(-—aFLe)%t.s\}
2 i[(u1)2+(u2)2]{(C1+C2(t—s)+C3(t—s)2)exp(—C4(t—S))}2

T

N
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C;s arc positive constants which depend on a> 0 and & only. (Rccall that
®=(a,b)x(a.h) ) Thercfore

1

T
[ [ (wo-Lo*s)dsde
00

4

T

> —;—Ilullzf j (Ci+Colt=5)+Cs(t=5)) exp(=C y(r—5 ) bds dt
0 0

> -%Ilu 12C . T =C . llull?

for large T. (Follows from Lemma 3.2 (iii) and Remark 3.1) Thus (iii) follows

and we finally get that, for large 7,
1 , ,
E exp(—_i—Z-f(u)) < exp(—=C Hu tl9)

where C’> 0, depends on g and b only. This is the statement of the lemma.

ForueR ? et

, |-
Zo(u) = u'Yo- —u'2u (3.18)

-

where Y g is a zero mean bivariate Normal with covariance matrix X.

Now we will show that finite dimensional distributions of Z (1) converge
to the finite dimensional distributions of Zg(u) as T — oo. This together with
Lemmas 3.3 and 3.4 verify all the conditions of Theorem 3.1 and hcncee prove

Theorem 2.1.

The convergence of finite dimensional distributions is shown in Iwo sieps.
. . . * . .
First we definc random functions Z 7(u) (with domains U ) such that for any

fixed ue U,
E(Zr(u)-Z 7(u))> > 0 as T — oo, (3.19)

. . . . . . *
Next we show that finite dimensional distributions of Z ;(u) converge to the
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finite dimensional distributions of  Zg(u ).

These two steps are clearly sufficient for our purpose.

Lect us begin the first step :

Forue Up lct

T

,‘ Us

Z'r(wy = [ [ —,? h,(8) + ._g,(e)]dv,
0

1
*?j( —/z,(9)+———g(6)] dr. (3.20)

where

d
8) = [ =——Lglt,s)dy
h,(6) jo So Letros) v

= | (14 B(r=5)-V a2 BAr—s) e EB gy
0 \/a3+B2

22
t2

= [ Hglt,5) dy, (3
and

g:(e) = _LQ(I,S)d_,\‘S

d
} 3

f(1+—L—) 1+B(t—s)]e“‘&-752“ v,

\/a+B

!

f Golt,s) dy. (3.22)
0

(Recall the two integral operators Hg & Gg with kernels Hg(r,s) and Gglr.s)

defined in Scction 2 (see (2.7) and (2.9)) it turns out that H g(1.5) = —)(l—L gl 1.5)
g

d
and Gg(l,S) = —aELe(I,S).)
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Lemma 3.5 For u e Uy,

E(Zr(u)=Z" p(u))* = 0 as T o

Proof  This proof is almost identical to that of Lemma 33 From 37y und

(3.21)
Zr(u)— Zy(u)=TERMA - %TERMB (323
where
.
. . " "> o
TERMA = [ X, =X, (D)= (== h (0) + —= g, (8 ]dv,
VT T :
0
and
r
- - 5 Iy ll: N
TERMB = f ([X, () =X, (] = [—=h (O + —= ¢, (0] di.
0 8T N T

Let us consider E(TERMA )°. Since (v,) isa Wiener process,

T

5 - - U "~ N
E(TERMA ) = Ef [x,(u)—x,(())—<7‘_—/1,(e)+7_}—_&(9”:—(11
0 Al v
T t
= Ef ([ (L,~L (e H o+ =G ))(e.5) dy, | de
—_ - - —_— —_— . ) (
0o o CONT vT o
< (1+—= T‘(L Lo—(—Loe X2 b d
< (1+ Lo (= =G )5 )
( z)f()'[) «— Lo (\'T = V)=Cr.s ) dy dt

The last step is obtained using the same arguments as in (3.7) - (315, Now nolc

that, using Taylor expansion,

U,y W Uy 2 1y P2
(Lu*LO—(—,———H+-f':G))(I,.§)=(————’—L“-F——-*—)Lu
vT N T T ot ¢ 2T 9pt *

wiles  9?
- —L s
2T dadB *
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. 1t i
tor some i € (9.6+ -?_-) < ©. Therelore

(L, Loyt —=H+—=G))(t,s)
¥ Y
< £ (141'+u supl i—Le) + ( D 9)3+(—_—d—..——L(,,):]u,.\')
T- Jda~ aB dod 3
< (t=s1]expl=Cr=:)).

=1

( The positive constants C and € depend on a and A only ) Therclore

", iU
(1+—)fj L V2005 ds d
[SIENTY]
If““
< lZ(!-s lexpt=C jtr=s)ds i
=0
H“!ll
< C T — 0 as T — oo
7'0—

(since w e U ixtixed) Thus E(TERMA )3 — Das T — =,
The steps to show that E(TERMB )* > 0as T — oo are also very similar. Using

the Cauchy - Schwartz inecquality we get

/
N N - u s 5
(TERMB 1 < (| [.x',<u)—x,<()>+<¢%—/1,<e;+7g:¢a);1-<zl>
0 ' '
x| (0) = */z(6+—'(6)) i)
f |X ( e L

Again applving the Cauchy - Schwartz inequality we get

> [
E(TERMB ) < j (m+<——/z(e>+-—l—g:e> 1= dr)
0
I . Iy 5 . R
<EC) X ) =X (0) - (—= h(O+ —= g0~ di -
0 v T n
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Since all the processes involved are Gaussian we can use Lemma 3.1 (1) and then
with some simple manipulations we get

E(TERMB )*

ta)—

) .
~ 5 5 3 ||4 M 5 S
< C(E | (mu)—x,<<>)1—<1:)~+'—";—z—wj U280+ 0200011 d)’
0 8]

5

x E(TERMA )
Taking w = 0 in the culculations of £ (TERM 1)% in Lemma 3.3 we ot
.
(E [ IX;tw)=X (O ]7dn)t < C 1l 11
0

AlSo, it is casy 1o verily that

I
2

E [ 1h3 01+ dr)t s C TR
0

Therefore we get that
E(TERMB )P 2 C HulFE(TERMA)® - C as T — oo,

This concludes the proof of Lemma 3.5,

Now let us begin the second step
First we state a version of Central limit theorem which is usctul for our purposc

(see, Basawa & Prakasa Rao (1980). Theorem 2.1, Appendix 2. pp 405y,

Let {W (1), 2 0} denote the standard m dimensional Brownian motion. Supposc
that F(s) = ({f,(5))) 4, is a random matrix valued tunction such that i, cle-
ments fk/e H{O.T] for all T> 0. (A random tunction f & H{OT] 111 it is

adapted to the Wiener filtration and

T

Effinydr< o)
0




Theorem B & P : Suppose that the random matrix valued function F (5 ) satiafies the

Sfollowing condition
’
1 fo(s) 0 (5)> ds —
7 J‘) < A (s)> ds = ¢y
(

in probability as T — oo where Ch e 1< k,j< n are finite. Then the disirtbution of

.
j F(s)dW (s)
)

I
¢

converges to the Normal distribution with mean zero and covariance matrix C = (Ck/) ay

T —oo.

From the above result, the fact that (v, ) is a Wiener process and the special forms

of Z ',-(u ) and Z g(u ) itis clear that we only have to show the following:

,
1 . A R
i)?J =B dt — oy
()
-
i) ?j g8 di — o7

0
|

ii) Tj £1(0) h(8)dr — o, in probability as T — oo,
0

(Note that just as Z g(u ) (see (3.18)) we can write

Z r(u) = w' Qr(0) - %u'AT(G)u

where Q7 (0) is bivariate Normal random variable and A7 (0) is 2x 2 random svm-
metric matrix described as below:

T
1 ,
T jo £(0)dv,)

-
1
Ql'(e): ( '\_?—j;) h{(e)dvh

N

nd




1 T
1
Ary= : [ h%(8)ar, AT22=‘T'j £°,(6) ar
0 0

—~

1 ,
ATD:-FJ 2,(8) h,(8) dr.
0

Showing (i), (ii) and (iii) amounts to showing that A7 (8) converges 10 ¥ in pro-

bability which in turn implies that Q r(0) converges to Y g in distribution )

Let us first show (1): We will show that

.
E(%j (@) di—c") = 0 as T — oo,
0
.
LctMT:E—l—j h*(8) dr.
T "

Now

T

E(ij h2,(8) dr - 6,%)?
T 8]

T
< 2E( %j h2,(0)di— M7 )2+ 2(Mr—c,%)"
0

Consider the tirst term on the RHS:

T T
E(—T—joh,(e)d:—MT) -E(—fjoh,(e)d[) (M)
[T
= aJ J (E/lz,/lz\.)d.\‘dl—(,\1,):
T "% "

Let J(s,t) = E h, hg; then since () is a Gaussian process

Eh® h? = 2%s,0) + J(4,0) J(s5,5).

-~

This together with the fact that M+ = -;—f J{(t.1)dr implics that
0
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T

-
1 5 5 2

E(—| h-(®)dt - My )= —
Tjo [ T jo

J' jz(’s,t) ds di
0

t

2

T2

trace(Jj*)

5
< ?"—trace(J) RVAY

where J is the integral operator corresponding to the symmetric kernel J(s.1).

14

Since h, = _[ Hg(r,s)dy,. it is casy to check that J = H R H ™+ H [~ IThere-

0

fore, using Lemma 3.3 (i) and (ii) we get that I/ 1l< C and rrace £ CT

Thus

T
E(%j h%(8)di— M) <
0

2

5
“

CT - 0

as T — oo, Therefore (i) is proved if we show that
My = 6% as T — .

However note that

T T

My = E=[ h%(0)ds = L[ d
T 0 r 0

trace] = — [trace (HRH") + trace (HH ™) |.

1 L
T T

Therefore

; — 2
llm AMT - 0'1 .

T 500

Thus (i) is proved. The verification of (ii) is exactly identical.

remains to be verified. Let

.
Vi = E—| g(8)h(8) dr.
0

~|—

Then only (i)




LY

Consider
L
EC—[ 2(8) h(0)dr - Vi)l
0
| T
= E( | 8(®)h(®)dr)?= (Vr)?
0
-
5 J.J' (Eg,gsh,hs)dsdt—(vr)2.
)]

)

I

Note that if £,5,,335,5, are jointly Ne~inal then
E(518:5334) = EX§\EDE(E8) + EXE S E(S 30 + E(3 12 E(3:3:).
Therefore, if [ (s,1)= E(g,g) and K (s,1)=E(h;g,).

Eg,ghhy=1(t.s)J(r,s)+ K, )K(s,s)+ K(1,s)K (s5.1).

Therefore
1 T T
— [ | (Egigshchy)dsdi = (Vr)?
T2 %%
LT
= }—Z—JI (I(t,s))(e,8)+K (£,0)K (5,5)+K (1,5)K (5.1)) dsdt
00
[T
- (K (t,01)K (s,5)) dsdt
TZU(\
[ 7T
= —7II (1 (t,s)J(0,8)+K (1,8)K (s.1)) dsdr.
T %%
TT TT 1
<

2, s)dsdt)2 (f | s2r.5)dsary ? )
00

TT
+ _}.;.[(J'j K 2(t,s)dsdr) ).
T "%

Using the facts from Lemma 3.2 and Remark 3.1 it is casy o sce that the above

terms tend to zero as T — oo, Let K be the integral operator with kernel K (s5,1)
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then
K = HRG + HG".

Thus (iii) is proved since

T
lim Vy = L tim j K (t,0)dt
T o0 TT—-)oo 0

= —;— lim trace[HRG'+HG'] = 0.

T —oe

This concludes the proof of Theorcm 2.1.

Remark 3.2 Here we briefly explain the reasons why Kutoyants's mcthod for
studying the asymptotic propertics of the m le. of o in the model given in (1.2) can
not be applied to the problem considered in this article. First let us recall the

model given in (1.2):

de, = —x; dt + dW (1), x3=0

dy, = ox,dt + dW (1), yq=0; PBe (a,b),a> O (3.24)

(We have set B =1 for simplicity.)
Just as before if we denote by X,(y,a) the conditional expectation of x, given the

observations up to time ¢ and by v, the innovations process i.c..
dv, = dy, ~ oXx, drt;

then v, is a standard Wiener process. Furthermore it is casy to sce that

T T
dP g,
In = (y) = f [0 X, (y,0) —apgX,(y ag) ] dv,
dP, 0
| T
-_-)—j [0‘1)2:()’,011)—aof,(y,ao)]zdt
-~
r o
= J (n(ap)-n(ag) ] dv, - E f (M, ()=, (o) |7 dr: (3.25)
0 0
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where v, is defined by, dVv, = dy, — agX, dr and n, () = o X, ().

Let g be the true parameter and let & denote the m.le. of oy Kulovants
studiec the acvmptatic properties of & using Ibragimov & Hasminski’s approach and
thus he too verifics conditions similar to those of Theorem 3.1, however, for veri-

fying these conditions he uses the following special structure of the process n,(o):

o1
g (a)

dn’(a) = - g(a)yn’, (o) dr + dv,, 1, (0) = 0; (3.26)

, d >
where n' (o) = 71_(;“1((1). gla) = V1+o? and v, is a Wicner process wor.l.

Pa'r. Morcover, if we denote i, (0y)—n, (o) by &, (o) then it is shown that &, ()

satisfies the SDE,
d&, = ~g(a) &, dr+ [g(o)-g(0g) ] dW, (3.27)
where W, is a Wicner process (w.r.t. PQOT),

The relation (3.27), the form of .he likelihood function (scc ¢3.25)) and the
following result of Novikov (sce Liptser & Shiryayev Vol II, Lemma 7.3, pp 203,

help verify the condition corresponding to the second condition of Thecorem 3.1.

Propositicn 3.1  Assume that a zero mean Gaussian process &, satisfies the following

SDE:
di, =ai dt +dW, 5,=0,

where W, is a standard W iener process and a is a real number. Then

T
E exp(—j g, tdt) = exp(—%TCa)
0 2

where C; is a psitive constant.
The cxact value of C, is unimportantand and so is not given (the proot of this
result is not applicable for more general Gaussian processes). In the same fashion

the relation (3.26) is used to verify the other conditions of Theorem 3.1.
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In the case of estimation of B no similar simplifications arc¢ possible, for exam -

ple here (setting a= 1),

dPB-.T T A )
In dPBOT(y) = JO [£,(y.B)) = £ (y.Bg) | dv,
) T
—= | [2(y.B) = £ (.Bo) 12 dr;
<

and we would like a relation similar to (3.26) to hold for %,(f) =

However, from the relation
dx, = —B.ff, dr + Ade,;
it is possible to show that

det,"= -Bg'f, dt + X, dt + A'gdv,;

(3.28)

4

dei(B)'

which is much more complicated equation than (3.26). In the same way there is no

relation corresponding to (3.27) for the differences £,(y.B,) — £, (v.By) and thus

Novikov's result can not be used. As the reader may recall (sec Lemma 3.4), we

resorted to Lemma 3.1 (ii) in verifying the second condition of Thecorem 3.1.
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