
UCLASS IFIED 
OTIC LL COPY

SECURTY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOI OMB No. 0704-0188

SIa, REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY OF REPORT

N/A Approved for Public Release;
2b. DELASSIFICATION/DOWNGRADtNG SCHEDULEN/A Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Report No. 279 &LOiR. TR- 9 0- 0 2 74

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONTORING ORGANIZATION

University of North Carolina (If applicable)

Center for Stochastic Processe] AFOSR/NM

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Statistics Department Bldg. 410

CB #3260, Phillips Hall Bolling Air Force Base, DC 20332-6448
Chapel Hill, NC 27599-3260

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INETRUMENT IDENTIFICATION NjMQER
ORGANIZATION (If applicable)

AFOSR I NM F49620 85C 0144

Bc- ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Bldg. 410 PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO ACCESSPON NO.

11. TITLE (Include Security Classification)

Parameter estimation in linear filtering

12. PERSONAL AUTHOR(S)

Kallianpur, G. and Selukar, R.S.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month,ODay) 15. PAGE COUNT

preprint _IFROM _____TO ___ October 1989 31

16. SUPPLEMENTARY NOTATION

None

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Kalman filtering, identification, large deviation

19. ABSTRACT (Continue on reverse if necessary and identify by block nu-ber)

See over.

DTIC
FEB 2 7 i309

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATiON

,UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Professor Eytan Barouch (202)767-so 6-,q,/ I AFOSR/NM
D Fof m 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSI FED



UNCLASSIFIED

19. Abstract.

Suppose on a probability space (Q ,F,P) a partially observable random process

(xtYt),t>- 0; is given where only the second component (Y,) is observed. Furth-

ermore assume that (xt,Y1 ) satisfy the following system of stochastic differential

equations driven by independent Wiener processes (W 1(t)) and (IV' 2(t)):

dxT= -3xdt + dWi(t), X0 = 0

dy1 = Qx1 dt + dV -2(t), Yo = 0 ; Ot, E (a.b. a > (

We obtain a large deviation inequality for the maximum likelihood estimator

(m.l.e.) of the unknown parameter O= (.,3). This inequality enables us !o prove

the strong consistency, asymptotic normality and covergence of the moments of the

m.l.e.. The method of proof can be extended to obtain similar results when multi-

dimensional instead of one dimensional processes are considered and 9 is a k-

dimensional vector.



CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

PARAMETER ESTIMATION IN LINEAR FILTERING

by

G. Kallianpur and R.S. Selukar

Technical Report No. 279

October 1989

90 02 23 020



0 u, U .4 0 0

4, -C 0, 0

0 4, 44 a'0 4

CL -0 0w

x ZC 0. 0L 0.. *0
4, 0 't 0 4, C0U4.C 00~ m- 6 - a ...

"m r C ~ E0 CL4 0F

C)~~~ ad 0 0.0 4 0 .0

U4
4, 0l 0, 0 ,

00 0

0 CL - 0 0

ILI- 0 >4,4,4,~~~9 00 , 4 -0 -0-0 4 4
-~ ~~~ 00. C-0 4,b D.0 , 4. . 44 C4,4, V... '0 , ~ 4, C 0. 0~ 4, , W ~ 00

4 
5. 0 0 ,) 0 4 . 0 4 - -4

- ,0 4 44 4, 4, 02 ,0
0i 'a C-C:,

4,0 >44 0

C-4 N 0 C- C- 0.

CLC ba 0

N 4,.

31 0 0 r, 4

4, A4 C- . 0 4, 1 U -

0 >4 0, 4

. 40 .4 . b

4,, '.-0 0 V>'. n4 J CU C 4
0 v I

- M C4 C. C- t- 1 0 01 .jUO ~ 4,

-0 Q4 4 0 C ~ 0 0 0. - 0 C IV, 4. C

0 -

0 1, U,
C0) - 4 -,

- . >0 - C)
i 00a

0 ' N. '0 0 ~ - , 4
, , 1 0.

.0 0 -L v , 0
00 00.4 4)0

C- C) 64, 4, 440 0 - I 4

441U C. 0 -10 10 V 0 0 - Z ,0 4, L ,-

-. 0 0

~4) ti4C >4 w. >4, Ix Q4 C ) < C .

4, o.
4, c4~ ~ . - 4, :

94L C; 0. C-0 2i g 'a. 4 i u. 4, CIL

0 , 0 4 -. 4 U.. 4 0. .' 4 0, - 4 . 0 U'
0 -' 0' 4 4,. 44 - . 0 ~ U 0 C . C-4,- , C



Parameter Estimation in Linear Filtering

by

G. Kallianpur and R. S. Selukar *

University of North Carolina at Chapel Hill

Suppose on a probability space ( Q , F, P ) a partially observabie random prcc,,,.s

(x1 ,yt),t>_ 0: is given where ony the second component (y,) is observed. Furth-

ermore assume that (xtYt) satisfy the following system of stochastic differential

equations driven by independent Wiener processes (W 1(t)) and (W 2(t))'

d1z -= r, dt + dill t), xo= U

dv = (x': dW 2(t), yo= 0; ot, 3E (a,b), a > 0.

We obtain a large deviation inequality for the maximum likelihood estimator

(m.l.e.) of the unknown parameter 0= (x,p3). This inequality enables us 1) prove

the strong consistency, asymptotic normality and covergence of the moments of the

m.l.e.. The method of proof can be extended to obtain similar results when multi-

dimensional instead of one dimeasional processes are considered and 0 is a k-

dimensional vector.

S ce

Key words: Kalm an filtering, identification, large deviation 0

AMS 1980 subject classification: Primary 62F10; Secondary 62M20

• Now -.: the University of Illinois at Urbana-Champaign

,tscar(h parti-,v m.uporled by 1he Air t-orce Otn-e ot Sc!en'i 1  kC. l li ti dt

No. F49620 85C 0144.

,jr



Parameter Estimation in Linear Filtering

1. Introduction Suppose on a probability space ( Q , F, P ) a partially observ-

able random process (xtYt),t> 0; is given where only the second cornmloncrlt

(Yt) is observed (both the components could be vector valued). Furthermore

assume that (x, y t ) satisfy the following system of stochastic differential equations

(SDE):

d., = Fx t (it + G dW I(t), x o = X o

dy t = H x dt + dW 2(t), Yo = 0; 1.1)

where (WI(t)) and (W 2 (t)) are independent standard Wiener processes and

F,G,H are nonrandom matrix valued functions of appropriate order. The initial

value X0 is assumed to be a Gaussian random variable independent of both

(WI(t)) and (W 2(t)).

The estimation of unknown parameters in H ,G and F, based on observations

(y1 ,O< t< T) is known as "system identification". It appears that this problem o1

system identification was first considered by Balakrishnan (1973), who proved the

weak local consistency of the maximum likelihood estimator (m.l.e.) under suitable

regularity and identifiability assumptions. Later Bagchi and Borkar(1984) showed

the strong global consistency of the m.l.e., for a slightly more general model. In

their case the signal process could be an infinite dimensional process of the follo\ -

ing kind:

x t = f S 1 , DdW1(s)
0

wheLi, S t , t> 0, is a strongly continuous semigroup with generator A on a separ-

able Hilbert space H , W is a Brownian motion on a separable Hilbert space K,

and D is a bounded linear operator from K to H. The observation process Yt.
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however, is finite dimensional and satisfies the following SDE:

t

Yt= f C x, ds + W 2(t)
0

where C is a bounded linear operator from H to R q and It"V is ' a  'a!ucd

Brownian motion independent of W 1. The vector of unknown system parameters

0 is assumed to be a point from a compact set in R k

Under suitable stability, controllability and differentiability assumptions they

prove the strong consistency of the m.l.e. of 0. No discussion of the rate of con-

vergence is provided.

It was Kutoyants(1984) who first considered the question of asymptotic nor-

mality of the m.l.e. in this setting. However, he only considered the following spe-

cial case of the model in (1.1):

d, = -x3., dt + dW1 (t), x 0 = 0

dV, = oXxdt + dW 2(t), yo= 0; a,] P (a,b), a > 0. (1.2)

(All the processes involved in (1.2) are assumed to be one dimension:t!). In the

above model, when P is a known constant, he obtained a large deviation inequality

for the m.l.e. of a which in turn implies the strong consistency, asymptotic normal-

ity and the convergence of moments.

Here we extend this result to the m.l.e. of the bivariate parameter 0= (o,3).

It should be emphasized that Kutoyants's technique can not be applied to this

bivariate estimation problem (not even for the univariate estimation of 3 when (X is

a known constant) since a special type of dependence of the filtered signal (which

appears in the likelihood ratio) on the unknown parameter a is very essential for

his approach. In the case of the above model the dependence of the filtered signal

on the unknown parameter 0 is not of this particular type and thus his technique is

no longer applicable. This comment is briefly explained in a remark (Remark 3.2)
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at the end of this article. On the other hand it will be clear that the method we

have used can be applied without any major modification to the gcneral model con-

sidered in (1.1) if, besides identiliability, the following two conditions are satislied:

i) The parameter space E is an open, bounded subset ofR k

ii) The eigenvalues of the matrix F lie in the open left-half of the complex plane.

(However, the computations become quite cumbersome.)

The main result along with the necessary notation is given in Section 2 and the

proof which is based on Theorem 3.1 is givenin Section 3.

2. Notation and Statements of Results From now on, unless mentioned other-

wise, the signal and observation processes xt,Y,t> 0; will refer to the solution of

the SDE in (1.2). Also assurae that the bivariate parameter 0= (ou,P) is an ele-

ment of E = (a,b) x (a,b), a > 0, b < -,. The letter C (with or without a

subscript) will denote a positive constant independent of T (the time parameter), it

need not be the same in two different expressions.

For 0 < t let -t be the conditional expectation of xt given the observa-

tions up to time t i.e.,

,t = E ( x, I FYt ) (2.1)

where F y  is the a- field generated by Ys 0< s< t ) and all the P-null sets;

furhermore let

dv t = dy, - oXI, dt. 2.2

Then it is well-known that (v,) is a Wiener process and moreover the process (.i,)

satisfies the SDE,

di,= -idt + xa, dv, -0= 0;

where a, is the (unique) solution of a (deterministic) differential equation knovn

as the Riccati equation. More precisely, a, is the solution of the follo %ing
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nonlinear differential equation:

d X1- ta 2  2 a, a() 0.

tktt

It is also known that as t -aoo, a ao, a+= -2 tl+ e+e acts

can be found in Liptser & Shiryayev (1978, Vol II, 16.2). Now we make a svmpli-

fying assumption commonly made in the literature (see, e.g., Kutoyants ( 1984. pp

103)). We assume that the system has reached the steady state i.e. we assume that

-i, satisfies the SDE fiven below:

di, -fit dt + aoa dv1 , .o = 0. 2.3)

Then from (2.2) and (2.3), it is easy to verify that

t

= a9 f e i-s) dys  2.4
0

where bO  Ja2+ p2.

Let CT denote the space of real valued continuous functions defined on I(,T I

endowed with the sup-norm topology and let CT be the G-field of Borel sets in

CT. Furthermore, let PTo  denote the measure induced by the paths

(y, ,O s < T ) on (CT,CT).

Then in view of the relation

dyt = ocit(O,y) dt + dv °, (2.5)

and the fact that vt ° is a Wiener process, it follows that PT0 is equivalent to the

standard Wiener measure P-w defined on ( CT,CT ). Furhcrmore the densit\

or the likelihood function of the data (y, 0< s!< T ) at 0 is given by

dP j T T
(y) = exp(S cti 1 (O,v)d- T J .

The verification of this fact is quite straight forward; for example it follows from
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the combination of two results (Theorems 7.3.1 and 7.3.2. pp 170) Irom Kalialpur

1980).

Let OT(Y) be the mie. of e based on observations (Y,), ) _ t T i.e., thc

maximum, o,,cr the parameter space, of the above likelihood ratio is aaT .t 1

Suppose HO, R 0 and G o are trace class operators (R 0 is sctl-adjoint) dclincd on

L 2 [OT I with respective kernels'

Ho(t,s) _ [l+I3(t-s)- or+32(ts,)]e_ . ', .7

if 0_ s<_ t-< T and equal to zero otherwise;

R 0(t.s) = 0< s.t< T 2.'

an d

Go(t,s) = (1+ --[p ) [1+P(-s)I 9

if 0 _ S_< t_ T and equal to zero otherwise.

Let H* and G * denote the corresponding adjoint operat rs. Then it is cas% to % cr-

ify the following:

1

i) lim -trace [HRH *+ HH*] 2 <
T - T

12
ii) lir trace[GRG *+GG*]= 2 < ,

T -,- To

and

iii) lir-- trace[HRG*+ HG*I = c 12 < *

Also if I denotes the 2x2 symmetric matrix with Y-1 1 =12, y= _2". and

Y-12= 0 12, then it is easy to check that E is strictly positive definite.
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Theorem 2.1 The rile. of 6 has the following properties:

i) 6[ is a stronilv co.istent estimator of 6.

i) As T tends to in /initv the distribution of \ T (Or- o) COnVtrgs to the normal dI.tu hu-

,ion with zero mecan and covariance matrLx V- 1 Furthemor, bor evcry p > (), tI:c p "h

moment of the norm oJ -- (- r- 0) converges to the p th moment oJ the t ,,m ,, r/i'

normal variable.

iii) For h > 0 and large T , T> To,

P 0 T { T ( 01-O) > h = B(exp(-h(hI)

v here B o,b ((> () are ( o .'tant..

3. Proof: The result is proved by verifying the conditions of the theorcrm givcn

below (Theorem 3.1) which is a modilied version of a result b, Ibragimo\ &

Hasminski( 1981) (Theorem 10.1, Ch.1). In this version the conditions of the

theorem are stated in terms of the Io!gkelihood function rather than the likelihood

function and moreover the statement is simplified to suit this particular eampl (4

bivariate parameter estimation. The proof of this modified ver,,ion can he C.Iil\

deduced from a more general result from Kallianpur and Selukar( 19 ,".

For stating Theorem 3.1 we first need some notation:

For 0 E e and observations (vt), 0 _ t <_ T let

dP eT

1(0) = IT(O,V) = In (v). vd P t,

Then from (2.6),

T T
1(6) = Ou t(~ ) 1' o~tO~ i.t32

f c-, f0.(6,v) O

Suppose that 0= (o,O), an element of E, is the true parameter, For each

T > 0, define a random function ZT(U ) with domain UT, a subset of R as

follows:
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Ur=" T (8- 0) : T (a-cU, -c) x (a-3,h-3:

and for i E -.

ZT(I 1(0+ l - 1(0) (3.4)

(Clearly ZT and UT depend on the true parameter 0 but this dependent is

suppressed for notational convenience.)

Theorem 3.1 A ssume that the random jinctions Z T( I at t' the 1 )110 11 :u '

conditions:

sup E6 IZT(u)-ZT(w) 1 < C M 4  
-- w

I) For u E Ur and T large, T > T u ,

Eoexp(IZ (u)) _< exp(-C' li 12
4

11) As T -- , the finite dimensional distributions of Z T ( ) converge to the finite

dimensional distribution- of Z (iu ) where for uI c R

1
Z (i) Yo - - u 'A Ou;

here YO is a zero mean bivariate normal variable with invertible covarianct, mairL x

(Note that Z (u ) is a real valued, continuous random functirn dc/med ,m R - which

attains its maximum at a unique (random) point A- 1 Y 0.)

Then the m.I.e. )T is a consisteni estimator of 0 and ") T ( OT - 0 ) conver's. in dimtri-

butici, to A O- Y . Moreover, for h> 0 and large T, T> T o.

Po"{ (','T- (Or-O) I> h I= Boexp(-h)/h2 )

where B o,bo> () are constants. This implies that for all p 0 .

lIrn EI\T-(r-6 ) IP = E 1A-Y 0
i
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We shall verify the conditions of Theorem 3.1 using several lem m a:. The lirst to

lemmas are technical; Lemma 3.1, (i) gives a bound on the higher moments of thc

L 2 norm of a square integrable Gaussian process in terms of its second moment

and Lemma 3.1, (ii) bounds its moment generating function. The lemma is proved

using some simple properties of the Karhunen-Loeve expansion of the square

integrable Gaussian processes. The details of the proof can be found in Selu-

kar) 1989) (Lemmas 4.1 & 4.2. Ch.3).

Let ( Y, ),O_< < T he a zero mean Gaussian process such that

T
E f y 2dit < o

Let D (t,s) be the covariance function of the process and D be the corresponding

covarince operator. It is well-known that D is a self-adjoint trace class operator and

T

trace (D) = E f (y)2 dt. I3.5
0

Lemma 3.1 1) For all k > I

T k T k

E(f Y, 2 dt ) < kk[E(f Y12 dt)I
o 0

ili

T

Eexp(-f Y, 2 dt) < exp 1rae (D (D
0 1+211D 11

where I ID II is the operator norm of D

In the next lemma we collect some u.,,eful properties of an integral operator dclined

on L 2[0,T]. The proof of this lemma is simple and so it is ommitted.

For X> 0 and m a non-negative integer, let L be an integral operator

defined on L 210,T] with kernel L (t,s) given by,
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L(t,s) = (t-s)'? e -n ts) 0< : < t < T

- otherwise.

That is, for f e L 2[0,T

T

(Lf )(t) = f L(t,s) f (s) ds.
0

L is a special case of Volterra operator. Let IIL II be the operator norm of L and

L * denote the adjoint of L. Then LL * is a self-adjoint trace class operator and it

is easy to check that

T i

Trace(LL*) f f L 2 (ts)dsdt
0 0

T T

= T f i2 e2 xu du - 1 2m-le - 2Xu .

0 0

Lemma 3.2

F(m)~+ 1)

i) I IL I 1_ \2 l' rn l- I

ii) Trace(LL *)< (2rn+ T( 2") 2m  -

iii) For large T, Trace(LL " F(2mH+1) T

(2?)2m+I 2

1 _ F(2m+±1)
iv) lim -I Trace (LL ) -

T ---+ - T (2,)2,- -1

v) If L I and L 2 are two Volterra operators of the above t.pe then the operator L L Is

also a Volterra operator which is a finite linear combination of the operators of tw above

type.

Remark 3.1 Note that the operator norm of L has a bound independent of T and

the trace of LL * is of the same order as that of T. It is obvious that statements ol

the above lemma can also be obtained for an operator AI which is a linear .om bi-

nation of Ls.
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Let ,V(O.y) = t Then, using (2.4),

X (,)= -1+ Ot 2+ P2) f e -N (X1 2(t- Id . dY 3.6)

0

From (3.2)

T Tp1 ^ "

1(0,v) = j X 1 (f'y)dy.- -f - Xt(OV)dt
0) - 0

Therefore

ZT(ui) =1(0+ t)!O

T
= J ---(O+-,V)-Xt (O,y)1Idv,f [X' (0+ u V YItv

T
1 tt
2 ['I,2(0+ -,y)- X1 (,M'y ) Idt.

If we complete the square in the second term of the RHS and rearranc the tcrn>

we get,

T

ZT(u) = f [/X(O+ - )-,y)-1 (O,y)I dvt(
0

T

-Xt(O+ =,y)-Xt(Oy)] dt (3.7
o NT

7 0 ts id r
where dvt= dyt - yX (O ,y) dt. Recall that under PO9 , v1  is a standard

Wiener process.

From now on, unless stated otherwise, aU the expectations are taken \.r.t. the

true probability measure POT. Also, in order to simplify the notation we may

sometimes write, Z(U) -z ZT(u), Xt(u) = X1(0+ Uy) and dv, = dv).
NT

The next lemma verifies the first condition of Theorem 3.1.

Lemma 3.3 For u,w EUT, Ilu ,1w < M,



E (ZT(u) - ZT(W) )4 < C M 4 1u- w

where C depends only on a and b. Recall that E = (a,b )x (a ,b).

Proof From (3.7),

T

ZT(u) ZT(w)= f [ (u)- (w dv,
o

2 0

=TERM I TERM 2 say.2

Then,

E(Z (u) - Z (w)) 4 < 16{ E(TERM 1) + -- -ETERA! 2)' }. 3.
16

Consider E(TERM 1)4:

T

E(TERM 1)" = E f f [ X( (u) - X((w) I d v, 4

0

T

_ 16E {f /X(u)- X(w) 12 dt }2

0

(Follows from Burkholder's martingale inequality and the fai that ( v, ) is a

Wiener process under PO .)

T

64{ E[X(u) ,(w) 2 dt 2  (3.9)
0

because of Lemma 3.1 (i).

Note that from (3.6),

X,(u) - Xf(w} = f (L - Lw)(t,s) dys  (3.10)
0

where L u = L U is given as follows:
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Lu(t,s= A, e- B.(t- ) for 0 < s _ t_ T

0 otherwise

t U t I 1 ) '"

A= A T = -(13+ " )+ {(f3+-)+(cx+---i-0+ U- T ,T
,T

and

21

B u = B u = {(13+ -- 2+ + "1) 2) 2 .

(Note that I = (u,u 2 ) is a point in UT c R2.)

Now recall that (see (1.2))

dyt = (Xxt dt + dW 2(t ) (3.1 1

where the 'signal' (x t ) and the observation 'noise' (W (t)) arc independent. Let

R (t,s) denote the covariancc function of x, i.e. R (t,s) = E(xix ). Then since

x1 is the familiar Ornstein-Uhlenbeck process it follows that

R (t,s) = - I - (3.12
2f3

If R is the integral operator with the kernel R (r,s). Then it is easy to check that

R = R 1R 1* where R I is the Volterra operator with kernel

R (t,s) = e( - f -s)) for 0 s < t < T.

Therefore, by Lemma 3.2, R is a trace class operator and

2
IR I1 -- I 3.13)

From (3.10), (3.11) and the independence of (x,) and (W 2(t)) it follows that

T

f E [X(u)- (w) 2 dt
0
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f1 I I
f f f (L,, - L, )(t,v ) R (v,s)(L. - L,)(t,S) ds d1v (it

+ f f (L, - L,) 2(t,S)ds dt.
0 0)

= Trace {(L,,-Lw)R (Lu-L,)* }I+ Trace ((LU-L ,.)(L . -L,,)}

where L U  denotes the integral operator with kernel L,(t,s ) and (LI) ts

adjoint.

Next using (3.13) and the fact that, for any two trace class opcraIor. J*I and 12,

Trace(JiJ2 ) Trace (J 1 ).1'J 211 (3-14)

where 111 = the operator norm of J 2, it follows that

T
fo E 4,tu-,(a w ]dt I+ Il+ )race (L - L,,)(L,-Lwv

0~ P2

< C {(U,-W 1 ) 2 + (u 2 -w2)2 (3.15)

The last step is obtained using Taylor's theorem and Lemma 3.2 as follovs:

(ii 1-w1 ) 3
L,(ts) - Lw(ts) (it - 0- L - (ts)

(u 2-w 2 ) a
+ 4 - L ( t,s)

u 1  W 1  U 2  w

where u E (a+-,x+ --.- )x (3+ - ,p+ -- ) c e. (u may depend on t and
T' NT 4' T

s.) Therefore

(LU -Lw )2(t,s)

< ~±(UI 1w) 2+ (t~ )2 1u 2< p{(2 Lsu)p (+ L0 )2 (tsT OE[tt - l + (12 ,.tt"
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[(Tl-l Cl w22 (I+ C2(t-s)+CI(t-S)2 exp(-C I([

Cis are positive constants which depend on a> 0 and b only. (Recall that

E= (a,b)x(a,b) ) Th,-refore

T

-f 2 )(f f  L - L ) 2 (ts) )d t

I(, I - 1)2+ ( V - 22

T t
Xf f C 1 I + C 2 ( t - S ) + C 3 ( t - S ) 2 ) e xp(-C t -s))ds tt

0 0

1lu -w 12
< C T xTT

(Follows from Lemma 3.2 (ii) and Remark 3.1) Thus, from (3.9) and (3.15) it lol-

lows that

E (TERMl 1)4 < C Ilu-wj14 . ,3.16)

Now consider TERM 2:

T

(TERM 2)- f [Xt(U) - X 1(O) ] [X 1 (w) -=X 1 ()) /2 (it
0

T

0

T

x f ( Xt(u) - Xt(w)) 2 dt)2 .
0

We have used the identity (x 2 -y 2 ) = (x+V)(x-y) and then applied the

Cauchy-Schwartz inequality. Thus, again applying the Cauchy-Schwartz inequalit.\,

T

E(TERM 2) 4 <__ (E (f (D1((u)-(,(O)]+ [X(w)-X(()) 2 (it)I

T 1

x E (f (',(u)- X,(w)) 2 dt) 4 1 2
0
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151

{16(C4 4 [1Iu-0118+ IIw-O0118)X C IIu-wI X)2.

(Using Lemma 3.1 (i) and the calculations done for TERM I.) Thus, since

Hau II, 11w 11< M,

E(TERM2) 4 < C M 4 Iu-w114. 13.17

Now the statement of the lemma follows from (3.8), (3.16) and 3.17).

Lemma 3.4 For u c U T and T large,

Eexp(-L ZT(u)) <- exp(-C'llu 112)
4

where C'> 0. depends on a and b only.

Proof From (3.7)

E exp (- Z T(u))
4

T T

Eexp(-Lf [Xt(u)- Xt(O) I dvt"- -"-, [X(u)-X( /2(it

0 0

7 7

[ E exp( fj [X,(u) - X,(0)JI dv,( 81f [X Iu) ( 1, (0) 12 lr
2o 0

1 T 
I

x E exp(-f-- [ /,X(u)-X (O)J 2 dt)J 2

80

(By the application of the Cauchy-Schwartz inequality.) Note that the first term of

the product in the bracket is a density (w.r.t. pot). Therefore
T I

Eexp(-ZT(u)) 1 .Eexp(- , (U /2)i -.

4 0

The RHS above can be easily bounded by applying Lemma 3.1 (ii) since

t=[ Xt(u)- Xt(O) is a Gaussian process. Let F(t,s) be the covariance
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function of this process and F be the corresponding covariancc operator. Thcn

EeXP(-ZT(U)) exp(- 1 traceF
4 16 1+21IFII

From the calculations made in order to bound E (TERM 1)2 in Lemma 3.3 (with

u = u and w= 0) we can make the following obsevations:

i) F = (L u- Lo0)R (L,,- Lo) *+ (Lu,- L0)(L,,- Lo

ii) IIF II C '

iii) TrF = Tr(L u - L o )R (L u -L o) * + Tr(Lu -Lo)(Lu - LO ) and since the

first term is always positive,

TraceF > Trace(L, - Lo)(Lu - Lo)* > C 111, 112;

where C > 0.

In order to see (iii) first recall that

T t

Trace(Lu - LO)(Lu - LO)* = f J (Lu-Lo)2(t,s)ds d.
0 0

Now

Lu(ts) - L 0 (ts) - (T- L a ( t 's)
NT acc

(u 2) a (t's)
+ ap

12
where u P c . (u may depend on t and s.) There-

fore

(L U- Lo) 2(t's)

4_ [(U 1  2+ (U 2 ) ' in{ ( - L L 0)2+ if ( -L L o)2(t,S)

T
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Cis are positive constants which depend on a> 0 and b only. (Recall that

E= (a,b)x(a,b) ) Therefore

T I

f f (L"-Lo)2(t's)dsdt
0 0

T t

>- Tiiu1 11 f f {( CI+C 2I(-S)+C3(t-S) 2 ) eXP(-C 4 .z-S ) dtS di
0 0

> 4 1 Ilu 112C .T = C . Ilu 112.
T

for large T. (Follows from Lemma 3.2 (iii) and Remark 3.1) Thus (iii) folloxs

and we finally get that, for large T,

Eexp(-Zr(U)) <- exp( -CL 112)
4

where C'> 0, depends on a and b only. This is the statement of the lemma.

For uieR 2 let

Zo(u) = u'Y o - -s'Eu (3.1 S)

where YO is a zero mean bivariate Normal with covariance matrix 1.

Now we will show that finite dimensional distributions of Z . ) converge

to the finite dimensional distributions of Z o(u) as T -- >c- This together with

Lemmas 3.3 and 3.4 verify all the conditions of Theorem 3.1 and hence prove

Theorem 2.1.

The convergence of finite dimensional distributions is shown in two steps.

First we define random functions Z*T(U) (with domains Ur) such that for any

fixed U E UT,

E (ZT(U)- Z T(U)) 2 -- ) 0 as T --4 , (3.19)

Next we show that finite dimensional distributions of Z *-(U ) converge to the
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finite dimensional distributions of Z o(u ).

These two steps are clearly sufficient for our purpose.

Let us begin the first step

For u c UT let

T

Z*T(,,) = f [ /-1--h,(0) + - g, (0) 1dv,

T1 u 1  u 2

- f I ithi(O) + - g,(O) dt. (3.20
2 0T

where

lit~ (e) f o(t,s) dA,,
U I(+ ) = - Sd-

0

and

I1O a L - (-L (t,s cdy ,

f G0(+1dy-. 
(3.22)

f Go(t,s ) tv s . (.22)

0

(Recall the two integral operators He & Go with kernels He(t,s) and G0 Us)

defined in Section 2 (see (2.7) and (2.9)) it turns out that H O(t,s) -L Oa~

and GO(ts) L
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Lemma 3.5 For u e UT,

E (Z r(U ) - Z *()( - 0 as 1'

Proof This proof is almost identical to that of Lemma 3.3 From 3 7 '11d

(3.21)
1

ZT( )- ZT*( ) = TERMA - TERMB 3.23)

where

TERM A + '~ - 1 O--- 1  O ~ 1 )ILV
T T

and

T
TERMIB = J ( [,(u)-Xi, (O+l- !-=--h(Or+ ,-7 O,)I0 )dt.

2 a NT xT

Let us consider E(TERMA )2 Since (v t ) is a Wiener process.

T

E (TERMA )2 = Ef X.1( )-()--- h,(U)+ - ,,0)l-,t

0 TT "

T 
T

< (1+ ) f f U (L-L-(-G-- ' + ) ,i-s d) Jr

Po o , ' T "
00 NT N

The last step is obtained using the same arguments as in (3.7) - .3.15). No noie

that, using Taylor expansion,

U11  uI U( I 2  12 a
L-Lo-(-1+ G(s)= (ts Lu+ L,N T 'T 2T a 2 - 2T 2 -

,t lit€ 0 2

2 T cx )+ 2T3 L. )(I,\ I

m a aaim mmmm m mim I T i u)(
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for some u 0 (O.6-+ -) C 0. Therefore

Uj U2
La-Lo- (- H + G))2(t,s)

NT NT
U 2 + 2 L)L + -

<- -{UT- 2)stP1(-L 02 + {----- L&°}+( -: -- { } )]{

T -- (u cf.~) 0

< C -- S t-s I exp( -C Jt-" ).

(The positive .onstants C and C depend on d and b onl I Thcrclorc

2 
2

C T 0 , as T T
T

(sincc u e U I s fixed) Thus E (TERMlA ) --4 0 a s T- .

The steps to show that Ea(TEMB 0 as T are also -- r\ 'lM ilar.

the Cauchy - Schwartz inequality we get

( TERMtB I2 + l 1-<ER t~ ( J I.\',u)-,Xt({}+ I ,0+ '(O )-

X f Jx IX(U )-X 1 (0) - /11* h(0)+ g, ) if
0 T, T

Again applying the Cauchv - Schwartz inequality w-e get

F

E (TERM B (E (f X(u)-+,(0) + / (+ (it

0 I 1
F L1 u 6)+ ) -t -

.E ] ~ ,u - {} - ,O+( T {O )I t}
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Since all the processes involved are Gaussian we can use Lemma 3.1 i) and thcn

with some simple manipulations we get

F ( TERM B )-

C ((E f [,ot(u , t(Ojldt)2  I (E f
T

x E (TERMA )2.

Taking w = 0 in the calculations of E (TERM 1) a in Lemma 3.3 kc ect

1"

(E f <,( )-X (0) l 2d1)2 < C 11 I .

Also, it is easy to verify that

1

(EJ fht(0)+g 2 t())ld) 2 < C T2 .

Therefore we get that

E ( TERMIB)2 < C Hit 112 E (TERMA )2 -4 G as T -- o.

This concludes the proof of Lemma 3.5.

Now let us begin thc second step :

First we state a version of Central limit theorem which is useful for our purpose

(see, Basawa & Prakasa Rao (1980), Theorem 2.1, Appendix 2, pp 405).

Let { W (1), t> 0 1 denote the standard rn dimensional Browlnian motion. SuplpOSC

that F(s)= ('fj )(S is a random matrix valued function ,uch that it, ele-

ments fk1 e H I0,TI for all T> 0. (A random function / E// 10,T- 1 it iH

adapted to the Wiener fliltration and

T

f J f 2 (t) dt < 00.)

0



Set fks)= 0 ... ,J {s}, 1< k< n.

Theorem B & P Suppose that the random matrix valued function F (s ) satiaties the

fOllovinq condlituo .

I

S f -s f (s)> ds - ckj

T f F< dl's

0

in probatbility" as T owhere c't.¢, 1<! k ,j!< n are finite. Then tile disi~ribution,.

T f F F(s dW (s)

conver-es t the \ ormal distribution with mean zero and covariance matrix C = ( Ck ) as

T -- .

From the above result. the fact that (vt) is a Wiener process and the special forms

of Z t u) and Z(u ) it is clear that we only have to show the followking:

T) f* h2  (it --4G()

1? - -,

ii) - J g'(6dt -f ' 2 -

iii) I gt)h:(6) d - CY,2 in probability as T -- 00

0

(Note that just as Z ((u) (see (3.18)) we can write

Z r(U) u'QT(0) - uAT()U2

where QT(0) is bivariate Normal random variable and AT (0) is 2x 2 random svm-

metric matrix described as below:

1 T

Qr (6) = ( h(0) dv1 , g()dv '

0) 0

tnd
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7' T

A1 IIT h(0) dt, AT2 2 = f g2 (0) dt,
0 0

1*

AT,2= T-f g,(O) h1 (O)dt.
0

Showing (i), (ii) and (iii) amounts to showing that AT(6) convcres to '. in pro-

bability which in turn implies that QT(0) convergcs to YO in distribution.)

Let us first show (i): We will show that

T

E ( " f t ( ) dta,-2) 2 0 as T ---4
T0
1o

T

Let M T E= - h 2 (O) dt.
0

Now

T

E f It (0)(t- 2)

TT

2 E (4f h 2 (O) dt - M T ) 2(MT-o1) 2 .
0

Consider the first term on the RHS:

T TE (T f ht' (0) dt - M ) E f( h 21(0) dt) 2 M

0 T 0

T T

0} 0

Let J(s,t) E ht h s " then since (h) is a Gaussian process

E h 2
1 h 2 = 2j2(s t) +j(t,t)j(S'S

T

This together with the fact that M + f J (t, t ) dt im plies that
0
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T 7' T

2 trace(JJ*)T 2

<-T2trace (J) l U I I

where J is the integral operator corresponding to the symmetric kernel JI. S r.

Since h f Ho( t,s ) dy . it is easy to check that J H R /1 1/ 1/ lcrc-

fore, using Lemma 3.3 (i) and (ii) we get that I U II< C and rrace.I _ C T

Thus

T

E ( f h2t() dt - Mr 2 CT - 0

as T --. Therefore (i) is proved if we show that

MT --- )(1 as T

However note that

T Tr1 _-1

MT E If h-(O) dt - J(t,t)dt
T ()To o

1 trcJ=1•
= trace - [ trace(HRH*) + trace(HH )

T T

Therefore

lim M T =y
T -. o,

Thus (i) is proved. The verification of (ii) is exactly identical. Then only (iii

remains to be verified. Let

T

VT = E -L g,(O) h,(0)dt.
0
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Consider

T*11

E (-f g(O) ht(0) dt -- V1 )2
0

T

f(f7 J g h) h(,) dt )2- (VT )2
0

T 7
1_- - f J (Egtgs.hh)dSdt_-(VTr)2

Note that if 1,2 3, are jointly Nrv;,1 a] then

E 3 = E = t1-) (t3'-4) + E( 3)E(r2 a + E( l )E(.,

Therefore, if I(s,t) = E(gigs ) and K (s,t) = E(hsgt),

Eggsh, s = I(t,s)J ( t ,s) + K (t,t)K (s,s) + K (t,s)K (s,).

Therefore

7 T

T 2  f (Egghh) dsdt - (VT )2
T 0 0

IT T

T2 f (I (t,s )J(t,s)+K (t,t)K (s,s)+K (t,s)K (s,t )) dsdt
T 0 0

T T
2 T (K (tt)K (s,s))dsdt

T T

= f (I(t,s)j(t,s)+K (t,s)K (s,t))dsdt.
0 0

TT TT 1

< T2 [(f f 12(t,s)dsdt) 2 (f f J 2(t,s)dsdt) 2 ]
00 00

T T

+ (f [ f K 2 (t s)dsdt)] "

0 0

Using the facts from Lemma 3.2 and Remark 3.1 it is easy to see that the above

terms tend to zero as T -- oo. Let K be the integral operator -with kernel K (s,t)
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then

K = HRG*+HG*.

Thus (iii) is proved since

T

1rM VT=- lir f K(t,t) dt
T "- T T --- *o, 0

I- lim trace [HRG*+HG*] =
T T,~

This concludes the proof of Theorem 2.1.

Remark 3.2 Here we briefly explain the reasons why Kutoyants's method [or

studying the asymptotic properties of the m.l.e. of (x in the model given in ( 1.2) can

not be applied to the problem considered in this article. First let us recall the

model given in (1.2):

dx = -xdt + dW (t), xo = 0

dy1 = cx tdt + dW 2(t), Yo= 0; P3 E (ab), a > 0. (3.24)

(We have set 3 = 1 for simplicity.)

Just as before if we denote by i,(y,a) the conditional expectation of x, given the

observations up to time t and by V, the innovations process i.e.,

dv t = dy - oci 1 dt;

then vt is a standard Wiener process. Furthermore it is easy to see that

dp c1T T

ln dp T (y) = f [ eit(y,oxj)-a 0 O t (y aOo)] dv t

CE(7 0

T
f- '" OCl.it(yOtl) - (O it(y'(oo) I' dt

" 0
T T

f [ T(c(j9-Tja 0 ) I dv, - 2 f ( n1 (O)-,11 ((Xo) (it, 3.25)
0 0
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where V, is defined by, dv t = dy - cxO dt and q, (a) = ct, (cf.).

Let aot be the true parameter and let c denote the me.o cf .(. Kuto'ants

- the vrptntic properties of c using Ibragimov & Hasminski', :nnroach :1nd

thus he too verifies conditions similar to those of Theorem 3.1, however, for veri-

fying these conditions he uses the following special structure of the process 1 ( cX):

drl'/(oc)= g(cc)r',( x) d + U dv1 , t()) = (3.26)g(cx)
d

where T' I) ( r-thia), g(a) I \/ lC 2 and V¢ is a Wiener process w.r.t.

P j. Moreover, if we denote rht(ao)-jth(x) by t(cc) then it is shown that .(X)

satisfies the SDE,

d , -g(a) r dt + [g(x)-g(x 0 )1 dW1  (3.27)

where W, is a Wiener process (w.r.t. PaT).

The relation (3.27), the form of ,he likelihood function (see (3.25)) and the

following result of Novikov (see Liptser & Shiryayev Vol II, Lemma 17.3. p 20X3)

help verify the condition corresponding to the second condition of Theorem 3.1.

Proposition 3.1 Assume that a zero mean Gaussian process satisfies the fotlowin

SDE:

d: 1 = a tIdt + dW, =O,

where W t is a standard Wiener process and a is a real number. Then

T

Eexp(-J f , 2dt) = exp(-TCa)
0

where C. is a psitive constant.

The exact value of Ca is unimportantand and so is not given (the proof oi this

result is not applicable for more general Gaussian processes). In the same fashion

the relation (3.26) is used to verify the other conditions of Theorem 3.1.
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In the case of estimation of P no similar simplilications are possible, for exam-

ple here (setting (X= 1),

dP ."r T

In -(y) = j [-(Y 1) - -t,(YPo) I dv,dP 0

T

1 f [.it (Y' I) - it(Y' °) ]2 dt; (3.28)

and we would like a relation similar to (3.26) to hold for .fj(f3) = - -1 13).

However, from the relation

dli =~ i -[ dt + A dv;

it is possible to show that

di= -B 'ij ' dt + - t dt + A ' dv,;

which is much more complicated equation than (3.26). In the same way there is no

relation corresponding to (3.27) for the differences i 1(y, 3 I) - .i (Y 3o) and thus

Novikov's result can not be used. As the reader may recall (sec Lemma 3.4), c

resorted to Lemma 3.1 (ii) in verifying the second condition of Theorem 3.1.
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