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1. INTRODUCTION

Suppose that y(s),s > 0, is a continuously differentiable process. Let u(s) and v(s), u(s) > v(s).

be continuously differentiable barriers. Assume that the process starts between the barriers, i.e.

v(0) < y(O) < u(0) and if y(O) - u(O) or y(0) = v(0) then y'(0) < u'(0), y'(0) > v'(0), respectively.

In this paper, we are interested in the densities of the absorption times Tu, T" of the y-process ill

the barriers u,v, respectively. More preciseiy, let Tu, T, be the fiist passage times to the barriers

u, v, respectively. Then the absorption times Tu, T, are defined as follows

Tu={T ifT" < T,

1+oo otherwise,

T1 if T, < T,

+oo otherwise.

Our main result, presented in Section 2, states that the densities of Tu,T can be expressed ill

terms of conditional expectations in the following way

fu(t) =E [10t Y Y()- u'(0) I ) =  W fyt(U))
fT.(t) =E [(o(,t)(y)(y,(t) - V'(0))- ly(t) = V(0)] f,(o)(v(t)),

where x+ = max(O,x), x- = max(O, -x) and I(o,t)(y) is the indicator function defined equal to I

if the sample path does not cross the barriers u,v prior to time t and equal to 0 otherwise. The

formula (1) is an extension of Durbin's formula for the first passage density [3, 10], which call be

obtained by replacing the lower barrier v by -oo. Since the indicator I(o,t) is a function of the whole

sample path of the y-process, the expectations in (1) are difficult to evaluate exactly. However, we

shall use (1), in Section 3, to construct upper- and lower-bounds for the densities of Tu,T,.

Several important applications are related to the two absorbing barrier problem. Two are dis-

cussed in Section 4. The first one, which arises in oceanography, is the evaluation of the joint

distribution of wave-length and amplitude of random waves; i.e. the joint distribution of the differ-

ence in time between the upcrossing of the mean sea level and the following downcrossing of thih
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level, and the highest value of the sea in this interval, (see Section 4.2). In the second application.

discussed in Section 4.3, we give approximations for the distribution of the so called rainflow cycle

amplitude. (The Rainflow method was developed in fatigue analysis to describe a load process.)

2. BASIC THEOREM

We begin with a definition of a class of processes for which (1) holds.

DEFINITION 1. Let y(s) be a continuously differentiable process. Assume that there exists a k-

variate continuously differentiable process A(s), and a random variable X, independent of A(s).

with bounded and continuous density function such that

(2) y(s) = F(s,X, A(s)), s > 0,

where F is a continuously differentiable mapping froni R+ x R x Rk into R. For a fixed t > 0, the

y-process will be called decomposable at t if there exists c > 0 such that for all s, Is - tI < e, and

all z E Rk, F(s, ., z) is one-to-one. Further, if the y-process is decomposable at almost all t then Y

is called decvmposable.

The class of decomposable processes is quite large and contains for example: Gaussian processes.

functions of Gaussian vector processes, Slepian model processes, the sum of a Gaussian process and

any independent continuously differentiable process, etc. An example of a class of processes which

are not decomposable are processes which are "deterministic"on some interval, e.g. y(s) = g(s).

g(s) is a continuously differentiable function.

We turn now to the definition of the particular version of conditional expectations used in (1).

Assume that y is a decomposable process at t. Denote by pt,z an inverse mapping to F(t, ., z) (2).

i.e.

(3) F(t,pj,z(r),z) = ,

where r E R. Let y, be the following process

(4) yr(S) = F(s,pg,,( 0 (r), A(s)).

3



LEMMA 2. Assume that the y-process is decomposable at t. If h is a nonnegative measurable

functional defined on y, then for any r E R

(5) E[h(y)ly(t) = rlf(t(r) = E[h(yr) f(rA(t))],

where the process yr is defined by (4), and the function f(rlz) is given by

(6) f(rl z) = r) fy (pt,z(r)).

The function p is defined by (3) and fx is the density of X.

PROoF: The lemma follows from Fubini's theorem.

Obviously, for many processes y, the decomposition (2) is not unique. In that case one can choose

the decomposition (2), which gives the most convenient expression for the process y, (4). For

example, if y is a zero-mean Gaussian process, with Var(y(t)) > 0, the most natural decomposition

is

(7) y(s) = y(t)bt(s) + At(s),

where At(s) is a zero-mean Gaussian residual process independent of y(t) with covariance function

rt(sl,s2) = Cov(y(s1),y(s 2)y(t)), and bt(s) = Cov(y(s),y(t))/Var(y(t)). Now, by (4), the process

Yr is defined by Yr(S) = r . bt(s) + At(s). Since, pt,z(r) = r, the formula (5) can be written as

E[h(y)ly(t) = r]f(t)(r) = E[h(Yr)]f()(r).

In general, h(yr) and f(rA(t)) in (5), are dependent random variables. Wo shall illuminate this

by using a different decomposition (7), e.g.

y(s) = y(O)bo(s) + Ao(s).

Suppose bo(t) 0 0, then, by (3), pt,z(r) =r- and the process yr is given by

() r- Ao(t)b() + Ao(s).

4



Finally, the conditional expectation (5) can be written as

E[h(y)ly(t) = rrfy(r) = L h(Yr) 1 f(O) (r - o(t))
lbob0(t)b M J

TitEOREM 3. Assume that the process y is decomposable at t. If E[Iy'(t)I y(t) = u(t)] < +=X.

E[Iy'(t)lly(t) = v(t)] < +oo, see (5), then the densities of Tu,T,,, are finite and -re given by by (I).

PROOF: The proof is similar to the proof of Theorem 2 in [10].

3. BOUNDS FOR THE ABSORPTION TIMES DENSITIES

3.1 Introd,'.tion. In this section we present upper- and lower-bounds for the density of T,; the

density of T, can be treated similarly.

For a fixed time point s, denote by I(y; s) the indicator function defined equal to 1 if v(s) <

y(s) < u(s) and equal to 0 otherwise. In the same way, for a vector of time points s = (Si,..., 41).

0 < si < t, let I(y;sl,... ,s,) be the tbllowing indicator

n

(8) _[(y; s,..., s') AY Hlysi).
i= 1

Since, for any i ctor s, I(o,)(y) <_ I(y; s), an upper bound for the density of Tu can be obtained by

replacing in (1) the indicator (o,t) by I(y; s), i.e.

(9) f,+(t;n) = E[I(y;s ,...,s,,)(y'(t) - u'(t))+ly(t) = u(t)]f(j)(u(t)).

However, it is in general difficult to give useful lower bounds for the indicator l(ot)(y) in (1), and

therefore formula (1) is not useful in the construction of lower bounds for the density of T,'. Hence.

as in [13], we prove, in Theorem 4, a second formula for the density of T,, which can be used

to construct lower bounds. The approach taken in [13] leads to very general lower bounds, but

the numerical effort to evaluate these lower bounds is much bigger than that corresponding to

the upper bound. By some further restriction on the residual process A in (1), e.g. when A is

a Gaussian process, we can construct lower bounds of the same complexity as the upper boumds
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(9). In addition, by (2), the process y is a function of the process A and y'(t) is a function of

A(t), A'(t), and hence, in order to evaluate numerically the upper bound (9), the joint density of

A(s), A(t), A'(t) must be given in an explicit form. Thus, from this point on, we assume that A

is a zero-mean continuously differentiable vector valued Gaussian procass.

3.2 A second formula for the density of T. Let A be a zero-mean continuously differentiable

vector valued Gaussian process. For a fixet t > 0, consider the following sequence of random vectors

(10) )=z~) 't)

) =( (t), A', ),A(s ),..A (s,,)),I

where Si, 0 < Si < t, i = 1,..., n, are random times, such that each Si is a function of &i1) alone,

i.e. if ( ) P-0 , then Si(z(il-)) = si, where 0 < si < t is a fixed time point.

In the following we use the decomposition of the process A into the conditional expectation on

. ) and the residual process, i.e.

(11) A(s) = E[A(s)(en] + An(s).

In [11] Lemma 9, we gave an explicit formula for the conditional expectation in (11) and proved

that there exists a one-to-one transformation of &5,) to a vector ,), say, of independent standard

Gaussian variables. Since the transformation is a bijection, one can equivalently use in (11) (,) or

(n) . Consequently, in the following, we shall assume that en) is transformed to a vector of inde-

pendent standard Gaussian variables. Generally, for random times Si, the conditional expectation

in (11) is a nonlinear function of (&, and the residual process An is dependent on (n); however,

given values of(n), A n is Gaussian. This is a simple consequence of the definition of the vector

(n) and the random times Si,... ,Sn (10), since, given en) = z(n), S(z(n-)) = s5, i = 1,...

are fixed time points, and hence the conditional distribution of A(s) given (n) = Z(n) is Gaussian

6



with mean zero and covariance

(12) r(s, t;z(n- 1 )) = Co,,(A(s), A()JA(t),A (t),A(),... ,(s))

Let y be a decomposable process, i.e. y(s) = F(s, X, A(s)), see Definition 1, where A is a vector

valued Gaussian process. Assume that the vector of random times S1,...,S, in (10) is given.

and let (&) be the corresponding vector (10). Denote by Nn(sjz(n)), z(n) = (r,ri,zi,... ,zn), a

zero-mean Gaussian process with covariance function (12). Consider the process y(slz(n)) defined

as follows

(13) y(sj(z(") = F(s,X, E[A(s)(" ) = z("n) + A,(sjz(-))).

Since X, A are independent y(sjz(n)) 2 y(s)I((n) = Z(n), (where 2 denotes equility in distribution).

In order to use (5) with y(s) replaced by y(slz(n)), let yU(t)(sjz(n)) be the process (4), i.e.

(14) y,(t)(.Sz(n)) = F(s, ', (t)), Ii4A(s)I() = Z(n)] + An z )),

where pt,,.(u(,,)) is defined by (3). e, in (14), we are using that E(A(t)() z(n)] = r and

A,(tlz(n)) - 0.

We turn now to the second formula for the Ta-density.

THEOREM 4. Let y(s) be a decomposable process, i.e. y(s) = F(s,X, A(s)), as in Definition 1,

where A is a k-dimensional zero-mean Gaussian process. Furthe., assume that there exist k - I

continuously differentiable mappings from R+ x R x 1tk into R, (F1 ,... ,Fk-1), such that for all

a E R and all s, 0 < s < t, except possibly for a finite number of s,

(15) F(s, x, -) = (F(s, ,. ),F (s, ,.),...,Fk_ (s,j,.))

is a one-to-one mapping from Rk into Rk. Let u(s), v(s), u(s) > v(s), be continuously differentiable

barriers. If for all s, 0 < s < t, the following conditional expectations are finite

E[Iy'(t)y'(s)Ijy(t) = u(t),y(s) = u(s)] < +oo, EF[y'(t)y'(s)Ijy(t) = u(t),y(s) = v(s)) < +00,

7



then

(16) fTo(t) =E[(y'(t) - u'(t))+I(y;S)ly(t) = u(t)]fy(t)(u(t))

- j E~s - uI(s)) + (Y'I(t) - u1'(t)) + I(y;S)I(o,8,)(y)jy(t) = t)

y(s) = u(s)] f(u(t), u(s)) ds

- j [( (s) - v'(s)) - '(t) - '(t)) + I(y; S)10co,) y)Iy(t) = u(t),

y(s) = v(s)] f(u(t), v(s)) ds,

where S = S1,..., S, are random times defined by (10) and f is a joint density of y(t), y(s). The

indicator function I(V, S1... ,S) is given by (C), J(os (Y) is the indicator function defined equal

to I if the sample path oty does not cross the barriers it, v, prior to time s and equal to 0 otherwise

and x+ = inax(O,x), x- = max(O,-x).

PROOF: Since y(slz(-I) (13), z) = (r,rj,z1 ,.... zj, is decomposable, then, by Theorem 3, the

conditional density of T, given z(n) = z is defined by

fT., .,(tIZ)n) - E [o,,) (y(.Iz("))) (y'(tlz ) - ,(t))+jy(tlZ(n)) = U(t)] f ,( .))(u(t)).

By Lemma 2, the density of TI (n) is given by

(17) fT. lflh(tIz(n)) = E[I(o,) (y(,)(.I-())].(y'.()(tlz(°)) - u'(t))+.f(u(t)Jr),

where Yu(t) is given by (14) and f(u(t)lr) is defined by (6). We are also using that y'(i)(tIz(n)) =

y(t)(tz(°)) is a constant variable dependent only on zo) = (r, ri).

Now, for all i, i = 1,...,n, A,,(s~lz(n)) = 0, where si,...,sn are the values of random times

Si,..., S. given ((1) = Z(n), (-) R(n+2))k, and hence we are allowed to multiply the expectation

in (17) by the indicator I(y,(t)(.Iz());s,... ,sn) (8), which is a function of z(n). Further, for all

Z(n), we have

(18) E[I(o,t)(y.)] = 1- fTf(.) . (s)ds,

8



where yu(') = y,,(t)(.IZ(n)) (4).

Now, since An(.[z(n)) is a k-dimensional Gaussian process and (15) holds, one can prove, see

Theorem 2 in [10], that the absorptions times T,,(yu), T,(yu) are given by (1). Finally, by combining

(1), (17-18), multiplying (17) by the density of e n) and integrating out z(1) , we obtain (16).

3.3 Bounds for the density of T.. Since 0 < 1(0,s)(Y) -< 1, then, for n > 1, we have the following

upper and lower bounds for the density of T,

(19) f+(t;n) =E[(y'(t) - u'(t))+I(y; S)ly(t) = u(t)]fy(t)(u(t))

fu-(t; n) -f+(t n) - j E [(Y'($) - U'(S))+ (Y'(t) - ul(t))+I(y; S)jy(t) = u(t),

y(s) = u(s)] f(u(t), u(s)) ds

- jt E [(y'(s) - v'(s)) (y'(t) - u'(t)) +I(y; S) Iy(t) = u(t),

y(s) = v(s)] f(u(t), v(s)) ds.

Further, for n = 0, the bounds f+(t; 0), fu-(t; 0) are obtained by replacing in (19) the indicator

I(y;S) by 1.

We turn now to the problem of choosing the vector S. Obviously, for any fixed t and n, the best.

choice of S is that which minimizes the upper bound f+(t; n), or the difference between the bounds

f+(t;n) - f-(t;n), see (19). However, since these procedures lead to complicated optimization

problems, we propose a simpler recursive procedure.

We begin with some simple properties of the bounds ft, fu- (19). Assume that we have selected

a vector of random times S = (S1 ,...,S), and let (n) be a random vector defined by (10). in

order to simplify notation, we shall denote the conditional process yu(t)(.Iz(n)) in (14) by yu. Now,

similarly as in (17), we can write the density of T, as follows

(20) fT.(t) = J fT~I(()(tlz(n))fc(,(z(.)) dz(n)

= JE[I(ot)(yu)]I(yu;s ""sn)f(z())f ( ,)(z(n))dz( n),

9



where yu(s) = y,(t)(sjz(a)), si = Sj(z - ) ) are the values of Si for ei-1) = P-1) and f(z( ° )) is

defined by

f( °) ) = (y'(,(tjz(°)) - u'(t)) + f(u(t)r).

Further, f¢(.) is the density of e'). Consequently, the boundang problem of the density of T,, k

reduced to the construction of an upper and lower bound for the expectation

(21) E[I(o,t)(yu)] = P(v(s) < yu(j)(sz ( ')) < u(s) for all s,0 < s < t).

Let P+, P6- be the following upper and lower-bounds for the probability (21)

(22) P0o (; yU) =1,

PC (t;yU) =1 - j E[(y'u(s) - u'(s))+yu(s) = u(s)]fy.(,)(u(s)) ds

- E[(y'(s) - v'(I))-Iyu(s) = v(s)]fy(,())ds,

where the lower bound P0- is obtained using (1) and (18). Now, by replacing the expectation in (20)

by the upper and lower bound P+(t;yu), PC(t;yu), we obtain the bounds f+(t;n), f;(t;n) (19).

respectively, generated by the vector &) = (A(t),A'(t), A(S),. . . ,A(Sn))= (W)o, ... ,-().

in order to obtain more accurate bounds f+(t; n+ 1), f-(t; n+1), we have to choose an additional

random time Sn+l, 0 < Sn+j < t, which is a function of ((). Note, that the optimal strategy is

to select the whole new vector n+I), so that f+(t; n + 1) is minimized. However, here we are

restricting ourselves to recursive selection procedures of Sn+i, i.e. we add Sn+l to the old vector

S.

Now, assume that we have selected recursively k additional random times Sn+1 ,..., Sn+k and let

n+l,... ,Cn+k be the vector (A(Sn+i1),... , A(Sn+k)) transformed to iid. standard Gaussian vari-

ables. (The selection procedure will be given later in this subsection.) The vector ('n+1,... , Cn+k)

10



generates new bounds for the probability (21), Pt, P+, say, defined as follows

(23) Pk(t; y) =E[I(yu;Sn+i,...,Sn+k)je") =Z()]

P (t; ) =Pk(t;yU) - rt[ -u'(s))+I(Yu;Sn+1,.,Sn+k) - Z),

Yh(s) = U(s)] fy.(,)(u(s)) ds

- j E (s) - v'(s))-I(yu; Sn+l, ., Sn+k)[) J =Z(n)

yu(S) = v(s)] fy.(S)(v(s)) ds.

Once again, by replacing the expectation in (20) by the upper and lower bound P+(t; YU), P,.(t; y")

we obtain the bounds f+(t; n + k), f;(t; n + k) (19), respectively, generated by the vector

In the following lemma, we give a recursive formula for the bounds (23).

LEMMA 5. The upper and lower bounds (23) P+(y0 ; t), P,.(yu; t), k > 0, for the probability (21),

satisfy the following recursive formula

(24) P,. (t; y0 (,)(.Iz(n)))= J P_ (t; y,,n1)(.)z(+l))) .I(yu()(.Iz( '),; fc¢+, (z) dz,

p; (t; yu(t)(.lz("))) = J 1 (t; y(t)(.IZ(n+ 1))) '(y,(U('z'+1 ); sn+1)&.+ (z) dz,

where sn+l = Sn+1(z(n)) is the value of Sn+i for zn) and Z(n+l) = z(n),z).

PROOF: We prove the lemma only for the upper bound P.. A full proof is only notationally

more complicated. By additional conditioning on (n+1 in (23) and using (8),(13), P+(t; y.) can be

written as

pk (t; ~ u)(.ii.)) = J E [I(yu(,)(.Iz(n)); Sn+l, ... , Sn+k) J& = Z€n),Cn+l = z] &+ (z) dz

J E[I(,0()(.Iz(n+l)); S,,+2,.. . , Sn+k) I(n+l) = z(n+l)]

l (y.c,)(.IZl + ) ); 5 n+ I & fc+, (Z) dz,

showing (24).

Observe that in the recursive definition of the bounds P+(t; y.), P; (t; y.) (24), we have assumed

that the random times Sn+l,...n+k are given. Consequently, in order to use (20) and (24) to
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calculate f,+(t; n + k), f+(t; n + k), we have to define a recursive procedure to choose the random

time Sn+, as a function of &). In addition, since yu(t)(sIZkn)) = F(s,pt,r(u(t)),E[A()(n) =

z( n) ] + An(sjz(n))), where the only random component is a zero-mean vector valued Gaussian

process An(sIz(n)), then, once the random time Sn+1 (z(' ) ) = sn+1 is chosen, one can easily obtain

the distribution of the process yU(t)(sjz(n+1)) by calculating An(sIz(n))lAn(sn+llz( n)) = Z.

We turn now to the presentation of the procedure for choosing the random times S in (19).

P:. Step 1: choose the time S1, 0 < S, < t, to minimize Pl+(t;yu(t)(.[z(0))), and, by (23), given the

values P) = (r, rj), choose the time s, to minimize P(v(sl) < y,(t)(s [z(O)) < u(s1 )).

Step n: given the time points Si,...,S-. choose the time Sn, 0 < Sn < t, to minimize

P,(, y()(.z(n-1))), i.e. given z(n-i), choose the time sn to minimize P(v(sn) < Yu(t)(sn(n -1)) <

u(sn)).

Since, for any z (n ) E R(n+2)k, n > 0, the procedure P defines Pl+(t; yu(t)(.Iz(n))), Pf(t; y(g)(.Iz(n")).

then, using (24), we can recursively evaluate the bounds Pn+(t;y,(i)(.Iz(0 ))), P(t;yu(t)(.Iz(0 ))).

Hence, the upper and lower bounds f+(t; 7), f,-(t; n) are defined by

(25) f+(t;n) = ./Pn(t;yu(o(.Iz(°)))f(z())f((o)(z())dz(°),

f- (t; n)= P(t; yu((O(.I)(O))),(o)

where f(z(0 )) - (y'(tjz(0)) - u'(t)) + f(u(t)Ir). In the following subsection we present a program

BOUND, which evaluates the bounds Pn+(t;yu(t)(.z(0))), P(t;yu(t)(.z(0 ))) in (25), for the special

case when yu(t)(.Iz(0)) is a zero-mean Gaussian process.

3.4 Program BOUND. The procedure BOUND evaluates the upper and lower bound for the

probability

(26) Prob = P(u(s) > A(s) > v(s) for all s,0 < s < t),

where A is a continuously differentiable zero-mean Gaussian process. We begin with a simple

lemma.

12



LEMMA 6. Let X be a Gaussian variable with mean m and variance a2, then

where %(x) = O(x) + xz(x), 0 and - being the standardized normal density and distribution

functions.

In all calculatkns, we have approximated the I-distribution by Hermite polynomials, and hence

the T-function is very accurately approximated by an explicit function.

We turn now to the description of the procedure BOUND

Input variables:

1: n - number of iterations, n > 0,

2: t - fixed time point, t > 0,

3: u(s),v(s) - continuously differentiable barriers, u(s) > v(s), 0 < s < t,

4: u'(s),v'(s) - derivatives of the barriers,

5: r(sl,s2) - covariance function of a zero-mean Gaussian process A, 0 < sls 2 < t,

6: ri(sx,s 2) - covariance function Cov(A'(sI),A(s2 ))= -r(si,s 2), 0 < S1,S2 < t,

7: or(s) - variance of the derivative A', i.e. a2(s) = Var(A'(s)), 0 < s < t,

Output variables:

P+ - upper bound for the probability Prob (26),

P," - lower bound for the probability Prob (26).

Algorithm:

Since the bounds Pn+, P;' are functions of u(.), v(.) and the covariance function of the process

A, rA say, we express it in notation by introducing P+(u, v,rA) and P;(u,v,ra).

If n = 0, then by (22)

13



P0+ =l,

P -=1- E[(A'(s) - u'(s))+IA(s) = u(s)]fA(s)(u(s))ds

- f' E[(A'(s) - v'(s))-A(s) = v(s)]fA(,)(v(s))ds.

Using Lemma 6, the lower bound PJ- can be written in more explicit way, i.e.

= 1- ft a (S) (,(u(s)b(s)- u'(s)),(u(.)±I,(v'(s)- v(s)b(s)),(v(s))) ds,
j 0 o(s) a2 (S) a($) 0'2(S) a($)

where the 12-function is defined in Lemma 6 and b(s) = r1 (s,s)/r(s,s),

E[A'(s)IA(S) = u(s)] = - u(s) . b(s),

E[A'(s)IA(s) = v(s)J = - v(s) . b(s),

2 () == ,2() rl(,,) 2

2(s) Var(A'(s)JA(s)) = (s) r(s,s)

Observe that the integral must be evaluated numerically.

If n > 1, then, by the procedure P, we choose .5, 0 < s, < t, a fixed time point for which the

probability P(u(sl) > A(sl) > v(si)) is minimized, i.e.

P(u(si) > A(sl) > v(s1)) = min ( s(() O (s)

and by recursion (24) we have

(27) P1+(u,v, rA) = I(S) P+l (u - xbl(s),v - xbj(s),rAja(j,))fA(s,)(x) dx

N

Pj IgL (u - xib1 (s), v - xib1 (s), raga. 8 )) fA(51)(xi)hi,
i=l

where xi,hi are suitable nodes and weights, respectively, u(si) > xi > v(sl), i = 1,...,N and

(28) xbl(s) = E[A(s)IA(sl) = x] = x r(s,sj)

14



The same recursion can be given for the lower bound P', by replacing in (27) "+" by "-"

Finally, for each xi, we evaluate the bounds P+-j (u - xibi(s),v - xib(s), rAiA(S,)), P'- (it -

xibi(s), v - xibl(s),rAIA(Sl)), using the procedure BOUND with the following input variables;

1: n - 1,

2: t, unchanged,

3: u(s)- xib1(s),v(s) - xibl(s), where b1(s) is given by (28), 0 < s < t,

4: u'(s) - xrib(s),v'(s) - xib'(s), where b'(s) is given by (29), 0 < s < t,

5: covariance function (30),

6: covariance function (31),

7: variance (32),

(29) bi(s) = r(s 1, .)

(30) AIA(,,o)(St) = r(St)- r(s,s )r(sj, t)
r(sl,sl) '

(31) Cov(A'(s),A(t)IA(s,))= r,(s,t) - rl(5, sl)r(st)

(32) Var(A(s)A(Sl))= a(s) -ir(Si 's)

(32)81 "a

The output variables P+ and Pn" are now defined by

N
(33) P1 =Z PP..1(u - xb,(s),v -xb1(), ra I fA(, )(x)h,

N /

S=Z P.- 1 (u - xbi(s), v - xib1(s),rAIA(, 1))fA(S 1)(xj)hj.

Here, we assume that the procedure BOUND is programed in a computer language which allows

recursive functions, e.g. APL.

Finally, an obvious question is whether one should use in (19) fixed times si,...,s, instead

of random S1,...,.,, is would drasticly reduces the number of times one have to evaluate
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equations (28-32). However, tests disclosed that such a procedure is usually much slower. Tle

reason is that the probability P(u(sl) > A(s) > v(si)) > P(u(Si) > A(S 1 ) > v(Si)), and hence

we have to increase N, number of nodes xi, to compute (33).

3.5 Concluding remarks. In this subsection we dscuss the convergence of the bounds (19), in

the case when S, are deterministic and dense points in the interval [0, t]. This does not prove that.

the bounds obtained using the procedure P converges to the density of T,. However, the procedure

evaluates simultaneously the upper and lower bounds for the density of T,, so the accuracy and

the convergence of the bounds can be easily checked. In addition, in examples presented in the

next section, the bounds based on the random times Si are more accurate then the bounds based

on deterministic points si and the algorithm is much faster.

REMARK 7. Under assumptions of Theorem 4, if +' is a dense subset of the interval [0,,

then as n tends to infinity

I(Y; si, ...- , n O I (,)(y), a.s.,

E[(y'(t)- u'(t))(y'(s)- u'(s))+I(y;sl,...,s.)Iy(t) = ,(t),y(s) = u(s)] I 0,

E[(y'(t) - U'(t))(y'(s) - V'(s))-1(y;sl, . .. ,s)Iy(t) = u(t),y(s) = v(s)] I 0.

Consequently, the upper and lower bounds f+(t;n), f;(t;n), (19), with Si = si, i = 1,2,...,

converge monotonically to the density ofT,, as n goes to infinity. (The proof is similar to the proof

of Theorem 11 in [13].)

Observe that Theorems 3 and 4 can be used to construct many different types of upper and lower

bounds. For example, another type of lower bound are obtained by replacing the indicator I(y;S)

in (16), by 1, and overestimating the indicator I(o,s)(y), by I(y; S1,... , S), where §j, ... , S, can

be chosen by a procedure similar to P, see [13]. However, an important property of (19), which

distinguishes it from the other approaches, is that the same points S are used in both upper and

lower bounds leading to a more efficient algorithm.
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4.APPLICATIONS

4.1 Slepian model process. Let y(t), t > 0, be a stationary zero-mean ergodic Gaussian process

with covariance function r, and assume that its sample paths are a.s. continuously differentiable.

A sufficient condition [1] for this is that the process is separable and that

r"(s) -A - o(llog1sI-°),

as s -- 0, for some ce > 1. Assume that the process y is normalized so that A0 = Var(y(0)) = A2 =

Var(y'(0)) = 1, which is only a matter of scaling.

In following subsections, we are interested in the "long run" properties of the process y after

downcrossings of the level u; consequently we are introducing the Slepian model process U for y

after a downcrossing of the level u. This is the stochastic process u(') which is distributed as the

long run distribution of y(w, tk + .), when tk runs over all u-downcrossings of y(w,.). Mathematical

details about Slepian processes and long run probabilities can be found in [5], Ch. 10, and [6, 71.

We now give a simple representation of the Slepian model process u.

Consider a zero-mean Gaussian process A, with covariance function

(34) Cov(A(s), A(t)) = Cov(y(s),y(t)ly(O),y'(O)) = r(s - t) - r(t)' - r'(t)' ,

since Var(y(0)) = Var(y'(0)) = 1, and let R be a standard Rayleigh variable, with mean

independent of A. Then the Slepian model process u is given by

(35) ,(s) = ur(s) + Rr'(s) + A(s).

Obviously, the process ,, satisfies the assumptions of Theorem 4, and hence we can use the bounds

(19) developed in Section 3.3.

In following numerical examples, we shall use the process y with covariance functions given by

(36) r(s)= sin V "
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4.2 The distribution of wave-length and amplitude. Assume y(t) is a zero-mean Gaussian

process, which described water elevation at a fixed point. A question that arises in oceanography

i; that of the "empirical" or "long run" distribution of the zerocrossing wave-length and amplitude

T, H. By this we mean the difference betwen the time of the zero downcrossing and the following

zero upcrossing and the lowest value of y in this interval, see Figure 1. Since the "long run"

properties of y after zero downcrossings are described by Slepian model process o (35), we have

T, H 2 T( o),H1( o).

For notational convenience, we drop the subscript "0" in o and in the following the Slepian model

process after zero downcrossing is denoted by .

Y(s)

2

H7

Figure 1. Definition of zerocrossing wavelength and amplitude T, H.

Obviously, H( ) > h if and only if c(s), s > 0, reaches the level -h before it crosses the level 0

again. (Observe that (0) = 0, '(0) < 0.) Thus the distribution of T,H can be expressed using

the densities of the absorptions times of, T,,,T, with u(s) = O,v(s) = -h, respectively, i.e.

(37) P(T < t,H < h) = /T(s)dj,

(38) P(H < h)= fT.(s)ds = 1 -j fT,(s)ds.

Is



In (38) we are using a fact that, for Gaussian processes, the probability that stays for ever between

the finite barriers is zero, i.e.
(+0

0+10 [fT. (s) + fT (s)]ds 1.

Note that the distribution of T can be obtained from (37) by choosing the lower barrier v(s) = -co.

In order to use (38) for bounding the distribution Ft, we have to approximate the infinite region

of integration by some bounded interval. For many processes of practical interest, there exists a

positive constant 'I0, s-och that fTp(s) - 0, in (37), for all s > To. Now, using the lower bounds

(19) for the density of T,, u(s) = 0, v(s) = -oo, respectively, we can find To as the first time when

fo f-(s;n)ds > 1 -JO,

for some small c, i.e. P(T > To) < e.

We turn now to the presentation of the bounds f+(s; n), f;(s; n) for the density of Tu( ) obtained

using the procedure P of Section 3.3. The bounds for the T,(7) density can be derived in the similar

way.

For a fixed value h, the formula (1) for the density of T,, with u(s) = 0,v(s) = -h, is given by

(39) fT. (t) = E [(o,)(j) '(t)+ l(t) = O] f (t)(0).

The formula (39) can also be expressed in terms of y, i.e.

fT.(t) = c. E[I(o,g(y)y'(O)-y'(t)+Iy(O) = O,y(t) = 0] fy(o),(t)(0, 0)

= c. P(O > y(s) > -h for all s,0 < s < tly'(0) = z,y'(t) =Z,

y(O) = 0,y(t) = 0)f(z, zi)dzI dz,

where c- 1 is the average number of zero downcrossings per unit interval

(40) c" E[y'(O)-ly(O) 0]fy(o)(0) =(27")- 1V O)
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by the celebrated Rice formula [9], and

(41) f(z,zI) = Izlzlfy,(o),y,(t),(o),y(g)(z,zl,O,O), z < 0 and z, >_ 0.

In the following we assume that t,h, z, z1 are fixed values. Many of formulas will depend on

t, h, z, z1, however for notational convenience we shall not always write this dependence explicitly.

Let r(s) be the following conditional expectation

rn(s) = E[y(s)y'(0) = z,y'(t) = z1,y(0) = 0,y(t) = 0],

and let A be a zero-mean Gaussian process with a covariance function f (sI,s 2) given by

f (Ss 2) = Cov(y(s 1), y(s 2)Iy'(0), y'(t), y(O), y(t))

It means that m(.) + A(.) 2 y(.)ly'(O) = z,y'(t) = z1,y(O) = 0,y(t) = 0.

As before, let r be the covariance of the y process. Then with

1 -r"(t) 0 -r'(t)
C(t) U-r(t) 1 r'(t) 0 )

0r(t) 1 r\-r'(t) 0 r(t) 1

and

c(s) = (-r'(s),-r'(s - t), r(s),r(s- t)),

the mean r(s) and a covariance function f(SI,s2) are given by

m(s) = c(s)C( 1)-1 z0 '
(0)

(S, s2) = r(s 1 - S2)- c(sI)C(t)-c(s2 )T.

Using the process A, the formula for the density of T, can be written as

(42) fT(t)=c. P(-m(s)> A(s)> -h-m(s) for all s,0 <s< t)f(z, zl)dzi dz,
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Figure 2. Densities of T,,, h = 0.5, 1, 1.5, 2, +oo, for the covariance (36).

where f(z,zl) is given by (41).

Now, upper and lower bounds (19) f+(t,n), f;(t,n), respectively, are obtained, using the pro-

cedure BOUND of Section 3.4, by over and under estimating the probability in (42).

We turn now to presentation of the numerical bounds for the "long run" wave-length and ampli-

tude distribution for Gaussian process y with covariance function r (36).

Table 1 shows bounds f+(t;0),...f+(t;4), f.(t;4),...,f'(t; 1) for the zerocrossing wavelength

density, i.e. u(s) = 0, v(s) = -co, for the process y with covariance (36). We can see, that the

upper and lower bounds are almost identical. In addition, the integral of the lower bound f-(t; 4),

over the interval (0,12.5], is 0.999, indicating that only 0.1% of all waves are longer than 12.5.
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Figure 3. Isolines of joint density of wavelength and amplitude T, H, for the covari-

ance (36).

TABLE 1. Bounds f+(t;0), f+(t; 1), f+(t;2) f+(t;3), f+(t;4), f.(t;4), f;'(t;3), f;'(t;2), f;(t; 1),

for the zerocrossing wave-length density, i.e. u(s) = 0, v(s) = -oo, covariance function r (36).

t f/+(t;O0) f/+(t; 4) f.(t; 4) / u-'(t; 1)

1 0.123 0.123
2 0.352 0.352
3 0.257 0.257
4 0.078 0.073 . 0.07 0.072
5 0.114 0.063 0.062 0.062 0.0 L 0.057
6 0.231 0.071 0.062 0.056 0.056 0.056 0.056
7 0.173 0.039 0.033 0.027 0.026 0.026 0.026 0.025
8 0.109 0.032 0.021 0.015 0.014 0.014 0.014 0.013
9 0.158 0.059 0.023 0.017 0.013 0.013 0.008 0.000
10 0.205 0.061 0.019 0.013 0.009 0.009 0.005 0.000
11 0.146 0.040 0.012 0.009 0.006 0.004 0.004 0.001 0.000
12 0.128 0.043 0.018 0.008 0.005 0.002 0.000 0.000 0.000

In order to bound the distribution of zerocrossing amplitude we have to bound density of Tu for

the barriers u(s) = 0 and v(s) = -h, h > 0. For a fixed t, the density of T, is increasing function of

h. This is shown on Figure 2, where we present the density of Tu for h = 0.5,1,1.5, 2, +oo. Finally,

the joint density of wavelength and amplitude T, H is obtained by numerical differentiation, on h,

of the density of T,, see Figure 3.
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4.3 The distribution of Rainflow cycle amplitude. When a piece of metal is subjected to a

periodically varying load small microscopic inhomogeaeities can develop into open cracks, leading

to tatigue failure after a random amount of time. The d*,stribution of fatigue life length depends on

the amplitudes of the applied "load cycles". One then needs a rule to combine the damages caused

by the different cycles. The most commonly used damage rule is due to Palmgren & Miner, and

postulates that the total damage caused by a stress history {Sk} of load cycles is

k(L) 1

D(t) = NS ,
k=l

where the sum is extended over all cycles completed at time t and N, is the median cycle life

obtained from tests with constant amplitude s. The median life is predicted to be the time t which

makes D(t) greate. an or equal to one. In most situations, the median cycle life N8 is large.

between 104 and i0 r , and therefore, by ergodicity of the load process, the fatigue life is predicted

as

A 1
(43) T = C-f fs(s)ds'

where fs is the density of the ergodic (long run) distribution of the cycle amplitude Sk and c is a.

mean number of a cycles counted in the unit interval (0, 1].

Dowling [2] has studied the accuracy of the predictors of the fatigue life T based on eight most

commonly used counting methods, and finds that only the rainflow cycle (RFC) counting method

leads to prediction agreeing with actual lifes.

Due to the great importance of the RFC-counting method, many different algorithms have been

proposed in the literature. However, most of them have a complicated "sequential" structure which

makes them difficult to apply when their statistical properties are studied. The following definition

of RFC-cycle, given in [12], is more convenient for statistical analysis of long run properties of the

RFC-cycles.
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DEFINITION 8:. Let y(r), -T < r < T, be a load function, and let {tk}, with ... < t-I < 0 <_

to < tj < ... , be the times of the local maxima of y(.). For a local maximum at time ti, let t + be

the time for the first upcrossing after t, of the level y(t,) (or t + = T if no such upcrossing exists

for tj <_ r < T), and let t- be the time for the last downcrossing of y(t,) before ti (or t- = -T it'

no such downcrossiug exists for -T < r < t). Let the lowest minima in the intervals (tit) and

(ti,t + ) occur at ti, tr, respectively, and let t, be the time when the higher of the minima y(tt),

y(tr) occur, i.e.

r if y(tj) <. Y( ,t!;
t1  otherwise.

The RFC-count attaches to a maximum at time t, a Rainflow cycle originating at ti, defined as

a pair of the maximum y(ti) and minimum y(tT), the amplitude of the cycle is given by

Si = y(i) - ),

see Figure 4. Furthermore, the empirical bivariate distribution of the local maximum M = y(t,)

and the corresponding RFC-minimum m = y(t7) is defined as

(44) FM,,(u,v;y,T) - #{ti E [-T,TJ;y(ti) <_ u,y(t ) :_ v}

#{ti E [-T,T]}

S.
2.

C.; C. CLAC

Figure 4. Definition of Rainflow cycle.
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For some fnctions y(.), the empirical distribution Ff,m(u,v;y,T) (44) diverges as T - +00.

However, when y is a sample path of an ergodic process a limit of FM, m(u,v;y,T), as T - +00,

exists almost surely and defines a bivariate distribution function e say. Obviously, since the

RFC-amplitude S = M - m, once, knowing the ergodic distribution FA'rg, we can evaluate the

predictor of fatigue life (43). In the following we shall present an approximation of the ergodic RFC-

distribution, based on the bounds for the absorptions times Tu,T,, u(s) = u,v(s) = v, presented

in previous sections.

Observe, that the marginal distribution of m is the same as the ergodic distributions of the

height of local minima and for Gaussian processes can be given in an explicit formula. Hence, the

evaluation of the ergodic distribution Frm is equivalent to calculation of P~r-(M > u, m < v), i.e.

(45) F rg
FM(u, v) = Fe9 (v) - perG(Aff > u, m < v).

Now, using ergodic properties of marked point processes, see Leadbetter et al. [5], Chapter 10, the

probability Perg(M > u,m < v) is given by

Prqa(M > u'm < v) = E[#{ti E [0, 1]; y(ti) > u, y(t7) <_ v}]
(- E[#{tj E [0,1]}]'

where t, are the times of local maxima, see Definition 8. In [14], we have proved that the mean

E[#{tj E [0, 1]; y(t,) > u,y(t!) <_ v}] is equal to the mean number of u-downcrossings, by y, in the

interval [0, 1], which are followed by a downcrossing of the level v without crossing the barrier u in

between. More exactly, for a fixed u, v, let {s}, si >_ 0, be a sequence of downcrossings of the level

u, then

E[#{si E [0, 1]; y(s, + t) crosses the level v before u, t > 0}1
E[#{si E [0, 11}]

=c. P( ,(t) crosses the level v before u, t > 0),

where u is the Slepian model process for y after u-downcrossing (35) and c is given by

E[#{8, E [0, 1]}1 FL/ A2 -p_2/2E [#{4 E [0,11}] =
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where A4 = Var(y"(0)), see (40).

Finally, by the definition of the variable Tu, with u(s) = u, v(s) = v, we have

(46) c-1 .P 9r(M>u,m<_v)= ] fT.(s)ds=1- I fT. (s) ds,

since, for Gaussian processes, the probability that ,. stays for ever between the finite barriers is

zero. As in the previous section, we have to approximate the infinite region of integration in (46),

by some finite interval. If the level u is relatively small, e.g. u < o, o.2 = Var(y(0)), or the levels

u, v are close to each other, then one can usually find a constant To, such that

(47) [f-(s; n) + fu(s; n)] (s> 1- c

for some small positive e, where fu-, f," are lower bounds (19) for the densities ofTu, T,, respectively.

However, in the case of the high positive u and low negative v, the tails of densities of TU and T'

become very long, consequently To is also large. Hence, in order to find suitable To, we have to use

bounds f;(s; n), f;'(s; n) with high values of n, which causes numerical difficulties. Consequently,

in the following, we present an approximative method to evaluate the probability Per9(M > u, m <

v) in the case when levels u, v are high and low, respectively.

As in the previous section, we assume that y is a zero-mean Gaussian ergodic process. For a

positive constant To, denote by Pu(To) and P (To) the following truncated integrals

(48) PU(To) = J fT (s)ds,
P,,(To) = 1 0 fTp(s) ds.

By the definition of TvTu variables the integral in (46) can be written as follows

j fT. (s)ds = Pv(To) + (1 - Pt,(To) - Pu(To)) . P(,(t) crosses the level v

before u,t > ToIu(t) stays between v,u for all t,0 < t < To).

Obviously, if (47) is satisfied, i.e. (1 - P,(To) - Pu(To)) < c, the second term in (49) is less than c

and can be disregarded.
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It is well known that for Gaussian processes, see Leadbetter et. al. [5] for suitable conditions, the

point processes of downcrossings of levels u and v converges to independent Poiss n processes, as

u -, +00 and v - -oo. Furthermore, by (34), if the covariance function r(t) and its derivative r'(t),

D
of the process y, converge to zero as t goes to infinity, then for large t, we have "(t) D y(t), where

D
D denotes approximative equality in distribution. Consequently, we propose to approximate the

conditional probability in (49) by the corresponding probability evaluated for independent Poisson

processes with the same crossing intensities as ,, i.e.

(50) PPP(TO) = A-(t) .exp fo '(s)++(s)dsdt,

where the intensities A-, A+ are given by Rice formula, i.e.

A-(t) =E[ '(t)-J~u(t ) = v]& (t)(v )

A+(t) =E[ ,(t)+l ,,(t) = ulf&(j)(u ) .

Now, for fixed To, by replacing the conditional probability in (49) by PaPP(To), we obtain an

approximation P(u,v; To), say, for the probability Pe"9(A > u,rm < v), viz.

(51) P(u,v;To) = P"(To) + (1- Pi(To) - PU(To)) . PaPP(TO).

Finally, by combining (45) and (51) we obtain an approximation of the joint distribution of maxi-

mum M and the RFC minimum m

(52) FM,m(u,v;To) = F.rg(v) - P(u,v;To).

We turn now to the numerical example. Let the covariance function of the process y be given

by (36). Figure 5 shows the approximation P(u,v;To) as a function ofTo, for u = 2 and v =0.5,

0., -0.5, -1., -1.5, -2., -2.5, -3.. We can see that P(u,v;To) (51) stabilizes very quickly, indicating

that the constant To can be chosen as low as 5, what substantially reduces the numerical effort to

evaluate the probabilities P,(To), Pu(To) (48). Figure 6 shows the level curves of the approximation

(52), To = 10, of the distribution of (M,m) covariance (36).
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maximum M and the RFC minimum ra, for covariance function (36).

Recently, Ford [41 and Nielsen [7] have proposed approximations of the joint distribution of
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(M,m) equivalent to FM,m(u,v; 0). Since FM,m(u,v;0) approximation is based on the assumption

that u-upcrossings and v-downcrossings of Slepian process u are independent Poisson point pro-

cesses, this approximation can be accurate only for high positive u and low negative v, see Figure

7.
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