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1. INTRODUCTION

Suppose that y(s),s > 0, is a continuously differentiable process. Let u(s) and v(s), u(s) > v(<).
be continuously differentiable barriers. Assume that the process starts between the barriers, i.c.
v(0) € y(0) < u(0) and if y(0) = «(0) or y(0) = v(0) then y'(0) < «'(0), ¥'(0) > v'(0), respectively.

In this paper, we are interested in the densities of the absorption times T}, T), of the y-process in
the barriers u, v, respectively. More precisesy, let T}, T, be the first passage times to the barriers

u, v, respectively. Then the absorption times T, T, are defined as follows

T! if T! < T,

T. =
+00 otherwise,
T) if T < T,

T, =
{ +00 otherwise.

Our main result, presented in Section 2, states that the densities of T3, T, can be expressed in

terms of conditional expectations in the following way

(1) Ir(8) =E [To () (') = () |s(t) = u(®)] fuger (),
I1.(8) = [Ty @) (4'(2) = o'(0)” [u(2) = o(t)] it (o)),
where 2t = maz(0,z), 2~ = maz(0, —z) and J(o,,(y) is the indicator function defined equal to 1
if the sample path does not cross the barriers u,v prior to time ¢ and equal to 0 otherwise. The
formula (1) is an extension of Durbin’s formula for the first passage density [3, 10], which can be
obtained by replacing the lower barrier v by ~o0. Since the indicator I(g ) is a function of the whole
sample path of the y-process, the expectations in (1) are difficult to evaluate exactly. However, we
shall use (1), in Section 3, to construct upper- and lower-bounds for the densities of T, T,.
Several important applications are related to the two absorbing barrier problem. Two are dis-
cussed in Section 4. The first one, which arises in oceanography, is the evaluation of the joint
distribution of wave-length and amplitude of random waves; i.e. the joint distribution of the differ-

ence in time between the upcrossing of the mean sea level and the following downcrossing of this

2




level, and the highest value of the sea in this interval, (see Section 4.2). In the second application.
discussed in Section 4.3, we give approximations for the distribution of the so called rainflow cycle

amplitude. (The Rainflow method was developed in fatigue analysis to describe a load process.)

2. BASIC THEOREM

We begin with a definition of a class of processes for which (1) holds.

DEerINITION 1. Let y(s) be a continuously differentiable process. Assume that there exists a k-
variate continuously differentiable process A(s), and a random variable X, independent of A(s).

with bounded and continuous density function such that
(2) y(s) = F(s, X, A(s)), >0,

where F is a continuously differentiable mapping from R* x R x R¥ into R. For a fixed t > 0, the
y-process will be called decomposable at t if there exists € > 0 such that for all s, |s - t] < €, and
all z € R*, F(s,,z) is one-to-one. Further, if the y-process is decomposable at almost all ¢ then y

is called decomposable.

The class of decomposable processes is quite large and contains for example: Gaussian processes.
functions of Gaussian vector processes, Slepian model processes, the sum of a Gaussian process and
any independent continuously differentiable process. etc. An example of a class of processes which
are not decomposable are processes which are “deterministic”’on some interval, e.g. y(s) = g(s).
g(s) is a continuously differentiable function.

We turn now to the definition of the particular version of conditional expectations used in (1).
Assume that y is a decomposable process at ¢. Denote by p;, an inverse mapping to F(¢,-,z) (2).

ie.
(3) F(t,pia(r),2) = r,
where 7 € R. Let y, be the following process

(4) Yr(s) = F(s,p1,a(1(7), A(8)).

3




LEMMA 2. Assume that the y-process is decomposable at t. If h is a nonnegative measurable

functional defined on y, then for any r € R

(5) Eh@)|y(t) = rlfyo(r) = E[h(yr) - f(rlA®))],
where the process y, is defined by (4), and the function f(r|z) is given by
) s = 12220 (o).

The function p is defined by (3) and fx is the density of X.

ProoF: The lemma follows from Fubini’s theorem.

Obviously, for many processes y, the decomposition (2) is not unique. In that case one can choose
the decomposition (2), which gives the 1ost convenient expression for the process y, (4). For
example, if y is a zero-mean Gaussian process, with Var(y(t)) > 0, the most natura! decomposition

is
(7) () = y(2)bu(s) + Ae(s),

where A(s) is a zero-mean Gaussian residual process independent of y(t) with covariance function

r¢(s1,82) = Cov(y(s1), y(s2)|y(t)), and by(s) = Cov(y(s),y(t))/Var(y(t)). Now, by (4), the process

Yy is defined by y,(s) = r- by(s) + Ai(s). Since, py,.(r) = r, the formula (5) can be written as

Eh(y)|y(@) = r)fyn(r) = E[h(yr)] fyo(r).

In general, h(y,) and f(r|A(2)) in (5), are dependent random variables. We shall illuminate this

by using a different decomposition (7), e.g.
y(8) = y(0)bo(s) + Ao(s).

Suppose by(t) # 0, then, by (3), p,-(r) = 3’;7'{—) and the process y, is given by

- T - Ao(t)

yr(s) = ) bo(s) + Ao(s).

4




Finally, the conditional expectation (5} can be written as

THEOREM 3. Assume that the process y is decomposable at t. If E[ly'(t)l|y(t) = u(t)] < +x.

E[ly'()l|y(t) = ()] < 400, see (5), then the densities of Ty, Ty, are finite and are given by by (1).

Proor: The proof is similar to the proof of Theorem 2 in [10].
3. BouNDS FOR THE ABSORPTION TIMES DENSITIES
3.1 Introdrcrion. In this section we present upper- and lower-bounds for the density of Ty; the
density of T, can be treated similarly.
For a fixed time point s, denote by I(y;s) the indicator function defined equal to 1 if v(s) <
y(s) < u(s) and equal to 0 otherwise. In the same way, for a vector of time points s = (s1,...,5,).

0 < s; <t,let I(y;s1,...,5x) be the following indicator

8 I(yis1,0-0580) = [[ (w3 si)-
i=1

Since, for any v=ctor s, Ijg,(y) < I(y;s), an upper bound for the density of T, can be obtained by

replacing in (1) the indicator Jio,) by I(y;s), i.e.

(9) F(tsn) = E[I(y;s1y..080)(¥'(8) - u’(t))+|y(t) = u(t)] fyey(u(t)).

However, it is in general difficult to give useful lower bounds for the indicator fig,¢(y) in (1), and
therefore formula (1) is not useﬁ.ll in the construction of lower bounds for the density of T,. Hence.
as in [13], we .prove, in Theorem 4, a second formula for the density of Ty, which can be used
to construct Jower bounds. The approach taken in [13] leads to very general lower bounds, but
the numerical effort to evaluate these lower bounds is much bigger than that corresponding to
the upper bound. By some further restriction on the residual process A in (1), e.g. when A is
a Gaussian process, we can construct lower bounds of the same complexity as the upper bounds

5




(9). In addition, by (2), the process y is a function of the process A and y'(t) is a function of
A(t), A'(t), and hence, in order to evaluate numerically the upper bound (9), the joint density of
A(s), A(t), A’(t) must be given in an explicit form. Thus, from this point on, we assume that A

is a zero-mean continuously differentiable vector valued Gaussian procass.

3.2 A second formula for the density of T,. Let A be a zero-mean continuously differentiable

vector valued Gaussian process. For a fixet ¢t > 0, consider the following sequence of random vactors

(10) (9 =(A(), A1),

™ =(A(), A'(1), A(S1), ..., A(Sn)),

where $;,0 < S; < t,i=1,...,n, are random times, such that each ; is a function of (V1) alone,
ie. if (=1 = =1 then 8i(z{"~V) = s;, where 0 < s; < t is a fixed time point.
In the following we use the decomposition of the process A into the conditional expectation on

¢ and the residual process, i.e.
(11) A(s) = E[AS)EM] + An(s).

In (11] Lemma 9, we gave an explicit formula for the conditional expectation in (11) and proved
that there exists a one-to-one transformation of ¢({*) to a vector z(n), say, of independent standard
Gaussian variables. Since the transformation is a bijection, one can equivalently vse in (11) (™ or
¢ (n). Consequently, in the following, we shall assume that {{™ is transformed to a vector of inde-
pendent standard Gaussian variables. Generaliy, for random times S;, the conditional expectation
in (11) is a nonlinear function of (), and the residual process A, is dependent on ¢{™); however,
given values of (™), A, is Gaussian. This is a simple consequence of the definition of the vector
¢ and the random times §y,..., S, (10), since, given (™ = 2", §y(£"~V) = s;, i = 1,...,n,
are fixed time points, and hence the conditional distribution of A(s) given ¢{™ = 2(" is Gaussian
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with mean zero and covariance
(12) r(s, 1327 1) = Cov(A(s), AMIA(L), A (2), A(s1), ..., A(sn)).

Let y be a decomposable process, i.e. y(s) = F(s,X,A(s)), see Definition 1, where A is a vector
valued Gaussian process. Assume that the vector of random times S,...,8, in (10) is given.
and let ¢{) be the corresponding vector (10). Denote by An(s|e(™), z(" = (r,ry,21,...,24), 2
zero-mean Gaussian process with covariance function (12). Consider the process y(s[z(™) defined

as follows
(13 Y(slz™) = F(s,.X, E[A(s)l(™ = 2] + Ay (s2™M)).

Since X, A are independent y(s|z(™) 2 y(s)I(*™ = z(™, (where 2 denotes equility in distribution).

In order to use (5) with y(s) replaced by y(sfz(™), let yu(,)(slz(")) be the process (4), i.e.
(14) Yu(y (sl = Fls, (1), BIA)C™ = 200) + An(s]zM)),
where p;r(u(c)) is defined by (3). e, in (14), we are using that E[A(?)|({™ = 2("] = r and

An(te™) = 0.

We turn now to the second formula for the T',-density.
THEOREM 4. Let y(s) be a decomposable process, i.e. y(s) = F(s,X,A(s)), as in Definition 1,
where A is a k-dimensional zero-mean Gaussian process. Furthe:, assume that there exist k — 1
continuously differentiable mappings from Rt x R x R* into R, (Fi,...,Fi-1), such that for all

z € R and all 5,0 < s <t, except possibly for a finite number of s,

(15) - F(s,z,) = (F(s,x,-),Fl(s,x,-),...,Fk_l(s,:c, ))

is a one-to-one mapping from R* into R¥. Let u(s),v(s), u(s) > v(s), be continuously differentiable

barriers. If for all s, 0 < s < t, the following conditional expectations are finite

Elly' )y ()|y(t) = u(t)y(s) = u(s)] < +oo,  Elly'()y'(s)l|u(t) = ult), y(s) = v(s)] < +00,




then

(16)  fr () =E['¢) - (1) T 9)u(e) = w(®)] fyn(u(®)
- /0 ' E[(y'(s) = ¥/(8) T (¥'(1) = ¥/ ()T 15 S) 0,9 (W)]3(2) = u(2),
0(5) = (9] F0, ) s
- /0 tE[(y’(S) = v'(8)) ™ (4'(2) = w'() T (53 S) L0, )|y (t) = u(2),
1(6) = o] Falt) o) s,
where S = 8y, ..., 8y are random times defined by (10) and f is a joint density of y(t), y(s). The
indicator function I(y,S1,...,5,) is given by (€), [0.5)(y) is the indicator function defined equal

to 1 if the sample path o'y does not cross the barriers u, v prior to time s and equal to 0 otherwise

and z+ = maz(0,z), = = maz(0, —-z).
Proor: Since y(s|z#™) (13), s*) = {r,ry,21,...,2.), is decomposable, then, by Theorem 3, the
conditional density of T, given ¢(\® = z(" is defined by
e (1) = [T () (007 = 60) el = )] gy w0
By Lemma 2, the density of T,,)({™ is given by
(17) fTuK(“)(tlz(n)) = E[Io 4 (yu(ey (-1™))) '(Uﬁ(z)(”z(o)) - u'(t))+-f(u(t)|r),

where () is given by (14) and f(u(t)|r) is defined by (6). We are also using that yz(t)(tlz(")) =
y;(t)(t]z(o)) is a constant variable dependent only on 2% = (r,r).

Now, for all 4, i = 1,...,n, A,(si]2(™) = 0, where s1,...,s, are the values of random times
S15.- 58, given (™ = 20" 2(7) ¢ RV¥ and hence we are allowed to multiply the expectation
in (17) by the indicator I(yu(t)(-lz("));sl,. .++85) (8), which is a function of z(™. Further, for all

2(") we have

t
(18) E[l0,5(ys)) = 1—/0 fravate) F F0(s8) ds,
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where ¥,,(+) = vy (5 (-[2™) (14).
Now, since A,(-|z{™) is a k-dimensional Gaussian process and (15) holds, one can prove, sece
Theorera 2 in [10], that the absorptions times Ty, {y. ), Ty(yu) are given by (1). Finally, by combining

(1), (17-18), multiplying (17) by the density of ('™ and integrating out z{™, we obtain (16).

3.3 Bounds for the density of Ty,. Since 0 < Ijg,4)(y) < 1, then, for n > 1, we have the following

upper and lower bounds for the density of Ty

(19)  fFn) =E[(y'() - v'®) Iy 9)u(t) = u(®)] fyn(u(®))
fo(tn) =fi(tin) - /0 t E[(y’(S) ~ /()" (' (&) - «'(9) 13 S)|y(®) = w(),
4(5) = 4] (a0, () d
- /0 B [(y'(S) = '(8))”('(8) - (1) T I )|y (1) = u(d),
4(5) = o(9)] Hu0) o) s
Further, for n = 0, the bounds fF(¢;0), fo(¢;0) are obtained by replacing in (19) the indicator
I(y;S) by 1.

We turn now to the problem of choosing the vector S. Obviously, for any fixed ¢ and n, the best
choice of S is that which minimizes the upper bound f;}(¢;n), or the difference between the bounds
fE(t;n) = f(t;n), see (19). However, since these procedures lead to complicated optimization
problems, we propose a simpler recursive procedure.

We begin with some simple properties of the bounds fF, f7 (19). Assume that we have selected
a vector of random times § = (S1,...,8,), and let {(*) be a random vector defined by (10). In
order to simplify notation, we shall denote the conditional process y,,(,)(-lz(")) in (14) by y,. Now,

similarly as in (17), we can write the density of T, as follows

(20) fTu(t)':/fTul((n)(tlz(n))f((n)(z(n))d?-(n)
= /E[I(O.t)(yu)]l(?/u;sl’-'-asn)f(z(o))f((n)(z(n))dz(n),



where yu(s) = yu((slz™), s; = Si(z0"1) are the values of S; for (=1 = 2i=1) and f(219) is

defined by

FED) = (W (tE®) = w'(£)) T f(u(®)lr).

Further, fe») is the density of ¢{™. Consequently, the boundiag problem of the density of 7}, is

reduced ¢o the construction of an upper and lower bound for the expectation
(21) E{T0,5(3u)] = P((5) < yuey(slz™) < u(s) for all 5,0 < s < ¢).
Let Pg", Py~ be the following upper and lower-bounds for the probability (21)

(22) P (t334) =1,
By (i) =1 = [ B{(04(6) =) |1ulo) = u(o) ua(u(s)) s
t
- /0 E[(yﬁ(s) - v'(s))_lyu(s) = U(s)] fyu(s)(v(8)) ds,

where the lower bound P; is obtained using (1) and (18). Now, by replacing the expectation in (20)
by the upper and lower bound Py (t;9.), Py (t;.), we obtain the bounds fF(t;n), f(t;n) (19).
respectively, generated by the vector (™ = (A(t), A'(t), A(S1),- .., A(S))= ((9,¢15. - 5Cn)-

in order to obtain more accurate bounds f}(t;n+1), f; (t;n+1), we have to choose an additional
random time Sp41, 0 < Spyq < ¢, which is a function of (™. Note, that the optimal strategy is
to select the whole new vector x(("““), so that fF(¢;n + 1) is minimized. However, here we are
restricting ourselves to recursive selection procedures of Sp41, i.e. we add Sp4+1 to the old vector
S.

Now, assume that we have selected recursively & additional random times Sp41,...,Sn4x and let
Cnt1y. -+ ;Cntk be the vector (A(Sn41)s---,A(Sn4x)) transformed to iid. standard Gaussian vari-

ables. (The selection procedure will be given later in this subsection.) The vector ((ni1,--->Cnsk)
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generates new bounds for the probability (21), Pi_*' ,P,j” , say, defined as follows

(23)  PF(G9u) =E[I(Yu; Snttr oo Snar) [ = 2]
Py (ty) =P (5 ya) - j: E[(yL(S) — () TT(Yu3 Snts -y Snaie) [ = 27,
0(6) = 9(6)| (051 s
- [ B[00 ) TS S = 2,

Yu(s) = v(s)] fyu(s)(2(8)) ds.

Once again, by replacing the expectation in (20) by the upper and lower bound PE(tyu), P (i yw)
we obtain the bounds fF(t;n + k), fi (t;n + k) (19), respectively, generated by the vector (,’(’."’”k).

In the following lemma, we give a recursive formula for the bounds (23).

LEMMA 5. The upper and lower bounds (23) Pt (yuit), P (yust), k > 0, for the probability (21),

satisfy the following recursive formula

24)  PF(Lyuo (™M)= / P (63 (1) I (9ugy (1F7); 841) feana (2) 2,
.P,: (t;yu(t)(-|z(")))= / Pk__l (t;yu(t)('lz(n+l))) 'I(yu(t)('lén-*-l));3n+l)f(n+1(z) dz,

where snq1 = Sny1(z(™) is the value of Spyy for (™ = 2" and Z"+1) = (") z).

Proor: We prove the lemma only for the upper bound P,;" . A full proof is only notationally

more complicated. By additional conditioning on {n41 in (23) and using (8),(13), P (¢;74) can be
g + g k

written as

P (t yu(y (12™)) =/E[I(yu(t)('|2("));5n+1, s Sk [C = 2 (g = 2] S, (2) 2
= / B (yu(ny (18D Sugay .o Snaa) (7Y = 27H1)

I(?/u(t)('lz("+l)); 3n+1)f(n+x (z) dz,
showing (24).

Observe that in the recursive definition of the bounds P,;*’ (t;59u), P (t9u) (24), we have assumed

that the random times Sn41,...,9n+k are given. Consequently, in order to use (20) and (24) to
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calculate f}(¢;n + k), f}(t;n + k), we have to define a recursive procedure to choose the random
time Sp4+1 as a function of (™. In addition, since yu(t)(slz\“)) = FP(s,pee(u(t)), E[A(s)™ =
2(M] + A,(s]z™)), where the only random component is a zero-mean vector valued Gaussian
process Ap(s|z(™), then, once the random time Sy,41(2(™) = Sn+41 is chosen, one can easily obtain
the distribution of the process yyu(y)(slz{™t?) by calculating A, (s[z0")|An(sp41]2(M) = 2.

We turn now to the presentation of the procedure for choosing the random times § in (19).

P:. Step 1: choose the time 81,0 < Sy < t, to minimize Pjt (t;yy(1)(-1£?)), and, by (23), given the
values 20 = (r,r1), choose the time sy to minimize P(v(s1) < yu(ny(s1]2(?) < u(s1)).

Step n: given the time points Sy,...,Sp~1 choose the time S,, 0 < S, < t, to minimize
PF(1 gy (1A"D)), i.e. given z(*=1), choose the time s, to minimize P(v(s,) < Yu(ty(snle®~1) <
u(8y)).

Since, for any 2(™ € R("2* 5 > 0, the procedure P defines Pt yu(t)(~|z("))), P (8 9u(ey (12™)).
then, using (24), we can recursively evaluate the bounds Py (2;yu(sy(-#)), P7(t;yu(ny(-l2?)).
Hence, the upper and lower bounds fF(¢;n), fo(¢;n) are defined by
(25) FE6m) = [ Pt (DS fo @) 9,

i tin) = [ P (6o () ) fn (29 2,
where f(Z9) = (y,(t}#?) - w/(t))* f(u(t)|r). In the following subsection we present a program
BOUND, which evaluates the bounds P,;"(t;yu(,)('lz(o))), Pn’(t;yu(,)(-lz(o))) in (25), for the special
case when yy(s)(-2{?)) is a zero-mean Gaussian process.

3.4 Program BOUND. The procedure BOUND evaluates the upper and lower bound for the

probability
(26) Prob = P(u(s) > A(s) > v(s) for all 5,0 < s < t),

where A is a continuously differentiable zero-mean Gaussian process. 'We begin with a simple

lemma.




LEMMA 6. Let X be a Gaussian variable with mean m and variance o*, then

E[x*]=c-¥(Z),

where ¥(z) = ¢(z) + 2®(z), ¢ and ® being the standardized normal density and distribution

functions.

In all calculaticns, we have approximated the ®-distribution by Hermite polynomials, and hence

the ¥-function is very accurately approximated by an explicit function.
We turn now to the description of the procedure BOUND
Input variables:
1: n - number of iterations, n > 0,
2: t - fixed time point, £ > 0,
3: u(s),v(s) - continuously differentiable barriers, u(s) > v(s), 0 < s < ¢,
- 4: u'(s),v'(s) - derivatives of the barriers,
5: r(sy,52) - covariance function of a zero-mean Gaussian process A, 0 < s1,82 < ¢,
6: 71(s1,82) - covariance function Cov(A’(s1), A(s2)) = 52—17'(31,52), 0< 8,8 <t,
7: 03(s) - variance of the derivative A’ i.e. o3(s) = Var(A'(s)), 0 < s < ¢,
Output variables:
P} - upper bound for the probability Prob (26),
P - lower bound for the probability Prob (26).

Algorithm:

- Since the bounds P}, P, are functions of u(-), v(-} and the covariance function of the process

A, ra say, we express it in notation by introducing P} (u,v,74) and P (u,v,74).

If n = 0, then by (22)
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iy =1~ [ B0~ ¥(6)*]A(0) = ws)faca(u(s) ds
- /O E[(A(s) — v/(5)) T|A(S) = 9(8)) fags) ((s)) ds.

Using Lemma 6, the lower bound P; can be written in more explicit way, i.e.

— t oa(s) u(s)b(s) = v'(s)y , ,u(s) v'(8) = v(s)b(s), , ,v(s)
i =1- [ D (s(FETED e (e )

where the ¥-function is defined in Lemma 6 and b(s) = r1(s,s)/r(s,$),

BIA(S)IA(s) = u(s)] = - u(s) - b(s),
E[A'($)A(s) = o(s)] = — (s) - b(s),

71(3’5)2

a3(s) = Var(a'(s)|A(s)) = ai(s) ~ 5,5) "

Observe that the integral must be evaluated numerically.
If n > 1, then, by the procedure P, we choose s1, 0 < s1 < ¢, a fixed time point for which the

probability P(u(s1) > A(s1) > v(s1)) is minimized, i.e.

P(u(s1) > Als) > ofsn)) = i (2(4)) - a2y,

a(s) a(s)
and by recursion (24) we have
+ u(s1)
(27) Pr(u,v,ra) = ( | P (u = zby(s),v = 2b1(s), mala(sy)) fa(s) () dz
v(sy
~E (u = mibi(s),v = @ibi(s), rajacen) faen) (@i,
i=1

where z;, h; are suitable nodes and weights, respectively, u(s1) > z; > v(s1),7=1,...,N and

T(S 81)

(28) zb1(s) = E[A(s)|A(s1) = 2] = zr(sl,sl)
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LR H]
.

The same recursion can be given for the lower bound P, by repiacing in (27) **” by
Finally, for each z;, we evaluate the bounds P}_, (u — zib1(s),v — z:iby(s),Taja(sn))s Py (4 -
zibi(s),v — xibl(s),TAM(s,)), using the procedure BOUND with the following input variables;
I:n-1,
2: t, unchanged,
3: u(s) = zib1(s), v(s) — ;b1 (), where by(s) is given by (28), 0 < s < ¢,
4: w'(s) — z;61(8),v'(s) — zibi(s), where bi(s) is given by (29), 0 < s < ¢,
5: covariance function (30),
G: covariance function (31),

7: variance (32),

' _ 1‘1(81,3)
(29) 1(s) = r(s1,81)’
= 1(s,1) - Tsrlen?)
(30) rajaen(s,t) =rlsl) - ==
, _ _ s, s1)r(s1,t)
(31) COU(A (s),A(t)IA(Sl ))-— Tl(s,t) 1-(31’31)
, r2(s1,$

52 Var(A'(s)|A(s1))= o3 (s) - ',:1(:(;1‘1';'1%
The output variables P} and P, are now defined by

N
(33) Pr=Y P}, (“ — ziby(s),v - “«'f”l(s)’“'A""> Jaen(@ihs

i=1

N
" Pr = Z P, (u —z;bi(s),v - a:;bl(s),rMA(,l))fA(,,)(:c,-)h;.
i=1

Here, we assume that the procedure BOUND is programed in a computer language which allows
recursive functions, e.g. APL.
Finally, an obvious question is whether one should use in (19) fixed times s;,...,s, instead

of random Sp,...,., is would drasticly reduces the number of times one have to evaluate

15




equations (28-32). However, tests disclosed that such a procedure is usually much slower. The
reason is that the probability P(u(s1) > A(s1) > v(s1)) 2 P(u(S1) > A(S1) > v(S1)), and hence

we have to increase N, number of nodes z;, to compute (33).

3.5 Concluding remarks. In this subsection we discuss the convergence of the bounds (19), in
the case when S, are deterministic and dense points in the interval [0,¢]. This does not prove that
the bounds obtained using the procedure P converges to the density of T;,. However, the procedure
evaluates simultaneously the upper and lower bounds for the density of Ty, so the accuracy and
the convergence of the bounds can be easily checked. In addition, in examples presented in the
next section, the bounds based on the random times §; are more accurate then the bounds l;ase(l

on deterministic points s; and the algorithm is much faster.

REMARK 7. Under assumptions of Theorem 4, if {s,}}2] is a dense subset of the interval [0,1],

then as n tends to infinity

I(y;815...480) | I(O,t)(?/)’ a.5.,
E[(y'(t) = ') (' (s) = w' ()T I(y; 51, r8n)|u(t) = u(t),y(s) = u(s)] | 0,
B[(0(0) - w(0) (5(5) = V() Tisns o rn)lu(®) = uthu(s) = ()] | 0.

Consequently, the upper and lower bounds f}(t;n), fo(t;n), (19), with §; = s;, i = 1,2,...,
converge monotonically to the density of T,, as n goes to infinity. (The proof is similar to the prool

of Theorem 11 in [13].)

Observe that Theorems 3 and 4 can be used to construct many different types of upper and lower
bounds. For example, another type of lower bound are obtained by replacing the indicator I(y;S)
in (16), by 1, and overestimating the indicator Jig 4)(y), by I(y; 51y+.+,8n), where §,...,58, can
be chosen by a procedure similar to P, see [13]. However, an important property of (19), which
distinguishes it from the other approaches, is that the same points § are used in both upper and
lower bounds leading to a more efficient algorithm.
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4,APPLICATIONS

4.1 Slepian model process. Let y(t),t > 0, be a stationary zero-mean ergodic Gaussian process
with covariance function r, and assume that its sample paths are a.s. continuously differentiable.

A sufficient condition [1] for this is that the process is separable and that
r(s) = A = o(|log|s]| ™),

as s — 0, for some a > 1. Assume that the process y is normalized so that Ag = Var(y(0)) = Ao =
Var(y'(0)) = 1, which is only a matter of scaling.

In following subsections, we are interested in the "long run” properties of the process y after
downcrossings of the level u; consequently we are introducing the Slepian model process &, for y
after a downcrossing of the level u. This is the stochastic process £,(+) which is distributed as the
long run distribution of y(w, tx +-), when t; runs over all u-downcrossings of y(w,-) . Mathematical
details about Slepian processes and long run probabilities can be found in [5}, Ch. 10, and [8, 7].
We now give a simple representation of the Slepian model process §,.

Consider a zero-mean Gaussian process A, with covariance function

(34) Cov(A(s), A1) = Cov(y(s), y(t)|y(0),5'(0)) = (s — ) = r(t)’ ~+'(1)?,

since Var(y(0)) = Var(y'(0)) = 1, and let R be a standard Rayleigh variable, with mean |/%.

independent of A. Then the Slepian model process &, is given by
(35) Eu(s) = ur(s) + Rr'(s) + A(s).

Obviously, the process &, satisfies the assumptions of Theorem 4, and hence we can use the bounds
(19) developed in Section 3.3.

In following numerical examples, we shall use the process y with covariance functions given by

sin V3 s

(36) r(s) = P
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4.2 The distribution of wave-length and amplitude. Assume y(?) is a zero-mean Gaussian
process, which described water elevation at a fixed point. A question that arises in oceanography
is that of the "empirical” or "long run” distribution of the zerocrossing wave-length and amplitude
T, H. By this we mean the difference between the time of the zero downcrossing and the following
zero upcrossing and the lowest value of y in this interval, see Figure 1. Since the "long run”

properties of y after zero downcrossings are described by Slepian model process & (35), we have
T, 8 2 T(%), (&)

For notational convenience, we drop the subscript "0” in & and in the following the Slepian model

process after zero downcrossing is denoted by £.

y(s)
SN
PR [P o

[y
s
\/ \I/J
i \d
H')

Figure 1. Definition of zerocrossing wavelength and amplitude T, H.

Obviously, H(€) > h if and only if £(s), s > 0, reaches the level —h before it crosses the level 0
again. (Observe that £(0) = 0, £'(0) < 0.) Thus the distribution of T, H can be expressed using

the densities of the absorptions times of &, Ty, Ty, with u(s) = 0,v(s) = —h, respectively, i.e.

(37) PT<t,H<h)= /0 f(s) s,

+00 +00
(38) P(H < h) = /0 fr(ois=1= [ fr(s)ds
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In (38) we are using a fact that, for Gaussian processes, the probability that £ stays for ever between

the finite barriers is zero, i.e.

f“m@nmmmw=L

Note that the distribution of T can be obtained from (37) by choosing the lower barrier v(s) = —co.

In order to use (38) for bounding the distribution Fy, we have to approximate the infinite region
of integration by some bounded interval. For many processes of practical interest, there exists a
positive constant o, svch that fr, (s} = 0, in (37), for all s > Tp. Now, using the lower bounds
(19) for the density of Ty, u(s) = 0,v(s) = —oo, respectively, we can find Tp as the first time when

To
fo(ssn)ds 2 1—¢,

for some small ¢, i.e. P(T' > Tp) <e.

We turn now to the presentation of the bounds fF(s;n), f; (s;n) for the density of T,,(£) obtained
using the procedure P of Section 3.3. The bounds for the T,,(¢) density can be derived in the similar
way.

For a fixed value h, the formula (1) for the density of T, with u(s) = 0,v(s) = —h, is given by

(39) f1.(8) = E[I0,5(E)E'(1)F [£2) = 0] fe(2)(0)-

The formula (39) can also be expressed in terms of y, i.e.

fr, (@) = ¢+ E[Lo,0(%)y'(0)"9'(¢)* |9(0) = 0,(2) = 0] fy(0) 5(1y(0,0)
0 [*)
=c / /+ P(0> y(s) > —h for all 5,0 < s < t|y'(0) = 2,3'(t) = 1,
—-00 JO

y(O) = O,y(t) = O)f(zyzl) d21 dz,

where ¢™1 is the average number of zero downcrossings per unit interval

(40 e = B0 1v0) = 0o (0) = (2m) /3,
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by the celebrated Rice formula [9], and

(41) f(z,21) = |2z fyo), 90,0000, (2, 21,0,0),  z2<0and 2 2 0.

In the following we assume that t,h,z,2, are fixed values. Many of formulas will depend on
t,h, z, z1, however for notational convenience we shall not always write this dependence explicitly.

Let m(s) be the following conditional expectation
m(s) = E[y(s)ly'(O) =2,¥'(t) = z1,9(0) = 0,y(t) = 0],
and let A be a zero-mean Gaussian process with a covariance function #(sy,s2) given by

#(s1,82) = Cov(y(s1),y(s2)|5'(0), %'(£), ¥(0), y(2)).

It means that m(.) + A(:) 2 y()|¥'(0) = 2,9'(t) = 21, 4(0) = 0,y(¢) = 0.
As before, let » be the covariance of the y process. Then with

1 -ty 0 ~-r'(t)
—r'(t) 1 r(t) 0

0 r'(t) 1 (t) ’
—r'(t) 0 r(t) 1

C(t) =

and
c(s) = (-—r'(s), "'7"(3 ~t),7(s),7(s = t))y

the mean m(s) and a covariance function 7(s,s2) are given by

2
m(s) = e(s)C()™ | %1 |,
0
7(81,82) = 1(81 — $2) — C(Sl)C(t)_lC(Sg)T.

Using the process A, the formula for the density of T, can be written as

0 +o0
(42) fr,(t)=c- /:-oo~/0 P(~m(s) > A(s) > —h — m(s) for all 5,0 < s < t) f(2,21)d2 dz,
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Figure 2. Densities of Ty, h = 0.5,1,1.5,2, +00, for the covariance (36).

where f(z,2) is given by (41).

Now, upper and lower bounds (19) fF(t,n), f; (t,n), respectively, are obtained, using the pro-
cedure BOUND of Section 3.4, by over and under estimating the probability in (42).

We turn now to presentation of the numerical bounds for the "long run” wave-length and ampli-
tude distribution for Gaussian process y with covariance function r (36).

Table 1 shows bounds fF(¢;0),..., fF(t;4), fi(t;4),..., f (t;1) for the zerocrossing wavelength
density, i.e. u(s) =0, v(s) = —o0, for the process y with covariance (36). We can see, that the
upper and lower bounds are almost identical. In addition, the integral of the lower bound f; (¢;4),

over the interval [0,12.5], is 0.999, indicating that only 0.1% of all waves are longer than 12.5.
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Figure 3. Isolines of joint density of wavelength and amplitude T, H, for the covari-

ance (36).

10.00

TaBLE 1. Bounds f}(4;0), f}(t;1), fH(t;2) fE(4:3), f}(64), f2(64), £7(53), fa (4:2), fo(8:1),

for the zerocrossing wave-length density, i.e. u(s) = 0,v(s) = —o0, covariance function r (36).

t

DL S5 ©omNo o h

fE(40)

0.123
0.352
0.257
0.078
0.114
0.231
0.173
0.109
0.158
0.205
0.146
0.128

0.073
0.063
0.071
0.039
0.032
0.059
0.061
0.040
0.043

0.062
0.062
0.033
0.021
0.023
0.019
0.012
0.018

0.056
0.027
0.015
0.017
0.013
0.009
0.008

fE@;4)

0.026
0.014
0.013
0.009
0.006
0.005

fa(t:4)

0.004
0.002

0.062
0.056
0.026
0.014
.013
0.009
0.004
0.000

0.07

0.0f1
0.056
0.026
0.014
0.008
0.005
0.001
0.000

fa (1)

0.123
0.352
0.257
0.072
0.057
0.056
0.025
0.013
0.000
0.000
0.000
0.000

In order to bound the distribution of zerocrossing amplitude we have to bound density of T}, for

the barriers u(s) = 0 and v(s) = —h, h > 0. For a fixed ¢, the density of T\, is increasing function of

h. This is shown on Figure 2, where we present the density of T, for k = 0.5, 1, 1.5,2, +00. Finally,

the joint density of wavelength and amplitude T, H is obtained by numerical differentiation, on A,

of the density of T, see Figure 3.
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4.3 The distribution of Rainflow cycle amplitude. When a piece of metal is subjected to a
periodically varying load small microscopic inhomogeaeities can develop into open cracks, leading
to tatigue failure after a random amount of time. The distribution of fatigue life length depends on
the amplitudes of the applied "load cycles”. One then needs a rule to combine the damages caused
by the different cycles. The most commonly used damage rule is due to Palmgren & Miner, and

postulates that the total damage caused by a stress history {Si} of load cycles is

K
D(t) = ,
=3 5

=1

where the sum is extended over all cycles completed at time ¢ and N, is the median cycle life
obtained from tests with constant amplitude s. The median life is predicted to be the time ¢ which
makes D(t) greate. an or equal to one. In most situations, the median cycle life N, is large.
between 10* and 107, and therefore, by ergodicity of the load process, the fatigue life is predicted

as

1

(43) T= IR

where fg is the density of the ergodic (long run) distribution of the cycle amplitude S and cis a
mean number of a cycles counted in the unit interval [0, 1].

Dowling [2] has studied the accuracy of the predictors of the fatigue life T based on eight most
commonly used counting methods, and finds that only the rainflow cycle (RFC) counting method
leads to prediction agreeing with actual lifes.

Due to the great importance of the RFC-counting method, many different algorithms have been
proposed in the literature. However, most of them have a complicated "sequential” structure which
makes them difficult to apply when their statistical properties are studied. The following definition
of RFC-cycle, given in [12], is more convenient for statistical analysis of long run properties of the

RFC-cycles.
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DeriNITION 8:. Let y(7), =T £ 7 < T, be a load function, and let {tx}, with --- < t_; <0 <
to <t < ..., be the times of the local maxima of y(-). For a local maximum at time t;, let ¢ be
the time for the first upcrossing after t, of the level y(t,) (or t7 = T if no such upcrossing exists
fort; <7 <T), and let t7 be the time for the last downcrossing of y(t;) before t; (ort; = =T il
no such downcrossing exists for =T < 7 < t). Let the lowest minima in the intervals (¢ ,t,) and
(t:,tF) occur at ty, t,, respectively, and let t7 be the time when the higher of the minima y(t,),
y(t,) occur, i.e.

t, ify(t) < y(tr),

i =
t otherwise.

The RFC-count attaches to a maximum at time ¢, a Rainflow cycle originating at t;, defined as

a pair of the maximum y(t;) and minimum y(t7), the amplitude of the cycle is given by

St = y(t:) = y(t7),

see Figure 4. Furthermore, the empirical bivariate distribution of the local maximum M = y(t,)

and the corresponding RFC-minimum m = y(t}) is defined as

(4‘4) Fapym(u,v;9,T) = #{ti € [T, Thy(t:) < w,y(t) < v}'

#{t: € [-T,T)}

Figure 4. Definition of Rainflow cycle.
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For some functions y(+), the empirical distribution Far,m(u,v;y,T) (44) diverges as T — +co.
However, when y is a sample path of an ergodic process a limit of Far,;m(u,v;y,T), as T — +o0,
exists almost surely and defines a bivariate distribution function Fyf7,, say. Obviously, since the
RFC-amplitude § 2 M - m, once, knowing the ergodic distribution Fyf9 , we can evaluate the
predictor of fatigue life (43). In the following we shall present an approximation of the ergodic RFC-
distribution, based on the bounds for the absorptions times T, T, u(s) = u,v(s) = v, presented
in previous sections. .

Observe, that the marginal distribution of m is the same as the ergodic distributions of the
height of local minima and for Gaussian processes can be given in an explicit formula. Hence, the

erg

evaluation of the ergodic distribution Fy 7 is equivalent to calculation of P*™9(M > u,m < v), i.e.

(45) Fyi9 (u,v) = Fpr9(v) = P"9(M > u,m < ).
Now, using ergodic properties of marked point processes, see Leadbetter et al. [5], Chapter 10, the

probability P¢"9(M > u,m < v) is given by

E[#{t; € [0,1];y(2:) > u,y(t]) < v}]
Ef#{t: € [0,1]}] ’

P¥9(M > u,m < v) =

where ¢, are the times of local maxima, see Definition 8. In [14], we have proved that the mean
E[#{t; € [0,1}; y(2.) > u,y(¢]) < v}] is equal to the mean number of u-downcrossings, by y, in the
interval [0, 1], which are followed by a downcrossing of the level v without crossing the barrier u in
between. More exactly, for a fixed u,v, let {s,}, s; > 0, be a sequence of downcrossings of the level

u, then

_E[#{si €[0,1];9(s: + ) crosses the level v before u,¢ > 0}]
E[#{si € (o, 1]}]

=c- P(£,4(t) crosses the level v before u,t > 0),

PeI(M > u,m < v) =c

where ¢, is the Slepian model process for y after u-downcrossing (35) and ¢ is given by

_B#Hsielo)) _ B s
T BEE ) e
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where \y = Var(y"(0)), see (40).
Finally, by the definition of the variable Ty, with u(s) = u,v(s) = v, we have

400 +co
(46) ¢ PEI(M > u,m <o) = fr,(s)ds=1- fr,(s)ds,
0 0

since, for Gaussian processes, the probability that £, stays for ever between the finite barriers is
zero. As in the previous section, we have to approximate the infinite region of integration in (46),
by some finite interval. If the level  is relatively small, e.g. u < o, 0% = Var(y(0)), or the levels

u,v are close to each other, then one can usually find a constant Ty, such that

To
(4n) [ U+ frmasz 1=

for some small positive ¢, where f, fo are lower bounds (19) for the densities of T, T, respectively.
However, in the case of the high positive u and low negative v, the tails of densities of T, and T},
become very long, consequently Tj is also large. Hence, in order to find suitable Ty, we have to use
bounds f; (s;n), fy (s;n) with high values of n, which causes numerical difficulties. Consequently,
in the following, we present an approximative method to evaluate the probability P™9(M > u,m <
v) in the case when levels u,v are high and low, respectively.

As in the previous section, we assume that y is a zero-mean Gaussian ergodic process. Ior a

positive constant Ty, denote by Py(To) and Py(To) the following truncated integrals

To
"(48) P.(To) = A fr.(s)ds,

To
P,(Ty) = A fr,(s)ds.

By the definition of T, T, variables the integral in (46) can be written as follows

400

(49) fr,(8)ds = Py(To) + (1 = P,(To) — Pu(Tp)) - P(Eu(t) crosses the level v
0

before u,t > Tol(;'u(t) stays between v,u for all ¢,0 < t < Tp).
Obviously, if (47) is satisfied, i.e. (1 — P,(To) ~ Pu(Tb)) < ¢, the second term in (49) is less than ¢

and can be disregarded.
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It is well known that for Gaussian processes, see Leadbetter et. al. [5] for suitable conditions, the
point processes of downcrossings of levels u and v converges to independent Poiss )n processes, as
% — 400 and v — —oo. Furthermore, by (34), if the covariance function r(t) and its derivative 2'(t),
of the process y, converge to zero as t goes to infinity, then for large ¢, we have £,(t) g y(t), where
2 denotes approximative equality in distribution. Consequently, we propose to approximate the
conditional probability in (49) by the corresponding probability evaluated for independent Poisson
processes with the same crossing intensities as &,, i.e.

+oo AT ()4 A () ds

(50) PePP(Ty) = / A=(t) - exp” o d,

To

where the intensities A7, A} are given by Rice formula, i.e.

A7 (1) =E[&, ()7 I6u(t) = vlfe,(n(v)

AL (1) = BIE (O [€u(t) = wfeyn(w).
Now, for fixed Ty, by replacing the conditional probability in (49) by P2PP(T,), we obtain an

approximation P(u,v;Tp), say, for the probability Pe™9(M > u,m < v), viz.
(51) P(u,v;To) = Py(To) + (1 = Py(To) — Pu(To)) - PoPP(Tp).

Finally, by combining (45) and (51) we obtain an approximation of the joint distribution of maxi-

mum M and the RFC minimum m
(52) Fum(u,0;To) = Fr9(v) — P(u,v; Tp).

We turn now to the numerical example. Let the covariance function of the process y be given
by (36). Figure 5 shows the approximation P(u,v;To) as a function of To, for u = 2 and v = 0.5,
0.,-0.5, -1., -1.5, -2., -2.5, -3.. We can see that P(u,v;Tp) (51) stabilizes very quickly, indicating
that the constant Tp can be chosen as low as 5, what substantially reduces the numerical effort to
evaluate the probabilities P,(Ty), P,(To) (48). Figure 6 shows the level curves of the approximation
(52), To = 10, of the distribution of (M, m) covariance (36).
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Fignre 5. Approximations P(u,v;Tp) (51), for v = 2 and v = 0.5,0,,...,-3., 85 2

function of Ty, for covariance function (36).

300 T
- 0.9¢
0.43
- 0.9
Q.15
200 -~ 0.8
R 0.15
.t
- 0.08
0.01%
- 0.0t
1.0 0,008 ~om———
000 +
=-1.00 b
=200 -
TOEE S I I .« v .
} OEJ.CO =260 =-1£0 000 1.80 2.0 3.00

Figure 6. Isolines of approximative distribution (52) Farm(2,v;Tp), To = 10, of

maximum M and the RFC minimum m, for covariance function (36).

Recently, Ford [4] and Nielsen [7] have proposed approximations of the joint distribution of
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Figure 7. Isolines of approximative distribution (52) Farm(u,v;T0), To = 0, of
maximum M and the RFC minimum m, for covariance function (36).
(M, m) equivalent to Fasm(u,v;0). Since Fas,m(%,v;0) approximation is based on the assumption
that u-upcrossings and v-downcrossings of Slepian process £, are independent Poisson point pro-
cesses, this approximation can be accurate only for high positive 4 and low negative v, see Figure

7.

ACKNOWLEDGMENT

The numerical calculations, presented in this report, were carried out during my visit at the
Department of Statistics, Colorado State University. The generous support from the Colorado

State University Supercomputing Project is gratefully acknowledged.

REFERENCES

1. Cramér, H. and Leadbetter, M.R., “Stationary and Related Stochastic Processes,” Wiley, New
York, 1967.
2. Dowling, N.E., Fatigue prediction for complicated stress-strain histories., J. Materials 7 (1972),

29




10.

11.

12.

13.

14.

71-87.

. Durbin, J., The first-passage density of a continuous Gaussian process to a general boundary.

J. Appl. Prob. 22 (1985), 99-122.

. Ford, D., Range-Mean-Pair exceedaces in stationary Gaussian processes, Reliability and Opti-

mization of Structural Systems, Aalborg, Denmark, Springer-Verlag (1988), 119-139.

. Leadbetter, M.R., Lindgren, G. and Rootzén, H., “Extremes and Related Properties of Random

Sequences and Processes,” Springer-Verlag, New York, 1983.

. Lindgren, G., Use and structure of Slepian model processes for prediction and deteciion in

crossing and extreme value theory, Proc. NATO ASI on Statistical Extremes and Applications.

Vimeiro 1983. Reidel Publ. Co, 261-284.

. Lindgren, G., Rychlik, I., Slepian models and regression approzimations in crossing and ez-

treme value theory, in preparation.

. Nielsen, R .J., Rainflow cycles in nonstationary Gaussian processes, Proceedings of Space 'S8,

Alburquerque, New Mexico (1988).

. Rice, 5.0., Mathematical analysis of random noise, Bell Syst. Tech. J. 24 (1945), 46-156.

Rychlik, I., A note on Durbin’s formula for the first passage density, Statistics & Probability
Letters 5 (1987), 425-428.

Rychlik, 1., Regression approzimations of wavelength and amplitude distributions, Adv. Appl.
Prob. 19 (1987), 396-430.

Rychlik, L., Rain flow cycle distribution for ergodic load processes, SIAM J. Appl. Math. 48
(1988), 662-679.

Rychlik, 1., New bounds for the first passage, wave-length and amplitude densities, to appear
in Stochastic Process. Appl..

Rychlik, L., Rain flow cycle distribution in Gaussian loads, in preparation.

30



"68

300 *sess2503d 2]qEIIUSISJFIP A[SNONUIIU0D 10] WI[QOId IIF1aUq-OMI YL NTTYORY T

(uo)IvI228510) “68

1d 573594001s jo s[wxBaiu} Bujzwwiisd so3 suBisIp a(dureg *juuayuag “)

330 *
“6§ "35Q ‘SN{ND[PD [WUOISUIWIP IIJUFFUF JO AI09Y3 Isjou IJYn ¥ ‘WPIH °L

‘68 -3deg ‘[RIBa3uf
uswulog Yy puw Bujieos ‘suwioj-d ‘soeyd snosusBowoy ‘anduviriuy "9 pue uosuyol °“jp°D

68 °3dag °‘suojawdojidde
Yija suojaenbs [BJIUSISIIIP DIISTYD0IS [WUOISUIWIP Idjujjul canduesiiey o

-68 -1deg ‘s{waBajuj Jaudiy I|djI|ME JOJ UOTIIIFID asuapuadapuy uw ug ‘3iaquailey ‘0
*68 "1deg ‘s{eaB21U] Ijqeis I[QNOP puUB $IJISIIVIS-) cqaaqufIy °f
“68 "1dag 'SI[qERIIRA I]QUIS D]IIdwuAS JO IIUBIJIBA [PUOIITPUO) ‘SjUDqUE) S puv NN A

‘68

“Sny °uojiwaBazul S31sWYO0IS ardia(me uj s2559501d Jujod jo sasn awog *BiaquIIwY "0
68 sunf ‘sauil

Sujddols paxIvw J0j UOFIVIUISIIdI1 [wiBIul Ue puv a%ueyd> awja wopuwy ‘Bisquaiiey ‘0

-g8 aunf °‘sassacoid paie[a:100 A[E21pojaad ISOW[E JO AI03Y) UOJIB[IIIC) ‘PINH °H -

‘68 hﬁ: *S21NSTIW WOpURlI PUR UOJIBIIOSSY ‘sueay ‘g *

*68 “ady ‘s9ssadoad

2]1sey>01s jO s[viBaiuj BujIMuiisas Joj suBjsIp Buj(dweg ‘sSjuRque) § PUB juuduag ") -

‘68 -ady ‘sa[eBujisua pIniwA Iowds 319QIIH puw

$101059A wopuel juspuadsp A[UIA JOj swaloayy uojIwmwixoiddy ‘ddyyijyd ‘A puw PRIUOK °Q -

68 -3dy ‘sav] A3311qeqoad 03
uojIwRo1]dds UR Y3ja WIOJSURII UOPYY 9S12au} Y3 JO L3jnujiuoduocu Yy *3top-19hey 3

(w1Ip349851Q) 68 ‘ady *sI193awerwd pan(BA 909ds 332GQITH JO UOJIBWIISI UQ ‘IWMIIS Y

‘68 "ady ‘suojae[aiiod IAliysod
pue £3}5}UCI0UCM DJISEYD0IS U $anbiingd23 uoyITNba UOESNIIIA ‘331d T PUY ISQIY °I

-qeadde 03 ‘-qouy 2ID1JDa3IN - 68 -ady ‘sp1ajj wopues Lieuoprers

2339ucaed-ox3 JO AJOaY) UOJ3IDIPIid Yl up ‘JWIIN "H pue Jwely Oy canduesiiey o °

-xeadde 01 ‘6961 °*°1°S ‘Ooupy “YIDR [ “sIwy 68 -ady ‘sujqqoy "H JO Nioa Kjiee
swos Y1]A UOJI5IUUOD $3} pus Bujidwes (Uddw UY poYIW Pp1a8 sujy y ‘andueryiey 9

-8 "ady ‘sysA{euw 0}3ISTYD0lS PUE IPJINOJ JBIUJT ‘FIPNOH "D °

‘68 -ady ‘BUIII[TJ JAUIIL L1wuorrels-uou pue swy3ijio08[e uoj3ezi0398] ‘FIPNOH O

*68 -ady *BUIII[PJ JUISUITUOU U wWII0IYL I[wWI] [RIIWD Y rj1og-13keR 3

‘£l
‘e

g

g

44

19¢

‘LS
"95¢

G8

-ady ‘®3109Y) UUWD|YI-UOPWI-Z1[AINY Y3 PUS $10159A wopuul [wuoBoyilg *BIUWPEA “N'N
‘68

Qa4 ‘s1opow $9552001d jujod O[pojIad ISOW[E U] UOTITWNIISI SIIUNbS I1SEIT ‘AOASIT °f
savadde 03 ‘fifojoivMi)

-303S W0 BujIFIN ‘UL Y3y *D0sd 68 ULl °‘s91a9s Liwuojims A[[eOIISIIMIS
uy senIeA YBpY Jo BuiIaISN[D UQ ‘UIZI00Y ‘H ‘UESH Op 71 ‘UWMSSIIQ "] °I913IQPWT ¥R

rawadde 03 *1ddy 0.4 9}1ISDYI0IS ‘68 ‘UE[ ‘SIInsvowm

wopues Aiwuojrwas Buixjw A(Buolas Jo0j swaioayd fwi] "Buisy "L puw J913AqPeRT AR
*gg *Da( ‘sidpou

sassa201d 2135UYD03s OpOIdad ISOUlT JOJ JOIVWIISI POOYFTIAIT wnwiXep °‘soysaT °f
“06E-18¢E

8961 ‘S1Todesuuly *BujldpON PUP UOTIWNIIST WNIIDAdS UO dOUsAION JSSY 1eNUUY WL ‘88
-a0p ‘s9s53501d DJISWYO0IS IUIJSURII PUe AIPUOIITISUOU JO IDUIIIYOD [v13dadS ‘PanH °H

‘88 "AON
*sa{jaucnb awaIIX’ JO $103BUIISI 10] suojiwsixoidde IduviieA pue seid ‘YIjws Ty

-awadde 01 ‘ggel ‘suojawnbl [RvJIUIINIIIQ OIISWYD01§ [WuOISUIWIQ
3JUIIU] UO °Juo) OIUII] *DO3J ‘S8 "ID0 "sIduds IWIONU UO SUOIIWNDI UOCIIN[OARD
2J15LYS03S JO SUOFIN[OS JO IDUIBIFAUCD XUIY ‘hIIqY-2333d "A pue anduejirey O

saeadde 02 ‘sp121d "13d "0yl "quqosd ‘g8 "3deg ‘wyijedoy
PP1€4911 Y3 JO AB] [BUOIIDUNJ $, UISSEBIIS U] IDUSIBIFAUOD JO IIRI Yl UQ caufIR °f

«agadde 03 *°Dog ‘YIDN ‘Jawy -11ng ‘S8 “adag

1S2INSEIW JOIDIA JO UOIIB[IP PUB $1waBIjuj II}Inoj s¥ $IsSId03d DFISWYDOIS ‘FIPNOY D
“88

*adag *sassec04d papunoq-(d'g) I1ejIBATI[E JO UOTIDIPIad JVSUIY SYI UQ ‘PIPNOH "D
«aeadde

03 ‘6961 ‘L1 *£i1111qrqold “wuy "8 ‘3d3s ‘weAIR "d'H Jo walqoad ® uQ "23id 7

Jwedde 01 ‘G9GI ‘- 1OUY “Jawny
[ NYIS "88 -3deg ‘uolaeiBaju] ofae) juck [wpjozades) °‘sjuvque) s pue Lisey 3

-xeadde 03 * - qvqoug

sgoayj *f ‘g8 -1deg ‘sueid Y3 U] SIINSUIW WOPURI a1quedupyoxy “Biaqualle} ‘O
-aeadde 03

‘6961 “Dfitpuos ‘88 “3deS SINTVA IWIIIXD YIA PIIDIUUC) a3pluq UBjusolg YV ‘uweq 3p ]

-awadde o3 °*-1ddy -qoug
‘yp g8 -3des ‘adwds 3JaQUIH [EOJUOUED SATITPPE AISITUIJ UO SNIND[EO [EUOISUNIP
s3jurjul pue taded §,3943K pue DY UO SYIWwAL WO ‘IndueI(Ivy ‘D puv uosuyof "X

-aeeddu 03 °‘sp121d *12¥ ‘Yl "qoad °‘§8 “3ny
papunoq-(d‘g) °SsuUpIpunog-A *A2}11qEZIUCCITY ‘IPROY D

*$9559201d o33seYO0IS 3O

-gg *Bny ‘s[vuojIoun] pazjleisuasd jo sduds
© Uo UojiIenba [B}IUIBIFIP 233ISTYD01s adA3-ujAsBue] Y ‘wwol IR "I pue Jndueriyey "o

‘Sse

4

1A

‘WWe

"

4

“6¢£C

"8t




