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1 INTRODUCTION

The optimal control model (( Al ) I., based on the assumption that a hurman
operator estimates the state of the, cont rolled system and develops a control
strategy which minimizes a performance index. The pioneering work of
Kleinman, Baron, and Levison [1]. of Bolt, Beranek. and Newman (BBN)
used this basic assumption to set up an optimal control problem which
closely agrees with experimental tracking data. The resulting controller
consists of a Kalman Bucy Filter (KBF), a linear predictor, and a set of
Linear Quadratic Regulator (LQR) gains.

Practical understanding of the OCM develops through use, which in turn
requires comptuter implementation. Though implementations exist, notably
PIREP [2], they are not readily available. The purpose of this report is to
describe an implementation of the 0CM using Program CC [3]. This will
greatly increase the availability and understanding of the 0CM, both here
at STI and elsewhere.

The 0CM has changed, but not dramatically, since its introduction in
the late 1960's. The seminal reference [1], see also [,5], has the following
features: a performance index which uses a weighted sum of mean square
error and control rate energy. full attention noise ratios for observation and
inotor noises, and an iterative solution method to achieve the desired noise
ratios. None of this has changed.

Additional features and numerous applications have appeared in the
years following the OCMs introduction. e.g. [6]--[101. The additional features
included in Program CC's implementation are visual indifference thresholds
and fractional attention parameters. Notably absent is the use of pseudo-
noise to induce low frequency phase droop, and the optimization of fractional
attention for multi-input problems.

The current interest is to understdnd and predict human operator be-
havior in multi-axis tasks and in divided attention situations. In particular,
the objective is to predict pilot behavior and ratings for multi-axis tasks,
and to compare these predictions against experimental data. Previous work
[I]-[-1] has suggested that the value of the optimal control performance in-
dex correlates with pilot opivion ratings (POR's) such as the Cooper-Harper
scale.

The motivation for implementing the OCI on Program CC is to further
develop the ability to predict POR's. A secondary objective is to simplify
the impleientation and broaden the availability of the 0CM. This report
d(,scribes the implementation of the O('M. Volumes 1 and 2 detail some of
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the applications.
The implementation consists of several Program CC macros and one user

defined command. The macros will only work with Version 4 of Program
CC. The macros are used in sequence to ( 1 ) create a state space model for Y,
and Y,, the controlled element and driving noise filter, (2) iterate the LQR
problem in order to set the neuro-muscular mode or modes, (3) set up the
KBF/linear predictor problens. (4) iterate the KIBF Froblem until desired
noise ratios are achieved, and (5) analyze the resulting Y pilot model. The
user defined command is called from within the macros as part of the LQR
and KBF iterations. In addition to the macros, all of the existing and
powerful capabilities in, Program ( can be used for analyzing the resulting
system models and pilot models.

Section 2 contains a technical description of the OCM. It is presented
in its general multivariable form. but only the single-input version is imple-
mented. The description brings together material scattered among several
references [1,2],[41-[91, and adds a new twist to the treatment of delay which
results in state space and transfer function models for the pilot. Section 3
is the main reference for the Program ('C implementation; providing usage
notes, and listing in Tables 1-3 the macro names, macro parameters, and
data storage locations. Several examples are presented in Section 4, includ-
ing the use of the optimal cost to predict pilot opinion ratings. Background
information on Program CC is provided in Appendix A, and the macros are
lited in Appendix B.

Fortunately it is not necessary to completely understand the technical
details of the O('M in order to use it. It is sufficient to use the OCM as
a means to an end: a long handled crank which results in a Y . Assumilg
sOlle prior knowledge about the OCNI and about Program CC. the minimum
amount of addition information nve(hvd to operate the macros is contained
in Tables I and 2.

4



2 TECHNICAL PROBLEM STATEMENT

A complete technical description of the optimal control model is presented
in this section. The description is valid for the multivariable case, though
only the single-input single-output case is implemented. The equations are
summarized in the block diagram of Figure 1, and the computational flow

is summarized in Figure 2.

2.1 Controlled System

The controlled system is modeled using state space equations. The driving

noise w(t) will typically contain dynamics. which are included together with
the system dynamics in the A matrix. The only difference between the
single-input and multi-input versions is the dimension of the input vectors.

i(t) = A.r(t) + Bu(t) + Ew(t)
y(t) = Cx(t)+Du(t)

yp(t) = y(t - 7) + v,(t-r)

The dimensions and definitions of the vectors are as follows. The notation

R"f indicates a vector of n r,-'al numbers.

x(t) E R' state yp(t) E Rr observation

n(t) E Rm  input w(t) E 11"" driving noi.,

yU) E R' output ly(/)E It' observation noise

The noise intensities are:

E{w(f)w(I - 7)} = I 6((T)

E{y(t)ry(f - cT)} = l'(7)

It is assume(] that tie hunman uses both errors and error rates, and
therefore the output y(t) contains both. It is not important how they the
ou1puts are arranged. so for notational convenience the errors are grouped
together and listed first:

Thli transfer function l'.(s) for the controlled system is defined to be from the
inlpu u to the error ye, because the single- input case this is the traditional
definition. The Program CC macros described in Section 3 use variations of
V,(.s) with different inputs and outputs.
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Enter YcW * Manually enter or
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ob~servation yp(l). %,vpiualk for th 11,( ' 7I : .2 Is rIse(l. Note( thIIifIt thIis 7

is not the s anIie valIuII as t IIve elfet I Ic vehIf a.%. r, . wh ich is b asedi on the unit
nni ire crossover of YP ~. I-x permt inIly (let errni ned values for T-, range

fromt .1) to .25 seconds an;d dlepend, oi tWrhe amwoun t of pilot lea(L
The d rving noise i ntenisi. tI i,, i leterni inle(l as part of thle ex'peri menl-

al seturp. [lie observation noise, littvPiilt V I i, ant otat icallv dleteriined
accor(lilig to all imrplicit equatior; ('Xjl;lilIC(l ili Sect 101n 2.5.

2.2 Performance Index

11i0 Objlective of t li O('\ is to (Ie-terrrii( a conitrol law u(1 ) =z f(y,( t))
%,,Ii cl minimrizes thle performnance Hidlex:

.1 hirn E {+ rQ ~ ~';r)d

III Iltost if riot all of the Cases Ii Mixc liil rUte ('l a, been used., the weighting

ii~lt rices taike 11he (liagorial tori:

(2f("
(2,4 -z(iagit{ i/....

G i~{i...g.

l~ ,s(mrrcsJ)ori~ing to Ihe errors, arc scalcd to gl~v app)roximaite equal

%ixeulit to .tIli(lar(l dleviations, ari the (/,5 ((Jrres"oniilg to error rates are

WIt toir:
/e1. 2./ 2(T J i =r/2t - -.

,I * ate (lfl'.i1(1 o i rll 11) la(" 111iv i'tI~tt5(ld lriri a~s

c\phlw ill th eixt stibsecv.10.

'Ili, ()(*\I rlifer, frorm the saimdard !.hirir Quadtratic (iariisar ( LQ(.;
i I iru I uu It rol pr1) rr in)1 , 1 1 1 rv ie r4, pi c t w I )t I I -- xeligl It i i g o I c o n Irol ratIe.

j2. thle irliilori of mtroor rioi~e Iwfore thle iieuniruiiuisciikir (lyliaillics. audi]
f3iI lie ol-ervat ion (lelaY of -r wecoroi.

2.3 LQ11 Solution

i j-,I) soli;ust ic Linear QuadIratic IRegidlor problemr is solvedI to determine
1!14 fill dtate conltrol wveighits. The sst cmi is aiugmllented wh a p)recedlrrg in-

tgto.which rv~uilts in arn equivalent perforirance imolex without at control



rate.

.io( t) = Aox, -,- l . i - L h,

] = lim E{I (S (20x() + }0
/L) dt

T Io 
G d

0
t

where:

Ao = (o) (0)()

Qo = o) xo(x) p=u

The solution is:

it = - Lxo

L = -'B'o

where h 0 is the unique positive semi-definite solution of t he algebraic Riccati
equation (ARE):

o Ao'Ko + K0 A0 + Qo - l%-(,, L( ;- B' o

The solution method of choice for the ARE is to (1) set up the Ilamilto-
Iian matrix. (2) compute its Schur decomposition. (3) order the eigenvalues

of he Hlamiltonian so the4 stable eigenvalues are in the upper left hand
block I'l of tipper triangular Schur inatrix '. and tlen (4) compute K0

ui iig the partitioned Schur vectors U which span the stable subspace. This
is a modified Potter's method. due to Laub. Schur vectors are computed as

an intermediate step towards eigenvoctors, the latter of which are in general

nminerically ill-conditioned.

to - Bo(;- Bo Ul (U 11 U'2) (TI 1IIt) Ui 2-(2o o 0= {.l 2 2). {21 '22

The control gains can be partitioned to separately appk to the state x
and the input o:

-( Li L2 .



BY "Oiwftj ion t lif, fvedlbak %civlit .i U i.1 Closed prior to I li ,oth ler feedh;a'ks
resulting in the neuro-niusciular dynalnics. Iniput to the neuro-iiuscular
dynamics then consists of the remaining feedbacks plus injected motor noise.

T\, i + ,I = 1 + IUo

ua, - L'.ru

where:

Tv L2

L' (L, LI 0)

and where the motor noise intensity is:

E{',,(t))v (t - a)}

The value of ,, is automatically determined as described in Section 2.5.
The input rate weight G is adjusted so as to achieve neuro- muscular

(ynamics of 10 rad/sec. In the single-input case a simple binary search
Yields the correct value of G. In the case of decoupled inputs separate
hiiar.rv searches can be used for each input. For cases more complicated no

hIelp is av,ilable.

2.4 KBF aid Linear Predictor Solutions

The states are not available for feedback. only the delayed and noise cor-
rupted obervation yp(t). The optimal solution proceeds by using a KBF to
,,st mate the state at tilne t - r. and then using a linear predictor to esti-

nate the ,tate at time t. Due to the convention used for the neuro-inuscular
dynamics. tle following augmented syvten is used for the KBF:

XI) = A.x(t) + Bllu + ,'1

yp(t) = CI.rI(f - r) + ?_(t - r)

whwre:

(0 -L L2

=- , i-)} ) II = ( A L 0 L)

10 V 0
0 L,21"'U.L'
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The KBF computes p(t) the linear nian-sqiare estimate of x1 (t - r)

based on observations yp(a) for a < I:

i(t) = Aip(t) + It, [yp(t) - C(p(t)] + Bjii'(t)

where the filter gain is:
/it = 1t:( y'1

and where E, is the unique positive semi-definite solution of the ARE:

() = III: + ' ' + IV", - 1:C I-I-I

The linear predictor updates p(t) to obtain I '(t), the linear mean-square
estimate of xI(t) based on observations yp(a) for a < t. Note that p(t-r) $4

M(t).

Al(t) = 4 t + BI Ithe(t)

1 C(t) + .,I, [1)(t) - - r)]

The LQR control weights are applied to ij1(l), again used according to
the convention for the neuro-muscular dynamics:

u,(t) = -L'()

2.5 Noise Ratios, Indifference Thresholds, and Fractional

Attentions
The ohliervatioll IIoike intensity v an l nwl 11(or ni-,v ilit it It , are

;.siimnc(l to l)e diagonal natrices:

-'u diag{ i 1 ..... r , }
d. diag{r,. r ,......, J

where each of the diagonal elements salikfv:

p., r

vy, - f, E~crU . , ): i .. 1
,o,= puor< = 1 .. ('2)

11



and where the individual t,,rin ii ( 1.2 art, defined:

p , p~, =noise ratios

(Ty. e, = standard deviations of y,,u,

f, = fraction attentions

T, = idi lrerriUce thresholds

E(a,,T,) = rfc T

Equations (1.2) for the no,s iiitei.qities vi,'s and vs are implicit,
because the standard deviations i, "s and o, s depend on the noise inten-
sities. An iteration is required in order to compute the noise intensities.
The iteration takes the following form: (1) guess initial values for the noise
intensities. (2) compute the KBF gain Ili. followed by the standard devi-
ations, (3) if equations (1.2) are satisfied within a specified tolerance then
stop, else use equations (1.2) to compute new values for the vy, 's and v,, 's,
and then repeat.

The observation noise ratios py, have been experimentally determined
to be .01. Usually this ratio is expressed using power dB 10log 10 , or in this
case -20 dB.

The motor noist ratios can be measured in principle, but there has not
been any found in practice (when dither, stick pumping. etc is excluded).
Various hylpotheses have been proposed for the origin of motor noise, but it
is more likely that motor noise is a imatheniatical fiction used to achieve a
solution. Numbers used for the p,., "s vary from .001 to .05, sonie researchers
preferring the smaller values and some the larger. A -safe" value seems to
be .01.

The output y, must move past an indiffcruc'na threshold T, before a
change is perceived. This threshold is modeled by a Gaussian describing
function. The input of the threshold at a particular time is normally dis-
tributed \,iWu mean zero and btandard deviation cr,, and the output is nor-
really distributed with mean zero and standard deviation ao,/E(ay,.Tj),
where:

E(ay,,Ti) = erfc (. ) = lrob(IxI > Ti)

where x is a sample from a normal distribution with mean zero and standard
deviation 7,,.

12



When the indifference threshold is T,=0 then E=l. and it is always tile
case that 0<E<I. Visual perception thresholds have experimentally been
determined to be .05 deg and .1 deg/sec. The value of T used in the OCM
depends on how far the display is from the human.

The observation noise is assumed to be inversely proportion to tile frac-
tional attention fi, e.g. the observation noise intensity v, doubles if only
50% attention is being paid to output y,. It does not matter how the remain-
ing attention is allocated, whether for other control tasks or for non-control
tasks such as communication. The usual assumption is that the same atten-
tion is attributed to the error and error rate in a given axis, therefore:

EL, = 1

Or in terms of the outputs:
r

1: f, = 2
t=1

Some researchers allow fi to differ for error and error rate, and/or require
the total across outputs to be 1. In the single-input (single-axis) case simply
use fl=f 2 =1. In the multi-axis case, if the tasks are of comparable difficulty
then apply equal attention to each axis. otherwise optimize over the f, so as
to minimize the performance index .1. Program CC allows arbitrary input
of f, and does not check the sum, but does not optimize over f,.

Pseudo motor noise is a scheme where large values of p,., are used to
compute the KBF gains, and then smallor values are usel to compute the
standard deviations ay,'s and r,, ,s. Different equations then those pre-
sented in Section 2.5 are needed in order the compute the standard devia-
tions, due to the fact that the state estimation errors are no longer uncor-
related with the state estimates. The use of pseudo motor noise has been
proposed to account for phase droop and motion cues. Pseudo motor noise
is not. however, included as part of the Program CC implementation, in
other words the same values for p,,, must be used for all calculations. This
is no big loss. Pseudo motor noise is a historical oddity for which no general
guidelines were developed and which never lived up to its expectations.

The 7r in equations (1,2) was the source of confusion to the author. Even
though others are not likely to be similarly fooled, I'll take the liberty to ex-
plain. Neglect for this argument the attentional fraction and the indifference
threshold, leaving:

= 2

13



The mean square value of Oh,, out pu is defined using the autocorrelation

function:

-~I?V~(O)

where the autocorrelation is definid:

lT(r) = Ey(t)y(t - r))

and where the autocorrelation Is related to the power spectral density using
the Fourier transform identities:

sy,(jw) = R()eJdr
X ,x

Ry(r 7- --r . Sy(j,,)e3 rd""

The noise ratio p.. in terms of the power spectral density is:

y y V _____

Y 2 1

If. however, the integration of . ij~j is defined only over the positive fre-
quencies then the noise ratio is:

fO SY(j-;)d

hence p. can be defined as ratio of the input noise intensity to the positive
frequency power density.

The 0CM literature over the years defines the noise ratio py using posi-
tive frequencies (where no r is needed). but uses calculations in terms of o2

(where ;- is needed). To make a long story short. use 7r in the calculations.

2.6 Performance Measures

The time domain performance measures are the mean square errors and the
optimal cost. The mean square for the augmented state is:

X = E{xlx'} = eA, rxleA r + C e4,"11,ie.' ."da

+J etAl -BL-),A 41rl 1;;eA, re(AI -Bi L)'ado
0



l)efine the estimation prror , t I ' '. i1 I hen X can be decornposed into
X = £ + X, where:

E= E{ec'} = e- .
"

. t 'da

A = E{.i'l= J..., H, I tIY Hl'eAvle e(.-BL)',

The augmented state is x' ( ' ii' hence the mean square values for x
and u are respectively the X1 , antd \'22 blocks. The mean square output
and neuro-muscular input are:

Y = E{yy'} (' xc

u E{u,,'K} = L'. L"

The mean square of u is infinite because the white motor noise feeds directly
into L. Using instead the estimated value of it:

(,ot =E{i.t'}=L.L' 4-(O L2)lE(0 L 2 )'

Finally. the optimal cost is:

T- -. E{4 (Y!'QIY + ,'ii) 0Iit

T Trace (E{ yy'}Q + Trace [E{ iiit'}(]

- Trace[)'QJ] + Trace[i 0 t(;]

which in the single--input case is:

.J = E (qy2 + g0) (I}
- ±

The types of calculations needed for these performance measures are ma-
trix exponentials and Lyapunov equiations. The preferred method for matrix
exponentials is the scaled Pade approximation. (with the scaled Taylor se-
ries a close second and the unscaled Taylor serie:, absolutely not to be used).
The scaling is:

= Arr/a, where n = 22m

and where m is the smallest integer >0 such that o is greater than the
square root of the sum of squares of the elements of Air. This scaling

1.5



approximately keeps the elgenvalaws of AI r less than 1. If F exp(A) and
F = exp( A1 r), then rescaling is accomplished simply by F = f 2" which

requires only m matrix multiplications.
A block matrix is used to compute the integral of a matrix exponential:

ep 0 Al 0 F2

where:

FI = e- A IT

F2  = e'4 " r

(J = J - 4 1 (r-av)|I e", a do, = e - .4 r e~ IAjVe-1e do"

Hence:

= eA '. , 1e ' + jr e'1e'41 'A11 da = FEI F2 + F2G,

The Lyapunov equation is:

0= P+&P+ 1

where i? is symmetric. The solution Q exists anw is unique if the eigenvalues

of P and 1? do not coincide. This condition is automatically satisfied if P is
stable and R>O. If P is stable then the Lvapunov solution Q satisfies the

integral identity: Q2 = e" e'dr

lence the mean square value A is computed using the Lyapunov equation
wit hi:

P = - B

R? e-" rll 1,9II11e -,

The preferred solution method is Bartel-Stewart. using the Schur decompo-
sition for P.
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2.7 Frequency Responses

The frequency responses of interest are 11(s). YP(s), and the remnant
4 I-,ne(s). Here it is explained how to compute the frequency response data,
and a state space/transfer function approximation for Yp(s).

The pilot model 1'(s) is composed of a visual delay, KBF, linear predic-
tor, and neuro-muscular mode.

p = (A1 - H, Cf)p -- Ily(t - 7) + B, u,(t - 7) + Hcv(t - r)
= Al + Biu.

= (t) + e41r [p( - (t -

u,, = -L' il

it = -L 2u + L2u1 + L2t',

It is more convenient to replace the differential equation for 1c with another
for iI:

1= -e4, , HICp + (.4 - BI L*)i + eA, H1y + eA, 'Hl vY

Move the visual delay from y over to u,. which is equivalent from an input/
output point of view. Combine p and il into an augmented vector x2 .
Change the input matrices for y to obtain an equivalent system driven just
by y,. The result is:

.6>2 = A-2x 2 + [i?2y + E 2 u,,(t - r) + B2'vY

,, = (' 2 .r2 + P)2y'

= -L2u t L2u(t - r) + Lc

where:

:1-2 ( l .C A -B 112 .4-IHl =((B 2)l (B 2)-)

P) E=(' =(0 -L'

i 2 = (B2)1 + A 2(B2)2  hD2 = C'2(B2)2

The creation of B 2 and D2 is based on the identity:

s(.sI - A 2)
- = I + (,I - .42)-1A2
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VUa

Figure 3: Frequency Domain Version of OCM
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lrequilimiY d la p)iIlil" ca hi l v Px1cil v c(lilat d I *y% USinI g the ialice
transform e- t of the delay. Alihe followigi steps re-1ult ill calculation for

PY (s) and ( Define the following transfer functions, located as shown
in Figure 3.

H(s) = (Hi(s) '-2(s)) C2(S - , 12)-1B2
H3(s) = Hi(s) + sHib(s) = C2(sI - A2)-B!, + D2

F(s) = C2(s! - A2)-1 E2

Lm(s) = (sI- L2)-lL2

Y( = (C)(s- A)-' B

Y",(s) = (C)i(sI -A)-' E

where C= (C)

The transfer function from y,(s) to un(s) is the solution of the implicit
equation:

11.(S) = I3(.;)y,(S) + (,') (s )

which is:
u(s) = [I- F(s)e-"T]- ll(.)y()

''he pilot mo(el Y (s) is the transfer function fromh y,(.s) to u(s):

Y',(s) Lm(s)G(. )I3(s)

where Gf(s) e' 7 [I - F(s)-sT]- 1

In order to determine the rennant. use Figure :3 to determine the transfer
functions from the noise inputs to the error:

y,(s) = (I- Yp) )- ( YiL, Gjs f YL ,, Y, (,,
(;< t(. )'I

The remant nn(s) is the spectral densitv resulting from the v,(s) and

V, .(s) noise sources:
4In (s) = Ga(s)diag{1 I1V. O}G'( -s)

Up to this point the visual delay of r seconds has been exactly modeled,
It is not. however, possible to obtain a state space description of t', unless
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;Il approxirllattloll is Isf ld f I !'' l'l", ()itmittIlI a state space realizatiol
is quite informative. becaj,' h.- , l ll v,, rlii to transfer function for I p(s),
the poles and zeros can be Pxamm,,d. \ otato space realization of the Pade
approximation of a delay ill:

ip(t-) = 1 ! /?,u, (t)

up(t) = + DpuU(I)

where up(t) .Z. u,(t - T)

For example, a 2 'd order Pade approximation for the single-input-single-
output case is:

p(t) = ( T 1) xP() + 1 )
lp(t) = (0 -12/ " )xp(t) + (1) ,I)

The 2 nd order case usually suffices, though others may of course be tried.
Substitute the Pade approximation and group all of the differential equation
together to obtain the following. The input y call be compressed as described
earlier in order to obtain an equivalent state space system driven just by ye.

d l --e-" '1I l . - BIL 0 0+ xp 0 - BPL" ZIP 0 XP
-L 2 DL L2 C

+ eA7lH (y + 1 0) +

0 L ,

it = (0 0 0 1

Frequency data for Yp(s) can be obtained directly from the above state
space system. In order to obtain the remnant a state space description of
the closed loop system must be obtained, but rat her than attempt to write
it out in terms of all of the elementary matrices, it is best to let a program
such as CC do the required algebra. The closed loop system G 1 ( S) which
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wvill be of the form:

j-4 -A 1j.r4 + 1)4 (VK
Ye = ('4.r.

As before. the remnant is:

4~nn~s) G~.~s~iag~'. ~O~c4(-s

Several quantities of interest. cali be obtained from Bode plots of I;r(s)

and Yp(s))YC(s). including:

-;, unit magnitude crossover frequency

O. = phase margin

7,= (-,/2 - op% effect ive delay
OP=-Arg[1'p(j-;)] + - r, + arctan~ri.,,v]

pilot phiase compensationl

These are best ob~tained1 by usinig a cursor to rvadl magnitudles and phases
from Bode plots.
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3 OCM IMPLEMENTATION

3.1 Overview

The human optimal control model is implemented as a series of macros,
two of which call a user defined command' The following functions are per-
formed:

1. setup a state space model of the controlled system

2. solve the LQR problem

3. setup the KBF problem

4. compute KBF iterations and performance measures

.5. compute state space. transfer function, and/or frequency response
models of the human operator

Both the LQR and KBF problems involve iterations, which are auto-
maticallv controlled by the user defined command. After convergence is
obtained, all of the regular features of Program CC are then available for
analysis of the results. The types of analysis inclide frequency responses
and simulations. With the ability to obtain transfer function models of the
human operator. the types of analysis can be extended to include the root
locus, and n:)ro importantly to include low ordvr transfer function approxi-
mation-, It is these low order approximations which clarify the relationship
l, "+,,ll he opiimal control and classical pilot inodel.

The in formation for the macros i sum iarized in Tables 1 through 3.
011v thw SISO case is implemented.

1. Table 1: 0CMI Macros

2. Table 2: Input Parameters

3. Table 3: Output Parameters

'A ,nw i, is an indirect command file, wlcrea. a im, dtjinf d command is a compiled
t.A I" progr am which can be (hained to Program ('(
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Table 1: O(MI Macros

Create state space (Y),1 for otpu~tt driving noise

ye Gis)u + G,(s)w

2. OCMYCT2. G1, G). (IlJ.fl

Create state space ( ~ ~jfor input driving noise

Y, = G,(s)[u + (;J(")w]

3. OCNMYC3. G1, Gil Gk. (Via1 1

Create state spae(.)u for g ac rul driving noise

ye=G,(s)[Gj(5s) + l()W

.I. OCNIALL. fli

CalIs OC'MILQR. O('A!SL lP, and OC'AIKBF

A utomatic iteration of g to achir vc dcsire(I Tr\%

.Setup ItiF (a rd Iin((lr p~redictor Jprobl( inl

A 1 itoIIatir it(t fiion oIf V 's for A i131-Jiroblf in

O. CM PILOT, 7. 1Pade order

(atf state sJ1cc ineedi o f Vp."') and (1 )

0. ,'M.\I G, Gi

Crfat( tfs VP and' VCfi lt ,a(ntl

Plot of Vp,, )'P'I',, and using .statf sp~ace resUlts

PlIot of Yp Y,> V V, and cm using v"-

2:3



Table 2: Input Pararners

Note: (Y ), n1 is a stat( spac quadruple. Do not use names
which overlap thosc used by the macros: P - P30 and

P500 - P50 4 . P4o has bccom( a standard name to use
for (Yc)an. The paramcters G, Gi. and Gk arm transfer
functions, for which any names can b& uscd. All of the
remaining paramettrs are cnihryd as numbers.

(Y".),1 = controlled system and driving noise dynamics. where:

input =() output= Y

q, g = quadratic weights. where:

J = hrn E, { [T J0 qy' + g it') lt}

7. = de.sired neuro-inuscilar time constant

7th ,,h = desired accuracy

V,, = driving noise intensiy

r =vi.nal delay

t!. / ,,.. = noise ratios (vilered in (Ili,)

V,1 Vy-, 1 Vu. observation anl motor noise intensities

T. T,2 = indifference thresholds (0 = no threshold)

f = fractional antt.i',uu 0l = full alt(-ition)

dBt..., = desired dB accuracy of noise ratios

Pade order = order of e-S Pade approximation

S. hihh. #pts = Bode plot axis limits
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Table 3: Output Parameters, Single-Input Systems

Crcatcd by OCIILQR?:

1, (A.11 P3 =g
Pi niot uJsed P, = L (LI L 2

(rryatlul by O('A!STUP:

P: , L2 P 0 =E I -,,E'
= ( L2 Ll 0) P11  KBF ittration counter

P-,=L (.4 L2 F1lL2  P12 =( pyl PY2 PUj "I Ty f T-

P8  = (.,,I A-B PI 3 =( I '. 1 Y2 1 1

(atrd by (CMKJflxB:

114 =~ !] pi9 A F + X2
P', = 1 , 1 (7 21 (2 (7 2(. 2

'lb I) 7 (It 71e-4 '1 (1 121 n rot us(d

P1 IV- E= PI; PI 7) P22 - nut ULS(d

Pi's X P21  ( qa;7 Y) 1)

(ruitd by O('1I1LO T (40t~ff ,pari( in)dcl'.Q

'25= Y = ('( 4 - A1 ) IB, (cIosc(d 1l0o) syshmr)

( n afd by Ofh1JF i n( O(AIREQ2 (data flcs):

.1/1) hun i operatIor ye cont Irolled svxt en
ypr=loop I ra iisfer ii um-ton phi refina lit
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3.2 Using Program CC

Program CC is a command driven computer -aided--control-system-design

package. It is written in compiled BASIC and operates under the DOS

operating system on the IBM-PC and compatible personal computers. Pro-
gram CC works with linear systems, either analog or digital, which are

modeled with either transfer functions or state space equations. A large
number of classical, sampled data, and state space algorithms are imple-
rmented, including an extensive amounts of interactive graphics. The user
environment in Program CC is robust, friendly, and very powerful.

Program CC uses macros and u.cr-drfincd- commands to tailor its use
to a particular problem. The SE'i'1'P command, as explained here, is used
to make sure that the program has access to these features.

Version 4 of Program CC must be used for the optimal control model
of the human operator. An introduction to using Program CC, Version 4 is
contained in Appendix A. This introduction concentrates on the parts of the

program us,..d for the optimal control model. A more extensive introduction
is contained it the Tutorial Manual [3]

3.2.1 Setup

Obtain a copY of Prograin ('CC, Version -1 a l( then load it onto the hard
di.k of an IBM- PC or compatible personal computer. The program con-
sivts of about .10 separate modules with the nams CC.EXE, CC1.EXE. and
so on. Place all of these modules into a subdirectorv named CC. Create a
subdirectory named CC/DATA to store the data. and a subdirectory named

('('/O('.\ to store the 0CM macros. Copy the 0CM macros listed in Ap-

p-ndix I into the ('(/0CM directory. The 0('M macros work only with
lirogramn ('('. \'r ion .1. and will not run properly witi Version 3.

IProigrain CC hias the ability to locate data. niacros. and mnodules on
dif',ronit drives. Beicause of the large iunber of modules (i.e. overlays) used
by t'ro.rai ('C lie efbiciencv of operation is improved by placing some of

th,,te in a IA NI disk. The following modules vhich are used by the OCM
ar-, i ,t ed in order of priority:
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CC root rograin

CC1 macro processor and utilities
CC25 state space equations
CC31 eigenvalue calculation,,
CC34 Lyapunov solver
CC2 transfer function display
CC3 polynomial root finder
CC4 transfer function equations

All of the above modules will fit into a RAM disk of 640 Kbytes. It is
also possible to put the data used for the OCI into the same RAM disk,
in which case it should be expanded by at least 128 Kbvtcs. For safety, in
case of a power failure or a system crash, it is bet'er to place the data in a
subdirectory on the hard disk. Data stored on the hard disk can is not lost
when Program CC is stopped.

Use the CC/SETUP command to establish the pointers to the above
items will be demonsirated after a few more preliminary comments. How
to setup a RAM disk depends on your particular hardware configuration
and vers*on of DOS. Commands similar to the following should be placed
in your CONFIG.SYS file (the files and buffer commands are not related to
the RANI disk but are nevertheless a good idea):

device=c:\dos\edisk.ss 6.10 128 512/e

files=20
buffers=32

3.2.2 Executing Macros

A macro is an indirect file containing Program CC commands. The com-
mands are listed in a macro exactly as they would be if entered from the
keyboard. Macros can be nested and parameters can be inserted. Macros
are executed by including the +- symbol before the macro name, for example:

CC> QOCMLQR, P40, 1, le-3, 5

The macros used for the human optimal control model are all written so
that they echo the parameters and then pause for a response. Press the F1
function key to abort, and any other key to continue. The F1 function key
can be pressed at any time to stop execution (though it is not recognized
during an overlay swap and sometimes several key strokes are required).
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3.2.3 User- -Defined-Coiiunands

A user-defint-d--coni,,and is a ,n..ln ,', B.\SIC program which is connected
to Program CC during execu ',w,. e,. iich iiser-defined-command is used
here, OCM.EXE. which has 2 n.ifi functions:

1. Controls the LQR itrions by automatically changing the
input weight g.

2. Controls the KI3F iterations by automatically updating the
observation and motor not,, intensities. Also computes the
erfc function by means of a piecewise linear approximation,
and prints a summary at the end of each KBF iteration.

3.2.4 Example

Start the program from the DOS lvel by typing ('C. Execute the SETUP
command as shown below to establish pointers to the data, macros. and
modules used by the OCM:

CC>setup SETUP command

2 establish pointers to data. macros, and pro-
gram modules

2 use automatic option

\cc\data data location
\cc\ocm macro location
\cc\data more data (not used by Hie OCM)

d: name of RAM (li-,k
4 establish a link to tho user defined command
1 add a coimand
OCm naIme of coinmmaniid
ocm name of BASI( program

n no imore coittlliandls
4 rettirn to main menu
5 change the SSSEI'VP file

CC>EXIT leave the program

Make a back--up copy nameid SETUP of the file just created. After
completing the initialization start Program CC with a DOS batch file such
as the following, which copies the SETUP file and the first three of the
recommended modules into the D: RAM disk:
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COPY SETUP $$SETUP

COPY CC.EXE D:

COPY CC1.EXE D:
CUPY CC25.EXE D:
cc

3.3 The Controlled System

The controlled system, denoted as (YC)a, includes the controlled element
Y(s), the noise dynamics 1"(s), and the interconnection structure. The
inputs of (I'j),tt are the operator input u and the external noise source w.
The outputs are the error e and the error rate L The structure depends on
where the noise is injected, with the three possible choices (for a single-input
system) being at the output of l'(s), the input, or somewhere between. Use
the macros OCMYC1. OCMYC'2, and OCMYC3 to create a state space
quadruple for ()), starting from transfer function descriptions of Y(s)
and Yw(s). The block diagrams in Figure 4 explain the three cases.

3.4 The Optimal Solution

After creating the model of the controllod system tI I.QR and KBF optimal
control problems must be solved. Each of these is an iterative process. Tile
OCMALL macro defines the following default parameter values and then
controls both iterations:

q~l
rV= .1

'thrsh "-.001
i'U, =1

=- .2

p_, =y, P= pu, = -20dB
1= T= 0

f=

dBtr,Sh .1

The OCMALL macro works by calling several lower level macros, two of
which call the OCM user defined command (UIC):
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(a) Noise Injected at the Output. Created by OCMYC1

U)S

(b) Noise Injected at the Input, Created by OCMYC2

U(e

(c) Noise Injected in the Middle, Created by OCMYC3

Figure 4: Different Configurationis for (
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OCMLQR solves the LQR problem. calls OCM
OCMSETUP enters parameters used by OCMKBF
OCMKBF solves the KBI- problem, call 0CM
OCMPILOT computes Vr(s)

The default parameters listed above call be changed by adjusting the inputs
to the lower level macros. If these parameters are changed then change the
name of OCMALL to something like OCMALL1.

The OCMLQR macro changes the input weight g and repeats the LQR
problem until the achieved rN. is within 7th,,,h of the desired value. The
following ad-hoc method is used: (1 ) start with an initial guess, (2) increase
or decrease by a factor of 10 until the desired rv is surrounded, (3) con-
verge using a binary search. After convergence you are presented with the
following choices:

1=stop
2=1 more iteration
3=change threshold

Use the first option to stop the LQR iteration and continue to the KBF
problem. Use the second option to continue the LQR iteration one more
step. and use the third option to set a more precise threshold. The LQR
iterations typically go very fast.

The OCMSETUP macro sets up the KBF iterations by storing the re-
quired parameters in set locations. The OCMKBF macro controls the KBF
iterations. which is a longer and more difficult problem then the LQR itera-
tious. The KBF iterations work by changing vyl, V.2. and V', as described
in the technical write-up, until the desired noise ratios are achieved.

At the end of each KBF iteration a summary is presented of the time do-
main performance measures: optimal cost. the mean square errors, the noise
intensities, and the dB noise ratios (see the examples). Any of these can in
theory be used as a stopping criteria, however the one which is implemented
is for all of the noise ratios to be within (lBth-,,h of their desired values. You
can judge the progress of the iteration from the last line of the summary,
which give the current value of the maximum noise ratio difference.

A different threshold may be used depending on the computation time.
tle rate of convergence, and your patience: but more than I dB is not rec-
ommended. Make the change by adjusting the dBthrcsh parameter in the
OCNISETUP macro. The number of required iterations depends on the ini-
tial noise intensity estimates, the dynamics of the system (hard to control
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systen,- and/or miistable sy.vtein, ind to requir, inore iteralions), I le at ten-
tional fraction and indifference thrshold levels, and the stopping criteria.
Anywhere from 3 to more than 50 iterations may be needed. Typically less
than 5 iterations are iequired to reach a noise ratio window of 1 dB, but
convergence from that point on can be slow. The best way to significantly
reduce the number of iterations is to give good starting values for V. 1 , V;2,
and V, . As a practical matter, this can only possible if the same problem or
a similar problem has been previously solved. If convergence is not achieved,
which sometimes happens. then stop the process using the F1 function key.
Even after stopping it is still possible to continue with further analysis.

When the KBF iteration is completed you are presented with the follow-
ing choices:

1=stop

2=1 more iteration
3=change threshold
4=line printer listing

The last option is strongly recommended, which creates a line printer list-
ing of the last iteration summary, Permanent records are always desirable,
though in the heat of the moment sometimes forgotten. Use the first op-
tion to stop the KBF iterations and continue with the analysis. The second
option contintuns with one more step. and the third option promlpts for a
smaller threshold.

The OCMPILOT macro creates a state space approximation of Yp(s).
The information needed to compute p(s) is (1) the controlled system (V)aU,
(2) the LQR solution, decomposed into the TN and L matrices, (3) the KBF
gains HI, and (4) the visual delay r. The state space model created by the
OCNMPILOT macro is an approximation because a Pade approximation is
used in place of an exact delay. A second order approximation is recom-
mended. The parameters for the OCNIPILOT macro are the delay and the
order of the approximation. The remainder of the information is assumed
to be in the locations used by the previous macros. The default name for
the state space model of Y,(s) is P25.

3.5 Analyzing the Results

After executing the OCMALL macro. or its constituent parts, there are sev-
eral possible directions to proceed with the analysis. The suggestions here
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are not meant to be exhaustive. Think of the macros mentioned here: OC-
MALL, OCMG, OCMFREQ1. and OCMFREQ2, as objects to be changed
according to the specific task at hand. It is of course best to change the
names if modifications are made.

The time domain performance measures are listed at the end of each
KBF iteration. The parameters are stored in matrices as listed in Tables 3.
These parameters may be the end point of your analysis, in which case no
further work is needed. For example:

1. The optimal cost J can be used to obtain a pilot opinion rating. The
value of J is listed in the OCNI summary. By referring to Table 3 it
is seen that J is also stored in the P23 matrix. The definition of J is
listed in Table 2; if additional normalization is needed multiply J by
the appropriate scale factor.

2. The optimal mean square tracking error o 2 can be compared againstYe

experimental results. The value is listed in the OCM summary, along
with other mean square results, and is also stored in the P20 matrix.

The OCMFREQ1 macros use the state space approximations for Yr(s)
and YI(s) to compute frequency data files for:

Y~ ( s)

4),(s

The macro ends with a Bode plot created with the PILOT command. The
square root of the remnant is computed. as is customary. (The dB scale
used in Program CC is 20log10 . Plotting the square root of the remnant
is the same as using a power dB scale of 10logl 0.) The cursor can be used
to determine frequency domain parameters such as bandwidth and phase
margin.

The OCNMFREQ2 macros differ ini that they use an exact calculation of
e" as an intermediate step for the same frequency data files as above. I
have not yet come across an example where there is any significant difference
in the crossover region between the two methods.

Another type of analysis is to obtain a transfer function approximation
of Yp,(s), which can then be used to obtain low order approximations. Clas-
sical (i.e. structural) pilot model parameters such as pilot lead and effective
delay are easiest to obtain using low order models of )'(s). After using the
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OCMPILOT macro to obtain a state space model for Y,(s). use the OCMG
macro to convert to a transfer function model. The optiwmal control model of
the human operator includes the negative feedback sign with Yr(s), which is
the opposite convention used by the classical human operator model. Mul-
tiply the V (s) computed by the OCMG by -I to switch to the convention
used by the classical model. The OC.MG macro also computes Y'(s), in case
it is not already available. Multiply Yp(s) and 1'(s) together to obtain the
loop transfer function, which can then be checked against the K/s crossover
rule.

The NEAR command is used in the OCMG macro to cancel poles and
zeros of Yr(s) and Y-(s). There will be considerable cancellation, and more
may be desired. For further cancellation use the NEAR command with larger
tolerances. The LEAPPROX (low frequency approximation) command can
be used to truncate poles and zeros larger than a threshold frequency, with
the option of replacing the effective delay of the truncated modes with a
Pade approximation of the delay.

Converting to transfer functions is probably the best way to quickly ana-
lyze the results of the 0CM, because Program CC's user interaction is faster
and more convenient in the transfer function domain. In particular, the plot
options can be used for precise bandwidth and phase margin calculations.

3.6 Computation Time

Three factors are important:

Number of states in Y,
Number of KBF iterations

Micro- processor clock speed

The following operations in each KBF iteration take the most time, each of
which is a 73 operation. where n is tie number of states in Y,:

Miccati equation solution
matrix exponential
Lyapunov equation soltition

It is best to u.se low order closed loop effective models for the controlled
system 1'-. and to use only 1st and 2nd order filters for the driving noise. If

Y. has 5 or 6 states, then on an AT with a 8 Mllz clock it will take about
50 seconds for each KBF iteration. )ue to the n3  dependence, doubling the
itumber of states requires 8 times as many computations.
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The number of inputs is not the dominant factor in computation time
(probably a rn2 dependence, where m is the number of inputs). Systems
with two or three inputs, however. typically have two or three times as
many states, especially if the systems are independent in each axis.

The computation time is proportional to the number of KBF iterations,
obviously. How many iterations are required is discussed in Section 3.2.4

Computation time is just as obviously proportional to the micro-processor
clock speed. Use your fastest computer.

Overlay and data read times can be very significant if a RAM disk is not
used. It is definitely worth the trouble learning how to use a RAM disk.
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4 Examples

Duplicate the following O( NI examples to gain experience.

4.1 Integrator

The controlled system is a simple integrator in this example taken from [1].
The input of the system is driven by colored noise, the human operator visu-
ally determines the error and error rate. and manually controls the input so
as to minimize the mean square error. Tie example has following controlled
system and parameters:

d(Xl) (2 0) (,) (+ ) ((0)

Driving noise: V,,, S .. resulting in E{x'} = 2.2
LQI?: q = 1. g - .00017. resulting in 7 .0,

Visual delay: r - .15
Noise ratios: p. = .01, p, = .01. p,, = .00:316 (-20,-20,-25 dB)
Indifference thresholds: t- 0. t2 = 0

Fractional attention: f -

Ord,,r of VC: n = 2

The parameters TN. 7. and p,, were adjusted by tle aulthors [1] ill or-
der to obtain a close match with experimental r'o'slt.. The Program CC
impl,,ienlatioin agrees with all of the pl blished results except for the rem-
nant frequency response (its not clear whether or not the remnant formulas
match ).

The state space description of ( ),11 is provided in the problem statc
ient, and therefore can be directl entered:

STATE>p40=(-2,0,0,1; 1,0,1,0; 0,1,0,0; 1,0,1,0)

STATE>p40=CHST(p40,2)

The ('lIST function is used to convert a real tmatrix into a state space
quadruple. in this case with 2 states. It is helpful to compute the same
result starting from transfer functions:

CC>yc=1/s
CC>yw=l/(s 2)
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CC>COCMYC2,yc ,yw ,p4O

CC>p40=p40(s, (2,1))

In this example the noise in injected in the input of the plant, hence the
OCMYC2 macro is used to create P40 . The odd looking last command
switches the order of the 2 states, an optional step which is used to obtain
the same state space realization as given in the problem statement.

Now compute the LQR problem. The value of g is already provided, so
that no iteration is required:

CC>QLQR,p40,1,.00017,_.08,.001

The rN actually achieved is .08074, which falls within the threshold of .001.
There are many parameters required for the KBF problem. List the

parameters by running the OCMSETUP macro followed by the F1 function
key, and then include the numbers on the command line. Carefully check
before proceeding to the KBF iterations:

CC>©OCMSETUP

F1
CC>OCMSETUP, 8.8, 0.15, -20, -20, -25, 1,1,1,0,0,1

CC>QOCMKBF,. 1

Six iterations are required to achieve the desired noise ratios. One more
iteration is computed for good measure:

Table .1: KBF Iterations

I 7 dB
Iteration -p Y, py " p .

1 -6.00 -16.23 -15.26

2 -13.17 -15.33 -22.46
3 -17.23 -18.72 -24.32
4 -19.23 -19.68 -24.84

5 -19.81 -19.92 -2-1.96

6 -19.96 -19.98 -24.99
7 -19.99 -20.00 -25.00

The iteration suminary after the 7th iteration is shown in Figure 5. The
following noise intensities which were converged to:

I = .00371 1 2 = .09687 1, = .0.1815
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[svc Ihis Iiard acIiev,,d IifforIa ion to .pe''(d tw solutioi of the prob lem the
next time around:

CC>COCMSETUP, 8.8, 0.15, -20, -20, -25, .00371,
.09687, .04815 ,0,0,1

CC>COCMKBF,.1

Anytime you want to bring the iteration summary back onto the screen
simply call the OCMKBF macro once more. Begin the analysis by noting
the time domain performance parameters listed in the summary of the last

iteration:

or21 = .

a 2 = 3.08

_! = 3.86

J = .159

Run the OCMPILOT macro to obtain a state space model for Y'(s).
Follow this with the GEP command (GElP stands for the Generalized Eigen-
value Problem), which creates a 9th order transfer function model for lp(s):

CC>©OCMPILOT, 0.15, 2

CC>STATE

STATE>GEP ,p24, yp

Change the sign of Y (.s) to conform with the classical convention. Use
the NEAR command to cancel poles and zeros with an absolute difference
less than 10- 4. and then use the LFAPPROX command to replace all of the
ly vitamics greater than 5 rad/sec with a 1st order delay approximation:

STATE>cc

CC>yp=-yp
CC>NEAR,yp,ypl, 1, le-4

CC>LFAPPROX,ypl,yp2,5,1

Figure 5 shows the 1 ,( ) and 1',.(s) transfer functions, as well as the transfer
functions for I(P(.s) before and after cancellation. The final low frequency
approximation for I ,(. )is:

Y (S) - 4.2(., + 3.3)

s .+ 2.0)
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Iteration # 7
Optimal cost: q, g, output, input rate, total

I.OOOOE+00 1.7000E-04 1.1803E-01 4.1207E-02 1.5923E-01
Performance : E(yl^2), E(y_2"2), E(u_a-2), E(u^2}, E((du/dt)^2)

1.1803E-01 3.0834E+00 4.8469E+00 3.8633E+00 2.4240E+02

Old noise intensities (V yl, Vy2, V ua): 3.7167E-03 9.6967E-02 4.8176E-02
New noise intensities (V yl, V y2, Vua): 3.7079E-03 9.6869E-02 4.8152E-02
Noise ratios dB (rho yl, rhoy2, rho ua): -19.9897 -19.9956 -24.9978
Max noise ratio difference = 1.028061E-02 dB, Threshold = .1 dB

Controlled element and noise models

1
YC(s) = --

S

1
YW(s) =--

s+2

Pilot model and low order approximations

179.1459(0) ( 2) ( 3.252133) ( 6.386982) ( 12.38519) ( 12.56791)
[-.8660254, 23.09401)

YP(s) --------------------------------
0) ( 1.990881) ( 2) ( 6.460116) ( 12.37807) ( 12.38519)
.3671649, 23.26644]( 42.51991)

179.1459( 3.252133) ( 6.386982) ( 12.56791)[-.8660254, 23.094011
YPl(s) ---------------------------------

1.990881) ( 6.460116) ( 12.37807)[ .3671649, 23.26644]
42.51991)

-4.16696( 3.252133)(-15.44067)
YP2(s) ----------------

1.990881) ( 15.44067)

Figure 5: Summary of the Integral OCM Example
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This is similar to what a classical (i.e. st ructural ) pilot model would predict,

except that tie optimal I'p(s) contains the extra lag term (s+3.3)/(s+2.0).
Tbp Pffect nf this term is tn incroase t!" low frequency gain, which improves
the tracking response to low frequency inputs.

A frequency plot of the important transfer functions is obtained by the
following macro call:

CC>Q0CMFREQ1, .01,100,100

The resulting Bode plot shown in Figure 6. The parameters specify 100
points from .01 to 100 rad/sec. The phase of Y,(,s) and YY (.,;) is 180' away

from that expected from the classical pilot model convention. Several of the
standard frequency domain performance parameters are listed below. (Use
the MARGIN and POINT commands to help with some of the following
numbers).

-=4.88 rad/sec

41.90
r"
2 180)

= .17 soc

The commands used to duplicate this example are stored in the
EX1.MAC listed in Appendix 13.
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4.2 Double Integrator

Another standard human operator tracking problem uses a double integra-
tor. In this example inject the drivi..g noise at the output of the controlled
element, and model the noise as unit intensity white noise passed through a
2nd order Butterworth filter with a break at .5 rad/sec. Use defaults for all
of the remaining OCM parameters:

Controlled element: Y,(s) = i/s2

Driving noise: Y,(s) = 1/(4s 2 + 2.83 * + 1)
Driving noise: VW = I
LQR: q = 1, rv = .1.
Visual delay: 7 = .2
Noise ratios: pY1 = .01. p'V .01. P". .01 (-20.-20,-20 dB)
Indifference thresholds: tl = 0. t2 = 0
Fractional attention: f = I

Solve the problem with the following commands:

CC>yc=1/s-2
CC>BUTTER,yw,.5,2
CC>QOCMYC1 ,yc,yw, p40
CC>QOCMALL,p40

Obtain transfer function approximations of Y (,) with the following ad-
ditional commands:

STATE>GEP ,p24, yp

STATE>CC
CC>NEAR,yp,ypl, 1, le-4
CC>LFAPPROX,yp1 ,yp2,5, 1
CC>NEAR,yp2,yp3, 1, .2

The final result is:
Y (s) = 2.1(s + 1.)e- 23

The iteration summary after 16 iterations is shown in Figure 7, together
with the transfer function results. The frequency responses are shown in
Figure 8. The transfer functions were used to obtain this plot, and hence the
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straightline asymptotes can hewI iIluded. The frequency domain performance
parar.eters are listed below:

= 3.16 rad/sec

OPM = 26.30

71 = ( pm - )/c

= .35 sec

The commands used to duplicate this example are stored in EX2.MAC.
The LQR and KBF problems are started at the parameters which have
already been converged to.

.13



Iteration # 16
Optimal cost: q, g, output, input rate, total

.0000E+00 6.4053E-05 1.6305E-02 8.0904E-03 2.4395E-02
Performance • Ety_1^2), E(y_2^2), E~u_a^2), E(u12), EI(du/dt)^2)

1.6305E-02 1.1800E-01 2.6566E+00 2.2338E+00 1.2631E+02

Old noise intensities (Vyl, V y2, Vua): 5.1638E-04 3.7338E-03 8.4074E-02
New noise intensities (Vyl, V-y2, Vua): 5.1223E-04 3.7070E-03 8.3460E-02
Noise ratios dB (rho yl, rho y2, rhoua): -19.9650 -19.9688 -19.9682
Max noise ratio difference = 3.499794E-02 dB, Threshold - .1 dB

Controlled element and noise models

1
YC(s) =----

s^2

1

YW(s) = --------
4s^2 +2.83s+1

Pilot models and low order approximations

500( 0)-2 ( .714, .438][ .707, .5]( 1.33)( 3.11)( 10)( 10.1)
(-.866, 17.3]

YP(s) -----------------------------------------------------------------
0)-2 [ .707, .5)-2 ( 3.1)( 9.99)( 10)[ .275, 10.6)[ .865, 22.4]

500( .714, .438)( 1.33)( 3.11)( 10.1)[-.866, 17.3)
YPI(s) ---------------------------

[ .707, .5]( 3.1)( 9.99)( .275, 10.6)( .865, 22.4]

-2.68[ .714, .438]( 1.33)( 3.11)(-8.69)

YP2 (s) =---------------------------------------
C .707, .5)( 3.1)( 8.69)

-2.05( 1.33) (-8.69)

YP3 (s) -----------
(8.69)

Figure 7: Summary of Double Integrator O('M Example
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4.3 Single Axis Dander Example

Dander [15] has reported experimental findings from single and multi-axis
tracking tasks. Dynamically independent single. two-, and three-axis track-
ing experiments were conducted, and then subjective pilot opinion ratings
(PORs) were given for each task using the Cooper-larper rating procedure.
(This procedure yields a POR ranging from I (best) to 9 or 10 (worst),
which is dominated by the pilot's mental workload required to achieve the
performance implied by a given mission phase.) One of the objectives of
the original experiment was to predict multi-axis PORs based on single axis
results. The best way to make this extension is still a open question. and
the Dander data is still the best data base upon which to test out theories.

The first part of this example solves the OCM for a single axis task, and
the second part uses the OCM to predict single and multi-axis PORs. The
method used to determine the optimal multi-axis cost from the single axis
optimal costs is described in Volume 2 of this report. More explanation of
the Dander data and POR predictions is provided by McRuer and Schmidt
[15] and Volume 2 of this report. Further background on the use of optimal
cost for PORs in contained in [13].

The single axis controlled system and driving noise filter are listed below:

•1 ( .0 i)( .. )

(0)[.7..25](5)
.2219

The driving noise is added to the output of lY(s). The mean square output
error due to the driving noise is cr .14. The experimental parameters are
listed below, note that nonzero inldifference thresholds are used:

1;' T 7N Pyl P? 2 P,,, t t 2  f
1 .2 .1 .01 .01 .01 .015 .025 1

Enter the transfer functions, combine them to form the controlled system,
and then solve the OCM problem:

CC>COCMYCI , yc ,yw ,p4O
CC>©OCMALL,p40

'Fie following time and frequency domain performance parameters have been
computed using the OCM solution:
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.00018 .005 .049 .16 .20 9.8 .0067

%, . [.%' 1 Tf

3.2 r/s 37' .29 sec

See the EX3 macro in Appendix B for more of the commands which
duplicate this example. The converged to values of g, V], Vy2 , and V". are
used in this macro, so that only 1 iteration is needed for each of the LQR
and KBF problems. Figure 9 shows the iteration summary and several
difference approximations of Yp(,s). Figure 10 shows a Bode plot of the
important transfer functions. complete with straightline asymptotes. The
low order approximation for the pilot model is:

S(8) = 2.6(s + 1.4)(s + 5.2) C-21s
S(s + .9)

The classical pilot model is Y' = l.1(s+5)e-25,. The lead is used to
maintain a K/s like crossover, and the delay is determined as a function
of the 3 r/s crossover. The OCM derived Y , despite its high order (n+5,
where n is the order of Y, plus the order YL), is basically the same around
crossover, but differs at lower frequencies by including trim terms, and differs
at higher frequencies by including an ill understood collection of terms which
('ai efrectively l)e groupled into a delay. 'I'he much vanited neuro- -iuscnilar
mode is cancelled by the OCM solution and does not appear in Yp. It is
nevertheless important to set the neuro-muscular mode as part of the LQR
solution, because this method of selecting the quadratic weight determines
the closed loop bandwidth.

4.4 Multi-Axis Dander Example

The Dander experiment varied the dynamics in each of 3 axes to create a
large number of combinations. lere only a single set is used: 81L03 H in
Dander's notation. The OCM is solved for each axis, and then the optimal
costs for each axis are combined as demonstrated below to obtain an optimal
cost for the multi-axis case. After all of these optimal costs are determined
then predictions of PORs are made.

The OH axis (axis #1) was considered in the previous subsection. The
full attention case for the (L axis (axis #2) is summarized:

0.5(0.1) 13.3
( 1) = .5)[-.84,0.5] .5

,17



Iteration # 1
Optimal cost: q, g, output, input rate, total

1.OOOOE+0O 1.8000E-04 4.9850E-03 1.7647E-03 6.7497E-03
Perrormance :Efy_1^2), E(y_2'2), E(u_a'2), E(u^2), E((du/dt)^2)

4.9850E-03 4.8742E-02 1.9835E-01 1.6504E-01 9.8040E+00

old noise intensities (Vyl, V -y2, V_ua) : 2.7070E-04 2.0260E-03 6.2760E-03
New noise intensities (Vyl, Vy2, V_ua): 2.6840E-04 2.0101E-03 6.2313E-03
Noise ratios dB (rho yl, rhoy2, rho ua): -19.9630 -19.9657 -19.9689
Max noise ratio difference = 3.701782E-02 dB, Threshold = .1 dB

Controlled element and noise models

4( .04)( .9)
YC(s) =------------

(0)( .7, -25]( 5)

.222
YW(s) = ------

(.7, .5]

Pilot models and low order approximations

202( 0)( .0299)[ .7, .25)( .71, .296][ .7, .5]( 1.44)( 3.24)( 5)
(5.17)( 10.1)( 10.2)(-.866, 17.3)

YP(s) =-------------------------------------------------

0)( .04)( .7, .25][ .7, .5)[ .7, .5]( .9)( 3.37)( 5)( 10.1)
10.1)( .259, 12.2]( .864, 24.6)

202( .0299)( .71, .296)( 1.44)( 3.24)( 5)( 5.17)( 10.2)
[-.866, 17.3)

YPl(s) =------------------------------------------------

(.04)[ .7, .5)( .9)( 3.37)( 5)( 10.1)[ .259, 12.2][ .864, 24.6)

.677( .0299)[ .71, .296)( 1.44)( 3.24)( 5)( 5.17)(-9.37)
YP2(s) =-------------------------------------------

( .04)[ .7, .5)( .9)( 3.37)( 5)( 9.37)

-2.61( 1.44)( 5.17)(-9.37)
YP3 Cs) =------------------

(.9)( 9.37)

Figure 9: Sunmmary of Danider Sigle Axis Example
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V ,, tl , 2

1 .75 1.5 500 10- " 27

and the full attention case for the ,1 axis (axis #3) is summarized:

YAS) 10(0.I 1 .53

(3.0)[.5_ 51

1VW , 1 2  (72 g j

1 .07 .14 X,1 .0013 .05

Each of the single axis OC'I problems are solved for several different
attentional fractions. Ilow to do this using Program C is now explained. As
seen in Table 2. the parameter f ih stored in the I xG element of the P12
matrix. For each different value of f change the P12 matrix and repeat the
OCMKBF macro. This will start the KBF iterations at the last values of the
noise intensities. The iteration sminaries for t lie atteitional fraction cases
f=1/2. 1/3, 1/4. and 1/5 are listed in Figure 11. The commands used for
this attentional fraction survey are listed below (see also the EX3 macro):

CC>p12(1,6)-1/2 & COCMKBF,.1
CC>p12(1,6)=1/3 & COCMKBF,.l

CC>p12(1,6)=1/4 & COCMKBF,.l

CC>p12(1,6)-1/4 & COCMKBF,.l

For each axis create a table of optimal costs .1 versus attentional fractions
f. Normalize the costs by dividing by mean square error of the driving noise.
I1 has been empirically determined that a liiear relationship exists between
.1 and I/f over a range of attentional fractions, which are for this example:

J,/la,= .017/f, + .028 for fl > .1

12/r' =.66S/f- .212 for 2 > .5

. /i .0l,1/f + .0.11 for f3 > .13

The total optimal cost is the sum of JI, 12, anid J3. The following
attentional fractions minimize the total cost:

II , I + a2 aI + (i1 01

Il/12 = + V(-'/( 2 + V(1- 3/(12
i + V ( -/(13 +
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Iteration # 5 f=I/2
Optimal cost: q, g, output, input rate, total

1.0000E+00 1.8000E-04 7.2827E-03 2.0355E-03 9.3182E-03
Performance : E(yi^2), E(y_2^2), E(u_a^2), E(u^2), E((du/dt)^2)

7.2827E-03 5.8567E-02 2.2780E-01 1.8749E-01 1.1308E+01

Old noise intensities (Vyl, Vy2, Vua): 6.9377E-04 4.6353E-03 7.0520E-03
New noise intensities (Vyl, Vy2, Vua): 7.0840E-04 4.7101E-03 7.1565E-03
Noise ratios dB (rhoyl, rhoy2, rhoua): -20.0907 -20.0695 -20.0639
Max noise ratio difference = 9.065247E-02 dB, Threshold = .1 dB

Iteration # 9 f=1/3
Optimal cost: q, g, output, input rate, total

I.OOOOE+O0 1.8000E-04 9.7001E-03 2.2943E-03 1.1994E-02
Performance : E(y_l^2), E(y_212), E(ua^2), E(u^2), E((du/dt)^2)

9.7001E-03 6.7465E-02 2.5446E-01 2.0850E-01 1.2746E+01

Old noise intensities (Vyl, V y2, Vua): 1.3042E-03 7.8898E-03 7.8965E-03
New noise intensities (Vyl, Vy2, Vua): 1.3288E-03 7.9950E-03 7.9940E-03
Noise ratios dB (rhoyl, rho y2, rho ua): -20.0813 -20.0575 -20.0533
Max noise ratio difference = 8.126068E-02 dB, Threshold = .1 dB

Iteration # 13 f=I/4
Optimal cost: q, g, output, input rate, total

1.OOOOE+00 1.8000E-04 1.2166E-02 2.5227E-03 1.4689E-02
Performance : E(yi 2}, E{y_2^2}, E(u a^2), E(u^2), E((du/dt)^2)

1.2166E-02 7.5342E-02 2.7794E-01 2.2698E-01 1.4015E+01

Old noise intensities (Vyl, V_y2, V_ua): 2.0933E-03 1.1619E-02 8.6402E-03
New noise intensities (Vyl, Vy2, Vua): 2.1288E-03 1.1752E-02 8.7318E-03
Noise ratios dB (rhoyl, rhoy2, rhoua): -20.0731 -20.0491 -20.0458
Max noise ratio difference = 7.305717E-02 dB, Threshold = .1 dB

Iteration # 17 f=1/5
itimal cost: q, g, output, input rate, total

1.OOOOE+00 1.8000E-04 1.4690E-02 2.7294E-03 1.7419E-02
Performance : E(y_l^2), E(y_2^2), E(ua^2), E(u^2), E((du/dt)^2)

1.4690E-02 8.2502E-02 2.9919E-01 2.4369E-01 1.5164E+01

Old noise intensities (Vyl, V y2, V_ua): 3.0646E-03 1.5767E-02 9.3124E-03
New noise intensities (Vyl, Vy2, Vua): 3.1121E-03 1.5924E-02 9.3992E-03
:oise ratios dB (rhoyl, rho y2, rho ua): -20.0668 -20.0430 -20.0403
Max noise ratio difference = .0668335 dB, Threshold = .1 dB

I rigire 11: Atteintiovial Fraction Survey for I)ander NIlti- Axis Examlple
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The results for this example are:

(fi f2 f 3 ) (.12 .76 .12)

J 1.03

Considerably more cost is required to control axis #2, as migit be expected
from the unstable dynamics in that axis, and as a result considerably more
attention is given to axis #2.

The optima, costs just computed call be used to make the following
prediction of pilot opional ratings (PORs):

IIOR = 5.5 + 3.7log10 C2 ,2

J is the optimal cost as computed using an error weight q=1, or2 is the mean
error of the driving noise, w 2 is the square of the input noise bandwidth, and
the numbers 5.5 and 3.7 are experimentally determined using the Dander
data and the new STI data in this report. A ±1 spread in the in the PORs
is tolerable. The results for this example are:

POR POR
atxs 2 2 (predicted) (experimental)

1 .0-15 2.7 2.5 -3
2 .156 6i 5 6.5
3 .062 3.2 3 3.5

all 3 1.03 7.7 7-

The predictions in this case are very good. All of the 9 different cases
of the 3 axis Dander experiments have been similarly analyzed using the
O('NI implemented in Program CC. Predicted PORs were within ±1 of
th experinmental results in 7 out of 9 cases. The I'OR predictions for the
Dander daia agrees case-by -case with the analysis reported by McRuer and
Schmidt. [16].
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A How to Use Program CC, Version 4

Program CC is a command driven computer-aided-control-system-design
package. It is written in compiled BASIC and operates under the DOS
operating system on the IBM- PC and compatible personal computers. Pro-
gram CC works with linear systems, either analog or digital, which are
modeled with either transfer functions or state space equations. A large
number of classical, sampled-data, and state space algorithms are imuple-
mented, including an extensive amounts of interactive graphics. The user
environment in Program CC is robust, friendly, and very powerful.

This appendix gives an overview of Program CC which is tailored to users
of the human optimal control model. It is recommended that you operate
the program while reading this introduction. Execute the commands, or at
least some of them, when they are introduced.

A.1 The Basics

There are about 300 commands arranged in a hierarchy. Use the manual or
the on-line help (command HELP) for a list of the commands and parame-
ters. The hierarchical levels of interest here are:

CC transfer function commands
STATE state space commands
DATA data file commands
MACRO creating and editing macros

Commands are entered in response to a promipt. for example:

CC>HELP
STATE>HELP

Commands and parameters are entered in either upper or lower case
letters. Blanks are ignored, and only the minimum number of letters to
make a command non-ambiguous is needed. Separate the parameters by
commas, include them on the command line (expert mode) or let yourself be
prompted (novice mode). Include more than one command on a command
line by separating them with &.

Branch to different levels of the command hierarchy by typing the name
of the command level. Those users familiar with Version 3 should note
that the BUII) and MR command levels have been compressed into the
CC level. Return to the CC level by typing either QUIT of CC. Leave the
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program from the CC level by typing either QUIT (prompts with Are you
sure?) or EXIT (no prompt).

BASIC execution errors are trapped by the program, resulting in an error
message and a return to the ('( command level. The following commands
are built into the program:

Ctrl-NumLock temporary halt
F1 halt and return to the CC command level

T I recall previous commands

Use the F1 key to abort commands and macros. If waiting for a prompt
then follow F1 with a carriage return. The program does not respond to
F1 if it is pressed during an overlay swap, so sometimes it has to be pressed
several times.

All transfer function and state space calculations are computed using
double precision arithmetic, which has approximately 18 decimal places of
accuracy. The data files are stored in single precision, mainly to save disk
space when extreme accuracy is not needed.

Version -4 of Program CC is compatible with the EGA and VGA mon-
itors, but still retains downward compatibility with the CGA. The high-
est screen mode is automatically determined when the program starts.
Monochrome monitors are not recommended because they do not allow
graphics, though state space operations (in fact to entire OCM solution)
are still possible. Switch screen modes with the SCREEN command. Four
color plots can be created on the EGA and VGA. Switch colors with the
command ('OLOR.

Program CC is made of many separate modules. which are chained as
nleded to execute commands. The modules and the data can be located on
more than one disk, as determined by pointers established in the SETUP
command. Placing the data and the most used modules in a RAM disk
significantly speeds up execution. User defined commands can be included
in the list of -C commands, again as established in the SETUP command.
When the user defined command is called then the specified program is
chained. All of the information established by the SETUP command is
stored in the $$SETUP file, and is therefore available each time the program
starts. See Section 3.2.1 for information on the best setup for the OCM
nmacros.

There are several more miscellaneous commands of general interest:
FILES lists directory files, NAME renames them, and KILL kills them.
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CLS clears the screen. TIME and DATE provide their namesakes. CLOCK
draws an analog clock. CALCULATOR is an lIP-like calculator. ECHO
echoes a message and PAUSE pauses until a key is pressed, both of which
are useful in macros. SHELL shells to DOS, and EXIT returns to CC.
Use DESQVIEW to run multiple copies of CC, or CC and any other set
of programs, and switch between the programs with simple DESQVIEW
commands.

A.2 Data Types

There are four data types:

Transfer function
State space quadruple
Transfer function matrix
Data file

The names can be six letters or numbers, starting with a letter, followed
by a prefix of 3 letters or numbers. For example G, P, YP, H100, and
YP.G. The convention in earlier versions of Program CC, which is still
largely maintained in the documentation. is to use the names Gi for trans-
fer functions, P for state space quadruples, and Ii for transfer function
matrices (the subscript i refers to any positive integer).

ASCII data files are automatically created on disk for each data element.
The files are easily recognized because they always begin with $S. The files
remain on the disk after the program is finished. do matter how ungracefully,
and are therefore available when the program is restarted.

A transftr function is a ratio of polynomials. The polynomials can be
factored in any desired way. A state SpaCe- quadruph is a packed set of
four real matrices which represent a state space differential equation. Real
matrices are a subset of state space quadruples, being just the constant term.
A tran.sfcrfunction matrix is a matrix of transfer functions, usually obtained
by converting from a multivariable state space quadruple. Finally, a data
file is an indexed set of real or complex matrices where the index represents
either times or frequencies, and the matrices are ordered row--wise.

The systems are either analog or digital, depending on a flag set with the
commands ANALOG and DIGITAL. The program starts with ANALOG as
the default. The OCM deals only with analog systems, and therefore the
sampled-data features are not emphasize in this introduction.



A.3 The CC Command Level

Transfer functions can be entered either by coefficients, by shorthand nota-
tion, or symbolically. For example. to enter:

G(s) = 10(s+ 1)
S[,; + 2(.1)(10)s + (10) 2]

use one of the following commands:

CC>GENTER,g, 2,0,10,1,1,1, 2,1,1,0,2,1,2,100
CC>SENTER,g, 2,0,10,1,1, 2,1,0,2,.1,10
CC>g-10*(s+1)/s/(s-2 + 2*.1*10*s + 10-2)

Let yourself be prompted for the coefficients until you understand their or-
der. Most users prefer to use the symbolic form. Several commands are avail-
able for particular types of transfer functions: BUTTERWORTH, CHEBY-
SHEV, BESSEL. PADE, LEADLAG. INTEGRATOR. NOTCH, and so on.

Individual coefficients can be changed using the equation interpreter.
Its best to precede a change with a display of the transfer function. In the
following example. the denominator, 2nd polynomial, 0th order coefficient
is changed to 200:

CC>DISPLAY,g

CC>g(d,2,0)=200

Transfer functions can be displayed in many different forms, as sug-
gested by the command names: DISPLAY, SIORTIHAND, SINGLE, and
1UNITARY. PZF (pole zero form). T('- (time constant form). PFE (partial
fraction expansion), and IIT (invers-A Laplace transform). In the CC com-
niand level entering just the name is equivai,,t to DISPLAY.G,. Try. for
example:

CC>G & SINGLE & PZF & SHO & PFE & ILT

The transfer function coefficients are stored in as shown by the DISPLAY
command. Change the polynomial factors with the commands CHPZF,
CtlTCF. CIISINGLE, and CItUNITAItY. For example:

CC>G & CHSINGLE,G,G1 & G1

Transfer functions can be built up from others using the equation in-
terpreter. This powerful facility is used by Program C(' in place of block
diagrams to compute loop and closed loop transfer functions. For example:
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CC>GI=G*G1
CC>G3=(G G1)/(1 G2*(G+G1))
CC>G1O=(s+l)*G/s

The following example is a simple way to find the closed loop poles with
unity feedback:

CC>G2=G/(1+G) & PZF,G2

The same can be done with the command STABILITY. The range of stable
gain can be found with the command ROUTII.

The equation interpreter cancels polynomial factors if the coefficients
are linear multiples, but factors are not further broken down to look for
cancellations. For example, (2.q + 2)/(s + 1) is cancelled but not (s2 + 2s +
1)/(s + 1). The NEAR command converts to first and second order factors
and cancels with E tolerance.

The displays default to single precision. Change this to double or mini
(3 decimal places) precision using the FORMAT command. Line printer
output of transfer functions is produced by preceding the display style by
LP. For example: LPDISPLAY, LPSIIORTHAND, LPPZF, and LPTCF.
Messages can be included on the output by surrounding the message with
quotes, for example:

CC>LPSHO,G1,"Closed loop system"

Transfer functions can be stored and recalled under arbitrary file names
with the commands STORE and RECALL. wliich is useful for long term
saving of special files. Large numbers of transfer functions are more eco-
nomically saved by using DOS to copy thein to a sub-directory.

An e- ' delay can be included with the transfer function using the DE-
LAY command. All transfer functions are multiplied by the same delay, and
transfer functions with delays cannot be algebraicaly combined. It is useful.
nevertheless, to use exact delays for frequency response calculations.

Still more transfer function commands are available. ADJOINT com-
putes either Gi(-.s) or G(lz). PARTIAL extracts terms from a partial
fraction expansion, and SPECTRAL extracts poles in a half plane. MEAN-
SQUARE computes the mean square error. NEAR cancels poles and zeros
according to either an absolute or relative criterion. LFAPPROX replaces
high frequency poles and zeros with a Pade delay approximation, and HFAP-
PROX does something similar with low frequency poles and zeros. Use the
equation interpreter to extract numerators and (lenominators and to make
substitutions for s:
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CC>nd=G(n)/G1 (d)

CC>gminus=g(-s)

CC>gf=g(f)

The following commands require more explanation than is appropriate
here: DIOPOLE and DIOLQG are pole-placement and LQG algorithms
solved by Diophantine equations. INNER, OUTER, BLASHKY, WIENER,
FILTER, and LQG are Wiener-Ilopf commands.

A.4 The STATE Command Level

State space quadruples are entered using the command PENTER, which
prompts for the number of states, inputs, and outputs; and then prompts
for the respective row-wise elements of the A, B, C, and D matrices. All of
this can be placed on the command line, for example:

STATE>PENTER,P,2,1,1, 1,1,1,1, 2,2, 3,3, 4

creates the quadruple:

p== 1 1 2)
(A 1)( 1 2

3 3 .1

which represents the state space differential equation:

d x2II X2  2j

y (3 3 ) +

Real matrices are iust the D part of the quadruple. The following command:

STATE>PENTER,P,0,2,3, 1,2,3,4,5,6

creates the real matrix:

P , =  
1 2

(56

Ileal matrices can be entered symbolically using the state space equa-
tion interpreter. Elements in a row are separated by commas and rows are
separated by semicolons. Enter and then display the previous P matrix as
follows:
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STATE>P1=(1,2;3,4;5,6) & PI

The equation interpreter does not allow direct entry of state space quadru-
ples, but they can first be entered as a real matrix and then partitioned by
changing the number of states:

STATE>P=(1,1,2; 1,1,2; 3,3,4) & P=CHST(P,2) & P

The command DISPLAY,?, (or just P,) is used to display P. To display
only part of the quadruple use the command P(A). To display the elements
in double precision use the FORMAT command. To display just the di-

mensions use WHAT,PI. To eliminate elements with absolute values less
than a threshold use PI=EPS(PI). To obtain a line printer listing use the
LPDISPLAY,PI command, which can contain a message, e.g.:

STATE>LPDIS,P15, "KBF gains"

Single elements of a matrix or a quadruple can be changed by referring

to their position:

STATE>PI(1,2)=10
STATE>P(C,1 ,2)=100

This is the easiest type of augmentation. More generally, a real matrix

can be augmented at the I,jth position, which overwrites a block of the old
matrix and extends the boundaries if necessary.

Real matrices (and most quadruples) can he nested and built up from

smaller matrices. For example, to add a row to 1'1 :

STATE>P1O=(P1O; 1,1)

The new matrix is built up using augnentation with zero-fill, so there is
never a problem wil, illstiadclhU Itnillers ol fow and columns. lo save
some typing, for example, the 3x3 idontity matrix can be entered in the

following way:

STATE>p3=(.; 0,1; 0,0,1)

Parts of a real matrix or a state space quadruple can be extracted, as
shown in the examples:

59



STATE>P=P1(1 ,2) single element of P
STATE>P=P1(1) 1st row of P
STATE>P=Pl(,2) 2nd column of P
STATE>P=P1(1:3,4:5) rows and columns of P1
STATE>P=Pl(A) PI(A) from the P, quadruple
STATE>P=P1(C,,4:5) columns 4 and 5 of PI(C)

Several special types of matrices constructed with the following func-
tions: IDEN, DIAG, and RND. Controllable canonical realizations of stan-
dard filters are created by the commands BUTTERWORTH, CHEBYSHEV,
BESSEL, PADE. LEADLAG, INTEGRATOR. and NOTCH, and so on.
Transfer functions can be converted to state space quadruples with the com-
mands CCF, OCF, and DCF; respectively controllable, observable, and di-
agonal canonical forms. Transfer functions included in state space equations
are automatically converted using the CCF realization. Try the following:

CC>g=10(s+l)/(s'3 + 2*s-2 + 3*s+4)
CC>STATE

STATE>p=g

STATE>OCFg,pl

The number sign, #, is used for diagonal augmentation. It is used in the
following commands to create 2nd order Pade approximations of diagonal
delays:

P10 - A  0 23

PI ( 0 e - '-

STATE>PADE,P10,.1,2 & PADE,P11,.2,2
STATE>DELAY=(P10#P11)

The state space equation interpreter can be used to algebraically combine
state space quadruples. Dimensions are checked for validity, and whei state
space quadruples are used, the appropriate combinations of the A, B, C,
and D matrices are automatically computed. The valid operations are:

+ Addition
* Multiplication

Exponent iation
Transpose

/ Right division, o/ 3=n * 3-1
\ Left division, a\.3 = * 3

[ Feedback, oJ= a *(I + 3 *) -
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The levels of precedence are as follows, with operations on the same level
computed left to right as they appear in the equation:

( )

An mnemonic for left and right multiplication is that the top of the slash
points to the inverted quadruple. The I operation for feedback results in a
minimal order state space realization, with a in the feedforward and /3 in the
feedback paths. Identity matrices in the equation are automatically sized.
Try, for example, the following:

STATE>BUTTER,P, 1,4
STATE>P1=P/(I+P)
STATE>P2=P I I
STATE>WHAT,PI & WHAT,P2

Both P and P2 are closed loop systems with unity feedback, but P is a
non-minimal 8th order realization, and P2 is the much preferred minimal
-th order realization.

There are several ways to invert a matrix (a quadr.ple is invertible if
the D term is invertible):

STATE>P1=I/P
STATE>PI=P\I
STATE>PI=P'-

Gaussian elimination (LU decomposition) with scaling and partial pivoting
is used to compute the matrix inversion, which takes only order 7n3 op-
erations, the same as matrix multiplication. A warning is printed if the
determinant is zero. It is more efficient not to invert an entire matrix, with
the first example below being preferred over the second:

STATE>P2=Pl\P

STATE>P2=P\I & P2=P2*P

The P:ACK command packs four real matrices of compatible dimensions
into a state space quadruple, and the UNPACK command does the converse.
In the following example the P quadruple is unpacked and a second of
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outputs is created which are the derivative of the former. This is only valid
if P(D)=O. The derivatives are created using the identity:

Cs(sI - A)-'B = CB + CA(sI - A)- 1 B

STATE>UNPACK, P, P500 ,P501 ,P502,P503
STATE>P502- (P502; P502*P500)

STATE>PS03-(P503 ;P502*P501)
STATE>PACK,P500 ,PS01 ,P502,P503,P

A complicated system can be built up using the state space equation
interpreter. Series elements are multiplied; parallel elements are either added
or augmented, depending on the input and output connections; and feedback
paths are closed using the I operation. Use the FEEDBACK command to
feedback a subset of outputs to a subset of inputs. In the following example,
define P to have 4 inputs and 4 outputs, and define Pl to be SISO. A single
feedback loop is closed around P from the 2nd output to the 3rd input, with
P, in the feedback path:

STATE>P2=P1 ((0;O; 1;0)*Pl*(0,1,0,0))

Functions are used in equations. All of the usual trigonometric and expo-
nential functions are available, and when applied to matrices work element-
by-element. Other functions which are available include DET, TRACE,
and NORM. Most of the complicated operations, however, are computed
using commands. The NORM command computes 6 different matrix norms.
PSEUDO INVERSE uses the singular value decomposition (SVD) to com-
pute the pseudo inverse of a rectangular matrix. SPACE computes orthonor-
real basis vectors for the fundamental subspaces. PROJECTION computes
projection matrices onto the fundamental subspaces.

Several different matrix decompositions can be computed: EIGEN-
VALUE. SCHUR, IIESSENBERG, and SVD. Place a G in front of the
first three commands to compute generalized versions. The following exam-
ple computes the eigenvalue decomposition and the verifies the result. The
eigenvalues are stored in a 2 column matrix, which is converted to block
diagonal with the DIAG function.

STATE>EIG,p,d,x
STATE>p-x*DIAG(d)/x

Several different matrix equations can be solved: LYAPUNOV, RIC-
CATI, and SYLVESTOR. Place a D in front of the first two commands to
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compute discrete versions. Several different methods are available to solve
these equations, with the defaults methods being recommended.

The SIMILARITY command computes similarity transformations, ei-
ther with respect to an input matrix, or with respect to eigenvectors, Schur
vectors, or Hessenberg vectors of the system matrix. The CONTROLLA-
BILITY and OBSERVABILITY commands, which are identical, each check
for both uncontrollable and unobservable modes; but the algorithm is not
foolproof, and if in doubt compute a similarity transformation with respect
to the eigenvectors, and check for zero rows of B for uncontrollable modes
and zero columns of C for unobservable modes.

Conversion from state space to transfer function matrices is computed
using commands FADEEVA and GEP. The former uses the Fadeeva algo-
rithm, which is very fast, but computes polynomial coefficients and is there-
fore unreliable for large systems (> 6th order depending on the dynamics).
The Fadeeva algorithm is used in the following example:

STATE>FADEEVA,P ,H
STATE>EXTRACT,H,G,1,1 & EXTRACT,H,G1,1,2

The transfer function matrix H(s) is created, and then the EXTRACT
command is used to extract elements of H(s) into transfer functions. The
command EXTRACT,II,G,ALL extracts all of the elements of H(s) row-
wise into G(,). Gj(s), and so on. Display transfer function matrices with
the same commands used for transfer functions. The denominator, which is
common to all of the elements, is only displayed once.

The GEP command uses the generalized eigenvalue problem (hence the
name) to compute the poles and zeros, which is slower but numerically more
reliable. One problem with the GEP command is that it has trouble with
zeros at infinity (1/s2 has 2 zeros at infinity), and for reasons known only
to a few tends to put them at 10 113/m, where m is the order of the infinite
zeros. The GEP commands allows the user to set a magnitude threshold,
above which the zeros are considered infinite. If the state space system is
SISO then the conversion can be directly placed into a transfer function, as
(done in the following example, which has set a threshold of 1012 for infinite
zeros:

STATE>GEP ,P1 ,G1, 1e12

The POLE PLACEMENT command uses 'he Ackermnann formula for
SISO state space pole placement designs. In the following example, the pole
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placement method is used to compute full state feedback gains (prompts not
shown), and then the closed loop system is computed in two different ways:

STATE>POLE PLACEMENT,P,PI, ...

STATE>P2=P & P2(A)=P2(A)-P2(b)*P1
STATE>FEEDBACK,4,P,P1 ,P2

Optimal control designs are solved using the commands LQR, KBF, and
LQG. Digital versions are solved with the commands DLQR. DKBF, and
DLQG. If the intermediate Riccati solution is desired, it must be obtained
with a separate call to the RICCATI command. Several different options are
available for entering the data, and several choices of computation schemes
are available. Its too much to explain here, and one example will have to
suffice. The 1st option of the LQR command is used in the following:

STATE>LQR,1 ,P,Q,R,F, 1e-4

where the parameters are respectively the system, state weight, input weight,
and LQR gains. The input weight is multiplied by 10-4. The default com-
putational method using Schur vectors is used to solve the Riccati equation.
In the following example. G is the Riccati solution, and F is the LQR gain:

STATE>F=P(A) & G=P(B)/(e-4R)*P(B)
STATE>RICCATI,F,Q,G,G

STATE>F=(le-4,R)\P(B)'*G

While these several comnmalds are not too complicated, if this sequence is
to be repeated then a macro should be constructed, as shown later.

A.5 GRAPHICS

Graphics is one of the best features of Prograni ('. Frequency and time
doinain plots can be obtained starting from transfer fNnctions, state space
quadruples. or data files.

The plots can be interactively chatged, a valuable user--friendly feature.
The interaction is accomplished using plot option block.s. Fgure 12 contains
a Bode plot of G(s) = (s+.2)e-3-/(.s+ 10). The plot option block is located
underneath the plot. Press ? (or /) to list the full names of the options. as
shown in the bottom of Figure 12. aud as listed below:

..\ Overplot with an additional line
B (rosshair cursor
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C Tranfer function cursor. includes robustness calculations
D Change foreground and background options
E Change axis limits, includes zoom
F Create data file
G Use equation interpreter to augment transfer function
H Hardcopy
I Automatically fill in with more points
J Change plot colors
K Include date and time on title
L Label the plot
M Manually fill in with more points
P Replot
Q Quit
S Plot magnitude asymptote
T Toggle thick and thin lines
W Change title
X Pause, for use with macros
Y Change how phase is calculated
Z Center plot
' Help

The following plots are available for transfer functions:

BODE
N IC1OLS
NYQUIST
LOG NYQUIST (uses log axes)
ROOT LOCUS (uses gain stepping algorithm)
FASTRL (uses curve tracing algorithii)
SIGGY (Siggy and Bode root loci plots)
TIME (inverse Laplace transform)
DTIM E (inverse z-t ransform)
SIMULATION (simulation of Laplace transform)
DSIMULATION (simulation of z transform)

The selection and operation of the plot options change depending on
the type of plot. It suffices here to use the above BODE example. The
axis limits for each plot can either be nianualy entered or automatically
determi ned.
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1i1r,12: IPrograin (V Plot Incluidinig tli Plot Option Blocks
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The frequency plots work from the FREQ data file, created by the FRE-
QUENCY command. The FREQ file saves time when switching between
different frequency files, it allows non-uniform spacing of points, and it saves
disk space because the file is overwritten each time the FREQUENCY com-
mand is called. To creat- the Bode plot in Figure 12:

CC>G=(s+.2)/(s+10) & DELAY,.3 & SHO,G
CC>FREQ,G,.01,100,100

CC>BODE,3 ,A

As usual. novices enter just the command names and let themselves be
prompted. Several different plot options were used to obtain the finished
plot.

The TIME and DTIME commands compute functions of time which
are then plotted. Options exist for open loop impulse and step responses,
closed loop impulse and step responses. and non-causal step responses (e.g.
for autocorrelations). Ramp and sinusoidal responses can be computed by
first augmenting the transfer function and then plotting an impulse response.
The following example plots a closed loop step response and then a closed
loop ramp response:

CC>TIME,G,1,AUTO (1=closed loop step)

q
CC>GI=G/(I+G)/S-2

CC>TIME,G1,4,AUTO (4=open loop impulse)

The SIMULATION and DSIMIULATION commands compute simula-
tions of transfer functions. The same open and closed loop impulse and step
reslponse options are available. but not the loin cau,,al 'mtioi, Data files
can be used as input, representing either an output from another system or
an arbitrarv input sequence creat. 1 by the INPUTl coniniand. The SIM"I-
'I.ION command combines a call to lhe CONVEIIT command (zero-

order-hold equixalence) with a call to the I)SI.UI I.ATION command. As
an alternative:

CC>CONVERT,G,G1,3,.1 (Bilinear with T=.)
DIG>DSIM,G1,2,AUTO (2=open loop step)

When in the digital model the CC command level prompt changes to DIG.
Switch back to the analog mode with the .\NAILOG command.

Time aid frequency plots can also be obtaiined from state space quadru-
plos. The STATE commands SIMIUI.VTION and I)SI.Ul 'I.ATION art used
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to create time domain data files (unlike the CC commands, then do not
directly result in a plot). The simulations can be multivariable, and several
different types of inputs are available, including arbitrary data files. The
SIMULATION command computes a matrix exponentional to discretize the
system and then performs a digital simulation. The name of the time se-
quence file which is produced is P,.1.

The FREQUENCY command in the STATE comnnand level is used to
compute a frequency data file for a multivariable state space quadruple. The
name of the output frequency file is the system name with the file prefix .G.

Data files are plotted with the PLOT command. Data files can be cre-
ated from transfer functions using plot options, by using the DENTER or
INPUT command, or as just described by several STATE commands. More
parameters are required than for other types of plots. Data files are indexed
matrices in general, therefore choices must be made for which rows and
columns to plot (ALL for everything). Choices must also be made for what
to plot on the horizontal. the left vertical, and optionally the right vertical
axes. The axis choices are T(time). W(frequency rad/sec), F(frequency Hz),
R(real), I(imaginary), M(magnitude), and P(phase). Each can be prefixed
with L(loglo) or D(dB), with no prefix defaulting to linear. For example:

TR (time plot for simulation data)
VL.I (magnitude Bode plot with logio scaling)

L\VLMP (same including phase)
LWI)MI, LWI).MP, LFDM. WM. FM, WI)MI (Bode variations)
RI (N'quist)
PI.M. PDM (Nichols)

In the following example a stale space simulation is computed and then
plotted. The parameters which set up the simulation are not shown here:

STATE>SIMULATION,P1,
STATE>PLOT,P1,TR,AUTO

A rid a mrultivariable frequency file is plotted:

STATE>FREQ,P, .01,100,60
STATE>PLOT, P.G, LWLM, AUTO

The FI EQ file created for transfer functions can be directly plotted by the
PLOT command, though the plot options are not as convenient:

CC>FREQ,G, .01,100,100
CC>PLOT, FREQ, LWDMP,AUTO
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A.6 The DATA Command Level

Data files are either time sequences or frequency data files as created by
Program CC commands. The file structure is very simple, however, and
data from any other source can be used. The file structure is:

#rows, #columns, type (O=real, l=complex)
index
real or complex matrix entered row--wise
index
real or complex matrix entered row-wise

The numbers are stored in ASCII format, and are separated by blanks, com-
mas, semi-colons, or carriage returns. Two carriage returns in a row is inter-
preted as a zero. The data file is stored on disk with the name $$name.ext,
and referred to in the DATA command level sans $'s as name.ext.

The DATA command level is used to change and algebraically combine
data files. The data files are plotted using the PLOT command, which can
be called from any command level.

An equation interpreter can be used in the DATA command level to
algebraically combine data files, for example:

DATA>t=pl .g*p.g
DATA>t=t/(i+t)

It is of course best not to let intermediate files proliferate.
Among the most sophisticated comrnands are those for computing eigen-

values, singular values, and structured singular values of frequency files:
respectively EIGENVALUE, SVD, and FMV. For example, to obtain a sin-
gular value plot:

DATA>SVD, P.G, P.S
DATA>PLOT, P.S, LWDM, ALL, AUTO

A.7 Making Macros

There is a great reluctance to using macros. Somehow they must ne terribly
difficult. They are not - but they do require some learning. The author
freely admits reluctance to learn macros from other programs. which for the
most part are no more difficult, but always just a little bit different, than
those in Prograrm CC.
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Follow step by step the creation of the STBODE macro for creating a
standardized Bode plot:

CC>MACRO

MACRO>ADD
bode,3,0,auto,2,-60,60,6,auto

MACRO>STORESTBODE
MACRO>QUIT
CC>OSTBODE

Now create a different version of the STBODE macro which first com-
putes the frequency file of an arbitrary transfer function:

CC>MACRO

MACRO>ADD
freq,&I,.01,100,60
bode,3,0,auto,2,-60,60,6,auto

MACRO>STORE,STBODE
MACRO>QUIT
CC>CSTBODE,GbO

The DANIP macro creates a transfer function with an arbitrary damping
ratio, after first schoing a message:

CC>MACRO
MACRO>ADD
echo, &1 = transfer function with &2 damping ratio

&1=10*(s+l)/s/(s-2+2*&2*10*s+100)

MACRO>STORE,DAMP

MACRO>,JIT

CC>QDAMP,G10,.1

The STATE commands RICCATI and LQIZ are combined in the fol-
lowing macro. The parameters are echoed, al then the PAUSE command
give the user to abort with the F1 function key.

CC>MACRO
MACRO>ADD

echo, The LQR1 Macro
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echo, &1 = system

echo, &2 = state weight Q

echo, &3 = input weight R

echo, &4 = input parameter rho

echo, &5 = Riccati solution P

echo, &6 = LQR gains F
echo, Hit F1 to abort, any other key to continue

pause

state

&6=&l(a) & &5=&l(b)/(&4*&3)*&l(b)

riccati,&6,&2,&5,&5
&6=(&4*&3)\&l(b) '*&5

echo, End of LQR1 macro

MACRO>STORE,LQR1

MACRO>QUIT
CC>QLQRIP,P1,P2,1e-4,P3,P4

Okay. so that one wasn't so easy.
The MACRO command level is a mini-text editor. So far you've seen

the ADD and STORE commands. There are several more commands to
do things like LIST. SEARCH. DELETE, and REPLACE: but rather than
explain it here just use the HELP command.

Everything that gets entered goes into HISTORY file (disk file SSIIIS):
which can be recalled in the M\A('RO command level. edited. and played
back as a demonstration. Or if' vou want to create a standard plot but cannot

retmember the parameters, then create the plot once using prompts and build
a macro which includes the prompts. Plot labels get stored along with the
ciursor m, ments. which show up in the IIISTOR Y file as weird symbols.

Here's a sinip!e exam ple, with no e(lititng, of a demonstration macro:

CC>MACRO

MACRO>HISTORY

MACRO>STORE,DEMO

MACRO>QUIT

CC>DEMO

If your disk space is limited and the IIS'I'ORY file is getting too long. delete
it b% leaving CC and returning, or more elegantly by using the TRUNCATE
C('0 Iiarlli(d
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CC> MACRO
MACRO>TRUNCATE .0

MACRO>QUIT

Okay, that's enough. Macros aren't so tough. I won't pressure you into
learning more.

7-2



B Macro Listings

OCMYC1

echo, OCMYC1 Macro

echo, Purpose: Create (Y-.c)-all with driving noise at output
echo, (Y-cX-a11=(1;s)*(Gi,Gj)

echo,
echo, SISO controlled system (Gi) = &

echo, S150 noise filter (Gj) = &
echo, MIMO (Y-.c)-.all (Pi) = &

echo,
echo, Hit function key F1 to abort, any other key to continue

pause

state

&3=(&l ,&2)

&3(c,O,l)=&3(c)*(&3(a) ,&3(b))

quit

echo, Finished OCMYC1

OCNIYC2

echo, OCMYC2 Macro
echo, Purpose: Create (Y-c)-all with driving noise at input

echo, (Y-c)-all=(l;s)*Gi*(l,Gj)

echo,

echo, SISO controlled system (Gi) = &
echo, SISO noise filter (Gj) = &

echo, NIMO (Y-cX..all (Pi)=V

echo,

echo, Hit function key F1 to abort, any other key to continue
pause

st ate

&3=&l*(l ,&2)

&3(c,O,l)=&3(c)*(&3(a) ,&3(b))
quit

echo, Finished OCMYC2
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OCMYC3

echo, OCMYC3 Macro
echo, Purpose: Create (Y-c).all with general driving noise
echo, (Y-c)-all=(l;s)*Gi*(GjGk)

echo,
echo, SISO controlled system before noise (Gi) = i
echo, SISO controlled system after noise (Gj) =&2

echo, SISO noise filter (Gk) = V
echo, MIMO (Y.c)_all (Pi) = &4
echo,
echo, Hit function key F1 to abort, any other key to continue

pause

state

&4=&l*(&2,&3)
&4(cO,1)=&4(c)*(&4(a),&4(b))

quit
echo, Finished OCMYC3

OCMALL

echo, OCMALL Macro

echo, Purpose: Complete human OCM problem, using defaults

echo,

echo, (Y-c)_all = &1

echo,
echo, Replaces OCMLQR, OCMSETUP, and OCMKBF

echo, F1 to abort, any other key to continue

pause
Cocmlqr,&l,l,le-4,.l,.001

Cocmsetup,1,.2,-20,-20,-20,le-2,le-2,1,0,0,l
Cocmkbf,.1

Cocmpilot,.2,2
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echo, Finished OCMALL

OCMLQR

echo, OCMLQR Macro
echo, Purpose: Adjust LQR weights for tauN

echo,

echo, Y-c = &I

echo, q = &2
echo, g = V

echo, tauN =&4
echo, thresh =&5

echo,
echo, Use Function Key F1 to abort, any other key to continue

pause

state

p=&l
p2=&2

p3=&3

quit

ocm,lqr,&4,&5

echo, Finished OCMLQR Macro
echo, Next use OCMSETUP and OCMKBF Macros

OCMSETUP

echo, OCMSETUP Macro

echo, Purpose: Setup KBF iterations for Human OCM

echo,
echo, intensity of driving noise: V-w = &1
echo, visual delay: tau = &2

echo, y-l noise ratio (dB): rho_(y-l) = &3
echo, y-2 noise ratio (dB): rho_(y_2) = &4
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echo, u-a noise ratio (dB): rho_(u.a) = &5
echo, initial y-1 noise intensity (non-zero): V_(y_1) = &6
echo, initial y_2 noise intensity (non-zero): V_(y_2) = V
echo, initial u-a noise intensity (zero okay): V_(u-a) = &8
echo, y-1 indifference threshold: T_1 = &9
echo, y_2 indifference threshold: T-2 = &1O
echo, axis fractional attention: f = &11

echo,
echo, Execute after OCMLQR
echo, Hit Function Key F1 to abort, any other key to continue

pause

state

echo, ----------------------- Augmentation
p5=p4(1,cdim(p4))
p6=(p4(l,1:cdim(p4)-1)/p5,O)

p7=chst((-pS,p5;l,O),l)
echo, ----------------------- Setup KBF problem

p8=p(,l)*p7

p9=p8(a) & p9=chst(p9,rdim(p9))
expon,p9,p9,&2 & p9=chst(p9,O) & analog
p1O=p(b,,2)*&l*p(b,,2)'

P11=o
pl2=(&3,&4,&5,&9,&10,&ll,&2)

p13=(&6 ,&7,&8)

quit
echo, Finished OCMSETUP Macro
echo, Next use OCMKBF Macro

OCMKBF

echo, OCMKBF Macro
echo, Purpose: KBF/linear predictor iterations for OCM

echo,
echo, noise ratio threshold (dB) = U

echo,
echo, Execute after OCMLQR and OCMSETUP
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echo, Hit Function Key F1 to abort, any other key to continue

pause

ocm,kbf,&l

echo, Finished OCMKBF Macro

OCMPILOT

echo, OCMPILOT Macro

echo, Purpose: Create SISO state space models of Yp and Y-cl
echo,
echo, Visual delay: tau = &1
echo, Order of Pade approximation of delay = &2

echo,
echo, Execute after OCMLQR, OCMSETUP, and OCMKBF
echo, Hit function key F1 to abort, any other key to continue

pause

state
echo, ------------------- Augmentation preliminaries

pade,p5OO,&l,&2

pSOl=(pS(a)-pl5*p8(c),-p8(b)*p5OO(d)*p6,p8(b)*pSOO(c))

p502=(-p9*pl5*p8(c),(p8(a)-p8(b)*p6;-p5OO(b)*p6,pSOO(a)))

pSOl=(pSOl;pSO2)

p502=(p15;p9*p15;O*p500(b))

pSO3=(Op6,-pSOO(d)*p6,pSOO(c))

pack,p501,p502,p503,,p500

echo, -------------------- Pilot
p24=p5 OO
p24(b)=(p24(b,,l)+p24(a)*p24(b,,2);p24(c)*p24(b,,2))

p24=p7*p24(,1)

echo, --------------------- Closed loop system
p2S=(p*(p 7*(pSO0,1)#1))l-(i,O;0,l;0;0)

p25=p2 5(l)
kill,$$pSO0 & kill,$$pSO1 & kill,$$p502 & kill,$$p503
quit
echo, End of OCMPILOT Macro

echo, Continue analysis using OCMG and OCMFREQ1
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OCMG

echo, OCMG Macro
echo, Purpose: Convert Y-p and Y-c from state space to tfs

echo,

echo, Y.p: G-i = &1
echo, Yc: G-j = &2

echo,
echo, Execute after OCMPILOT

echo, Hit function key F1 to abort, any other key to continue

pause

state
p500=p(1,l)

fadeeva,p5OO,&2

kill,$$p5OO
gep,p24,&l

quit

near,&1,&1,1,e-4
near,&2,&2, 1, le-4
echo, End of OCMG Macro

echo, Continue analysis with regular CC commands

OCMFKEQ1

echo, OCMFREQI Macro
echo, Purpose: Create freq plots of Y.p, Y.c, Y.p*Y-c, Phi

echo, Assumes Y_p=P24 and Ycl=P25 computed using OCMPILOT

echo,
echo, low freq = &
echo, high freq &2

echo, # points (log spaced) = &3

echo,

echo, Execute after OCMPILOT
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echo, Hit function key F1 to abort, any other key to continue

pause

state

echo,--------------------compute yp, yc, and yp*yc
frequency,p24,k1 ,&2,k3
kill,$$yp & rename,$$p24.g,$$yp

pSOO=p(l 1)

frequency ,pSOO ,&l,&2 ,&3
kill,$$yc & rename,$$pSOO.g,$$yc

data

ypyc YP*yc
echo,--------------------compute phi
state

pSOO=p25( ,l:3)

pSO1=diag(p13)

frequency,p500,&l ,&2,&3

kill,$$phi & rename,$$pSOO.g,$$phi

data

phiphi*pSOl*phil

phi-phi/p20(1, 1)

phiphi-.5

phireal (phi)
kill,$SpSOO & kill,$$p501

echo,---------------------plot result
plot,yp,lwdm,all,auto,-60,60,6,"Y-p, Y-c, Y-p*Y~c, and Phi'

A

YC
ALL
2
A
YPYC
ALL
3
A
PHI
ALL
4
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OCMFREQ2

echo, OCMFREQ2 Macro
echo, Purpose: Create freq plot of Y..p, Y~c, Y-.p*Y-.c, and Phi
echo, Uses exact calculation of delay
echo,

echo, tau = &

echo, low freq = &
echo, high freq =&
echo, # points = &
echo,
echo, Execute after OCMLQR, OCMSETUP, and OCMKBF
echo, Hit function key F1 to abort, any other key to continue
pause

state

echo,--------------------Compute Y-.c
p500=P(1 ,1)
frequency ,pSOO,&2 ,&3,&4
kill,$$yc t rename,S$p500.g,$$yc

echo,--------------------Compute Y-p
p500=(p8(a)-plS*p8(c) ;-p9*plS*p8(c) ,p8(a)-p8(b)*p6)
p5O1=(p15,p8(b) ;p9*piS)
pSO1=(pSOl,p501(, l)+pSOO*pSOl(,2))

pS02=(O*p6 ,-p6)
pSO3=(0,0,0,pS02*p50l( ,2)."

pack,pSOO,pSOl ,p502,pSO3,p5OO
frequency ,pSOO ,&2 ,&3 ,&4
kill,$$t & renamne,$$p500.g,$$t
int,pSOO & dig,&1 & frequency,p500,&2,&3,&4 & analog
kill,$$delay & rename,$$pSOO.g,$$delay
frequency ,p 7 ,&2 ,&3 ,&4
kill1,$$nm & roname,$$p7.g,$$nn

pSO1=diag(p13)
It = (H,F,H-3), delay = exp(-s*tau), nm =neuro-muscular

data
ypnm*delayl -t( ,3)*t( ,4)

ypyc=YP*YC
echo,--------------------Compute Phi



delay=delayl-t(,3)

delay=delay*t(,1:2)
delay=(delay,1)

phi=ycl-yp

phi=phi*n

phi=phi*delay

phi=phi*pSOl*phi'

phi=phi/p20(1,1)

phi=phi-.5

phi=real(phi)
kill,$$p5OO & kill,$$pSOl & kill,$$pS02 & kill,$$pS03
kill,$$delay & kill,$$nm

echo, ------------------- plot result
plot,yp,lwdm,all,auto,-60,60,6,"Y-p, Y-c, Yp*Y-c, and Phi'
A

YC
ALL

2
A
YPYC
ALL

3

PHI

ALL
4

EXI

echo, Enter controlled system (2 different ways)
state

p4 0=(- 2 ,0,0,1; 1,0,1,0; 0,1,0,0; 1,0,1,0)
cc
yc=I/s
yw=/(S+2)



CDocmyc2 ,yc ,yw,p40

state

p40=p40 Cs ,(2,1) )

p40

echo, Solve the 0CM
Cocmlqr,p40,l, .00017, .08, .001
Cocmsetup,8.8,.15,-20,-20,-2S,.00371,.09687,.04815,0,0,1

Cocmkbf,. 1

Cocmpilot, .15,2

state

gep,p24,yp

yp=-yp
echo, Low order tf approximations
near,yp ,ypl, 1, 1e-4
lfapprox,ypl ,yp2,5, 1

EX2

echo, Enter controlled system
yc1l/s-2

butter,yw, .5,2
Oocrnyc1 ,yc ,yw,p40

echo, Solve the OCM
Oocrnlqr,p40, 1,6.4053e-5, .1,.001
Oocrsetup,l,.2,-20,-20,-2,5.1223e-4,3.707e-3,8.346e-20,01

'Oocmkbf,. 1

Echo, Low order tf approximations

state

gep,p24,yp

cc

yp=-yp
near,yp,yp , 1, le-4

lfa,ypl ,yp2,5, 1
near,yp2,yp3,1, .2



EX3

echo, Enter controlled system
senter,yc ,3 ,0,4 ,1,.04 ,1,.9,3,1,0 ,2, .7, .25,1,5
senter ,yw ,1, 0,.2219,1,2, .7, .5

ODocmyc1 ,yc,yw,p40
echo, Solve the OCM, full attention case
Cocmlqr,p40,l, .00018, .1,.001
Cocmsetup,1, .2,-20,-20,-20, .0002707, .002026, .006276, .015, .025,1
Oocmkbf,. 1

Echo, Low order tf approximations
Oocmpilot, .2,2

state

gep ,p24,yp

cc

yp =- yp
near,yp,ypl ,1, le-4
lfa,ypl ,yp2 ,8, 1
near ,yp2 ,yp3 ,1, .3

Echo, Fractional attention cases
P12(1,6)=1/2 & Oocmkbf,.l

p!2(1,6)=1/3 & Oocmkbf,.l
Pl2(lt6)=114 & Oocmkbf,.1
p12(1,6)=1/5 & Oocrnkbf,.1

p12(1,6)=1/6 & Oocrnkbf,.l
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