AD-A218 562

BTIC FILE COPY .

WRDC-TR~-89-3125
Volume III

MINIMUM FLYING QUALITIES

Volume III: Program CC's Implementation of the
Human Optimal Control Model

Peter M. Thompson
Systems Technology, Inc.

13766 South Hawthorne Blvd
Hawthorne, CA 90250-7083

January 1990

Final Report for Period October 1985 - July 1989

Approved for Public Release; Distribution Unlimited

FLIGHT DYNAMICS LABORATORY

WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

AT

2

-

(o 4”3 '} £ iy
Jr o } el P

Lo
o C

i

NOTICE

When Government drawings, speci{ifications, or other data are used for
any purpose other than 1in connection with a definitely Government-related
procurement, the United States Government incurs no responsibilityv or any
obligation whatscever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveving
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, 4t will be available to the genmeral public, d4ncluding
foreign nationms.

This technical repcrt has been reviewed and 4s approved for publica-

tion.

/\44//%/‘6-/ /f_'c“’/l/ ,_\;,_4 e
CAPT MARK J. DETROIT, USAF DAVID K. BOWSER, Chief
Control Dynamics Branch Controls Dynamics Branch
Flight Control Division Flight Control Division

FOR THE COMMANDER

C¥%47776154312229n4

H. MAX DAVIS, Assistant for
Research and Technology
Flight Control Division

Flight Dynamics Laboratory

If your address has changed, 1f you wish to be removed from our mailing
list, or if the addressee is no longer employed by your orgarization please
notify xhe/ricrp, WPAFB, OH 45433-65535 to help us maintain a8 current
mailing list.

Copies of this report should not be returned unless return is required bv
security considerations, contractual obligations, or notice on a specific
docupent.

I'nclassified
SECURITY CLASSIFICATION OF THIS SAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

T BESTR CTVE MARKANGS

23 SECURITY CLASSIFICAT:ON AUT=ORITY

TG TRIRO T-ONAVAILABILITY OF REPORT

vearoved for public releases

2b. DECLASSIFICATION ' DOWNGRADING SCHEDULE

tietribution unlimited

STI-TR-1235-1-IT1

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S OMONTORING ORGANIZATION REPORT NUMBER(S)

WD PR-89-3125, Volume 111

6a. NAME OF PERFORMING ORGANIZATION
Svstems Technology, Inc.

6b OFFICE SYMBO
(If applicable)

7a NAME OF MONITORING ORGANIZATION
“iyghr Dynamics Laboratorvy (WRDC/FIGCB)

Wt izht Research and Development Center

6¢. ADDRESS (City, State, and 2IP Code)

Hawthorne, California

13766 South Hawthorne Boulevard
90250-7087%

" ADDRESS (Citv. State, and 2IP Code)
wWright-Patterson Air Force Base, Oh 45433—6551*

8a NAME OF FUNDING SPONSORING
~ ORGANIZATION
Flight Dvnamics Laboratory

8n OF&(5 SYMBC
(If apoicapie)

3 2ROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

733615-85-C-3610

Volume IIT:

Jgicht Resoarch and Pevelopment Center JWRDC/FLGCR
8c. ADDRESS (Zity, State, and ZIP Code) '3 SQURCE OF FUNDING NUMBERS
3 D - A LI3—6H55 PROGRAM PROECT TASK WORK UNIT
richt-Patterson AFB CH 45433-6553 ELEMENT NO NO NG ACCESSION NO
Ho)1 F 2403 05 04
11 TiTLE (Include Security Classification)
Mivinum ing Cualities

Program €0's Implemertation of the Human Optimal Control Model

12. PERSONAL AUTHOR(S)

N

Poter Fhompson
13a TYPE OF REPQRT 13b TiviE COVERED *4 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Tinagl FROM (g 185 "0t 'r0 1990 Tanuare 88

16 SUPPLEMENTARY NOTATION

COsSATi CODES

18 SUBLECT TERMS (Continue on reverse :f necessary snd identify by block number)

FELD | GROUP J3-GROUP Flving tmalit:os Pilot Modeling
M1 N3 Minimum Tleine Qualities Optimal Control Pilot Modeling
17 07 Multi-axi= "lvine Nualities Piloted Simulation

by pilot ratings

19aARSTRACT (Continue on reverse :f necessary and identify by block ~umber)

The project was initiated to explore the modern nature of minimum flying qualities in the presence of modern
arrcraft and multi-redundant flight control system technology It had several phases, including: 1) an intensive effort
1o develop and/or efaborate existing pilot modeting analysis techniques to apply tc situations associated with
minimum flying qualities, divided attention pilot operations and multi-axis control tasks; 2) preliminary analyses and
associated fixed base simulations to expand the meager multi-axis data base and to serve as pilot studies for more
extensive simulations on the Air Force's Large Amplitude Multimode Aerospace Research Simulator. 3) an extensive
simulation program on LAMARS to investigate minimum flying qualities and related situations; and 4) analysis and
interpretation of both the early and LAMARS simulation efforts in the context of the pilot modeling advances. The
project documentation appears in three volumes. Volume | reports on the results of 2) through 4) above. Volume II
is a stand-alone monograph on pilot modeling, including procedures for estimating pilot workload as "measurec*
Meturme it is a stand-alone monograph which presents a detailed implementation of a much
expanded version of the human optimal control model on Program CC. ~

%

20 D'STRBL TOMN AVAILABILITY DF ABSTRACT
BB CaSSiF ED/L AL AL TED

L. same &< ’pt

Jorr usERS

2' ABSTRACT SEC 2:TY CLASS.FICATION

Tnetassified

22a NA'AE OF RESPONSIBLE INDIVID JAL

Capt Mare I, Detrolit

2:b TELEP=ONE (Include Area Code)
(513 255-84Q0

22¢ OFFICE SYMBOL
LRDC/FICC

DD Form 1473, JUN B6

Previous editions are obsolete

SECURITY CLASSITICATION OF THIS PAGE
"mclassified

Contents

1 INTRODUCTICN 3
2 TECHNICAL PROBLEM STATEMENT 5
2.1 Controlled System e 5
2.2 Performance Index . . . L. e e 8
2.3 LQR SOLution e 8
2.4 KBF and Linear Predictor Solutions 10
2.5 Noise Ratios, Indifference Thresholds,
and Fractional Attentions, 11
2.6 Performance Measuresiiriennintnniniiaaa 14
2.7 Frequency ReSPOMSESttt 17
3 OCM IMPLEMENTATION 22
3.1 Overview ... e e e e e 22
3.2 Using Program CCttt ittt 26
3.2.1 Setup ... e 26
3.2.2 Executing Macrost 27
3.2.3 User-Defined-Commandsciiuiiuun... 28
3.2.4 Example e e e e e e 28
3.3 The Controlled SyStemuuiiiiirrenneneennenennns 29
3.4 The Optimal Solutilon iinnernnnnennn, 29
3.5 Analyzing the Results it iiiiiirnnnen... 32
3.6 Computation Time ittt iiinnnnnnnennnsn 34
4 EXAMPLES 36
4.1 TIRLEeGrator\ttt e e 36
4.2 Double INtegrator'ittiiiiunnerennnirnneeennn, 42
4.3 Single Axis Dander Example 46
4.4 Multi-Axis Dander Examplecciieiiuninvnnn.. 47
A How to Use Program CC, Version 4 53
A.l The Basics ... i e e 53
A 2 Data TYPeS ittt e e e 55
A.3 The CC Command Level i it iinennennenn.. 56
A.4 The STATE Command Level0iieriumunnnnnneninn 58
A.5 GRAPHICS i e e e e e e 64
A.6 The DATA Command Levelcovviiinne tunnn. 69
A.7 Making MacCros i e e e e 69
B Macro Listings I Accession For P 73
RTIS CRA&I -
DTIC TAB a
Unannounced 0
| Justificution
i BY— -~

' Distribution/
i Aveilabllity (Codee

o Aaverl 2 LGS s

i
Y
Special .

LIST OF FIGURES 2

1. The Optimal Control Modelttty 6
2. Computational Flow for the OCM iieennnnnnnnns 7
3. Frequency Domain Version of OCMiiiinrnennnnns 18
4. Different Configurations for (Y dg11, 30
5. Summary of the Integral OCM Example 39
6. Frequency Responses for Integral OCM Example 41
7. Summary of Double Integrator OCM Example 44
8. Frequency Responses for Double Integrator OCM Example 45
9. Summary of Dander Single Axis Examplec..v.u.n... 48
10. Frequency Responses for Dander Single Axis Example 49
11. Attentional Fraction Survey for Dander Multi-Axis Example 51
12. Program CC Plot Including the Plot Option Blocks 66
LIST OF TABLES 2
1. OCM Macros e 23
2. Input Parameters e 24
3. Output Parameters, Single-InNput SyStemc...o0..... 25
4. KBF Iterations i e 37

1 INTRODUCTION

The optimal control model {OC'M) is based on the assumption that a human
operator estimates the state of the controlled system and develops a control
strategy which minimizes a performance index. The pioneering work of
Kleinman, Baron. and Levison {1]. of Bolt, Beranek. and Newman (BBN)
used this basic assumption to set up an optimal control problem which
closely agrees with experimental tracking data. The resulting controller
consists of a Kalman Bucy Filter (KBF). a linear predictor, and a set of
Linear Quadratic Regulator (LQR) gains.

Practical understanding of the OCM develops through use, which in turn
requires computer implementation. Though implementations exist, notably
PIREP {2]. theyv are not readily available. The purpose of this report is to
describe an implementation of the OCM using Program CC [3]. This will
greatly increase the availability and understanding of the OCM, both here
at STI and elsewhere.

The OCM has changed. but not dramatically, since its introduction in
the late 1960’s. The seminal reference 1], see also [4.3], has the following
features: a performance index which uses a weighted sum of mean square
error and control rate energy. full attention noise ratios for observation and
motor noises, and an iterative solution method to achieve the desired noise
ratios. None of this has changed.

Additional features and numerous applications have appeared in the
vears following the OCMs introduction. e.g. [6]-[10]. The additional features
included in Program CC's implementation are visual indifference thresholds
and fractional attention parameters. Notably absent is the use of pseudo-
noise to induce low frequency phase droop, and the optimization of fractional
attention for multi-input problems.

The current interest is to understand and predict human operator be-
havior in multi-axis tasks and in divided attention situations. In particular,
the objective is to predict pilot behavior and ratings for multi-axis tasks,
and to compare these predictions against experimental data. Previous work
(11}-{1-1] has suggested that the value of the optimal control performance in-
dex correlates with pilot opirion ratings (POR’s) such as the Cooper-Harper
scale.

The motivation for implementing the OCM on Program CC is to further
develop the ability to predict POR’s. A secondary objective is to simplify
the implementation and broaden the availability of the OCM. This report
describes the implementation of the OCA. Volumes 1 and 2 detail some of

the applications.

The implementation consists of several Program CC macros and one user
defined command. The macros will only work with Version 4 of Program
CC. The macros are used in sequence to (1) create a state space model for Y,
and Y, the controlled element and driving noise filter, (2) iterate the LQR
nroblem in order to set the neuro-muscular mode or modes, (3) set up the
KBF/linear predictor problems. () iterate the KBF groblem until desired
noise ratios are achieved, and (5) analyvze the resulting Y, pilot model. The
user defined command is called from within the macros as part of the LQR
and KBF iterations. In addition to the macros, all of the existing and
powerful capabilities inn Program CC’ can be used for analyzing the resulting
system models and pilot models.

Section 2 contains a technical description of the OCM. It is presented
in its general multivariable form. hut only the single-input version is imple-
mented. The description hrings together material scattered among several
references [1,2].[4]-[9], and adds a new twist to the treatment of delay which
results in state space and transfer function models for the pilot. Section 3
is the main reference for the Program CC implementation; providing usage
notes, and listing in Tables 1-3 the macro names, macro parameters, and
data storage locations. Several examples are presented in Section 4, includ-
ing the use of the optimal cost to predict pilot opinion ratings. Background
information on Program CC is provided in Appendix A, and the macros are
listed in Appendix B.

Fortunately it is not necessary to completely understand the technical
details of the OCM in order to use it. It is sufficient to use the OCM as
a means to an end: a long handled crank which results in a Y,. Assuming
some prior knowledge about the OCM and about Program C'C. the minimum
amount of addition information needed to operate the macros is contained
in Tables 1 and 2.

2 TECHNICAL PROBLEM STATEMENT

A complete technical description of the optimal control model is presented
in this section. The description is valid for the multivariable case, though
only the single-input single-output case is implemented. The equations are
summarized in the block diagram of Figure 1, and the computational flow
is summarized in Figure 2.

2.1 Controlled System

The controlled system is modeled using state space equations. The driving
noise w(t) will typically contain dynamics. which are included together with
the system dynamics in the A matrix. The only difference between the
single-input and multi-input versions is the dimension of the input vectors.

{t) = Azx(t)+ Bu(t)+ Ew(t)
y(1) Cz(t)+ Du(t)
yp(t) = ylt—1)4 v, (t—71)

The dimensions and definitions of the vectors are as follows. The notation
R™ indicates a vector of n r-al nuinbers.

r(t) € R™ siate yp(t) ERT observation
u(t) € R™ input w(t) € R™* driving noise
y(t) € RT output ry{t) € R™ observation noise

The noise intensities are:

H

E{w(t)w(t — o)}
E{v,(t)r,({ — o)}

Voo(a)
1,8(0)

I

It is assumed that the human uses both errors and error rates, and
therefore the output y(t) contains both. It is not important how they the
outputs are arranged. so for notational convenience the errors are grouped

together and listed first:
!/L(!))
ty=1{ "
a (yf(f)

The transfer function Y,(s) for the controlled system is defined to be from the
input u to the error y., because the single-input case this is the traditional
definition. The Program CC macros described in Section 3 use variations of
Y.(s) with different inputs and outputs.

w
E
Vy
u R X b _ Yp
= B | (sI-a)" C esr
] 0
(sTy +17"
o C'
Vug
) ¢ - p .
-1 (sI-A,)'B, - ¢ %7 | - (s1-A,)" My |
Yo _Ll Xi eAlf BI
-ST
e
PREDICTOR - CONTROLLER KBF

Figure 1: The Optimal Control Model

Computation Flow:

—_—
E”'e' Yeis! ® Manually enter or
automatically change
9
-
9.9, [*
l unti TN ° o1
Solve LQR
Enter t,Vu, Py P“O.‘ﬂ
A
]
ti
*
Wi Mg _
untit 2 until J
PyiT™ Ty, minimized
W * 5 T2
t g2
Solve KBF '
- 2
1 Vual' Pua, T9ug;
Compute oy, . 0yg,

Compute J

Compute Yp(s)

Further Analysis

Figure 2: Computational Flow for the OCM

The human vinal defay ot = <econds 1~ inclnded in the definition of the
observation y,(f). Tvprcally for the OCM 7=.2is used. Note that this 7
is not the same value as the effective delay. 7,. which is based on the unit
magnitude crossover of Y, Y . Experimentally determined values for 7. range
from .15 10 .25 seconds and depends on the amount of pilot lead.

The driving noise intensity 'V, i~ determined as part of the experimen-
tal setup. The observation noise intensity 1, is automatically determined
according to an implicit equation explained in Section 2.5,

2.2 Performance Index
The objective of the OCM is to determine a control law u(t) = f(y,(t))

which minimizes the performance mdex:

ot
J=lim E m,/ Qr + WG dt
I —~ I Jy

In most if not all of the cases in which the OCM has been used. the weighting
matrices tauke the diagonal form:

QO = Q0
(-‘,)y = (“ﬂg{(ll ,,,,, i }
(- = diag{gr..... g..}

The ¢, corresponding to the errors are scaled to give approximate equal
weight to standard deviations, and the ¢,'s corresponding to error rates are
Ijal o= 12,02
¢, = !
0 r o[22+l

The ¢'s are chosen to in order to place the yearo-muscular dvnamics, as

~ot to zeT0!

explained i the next subsection.

The OCN differs from the standard Linear Quadratic Gaussian (LQG)
optimal control problem in three respects: (1) the weighiting on control rate,
29 the inclusion of motor notse before the neuro-muscalar dynamies, and

(31 the observation delay of r seconds.

2.3 LQR Solution

The stochastic Linear Quadratic Regnlator problem is solved to determine
the full state control weights. The svstem is augmented with a preceding in-

tearator, which results in an equivalent performance index without a control

rate.
I()(t) = ‘10.1'”([) + lf')“ + "()“'

J = llm EJ / (roQory + 1'Gp) dt}

where:

Ao = (
@ =

The solution is:

o O xn
oo
SN’
5
|
TN
=2 &
N’
=
i}
=

i = -Lrg

1', (l'~ ! B(,)[\'()

l

where g is the unique positive semi-definite solution of the algebraic Riccati
equation (ARE):

0= Agho+ Koo+ Qo — Ko BoGG™ By

The solution method of choice for the ARE ix to (1) set up the Hamilto-
nian matrix, (2) compute its Schur decomposition. (3) order the eigenvalues
of the Hamiltonian so the stable eigenvalues are in the upper left hand
block T,; of upper triangular Schur matrix 7. and then (1) compute Ay
using the partitioned Schur vectors I7 which span the stable subspace. This
is a moditied Potter’s method. due to Laub. Schur vectors are computed as
an intermediate step towards eigenvectors, the latter of which are in general
numerically ill-conditioned.

(Ao ‘BU(-"—IBB\ _ (1.’11 (.”) ('I‘“ '[*1_2) ((’.11 ('12)/
= Qu -9) Uy 0 T/ \la U
[\’0 - ['2|(v1—]“

The control gains can be partitioned to separately apply to the state r

and the input w:
w= (I L2)<I>
u

By convention the feedback weight on uis closed prior to the other feedbacks

resulting in the neuro-muscular dynamics. luput to the neuro-muscular

dvnamics then consists of the remaining feedbacks plus injected motor noise.
Ty + w=u,+rv,

Uq = —[,-."U
where:

Tv = L3!

L~ = (L7'Ly 0)

and where the motor noise intensity is:

E{v, (Or, (1 — o)} =V, o)

The value of Vy, is automatically determined as described in Section 2.5.
The mput rate weight (' is adjusted so as to achieve neuro- muscular
dynamics of 10 rad/sec. In the single-input case a simple binary search
vields the correct value of . In the case of decoupled inputs separate
binary searches can be used for each input. For cases more complicated no

fielp s available,

2.4 KBF and Linear Predictor Solutions

The states are not available for feedback. only the delayed and noise cor-
rupted observation y,(t). The optimal solution proceeds by using a KBF to
estimate the state at time ¢t — 7. and then using a linear predictor to esti-
mate the state at time t. Due to the convention used for the neuro-inuscular
dynamies. the following augmented system is used for the KBF:

Iy(t)
yp(t)

A B 0
““‘(0 —L2> Bl_<’wz>
an()) we() mic o

. _[EVLE 0
E{wi(thuy(t = 1)} = W = (0 L ’)
dPugt2

Ay + Biug + g
Ciry(t—7)+ vt =71)

where:

The KBF computes p(t) the linear mean-square estimate of ry(t — 7)
based on observations yp(a) for o < 1:

p(t) = Ayp(t) + Hy[y,(t) = Cypit)] + Brug(t)

where the filter gain is:
~ '] -_1
Hy = XY,
and where &, is the unique positive semi-definite solution of the ARE:

0= /h:] + '\-;l""l + ”l - l]l("{Vy_l('llll

The linear predictor updates p(?) to obtain z(t), the linear mean-square
estimate of r,(t) based on observations y,(a) for o < t. Note that p(t—7) #
I(t).

&(t)

Ty

ALE() + Byug(t)
() + e [p(t) - £t = 7))

I

il

The LQR control weights are applied to iy(t), again used according to
the convention for the neuro-muscular dynamics:

‘U,,(f) = —L-i'](t)
2.5 Noise Ratios, Indifference Thresholds, and Fractional
Attentions

The observation noise intensity 1, and the motor noise intensity 1y, are
assumed to be diagonal matrices:

V, = diag{ry,..... vy, }
‘/'uu = diag{l'ua, """ r“(lvu}

where each of the diagonal elements satisfy:

2
py.” Cr!/n N
3 = — =1.....
b f. Elo,.T)F ' =
Vyy = p,‘almyiu t=1..... m (2)

11

and where the individual terins in (1.2 are defined:

Py.» Pu,, = Doise ratios

ay,. 0u, = standard deviations of y,, ug,
fi = fraction attentions
T, = indifference thresholds

,1-l
E(ay:’Tl) = (’rf(‘ (;u'\/i)

Equations (1.2) for the nowse intensities v,,’s and v,, 's are implicit,
because the standard deviations g, 's and o,, 's depend on the noise inten-
sities. An iteration is required in order to compute the noise intensities.
The iteration takes the following form: (1) guess initial values for the noise
intensities, (2) compute the KBF gain H;, followed by the standard devi-
ations, (3) if equations (1.2) are satisfied within a specified tolerance then
stop. else use equations (1.2) to compute new values for the vy, ’s and vy, ’s,
and then repeat.

The observation noise ratios py, have been experimentallv determined
to be .01. Usually this ratio is expressed using power dB 10log,, or in this
case -20 dB.

The motor noisc ratios can be measured in principle, but there has not
been any found in practice (when dither, stick pumping. etc is excluded).
Various hypotheses have been proposed for the origin of motor noise, but it
1s more likely that motor noise is a mathematical fiction used to achieve a
solution. Numbers used for the p,, 's vary from .001 to .05, some researchers
preferring the smaller values and some the larger. A “safe” value seems to
he 01.

The output y, must move past an indifference threshold T; before a
change is perceived. This threshold is modeled by a Gaussian describing
function. The input of the threshold at a particular time is normally dis-
tributed wiiii mean zero and standard deviation o, , and the output is nor-
mally distributed with mean zero and standard deviation o, /E(0y,.T}),
where:

g

E(o,,,T;) = erfc <0y‘1:/§> = Prob(|z| > T})

where z is a sample from a normal distribution with mean zero and standard
deviation o .

When the indifference threshold is 7,=0 then E=1. and it is always the
case that 0< E<1. Visual perception thresholds have experimentally been
determined to be .05 deg and .1 deg/sec. The value of T; used in the OCM
depends on how far the display is from the human.

The observation noise is assumed to be inversely proportion to the frac-
tional attention f;, e.g. the observation noise intensity vy, doubles if only
50% attention is being paid to output y,. It does not matter how the remain-
ing attention is allocated. whether for other control tasks or for non-control
tasks such as communication. The usual assumption is that the same atten-
tion is attributed to the error and error rate in a given axis, therefore:

AR

axis

Or in terms of the outputs:

to

fo =
=1

Some researchers allow f; to differ for error and error rate, and/or require
the total across outputs to be 1. In the single-input (single-axis) case simply
use fi=f,=1. In the multi-axis case. if the tasks are of comparable difficulty
then apply equal attention to each axis. otherwise optimize over the f; so as
to minimize the performance index ./. Program CC allows arbitrary input
of fi and does not check the sum, but does not optimize over f,.

Pseudo motor noise is a scheme where large values of Pu,, are used to
compute the KBF gains, and then smaller values are used to compute the
standard deviations a,,’s and ay,, . Different equations then those pre-
sented in Section 2.5 are needed in order the compute the standard devia-
tions, due to the fact that the state estimation errors are no longer uncor-
related with the state estimates. The use of pscudo motor noise has been
proposed to account for phase droop and motion cues. Pseudo motor noise
is not. however, included as part of the Program CC implementation, in
other words the same values for p,, must be used for ail calculations. This
is no big loss. Pseudo motor noise is a historical oddity for which no general
guidelines were developed and which never lived up to its expeciations.

The 7 in equations (1,2) was the source of confusion to the author. Even
though others are not likely to be similarly fooled, I'll take the liberty to ex-
plain. Neglect for this argument the attentional fraction and the indifference
threshold. leaving:

Vy = pymo;

13

The mean square value of the outpu: is defined using the autocorrelation
function:
i = R,(0)

where the autocorrelation is defined:

Ry(r) = E{y(t)y(t - 1)}

and where the autocorrelation is related to the power spectral density using
the Fourier transform identities:

f

Sy(Jw) / Ry(T)e ™ ?*"dr

1 e JwT
Ryr) = -2;/ Syljw)e’” dw

The noise ratio p,. in terms of the power spectral density is:

Py = Mo Yy
VT T2 T LN C (T,
moy 3 [T Sjw)de
If. however, the integration of Sy(jw) is defined only over the positive fre-
quencies then the noise ratio is:

— Vy
Py = T8,)dw

hence p, can be defined as ratio of the input noise intensity to the positive
frequency power density.
The OCM literature over the years defines the noise ratio p, using posi-

tive frequencies (where no = is needed). but uses calculations in terms of 03
(where 7 is needed). To make a long storv short. use 7 in the calculations.

2.6 Performance Measures

The time domain performance nicasures are the mean square errors and the
optimal cost. The mean square for the augmented state is:

. . ' T . '
X = E{nizj}=eM" e + / e e 9da
0

~ 1 LAY
+/ P(Al—B,L)n(‘A]‘rl{l‘rull{eAlro(A;—B]L)Uda
o s

14

Define the estimation error ¢y = ry ry. Then X can be decomposed into
A = E 4+ X, where:

L. . I
E{ele',} =My e 4 / PREA T ,e"’odd
(83

E

. i LY}
X = E{‘i.]i.’l} :/ I,(.-‘, Byl m“,'hr,ll"yllllo/llro(,-h—[ﬁ][;)Oda_

0

r

The augmented state is] = (+" u’ ;. hence the mean square values for z
and u are respectively the Xy, and X,; blocks. The mean square output
and neuro-muscular input are:
v
U,

i

Efyy'} = C1XC
E{u,u'} = L XL

The mean square of « is infinite because the white motor noise feeds directly
into u. Using instead the estimated value of w:

Ugoe = E{ad} = LXL'+(0 L,)E(0 Lp)

Finally. the optimal cost is:

I :
lim E{,—:/ (y'Q,y + :}'(.’it)rlt}
T—~] 0 :
Trace (E{yy'}Q,] + Trace [E{ai'}(]
Trace[Y Q] + Trace[Uy,(v]

~
]

i

which in the single-input case is:

1 T , B
Ty

2 2
([Uyl + qo,;

~
I

The types of calculations needed for these performance measures are ma-
trix exponentials and Lyapunov equations. The preferred method for matrix
exponentials is the scaled Pade approximation. (with the scaled Taylor se-
ries a close second and the unscaled Taylor series absolutely not to be used).
The scaling is:

A= AiT/a, where a = 227

and where m is the smallest integer >0 such that o is greater than the
square root of the sum of squares of the elements of A;r. This scaling

15

approximately keeps the eigenvalacs of A 7 less than 1. If F = oxp(/i) and
F = exp(A;7), then rescaling is accomplished simply by F = F?™ | which
requires only m matrix multiplications.

A block matrix is used to compute the integral of a matrix exponential:

'-Al H’rl Fl G'l
PLU o 4/ "\0 R

where:
F] = (‘_Alr
F2 — 0.4'11'
r ! T I
ef =/ e~ M= oMo = e"‘“‘”/ et Wet17da
0 0
Hence:

E=ehT et 4 /Ore'““”il’,o";”(lcr = [}, Fy + F;G,
The Lyapunov equation is:
0=PQ+QP+ 1t
where R is symmetric. The solution Q cxists and is unique if the eigenvalues
of P and R do not coincide. This condition is automatically satisfied if P is

stable and R>0. If P is stable then the Lyapunov solution Q satisfies the
integral identity:

Q= / e’ fpeP'do
0

Hence the mean square value X is computed using the Lvapunov equation
with:

P Ay - B,LT
R = MU\ HeMT

H

The preferred solution method is Bartel-Stewart. using the Schur decompo-
sition for P.

16

2.7 Frequency Responses

The frequency responses of interest are Y.(s). Y,(s), and the remnant
®,,..(s). Here it is explained how to compute the frequency response data,
and a state space/transfer function approximation for Yy(s).

The pilot model Y,(s) is composed of a visual delay, KBF, linear predic-
tor, and neuro-muscular mode.

p = (A —HCip+ Hyy(t = 7)+ Byug(t = 1)+ Hivy(t — 1)
£ = A+ B,

F1o= G+ e [pt) - &t - 7))
Ug = —L'.i'l
@ = —Lou+ Loug + Lov,

It is more convenient to replace the differential equation for £ with another
for zi:

.ll‘l = ——e““THlC'lp-i- (A — B L" Yy +Q'417111y + QAITHll‘y

Move the visual delay from y over to u,. which is equivalent from an input/
output point of view. Combine p and #; into an augmented vector z,.
Change the input matrices for y to obtain an equivalent system driven just
by y.. The result is:

i2 = Ayrg+ Boye + Equg(t - 7) + By,
u, = ('212 + D,y.
u = —~Lyu+ Laut — 1)+ Loy

where:
A =G 0) _ < i,) -
~'1'2 - <"€'41rH1("1 A] _ I}lll- [}2 - ()_417111 - ((32)1 (BZ):.)

_ P o B]) .o gy
I2'<j;) Ez—<0 Cy=1(0 L)

B, = (By) + A2(B2)2 Dy = Cy(By),

The creation of Bz and D, is based on the identity:

s(sf — A~V =T+ (sf — 4;)7 1 A,

17

{:’\ %‘w— é
w

!—u———- Y. (s) = (IS) y

Lm(S)

Q

~———{ F (s)

Figure 3: Frequency Domain Version of OCM

18

Frequency data points cau be exactly calentated by using the Laplace
transform ¢™*7 of the delay., The following steps result in calculation for
Yp(s) and ®,, (s). Define the following transfer functions, located as shown

in Figure 3.

H(s) = (His) Hy(s))=Cyfsl - A7) By
Hi(s) = Hi(s)+ sHa(s) = Co(sI — A3)"'B, + D,
F(s) = Cysl — A) ' Ey

Lm(s) = (s~ L) 'L,

Yo(s) = (Ch(sI-A)'B

Yol(s) = (Chisl - A)7'E

P A (4
where ¢’ = (((,)2)

‘The transfer function from y.(s) to u,(s) is the solution of the implicit
equation:
Ua(s) = H3(s)ye(s) + F(s)e™ T uy(s)

which is:

wa(8) = [T = F()e™") 7" Hyls)ye(s)
The pilot model Y,(s) is the transfer function from y(s) to u(s):
Yo(s) = Lm(s)Gy(s)Hs(s)
where G g(s) = e¢7°7 [I - F(s)o_”]_1

In order to determine the remnant. use Figure 3 to determine the transfer
functions from the noise inputs to the error:

Uy
Ye(s) = (1")p)u)_‘()nllm("jll Yol Yo) (l'ua>

. w
Gels)

The remant &,,,(s) is the spectral density resulting from the v,(s) and
Uy, (8) noise sources:

$rn. (8) = Gy(s)diag{l,. V,,. 0}G/,(-5)

Up to this point the visual delay of 7 seconds has been exactly modeled.
It is not. however. possible to obtain a state space description of Y, unless

19

an approximation is used for thedtebay, Obtaking a state space realization
is quite informative. because by converting to transfer function for Yy(s).
the poles and zeros can be examined. \ state space realization of the Pade
approximation of a delay is:

Ip(t) = Aprptri+ Buua(t)
up(t) = ('ofv(1)+Dpua(’)

where up(t) = u,(t — 1)

For example, a 2" order Pade approximation for the single-input-single-
output case is:

. 0] 0
Hlt) = <—12/7'2 —Ii/’l’>1”“)+ (1)"““)
up(t) (0 =12/)ap(t) + (1) uu(t)

The 2™ order case usually suffices. though others may of course be tried.
Substitute the Pade approximation and group all of the differential equation
together to obtain the following. The input y can be compressed as described
earlier in order to obtain an equivalent state space system driven just by y,.

D .-l] - ”1(') —B]DP L- H]C,) 0 YA
d i‘l . —(‘—"hrlll(vl .'h - B]L. 0 0 i‘l
dt |z, | ~ 0 ~B,L" A, 0 I,
u 0 ~LD,L* L, Cp, —L, u
I, 0
(,.-hrlll .
+ 0 ly+vy) + 0 Uy
0 L,
D
« = (00 0)"
IP

Frequency data for Y,(s) can be obtained directly from the above state
space system. In order to obtain the remnant a state space description of
the closed loop system must be obtained. but rather than attempt to write
it out in terms of all of the elementary matrices. it is best to let a program
such as C(" do the required algebra. The closed loop system G (s) which

20

will be of the form:

Iy

1

-

o

o

+

=

-
o
:.f o’
v

Ye = 41y
As before. the remnant js:
Bn.(s) = G(s)diag{V,. Vi,. 0}GL(-s)

Several quantities of interest can be obtained from Bode plots of },(s)
and Y,(s)Y.(s). including:

w. = unit magnitude crossover frequency
opys = phase margin

e = (7/2 - 0opar)/w. = cffective delay

Op = —Arg[}p(jwc)] + weTe + arctanfw.ry]

pilot phase compensation

These are best obtained by using a cursor to read magnitudes and phases
from Bode plots.

21

3 OCM IMPLEMENTATION

3.1 Overview

The human optimal control model is implemented as a series of macros,
two of which call a user defined command' The following functions are per-
formed:

1. setup a state space model of the controlled system
2. solve the LQR problem

3. setup the KBF problem

1. compute KBF iterations and performance measures

5. compute state space. transfer function, and/or frequency response
models of the human operator

Both the LQR and KBF problems involve iterations, which are auto-
matically controlled by the user defined command. After convergence is
obtained. all of the regular features of Program CC are then available for
analysis of the results. The types of analvsis include frequency responses
and simulations. With the ability to obtain transfer function models of the
human operator. the types of analysis can be extended to include the root
locus. and more importantly to include low order transfer function approxi-
mations. [t is these low order approximations which clarify the relationship
between the optimal control and classical pilot models.

The information for the macros is summarized in Tables 1 through 3.
Only the SISO case is implemented.

1. Table 1: OCM Macros
2. Table 2: Inuput Parameters

3. Table 3: Output Parameters

"A macroas an indirect command file, whereas a user defined command is a compiled
BASIC program which can be chained to Program ¢

22

Table 1 OCM Macros

6.

9.

10.

. OCMYCL. G,. G,, (Yo)au

Create state space (Y.)qu for output driving noise
ye = Gi(s)u+ G(s)w

. OCMYC2. G..G,. (Y)an

Create state space (Y.)qy for input driving noise
Ve = Gil($)u+ G ()]
O(‘.\[\y(‘Bu Gl-, GJ' (J’k. ("C)ﬂ”

Create state space (Y.),y for gencral driving noise
Ye = G(8)[G(s)u + Gy s)w)

4. OCMALL. (Y.)au

Calls OCMLQR. OCMSETUP. and OCMKBF

. O(\ILQR (),c)alb Gy 9. TN« Tthresh

Automatic iteration of g to achicve desired T

OCMSETUP, Viu 7. pyr e fryge Prwe Vane Vi Vi

Setup NBF and lincar predictor problem

I, .T,.

at

. O(_'.\I]{”I‘:([[hhwsh

Automatic iteration of Vs for KBE problem

. OCMPILOT. 7. Pade order

Create state space models of Yy(s) and Y (s)

OCMG. G,. G,

Create tfs Y, and Y. from state space models

OCMFEREQL, wigo. whigh. #pts

Plot of Y},, Yo Y, 4., and &, using state space results

- OCMEREQ2, 7. wigs Whigh #PUs

Plot of Y, Yo, Y, Y. and &, using e™°7

23

Table 2: Input Paramciers

Note: (Y.). 1s a state space quadruple. Do not use names
which overlap those used by the macros: P — Py and
Psoo — Psg4. Pso has become a standard name to use
for (Yo)au. The paramcters G,, (,. and G| are transfer
functions, for which any names can be uscd. All of the
remaining parameters are entered as numbers.

(Yo)an = controlled system and driving noise dynamics. where:

. _ (U _{hn
input = (“') output = (syl)

g, g = quadratic weights, where:

J= lim E 1 /T (qy2 + gll2) dt
T T Jo ¢

—_—

7y = desired neuro-muscular time constant
Tenresh = desired accuracy

V.. = driving noise intensity

7 = visual delay

Pur Py Pua = NOISE Tatios (entered in dB's)
V,

b - Vyos Vo = observation and motor noise intensities

Ty. T, = indifference thresholds (0 = no threshold)
[= fractional atten'ion {1 = full attention)
dBhresh = desired dB accuracy of noise ratios
Pade order = order of e™*" Pade approximation

“lou « wiagh+ #pts = Bode plot axis limits

24

Table 3: Output Parameters, Single-Input Svstems

Created by OCMLQR:

P =(Y.)au Py=g
Pi=notused Py=L=(1, L)
P =q

Created by OCMSETUP:

Py =L, Pio= EV,.FE'
e =1L = 1,2_114 0) P11 = KBF iteration counter
Pr=1Ln=(sI~1L)"'Ly Ppa (Py Py Puy Ty Ty, [T)

I}

Pszc'l(*‘[—:‘l)—l”[[)13:("!“ ‘,yz ‘“a)
[)9 — e."].‘
Created oy OCMKBIE:
1)1.; = :1 1)1{) = .\' = [:, + .\:
1):" = ll'l [)'2()-_— ((T;1 032 Uiu 0'3_ 05)
Pr= |y O"“”H"le'“‘t”fln Py = not uscd
1)1,' = “‘."rSl(‘A;' (E:l)”;-f-[)l';) ,)2'2 = not used
Py=X Py = | ’/”5, fl(’ﬁd J)

Created by OCMPILOT (state space models):
Py =%,
Pis =Y, = CylsI = A" By (closed loop system)
Created by OCMEREQ! and OCMEREQ? (data files):

yp = human operator yc = controlled svstem
gpye = loop transfer function phi = remnant

3.2 Using Program CC

Program CC is a command driven computer -aided-control-system-design
package. It is written in compiled BASIC and operates under the DOS
operating system on the IBM-PC and compatible personal computers. Pro-
gram CC works with linear systemns, either analog or digital, which are
modeled with either transfer functions or state space equations. A large
number of classical. sampled -data, and state space algorithms are imple-
mented. including an extensive amounts of interactive graphics. The user
environment in Program CC is robust, friendly, and very powerful.

Program CC uses macros and uscr-defined-commmands to tailor its use
to a particular problem. The SETUP command, as explained here, is used
to make sure that the program has access to these features.

Version 4 of Program CC must be used for the optimal control model
of the human operator. An introduction to using Program CC, Version 4 is
contained in Appendix A. This introduction concentrates on the parts of the
program used for the optimal control model. A more extensive introduction
is contained in the Tutorial Manual 3]

3.2.1 Setup

Obtain a copy of Program C'C, Version 1 and then load it onto the hard
di=k of an IBM-PC or compatible personal computer. The program con-
sists of about 40 separate modules with the names CC.EXE, CC1.EXE. and
so on. Place all of these modules into a subdirectory named CC. Create a
subdirectory named CC/DATA tostore the data, and a subdirectory named
C"C/OCM to store the OCM macros. Copy the OCM macros listed in Ap-
pendix Bointo the CC/OCM directory. The OCM macros work only with
Program CC. Version 4. and will not run properly with Version 3.
Program CC has the ability to locate data. macros. and modules on
different drives. Because of the large nmumber of modules (i.e. overlays) used

by Program CC the efficiency of operation is improved by placing some of
these in a RAM disk. The following modules which are used by the QCMI
are listed in order of priority:

ccC root prograin

CC1 macro processor and utilities
CC25 state space equations

CC31 eigenvalue calculations
C(C34 Lyapunov solver

CC2 transfer function display
CC3 polynomial root finder

CC4 transfer function equations

All of the above modules will fit into a RAM disk of 640 Kbytes. It is
also possible to put the data used for the OCM into the same RAM disk,
in which case it should be expanded by at least 128 Kbvtes. For safety, in
case of a power failure or a system crash, it is betier to place the data in a
subdirectory on the hard disk. Data stored on the hard disk can is not lost
when Program CC is stopped.

Use the CC/SETUP cornmand to establish the pointers to the above
items will be demonsirated after a few more preliminary comments. How
to setup a RAM disk depends on vour particular hardware configuration
and version of DOS. Commands similar to the following should be placed
in your CONFIG.SYS file (the files and buffer commands are not related to
the RAM disk but are nevertheless a good idea):

device=c:\dos\edisk.sys 610 128 512/¢
files=20
buffers=32

3.2.2 Executing Macros

A macro is an indirect file containing Program (C commands. The com-
mands are listed in a macro exactly as they would be if entered from the
kevboard. Macros can be nested and parameters can be inserted. Macros
are executed by including the 4 symbol before the macro name, for example:

CC> QOCMLQR, P40, 1, 1e-3, 5

The macros used for the human optimal control model are all written so
that they echo the parameters and then pause for a response. Press the F1
function key to abort, and any other key to continue. The F1 function key
can be pressed at any time to stop execution (though it is not recognized
during an overlay swap and sometimes several kev strokes are required).

27

3.2.3 User Defined-Commands

A user-defined-conunand is a < mapiied BASIC program which is connected
to Program CC during execution. One such user-defined-command is used
here, OCM.EXE. which has 2 mum functions:

1. Controls the LQR iterations by automatically changing the
input weight g.

2. Controls the KBF iterations by automatically updating the
observation and motor noise intensities. Also computes the
erfc function by means of a piecewise linear approximation,
and prints a summary at the end of each KBF iteration.

3.2.4 Example

Start the program from the DOS level by typing CC. Execute the SETUP
command as shown below to establish pointers to the data. macros. and
modules used by the QCM:

CC>setup
2

\cc\data
\cc\ocm
\cc\data

ocm
ocm

n
4
5

CC>EXIT

SETUP command

establish pointers to data. macros, and pro-
gram modules

use automatic option

data location

macro location

more data (not used by the QC))

name of RAM disk

establish a link to the user defined command
add a command

name of command

name of BASIC program

no more commands

return to main menuy

change the SSSETUP file

leave the program

Make a back-up copy named SETUP of the file just created. After
completing the initialization start Program CC with a DOS batch file such
as the following. which copies the SETUP file and the first three of the
recommended modules into the D: RAM disk:

28

COPY SETUP $$SETUP
COPY CC.EXE D:
COPY CC1.EXE D:
CUPY CC25.EXE D:
cC

3.3 The Controlled System

The controlled system, denoted as (Y.)qy. includes the controlled element
Y.(s), the noise dvnamics Y,(s), and the interconnection structure. The
inputs of (Y;),) are the operator input u and the external noise source w.
The outputs are the error e and the error rate é. The structure depends on
where the noise is injected. with the three possible choices (for a single-input
system) being at the output of Y.(s). the input. or somewhere between. Use
the macros OCMYC1. OCMY(C2, and OCMY (3 to create a state space
quadruple for (Y,),y starting from transfer function descriptions of Y.(s)
and Y, (s). The block diagrams in Figure 4 explain the three cases.

3.4 The Optimal Solution

After creating the model of the controlled system the LQR and KBT optimal
control problems must be solved. Fach of these is an iterative process. The
OCMALL macro defines the following default parameter values and then
controls both iterations:

qg=1

v = .1

Tthresh = 001

Vo =1

r=.2

Py = Py = Puy = ~20dB
Th=T,=90

f=1

(lBthrrsh =.1

The OCMALL macro works by calling several lower level macros. two of
which call the QCM user defined command (UDC):

29

Yu(s)

v.(s) o ()

(a) Noise Injected at the Output, Created by OCMYC1

(£)

)
u - yi(s) f——s (1) —

(b) Noise Injected at the Input, Created by OCMYC2

()

L i) —e® Vools) (1) | A

(c) Noise Injected in the Middle, Created by OCMY(C3

Figure 4: Different Configurations for (1.),y

30

OCMLQR solves the LQR problem. calls OCM
OCMSETUP enters parameters used by OCMKBF
OCMKBF solves the KB} problem. call OCM
OCMPILOT computes Yy(s)

The default parameters listed above can be changed by adjusting the inputs
to the lower level macros. If these parameters are changed then change the
name of OCMALL to something like OCMALLI.

The OCMLQR macro changes the input weight g and repeats the LQR
problem until the achieved rn is within 7y.,n of the desired value. The
following ad-hoc method is used: (1) start with an initial guess, (2) increase
or decrease by a factor of 10 until the desired 7y is surrounded, (3) con-
verge using a binary scarch. After convergence you are presented with the
following choices:

1=stop
2=1 more iteration
3=change threshold

Use the first option to stop the LQR iteration and continue to the KBF
problem. Use the second option to continue the LQR iteration one more
step. and use the third option to set a more precise threshold. The LQR
iterations tvpically go very fast.

The OCMSETUP macro sets up the KBF iterations by storing the re-
quired parameters in set locations. The OCMKBF macro controls the KBF
iterations. which is a longer and more difficult problem then the LQR itera-
tions. The KBF iterations work by changing V. Vy2. and V. as described
in the technical write-up. until the desired noise ratios are achieved.

At the end of each KBF iteration a summary is presented of the time do-
main performance measures: optimal cost. the mean square errors, the noise
intensities, and the dB noise ratios (sce the examples). Any of these can in
theory be used as a stopping criteria, however the one which is implemented
is for all of the noise ratios to be within dBh,esn of their desired values. You
can judge the progress of the iteration from the last line of the summary,
which give the current value of the maximum noise ratio difference.

A different threshold may be used depending on the computation time.
the rate of convergence, and your patience: but more than 1 dB is not rec-
ommended. Make the change by adjusting the d B, s, parameter in the
OCMSETUP macro. The number of required iterations depends on the ini-
tiai noise intensity estimates, the dynamics of the system (hard to control

31

systems and/or unstable systems tend to require more iterations), the atten-
tional fraction and indifference threshold levels, and the stopping criteria.
Anywhere from 3 to more than 30 iterations may be needed. Typically less
than 5 iterations are required to reach a noise ratio window of 1 dB, but
convergence from that point on can be slow. The best way to significantly
reduce the number of iterations is to give good starting values for Vi, Via,
and V,,. As a practical matter. this can only possible if the same problem or
a similar problem has been previously solved. If convergence is not achieved,
which sometimes happens. then stop the process using the F1 function key.
Even after stopping it is still possible to continue with further analysis.

When the KBF iteration is completed you are presented with the follow-
ing choices:

1=stop

2=1 more iteration
3=change threshold
4=line printer listing

The last option is strongly recommended, which creates a line printer list-
ing of the last iteration summary. Permanent records are always desirable,
though in the heat of the moment sometimes forgotten. Use the first op-
tion to stop the KBF iterations and continue with the analysis. The sccond
option continues with one more step. and the third option prompts for a
smaller threshold.

The OCMPILOT macro creates a state space approximation of Y,(s).
The information needed to compute Y,(s)is (1) the controlled system (Y3)qy,
(2) the LQR solution, decomposed into the Ty and L* matrices. (3) the KBF
gains My, and (4) the visual delay 7. The state space model created by the
OCMPILOT macro is an approximation because a Pade approximation is
used in place of an exact delay. A second order approximation is recom-
mended. The parameters for the QCMPILOT macro are the delay and the
order of the approximation. The remainder of the information is assumed
to be in the locations used by the previous macros. The default name for
the state space model of Y,(s) is P25.

3.5 Analyzing the Results

After executing the OCMALL macro. or its constituent parts, there are sev-
eral possible directions to proceed with the analysis. The suggestions here

32

are not meant to be exhaustive. Think of the macros mentioned here: OC-
MALL, OCMG, OCMFREQI. and OCMFREQ2, as objects to be changed
according to the specific task at hand. It is of course best to change the
names if modifications are made.

The time domain performance measures are listed at the end of each
KBF iteration. The parameters arc stored in matrices as listed in Tables 3.
These parameters may be the end point of your analysis, in which case no
further work is needed. For example:

1. The optimal cost J can be used to obtain a pilot opinion rating. The
value of J is listed in the OCM summary. By referring to Table 3 it
is seen that J is also stored in the Pz matrix. The definition of J is
listed in Table 2: if additional normalization is needed multiply J by
the appropriate scale factor.

2. The optimal mean square tracking error ajﬂ can be compared against
experimental results. The value is listed in the OCM summary, along
with other mean square results, and is also stored in the Pyp matrix.

The OCMFREQ!I macros use the state space approximations for Yp(s)
and Y,(s) to compute frequency data files for:

The macro ends with a Bode plot created with the PLOT command. The
square root of the remnant is computed. as is customary. (The dB scale
used in Program CC is 20log,,. Plotting the square root of the remnant
is the same as using a power dB scale of 10log,,.) The cursor can be used
to determine frequency domain paramecters such as bandwidth and phase
margin.

The OCMFREQZ2 macros differ in that they use an exact calculation of
e”°7 as an intermediate step for the same frequency data files as above. 1
have not vet come across an example where there is any significant difference
in the crossover region between the two methods.

Another type of analysis is to obtain a transfer function approximation
of Y,(s), which can then be used to obtain low order approximations. Clas-
sical (i.e. structural) pilot model parameters such as pilot lead and effective
delay are easiest to obtain using low order models of Y,(s). After using the

33

OCMPILOT macro to obtain a state space model for Y,(s), use the OCMG
macro to convert to a transfer function model. The optimal control model of
the human operator includes the negative feedback sign with Y,(s), which is
the opposite convention used by the classical human operator model. Mul-
tiply the Y,(s) computed by the OCMG by —1 to switch to the convention
used by the classical model. The OQCMG macro also computes Y. (s), in case
it is not already available. Multiply Y,(s) and Y.(s) together to obtain the
loop transfer function, which can then be checked against the A'/s crossover
rule.

The NEAR command is used in the OCMG macro to cancel poles and
zeros of Y,(s) and Y.(s). There will be considerable cancellation, and more
may be desired. For further cancellation use the NEAR command with larger
tolerances. The LFAPPROX (low frequency approximation) command can
be used to truncate poles and zeros larger than a threshold frequency, with
the option of replacing the effective delay of the truncated modes with a
Pade approximation of the delayv.

Converting to transfer functions is probably the best way to quickly ana-
lvze the results of the OCM, because Program C'("'s user interaction is faster
and more convenient in the transfer function domain. In particular, the plot
options can be used for precise bandwidth and phase margin calculations.

3.6 Computation Time
Three factors are important:

Number of states in Y.
Number of KBV iterations
Micro- processor clock speed

The following operations in each KBF iteration take the most time, each of
which is a n? operation. where 1 is the number of states in Y.

Riccati equation solution
matrix exponential
Lyvapunov equation solution

It is best to use low order closed loop effective models for the controlled
system Y. and to use only Ist and 2nd order filters for the driving noise. If
Y. has 5 or 6 states, then on an AT with a 8 MHz clock it will take about
50 seconds for each KBF iteration. Due to the n? dependence, doubling the
number of states requires 8 times as many computations.

34

The number of inputs is not the dominant factor in computation time
(probably a m? dependence. where m is the number of inputs). Systems
with two or three inputs, however. tvpically have two or three times as
many states, especially if the systems are independent in each axis.

The computation time is proportional to the number of KBF iterations.
obviously. How many iterations are required is discussed in Section 3.2.4
Computation time is just as obviously proportional to the micro-processor
clock speed. Use your fastest computer.

Overlay and data read times can be very significant if a RAM disk is not
used. It is definitely worth the trouble learning how to use a RAM disk.

4 Examples

Duplicate the following OC'M examples to gain experience.

4.1 Integrator

The controiled system is a simple integrator in this example taken from [1].
The input of the svstem is driven by colored noise, the human operator visu-
ally determines the error and error rate. and manually controls the input so
as to minimize the mean square error. The example has following controlled

(| > (‘) (> () ‘

< ()
dt Iy
0 0 1 J 0)

(LI?) (1 0><J’2>+<1 ‘
Driving noise: V,, = 8.8 resulting in E{ri} = 2.2
LQR: ¢ = 1. ¢ = .00017. resulting in ry = .08,
Visual delayv: 7 = .15
Noise ratios: p,, = .01, p,, = .01.p,,
Indifference thresholds: t; = 0.1, =0
Fractional attention: f = 1

Orderof Yoo n =2

= .00316 (-20.-20,-25 dB)

The parameters 7y, 7. and p,, were adjusted by the anthors [1] in or-
der to obtain a close match with experimental results. The Program CC
inplementation agrees with all of the published results except {or the rem-
nant frequency response {its not clear whether or not the remnant formulas
match).

The state space description of (Y.}, is provided in the problem state
ment. and therefore can be directly entered:

STATE>p40=(-2,0,0,1; 1,0,1,0; 0,1,0,0; 1,0,1,0)
STATE>p40=CHST(p40,2)

The CHST function is used to convert a real matrix into a state space
quadruple, in this case with 2 states. It is helpful to compute the same
result starting from transfer functions:

CC>yc=1/s
CC>yw=1/(s+2)

CC>QOCMYC2,yc,yw,p40
CC>p40=p40(s,(2,1))

In this example the noise in injected in the input of the plant, hence the
OCMYC2 macro is used to create Py. The odd looking last command
switches the order of the 2 states. an optional step which is used to obtain
the same state space realization as given in the problem statement.

Now compute the LQR problem. The value of ¢ is already provided, so
that no iteration is required:

CC>QLQR,p40,1,.00017,.08,.001

The 7y actually achieved is .08074, which falls within the threshold of .001.

There are many parameters required for the KBF problem. List the
parameters by running the OCMSETUP macro followed by the F1 function
kev, and then include the numbers on the command line. Carefully check
before proceeding to the KBF iterations:

CC>QOCMSETUP

F1
CC>QOCMSETUP, 8.8, 0.15, -20, -20, -25, 1,1,1,0,0,1
CC>QOCMKBF, .1

Six iterations are required to achieve the desired noise ratios. One more
iteration is computed for good measure:

Table 1: KBF Iterations

db
[teration Pyl Pul Pud
1 -6.00 | -16.23 | -15.26
2 -13.47 | -15.33] -22.46
3 S17.23 4 -1R0720 224,32
4 -19.23 1 -19.68 | -24.84
5 -19.81 [-19.92 | -24.96
6 -19.96 | -19.98 | -24.99
7 -19.99 | -20.00 | -25.00

The iteration summary after the 7Tth iteration is shown in Figure 5. The
following noise intensities which were converged to:

b= 00371 V= 09687 1, = .04%15

37

Use this hard achieved information to speed the solution of the problem the
next time around:

CC>QOCMSETUP, 8.8, 0.15, -20, -20, -25, .00371,
.09687, .04815 ,0,0,1
CC>QOCMKBF, .1

Anytime you want to bring the iteration summary back onto the screen
simply call the OCMKBF macro once more. Begin the analysis by noting
the time domain performance parameters listed in the summary of the last
iteration:

2 _)
0gl = .11%
Ty, = 3.08
o: = 3.86
J = .139

Run the OCMPILOT macro to obtain a state space model for Y,(s).
Follow this with the GEP command (GEP stands for the Generalized Eigen-
value Problem), which creates a 9th order transfer function model for Y,(s):

CC>QOCMPILOT, 0.15, 2
CC>STATE
STATE>GEP,p24,yp

Change the sign of Y,(s) to conform with the classical convention. Use
the NEAR command to cancel poles and zeros with an ahsolute difference
less than 107, and then use the LFAPPROX command to replace all of the
dyvnamics greater than 5 rad/sec with a 1st order delay approximation:

STATE>cc
CC>yp=-yp
CC>NEAR,yp,ypl,1,1e-4
CC>LFAPPROX,ypl,yp2,5,1

Figure 5 shows the Y.(s) and Y,.(s) transfer functions, as well as the transfer
functions for Y,(s) before and after cancellation. The final low frequency
approximation for Y,(s) is:

- MQ_‘HS
(s +2.0)

Yo(s) =

Iteration # 7

Optimal cost: q, g, output, input rate, total

1.0000E+00 1.7000E-04 1.1803E-01 4.1207E~02 1.5923E-01

Performance : E{y_1"2}, E({y_2"2), E{u_a~2}, E{u~2}, £{(du/dt)~2)
1.1803E-01 3.0834E+00 4.8469E+00 3.8633E+00 2.4240E+02

0ld noise intensities (V_yl, V_y2, V_ua): 3.7167E-03 9.6967E-02 4.8176E-02
New noise intensities (V_yl, V_y2, V_ua): 3.7079E~-03 9.6869E-02 4.8152E-C2
Noise ratios dB (rho_yl, rho_y2, rho_ua): -19.9897 -19.9956 -24.9978

Max noise ratio difference = 1.028061E~02 dB, Threshold = .1 dB

Controlled element and noise models

1
YC(s) = --

s

1
YW(s) = —-—-=-

S+2

Pilot model and low order approximations

179.1459(0)(2)(3.252133)(6.386982)(12.38519)(12.56791)
(-.8660254, 23.09401]

YP(S) = =mm s e oo mcem e mme
(0)(1.990881)(2)(6.460116)(12.37807)(12.38519)
[.3671649, 23.26644])(42.51991)
179.1459(3.252133)(6.386982)(12.56791)[-.8660254, 23.09401)
YPL(S) = ==mm = e e e
(1.990881)(6.460116)(12.37807)[.3671649, 23.26644]
(42.51991)
-4.16696(3.252133) (-15.44067)
{P2(S) = ===m=mmm = mm— o mm—e—n

(1.990881)(15.44067)

Figure 5 Summary of the Integral OCM Example

39

This is similar to what a classical (i.e. structural) pilot model would predict.
except that the optimal Y, () contains the extra lag term (s +3.3)/(s+2.0).
The effect of this term is toincrease the low frequency gain, which improves
the tracking response to low frequency inputs.

A frequency plot of the important transfer functions is obtained by the
following macro call:

CC>QOCMFREQ1, .01,100,100

The resulting Bode plot shown in Figure 6. The parameters specify 100
points from .01 to 100 rad/sec. The phase of Y,(s) and Y, Y.(s) is 180° away
from that expected from the classical pilot model convention. Several of the
standard frequency domain performance parameters are listed below. (Use
the MARGIN and POINT commands to help with some of the following
numbers).

we = 4.88 rad/sec
opy = 41.9°
(Z iy
Te = - - N —)/ W
5 """180’ c
= .17 sec

The commands used to duplicate this example are stored in the
EX1.MAC listed in Appendix B.

40

DAt »=3Q O X

--B-3

Cuno o

¥ p, ¥Yc. ¥ pu¥ c, and Phi

40
A ~4 =
-~
- ~
~
-~
I SAv_pwv ¢
- \ - ~
20 = e
S - _._______‘__‘?ﬁp
L ~ 4 ..
o ~¥ . C <
| ~N ~
a > N
~ ~
i ~ \~ -
- \ - -
- — — —Phl - ~ \\
r ~
i ~ N
-20 SN N\
! N,
~
L. ~ \\
- ~
~ S
- ~
-40 — N A d au N " NPT M.
1872 107} 189 18! 102
Frequency (rad-/sec)
Phase
180 = =)
|
90 bl ol e
- -l
5 - - \Y:pl‘l_c Yp
B ~
3 ~
0 N
i N\
\
- N\
n \
" \\
-90 Y
i y
-180 — N PN N NP \. P
10”2 107} 188 10! 192

Frequency (radssec)

Figure 6: Frequency Responses for Integral OCM Example

4.2 Double Integrator

Another standard human operator tracking problem uses a double integra-
tor. In this example inject the drivi..g noise at the output of the controlled
element, and model the noise as unit intensity white noise passed through a
2nd order Butterworth filter with a break at .5 rad/sec. Use defaults for all
of the remaining OCM parameters:

Controlled element: Y.(s) = 1/s?

Driving noise: Y, (s) = 1/(4s2 + 283« s + 1)

Driving noise: V. =1

LQR q= 1. T™N = .1

Visual delav: 7 = .2

Noise ratios: p,, = .0l. p,, = .0l.p,, = .01 (-20.-20,-20 dB)
Indifference thresholds: f; = 0. ¢, = 0

Fractional attention: f =1

Solve the problem with the following commands:

CC>yc=1/s8"2
CC>BUTTER,yw,.5,2
CC>QOCMYC1,yc,yw,pd0
CC>QOCMALL, p40

Obtain transfer function approximations of Y,(s) with the following ad-
ditional commands:

STATE>GEP,p24,yp
STATE>CC
CC>NEAR,yp,ypl,1,1e-4
CC>LFAPPROX,ypl,yp2,5,1
CC>NEAR,yp2,yp3,1,.2

The final result is:
Y (s) = 2.1(s + 1.3)e™ %

The iteration summary after 16 iterations is shown in Figure 7, together
with the transfer function results. The frequency responses are shown in
Figure 8. The transfer functions were used to obtain this plot, and hence the

straightline asymptotes can be included. The frequency domain performance
paraneters are listed below:

we = 3.16 rad/sec

opm = 26.3°
Te = (1 - 0Pu—7r—)/w
€ 2 ¥ ! 180 C
= .35 sec

The commands used to duplicate this example are stored in EX2.MAC.
The LQR and KBF problems are started at the parameters which have
already been converged to.

Iteration 4 16

Optimal cost: g, g, output, input rate, total
1.0000E+00 6.4053E~-05 1.6305E-02 8.0904E-03 2.439S5E-02
Performance : E{y_1~2}), E{y_2~2}, E{u_a*2}, E{u~2}, E{ (du/dt)~2)

1.6305E-02 1.1800E-01 2.6566E+00 2.2338E+00 1.2631E+02

0ld noise intensities (V_yl, V_y2, V_ua): 5.1638E-04 3.7338E~03 8.4074E-02
New noise intensities (V_yl, V_y2, V_ua): 5.1223E-04 3.7070E-03 8.3460E-02
Noise ratios dB (rho_yl, rho_y2, rho_ua): -19.9650 ~19.9688 -19.9682

Max noise ratio difference = 3.499794E-02 dB, Threshold = .1 dB

Controlled element and noise models

1
YC(S) = e,ewm—-——
s*2
1
YW(S) = —=——-w—eemmmmm

482 +2.83s+1

Pilot models and low order approximations

500(0)*2 [.714, .438](.707, .5](1.33)(3.11)(10)(10.1)
(-.866, 17.3)

YP(S) = === m e e mememee e e —ee— e
(0)*2 [.707, .5)*2 (3.1)(9.99)(10)[.275, 10.6)[.865, 22.4]
500{ .714, .438)(1.33)(3.11)(10.1)[-.866, 17.3]
YP1(S) = =m-mm = e m e mecm e m—m—m e
[.707, .5)(3.1)(9.99)(.275, 10.6)(.865, 22.4]
-2.68[.714, .438)(1.33)(3.11)(-8.69)
YP2(S) = =—=mmmm e e ee——cemaem oo
{ .707, .S)(3.1)(8.69)
-2.05(1.33)(-8.69)
YP3(S) = —=mm=memmm—e—c—mee—ee

Figure 7: Summary of Double Integrator QCM Example

iX|

O »=~=30 0 X

--N-7

ono o

48

20

19

99

-90

- 180

-270

-360

¥ p, ¥Yc, and ¥ pu¥ c

[X3
L VJ/
N
| asynmptotes ‘\‘\\\\N
L
L ¥_pn¥_c
[~
asgnptotes\\\\
: ¥.c
-1 18 10} 10%
Frequency (radr/sec)
Phase
cC
:._.————-"""-—-’-' x
- v_p
i Y_p»¥_c
"_—-’-__’—a——'-— v_\
-1 18 10! 102

Frequency (rad-sec)

Figure R: Frequency Responses for Double Integrator OCM Example

4.3 Single Axis Dander Example

Dander [15] has reported experimental findings from single and multi-axis
tracking tasks. Dynamically independent single. two—-, and three-axis track-
ing experiments were conducted, and then subjective pilot opinion ratings
(PORs) were given for each task using the Cooper-Harper rating procedure.
(This procedure vields a POR ranging from 1 (best) to 9 or 10 (worst),
which is dominated by the pilot’s mental workload required to achieve the
performance implied by a given mission phase.) One of the objectives of
the original experiment was to predict multi-axis PORs based on single axis
results. The best way to make this extension is still a open question. and
the Dander data is still the best data base upon which to test out theories.

The first part of this example solves the OCM for a single axis task, and
the second part uses the OCM to predict single and multi-axis PORs. The
method used to determine the optimal multi-axis cost from the single axis
optimal costs is described in Volume 2 of this report. More explanation of
the Dander data and POR predictions is provided by McRuer and Schmidt
[15] and Volume 2 of this report. Further background on the use of optimal
cost for PORs in contained in {13].

The single axis controlled system and driving noise filter are listed below:

A0.00)(.9)

bt (0)[.7..25)(5)
. 2219
hels) = =75

The driviug noise is added to the output of Y,(s). The mean square output
error due to the driving noise is 02 = .14. The experimental parameters are
listed below, note that nonzero indifference thresholds are used:

Ve 1 1N Pyl Py2 Pu, 5! 2 f
1 2 .1 .0t .01 .01 .015 .025 1

Enter the transfer functions, combine them to form the controlled system,
and then solve the OCM problem:

CC>QOCMYC1,yc,yw,p4d
CC>QOCMALL, p40

The following time and frequency domain performance parameters have been
compnted using the OCM solution:

46

2 2 2 2 2
) ny, (Ty-c a, nu,‘ as J

.00018 .005 .049 .16 .20 9.8 .0067

o Opraf Te
32r/s 37° .29 sec
See the EX3 macro in Appendix B for more of the commands which
duplicate this example. The converged to values of g, Vy;, V2, and V,, are
used in this macro, so that only 1 iteration is needed for each of the LQR
and KBF problems. Figure 9 shows the iteration summary and several
difference approximations of Y,(s). Figure 10 shows a Bode plot of the

important transfer functions. complete with straightline asymptotes. The
low order approximation for the pilot model is:

, 2.6(s+ L4)(s +5.2) _,,
)p(s)z (3+.9) e 21

The classical pilot model is ¥, = 1.1{(s+5)e™2%5. The lead is used to
maintain a A'/s like crossover. and the delay is determined as a function
of the 3 r/s crossover. The OCM derived Y}, despite its high order (n+5,
where n is the order of Y. plus the order Y,,), is basically the same around
crossover, but differs at lower frequencies by including trim terms, and differs
at higher frequencies by including an ill -understood collection of terms which
can effectively be grouped into a delay. The much vaunted neuro--muscular
mode is cancelled by the OCM solution and does not appear in Y,. It is
nevertheless important to set the neuro-muscular mode as part of the LQR
solution. because this method of selecting the quadratic weight determines
the closed loop bandwidth.

4.4 Multi~Axis Dander Example

The Dander experiment varied the dynamics in each of 3 axes to create a
large number of combinations. Here only a single sct is used: @y¢r 3y in
Dander’s notation. The OCM is solved for each axis, and then the optimal
costs for each axis are combined as demonstrated below to obtain an optimal
cost for the multi-axis case. After all of these optimal costs are determined
then predictions of PORs are made.

The 6y axis (axis #1) was considered in the previous subsection. The
full attention case for the ¢y axis (axis #2) is summarized:

0.5(0.1) . 13.3

Ylo) = gyCanog 9=

47

Iteration # 1
Optimal cost:

Pertormance

q, g, output, input rate, total
1.0000E+00 1.8000E-04 4.9850E-03 1.7647E-03 6.7497E-03
E{y_172}), Ef{y_2-~2}, E{u_a“2}, Efu~2}, E{ (du/dt)~2)

4.9850E-03 4.8742E-02 1.9835E-01 1.6504E-01 9.8040E+00

0l1d noise intensities (V_yl, V_y2, V_ua): 2.7070E-04 2.0260E-03 6.2760E-03
New noise intensities (V_yl, V_y2, V_ua): 2.6840E-04 2.0101E-03 6.2313E-03
Noise ratios dB (rho_yl, rho_y2, rho_ua): -19.9630 -19.9657 -19.9689

Max noise ratio difference = 3.701782E-02 dB, Threshold = .1 dB

Controlled element and noise models

(o .7, .251(%)

Pilot models and low order approximations

YP2(s) =

202(0)(.0299)[.7, -25)(.71, .296][.7, .5)(1.44)(3.24)(5)
(5.17)(10.1)(10.2)[-.866, 17.3]

- o o - e " —— = — = = = = - = - ———— " - ——————— - —— - ——

(0)(.04)[.7, .25](-7, -S)[-7, .5)(.9)(3.37)(5)(10.1)

(10.1)({ .259, 12.2](.864, 24.6)

202(.0299)[.71, .296](1.44)(3.24)(5)(5.17)(10.2)
[-.866, 17.3]

(.04)[{ .7, .5)(.9)(3.37)(5)(10.1)[.259, 12.2)[.864, 24.6]

~.677(.0299)(.71, .296])(1.44)(3.24)(5)(5.17)(=9.37)

Figure 9: Summary of Dander Single Axis Example

48

DRAE~+A=~30 DX

--B-1

one o

¥ p,. Yc. and ¥ pu¥Y c

10]
F Y p
20 e\ ~\ ,//”-\\\\\
[N
s \\\\\\\\\‘ Asymptote
a ~
o \‘
B ¥ pu¥ c
[v c N\\\\
-268
- §§\\\\~
-40 PN A a4 R e
10~ 189 10! 102
Frequency (rad-/sec)
Phase
90 r Lﬂﬁ
L
I
e

Y p

LA L B §

-~180

LI

-270

T 1 ¥

-~360

i S AL

102
Frequency (rad-sec)

49

Figure 10: Frequency Responses for Dander Single Axis Example

V. 4L !y - z g J
1 .75 1.5 500 10°% 27

and the full attention case for the .3;; axis (axis #3) is summarized:

1000.1) . 53

P — L()

(3.0)[.5..5]

cls

",w ’l fz (73 g J
1 .07 .14 X1 .0013 .05

Each of the single axis OCM problems are solved for several different
attentional fractions. How to do this using Program (' is now explained. As
seen in Table 2. the parameter [is stored in the 1x6 element of the Py,
matrix. For each different value of f change the Pj; matrix and repeat the
OCMKBF macro. This will start the KBF iterations at the last values of the
noise intensities. The iteration summanes for the attentional fraction cases
f=1/2.1/3, 1/4. and 1/5 are listed in Figure 11. The commands used for
this attentional fraction survey are listed below (see also the EX3 macro):

CC>p12(1,6)=1/2 & QOCMKBF, .
CC>p12(1,6)=1/3 & QOCMKBF, .
CC>p12(1,6)=1/4 & GOCMKBF, .
CC>p12(1,6)=1/4 & QOCMKBF, .

[S ST S

For each axis create a table of optimal costs .J versus attentional fractions
f. Normalize the costs by dividing by mean square error of the driving noise.
It has been empirically determined that a linear relationship exists between
J aund 1/ f over a range of attentional fractions. which are for this example:

Jifol = 017/fi +.028 for fy > .1
Jifal, = 668/f 212 for fy > .5
Jafa? = 018/ fy + 000 for fz > .13

The total optimal cost is the sum of Jy. J,, and J3. The following
attentional fractions minimize the total cost:

1/ fi L+ ay/ay +\/a3/a|
lf: = 1+\/’11/"2 +\/“'s/“2
1/ f4 1+ ayfay + \/(12/03

50

Iteration # 5
Optimal cost: gq,
1.0000E+0Q0
E(y_1~2},
7.2827E-03

f=1/2

g,
1.8000E-04
E{y_2"2),
5.8567E-02

- Performance :

0ld noise intensities (V_yl, V_y2, V_ua):
New noise intensities (V_yl, V_y2, V_ua):

Max noise ratio difference =

output,
7.2827E-03
E{u_a~2},
2.2780E-01

2.03
E{u~
1.87

6.9377E-04
7.0840E-04

Noise ratios dB (rho_yl, rho_y2, rho_ua): -20.0907

input rate, total
9.3182E-03
E{ (du/dt)~2}
1.1308E+01

55E-03
2},
49E-01

4.6353E-03
4.7101E-03
-20.0695

9.065247E~-02 dB, Threshold =

.1 dB

Iteration # 9
Optimal cost:

f=1/3

q. output, input rate, total

7.0520E-03
7.1565E-03

-20.0639

1.0000E+00
E{y 12},
9.7001E-03

Performance

g,
1.8000E-04

E{y_ 272},

6.7465E-02

9.7001E-03
E{u_a*2},
2.5446E-01

2.29
E{u~
2.08

43E-03
2},
S50E-01

1.1994E-02
E((du/dt)~2)
1.2746E+01

0ld noise irtensities (V_yl, V_y2, V_ua):
New noise intensities (V_yl, V_y2, V_ua):

Max noise ratio difference =

Iteration # 13
Optimal cost:

f=1/a

q,
1.0000E+00
E(y_1°2},
1.2166E-02

g,
1.8000E-04
E{y_2~2},
7.5342E-02

Performance
Old noise intensities (V_yl, V_y2, V_ua):
New noise intensities (V_yl, V_y2, V_ua):
Max noise ratio difference =

Iteration % 17 f=1/5

output,
1.2166E-02
E{u_a»2},
2.7794E-01

1.3042E-03
1.3288E-03

Noise ratios dB (rho_yl, rho_y2, rho_ua): -20.0813
8.126068E-02 4B, Threshold =

inpu
2.52
E{u~
2.26

2.0933E-03
2.1288E~03

Noise ratios dB (rho_yl, rho_y2, rho_ua): -20.0731
7.305717E-02 dB, Threshold =

7.8898E-03
7.9950E-03
-20.0575
.1 dB

t rate,
27E-03
2},

98E-01

total

1.1619E-02
1.1752E-02
~20.0491
.1 dB

stimal cost: g, g, output, input rate, total

7.8965E-03
7.9940E-03

-20.0533

1.4689E~-02
E{ (du/dt)~2}
1.4015E+01

8.6402E-03
8.7318E-03

-20.0458

1.0000E+00
E{y_1"2},
1.4690E-02

Perfornmance

1.8000E-04
E{y_2"2),
8.2502E-02

1.4690E-02
E{u_a~2},
2.9919E-01

2.7294E-03
E{(u~2},
2.436°E-01

1.7419E-02
E{ (du/dt)~2)
1.5164E+01

0ld noise intensities (V_yl, V_y2, V_ua):
New noise intensities (V_yl, V_y2, V_ua):

3.0646E-03
3.1121E-03

1.5767E-02
1.5924E-02

loise ratios dB (rho_yl, rho_y2, rho_ua): -20.0668

-20.0430
Max noise ratio difference = .0668335 dB, Threshold =

.1 dB

=2

9.3124E-03
9.3992E-03
0.0403

Figure 11: Attentional Fraction Survey for Dander Multi- Axis Example

The results for this example are:

(H fo fz) = (12 .76 .12)
J = 103

Considerably more cost is reguired to control axis #2, as migut be expected
from the unstable dynamics in that axis, and as a result considerally more
attention is given to axis #2.

The optimai costs just computed can be used to make the following
prediction of pilot opional ratings (PORs):

HOR = 5.5+ 3.Tlog,, (02—%2—>

J is the optimal cost as computed using an error weight g=1, 2 is the mean
error of the driving noise, w? is the square of the input noise bandwidth, and
the numbers 5.5 and 3.7 are experimentally determined using the Dander
data and the new STI data in this report. A £1 spread in the in the PORs
is tolerable. The results for this example are:

POR POR

axis .‘]2 (predicted) (experimental)
] 045 2.7 2.5-3
2 56 6.1 5 6.5
3 062 3.2 335
all3 1.03 .7 7€

The predictions in this case are very good. All of the 9 different cases
of the 3 axis Dander experiments have been similarly analyzed using the
OCM implemented in Program CC. Predicted PORs were within %1 of
the experimental results in 7 out of 9 cases. The POR predictions for the
Dander data agrees case-by -case with the analvsis reported by McRuer and
Schmidt. [16].

A How to Use Program CC, Version 4

Program CC is a command driven computer-aided-control-system-design
package. It is written in compiled BASIC and operates under the DOS
operating system on the IBM- PC and compatible personal computers. Pro-
gram CC works with linear systems, either analog or digital, which are
modeled with either transfer functions or state space equations. A large
number of classical, sampled-data, and state space algorithms are imple-
mented, including an extensive amounts of interactive graphics. The user
environment in Program CC is robust, friendly, and very powerful.

This appendix gives an overview of Program CC which is tailored to users
of the human optimal control model. It is recommended that you operate
the program while reading this introduction. Execute the commands, or at
least some of them, when they are introduced.

A.1 The Basics

There are about 300 commands arranged in a hierarchy. Use the manual or
the on-line help (command HELP) for a list of the commands and parame-
ters. The hierarchical levels of interest here are:

cc transfer function commands
STATE state space commands
DATA data file commands
MACRO creating and editing macros

Commands are entered in response to a prompt. for example:

CC>HELP
STATE>HELP

Commands and parameters are entered in either upper or lower case
letters. Blanks are ignored. and only the minimum number of letters to
make a command non-ambiguous is needed. Separate the parameters by
commas. include them on the command line {expert mode) or let yourself be
prompted (novice mode). Include more than one command or a2 command
line by separating them with &.

Branch to different levels of the command hierarchy by typing the name
of the command level. Those users familiar with Version 3 should note
that the BUILD and MR command levels have been compressed into the
("C level. Return to the CC level by typing either QUIT of CC. Leave the

53

program from the CC level by tvping either QUIT (prompts with Are you
sure?) or EXIT (no prompt).

BASIC execution errors are trapped by the program, resultingin an error
message and a return to the ('C’ command level. The following commands
are built into the program:

Ctrl-NumLock temporaryv halt
F1 halt and return to the CC command level
11 recall previous commands

Use the F1 key to abort commands and macros. If waiting for a prompt
then follow F1 with a carriage return. The program does not respond to
F1 if it is pressed during an overlay swap, so sometimes it has to be pressed
several times.

All transfer function and state space calculations are computed using
double precision arithmetic, which has approximately 18 decimal places of
accuracy. The data files are stored in single precision, mainly to save disk
space when extreme accuracy is not needed.

Version 4 of Program CC is compatible with the EGA and VGA mon-
itors. but still retains downward compatibility with the CGA. The high-
est screen mode is automatically determined when the program starts.
Monoclirome monitors are not recommended because they do not allow
graphics, though state space operations (in fact to entire OQCM solution)
are still possible. Switch screen modes with the SCREEN command. Four
color plots can be created on the EGA and VGA. Switch colors with the
command COLOR.

Program C'C is made of many separate modules, which are chained as
needed to execute commands. The modules and the data can be located on
more than one disk. as determined by pointers established in the SETUP
command. Placing the data and the most used modules in a RAM disk
significantly speeds up execution. User defined commands can be included
in the list of 'C’ conmands, again as established in the SETUP command.
When the user defined command is called then the specified program is
chained. All of the information established by the SETUP command is
stored in the SSSETUP file, and is thercfore available each time the program
starts. See Section 3.2.1 for information on the best setup for the OCM
macros.

There are several more miscellancous commands of general interest:
FILES lists directory files, NAME renames them, and KILL kills them.

-

51

CLS clears the screen. TIME and DATE provide their namesakes. CLOCK
draws an analog clock. CALCULATOR is an HP-like calculator. ECHO
echoes a message and PAUSE pauses until a key is pressed, both of which
are useful in macros. SHELL shells to DOS, and EXIT returns to CC.
Use DESQVIEW to run multiple copies of CC, or CC and any other set
of programs, and switch between the programs with simple DESQVIEW
commands.

A.2 Data Types

There are four data types:

Transfer function
State space quadruple

Transfer function matrix
Data file

The names can be six letters or numbers, starting with a letter, followed
by a prefix of 3 letters or numbers. For example G, P, Y P, H100, and
Y P.G. The convention in earlier versions of Program CC, which is still
largely maintained in the documentation, is to use the names G; for trans-
fer functions, P; for state space quadruples, and H; for transfer function
matrices {the subscript ¢ refers to any positive integer).

ASCII data files are automatically created on disk for cach data element.
The files are casily recognized because they always begin with $§$. The files
remain on the disk after the program is finished. do matter how ungracefully,
and are therefore available when the program is restarted.

A transfer function is a ratio of polynomials. The polynomials can be
factored in any desired way. A state space quadruple is a packed set of
four real matrices which represent a state space differential equation. Real
matrices are a subset of state space quadruples, being just the constant term.
A transfer function matrir is a matrix of transfer functions, usually obtained
by converting from a multivariable state space quadruple. Finally, a data
file is an indexed set of real or complex matrices where the index represents
either times or frequencies, and the matrices are ordered row-wise.

The systems are cither analog or digital. depending on a flag set with the
commands ANALOG and DIGITAL. The program starts with ANALOG as
the default. The OCM deals only with analog sysiems, and therefore the
sampled-data features are not emphasize in this introduction.

ot
(@1}

A.3 The CC Command Level

Transfer functions can be entered either by coefficients, by shorthand nota-
tion, or symbolically. For example. to enter:

10(s + 1)
s[s? +2(.1)(10)s + (10)?]

G(s) =

use one of the following commands:

CC>GENTER,g, 2,0,10,1,1,1, 2,1,1,0,2,1,2,100
CC>SENTER,g, 2,0,10,1,1, 2,1,0,2,.1,10
CC>g=10+(s+1)/s/(s"2 + 2+.1+10x5 + 1072)

Let yourself be prompted for the coefficients until you understand their or-
der. Most users prefer to use the symbolic form. Several commands are avail-
able for particular types of transfer functions: BUTTERWORTH, CHEBY-
SHEV, BESSEL. PADE. LEADLAG. INTEGRATOR. NOTCH, and so on.

Individual coefficients can be changed using the equation interpreter.
Its best to precede a change with a display of the transfer function. In the
following example. the denominator, 2nd polynomial, Oth order coefficient
1s changed to 200:

CC>DISPLAY,g
CC>g(d,2,0)=200

Transfer functions can be displayed in many different forms, as sug-
gested by the command names: DISPLAY, SHORTHAND, SINGLE, and
UNITARY. PZF (pole zero form). TCF (time constant form). PFE (partial
fraction expansion), and ILT (inverse Laplace transform). In the CC com-
mand level entering just the name is equivaicat to DISPLAY.G,. Try. for
example:

CC>G & SINGLE & PZF & SHO & PFE & ILT

The transfer function coefficients are stored in as shown by the DISPLAY
command. Change the polynomial factors with the commands CHPZF,
CHTCF. CHSINGLE, and CHUNITARY'. For example:

CC>G & CHSINGLE,G,G1 & G1

Transfer functions can be built up from others using the equation in-
terpreter. This powerful facility is used by Program CC in place of block
diagrams to compute loop and closed loop transfer functions. For example:

56

CC>G1=G*G1
CC>G3=(G+G1)/(1+4G2+(G+G1))
CC>G10=(s+1)#G/s

The following example is a simple way to find the closed loop poles with
unity feedback:

CC>G2=G/(1+G) & PZF,G2

The same can be done with the command STABILITY. The range of stable
gain can be found with the command ROUTH.

The equation interpreter cancels polynomial factors if the coefficients
are linear multiples, but factors are not further broken down to look for
cancellations. For example, (2s + 2)/(s + 1) is cancelled but not (s? + 25 +
1)/(s+ 1). The NEAR command converts to first and second order factors
and cancels with ¢ tolerance.

The displays default to single precision. Change this to double or mini
(3 decimal places) precision using the FORMAT command. Line printer
output of transfer functions is produced by preceding the display style by
LP. For example: LPDISPLAY, LPSHORTHAND, LPPZF, and LPTCF.
Messages can be included on the output by surrounding the message with
quotes, for example:

CC>LPSHO,G1,"Closed loop system"

Transfer functions can be stored and recalled under arbitrary file names
with the commands STORE and RECALL, which is useful for long term
saving of special files. Large numbers of transfer functions are more eco-
nomically saved by using DOS to copv them to a sub-directory.

An e™*T delay can be included with the transfer function using the DE-
LAY command. All transfer functions are multiplied by the same delay, and
transfer functions with delays cannot be algebraically combined. It is useful.
nevertheless, to use exact delays for frequency response calculations.

Still more transfer function commands are available. ADJOINT com-
putes either G;(-s) or G,(1/z). PARTIAL extracts terms from a partial
fraction expansion, and SPECTRAL extracts poles in a half plane. MEAN-
SQUARE computes the mean square error. NEAR cancels poles and zeros
according to either an absolute or relative criterion. LFAPPROX replaces
high frequency poles and zeros with a Pade delay approximation, and HFAP-
PROX does something similar with low frequency poles and zeros. Use the
equation interpreter to extract numerators and denominators and to make
substitutions for s:

=1

It

CC>nd=G(n)/G1(d)
CCO>gminus=g(-s)
CC>gt=g(£)

The following commands require more explanation than is appropriate
here: DIOPOLE and DIOLQG are pole-placement and LQG algorithms
solved by Diophantine equations. INNER, OUTER, BLASHKY, WIENER,
FILTER, and LQG are Wiener-lopf commands.

A.4 The STATE Command Level

State space quadruples are entered using the command PENTER, which
prompts for the number of states, inputs, and outputs; and then prompts
for the respective row-wise elements of the A, B, C, and D matrices. All of
this can be placed on the command line, for example:

STATE>PENTER,P,2,1,1, 1,1,1,1, 2,2, 3,3, 4

creates the quadruple:

11 2
P:(A B)___ 11 2
¢ b 3 3 1

wliich represents the state space differential equation:

d (1, 1 1 T 2
rlt(r2> (1 1)(1-2)*(2)“
PR I

v = (3 3)(I2)+(~Hu

Real matrices are just the D part of the quadruple. The following command:

i

STATE>PENTER,P1,0,2,3, 1,2,3,4,5,6

1 2
P[I ('3 1)
5 6

Real matrices can be entered symbolically using the state space equa-
tion interpreter. Elements in a row are separated by commas and rows are
separated by semicolons. Enter and then display the previous P} matrix as
follows:

creates the real matrix:

STATE>P1=(1,2;3,4;5,6) & P1

The equation interpreter does not allow direct entry of state space quadru-
ples, but they can first be entered as a real matrix and then partitioned by
changing the number of states:

STATE>P=(1,1,2; 1,1,2; 3,3,4) & P=CHST(P,2) & P

The command DISPLAY,P; (or just P,) is used to display P;. To display
only part of the quadruple use the command P(A). To display the elements
in double precision use the FORMAT command. To display just the di-
mensions use WHAT,P1. To eliminate elements with absolute values less
than a threshold use P1=EPS(P1). To obtain a line printer listing use the
LPDISPLAY.P1 command. which can contain a message. e.g.:

STATE>LPDIS,P15,"KBF gains"

Single elements of a matrix or a quadruple can be changed by referring
to their position:

STATE>P1(1,2)=10
STATE>P(C,1,2)=100

This is the easiest type of augmentation. More generally, a real matrix
can be augmented at the i, j** position, which overwrites a block of the old
matrix and extends the boundaries if necessary.

Real matrices (and most quadruples) can be nested and built up from
smaller matrices. For example, to add a row to P

STATE>P10=(P10; 1,1)

The new matrix is built up using augmentation with zero-fill, so there is
never a problem wiih mistnaiched numvers ol rows and columns. To save
some typing, for example, the 3x3 identity matrix can be entered in the
following way:

STATE>p3=(1; 0,1; 0,0,1)

Parts of a real matrix or a state space quadruple can be extracted, as
shown in the examples:

59

STATE>P=P1(1,2) single element of Py

STATE>P=P1(1) 1st row of P;
STATE>P=P1(,2) 2nd column of P,
STATE>P=P1(1:3,4:5) rows and columns of P,
STATE>P=P1(A) Pi(A) from the P, quadruple

STATE>P=P1(C,,4:5) columns 4 and 5 of P,(C)

Several special types of matrices constructed with the following func-
tions: IDEN, DIAG, and RND. Controllable canonical realizations of stan-
dard filters are created by the commands BUTTERWORTH, CHEBYSHEYV,
BESSEL, PADE. LEADLAG, INTEGRATOR. and NOTCH, and so on.
Transfer functions can be converted to state space quadruples with the com-
mands CCF, OCF, and DCF; respectively controllable, observable, and di-
agonal canonical forms. Transfer functions included in state space equations
are automatically converted using the CCF realization. Try the following;:

CC>g=10%(s+1)/(s"3 + 24372 + 3+85+4)
CC>STATE

STATE>p=g

STATE>OCF,g,p1

The number sign, #, is used for diagonal augmentation. It is used in the
following commands to create 2nd order Pade approximations of diagonal

delays: 1
: o3 0
Plo - (0 e—.23>

STATE>PADE,P10,.1,2 & PADE,P11,.2,2
STATE>DELAY=(P10#P11)

The state space equation interpreter can be used to algebraically combine
state space quadruples. Dimensions are checked for validity, and when state
space quadruples are used. the appropriate combinations of the A, B, C,
and D matrices are automatically computed. The valid operations are:

+ Addition

+ Multiplication

" Exponentiation

Transpose

Right division, a/3=a * 37!

Left division, a\.J = a™! + 3
Feedback, a|3 = a* {1 + 3xa)7!

-

_—

6O

The levels of precedence are as follows, with operations on the same level
computed left to right as they appear in the equation:

()

«+/\]
+ -

An mnemonic for left and right multiplication is that the top of the slash
points to the inverted quadruple. The | operation for feedback results in a
minimal order state space realization, with « in the feedforward and 8 in the
feedback paths. Identity matrices in the equation are automatically sized.
Try, for example, the following:

STATE>BUTTER,P,1,4
STATE>P1=P/ (I+P)
STATE>P2=P|1I
STATE>WHAT,P1 & WHAT,P2

Both P, and P, are closed loop systems with unity feedback. but P is a
non-minimal 8th order realization, and P; is the much preferred minimal
4th order realization.

There are several ways to invert a matrix (a quadruple is invertible if
the D term is invertible):

STATE>P1=1/P
STATE>P1=P\I
STATE>P1=P~-1

(raussian elimination (LU decomposition) with scaling and partial pivoting
is used to compute the matrix inversion, which takes only order n® op-
erations, the same as matrix multiplication. A warning is printed if the
determinant is zero. It is more efficient not to invert an entire matrix. with
the first example below being preferred over the second:

STATE>P2=P1\P
STATE>P2=P1\1 & P2=P2+P

The PACK command packs four real matrices of compatible dimensions
into a state space quadruple, and the UNPACK command does the converse.
In the following example the P quadruple is unpacked and a second . of

Gl

outputs is created which are the derivative of the former. This is only valid
if P(D)=0. The derivatives are created using the identity:

Cs(sI - A)"'B=CB+CA(sI - A)"'B

STATE>UNPACK,P,P500,P501,P502,P503
STATE>P502=(P502;P502+P500)
STATE>P503=(P503;P502+P501)
STATE>PACK,P500,P501,P502,P503,P

A complicated system can be built up using the state space equation
interpreter. Series elements are multiplied; parallel elements are either added
or augmented, depending on the input and output connections; and feedback
paths are closed using the | operation. Use the FEEDBACK command to
feedback a subset of outputs to a subset of inputs. In the following example,
define P to have 4 inputs and 4 outputs, and define P, to be SISO. A single
feedback loop is closed around P from the 2nd output to the 3rd input, with
Py in the feedback path:

STATE>P2=P1|((0;0;1,;0)*P1%(0,1,0,0))

Functions are used in equations. All of the usual trigonometric and expo-
nential functions are available, and when applied to matrices work element-
by-element. Other functions which are available include DET, TRACE,
and NORM. Most of the complicated operations, however, are computed
using commands. The NORM command computes 6 different matrix norms.
PSEUDO INVERSE uses the singular value decomposition (SVD) to com-
pute the pseudo inverse of a rectangular matrix. SPACE computes orthonor-
mal basis vectors for the fundamental subspaces. PROJECTION computes
projection matrices onto the fundamental subspaces.

Several different matrix decompositions can be computed: EIGEN-
VALUE. SCHUR., HESSENBERG. and SVD. Place a G in front of the
first three commands to compute generalized versions. The following exam-
ple computes the eigenvalue decomposition and the verifies the result. The
eigenvalues are stored in a 2 column matrix, which is converted to block
diagonal with the DIAG function.

STATE>EIG,p,d,x
STATE>p-x+DIAG(d)/x

Several different matrix equations can be solved: LYAPUNQV, RIC-
CATI. and SYLVESTOR. Place a D in front of the first two commands to

62

compute discrete versions. Several different methods are available to solve
these equations, with the defaults methods being recommended.

The SIMILARITY command computes similarity transformations, ei-
ther with respect to an input matrix, or with respect to eigenvectors, Schur
vectors, or Hessenberg vectors of the system matrix. The CONTROLLA-
BILITY and OBSERVABILITY commands, which are identical, each check
for both uncontrollable and unobservable modes; but the algorithm is not
foolproof, and if in doubt compute a similarity transformation with respect
to the eigenvectors, and check for zero rows of B for uncontrollable modes
and zero columns of C for unobservable modes.

Conversion from state space to transfer function matrices is computed
using commands FADEEVA and GEP. The former uses the Fadeeva algo-
rithm, which is very fast, but computes polynomial coefficients and is there-
fore unreliable for large systems (> 6th order depending on the dynamics).
The Fadeeva algorithm is used in the following example:

STATE>FADEEVA,P,H
STATE>EXTRACT,H,G,1,1 & EXTRACT,H,G1,1,2

The transfer function matrix H(s) is created, and then the EXTRACT
command is used to extract elements of f/(s) into transfer functions. The
command EXTRACT,H.G,ALL extracts all of the elements of H(s) row-
wise into G(s), (/1{s), and so on. Display transfer function matrices with
the same commands used for transfer functions. The denominator, which is
common to all of the elements, is only displayed once.

The GEP command uses the generalized cigenvalue problem (hence the
name) to compute the poles and zeros. which is slower but numerically more
reliable. One problem with the GEP cominand is that it has trouble with
zeros at infinity (1/s% has 2 zeros at infinity), and for reasons known only
to a few tends to put them at 10'®/™, where m is the order of the infinite
zeros. The GEP commands allows the user to set a magnitude threshold,
above which the zeros are considered infinite. If the state space system is
SISO then the conversion can be directly placed into a transfer function, as
done in the following example, which has set a threshold of 10!? for infinite
zeros:

STATE>GEP,P1,G1,1e12

The POLE PLACEMENT command uses ‘he Ackermann formula for
SISO state space pole placement designs. In the following example, the pole

63

placement method is used to compute full state feedback gains (prompts not
shown), and then the closed loop system is computed in two different ways:

STATE>POLE PLACEMENT,P,P1, ...
STATE>P2=P & P2(A)=P2(4)-P2(b)+P1
STATE>FEEDBACK,4,P,P1,P2

Optimal control designs are solved using the commands LQR, KBF, and
LQG. Digital versions are solved with the commands DLQR. DKBF, and
DLQG. If the intermediate Riccati solution is desired, it must be obtained
with a separate call to the RICCATI command. Several different options are
available for entering the data, and several choices of computation schemes
are available. Its too much to explain here, and one example will have to
suffice. The 1st option of the LQR command is used in the following;:

STATE>LQR,1,P,Q,R,F,1e-4

where the parameters are respectively the system, state weight. input weight,
and LQR gains. The input weight is multiplied by 10~4. The default com-
putational method using Schur vectors is used to solve the Riccati equation.
In the following example. GG is the Riccati solution, and F is the LQR gain:

STATE>F=P(A) & G=P(B)/(le-4+R)+P(B)
STATE>RICCATI,F,Q,G,G
STATE>F=(1e-4+R)\P(B) ’+G

While these several commands are not too complicated, if this sequence is
to be repeated then a macro should be constructed. as shown later.

A.5 GRAPHICS

Graphics is one of the best features of Program CC. Frequency and time
domain plots can be obtained starting from transfer functions. state space
quadruples. or data files.

The plots can be interactively changed. a valuable user-friendly feature.
‘The interaction is accomplished using plot option blocks. F.gure 12 contains
a Bode plot of G(s) = (s+.2)e”*/(s+10). The plot option block is located
underneath the plot. Press 7 (or /) to list the full names of the options. as
shown in the bottom of Figure 12, and as listed below:

A Overplot with an additional line
B Crosshair cursor

64

C Tran.fer function cursor. includes robustness calculations
D Change foreground and background options

E Change axis limits. includes zoom

F Create data file

G Use equation interpreter to augment transfer function
H Hardcopy

I Automatically fill in with more points

J Change plot colors

K Include date and time on title

L Label the plot

M Manually fill in with more points

P Replot

Q Quit

S Plot magnitude asymptote

T Toggle thick and thin lines

W Change title

X Pause, for use with macros

Y Change how phase is calculated

Z C(enter plot

7 Help

The following plots are available for transfer functions:

BODE

NICHOLS

NYQUIST

LOG NYQUIST (uses log axes)

ROOT LOCUS (uses gain stepping algorithm)
FASTRL (uses curve tracing algorithm)
SIGGY (Siggy and Bode root loci plots)
TIME (inverse Laplace transform)

DTIME (inverse z-transform)

SIMULATION (simulation of Laplace transform)
DSIMULATION (simulation of z--transform)

The selection and operation of the plot options change depending on
the type of plot. It suffices here to use the above BODE example. The
axis limits for each plot can either be manually entered or automatically
determined.

Typical Bode Plot
M 18 O 98 P
g : a""'-“~\\ i a
n - -4 \Phase N . s
1 L e == --— e
t \\ i
u L s
d A i
\
e
Y
1071} e ~98
- Y
» ‘})
- ; ‘
- Hagmtude\ \ j
— fsymptote “
\ -
1
18"2 it I U It I N W G B [Loaaa i ni-278
1872 1871 18® 10} 102
Frequency (rad/sec)
Options> ABCDEFGHIJKLMNPQSTUXYZ ?=help
A=addline E=chg limits I=fill M=more pts T=thick lines Z=center
B=crosshair F-data file J=colors P-=replot U=title ?=help
C=tf cursor G-equation K=clock Q=quit X=pause tf=G

D=chg options H=hardcopy L=label S=zasymptote Y=chg phase

Figure 12: Program C'C' Plot Tncluding the Plot Option Blocks

The frequency plots work from the FREQ data file, created by the FRE-
QUENCY command. The FREQ file saves time when switching between
different frequency files, it allows non-uniform spacing of points. and it saves
disk space because the file is overwritten each time the FREQUENCY com-
mand is called. To creat~ the Bode plot in Figure 12:

CC>G=(s+.2)/(s+10) & DELAY,.3 & SHO,G
CC>FREQ,G,.01,100,100
CC>BODE, 3,A

As usual. novices enter just the command names and let themsealves be
prompted. Several different plot options were used to obtain the finished
plot.

The TIME and DTIME commands compute functions of time which
are then plotted. Options exist for open loop impulse and step responses,
closed loop impulse and step responses. and non-causal step responses (e.g.
for autocorrelations). Ramp and sinusoidal responses can be computed by
first augmenting the transfer function and then plotting an impulse response.
The following example plots a closed loop step response and then a closed
loop ramp response:

CC>TIME,G,1,AUT0 (1=closed loop step)
q

CC>G1=G/(1+G)/S"2

CC>TIME,G1,4,AUTO0 (4=open loop impulse)

The SIMULATION and DSIMULATION commands compute simula-
tions of transfer functions. The same open and closed loop impulse and step
response options are available. but not the non causal antion Data files
can be used as input, representing cither an output from another system or
an arbitrary input sequence creat. d by the INPUT command. The SIM-
ULATION command combines a call to the CONVERT command {zero-
order-hold equivalence) with a call to the DSIMULATION command. As
an alternative:

CC>CONVERT,G,G1,3,.1 (Bilinear with 7'=.1)
DIG>DSIM,G1,2,AUT0 (2=open loop step)

When in the digital model the CC command level prompt changes to DIG.
Switch back to the analog mode with the ANALOG command.
Time and frequency plots can also be obtained from state space quadru-

ples. The STATE commands SINMULATION and DSIMULATION are used

67

to create time domain data files (unlike the C'C commands. then do not
directly result in a plot}. The simulations can be multivariable, and several
different types of inputs are available, including arbitrary data files. The
SIMULATION command computes a matrix exponentional to discretize the
system and then performs a digital simulation. The name of the time se-
quence file which is produced is P,.Y.

The FREQUENCY command in the STATE command level is used to
compute a frequency data file for a multivariable state space quadruple. The
name of the output frequency file is the system name with the file prefix .G.

Data files are plotted with the PLOT command. Data files can be cre-
ated from transfer functions using plot options. by using the DENTER or
INPUT command. or as just described by several STATE commands. More
parameters are required than for other tvpes of plots. Data files are indexed
matrices in general, therefore choices must be made for which rows and
columns to plot (ALL for everything). Choices must also be made for what
to plot on the horizontal. the left vertical, and optionally the right vertical
axes. The axis choices are T(time). W(frequency rad/sec), F(frequency Hz),
R(real), I{imaginary), M(magnitude), and P(phase). Each can be prefixed
with L(log;o) or D(dB), with no prefix defaulting to linear. For example:

TR (time plot for simulation data)

LWLM (magnitude Bode plot with logio scaling)

LWLAMP (same including phase)

LWDM, LWDMP, LEFDM. WM. FM, WD) (Bode variations)
RI (Nvquist)

PLA. PDM (Nichols)

In the following example a state space simulation is computed and then
plotted. The parameters which set up the simulation are not shown here:

STATE>SIMULATION,P1, ...
STATE>PLOT,P1,TR,AUTO

And a multivariable frequency file is plotted:

STATE>FREQ,P, .01,100,60
STATE>PLOT, P.G, LWLM, AUTO

The FREQ file created for transfer functions can be directly plotted by the
PLOT command. though the plot options are not as convenient:

CC>FREQ,G,.01,100,100
CC>PLOT,FREQ,LWDMP, AUTO

(Th

A.6 The DATA Command Level

Data files are either time sequences or frequency data files as created by
Program CC commands. The file structure is very simple, however, and
data from any other source can be used. The file structure is:

#rows, #columns, type (0=real, 1=complex)
index

real or complex matrix entered row--wise
index

real or complex matrix entered row-vise

The numbers are stored in ASCII format, and are separated by blanks, com-
mas, semi-colons, or carriage returns. Two carriage returns in a row is inter-
preted as a zero. The data file is stored on disk with the name $$name.ext.
and referred to in the DATA command level sans $'s as name.ezt.

The DATA command level is used to change and algebraically combine
data files. The data files are plotted using the PLOT command, which can
be called from any command level.

An equation interpreter can be used in the DATA command level to
algebraically combine data files, for example:

DATA>t=pl.g*p.g
DATA>t=t/(i+t)

It is of course best not to let intermediate files proliferate.

Among the most sophisticated commands are those for computing eigen-
values, singular values, and structured singular values of frequency files:
respectively EIGENVALUE., SVD. and FMU. For example, to obtain a sin-
gular value plot:

DATA>SVD, P.G, P.S
DATA>PLOT, P.S, LWDM, ALL, AUTO

A.7 Making Macros

There is a great reluctance to using macros. Somehow they must pe terribly
difficult. They are not — but they do require some learning. The author
freely admits reluctance to learn macros from other programs. which for the
most part are no more difficult, but always just a little bit different. than
those in Program ('C.

69

Follow step by step the creation of the STBODE macro for creating a
standardized Bode plot:

CC>MACRD
MACRO>ADD
bode,3,0,auto,2,-60,60,6,auto

MACRO>STORE,STBODE
MACRO>QUIT
CC>Q¢STBODE

Now create a different version of the STBODE macro which first com-
putes the frequency file of an arbitrary transfer function:

CC>MACRO

MACRO>ADD

freq,&1,.01,100,60
bode,3,0,auto0,2,-60,60,6,auto

MACRO>STORE,STBODE
MACRO>QUIT
CC>Q@STBODE, G50

The DAMP macro creates a transfer function with an arbitrary damping
ratio. after first echoing a message:

CC>MACRO

MACRO>ADD

echo, &1 = transfer function with &2 damping ratio
£1=10x(s+1)/s/(872+2+22+104+5+100)

MACRO>STORE ,DAMP
MACRO>JVJIT
CC>QDAMP,G10, .1

The STATE commands RICCATI and LQR are combined in the fol-
lowing macro. The parameters are echoed, and then the PAUSE command
gives the user to abort with the F1 function key.

CC>MACRO
MACRO>ADD
echo, The LQR1 Macro

echo, &1 = system

echo, &2 = state weight Q

echo, &3 = input weight R

echo, &4 = input parameter rho
echo, &5 = Riccati solution P
echo, &6 = LQR gains F

echo, Hit F1 to abort, any other key to continue
pause

state

&6=1(a) & &5=21(b)/(&4*&3)+&1(b)
riccati,&6,22,&5,45
£6=(24+83)\&1(b) ' %&5

echo, End of LQR1 macro

MACRO>STORE,LQR1
MACRO>QUIT
CC>QLQR1,P,P1,P2,1e-4,P3,P4

Okav. so that one wasn’t so easy.

The MACRO command level is a mini-text editor. So far you've seen
the ADD and STORE commands. There are several more commands to
do things like LIST. SEARCH. DELETE, and REPLACE: but rather than
explain 1t here just use the HELP command.

Everyvthing that gets entered goes into HISTORY file (disk file SSHIS):
which can be recalled in the MACRO command level. edited. and played
back as a demonstration. Orif vou want to create a standard plot but cannot
remember the parameters, then create the plot once using prompts and build
a macro which includes the prompts. Plot labels get stored along with the
cursor m« ments, which show up in the HISTORY file as weird symbols.
Here's a simple example. with no editing, of a demounstration macro:

CC>MACRO
MACRO>HISTORY
MACRO>STORE,DEMO
MACRO>QUIT
CC>@DEMO

If vour disk space is limited and the HISTORY file is getting too long, delete
it by leaving CC and returning, or more elegantly by using the TRUNCATE

command:

CC>MACRO
MACRO>TRUNCATE, O
MACRO>QUIT

Okay, that’s enough. Macros aren't so tough. I won’t pressure you into
learning more.

B Macro Listings
ocMYC1

echo, OCMYC1 Macro

echo, Purpose: Create (Y_c)_all with driving noise at output
echo, (Y_c)_all=(1;s)*(Gi,Gj)

echo,

echo, SISO controlled system (Gi) = &1

echo, SISO noise filter (Gj) = &2

echo, MIMO (Y_c)_all (Pi) = &3

echo,

echo, Hit function key F1 to abort, any other key to continue
pause

state

£3=(&1,&2)

&3(c,0,1)=23(c)*(&3(a),&3(b))

quit

echo, Finished 0OCMYC1

OCMYC2

echo, OCMYC2 Macro

echo, Purpose: Create (Y_c)_all with driving noise at input
echo, (Y_c)_all=(1;s)*Gi*»(1,Gj)

echo,

echo, SISO controlled system (Gi) = &1

echo, SISO noise filter (Gj) = &2

echo, MIMO (Y_c)_all (Pi) = &3

echo,

echo, Hit function key F1 to abort, any other key to continue
pause

state

&3=g1%(1,22)

£3(c,0,1)=&3(c)*(&3(2),&3(b))

quit

echo, Finished OCMYC2

OCMYC3

echo, OCMYC3 Macro

echo, Purpose: Create (Y_c)_all with general driving noise
echo, (Y_c)_all=(1;s)*Gi*(Gj,Gk)

echo,

echo, SISO controlled system before noise (Gi) = &1

echo, SISO controlled system after noise (Gj) = &2

echo, SISO noise filter (Gk) = &3

echo, MIMO (Y_c)_.all (Pi) = &4

echo,

echo, Hit function key F1 to abort, any other key to continue
pause

state

£4=81%(22,23)

£4(c,0,1)=24(c)*(24(a),24(b))

quit

echo, Finished OCMYC3

OCMALL

echo, OCMALL Macro

echo, Purpose: Complete human OCM problem, using defaults
echo,

echo, (Y_c)_all = &1

echo,

echo, Replaces OCMLQR, OCMSETUP, and OCMKBF
echo, F1 to abort, any other key to continue
pause

Cocmlqr,&1,1,1e-4,.1,.001
Qocmsetup,!,.2,-20,-20,-20,1e-2,1e-2,1,0,0,1
Qocmkbf, .1

Qocmpilot,.2,2

echo, Finished OCMALL

OCMLGR

echo, OCMLQR Macro

echo, Purpose: Adjust LQR weights for tau_N
echo,
echo, Y
echo, q
echo, g
echo, t = &4

echo, thresh = &5

echo,

echo, Use Function Key F1 to abort, any other key to continue
pause

state

p=&1

pe=&2

p3=&3

quit

ocm,lqr,&4,&5

echo, Finished OCMLQR Macro

echo, Next use OCMSETUP and OCMKBF Macros

OCMSETUTY

echo, OCMSETUP Macro
echo, Purpose: Setup KBF iterations for Human OCM
echo,

echo, intensity of driving noise: V_w = &1

echo, visual delay: tau = &2

echo, y_1 noise ratio (dB): rho_(y_1)
echo, y.2 noise ratio (dB): rho_(y_2)

&3
&4

-1
ot

echo, u_a noise ratio (dB): rho_(u_.a) = &5

echo, initial y_.1 noise intensity (non-zero): V_(y_1) = &6
echo, initial y_2 noise intensity (non-zero): V_(y_2) = &7
echo, initial u_a noise intensity (zero okay): V_(u_a) = &8
echo, y_1 indifference threshold: T_1 = &9

echo, y_2 indifference threshold: T_2 = &10

echo, axis fractional attention: f = &11

echo,

echo, Execute after OCMLQR

echo, Hit Function Key F1 to abort, any other key to continusz
pause

state

echo,====-=emmmcmcc e e Augmentation

p5=p4(1,cdim(p4))

p6=(p4(1,1:cdim(p4)-1)/p5,0)

p7=chst((-p5,p5:;1,0),1)

echo,======-=v--cococooonno Setup KBF problem

p8=p(,1)*p7

p9=p8(a) & p9=chst(p9,rdim(p9))

expon,p9,p9,&2 & p9=chst(p9,0) & analog
p10=p(b,,2)*&1%p(b,,2)’

pl1=0

p12=(&3,%4,25,89,%210,&11,&2)

p13=(&6,87,48)

quit

echo, Finished OCMSETUP Macro

echo, Next use OCMKBF Macro

OCMKBF

echo, OCMKBF Macro

echo, Purpose: KBF/linear predictor iterations for OCM
echo,

echo, noise ratio threshold (dB) = &1

echo,

echo, Execute after OCMLQR and OCMSETUP

6

echo, Hit Function Key F1 to abort, any other key to continue
pause

ocm,kbf,&1

echo, Finished OCMKBF Macro

OCMPILOT

echo, OCMPILOQOT Macro

echo, Purpose: Create SISO state space models of Y_p and Y_cl
echo,

echo, Visual delay: tau = &1

echo, Order of Pade approximation of delay = &2

echo,

echo, Execute after OCMLQR, OCMSETUP, and OCMKBF

echo, Hit function key F1 to abort, any other key to continue
pause

state

echo,---=----->--oouu--- Augmentation preliminaries
pade,p500,41,&2
p501=(p8(a)-p15*p8(c),-p8(b)*p500(d) *p6,p8(b) *pS00(c))
p502=(-p9*p15*p8(c), (p8(a)-p8(b)*p6; -p500(b)*p6,p500(a)))
p501=(p501;p502)

p502=(p15;p9*pi5;0*pS00(b))

p503=(0+p6,-p500(d)*p6,p500(c))

pack,p501,p502,p503,,p500

p24=pS00
p24(b)=(p24(b,,1)+p24(a)*p24(b,,2) ;p24(c)*p24(b,,2))
p24=p7*p24(,1)

echo,-==~-----------cmunomo Closed loop system
p25=(p*(p7+(p500,1)#1))1-(1,0;0,1;0;0)
p25=p25(1)

kill,$$p500 & kill,$$p501 & kill,$$p502 & kill,$$p503
quit

echo, End of QCMPILOT Macro

echo, Continue analysis using OCMG and OCMFREQ1!

OoCMG

echo,
echo,
echo,
echo,
echo,
echo,
echo,
echo,
pause
state

OCMG Macro
Purpose: Ccnvert Y_p and Y_c from state space to tfs

= &1
Y.c: G_j = &2

"'<
jae)
<«
1
[
|

Execute after OCMPILOT
Hit function key F1 to abort, any other key to continue

p500=p(1,1)
fadeeva,p500,&2
kill, $$p500
gep,p24,&1

quit

near,&1,&1,1,1e-4
near,&2,22,1,1e-4

echo, End of OCMG Macro

echo, Con%inue analysis with regular CC commands
OCMFREQ1

echo, OCMFREQ1 Macro

echo, Purpose: Create freq plots of Y_p, Y_c, Y_p*Y_c, Phi
echo, Assumes Y_p=P24 and Y_cl=P25 computed using OCMPILOT
echo,

echo, low freq = &1

echo, high freq = &2

echo, # points (log spaced) = &3

echo,

echo, Execute after OCMPILOT

echo, Hit function key F1 to abort, any other key to continue
pause

state

echo,-=---==-=---~-----v-- compute yp, yc, and yp*yc
frequency,p24,£1,£2,83

kill,$$yp & rename,$$p24.g,$8yp

pS00=p(1,1)

frequency,p500,%1,82,&3

kill,$$yc & rename,$$p500.g,8$yc

data

yPyc=yp*yc

echo,=======---c--cooooo compute pni

state

p500=p25(,1:3)

p501=diag(p13)

frequency,p500,&1,&2,&3

kill,$$phi & rename,$$p500.g,$$phi

data

phi=phi*p501%phi’

phi=phi/p20(1,1)

phi=phi~.5

phi=real(phi)

kill,$3pS00 & kill,$$p501
echo,~~--=-=-=-=-----~----- plot result
plot,yp,lwdm,all,auto,-60,60,6,"Y_p, Y_c, Y_p*Y_c, and Phi"
A

YC

ALL

YPYC
ALL

PHI
ALL

70

OCMFREQ2

echo, OCMFREQ2 Macro

echo, Purpose: Create freq plot of Y_p, Y_c, Y_p*Y_c, and Phi
echo, Uses exact calculation of delay

echo,

echo, tau = &1

echo, low freq = &2

echo, high freq = &3

echo, # points = &4

echo,

echo, Execute after OCMLQR, OCMSETUP, and OCMKBF
echo, Hit function key F1 to abort, any other key to continue
pause

state

echo,---------eccooueeca- Compute Y_c

p500=p(1,1)

frequenzy,p500,&2,%3,&4

kill,$$yc £ rename,$$p500.g,8$8$yc
echo,-=-------=cocuncoco- Compute Y_p
pS00=(p8(a)-p15*p8(c);-pI*p15S*p8(c),p8(a)-p8(b)*p6)
p501=(p15,p8(b) ;p9*pi5)
p501=(pS501,p501(,1)+pS00#pS01(,2))

p502=(0*p6,-p6)

p503=(0,0,0,p502#p501(,2),
pack,pSOO,pSOl,p502,p503,p500
frequency,p500,&2,83,24

kill,$$t & rename,$$p500.g,$8t

int,pS00 & dig,&! & frequency,p500,£2,23,24 & analog
kill,$8¢delay & rename, $$p500.g,$8delay
frequency,p7,&2,43,%4

kill,$$nm % rename,$$p7.g,$¢nm

pS01=diag(p13)

*t = (H,F,H_3), delay = exp(-s*tau), nm = neuro-muscular
data

yp=nm*delay|-t(,3)%t(,4)

yPyc=yp*yc

echo,=-==------------- Compute Phi

N

delay=delay|-t(,3)
delay=delay*t(,1:2)
delay=(delay,1)
phi=ycl-yp
phi=phi*nm
phi=phi*delay

phi=phi*p501*phi’

phi=phi/p20(1,1)

phi=phi~.5

phi=real(phi)

kill,$$pS00 & kill,$$pSO1 & kill,$$p502 & kill,$$p503
kill,$8delay & kill,$$nm

echo,-===~-=-=--=--cc--- plot result
plot,yp,lwdm,all,auto,~60,60,6,"Y_p, Y_c, Y_p*Y_c, and Phi"
A

YC

ALL

2

A

YPYC

ALL

PHI
ALL

EX1

echo, Enter controlled system (2 different ways)
state

p40=(-2,0,0,1; 1,0,1,0; 0,1,0,0; 1,0,1,0)

cC

yc=1/s

yw=1/(s+2)

Cocmyc2,yc,yw,p40

state

p40=p40(s,(2,1))

p4o0

echo, Solve the OCM
@ocmlqr,p40,1,.00017, .08, .001
Qocmsetup,8.8,.15,-20,-20,-25,.00371, .09687,.04315,0,0,1
Qocmkbf, .1

Qocmpilot, .15,2

state

gep,p24,yp

YP=-YP

echo, Low order tf approximations
near,yp,ypl,1,1le-4
lfapprox,ypl,yp2,5,1

EX?2

echo, Enter controlled system
yc=1/s"2

butter,yw,.5,2

Qocmycl,yc,yw,p40

echo, Solve the OCM
Q@ocmlqr,p40,1,6.4053e-5,.1,.001
Qocmsetup,1,.2,-20,-20,-20,5.1223e-4,3.7070e-3,8.3460e-2,0,0,1
Qocmkbf, .1

Echo, Low order tf approximations
state

gep,p24,yp

cc

yp=-yp

near,yp,ypl,1,1e-4
lfa,ypt,yp2,5,1

near,yp2,yp3,1,.2

EX3

echo, Enter controlled system
senter,yc,3,0,4,1,.04,1,.9,3,1,0,2,.7,.25,1,5
senter,yw,1,0,.2219,1,2,.7,.5

Q@ocmycl,yc,yw,p40

echo, Solve the OCM, full attention case
Qocmlqr,p40,1,.00018, .1, .00t
Qocmsetup,1,.2,-20,-20,-20,.0002707, .002026, .006276, .015,.025,1
Qocmkbf, .1

Echo, Low order tf approximations

Qocmpilot, .2,2

state

gep,p24,yp

cc

yP=-YP

near,yp,ypl,1,1e-4

1fa,ypl,yp2,8,1

near,yp2,yp3.,1,.3

Echo, Fractional attention cases

p12(1,6)=1/2 & Qocmkbf, .1

pi2(1,6)=1/3 & Qocmkbf,.
p12(1,6)=1/4 & Qocmkbf,.
p12(1,6)=1/5 & Qocmkbf, .
p12(1,6)=1/6 & Qocmkbf, .

—_ s pa

=3

References

(1]

[2]

(3]

(4]

[10]

(1]

D.L. Kleinman, S. Baron. and W.H. Levison. An Cptimal Control Model
of Human Response, Part [: Theory and Validation, Automatica. Vol.
6, pp. 357-369. 1970.

K.M. Doyle and W.C. Hoffman. Pilot Modeling for Manned Simula-
tion. Volume I1: Program User's Manual (PIREP). AFFDL-TR-76-124
Volume II, Aerospace Systems, Inc.. Dec. 1976.

P.M. Thompson. Program CC Version 4 Tutorial and Reference
Manual, Systems "_chiology. Inc.. 1988,

S. Barou. D.L. Kleinman. D.C. Miller. W.H. Levison and J.I. Elkind.
Applicatioi. of Optimal Control Theory to the Prediction of Human Per-
formance in a Compler Task. AFFDL-TR- 69-81. Bolt. Beranek and
Newman, Inc.. March 1970.

D.L. Kleinman. Optimal Control of Linear Systems with Time-Delay
and Observation Noise, IEEE Trans. Auto. Control. Oct. 1969.

W.H. Levison. J.I. Elkind. and J.L. Ward. Studics of Multivariable
Manual Control Systems: A Model for Task Interference, NASA CR-
1746, May 1971

W.C. Hofflman. R.E. Curry, D.L. Kleinman and W.\. Hollister, Dis-
play/Control Reqpuirements for VVTOL Aircraft. ASI-TR-75-26. Aug.
1975,

] W.H. Levison. S. Baron and Junker, Modeling the Effects of Environ-

mental Factors on Human Control and Information Processing, AMRL-

TR-76-74.

R.E. Curry. W.CL Hoffman and L.R. Young. Pilot Modeling for Manned
Stmulation, Volume [0 AFFDL-TR-76-124 Volume 1. Aerospace Sys-
tems. Inc.. Dec. 1976,

R.AL Hess, Analysis of Aireraft Attitude Control Systems Prone to Pilot-
Induced Oscillations. J. Guidance. Vol. 7. No. 1. 1984,

R.O. Anderson. A New Approach to the Speeification and Evaluation

of Flying Qualitie s, WPAFB. Ohio, AFFDL-TR-69-120. 1970.

R

[12] J.D. Dillow and G.P. Picha. Application of the Optimal Piot Moddl to
the Analysis of Aircraft Handling Qualities, WPAFB, Ohio. AFIT-TR-
75-4, 1975,

. cidp M- -

- « - - -
(13] R.A. Hess, Prediction of Pilot Opinion Ratings Using an Optimal Pilot
Model. Human Factors, 19(5), pp. 459-475, 1977.

[14] D.K. Schmidt, Pilot/Vehicle Analysis of Multi- Azis Tasks. Notes, Pur-
due Univ. and Systems Technology, Inc., Sept. 1986.

[15] V. Dander, An Evaluation of Four Methods for Converting Single Azis
Pilot Ratings to Multi-Azis Pilot Ratings Using Fired Base Stmulation
Data, M.S. Thesis, AFIT, GE/EE/62-4. Dec. 1962.

(16] D. McRuer and D.K. Schmidt, Pilot-Vehicle Analysis of Multi-Azis

Tasks, AIAA Guidance. Navigation and Control Conference, Monterey,
CA. Aug. 1987.

.. Gaovernment Printing Office 1989 748-056 231343

