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Foreword

When a shock wave propagates in the deep-ocean sound channel, over-
pressure and/or impulsive translational velocity may be of concern to safe
standoff at convergence zone ranges (30-50 km). The wave's nonlinearity may
produce long-range propagation effects not described by linear acoustic models.
NORDA's nonlinear progressive wave equation (NPE) model is being tested 0
for use by Sandia National Laboratory in predicting the evolution of nonlinear
waves over long propagation paths. Contemporary hydrocodes would be of
questionable utility in this problem because of their high operation count and
low sensitivity to small but cumulative environmental effects. This report
presents numerical results from the NPE model that illustrate nonlinear effects
for an ideal and a realistic ocean sound speed profile. One of these 0
effects has been identified as self-refraction, i.e., the wave's alteration of its
own ray paths. Self-refraction is to be expected on theoretical grounds, but
has not previously been demonstrated in long-range propagation results.

W. B. Moseley Tupaz, Captain, USN
Technical Director Commanding Officer



Executive Summary

The nonlinear progressive wave equation (NPE) model was developed by
the Naval Ocean Research and Development Activity during 1982-1987 to
study nonlinear effects in long-range oceanic propagation of finite amplitude
acoustic waves, including weak shocks. The NPE model has been applied to
propagation of a generic shock wave (initial condition provided by Sandia
Division 1533) in a few illustrative environments. The following consequences
of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a
decrease in shock strength versus range (a well-known result of entropy increase
at the shock front); (2) an increase in the convergence zone range; and (3) a
vertical meandering of the energy path about the corresponding linear ray
path. Items (2) and (3) are manifestations of self-refraction.
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Evidence for Self-Refraction in a Convergence Zone: NPE Model Results

1.0 Introduction is the acoustic density fluctuation about the local
The present approach' to modeling long-range non- environmental value. The time derivative

linear wave propagation was developed as a means ot
including finite amplitude effects (wave steepening and D a(3)
shock physics) in a multidimensional model which Dt a3t ' o (
recovers known acoustic limits in the far field. The
nonlinear progressive wave equation (NPE) model has is evaluated in a wave-following frame of reference
been derived from hydrodynamic equations to describe (Fig. 1) moving at the constant average sound speed
outgoing waves propagating near Mach i. The model co; co and c, (rz) are user-supplied values such that
can also be derived from a first integral of nonlinear the range-dependent environmental linear sound speed
wave equations used previously.2, 3 The NPE has been is c(rz) = c o + cm(rz). The coefficient of
shown 4 to be the nonlinear time domain counterpart nonlinearity 3 is taken to be 3.5 for the ocean. The
of the frequency domain parabolic wave equation (PE). lower limit of integration rf is taken in the quiescent
For an azimuthally symmetric ocean, the three- medium just ahead of the wave. The moving grid uses
dimensional NPE reduces to the initial value problem a reduced range coordinate, x - r - cot.

DR a (3 +, co R
t (cR + Co-R 2) r 2.0 Shock Propagation Calculations

Figure 1 illustrates the moving NPE grid used in the
c o  0 a2R calculations. For the cases presented here, the grid

- dr (1) consists of 351 by 376 points with horizontal and
2 azvertical mesh resolution of 3 m and 16 m, respectively.

where r is horizontal range from the source, z is depth, The grid window is thus 1.05 km wide and 6 km deep.
and Calculations were made on a Cray IS at Sandia-

Livermore, requiring an average of 45 CPU minutes

R P'/P0 (2) per case for propagation out past 60 km. Propagation
to 60-km range is accomplished in approximately 1400
to 1600 timesteps. A spherical shock wave descriptive
of a low- to medium-yield device (100- to 200-kt range)

NPE Context is taken to be the initial condition for calculations in
" Time domain this report. More accurate specification of yield is not
" Small angle propagation necessary for illustrative purposes, since overpressure
* Equations cast in pulse capturing frame
" Lowest order nonlinearity retained at fixed range is expected to scale roughly with the cube

root of the yield. In deference to the paraxial approxi-
: .. "mation inherent in the NPE, the initial disturbance is
/ . cut off outside an annulus of propagation angles within

±630 of horizontal. Numerical benchmarks against
linear analytic solutions confirm that high-angle wave
components surviving this truncation quickly fall
behind the moving grid (and thus do not contaminate

results) because of their decreased horizontal group
I velocity. The initial radial profile of the shock overden-

Figure 1. The NPE model is executed in a grid (dotted lines) sity R = p'/p 0 is shown in Figure 2. The radius of
moving at constant average sound speed c. with respect to the the shock is 280 m, and the peak overdensity 0.044
medium, behind the shock corresponds to an overpressure of



1.13 kbar (one atmosphere is 1.013 bar). For the (normalized to bulk modulus) and overdensity is
pressure range applicable to this source, overpressures negligible for this range of values. This test shows that
p' and particle velocities v may be obtained from the model does not suffer from excessive numerical
overdensities via (almost) linear algebraic formulae. dissipation, although local filtering in the form of flux
An overdensity of 10- 3 gives an overpressure of correction is used to prevent parasitic oscillations near
22.5 bar and a particle speed of 1.5 m/sec, or about shock fronts.
5 ft/sec. For water we assume nominal values for
sound speed co = 1500 m/sec and bulk modulus 2.2 Case 2-Optimal Convergence
poco = 22.5 kbar. At higher pressures, the Tait The "ideal sound channel" according to linear ray
equation of state for p' and a one-dimensional theory is of the form c(z) = Cmin cosh(rz/rcz). Rays
similarity solution for v are used: from a point source at (rz) = (0,0) meet perfectly at

p 1 a convergence point (ra ,0). Although nature does not
- ((I + R)n - 1) produce smooth, ideal sound channels, this case helps

P0 answer the question, What are the limiting effects at

f cdp convergence of a given source at a given depth?
v = Comparison of ideal and realistic sound channels canp

also give an indication of the sensitivity of results to

2c° ((I + environmental changes. Figure 4 gives an ideal sound
- n-1\(1 + R 2- -1), channel whose axis is at depth 1000 m for

Cmin = 1480 m/sec and r, = 50 km. Three NPE

n =7.15 (4) calculations for on-axis sources were performed for
sources scaled to peak overdensities 0+, 0.044, and
0.2, corresponding to peak pressures 0, 1.13, and

2.1 Case I-Control 8.44 kbar at 280-m radius. These illustrate the effects
A control calculation was performed for isovelocity of nonlinearity on the convergence zone. The 0'

water (c = 0) with the source at 1000-m depth. The scaling refers to a linear calculation done by deleting
resulting peak overdensity Rm behind the shock is the nonlinear term from the NPE. Linear results may
shown versus range in Figure 3. For r > 1 km, the be normalized arbitrarily for comparison with
result closely approximates the empirical r-1 .

1
3 power nonlinear results. These three sources are denoted

law observed for overpressures in experiments using below as Linear, 1 kbar and 8 kbar.
high explosives. The distinction between overpressure

RADIAL SHOCK PROFILE SHOCK STRENGTH
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X (M) Figure 3. NPE model result for peak overdensity versus range

Figure 2. Radial variation of water overdensity in a spherical resulting from the shock wave of Figure 2 in isovelocity water.
shock descriptive of a 100- to 200-kt device. The peak over- This result agrees closely with empirical power law behavior
pressure is 1.13 kbar, or 281 dB re lj.aa, observed with high explosive charges.
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Figure 4. "Perfect" sound channelfor a source at the 1000-m
depth. Convergence zone is at 50-km range.

Figure 5a gives peak overdensities and particle speeds
vmax versus range. Convergence zone focusing near
50-km range is evident for all three source levels. Note
the increased transmission loss in the nonlinear cases
relative to the linear case (the separation between the 15

three curves diminishes with range). This increase is
a physical result of wave energy being lost to dissipative 0 I
heating at the shock front. In all three cases, the full 10'
width at half-maximum of the focal region is approxi- 10-1 8 KB
mately 10 km. For the l-kbar source, an impulsive 8' K

particle speed of 2 ft/sec behind the shock occurs at 1 KB
range -53 km. The corresponding overpressure is INR
9 bars. Close inspection of Figure 5a reveals an increase 104 0 LINEAR

ot focal range with increased source strength, and is RANGE (kin)
more evident in the semilog plot of Figure 5b than inthe log-log plot of Figure 5a. This manifestation of 

10_1

a nonlinear effect is known as self-refraction. Figure 5. (a) Peak overdensity versus range for initial source
Increasing the amplitude from the Linear to the l-kbar pressures 1.13 and 8.44 kbar. A linear calculation is added
source increases the focal range about 5 km, or 10%. (normalized arbitrarily) to show trends in nonlinear attenuation
The reason the focal range increases with amplitude and focal range. (b) Same curves plotted semilog to show
is that until the shock is quite weak, the nonlinear increase in focal range and width offocal region with increased
contribution to the sound speed overshadows the source level.

environmental variation within the sound channel. This
results in an effective delay in environmental focusing
effects. An additional increase to the 8-kbar source calculation illustrates the peak pressure point's
broadens the focal region, but interestingly does not meander around the direct ray path. Note the rise above
appear to increase the focal range significantly. This the sound channel axis past the 50-km convergence.
point deserves further investigation. This is another manifestation of self-refraction; i.e.,

Figure 6 shows overpressure contours at times the ray path is affected by the amplitude of the wave.
corresponding to propagation ranges of 6.54, 37.74, Similar calculations (contour plots not given here) for
58.25, and 65.28 km for the 8-kbar source in the Linear and l-kbar sources show a monotonic increase
idealized sound channel of Figure 4.. The 8-kbar in meander with increasing source strength. This is
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Figure 6. Contour plots (snapshots) of overpressure during propagation through a convergence zone of the "~perfect" sound channel
of Figure 4. The source depth is 1000 m, and the initial pressure level 8.44 kbar.
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source at a 300-m depth. (No 8-kbar results are
PEAK PRESSURE PATH contained in Figs. 9 or 10.) Energy trapped in the

surface duct is evident for at least 30 km. Past this

-500- point, its level falls below the contour level needed to
resolve the main wave.

-1000-------- LINEAR ------ Figure 10 gives peak overdensities versus range for
-1500 Ks the calculation shown in Figure 9 and for two others

with sources (Linear and 1 kbar) at a 1000-rn depth
2000: ain the sound speed profile of Figure 8. This figure

- F shows the sensitivity of environmental focusing to the
2500 location of the source relative to the sound channel

_ 30o'- axis. For ranges greater than 7 kin, note the lower over-
) pressures for the 300-m source depth relative to the

M 3500 -  1000-m depth (the sound channel axis is at 1250 in).
-oo Linear and nonlinear curves for the 1000-m source

W -40 depth show that in this case nonlinearity has a smaller-4500 effect than placement of the source. The nonlinear
F result for the 1000-m source leads to a particle speed

-5000; of 2 ft/sec at ranges approaching 30 krn. When the

-55oo same source is placed at the 300-m depth, the over-
-0 density and particle speed at a 30-km range are lower

. .0 0 7 0 by a factor of 2. For this particular sound speed profile,RANGE (kin) the dominant focus for the 1000-m source depth occurson a caustic at approximately 2000-m depth. Even
Figure 7. Meandering of the peak pressure point about the axis though vessels are concerned with only the top few
of a "perfect" sound channelfrom Figure 6 and from calcula- hundred meters of the ocean, this result is not
tions at two other source levels. Linear ray theory in the absence irrelevant. Near islands or bathymetric features, such
of a free surface predicts a straight line along the channel axis. a deep, focused wave could be reflected by a sloping

shown in Figure 7 where the depth of the visible bottom and could reach the surface.
centroid of the maximum pressure contour is plotted Shock propagation results in ideal versus realistic
against range for Linear, l-kbar, and 8-kbar sources. environments for the Ikbar source at the 1000-rn depth
The linear path reasonably follows the channel axis (Fig. 5 versus Fig. 10) reveal the following similarities
in agreement with ray-trace predictions, until approxi- and differences. Nonlinearity in the realistic sound
mately 30 km, when the surface reflection begins to channel reduces the shock strength as a function of
interfere. The three curves for Linear, l-kbar, and range, but by a smaller amount than in the ideal sound

8-kbar sources effectively meet just past the 50-km channel. Nonlinearity also increases the primary focal

linear convergence zone. Past this point, the peak range from 24 km to about 27.5 kin, or roughly 15%

pressure path moves closer to the surface with (compared to 10% for the ideal sound channel). The

increasing source strength. Figures 5, 6 and 7 contain radial width of the focal region is approximately 7 km,

possibly the first demonstration of self-refraction in as corpared to 10 kr for the ideal sound channel.

a long-distance propagation calculation. It has,
however, been seen in a steady-state, boundary-forced 3.0 Summary
calculation. I Experimental observation of this effect NPE model results presented here for a low- to
apparently has not been attempted (A. V. Farnsworth, medium-yield device placed near the sound channel axis
Sandia Laboratories, private communication, 1988). lead to the following conclusions: (1) impulsive particle

speeds of order 2 ft/sec may occur near the first
2.3 Case 3-A Realistic Sound Channel convergence zone or deep-ocean caustic, depending on

Figure 8 shows a real ocean sound speed profile sound channel details; (2) this may happen in a circular
taken in winter near Bermuda. This profile was chosen band, which may approach 10 km in width, with
to illustrate ways in which a real profile can differ from average radius typically in the range 30 to 50 km; and
an ideal one in propagation effects. (No attempt has (3) the location of the convergence zone may be altered
been made to characterize statistical variations over in range and depth by the nonlinearity of the ocean's
an ensemble of real ocean profiles. The results of this response to the source. The latter is a model prediction
section should not be interpreted as "typical" until such of self-refraction and needs to be verified experimen-
a survey is made.) Cold surface water forms a surface tally. Each NPE calculation to ranges of 60 to 70 km
duct that can trap acoustic energy originating within on a grid of 351 by 376 points requires less than 1
the duct. Ray traces for sources at depths of 300 m CPU hour on a Cray IS. Calculations performed to
and 1000 m illustrate this, as well as the deep-ocean date represent only a small sample of geometries and
convergence zone. Figure 9 gives contour plots of over- environments that may be of concern in defining safe
pressure from a nonlinear calculation with the l-kbar standoff envelopes.
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Figure 8. (a) A winter sound speed profile taken near Bermuda. (b) Rays from a source at the 300-rn depth illustrate surface ducting.
(c) Rays from a source at the 1000-mn depth produce deep caustics.
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Figure 9. Contour plot snapshots of overpressure through a convergence zone of a 1.13-kbar source at the 300-m depth in the
winter sound speed profile of Figure 8. Surface ducting is evident out past 30 km.
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Figure 10. Peak overdensity versus range for a 1.13-kbar source in a winter sound speed profile: (a) log-log; (b) semilog coordinates.
Shown are results from a linear calculation for source depth of 1000 m, and nonlinear calculations for source depths of 300 m and
1000 m. Note the lack of focusing (Curve 3) when the source is far from the channel axis. Curve 3 is taken from the calculation
of Figure 9.
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