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Some Two-on-Two Homogeneous Stochastic
Combats*

A. V. Gafarian
University of Southern California, Los Angeles, California 90089 and
U.S. Army TRAC White Sands Missile Range, New Mexico 88002

and

K. R. Manion
U.S. Army TRAC White Sands Missile RLnge, New Mexico 88002

in this article we consider two versions of two-on-two homogeneous stochastic
combat and develop expressions, in each case, for the state probabilities. The
models are natural generalizations of the exponential Lanchester square law
model. In the first version, a marksman whose target is killed resumes afresh the
killing process on a surviving target; in the second version, the marksman whose
target is killed merely uses up his remaining time to a kill on a surviving target.
Using the state probabilities we then compute such important combat measures
as (1) the mean and variance of the number of survivors as they vary with time
for each of the sides, (2) the win probabilities for each of the sides, and (3) the
mean and variance of the battle duration time. As an application, computations
were made for the specific case of a gamma (2) interfiring time random variable
for each side and the above combat measures were compared with the ap-
propriate exponential and deterministic Lanchester square law approximations.
The latter two are shown to be very poor approximations in this case.

1. INTRODUCTION

The principal motivation for this work is the development of more realistic
small-to-moderate-size firefight models. It is an extension of the work started
in references [1] and [7] which treat the one-on-one and homogeneous
two-on-one stochastic combat models, respectively.

The overall framework within which all these works lie is described in
reference [3] where (1) a comprehensive examination is presented of the
nature of combat and the status of corresponding theory, and (2) a proposal
toward a theory of combat is set forth. The basic conclusion reached in
reference [3] is that current modeling, no matter how "realistic" it is claimed
to be, is deficient and not based on any firmly established theory. One only
needs to look at an application of the classical Lanchester square law to large
numbers of opposing forces (inserted as initial numbers) to see the following
two egregious assumptions, concerning the nature of combat:

*This work was partly supported by the Army Research Office, Contract No.

DAAL03-86-K-0037 and the U.S. Army TRAC, White Sands Missile Range. New
Mexico.
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I. Combat is homogeneous. This in effect assumes that in 1000-on-IO00
battles all the forces are simultaneously engaging the enemy in the same way.
Common sense dictates that the effects of cover, concealment, weather,
terrain obstacles, terrain corridors, the effective range of different weapons,
countless other environmental factors, and tactical deployment force the
opponents into many smaller firefights. An excellent field study in this con-
nection appears in reference [9] where it was found that a structured relation-
ship for the minibattles may be constructed showing how some battles occur
simultaneously (or in parallel) while others involve the participants in a series
of battles through time.

2. Combat is deterministic. To believe that combat is not stochastic would
require that if a firefight could be repeated under exactly the same conditions,
every event that occurred in the first replication would reoccur on, say, the
second replication in exactly the same order at exactly the same time. This
truly would be incredible. Stochasticitv in combat is indeed significant and an
extensive discussion of it may be found in reference [2]. In addition, reference
[9] describes an excellent experiment showing not only stochasticity in a
combat process but also its considerable variance.

We hold to the view described in reference [3] that the ultimate develop-
ment of realistic combat models involving large numbers of weapons will
depend on successfully modeling (1) the decomposition of the large battle into
the separate small engagements (in this connection see references [4] and [5]),
and (2) the attrition process in the separate engagements. This study is
directed toward (2), the realistic modeling of small-to-moderate-size engage-
ments.

Furthermore, we believe that to achieve realism in the attrition process we
must proceed, as it has generally been done in the physical sciences, from the
simple to the more complex. and so this study is the obvious successor model
to those described in references [1] and [7]. It provides what we believe to be
substantially more realism in the extant two-on-two stochastic (more ac-
curately, exponential) Lanchester square law combat models. It does so by
removing the extremely simplifying assumption that the interkilling time
random variable is the same negative exponential distribution (NED) from kill
to kill (this is a consequence of assuming that both the single-shot kill
probability and the NED interfiring time random variable are the same from
round to round). Allowing both the single-shot kill probability and interfiring
time random variable to vary from round to round, of course, complicates the
analysis substantially and numerical techniques are required to produce state
probabilities in any specific case. We do, however, retain the homogeneity
assumption that all combatants on a side possess identical characteristics (but
which are not necessarily the same for both sides).

The two-on-two raises the question of how a marksman whose original
target is killed by another handles a surviving target. In this article we
consider two versions of how this situation is dealt with. In the first version the
marksman starts the killing process all over again on the surviving target, and
in the second version the marksman uses up the remaining time to a firing (or
a killing) on the surviving target. In the exponential Lanchester case there is
no difference in these two versions because of the no-memory property
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associated with the exponential random variable. in each of these versions we
hare allowed all possible values for a side's breakpoint (the number of survivors
at the time the side loses).

In the following sections the problem is precisely formulated for both
versions and the state probabilities are then derived. These state probabilities.
which are functions of time, contain all the pertinent information about this
nonstationary stochastic process, and, in fact, in terms of them we can write
expressions for the following important combat measures of effectiveness:

1. The mean and variance of the number of sur\ ivors as they vary with time for each of
the sides. At i= -, this gives the mean and %,ariance of the number of suri\ors of the
battle for each of the sides.

2. The win probabilities for each of the sides.
3. The mean and variance of the battle duration time To. Actually one may write the

distribution function of battle duration FT,)(, in terms of the state probabilities and
the equivalent probability density function fr,,(t) in terms of their derivatives.

The technique used in this article results in n-fold iterated integrals for the
state probabilities. The integrands are complex products of the density and
complementary distribution functions of the interkilling time random variables
of both sides. The dimension of the n-fold integrals, for any particular state
probability, is equal to the number of kills corresponding to the state. Thus,
e.g., in the zero-breakpoint-for-both-sides case we get up to three-dimensional
iterated integrals; and the computation time to get all state probability
functions plus eight overall battle parameters is from two to three hours on a
Sperry 1100/82 when the interfiring time random variables are gamma(2) for
both sides.

We also note here that the present method certainly can be extended !o the
three-on-two and even the heterogeneous versions of battles up to that size,
where by heterogeneity we mean that the characteristics of the combatants on
a side are allowed to be different; and these extensions are presently under
way. Desirable as it is to have exact solutions, in view of the computer times
involved in using the present approach. we feel that alternative methods must
be considered. These include the following:

I. Simulation. We have already developed arbitrary ao-on-bi versions of
these models, including the requisite statistical techniques for their use. We are

ACoesgiot For presently in the evaluation process.
. .. __ 2. Approximalions. We have defined a nonhomogeneous Poisson processJTIS GRA&I Qapproximation which results in vastly simpler analytical expressions for all the

DTIC TB [] parameters of interest and for which the computer time required to produce
Unannounced D answers in any specific case is substantially less than required b our exactJu t i to t I0o
____________ model. Furthermore, the simulation version of this approximation is much

By faster than the exact version. We are presently evaluating this approximation.
B - - 3. Other exact techniques. These may result in simpler expressions for the

Dis trlbution state probability functions than we have developed and, therefore, presumably
Availability Codes require much less computer time in any specific application. As of this time we

-vai "o have not come up with any such technique nor have we been successful inaspiorDl peool simplifying our results.
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2. THE MODELS

Two sides. A and B. conduct a continuous engagement satisfying the
following essentially Lanchester square law assumptions:

I. There are initially two on each side.
2. Every member of A side picks a B opponent at random (all are visible and in range).
3. Each marksman fires until killed or until his target is killed and resumes firing

immediately on the survivor in one of two distinct ways which are described below and
denoted a% Versions I and 2.

4. The interkilling time random variable does not change from kill to kill and is identical
for all members of the A side.

5. All tire indcpendentls.
6. The ammunition supply is unlimited.
7. Simular assumptions apply to the B side.
K. The battle continues until one side reaches its breakpoint (the number on a side at the

time it losest.

The two modes of resuming firing on a survivor are as follows.
Version 1. Consider a given marksman firing at a target. Whether his

target is killed by him or the other member of his side, he resumes afresh the
interkilling process on the survivor.

Version 2. If the marksman's target is killed by him, he starts afresh the

interkilling process on the survivor. If, on the other hand, his target is killed bN

the other member on the side, his remaining time to a firing (or a killing) is
carried over to the survivor. The jargon we use to describe Versions I and 2
are "reselect on" and "reselect off," respectively.

When we consider all the possible breakpoints for sides A and B, respec-
tively, we get a total of five models. These are shown in Table I below with a
model numbering scheme for ease of reference.

3. GENERAL SOLUTIONS

Our solution technique will depend on knowing the interkilling time random
variable's density and complementary distribution functions for each side. So
long as they can be described analytically or developed in tabular form (with

exact entries using some numerical techniques or estimated usitig Monte
Carlo) the formulas derived in this article may be used to compute the state

Table 1. A brief description of the five n' dols.

Breakpoints

Model no. Side A Side B "Reselect"

1.1 0 (1 on
1.2 0 0 ott

2.1 1 0 on
2.2 1 0 off
3 1 1 Not material
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probabilities and subsequently overall combat and time-varying characteristics
(this means, for example, that the models handle variable single-shot kill
probabilities and, for that matter, variable interfiring time random variables).
However, questions regarding ammunition consumption cannot be addressed
because our solution technique perforce loses all information on number of
rounds fired.

In this article the solutions to Models 1.1 and 1.2 are given in some detail.
These two have the largest number of states and are the most difficult to treat.
In particular, we begin this section with Model 1.1 and proceed far enough
along to give the reader some notion of how state probabilities are derived and
then place the remainder of the derivations for Model 1.1 and all of Model 1.2
in Appendix 1. There we present also only the results for the other breakpoint
combinations (three more models).

Notation we use throughout the remainder of this article is as follows:

ao = the initial number on side A (at time 0)
at = breakpoint for side A. i.e., the number on side A at the time the A side

loses (breaks and runs)

bo = the initial number on side B (at time 0)
b! = breakpoint for side B, i.e.. the number on side B at the time the B side

loses (breaks and runs)

fA(t), GA() = density function and complementary distribution function for the time-to-
kill-of-a-passive-target random variable, side A

fj(t), GB(t) = density function and complementary distribution function for the time-to-
kill-of-a-passive-target random variable, side B

A) = random variable, number alive on side A at time i

B(t) = random variable, number alive on side B at time t
P.b(t) = P[.A(t) = a. B(t) = b], a state probability function
MA) = E[A(i)]. expected value of A(t)
mrB() = E[Bt)]. expected value of B(t)
orA(t) = standard deviation of A()
orB() = standard deviation of B(t)

Pfil = probability i side wins, i = A. B
T o = random variable, time duration of combat

GrT,(t) = complementary distribution function for TD
jr, = expected value of TD
r7o 

= standard deviation of T o

v, = mean interkilling time on side i. i = A. B

rA = 'IVA = A's kill rate (attrition coefficient for side B).
ri = Il/V = B's kill rate (attrition coefficient for side A)

and whenever the single-shot kill probability and interfiring time random
variables are the same from round to round we use the notation

pi = the constant kill probability of all constants on side i, i = A, B
A, = mean interfiring time on side i, i = A, B

FA = lIVA = PAlIA

fa = I/v 8 = PS/Mn8 .

In some of our calculations we use the backward recurrence time technique
to write the state probability equations. If at time t we define Y to be the time
since the last event (kill), then the first-order probability that an A marksman
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will kill in the interval (t, t+A) is given by

rA(y)A = fA(y)IGA(y)A.

and

rB( y)A = fB( y)/G8( y)A

for a B marksman. The r(y)s are the instantaneous kill rates for each
marksman. See [1] for a discussion of the backward recurrence time technique.

Model 1.1 (9o = 2, a, = 0; b0 = 2, bf = 0; "Reselect On")

The a;,.lyses for both Models 1.1 and 1.2 proceed in the order shown in
Figure 1; namely, we will write an expression for p22(t), then p12(t) and p2_t().
etc. In many of our considerations it becomes convenient to delineate the
various aiming configurations. Because of the homogeneity of the combatants
on each side the total number of distinct configurations is four, which is the
product of the two ways the As aim at the Bs (both As aim at the same B or at
different Bs) and the two ways the Bs aim at the As (both Bs aim at the same
A or at different As). The analysis for Model i.1 is carried out in terms of the
initial aiming configurations. Thus what we do is break up each of the states
shown in Figure 1, except (2, 2), into subsets that are associated with the initial
aiming configuration. We define these subsets now and the associated state
probabilities.

(0,2)

Figure 1. Sequence of states in the two-on-two combat with zero breakpoints.
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(0, 2)H

Figure 2. Decomposition of state (1, 2).

Let us first consider the state (1,2) and break it up into states (1, 2)( and
2(- ~V2~as shown in Figure 2. State (1, 2) )' is the state (1,2) achieved from the

initial aiming configuration in which both Bs are aiming at the same A and
(1. 2), 2

1 is the state (1,2) achieved from an initial aiming configuration in which
each B is aiming at a different A. The corresponding

P12 (t) = t) (0+ p 21 t).

Similarly.
(3), , .)

p2,(t)= p,(t) +p21t,

where the state (2. 1)(31 is state (2, 1) achieved from an initial aiming
configuration in which both As are aiming at the same B and state (2, 1)") is
state (2, 1) achieved from an initial aiming configuration in which each A is
aiming at a different B. The reason for naming these states as (2, I )(') and
(2, I )") instead of (2, 1)(') and (2, 1)'2), respectively, will become clear when we
write down the decomposition for the states (1 , 1 ), (0. 1), and (I, 0).

As far as states (0, 2) and (2, 0) are concerned, they may be decomposed
into the states shown in Figure 3, in which we have that

p2 )= (I) (2),

P(0 ) p)2(t) + PU2(t),

and

P2),(t) = p2,)(t) + p2,4(t).

As above, the superscripts (I) and (2) correspond to both Bs aiming at the
same A and each B aiming at a different A, respectively; whereas, the
superscripts (3) and (4) correspond to both As aiming at the same B and each
A aiming at a different B, respectively.

(0,2) (2,0)

Figure 3. Decomposition of states (0, 2) and (2, 0).
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(0,1 )l 11M ,))

Figure 4. Decomposition of states (0, 1), (1.1), and (1,0).

We Finally decompose the states (1, 1), (0, 1), and (1.0) into the states shown

in Figure 4. In thinking of these states the reader should clearly keep in mind

the meaning of the superscripts (i), i = 1, 2, 3, 4. They are

(I) Initially both Bs are aiming at the same A and the first kill is of an A by a B.
(2) Initially each B is aiming at a different A and the first kill is of an A by a B.
(3) Initially both As are aiming at the same B and the first kill is of a B by an A.
(4) Initially each A is aiming at a different B and the first kill is of a B by an A.

Bearing this in mind, (0, 1)"' ), say, is a state resulting from a B achieving the

first kill, follow, d by the surviving A killing a B, and finally the surviving B

killing the surviving A, and all this from an initial aiming configuration in

which both Bs were aiming at the same A.
I. p22(t). We begin by setting down immediately

P22(t) = (GA(t)) 2 (GB(t)) 2 . (1)

which merely states that each of the contestants has a time to kill > t.

2. P12(t), p21(t). To compute p12(t) consider Figure 5 below, which shows

that an A is killed by a B in the time interval t - 17 - d 7 , t - r/) with no

subsequent killings until beyond t. Now either both Bs were aiming at the

same A or they were not. Each of these initial aiming configurations has

probability of 2. We now define p(12(t, 71) d= probability that both Bs are

aiming at the same A, one of the Bs kills an A in (t - 1/- d-q, t - TI), and there

are no other killings until beyond t, and p(t12(t, -q) d27 = probability that each B

is aiming at a different A, one of the Bs kills an A in (t - dr-, t - -q), and

there are no other killings until beyond t.

Once we write expressions for p(1W)(t, -q) and p(12, 7) we can get p12(t) as

1)(t) + n r2))1 + 1) (2)

P12(t) P( 2 " dyl xP2 q) P12 0, I

0 t

x a B kills an A in (t-q-dr), t-r')

Figure 5. Definition of the variable q1 for the computation of pi(t).
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Let us first consider p(j')(t. "I) dj. It can be written, because of the in-
dependence assumption of all the firers, as ! times the product of

2fi(t)- 7 d-q = probability that one of the two Bs kills an A in the time interval
(t- )7 - dr?. t- I)

G (t- 77) = probability that nonkilling B has a kill time > t - r/
(Gs(r))2 = probability both Bs start over again on surviving A at time t- 7 and

have a kill time > Tj

(;t - ") -= probability that killed A had a time to kill > t - 71.

and finally G,(t) = probability that the surviving A has a time to kill > t. Thus

P(,(t , i )= (1/2)[2f(t- ")GB(t- -q)(G (1))2 GA(t- T) GA Wt]

Similarly,

p2(t, TI) = (12)[2fB(t- 1l)GB(r)Ga(t)GA(t- r)GA(t)].

where

2fa(i- 1) dit = probability one of the two Bs kills an A in the time interval (t - 1t -
di?. I - 1t)

GB(it) = probability that he killing B starts the firing process all over on surviving
A and has a time to kill > -q

GB(t) = probability nonkilling B has a time to kill >t
GA)t - 1t) = probability that killed A had a time to kill > r - 7).

and finally GA(t) = probability that the surviving A has a time to kill > t. Thus
we get

P12(t) = GA(t) I drfB(t - TI)GB( - rl)(GB())2 GA( -

+ Gi(t)GA(t) d7fB(t- -q)GB(-q)G,%(t- -q). (2)

Obviously by an interchange of subscripts we may write

p2i(t) = Gn() drlfA(t- i7)G,(t- Tj)(GA(r-)) 2
Ga(t- TI)

+ G,3 (t)GA(t) f dlfA(t - i)GA(71)Gfl(t - TI). (3)

The remainders of all state probability derivations appear in Appendix 1.

Combat Figures of Merit

The transient state probabilities P22(t), p2(t), p2l(t), and ptl(t) along with

the absorbing state probabilities p,(t), P112(t), pto(t), and po (t) provide all the
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information necessary to compute the following commonly used figures of
merit.

1. The expected value and standard deviation of the survivors on both side
A and side B as a function of time. For side A

MA(t) = IP[A(t) = l]+2P[A(t) = 2]

= 1(plo(t)+pI(t)+p1 2(t))+2(p2 (t)+p 21 (t)+p-2(t)). (4)

Computing E[A 2(t)] = 1 P[A(t) = 1] + 4P[A(t) = 2]

will then provide

oA(t) = (E[A2 (t)]- An.(t))I2. (5)

Similarly,

MB(t) = l(po(t) + p, I(t) + ph(t)) + 2 (po2(t) + p 12(t) + P22(t) (6)

and

UB(t) = (E[B(t)]- mB(t))1 /2, (7)

where

E[B 2(t)] = 1 P[B(t) = 1] + 4P[B(t) = 2].

In particular we get the expected values and standard deviations of the
number of survivors on the A side and B side by letting t-- in Eqs. (4)-(7).

2. The expected value and standard deviation of TD the time duration of
combat. These are computed using the well-known integral formulas, derived
by an integration by parts, for the first and second moments of a generic
non-negative random variable X with finite second moment, and com-
plementary distribution function G(x), namely

E[X] = f G(x) dx, E[X 2] = 2 xG(x) dx.

The standard deviation is computed as (E[X 2 ]- E 2 [X])1"2 . In the case of time
duration of combat we use the obvious result that

GTD(t) = P22(t) + P21(t) + p12(t) + P1 1(t).

Thus

9, =I (P22(t) +/h2 I (t) + P2 It) + P1 2(t) + p, I(t)) dt (8)

and

( IE[ T D Tto 1/2 (9)
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where

E[TL] =2 f'((P22(1)+P 21(t)+P12(t)+pll(t))dt. (10)

3. The probabilities of win by the A side and B side. These two prob-
abilities. P[A] and P[B], respectively, are obviously given by

P[A] = lim (p2,)(t) + pI,(t)) ... 1)

and

P[B] I - P[A] = lim (P02(t)+ P1(0)). (12)

4. COMPARISONS BETWEEN SOME LANCHESTER MODELS

In this section we present the results of a study making use of the solutions
developed in this article. The main purpose of this study was to evaluate how
well the classical square law deterministic and exponential interfiring time
Lanchester models approximate Models 1.1 and 1.2 (i.e., zero-breakpoint-for-
both-sides cases) in situations where we allow either one or both of the sides to
have a gamma(2) interfiring time and single-shot kill probability which do not
vary from round to round.

The comparisons were motivated by the fact that it is common in combat
models where it is known that the interfiring times are not exponential, to
assume they are and use the means of the true distributions. Thus, if gz is the
mean of the true interfiring time distribution, the killing rate r, is taken to be
p/it (done appropriately for each side) and either the exponential Lanchester
(both sides exponentially distributed) or the deterministic Lanchester
differential equations are used with the appropriate p/gs as the attrition
coefficients. For a further discussion of these matters, see references [2], [6],
and [8].

It should be noted that in the literature the exponential interfiring time
model is usually referred to as the stochastic Lanchester model. In our view
this is bad jargon because any random interfiring time is stochastic in nature.
We believe it more accurate to modify the word Lanchester with, for example,
constant, exponential, gamma(2), or lognormal in the cases when the in-
terfiring times are constant, exponential, gamma(2), or lognormal random
variables, respectively. Using the word Lanchester, however, is appropriate
since the basic assumptions of independent firers, random selection of targets.
etc., is a common thread. We also reserve the words "deterministic Lanches-
ter" to mean the classical differential equitions of combat in which there is no
randomness.

A perusal of the general results of the previous section and Appendix I
shows hat the only functions required to compute the varicus state prob-
abilities are the interkilling time density and complementary distribution
functions for sides A and B. The generic versions of these two functions for
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the constant round-to-round exponential interfiring time density function and
single-shot kill probability are well known and given by

f(t) = (p/)e - 'I1 ', 1- 0

0, otherwise,

and

G(t) - e - p y ), t>

- 0, otherwise,

where

ti = mean interfiring time,

p = kill probability.

For the gamma(2) interfiring time random variable density function, given
by

g(t) = (4/p.2)te - 21 ' )', t '0

= 0, otherwise,

we compute the interkilling time random variable density function by first
writing its distribution function

F(t)=P[T t ]= t P[T t IN=n]P[N=n]

= Z H.(t)pq"-',
n=1

where T = interkilling random variable, N = round number on which the kill
occurred, H,(t) = n-fold convolution of the interfiring time distribution H(t)
with itself, p = kill probability, and q = I - p.

Differentiating gives the density function

f (t) h (t)pqn-
'
, 

t>_O

0, otherwise.

Now the n-fold convolution of a gamma(2) is a gamma(2n) and is thus given
by

[(2/ )]2 - (2/1A)e-21sA , 1-,
(2n- 1)!

(, otherwise.
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so that the above infinite series may be written as

2(pilA)e - (21,,) , *  [(2/px)tq 1/212 - 1

P)= 1/2 - (-1) -, -2

= 0, otherwise.

The series on the right is recognized as the hyperbolic sine so that

f(t)- qt /2  sinh[(2/t)tq"I2], t_-0

= 0, otherwise.

f(t) may also be written in its exponential form

(P/ )e -(2/;,)t (, / , ),,,1/ 2 - e-21,')Lq"2, t-
f(t) = q 1/2 (e - -) 0

= 0, otherwise,

from which we then get by integration that

pe-2__ , [e, - ' :

2q 12  q -112  +-q12 J -0

=0, otherwise.

A very important characteristic to note about the two interkilling time
random variables is that in the exponential interfiring case the interkilling time
depends only on the kill rate r = p/,p but in the gamma(2) case both the kill
rate p/p = r and the kill probability p (or mean interfiring time .) must be
specified.

Our study consisted of computing the relative difference that obtains when a
figure of merit for a combat is computed using the hypothesized interkilling
time random variables for each of the sides and using either the exponential or
deterministic approximation. Relative difference (in percent) here is defined as

6G - 0
Ox 100,

where 0 c, = generic figure of merit in the hypothesized case, and OA = the same
figure of merit in either the exponential or deterministic approximation to the
hypothesized case. Thus, for example, if both sides A and B have gamma(2)
interfiring times with parameters p.A = 1/10, PA = 1/10 (therefore rA = 1) and
AB = 2/5, pl, = 1/2 (therefore rn = 5/4), respectively, then a comparison is
made with sides A and B both exponential (or deterministic) with kill rates of
r, = I and r1 = 5/4, respectively. We also considercd "mixed" battles such as
side A gamma(2), side B exponential and compared it with both the exponen-
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tial-exponential and deterministic-deterministic with the appropriate kill rates
for each side.

We now discuss briefly the concept of parity and nonparity that we use in
our subsequent descriptions. In the deterministic Lanchester square law model,
parity occurs whenever rA(a 2 - a 2) = rB(b2- b2); the battle goes to infinity and
neither side wins. We continue to use the same definition of parity in all
stochastic cases using r = p/A. Strict parity is defined as all parameters being
identical on both sides, i.e., the initial numbers, kill probabilities, and in-
terfiring time random variables. And when that happens P[A] = P[B] = 1/2. It
should be noted that in the exponential-exponential battles when a) = bo and
af = bf then parity is equivalent to strict parity.

The computations for the state probabilities were made at White Sands
Missile Range on the Sperry 1100/82 system. A Gaussian quadrature tech-
nique was used to evaluate all the integrals involved, not only for the state
probabilities but the various figures of merit. The particular quadrature
technique we used is described in reference [10].

The accuracy of an integration over a time interval [0, t] is a function of the
number of equal length segments the interval is decomposed into and the
degree of the polynomial used for each segment. We used three segments and
a 19th-degree polynomial. State probabilities were computed at 30 times
points in the interval [0, t.), where , is essentially t = -. Thus, if one were to
compute the state probabilities at t-, the sum of the transient probabilities

p220) t = 0

and the sum of the absorbing probabilities

Po2(t*) + poI(t) + pIo(t**) + p2o(t**) 1.

CPU times were the largest whenever gamma(2)-gamma(2) combats were
run, i.e., the A side and B side each had gamma(2) interfiring times. And, for
these cases, the CPU times required to compute all p,,(t)s, mA(t), C'A(t),

mB(t), oTB(t) and the eight overall figures of merit ITD' trrT,

o'[A(-)], E[B(-)], or[B(-)], P[A], and P[B] were approximately 3 and 2
hours for "reselect on" and "reselect off," respectively.

Typical time varying characteristics are shown in Figures 6 and 7. In this
particular example we have "reselect on" (Model 1.1) and gamma(2) in-
terfiring for both sides A and B with firing rates I/A. = 10 and l/p.8 = 10/9.
Setting PA = 1/10 and PB = 9/10 gives rA = I and r8 = 1. It should be noted
that in this case we took t. = 3.5; thus the sum of the transient state
probabilities at t. = 3.5, in Figure 6(a), is approximately 0 and the sum of the
absorbing state probabilities at t-* = 3.5, in Figure 6(b), is approximately 1. The
30 time points at which these state probabilities were computed, as shown in
Figure 6, were selected so that a Gaussian quadrature could be used for
computing E[TD] and or[TD] from Eqs. (8) and (10), wherein the upper limit
of - is replaced by t. = 3.5.

It should be noted here that the results presented in Figures 6 and 7 are for
a situation in which parity, but not strict parity, obtains; and for the hypo-
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Figure 6. State probabilities versus time for a Model 1.1 combat; A side gamma(2)
with 1/MA 10I, pA = 1/10, r, 1; B side gamma(2) with Ifp-a = 10/9. PB = 9/10,

ra= I ; resckect on.

thesized interkilling time random variables

P(A] =p2o(OO) + p~a(0o) -- p2o(1=) + pio(1=) = 0.5892,

P[B] = p(}2(cc) + po(&) -p,2(:®) + pl(,t) =0.4106.

However, for the equivalent exponential-exponential combat, where rA = ra =

I. the situation is one of strict parity and P[A] = P[B] = 1/2. Figures 8 and 9
show the exponential-exponential result corresponding to Figures 6 and 7,
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Figure 7. Mean and standard deviation of number of survivors versus time for a
Model 1.1 combat; A side gamma(2) with I//LA = 10, pA = 1/10, rA = 1; B side
gamma(2) with 1/1. = 10/9, PB = 9/10, r. = 1; reselect on.

respectively. Note the significant differences that occur in the time-varying
characteristics between the hypothesized stochastic and exponential models.

The differences between the hypothesized model and deterministic
Lanchester models are even greater than those obtained when the hypo-
thesized model is compared to the exponential model. In fact, for the case just
discussed, in the equivalent deterministic case the battle completion time is
infinite and neither side wins (since both sides go to annihilation). In Table 2
we present, for this case, the values of the eight overall battle figures of merit
for each of the three models and the relative differences that are obtained

II
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Figure 8. State probabilities versus time for an exponential 2-on-2; A side with
r, = I B side with r,, 1.

when compared to the hypothesized model. Obviously the differences shown
are large and point to the importance of developing these models in order to
obtain greater realism.

It should be noted here that in our simulation studies, referred to in Section
I, we are running much larger combats, for example, l00-on-50, with various
interfiring time random variables including the gamma(2). We have found
there that as the battle size grows, i.e., as we increase the initial numbers
involved, the differences between the hypothesized model and either the
exponential or deterministic approximations gets larger percentagewise also.
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Figure 9. Mean and standard deviation of number of survivors versus time fr an
exponential 2 of 2; A side with r,, = I1; B side with ra, = 1.

What is being emphasized here is that we are comparing the hypothesized with
either the exponential or the deterministic approximation and not differences
between the exponential and deterministic models (although large differences
there also exist; see reference [2]).

In Appendix 2 is a brief description of all the cases run and tables of relative

differences that were obtained. A perusal of those tables will show relative
differences, when compared to the exponential model, as high as 44 percent.
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Table 2. Overall figures of merit and relative differences (in percent) when the
hypothesized model is compared with the exponential and deterministic Lanchester
models. For the hypothesized model; side A gamma(2), Ila = 10, p, = 1/10, r, = 1;

side B gamma(2), I/A, = 10/9, p8 =9/10. r, = 1.

Relative Relative
Figure of Hypothesized difference (%) difference (%)
merit model Exponential Deterministic (exponential) (deterministic)

E[ To] 0.8665 0.7497 0C + 13.480 -c
ar[To] 0.5359 0.5568 0 -3.900 100
E[A(-)] 0.9919 0.8337 0 +15.949 100
'[A(-)] 0.9016 0.8974 0 +0.466 100
E[B( )] 0.6476 0.8337 0 -28.737 100
o-(B( )] 0.8376 0.8974 0 -7.139 100
P[A] 0.5892 0.4997 0 +15.190 100
P[B] 0.4106 0.4997 0 -21.700 100

6. CONCLUSIONS

Two versions of some stochastic homogeneous two-on-two combat models
have been defined and state probabilities have been derived for each. In the
first version, a marksman whose target is killed resumes afresh the killing
process on a surviving target; in the second version, the marksman whose
target is killed merely uses up his remaining time to kill on a surviving target.
The state probabilities in turn were used to develop four time-varying charac-
teristics mA(t), o'A(t), mB(t), O.B(t) and eight overall battle characteristics 9Mrr,
Oo,,, E[A(-z)], o'[A(-)]. E[B(-)], ou[B(x)1, P[A]. and P[B].

Comparisons were made, in terms of relative difference, with equivalent
exponential and deterministic Lanchester models. It was found that both the
exponential and deterministic Lanchester models are very poor ap-
proximations of the hypothesized model. In fact, among the cases we con-
sidered, there was a relative difference of 44 percent in the figure of merit
E[A(-)] when compared to the exponential model. And in this study we
considered only one interfiring time that was not exponential; namely, the
gamma(2). One can reasonably conjecture that larger relative differences
would surface when other distributions are considered. But the point is that we
have demonstrated that the exponential approximation is indeed a poor one
and that further work must be done to develop the theory of small-to-
moderate-size stochastic combat models.

APPENDIX I

Model 1.1 (Continued)

3. p, (). We now consider p 1(t) and write it as

p,, ( = Ip( ) ,) + P() + P () + pt, ( ). (13)

Clearly, once we write the tirst two functions on the right-hand side, we may
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Idv l v

l I
t

0 -- 1u14-

Figure 10. Definition of the variables u and v for the computation of p',','(t)
and pf2(t). x = a B kills an A in (t- v-dy, t- v); y = the surviving A kills a B in
(t-v-du, t-u); u<v.

set down immediately the second two by symmetry. Consider now Figure 10
above which shows that a B kills an A first on the interval (t - v - dv, t- v),
the surviving A then kills a B in (t- u - du, t- u) with no subsequent killing
until after time t.

Now pIII)(t) will be written as

.( t) = f f u p I I U, V),

where p(1,) (t, u, v) du dv = probability that both Bs are aiming at the same A,
one of the Bs kills an A in (t - v - d, t - v), the surviving A kills a B in
(t-u-du, t-u), and there is no other killing until after time t.
p 1t)(t, u, v) dudv may now be written as 1/2 times the product of

2 fB(t- v) dv =probability that one of the two Bs kills an A in the time interval
(I - v - dv, t- v),

GBt - v) = probability that nonkilling B has a kill time > t - v,
GB(v - u) = probability that the B which will be killed by the surviving A reaims with

an interkill time > v - u.
GB(v) = probability that the B which will survive reaims with an interkill time > v,

GA(t - v) = probability that killed A had a time to kill >t- u,
fA(t - u) du = probability that the surviving A kills a B in (t - u - du. t- u),

and finally

GA(U) 
= the probability that the killing A reaims with an interkill time > u.

So we have

pt( = . dv IfB(t - v)GB(t - v)GB(v)GA(t- V)

x f dufa(t - u)GA(u) GB(v - u)]. (14)

Now we consider p(t21)(t) and write it as

J dv Jdu p 110, u. V).
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Given the set of all aiming configurations in which each B aims at a dilierent
A, it is easy to see that within this set half the time the surviving A kills the
killer B and half the time the surviving A kills the nonkiller B. So we break upC2)

p (1, u, V) into two terms. The first term arises when the surviving A kills the
killer and the second term arises when the surviving A kills the nonkiller. Thus
the final result becomes

(2)
pt(, i, v) dudv = (l12)[2f,2( (t- v) dv Gi( v - u)G )G,(t- v)

" f,A(t - u) du GA(u) + 2fB(t -v) dv G(v)(t -u)

X G,,(t - v)fA(t - u) du G,(u)],

in which the factors common to both terms in the brackets are

2fB(t - dv = probability one of the two Bs kills an A in the time intervalt- v-dA. t,

GA(- v) = probability that killed A had a time to kill >t- v,
fAt- u) du = probability that the surviving A kills a B in (t - u - du, t- u).

GA(u) = probability that the killing A reaims with an interkill time > u.

whereas the second and third factors in each term are unique to the situation.
In the first term

GB(v - u) = probability killer B reaims and has interkill time greater than v - u [since he
gets killed in the interval (t - u - du, t - u)],

Gn(t) = probability nonkiller B (or the surviving B) has an interkill time > t,

and in the second term

GB(v) = probability killer B (or the surviving B) reaims and has interkill time > v,
G1(t - u) = probability the nonkiller B has an interkill time > t- u [since he gets killed in

the interval (- u - du, t -u)].

So finally

p1 I)(t) = 2 GBt) f) dv [fB(t - v)GA( - V) o dufA(t - u)GA(u)GB(v - U)]

+ dv [Mfjt- v)G(v)G(t- v) j du G(t- u)fA(t- u)GA(u)].

(15)

To complete the computation for pit(t) we must write expressions for
p131) (t, u, v) and P,(t, u, v). These two arise from a transition from (2, 1) to
(i, i) in which initially either both As are aiming at the same B or they are
not. In Figure I I below we show that an A kills a B first in the interval
(i - u - du, t- u), the surviving B then kills an A in (I - v - dv, t- v) with no
subsequent killing until after time t. Clearly we may immediately write down
p')(t) and p(4(t) by interchanging in equations (14) and (15), respectively, A
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- du ,-

10 dv 14 V

Figure I1. Definition of the variables u and v for the computations of pu,il
and p,() y=an A kills a B in (t-u-du. t-u); x =the surviving B kills an A in
(t - v- d. v- u). u > v.

with B and u with v. Thus

p I3 (= du fA(t- u)GA(t- u)GA(u)GB(t- u)

x dvf,(t- )G(v)G(u- V)], (16)

and

p1I(t) : _G1 (t) JO du I fA(t- u)GB(t - u) 0 dvf(t- v)GB(v)GA(u - V)]

fdu I fA( - u) GAWu)G,30- u) L dv GA(t - V)fB(t - V)GB(V)]1.-
(17)

It should be noted that in the expressions p(d(, u, v), i = 1,2, 3.4 it is not
always the case that u and v are the backward recurrence times, measured at(2).

time t, of the surviving A and B, respectively. Consider pI(t, u, v) which
arises from an initial configuration with each B aiming at a different A. At
time t, one of two situations obtain. Either the surviving B killed an A or it
did not. If it did kill an A, its backward recurrence time is v; if it did not kill
an A its backward recurrence time is t.

Summarizing to this point, Eqs. (1)-(3) and (13)-(17) give all the transient
state probabilities, i.e., each of states has in the limit as t- X zero probability,
and we now turn our attention to writing the probabilities associated with the
four absorbing states (0, 2), (2, 0), (0, 1), and (1, 0).

4. p02(t), p2,(t). We now consider po2(t) and write it as
pI ) ) (2) t .

P02(1) = P((1() + P)po()+p 0 2 (t). (18)

Consider Figure 12 below which shows that a B kills an A first in the interval
(t- C- dC, t- C) followed by another kill of the surviving A by a B in the
interval (t- 71 - d-q, t- -I). Now p'2(t0 will be written as

po{ = = dC dlp1 2)(t, C. r),
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- .!dt C --',

0 t

S 1 4 1 ~ i-.

Figure 12. Definition of the variables /_ and -q for the computations of pl,2(t)
and p02(t). x=a B kills an A in (t-- d', t- ); y=a B kills another A in
(t- -d l - ); > ij.

I)

where po2(t, r, "1) d drq = probability that both Bs are aiming at the same A,
one of the Bs kills an A in (t - d , t - ') and then one of the Bs kills the

(1)
surviving A in (t- q - di, t- 77). p 2.(t, ', 77) dCdi1 may now be written as 1/2
times the product of

2fB(t- ) d = probability that one of the two Bs kills an A in the time interval
( t - - d , t - C),

GB(t- ) = probability that nonkilling B has a kill time > t-,
2fB( - 17) d-q = probability, after both Bs reaim, that a B kills the surviving A in the time

interval (C - 17 - di7, "- 17),
G9 ( - r?) = probability that nonkilling B has an interkill time > - rt,
GA( - r) = probability that the first A that was killed had a kill time > t-

and finally GA(t- -q) = probability that the second A that was killed had a kill
time > t - -q. So we have

p (')() = 2 d [f.(t- ) G.(t- ) GAOt-)

× f d-f.(; - q) G.( -- q) GAO- )]. (19)

(2)
Now consider p 2(t) and write it as

(2). r (2).P02(t) = C a 2po2t, ', ).

JQ Jo Idq0
(2)

Here we must break up po2(t, , q) into two terms. The first term arises when
the same B kills both As and the second term arises when each B kills an A.
The final result becomes

(2)

po2(t, C, qi) d drj = 1/2[2fB(t- ,) d~fB( - r) d'r GB(t- -q)GA(t- )GA(t- -9)

+ 2fjj(t - C') d fjj(t - -q) dTj G,( - YI)GA(t - O'GAOt- -0]

in which the factors common to both terms in the brackets are,

2j(t- ) d =probability one of the two Bs kills the first A in the time interval
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GAO - 0 = probability that the first killed A had a time to kill >I -
GA(O - r7) = probability that the second killed A had a time to kill >t - 71,

whereas the factors not common are unique to the situation. In the first term

fj( - 17) di7 = probability that the killing B reaims and kills the surviving A in the time
interval (/-- d7. t - 7),

Ga(t - rq) = probability that the B who kills no As has a kill time > t - 71,

and in the second term

fa(t- 17) di7 = probability that the other B (who did not have to reaim) kills the surviving
A in the interval (t - 17 - di?. t - r7),

GB( - 17) = probability that the first B who killed an A (and had to reaim) has an
interkill time > C- 71.

So, finally,

+ j d [fB(t- 0)G(t- ) d-q G( - i)f.(t - q)GA(t- ')

(20)

Similarly, write

(3) (4)
P2o(t) = P2 (t) + P20(t). (21)

If we suppose that the first B is killed in (t - - d', t - C) and the second B is
killed in (t - 1- dr, t- -), then by simply interchanging A with B in Eqs.(2(3). (4)
(19) and (20) we may get p2(t) and p2o(1). Thus

(3)(2
p2,,(t) = 2 (I fA(t2- )GA(t- (4)GBO -

x f + P (q G(t) to -(1) (22)

and

p(,)(t)! d [fA(t - )Gj(t - C,) d-n GAOt- -q)fA(C - 71) GB(- TI)

+ IdC[ fAOt- 0 Gn(t- f i drl Q,( - TH~AOt- 11)G0130- _0)

(23)

5. p,)I(t), pj(o(t). We next consider pq(t) and write it as

p,(1)=p,,() + pt,2))(t)- + 1'""+ ~)(-o1-( =o (o t 0I p01t) (24)
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To develop expressions for the terms on the right-hand side of Eq. (24) it is
very convenient to work with the backward recurrence time and its associated
instantaneous kill rate. For the first term, recall both Bs are initially aiming at
the same A and refer back to Figure 10 and consider the following sequence
of events:

1. One of the Bs killed an A in the time interval (t - v - d, t - v).
2. Then both Bs reaimed aid one of the Bs was subsequently killed by the surviving A

in the time interval (t - u - du, t - u).

Therefore, at time t the surviving A has a backward recurrence time of u with
instantaneous kill rate rA(u) and the surviving B has a backward recurrence
time of v with instantaneous kill rate rB(v).

Consider now the time interval (t, t +A) and, in the usual fashion, write an
expression for p'I))(t+A) retaining only the first order terms in A. Thus the
probability of being in state (0, 1)"i) at time I+ A is equal to the sum of two
probabilities, namely, (1) the probability of being in state (0, 1)") at time t
times the probability of remaining there in (t, t + A) [which is one since (0, 1)(i)
is an absorbing state], and (2) the probability p(tt1)(t, u, v) du dv, of being in the
state (1, 1)") at time t with backward recurrence times of u and v for survivors
on the A side and B side, respectively, times the probability, rB(v)A(l -

rA(u)A), that the B-side survivor kills the A and A fails to kill. Thus, we get
taking into account all (u, v) pairs,

Pol ,t + A) = po(t) + dv j du pI I(t, u, v)rB(v)A(I - rA(U)A).

Rearranging terms, dividing by A, and letting A--+ 0. we have that

dpo,(t)ldt = dv f dup'II)(t, u, v)rB(v).

Using the initial condition po) (0) = 0, we may write

(1) . 1 ( 1)

pot= dJ dv a upI,( . u, v)rB(v).

Finally, after substituting in for rg(v) fB(v)/GB(v) and p, 8 )( ", u, v) [see Eq.
(14)], we get

pt t't) = d dA I f(v)fj3(C- v) GB( - 0)GA( - V)

X du Gn(v - u)fA( - u)GA(u)]. (25)

Proceeding in the above manner, i.e., making use of the backward recur-
rence times and the instantaneous kill rate associated with each, it is easy to
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get the next three equations, namely,

=o(2 If I f df() f dv f(- v) GA( - v)
k'f 

•

x du GB(v - u)fA(C- u) GA(u)

+f' d dv LB(OfB( -v)GA(,- V)

v du GW( - uOf,( - u) GA(u) 1, (26)

(3

pott) = d4 du fA( - u)GA( - u)GA(u)GB( - u)

So dvf(C- v)fa(v)GA(u- v)], (27)

and

)1 2f. d[GA(') Jo du fA( -u)GB(CU)

ufJ dv fB(v)fB(4'- v) GA(u - V)]

+f Jd~fJcdu [fA( - u)GA(u)G3( - u)

x dv GA(- vfB(C- v)fa(v)j• (28)

We next write the right-hand terms of

1) (9.~~) p , () + P(2) p ott) + p 13(t) + p (4)(t). ( 9

Each of these are easily written by taking the appropriate po()t), i = 1, 2, 3, 4
and interchanging A with B and u with v. Table 3 below lists these

(3) )identifications. Thus to get pio(t) interchange A and B and u with v in p' 1(t),
etc. These identifications result in the formulas

pt dj dv [fB(- v)GB( - V)GB(v)GA(C- V)
f f (

X AufA( - u)fA(u) G( -u) ,(30)
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( 2 ) . . 1 d G ( ) d v f ( - ) G ( - )
plott) If d;[G()fd f(-vQ(-v

x J dufA(u)fA(- u)G(v- u)]]

+ 0 d; dv fB(- v)GB(v)GA( - v)

x du Ga( - u)fA( - u)fA(u)], (31)

p o(t) = d f du IfA(u)fA(;- u)GA(C- u)GB( - u)

x dv GA(u - v)fB(;- v)GB(v)], (32)

and

(4)

xJf dv GA(U - VOfB( - V) GB(v)]

+ f d du [fA(u)fA(C - u)GB( - U)

× d GA( - v)fs( - v)GB(v)]. (33)

Table 3. Identifications used to get pio(t) from poi(t).

(1, 1) )- (0. 1) (1. 1)--- ( 0)

Initial aiming Initial aiming
p[)(t) configuration p(,) configuration

and winning side and winning side

Both Bs aiming Both As aiming
pol,(t) at same A and B p1( (t) at same B and A

side wins side wins

Each B aiming at Each A aiming at
p,(t) a different A and p<o(t) a different B and

B side wins A side wins

Both As aiming Both Bs aiming at
P:, () at same B and B pO(t) the same A and A

side wins side wins

Each A aiming at Each B aiming at
p:11() a different B and p0(1) a different A and

B side wins A side wins
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Model 1.2 (at) = 2. a, = 0; be = 2, bt = 0; "Reselect Off")

The reader is reminded that in Version 2 of Model I (Model 1.2), i.e.,
"reselect off," if a marksman's target is killed by the other member on the side,
his remaining time to a firing (or a killing) is carried over to the survivor (if
there is one). To develop the state probabilities for this model it is no longer
necessary to break down the analysis into terms of the initial aiming
configurations, i.e., both Bs aiming at the same A, etc. However, we still do
decompose state (1, 1) into states (1, 1)1t), (1. 1)(2), (1, 0 (' ), and (1, I)' 4 ' and
these are defined in Figure 13 below.

1. p22(t). As in Model 1.1, we have
p__(t) = (GA(t))2G (t)) -. (34)

2. p12(t), p21(t). Referring back to Figure 5 we define pt2(t, 7) di7 =one
of the Bs kills an A in (t - n - dri, t - 17), and there are no killings until

beyond t. Now

Pt2(t, -q) d,1 = 2 fB(t - 77) di7 GB( n) GA(t- ?)GA(t),

where

2'(t- rt) dr? = probability that one of the two Bs kills an A in the time interval
(t - il - d , - 17).

GO( = probability that the B that killed reaimed and has an interkill time >1,
G3(i) = probability that the nonkiller B, since he just carries over his remaining

time to kill if he is aiming at the killed A, has a time to kill >t,
GA(i - rl)= probability that killed A had a time to kill >t --

and finally GA(t) = probability that surviving A had a time to kill > t. Thus we
get

=1t d- p,20 -) = 2 GBW(tGAWt L drl fB (t- TI) G8( 7) GA (t- -q).

(35)

(1,1)(1) surviving B in state (1,1) killed A

(1,2)

(1,1)(2) surviving B in state (1,1) did not kill A

(1,I)( 3 ) surviving A in slate (1,1) killed B

(2,1)

(1,1)( 4 ) surviving A in stale (1,1) did not kill B

Figure 13. Definition of the states I, l)11, (1, 1)1
2
1, (I, I)(", and (, I)4) in the "reselect

off" model.
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Again, by an interchange of A with B, we get

P21(t) 2 GA(t)GB(t) d~fA(t- ;)GA(;)GB(t- 5). (36)

3. p I(t). As described above we shall write p1 I(t) as

() (2) (3) (37)

For the pY1i(t) and p'l])(t) computations refer to Figure 10. After the first kill of
an A by a B, it is clear from the independence assumption and homogeneity of
the marksman on each side that with equal likelihood the surviving A is either
aiming at the B that killed or the B that did not kill. Thus define(I).

Pt I(t, u, v) du dv = probability that one of the Bs killed an A in (t - v - dv, t -
v), the surviving A kills the nonkilling B in (t - u - du, t - u), and there is no
subsequent killing until after time t; p()(t, u, v) du dv may now be written as
1/2 times the product of

2fB(t - v) dv = probability that one of the two Bs kills an A in the time interval (t- v -
dv, t- v).

Ga(v) = probability that the killing B reaims and has an interkill time > v (since this
is the B that will survive on the B side).

GD(t- u) = probability that the nonkilling B, which will be killed by surviving A, has a
time to kill > i-u (this is true whether he were initially aiming at the A
that was killed or not, since if he were aiming at the killed A, he merely
transfers the remaining time to kill to the surviving A),

GA(- v) = probability that killed A had a time to kill >t- v,
fA(t - u) du = probability that the surviving A kills a B in (t- u - du, t- u),

and finally GA(u) = probability that the killing A reaims with an interkill time
>u. So we have

p1)(t) =' dvIfB(t- v)GB(v)GA(t- v) I duGB(t- u)fA(t- u)GA(u)].

(38)

In a similar fashion we define p(tt, u, v) du dv = probability that one of the Bs
killed an A in (t- v - dv, t - v), the surviving A kills the killing B in
(t - u - du, f - u), and there is no subsequent killing until after time t, and get

(2).

p11(t, u, v) dudv =f(t- v) dv GB(v- u)GB(t)GA(t- v)fA(t- u) du GA(u),

with

P2.)()= GB(t) AI dvfB(t - v) GAO - V) f0 du GB(v - u)fA(t - u)GA(u)]

(39)

(3) (4)To write expressions for piz(t) and p I I(t) see Figure I11 to recall the
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definitions of u and v in the transition (2, 1)--*(1, 1). As before, we can, by
interchanging A with B, u with v in Eqs. (38) and (39) set down

p (t)= du fA(t- u)GA(u)GB(t- u) j dv GA(t- v)fB(t- v)GA(v)],

(40)

and

p 14)(t)= GAO) du fA(t- u)GB(t- u) fo dv GA(u- v)fa(t- v)GB(v)],

(41)

respectively.
4. p02(t), P20(t). We now write

P(t= (1)..2)t)

P p2(t) = p0(t) + p2(t), (42)

()(2)
where po2.(t) is the term that arises when the same B kills both As and p02(t)
arises when each B kills an A. Referring to Figure 12 for the definitions of "
and 77 we may write

p0o(t) = 2 d [fB(t-C)GA(t-C)f diifB(-7l)GB(t-?l)GA(t-7l),

(43)
and

(2)F 1

P02 (1) = 2j d I1fB(t - )GA(t - )J d7) GB(; - 7)fB(t -7))GA(t- 7)J.

(44)

Similarly, write
P2o(t) ) (4)

= P20(t) + P20(t). (45)

If we suppose the first B is killed in (t - - d, t - ) and the second B in
(t- - dtj, d-q), then by simply interchanging A with B in Eqs. (34) and (35)
we get

p20(t) =2 d; f[A(t- )GB(t- ) dyl f( - 71) GA(t - 1) G(t-- 71),

(46)

and

(4)1920(1)J 2 d fA(t- ) GB(t- ) dnl GA( - "O)fA(t - q) GB(t - 17),

(47)

respectively.
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5. pi,(t), p10(t). We write
() + '(2).. + P(3) (4)(8

Poi(t) = po(111 )I ()It + (ott) + POI W, (48)

and use, as in Model 1.1 instantaneous kill rates, each of which depends on the
appropriate backward recurrence time, to develop the expressions for the
terms on the right-hand side of Eq. (48). Thus in the case of P V t), which
arises from the sequence (2, 2)- (1,2)- (1, 1)- (0, 1), we take p 1,'(t, u, v), in
which u and v are the backward recurrence times, measured at time t, of the
surviving A and B, respectively, and in the usual fashion write

+ =0t + )W (t)+ f dv j dup I (t, u, v)rB(v)A(1 - rA(u)).

After rearranging terms, dividing by A, letting A-0, and using the initial
condition p1 1(0) = 0, we may write

In a similar fashion we also get

p = d I( f'). dv [fB(- v)GA(- v)

x dufA(- u)GA(u)G.(v- u)], (50)

(3)

PoI(t) d1 du fA( - u)GA(u)GB(C- u)

xjI dv GA(,- v)fB(C- v)f.(v)]], (51)

and

POI(t W d IGA(C){ du I[fA( u) GB~ U~)

xJf dvfn,(C- v)f,( V)GA(U -)]]. (52)

Again, as in Model 1.1, we may interchange A and B and u with v in the
appropriate p:,,t), i = 1, 2, 3, 4 to get each of right-hand members in

p"'(t) = p ( t(g1) + p(2) ( ) (4)
It) +Of 1() + p 1110) (53)
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as

P.ot d 4 dv 1 fB( 0 v)B vGA(- v)

x f duGB3( - uWfA( - uOfA(u)]] (54)

p 10(t)=jd4[G(fl dv[fB( -v)GA( -v0

xf )J dufA( - uWfA(u) G,,(v - u)]] (55)

J. f d jf du I fA( - uOfA(u) GB( - u)

x f dv GA( - vOfB(- v) GB(v)]] (56)

and

PI(t = d [fA( ')J' du [ fA(C- u)GB( - U)

xj dvfB(C- v)GB(V)GA(U - v)]]. (57)

Model 2.1 (so =2, a, = 1; bo = 2, b, = 0; "Reselect On")

The transient states are given by

P22(t) = (GA( t)) 2 (G(t))2 , (58)

p!( = GB() d-q fA(t -71))GAO- Tl)(GA( Tl)) 2 Ga(t- -q)

+ GB(1)GAWz dtnfA(i - 17) GA(hl) GB(t - -,). (59)

The absorbing states are given by

P120() = 21f d (Aq)) 2G)fBq), (60)

P11() = dq fj dufA(71- u)GA(-q- U)(GA(U)) 2 GB(71 - Offolii)

+f'd~ "duA(,q- u)G&(, - u GA~)GA(j~fBIO, (1
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p2o(t) =2 d f(t- 0GA0(t - (63o - ) fA()- )

X GA(2j -d ) Go (f - ) 
(

+ d' [fA(t - 0)G(0 - f dr7GAO - 71)

+ A( - 1)G(t- G-7)

+ f L[,(t - ) Go((t- ) dn GA( - 17)

X fA(t - n) Ga(t - 71)]. (62)

Model 2.2 (a, = 2, a, = 1; bo = 2, b 0; "Resele t Off')
The transient states are given by

p22(t) = (( G(t))(Bt) 2, (63)

p2 1tW = 2 GAMt)Got) d fA 0- )GA (C)Go(It- ). (64)

The absorbing states are given by

pP2(t) = 2 (GA(1))2 Go( GW( d (. (65)
1 I

PI I(t) = 2 dil du fA(TI - u) GAu)GA(t) GB(71 - u) fo(i), (66)

Model 3 (ao = 2, af = 1; bo = 2, b, = 1; "Reseleet" not Material)

p22(0t = ( GA( t)2( GB(t))' ,  (68)

while the absorbing state probabilities are

pIA(t = 2 (GA( C))2 GB(OfBW d , (69)
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p(t) = 2 j (Gi( ))2 GA(')fA( ") di'. (70)

APPENDIX 2

As discussed in Section 4 we define parity to mean rAao = rBbo (since we are
assuming here that af = bf = 0) so that if an = bo parity is equivalent to rA = rB

and nonparity is equivalent to rA # rB. Table 4 shows all the gamma(2)-
gamma(2) combats that we considered in the nonparity situation. Thus we
have here nine cases for "reselect on" and nine cases for "reselect off" for a
total of 18 different cases.

We also ran the same probabilities displayed in Table 4 for the parity case
r, = rB = 1. Again there were a total 18 different cases for the hypothesized
model (including "reselect on" and "reselect off"). It should be noted that in
the hypothesized case strict parity obtains only when PA = PB; also, the results
for, say, pA =9/10 and PB = 1/10 can be obtained by interchanging the
outcomes from the PA = 1/10 and pg = 9/10 battle. The "mixed" battles, one
side gamma(2) the other side exponential, included:

I. A side grnrna(2), rA= I. PA = 1/10 , 1/2. 9/10: B side exponential. rH= 1.25;

nonparity. Run with "'reselect on" and "reselect off' for side A.
2. A side exponential. rA = I; B side gamma(2). r, = 1.25, p = I/1M, 1/2, 9/10;

nonparity. Run with "reselect on" and "reselect off" for side B.
3. A side gamma(2), rA = I. PA = l/1') 1/2, 9/I}; B side exponential, r" = I, parity.

Run with "reselect on" and "'reselect off for side A.
4. A side exponential. r, = I; B side gamma(2), ra I. po =  1/10. 1/2. 9/10. parity.

Run with "'reselect on'" and "reselect off" for side B. (Note that the results here would
he obtained by just interchanging the A side and B ,ide results in 3.)

To make the relative difference calculations discussed earlier, only two
exponential-exponential and two deterministic-deterministic battles need be
considered; namely, rA = 1.00, rB = 1.25 and rA = 1.00, rB = 1.00 for each
pair.

Tables 5-14 which follow, present all relative differences obtained when the
hypothesized model is compared with the exponential model. We have also
included, for the sake of completeness, some relative difference results when
the hypothesized model is compared with the deterministic model. These are
shown in Tables 15 and 16. Also in Tables 7, 8, 13, and 14, where there are

Table 4. Side A, gamma(2), rA =
I; side B, gamma(2), r. = 1.25;
nonparity. Run with both "reselect

on" and "reselect off."

PA Pe

1/10 1/10, 1/2, 9/10
1/2 1/10, 1/2, 9/I1)
9/10 1/10, 1/2, 9/10



Gafarian and Manion: Stochastic Combats 755

r- 0n 0 r ,a 0O 0e 4!!O 1 nl r )

en~~ ~ ~ W) 10e , ' r l0 I 00oc'f O. Q~ r~- 00 W 00-O

7 +T7 + + I

- - 10 r
'., 0 fn I

I II ITInCIce

.~ Q.

-u w

E -0 ' 0 oq r- 0 .4 Oe40rc

++ +

w, oU, 0',r

E II C5 6 6 6 ii

en n L4r-U ;2 ,I

+~~ ~ ~ + 71 '++ + +7TI

0E It m r-1 r '

oI oc II oc co oo II
m 0000 r- 00oo~ 0%0,1

c 0.

r-nC , ,o en rl- A a, ItIn IC''-r0r en aO''-r0!

-0 S t0 0 0' U 0o 10 a, So 0

.G C4E-(C
4. 7 bLLJ b l 7 -

b LEI zvz~wEik



756 Naval Research Logistics, Vol 36 (1989)

-8 u E .m 0

7u ++7 I7 +1 + +1p +1 +11+

01 01 00 e nf 0" t eww2,

8) VI' M C D 0 0 0 14C) D 4 000
01

8)8

-. 0 t-8)W

kA u CN en r-- en u W) M C14
.,t ") " +I +I + C8) ;O ;C4- g)* w;1+ 1 .: W).1 tI'~--

0+ 00 +n t- 0 1+)

- 4f \ -0 -) - - e r- r-

\0t N0 ,0 5 0e 00 r- Q' - 0 eqeq n en Tr- 0
~u ou 0 r--0o 0 U - ' 0r- x't '0 - -u1 e 0e

-' +; 7-0 - 1) +11 7L +
tN +8 +1 1 1 + C8) I tN I 7+

0 Z0- )\ n-.0 0 ' n' ,e nI
2; " ) 8 t - I T )I w mI 1W -r 0I

m00 0000 0C 0000-0r- 00 u 00 0C0e e -=00 00r

m) m. d 6 OC.0

aO '0 0. -r- CD:-!I-- C '0o'o''-r-0 r O\a r-0
o C '0t'0 0 0 Ct0 ~ ~ C QQ' 'Q a 'C (D Q 0' CD C

uu 8I 8 888

t -V 1-V - 'C LF-o. - W - V in ti -V'b .Q



Gafarian and Manion: Stochastic Combats 757

C~ -- a 1r-'0 u71 C -4 0r. O v 00 0 n 'r0D0
- 0 Cl 'O' 10 en Q .>u G 00 :!u-O COO , TC* tI

1; 1+ 1 + C4 1 ~ ~+ I I +

0Q In 0l 0I 0 1 0f e ,p0 4% 0XC

-0 II r- r- 0, E! 0 II0 n r A- M\ n\ la
OR I0n 0 \r r t 000 00000 r 0 w00-000

-C r-e "

~~~~t; U-. -T- -IT~0 .-- ~
0 ~ ~ ~ ~ ~ 1 C1 ur MQ ~crJJ~ ~-0~

~~ I~ I I + + Us) f I I+ I
+7 +. u I

C-~

0% Cqr-r 0000000000 00 %0naO0000ak

U..- f 0 -~ W 0 U C4- ~ r \U !
11W ( -0 -O\a n ;r: 0U0V

~00 kn 0 0,- 0'rV! V-e00 'n cc* 00 0 G.0'OR Rl--

E +; + +' I+ -

02 1 -Mr ,O 0w -W n r In ,,''-coso'r

O 00 00 0 A 00000000-t l0 ) 00 1 ,nI

o 0 0 00 OC C

8 8 '88 8 U=

E~ -,: -t E

L~ L~bL~bL~b.~ i~ U~LZ~.2pb



758 Naval Research Logisfics. Vol 36 (1989)

W1 Cl en CO 0 C4 n - '0 r 0

m en r.01qe ca ,C

77+171++1 7711 1

V V

V q- 4

U r, a' 40~0 n00 M 0 'r- C4 '0 0' Or -T -* , 0

W) o 0 a a, W, M r- Ir Ina''~~' 01 V,0~

'I -40 01 10 'I 00 0Ii I m ~ 0 U- + - 1

0 7 10a r

u t- %0 0 0000 04

"D u -r 00 Ce

r-~~ ~ ~ -T 6 0 , 0 0 S 0 l 6C - 1t

C! !W!1 T +4' 77 1
m -t'8



Gafarian and Mianion: Stochastic Combats 759

r- "T 8_

U(

4! Cc0 - ,C

'I - Z 0

u M V' 00 1 c '
II> men-e~

II

+ 1+ +
Et

\CW
4 00 M 'T 'TC14 - 'I

CC

Q 008_

-1: r- CJ en "r
+1 r+- - r4z0 ne

+i +1 T +7

E - 0Cqr
U . 10 r- C 0,

l- C56C CU C

0- CNo ~ o - cC

CL~x

-b - C -L v ' -W - UJb- k



760 Naval Research Logistics, Vol 36 (1989)

qO- ur Zr.- - Z M

~ +1± i 'IT ++C+

m t- -C -- ,r

II LI

C-r r'. C

'C z r 1 (a- - O, 'IT

r, 1-1 r- N-

E EI

E E

Z~ j7 -I C' Z- eNr 'C \C 'T OC

- ~~~rC'C

C - 'C ~ e C = - - r r

CCut * IC- Il C I '

Co Co

x ON

-L W

-C -W-b- b M. -L. Z-6 WQ VZ- i
0
-Q.



Gafarian and Manion: Stochastic Combats 761

Oc Or > 0  
4) COC M 'I 5r I o 1r -

u 00- I - Tr 0r

+ +4 ++1

4) W)4) W

en M * 0f 4r

CO80

k4) \C OO/*C M (01 OL)I

S- C I-= 7

0 0~

r- .. c ' ' -Cr-. t- CN0 1t 00 0k ,O
C 0 - X Cr r 2:1 0C a, NC >c 4) N~ ' 'IT

E~ E

en -0 -0 4)a,

W.- .C C C 0-c1

+ +

\C en -ii Q.

CO r -r- Iz--V
uC --00 - 00

4) -n 4) \ n )

E E)

0 .0

~~ 8O

on II 00 E ~ -IC ~
7) W b. W) t: U bC, L L)b b bC



762 Naval Research Logistics. Vol 36 (1989)

u~ mC U 0'

C-4 Z. W' - -. 10 a, 0 -

It kn'0' >l '0 0 C C It m000
C C0 00' 0 en Cr 0 00 0 r ~ 0 -:0~

0_0 '~ +0=r 4h I----------

4, II I g-

- 10 00 0 Cq -It ) 0 m 00' a 01 r0e - 22 '

In0 a, 00 en1 0E~~ 0 m - 0a 0k I 2 Ew'tk
zb x

V. C''0-i - 3 0CC f - .f0~''0 -C

2- 000 r- C - Co ~ C~0~ '0 t . mC0

X= O OO w 00 00 C1 0,r 1'n000 -0r-00

C
ii ~ N 0 0 ~ o 0 IC C C 0 0 0 - 0 0 0 ~ 0 0 0 r 0 0 '

2 ~ ~ -- -EoC.o'C -G NN-Co0W'bCtJ CL.o0'-r--C



Gafarian and Manion: Stochastic Combats 763

Q 4-
4,4

w4 >4) r-u
4 ~ ~ ~ z0 00 0 en -ee Q I oo 0% 1

80000000C M 0000000

00

00 0 czC 0G O 0
r- -Z zC' ' r- 'COC -=

x - en %n 0' 0 In'"

ii u~~u ii ft

~ 00000 00 C":'00000

r. - ,.-r-

0. 4) )

v, a,0 .s-t0

2.

0= 00 0o



q

764 Naval Research Logistics. Vol 36 (1989)

results shown for the exponential-exponential case with parity, i.e., rA = r=
1, the win probabilities are entered as P[A] = P[B] = 0.4997. This is the
answer obtained using the Gaussian quadrature (we know that we must have
P[A] = P[B] = 1/2).
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