' gicmsmnm MASTER COPY D“c F ”.EOR GQRMJCTI_ON PURPOSES

REPORT DOCUMENTATION PAGE

AD-A218 541 T ERETVE WA

3. DISTRIBUTION/ AVAILABILITY OF REPORT

£b. DECLASSIFICATION 7 DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

D~ et T YT " e T et St A o

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ARO 22933.1-MA

6a. NAME OF PERFORMING ORGANIZATION ] €b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
University of Southern ( applicabie)
California University Park U. S. Army Research Office
6c. ADDRESS (City, State, and 2P Code) 7b. ADDRESS (City, State, and ZIP Code)
gm"\:ersity of Southern California University  p. o. Box 12211
ar Research Triangle Park, NC 27709-2211
|___Los Angeles, CA_00089-1452 s :
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [ 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicable) .
U. S. Army Research Office DAALO3-86-K-0037
8c. ADDRESS (City, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM P TASK WORK UNIT
P. 0. Box 12211 ELEMENT NO. | Moo T NO. ACCESSION NO.
Research Triangle Park, NC 27709-2211
11. TITLE (Include Security Classification)
Some Two-On-Two Homogeneous Stochastic Combats
12. PERSONAL AUTHO . —
Trsmgramgvv.maafaman -
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |1S. PAGE COUNT
Reprint FROM 10
s e

16. SUPPLEMENTARY NOTATION
The view, opinions and/or findings contained in this report are those

of Ehe authar(i) and shzuld not be constﬁﬁd agl an gfficial Department of the Army positionm,

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

DTIC

ABSTRACT ON REPRINT ELECTE a*w.
FEB28 1930

L

v

20. DISTRIBUTION / AVAILABMLITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uncrassireounumited [ saMe as RPT.  [JoTic users Unclassified

22s. NAME OF RESPONSISLE INDIVIDUAL 22b. TELEPHONE (inciude Area Codle) | 22¢. OFFICE SYMBOL

DD FORM 1473, 34 MAR 83 APR edition may be used until exhausted. ' ¢ N OF THIS PA

All other editions are obsolets.

UNCLASSIFIED




ARo 22933./)-m

Some Two-on-Two Homogeneous Stochastic
Combats*

A. V. Gatarian
University of Southern California, Los Angeles, California 90089 and
U.S. Army TRAC White Sands Missile Range, New Mexico 88002

and

K. R. Manion
U.S. Army TRAC White Sands Missile Runge, New Mexico 88002

In this article we consider two versions of two-on-two homogeneous stochastic
combat and develop expressions, in each case, for the state probabilities. The
models are natural generalizations of the exponential Lanchester square law
model. In the first version, a marksman whose target is killed resumes afresh the
killing process on a surviving target; in the second version, the marksman whose
target is killed merely uses up his remaining time to a kill on a surviving target.
Using the state probabilities we then compute such important combat measures
as (1) the mean and variance of the number of survivors as they vary with time
for each of the sides, (2) the win probabilities for each of the sides, and (3) the
mean and variance of the battle duration time. As an application, computations
were made for the specific case of a gamma (2) interfiring time random variable
for each side and the above combat measures were compared with the ap-
propriate exponential and deterministic Lanchester square law approximations.
The latter two are shown to be very poor approximations in this case.

1. INTRODUCTION

The principal motivation for this work is the development of more realistic
small-to-moderate-size firefight models. It is an extension of the work started
in references [1] and [7] which treat the one-on-one and homogeneous
two-on-one stochastic combat models, respectively.

The overall framework within which all these works lie is described in
reference [3] where (1) a comprehensive examination is presented of the
nature of combat and the status of corresponding theory, and (2) a proposal
toward a theory of combat is set forth. The basic conclusion reached in
reference (3] is that current modeling, no matter how “realistic” it is claimed
to be, is deficient and not based on any firmly established theory. One only
needs to look at an application of the classical Lanchester square law to large
numbers of opposing forces (inserted as initial numbers) to see the following
two egregious assumptions, concerning the nature of combat:

*This work was partly supported by the Army Research Office, Contract No.
DAAL03-86-K-0037 and the U.S. Army TRAC, White Sands Missile Range. New
Mexico.
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I. Combat is homogencous. This in effect assumes that in 1000-0n-1000
battles all the forces are simultancously engaging the enemy in the same way.
Common sense dictates that the effects of cover, concealment. weather,
terrain obstacles, terrain corridors, the effective range of different weapons,
countless other environmental factors, and tactical deployment force the
opponents into many smaller firefights. An excellent field study in this con-
nection appears in reference [9] where it was found that a structured relation-
ship for the minibattles may be constructed showing how some battles occur
simultaneously (or in parallel) while others involve the participants in a series
of battles through time.

2. Combat is deterministic. To believe that combat is not stochastic would
require that if a firefight could be repeated under exactly the same conditions,
every event that occurred in the first replication would reoccur on, say, the
second replication in exactly the same order at exactly the same time. This
truly would be incredible. Stochasticity in combat is indeed significant and an
extensive discussion of it may be found in reference [2]. In addition, reference
[9] describes an excellent experiment showing not only stochasticity in a
combat process but also its considerable variance.

We hold to the view described in reference [3] that the ultimate develop-
ment of realistic combat models involving large numbers of weapons will
depend on successfully modeling (1) the decomposition of the large battle into
the separate small engagements (in this connection see references [4] and [5]),
and (2) the attrition process in the separate engagements. This study is
directed toward (2), the realistic modeling of small-to-moderate-size engage-
ments.

Furthermore, we believe that to achieve realism in the attrition process we
must proceed, as it has generally been done in the physical sciences, from the
simple to the more complex. and so this study is the obvious successor model
to those described in references [1] and [7]. It provides what we believe to be
substantially more realism in the extant two-on-two stochastic (more ac-
curately, exponential) Lanchester square law combat models. It does so by
removing the extremely simplifying assumption that the interkilling time
random variable is the same negative exponential distribution (NED) from kill
to kill (this is a consequence of assuming that both the single-shot kill
probability and the NED interfiring time random variable are the same from
round to round). Allowing both the single-shot kill probability and interfiring
time random variable to vary from round to round, of course, complicates the
analysis substantially and numerical techniques are required to produce state
probabilities in any specific case. We do, however, retain the homogeneity
assumption that all combatants on a side possess identical characteristics (but
which are not necessarily the same for both sides).

The two-on-two raises the question of how a marksman whose original
target is killed by another handles a surviving target. In this article we
consider two versions of how this situation is dealt with. In the first version the
marksman starts the killing process all over again on the surviving target, and
in the second version the marksman uses up the remaining time to a firing (or
a killing) on the surviving target. In the exponential Lanchester case there is
no difference in these two versions because of the no-memory property
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associated with the exponential random variable. In cach of these versions we
have allowed all possible values for a side’s breakpoint (the number of survivors
at the time the side loses).

In the following sections the problem is precisely formulated for botn
versions and the state probabilities are then derived. These state probabilities,
which are functions of time, contain all the pertinent information about this
nonstationary stochastic process, and, in fact, in terms of them we can write
expressions for the following important combat measures of effectiveness:

1. The mean and variance of the number of survivors as thev vary with time for each of
the sides. At 1=, this gives the mean and variance of the number of survivors of the
battle for each of the sides.

2. The win probabilities for each of the sides.

3. The mean and variance of the batte duration time Tp. Actually one may write the
distribution function of battle duration Fy, (1), in terms of the state probabilities and
the equivalent probability density function fr,(1) in terms of their derivatives.

The technique used in this article results in n-fold iterated integrals for the
state probabilities. The integrands are complex products of the density and
complementary distribution functions of the interkilling time random variables
of both sides. The dimension of the n-fold integrals. for any particular state
probability, is equal to the number of kills corresponding to the state. Thus,
e.g., in the zero-breakpoint-for-both-sides case we get up to three-dimensional
iterated integrals; and the computation time to get all state probability
functions plus eight overall battle parameters is from two ta three hours on a
Sperry 1100/82 when the interfiring time random variables are gamma(2) for
both sides.

We also note here that the present method certainly can be extended fo the
three-on-two and even the heterogeneous versions of battles up to that size,
where by heterogeneity we mean that the characteristics of the combatants on
a side are allowed to be different; and these extensions are presently under
way. Desirable as it is to have exact solutions, in view of the computer times
involved in using the present approach. we feel that alternative methods must
be considered. These include the following:

I. Simulation. We have already developed arbitrary ay-on-b, versions of
these models, including the requisite statistical techniques for their use. We are
presently in the evaluation process.

2. Approximations. Wc have defined a nonhomogencous Poisson process
approximation which results in vastly simpler analytical expressions for all the
parameters of interest and for which the computer time required to produce
answers in any specific case is substantially less than required by our exact
model. Furthermore, the simulation version of this approximation is much
faster than the exact version. We are presently evaluating this approximation,

3. Other exact techniques. These may result in simpler expressions for the
state probability functions than we have developed and, therefore, presumably
require much less computer time in any specific application. As of this time we
have not come up with any such technique nor have we been successful in
simplifying our results.
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2. THE MODELS

Two sides. A and B, conduct a continuous engagement satisfving the
following essentially Lanchester square law assumptions:

. There are initially two on cach side.

. Every member of A side picks a B opponent at random (all are visible and in range).

. Each marksman fires until killed or until his target is killed and resumes firing
immediately on the survivor in one of two distinct ways which are described below and
denoted as Versions 1 and 2.

4. The interkilling time random variable does not change from kill to kill and is identical
for all members of the A side.

. All fire independently.

. The ammunition supply is unlimited.

. Simular assumptions apply to the B side.

. The battle continues until onc side reaches its breakpoint (the number on a side at the
time it loses).

‘v 0D -

T~

The two modes of resuming firing on a survivor are as follows,

Version I. Consider a given marksman firing at a target. Whether his
target is killed by him or the other member of his side, he resumes afresh the
interkilling process on the survivor.

Version 2. If the marksman’s target is killed by him, he starts afresh the
interkiiling process on the survivor. If, on the other hand. his target is killed by
the other member on the side, his remaining time to a firing {or a killing) is
carried over to the survivor. The jargon we use to describe Versions 1 and 2
are “reselect on” and “‘reselect off,” respectively.

When we consider all the possible breakpoints for sides A and B. respec-
tively, we get a total of five models. These are shown in Table 1 below with a
model numbering scheme for ease of reference.

3. GENERAL SOLUTIONS

Our solution technique will depend on knowing the interkilling time random
variable’s density and complementary distribution functions for each side. So
long as they can be described analytically or developed in tabular form (with
exiact entries using some numerical techniques or estimated using Monte
Carlo) the formulas derived in this article may be used to compute the state

Table 1. A brief description of the five m .dels.

Breakpoints
Model no. Side A Side B “Reselect™
i.1 4] H on
1.2 0 0 off
2.1 i 0 on
2.2 1 0 off
3 1 1 Not material
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probabilities and subsequently overall combat and time-varying characteristics
(this means, for example, that the models handle variable single-shot kill
probabilities and, for that matter, variable interfiring time random variables).
However, questions regarding ammunition consumption cannot be addressed
becausc our solution technique perforce loses all information on number of
rounds fired.

In this article the solutions to Models 1.1 and 1.2 are given in some detail.
These two have the largest number of states and are the most difficult to treat.
In particular, we begin this section with Model 1.1 and proceed far enough
along to give the reader some notion of how state probabilities are derived and
then place the remainder of the derivations for Model 1.1 and all of Model 1.2
in Appendix 1. There we present also only the results for the other breakpoint
combinations (three more models).

Notation we use throughout the remainder of this article is as follows:

ag = the initial number on side A (at time 0)
a, = breakpoint for side A, i.e., the number on side A at the time the A side
loses (breaks and runs)
bo = the initial number on side B (at time 0)
b, = breakpoint for side B, i.e.. the number on side B at the time the B side
loses (breaks and runs)
falt), Galt) = density function and complementary distribution function for the time-to-
kill-of-a-passive-target random variable, side A
fe(1), Gp(r) = density function and complementary distribution function for the time-to-
kili-of-a-passive-target random variable, side B
A(r) = random variable, number alive on side A at time
B(1) = random variable, number alive on side B at time ¢
Pas(8) = P[A(1) = a, B(1) = b}, a state probability function
ma(1) = E[A(D)]. expected value of A(r)
mg(1) = E[B(1)]. expected value of B(r)
o 4(1) = standard deviation of A(1)
oglt) = standard deviation of B(t)
P[i] = probability i side wins, i = A, B
Tp = random variable, time duration of combat
Grp(t) = complementary distribution function for T,
K, = expected value of Tp
U7, = standard deviation of Tp
v, = mean interkilling time on side i, i= A, B
ra = /vy = A's kill rate (attrition coefficient for side B),
ry = l/vg = B’s kill rate (attrition coefficient for side A)

and whenever the single-shot kill probability and interfiring time random
variables are the same from round to round we use the notation

p; = the constant kill probability of all constants on side i, i= A, B
p, = mean interfiring time on side i, i = A, B

tA= 1 va=palpa

tg = 1/vg = pa/pg.

In some of our calculations we use the backward recurrence time technique
to write the state probability equations. If at time ¢ we define Y to be the time
since the last event (kill), then the first-order probability that an A marksman
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will kill in the interval (¢, t+ A) is given by

ra(y)A = fA()’)/GA()’)A.

and

ra{ Y)A = fs(y)/ Gg(y)A

for a B marksman. The r(y)s are the instantaneous kill rates for each
marksman. See [1] for a discussion of the backward recurrer.ce time technique.

Model 1.1 (a0=2, 2, =0; by =2, b, = 0; “Reselect On™)

The a:.ulyses for both Models 1.1 and 1.2 proceed in the order shown in
Figure 1; namely, we will write an expression for p»(1). then p;a(1) and pa(1).
etc. In many of our considerations it becomes convenient to delineate the
various aiming configurations. Because of the homogeneity of the combatants
on each side the total number of distinct configurations is four, which is the
product of the two ways the As aim at the Bs (both As aim at the same B or at
different Bs) and the two ways the Bs aim at the As (both Bs aim at the same
A or at different As). The analysis for Model i.1 is carried out in terms of the
initial aiming configurations. Thus what we do is break up each of the states
shown in Figure 1, except (2, 2), into subsets that are associated with the initial
aiming configuration. We define these subsets now and the associated state
probabilities.

Figure 1. Sequence of states in the two-on-two combat with zero breakpoints.
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(1,2)

Figure 2. Decomposition of state (1, 2).

Let us first consider the state (1,2) and break it up into states (1.2)""" and
(1.2)*" as shown in Figure 2. State (1, 2)'" is the state (1, 2) achieved from the
initial aiming configuration in which both Bs are aiming at the same A and
(1.2)"is the state (1, 2) achieved from an initial aiming configuration in which
each B is aiming at a different A. The corresponding

)

p,:(f)= p,:(t)+p(,:3)(t).

Similarly,

pas() = P50y + pSi(o),

where the state (2. D)™ is state (2,1) achieved from an initial aiming
configuration in which both As are aiming at the same B and state (2, 1) is
state (2, 1) achieved from an initial aiming configuration in which cach A is
aiming at a different B. The reason for naming these states as (2, " and
(2. W instead of (2, 1)'" and (2, 1)**, respectively, will become clear when we
write down the decomposition for the states (1, 1), (0. 1), and (1, 0).

As far as states (0,2) and (2,0) are concerned, they may be decomposed
into the states shown in Figure 3, in which we havé that

po2lt) = P((;‘z)( t)+ p:;zz)( 1,

and

paa(1) = pin(1) + piain).

As above, the superscripts (1) and (2) correspond to both Bs aiming at the
sume A and each B aiming at a different A, respectively; whereas, the
superscripts (3) and (4) correspond to both As aiming at the same B and each
A aiming at a different B, respectively.

(G2 ™ (.0
\o21%/ o/

(0,2) (2,0)

Figure 3. Deccomposition of states ({), 2) and (2, 0).
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[ on® )\ { wn® ( wor? \
.n* R, \ uo0 /

(0,1) (1,1) 1,0)
Figure 4. Decomposition of states (0, 1), (1, 1), and (1, 0).

We finally decompose the states (1, 1), (0, 1), and (1. 0) into the states shown
in Figure 4. In thinking of these states the reader should clearly keep in mind
the meaning of the superscripts (i), i =1,2,3,4. They are

(1) Initially both Bs are aiming at the same A and the first kill is of an A by a B.
(2) Iniually each B is aiming at a different A and the first kill is of an A by a B.
(3) Initially both As are aiming at the same B and the first kill is of 2 B by an A.
{4) Initially each A is aiming at a different B and the first kill is of a B by an A,

Bearing this in mind, (0, 1)!", say, is a state resulting from a B achieving the
first kill, follow' d by the surviving A killing a B. and finally the surviving B
killing the surviving A, and all this from an initial aiming configuration in
which both Bs were aiming at the same A. -

I. pya(1). We begin by setting down immediately

p22(t) = (GA(f))z(Ga(l))z- 1

which merely states that each of the contestants has a time to kill >1.

2. piat), pa(1). To compute pio(1) consider Figure 5 below, which shows
that an A is killed by a B in the time interval (1~ n—dn, t—n) with no
subsequent killings until beyond . Now either both Bs were aiming at the
same A or they were not. Each of these initial aiming configurations has
probability of 3. We now define p(l'z’(t, 1) dn = probability that both Bs are
aiming at the same A, one of the Bs kills an A in (1= n—dn, (- 1), and there
are no other killings until beyond ¢, and pﬂzz’(t, 1) dn = probability that each B
is aiming at a different A, one of the Bs kills an A in (t—n—dn. 1— ), and
there are no other killings until beyond .

Once we write expressions for p(.';)(t, 7n) and p(,zz)(l. n) we can get pya(t) as

pia(t) = P+ p (0 = j dn (e, 1) + P, m).
)

B 2

———jan o "
i
o

— i X
0

X aBkills an Ain (t-1-dn, t-n}

Figure 5. Definition of the variable n for the computation of p,(¢).
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. n . .
Let us first consider pya(r, m) dn. It can be written, because of the in-
dependence assumption of all the firers, as 3 times the product of

2fu(1— 1) dn = probability that onc of the two Bs kills an A in the time interval
(t—n—dn.t—-n)
Gglt — ) = probability that nonkilling B has a kill time >(- 7
(Gg(n))? = probability both Bs start over again on surviving A at time (- 5 and
have a kill ime >n
G (1 = m) = probability that killed A had a time to kill >~ 7.
and finally GA(r) = probability that the surviving A has a time to kill > . Thus
(1)
pi2(t, m) = (12)[2fa(t ~ 7 Ga(t = 7} (Ga(N))* Galt = 7)Ga(1)].
Similarly,
(2)
pi2(t, 1) = (1/2)[2f(t — 1) Ga(n) Ga(1) Galt — 1) Ga(D)].

where

2fglt— 1) dn = probability one of the two Bs kills an A in the time interval (1—n—
dn, t—1n)
Gpgln) = probability that the killing B starts the firing process all over on surviving
A and has a time to kill > 5
Ggl1) = probability nonkilling B has a time to kill >1
G4(t— n) = probability that killed A had a time to kill >1— 7,

and finally Ga(1) = probability that the surviving A has a time to kill >1. Thus
we get

pia(t)h = Galt) I dn fult = )Gt — M Ga(n)?*Gali — 1)

+ Gn(r)GA(H'[: dn fe(t— n)Ge(n)Galt — 7). | (2)
Obviously by an interchange of subscripts we may write
p2:1(1) = Gplt) L dn falt = M) Galt = M(Ga(n)?Gp(t — )
+ GaDGAD [ dnfali= I GAm Goti =) 3

The remainders of all state probability derivations appear in Appendix 1.

Combat Figures of Merit

The transient state probabilities pao(1). pia(t). pai(1). and p, (1) along with
the absorbing state probabilities pau(t), pua(1). pro(t), and py, (1) provide all the
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information necessary to compute the following commonly used figures of
merit.

1. The expected value and standard deviation of the survivors on both side
A and side B as a function of time. For side A
ma(1) = 1P[A(1) = 1]+ 2P[A(1) = 2]
= 1(p1o() + pua(t) + pr2()) + 2(pa0() + p2i (1) + p2al1)). )
Computing E[A*(1)] = 1P[A(1) = 1]+ 4P[A(1) = 2]

will then provide

oa(t) = (E[A* ()]~ m&(1)'2. (5)
Similarly,
mp (1) = 1(poi(1) + pri(1) + p21 (1)) + 2(poa(t) + py2(t) + p2a(1) (6)
and
os(1) = (E[B*(1)]— mB(1)"?, (7)
where

E[B*(1)]=1P[B(t) = 1]+4P[B(1t) = 2].

In particular we get the expected values and standard deviations of the
number of survivors on the A side and B side by letting — o in Egs. (4)-(7).

2. The expected value and standard deviation of Tp the time duration of
combat. These are computed using the well-known integral formulas, derived
by an integration by parts, for the first and second moments of a generic
non-negative random variable X with finite second moment, and com-
plementary distribution function G(x), namely

x

E[X]= r G(x)dx, E[X%]=2 j xG(x) dx.

(8] )

The standard deviation is computed as (E[ X2]— E¥ X ])"2. In the case of time
duration of combat we use the obvious result that

Grp (1) = paa(t) + pai (1) + pia() + pra(e).
Thus

B, = J (P22(8) + par(1) + poa(1) + pra() + pua(1) dt ®)

and

ory = (E[T 3] k)" ©)
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where

E(T3]=2 Jf H(pa=t) + par() + pra(t) + pua(0)) di. (10)

3. The probabilities of win by the A side and B side. These two prob-
abilities. P[A] and P[B], respectively, are obviously given by

P[A]=1im (pao() + pyal1)) 1)

fawoc

and

P[B]=1- P[A]= lim (po2(6) + poi(1)). (12)

=

4. COMPARISONS BETWEEN SOME LANCHESTER MODELS

In this section we present the results of a study making use of the solutions
developed in this article. The main purpose of this study was to evaluate how
well the classical square law deterministic and exponential interfiring time
Lanchester models approximate Models 1.1 and 1.2 (i.e., zero-breakpoint-for-
both-sides cases) in situations where we allow either one or both of the sides to
have a gamma(2) interfiring time and single-shot kill probability which do not
vary from round to round.

The comparisons were motivated by the fact that it is common in combat
models where it is known that the interfiring times are not exponential, to
assume they are and use the means of the true distributions. Thus, if u is the
mean of the true interfiring time distribution, the killing rate r, is taken to be
p/ i (done appropriately for each side) and either the exponential Lanchester
(both sides exponentially distributed) or the deterministic Lanchester
differential equations are used with the appropriate p/us as the attrition
coefficients. For a further discussion of these matters, see references [2], [6],
and [8].

It should be noted that in the literature the exponential interfiring time
model is usually referred to as the stochastic Lanchester model. In our view
this is bad jargon because any random interfiring time is stochastic in nature.
We believe it more accurate to modify the word Lanchester with, for example,
constant, exponential, gamma(2), or lognormal in the cases when the in-
terfiring times are constant, exponential, gamma(2), or lognormal random
variables, respectively. Using the word Lanchester, however, is appropriate
since the basic assumptions of independent firers, random selection of targets,
etc., is a common thread. We also reserve the words “‘deterministic Lanches-
ter” to mean the classical differential equtions of combat in which there is no
randomness.

A perusal of the general results of the previous section and Appendix 1
shows that the only functions required to compute the varicus state prob-
abilities are the interkilling time density and complementary distribution
functions for sides A and B. The generic versions of these two functions for
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the constant round-to-round exponential interfiring time density function and
single-shot kill probability are well known and given by

f(f) = (p/u)e_(p”‘)', (=0
=0, otherwise,
and
G(t)y=se P =0
=0, otherwise,
where
@ = mean interfiring time,

p = kill probability.

For the gamma(2) interfiring time random variable density function, given
by

gy =@ ue W =0

=0, otherwise,

we compute the interkilling time random variable density function by first
writing its distribution function

F)=P[T=1= Y P[T=t|N=n]P[N=n]

n=]

(ngk

H.(t)pg"~",
1

n

where T = interkilling random variable, N = round number on which the kill
occurred, H,(t)= n-fold convolution of the interfiring time distribution H(t)
with itself, p = kill probability, and ¢ = | — p.

Differentiating gives the density function

f(y=Y h(Opg"”', t=0
n=\
=(, otherwise.

Now the n-fold convolution of a gamma(2) is a gamma(2n) and is thus given
by

_@wPrtQrwe
h.(1) = an-1)! , =0

= (), otherwise.
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so that the above infinite series may be written as

_2piwe ™M 2 (/)i P
g7 & @n-Dt

=(), otherwise.

f(0)

=0

The series on the right is recognized as the hyperbolic sine so that

ey
fay= -2—(91%———— sinh[(2/p)g'?], t=0

=0, otherwise.

f(1) may also be written in its exponential form

~(2/p)e
f(1)= (plp)e

172 _ 172
T (8(2/;4)14 —e (2/1)ig )’ t=0

= (), otherwise,

from which we then get by integration that

G() =

pe—(.’.lu)l e(Z/u)q“zr e—(zm)q”’r
3q7 [ l—q”z_ [+q" ]v 120

=0, otherwise.

A very important characteristic to note about the two interkilling time
random variables is that in the exponential interfiring case the interkilling time
depends only on the kill rate r= p/u but in the gamma(2) case both the kill
rate p/p=r and the kill probability p (or mean interfiring time ) must be
specified.

Our study consisted of computing the relative difference that obtains when a
figure of merit for a combat is computed using the hypothesized interkiiling
time random variables for cach of the sides and using either the exponential or
deterministic approximation. Relative difference (in percent) here is defined as

ec - OA
——=% 100,
s

where 6 = generic figure of merit in the hypothesized case, and 8, = the same
figure of merit in either the exponential or deterministic approximation to the
hypothesized case. Thus, for example, if both sides A and B have gamma(2)
interfiring times with parameters pa = 1/10, pa = 1/10 (therefore ro, = 1) and
e =2/5, pp=1/2 (thercfore ry =5/4), respectively. then a comparison is
made with sides A and B both exponential (or deterministic) with kill rates of
ra =1 and rg = 5/4, respectively. We also considered “mixed’ battles such as
side A gamma(2), side B exponential and compared it with both the exponen-




734 Naval Research Logistics, Vol 36 (1989)

tial-exponential and deterministic—deterministic with the appropriate kill rates
for each side.

We now discuss briefly the concept of parity and nonparity that we use in
our subsequent descriptions. In the deterministic Lanchester square law model,
parity occurs whenever ra(ad — a%) = rg(bj — b); the battle goes to infinity and
neither side wins. We continue to use the same definition of parity in all
stochastic cases using r = p/u. Strict parity is defined as all parameters being
identical on both sides, i.e., the initial numbers, kill probabilities, and in-
terfiring time random variables. And when that happens P[A]= P[B]=1/2. It
should be noted that in the exponential-exponential battles when a, = bo and
as = by then parity is equivalent to strict parity.

The computations for the state probabilities were made at White Sands
Missile Range on the Sperry 1100/82 system. A Gaussian quadrature tech-
nique was used to evaluate all the integrals involved, not only for the state
probabilities but the various figures of merit. The particular quadrature
technique we used is described in reference [10].

The accuracy of an integration over a time interval [0, t] is a function of the
number of equal length segments the interval is decomposed into and the
degree of the polynomial used for each segment. We used three segments and
a 19th-degree polynomial. State probabilities were computed at 30 times
points in the interval [0, 1.}, where . is essentially r = . Thus, if one were to
compute the state probabilities at f., the sum of the transient probabilities

Pa2lt=) + p2i(te) + pra(te) + piy(1) = 0

and the sum of the absorbing probabilities

Po2(t=) + Por(t=) + prolte) + paolte) = 1.

CPU times were the largest whenever gamma(2)-gamma(2) combats were
run, i.e., the A side and B side each had gamma(2) interfiring times. And, for
these cases, the CPU times required to compute all p;(t)s, ma(t), oa(t),
mg(t), os(t) and the eight overall figures of merit ur,, or,, E[A(x)],
a{A(®)], E[B(®)], o[B(»)], P{A], and P[B] were approximately 3 and 2
hours for “reselect on™ and “reselect off,” respectively.

Typical time varying characteristics are shown in Figures 6 and 7. In this
particular example we have ‘“reselect on” (Model 1.1) and gamma(2) in-
terfiring for both sides A and B with firing rates 1/us =10 and 1/ug = 10/9.
Setting pa =1/10 and pg =9/10 gives ra =1 and rg = 1. It should be noted
that in this case we took t.=3.5; thus the sum of the transient state
probabilities at t. = 3.5, in Figure 6(a), is approximately 0 and the sum of the
absorbing state probabilities at t» = 3.5, in Figure 6(b), is approximately 1. The
30 time points at which these state probabilities were computed, as shown in
Figure 6, were selected so that a Gaussian quadrature could be used for
computing E[Tp] and o[ Tp] from Egqs. (8) and (10), wherein the upper limit
of « is replaced by t. = 3.5.

It should be noted here that the results presented in Figures 6 and 7 are for
a situation in which parity, but not strict parity, obtains; and for the hypo-
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Figure 6. State probabilities versus time for a Model 1.1 combat; A side gamma(2)

with 1/u, =10, pa=1/10, r,=1; B side gamma(2?) with 1/u, = 10/9. pg =9/10,
rg = 1 reselect on.

thesized interkilling time random variables
P[A] = p1p(®) + p1o(®) = pao(t=) + pro(t=) = 0.5892,
P[B] = pox(=) + por(®) = pua(t=) + prolt=) = 0.4106.

However, for the equivalent exponential-exponential combat, where ry = rg =
1, the situation is one of strict parity and P[A] = P[B] = 1/2. Figures 8 and 9
show the exponential-exponential result corresponding to Figures 6 and 7,
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Figure 7. Mean and standard deviation of number of survivors versus time for a
Model 1.1 combat; A side gamma(2) with 1/u, =10, pa=1/10, r,=1; B side
gamma(2) with 1/ps = 10/9, pg = 9/10, rg = 1; reselect on.

respectively. Note the significant differences that occur in the time-varying
characteristics between the hypothesized stochastic and exponential models.

The differences between the hypothesized model and deterministic
Lanchester models are even greater than those obtained when the hypo-
thesized model is compared to the exponential model. In fact, for the case just
discussed, in the equivalent deterministic case the battle completion time is
infinite and neither side wins (since both sides go to annihilation). In Table 2
we present, for this case, the values of the eight overall battle figures of merit
for each of the three models and the relative differences that are obtained




Gafarian and Manicn: Stochastic Combats 737

L4
o]

' —T T T 1 T —
.‘ .9 —
.. .8 Pzz(” o —
b z Py 1) + _
] Py (1) »
@6 Pualt) x 7]
3.5
2 NOTE: Py (t) = P (1)
@ 4 -
w
- .3 —
<
b .2 _
A —
O"— : L { - L- .
0 ) 1.0 .5 2.0 2.5 3.0 3.5 4.0
TIME
(a) Transient States
1.0 T —T T T . T T
.9 Pao () o —
8 Py (1) + |
fat Poa (1) * B
;J T PO4 (1) x
m b —
< 6 NOTE: Puq (1) = Py, 1)
g S P,olt) = Pg (1)
o g B
iy R A
L= 4
& .2 oot
{1 —
| ! | | I
0
0 5 1.0 t.5 2.0 2.5 3.0 3.5 4,0

TIME
(b} Abscrbing States

Figure 8. State probabilities versus time for an exponential 2-on-2; A side with
r. = 1: B side with rg = 1.

when compared to the hypothesized model. Obviously the differences shown
are large and point to the importance of developing these models in order to
obtain greater realism.

It should be noted here that in our simulation studies, referred to in Section
1. we are running much larger combats, for example, 100-on-50, with various
interfiring time random variables including the gamma(2). We have found
there that as the battle size grows, i.e., as we increase the initial numbers
involved, the differences between the hypothesized model and either the
cxponential or deterministic approximations gets larger percentagewise also.
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Figure 9. Mean and standard deviation of number of survivors versus time for an
exponential 2 of 2; A side with r, = 1; B side with rg = 1.

What is being emphasized here is that we are comparing the hypothesized with
either the exponential or the deterministic approximation and not differences
between the exponential and deterministic models (although large differences
there also exist; see reference [2]).

In Appendix 2 is a brief description of all the cases run and tables of relative
differences that were obtained. A perusal of those tables will show relative
differences, when compared to the exponential model, as high as 44 percent.
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Table 2. Overall figures of merit and relative differences (in percent) when the

hypothesized model is compared with the exponential and deterministic Lanchester

models. For the hypothesized model; side A gamma(2), 1/pus =10, pa=1/10, r, =1,
side B gamma(2), 1/u, = 10/9, py =9/10, rg = 1.

Relative Relative
Figure of  Hypothesized difference (%}  difference (%)
merit model Exponential  Deterministic (exponential) (deterministic)
E[Tb] 0.8665 0.7497 x +13.480 ~%
(7o) 0.5359 0.5568 0 -3.900 100
E[A®)] 0.9919 0.8337 0 +15.949 100
o[A(x))] 0.9016 0.8974 0 +0.466 100
E[B(=)] 0.6476 0.8337 0 —28.737 100
o (B(®)] 0.8376 0.8974 0 -7.139 100
P[A) 0.5892 0.4997 0 +15.190 100
P[B] 0.4106 0.4997 0 -21.700 100

6. CONCLUSIONS

Two versions of some stochastic homogeneous two-on-two combat models
have been defined and state probabilities have been derived for each. In the
first version, a marksman whose target is killed resumes afresh the killing
process on a surviving target; in the second version. the marksman whose
target is killed merely uses up his remaining time to kill on a surviving target.
The state probabilities in turn were used to develop four time-varying charac-
teristics ma(1), oa(t), mp(t), o(r) and eight overall battle characteristics ur,.
o1, E[A(®)]. a[A(*)], E[B(x)], ¢[B(=)], P[A]. and P[B].

Comparisons were made, in terms of relative difference, with equivalent
exponential and deterministic Lanchester models. It was found that both the
exponential and deterministic Lanchester models are very poor ap-
proximations of the hypothesized model. In fact, among the cases we con-
sidered, there was a relative difference of 44 percent in the figure of merit
E[A(=)] when compared to the exponential model. And in this study we
considered only one interfiring time that was not exponential; namely, the
gamma(2). One can reasonably conjecture that larger relative differences
would surface when other distributions are considered. But the point is that we
have demonstrated that the exponential approximation is indeed a poor one
and that further work must be done to develop the theory of small-to-
moderate-size stochastic combat models.

APPENDIX 1
Model 1.1 (Continued)

3. pult). We now consider py(1) and write it as
pult) = P‘lll)( 1)+ p(lzl)(') + P({‘l)(f) + p(l.‘l,(l)- (13)

Clearly, once we write the first two functions on the right-hand side, we may
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{dv e v —»

— — x 4= —+ y ——
t
0 — Ju fe———y ——

Figure 10. Definition of the variables u and v for the computation of p‘l'l’(x)

and p(,z)(l). x=a B kills an A in (t—v~dv, t—v); y=the surviving A kills a B in
(t—v—du, t—u), u<v.

set down immediately the second two by symmetry. Consider now Figure 10
above which shows that a B Kkills an A first on the interval (t— v —do, t - ),
the surviving A then kills a B in (¢t — u ~ du, t — u) with no subsequent killing
until after time 1.

Now p(ll.)(t) will be written as

p (e = j dv j dup{e, u, v),
[} Q0

where p(,l,)(t, u, v) du dv = probability that both Bs are aiming at the same A,
one of the Bs kills an A in (t— v —dv, t—v), the surviving A kills a B in
(I(; u—du, t—u), and there is no other killing until after time 1.
pui (1, u, v) dudv may now be written as 1/2 times the product of

2fa(t—t) dv = probability that one of the two Bs kills an A in the time interval

(1-v—dv, 1-v),

Gyl — v) = probability that nonkilling B has a kill time >t— v,

Gg(v — u) = probability that the B which will be killed by the surviving A reaims with
an interkill time >v - u,

Gg(v) = probability that the B which will survive reaims with an interkill time > v,
G (1 — v) = probability that killed A had a time to kill >1— v,
falt — u) du = probability that the surviving A kills a B in (1 — u — du. 1 — u),

and finally

Galu) = the probability that the killing A reaims with an interkill time >u.

So we have

(n

pie) = j v [ fo(1- 0) Gl = 0) G(2) Galt ~ v)
XI dqu(I—u)GA(u)Gg(v—u)]. (14)

. (2) .
Now we consider py(t) and write it as

2)

p..(:)=j duj dupt, u. v).
()] (]
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Given the set of all atming configurations in which cach B aims at a different
A, it is easy to sce that within this set half the time the surviving A kills the
klllu B and half the time the surviving A kills the nonkiller B. So we break up
p,.(l u. v) into two terms. The first term arises when the surviving A kills the
killer and the second term arises when the surviving A kills the nonkiller. Thus
the final result becomes

p‘.zl’(l. w, v) dudv = (1/2[2fs(t = v) dv Gulv — WG Galt — v)
X falt — ) du Galu) + 2 fglt — 0) dv Ge(v) Gyt — u)
X Galt— U)f,\(f —u)du G,\(U)].

in which the factors common to both terms in the brackets are

2fg(t— v) dv = probability one of the two Bs kills an A in the time interval
(t—v—dv. t—v),
GA(1— v) = probability that killed A had a time to kill >1— v,
falt— u) du = probability that the surviving A kills a B in (1 —u~du. 1~ u).
Galu) = probability that the killing A reaims with an interkill time > u,

whereas the second and third factors in each term are unique to the situation.
In the first term

Gp(v — u) = probability killer B reaims and has interkill time greater than v - u [since he
gets killed in the interval (1 — u— du, 1 — u)],
Gg(t) = probability nonkiller B (or the surviving B) has an interkill time >1,

and in the second term

Gpg(v) = probability killer B (or the surviving B) reaims and has interkill time > v,
Gpglt - u) = probability the nonkiller B has an interkill time > — u [since he gets killed in
the interval (1— u - du, t — u)].

So finally

p(1) ——[ o [f,,(:— 0)Galt = v) L du falt = u) Ga(u) Ga(v — u)]

¥ j d [fn(f‘ v) Ga() Galt - v) j du Gt = wfal = W Gata) | |
(15)

To complete lhc computation for p“(l) we must write expressions for
p.,(r u, v) and p”(l u, v). These two arise from a transition from (2, 1) to
(1, 1) in which initially cither both As are aiming at the same B or they are
not. In Figure 11 below we show that an A kills a B first in the interval
(t—u—du, t— u), the surviving B then kills an A in (1 — v — dv, 1 - v) with no
subsequcnt klllmg until after time . Clearly we may immediatcly write down
p,,(l) and p,,(l) by interchanging in equations (14) and (15), respectively, A
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Flgure 11. Definition of the variables « and v for the computations of p.‘u)
and p,.(l) y=an A Kills a B in (t— u—du. t— u); x =the surviving B kills an A in
(t—v—de.v—uw: u>v.

with B and u with ¢. Thus

3)

pnln)= '[ du [fA(’_ WGalt— W) Galu)Gelt— u)

x [ do falt= 1) Ga() Gatuc = u)], (16)
(4]

and

(3)

1) —%[GA(t) L' du [fA(:— ) Ga(t — 1) L“ dv fa(t ~ v) Ga(v) Galu - v)]

+ [: du [fA(t— u) G alu) Glt — w) L“ dv Ga(t~ v)fa(t— v)GB(v)H.
(n

It should be noted that ir the expressions p(",)(l u,v), i=1,2,3,4itis not
always the case that u and v are the tackward recurrence tlmes measured at
time ¢, of the surviving A and B, respectively. Consider p..(l u, v) which
arises from an initial configuration with each B aiming at a different ‘A. At
time ¢, one of two situations obtain. Either the surviving B killed an A or it
did not. If it did kill an A, its backward recurrence time is v; if it did not kill
an A its backward recurrence time is .

Summarizing to this point, Eqs. (1)-(3) and (13}-(17) give all the transient
state probabilities, i.e., each of states has in the limit as t— = zero probability;
and we now turn our attention to writing the probabilities associated with the
four absorbing states (0, 2), (2, 0), (0, 1), and (1, 0).

4. poa(t), pao(1). We now consider py,(f) and write it as

P()z(')"P(w( )+Pm(l) (18)

Consider Figure 12 below which shows that a B kills an A first in the interval
(t—Z—~d¢g. t— 0 followed by anotper kill of the surviving A by a B in the
interval (1~ n—dn, t— n). Now p(,«(l) will be written as

(1)

t {
pmm=j d;j dn ps. 2. ),
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Figure ,12. Definition of the variables [ and 7 for the computations of pas(D)
and pea(t). x=a B kills an A in (t~¢-d{, t—Q); y=a B Kkills another A in
(U—m—dn.t—7n) {>n.

where p(olz)(t, {, ) d{ dm = probability that both Bs are aiming at the same A,
one of the Bs kills an A in (t—{—d{, t—{) and then one of the Bs Kkills the
surviving A in (t—n—dn, t— 7). pf,lz)(t, {. m) d{ dm may now be written as 1/2
times the product of

2fg(1—{) d{ = probability that one of the two Bs kills an A in the time interval
(t=¢-d¢, 1=,
Gglt— {) = probability that nonkilling B has a kill time >¢—{,
2fs({ — 1) dn = probability, after both Bs reaim, that a B kills the surviving A in the time
interval ({—n—dn,{~n),
Gpg({ - m) = probability that nonkilling B has an interkill time >¢£- 7,
GAl1—{) = probability that the first A that was killed had a kill time >1—{,

and finally Ga(t— m) = probability that the second A that was killed had a kill
time >t — 7. So we have

(1

Py =2 j d{[fs(f“ 0)Ga(t= )Galt~{)

{
XL dnfa<;—n)ca(£—n)GA<z~n)]. (19)

. @ .
Now consider pga(1) and write it as

2 ' ¢ 2
p:,;(r>=j d;]’ dn pt, £, m).
(V] (1]

(2) . .
Here we must break up pg2(t, £, ) into two terms. The first term arises when
the same B Kkills both As and the second term arises when each B kills an A.
The final result becomes

p:‘::)(" g, m) dldn=1/2[2fg(t= &) d{ fe(l — 1) dn Gt — M) Gt~ ) Galt — 1)
+2fplt~ ) d fult = m) dn Gs({ — ) Galt = ) Galt = 1)]

in which the factors common to both terms in the brackets are,

2fu(1—{) d{ = probability onc of the two Bs kills the first A in the time interval
(t=¢—dg 1= ),
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Galt ~ {) = probability that the first killed A had a time to kill >1-{,
GA(t— 1) = probability that the second killed A had a time to kill >¢- 7,

whereas the factors not common are unique to the situation. In the first term

fu({ — ) dn = probability that the killing B reaims and kills the surviving A in the time
interval (t— n~-dn.t-7),
Gplt~ m) = probability that the B who kills no As has a kill time >1- 1y,

and in the second term

fa{t— n) dn = probability that the other B (who did not have to reaim) kills the surviving
A in the interval (t~n—dn, t—7),
Gg({ — m) = probability that the first B who killed an A (and had to reaim) has an
interkill time >¢ - 7.

So, finally,
2 ' ;
p&(1) = j dg [fa(l_ DGali= ) j dn Ga(t—n)fa(¢ — ) Galt n)]
0 0

t {
+ j dy [fs(t— DGalt- ) j dn Go(L - ) falt— m)Galt~ n)].
(20)
Similarly, write

[C))

Paol1) = p3o(1) + pSa(r). 1)

If we suppose that the first B is killed in (t— ¢ - d{, t — {) and the second B is
killed in (t—nm—dn, t— n),(}t)hen by sisnply interchanging A with B in Eqgs.
(19) and (20) we may get psa(t) and pao(). Thus

3)

pa =2 [ d{[f,\(r— O Galt— ) Galt = )

{
x j dnfalZ = G - M Gali~ )] (22)

and

4)

t {
Py = [ L[ falt= D) Gyt =) [ dn Gl = ) fall — 7 Galt - n)]

! [4
+ [ e[ ratt-0Gatt-0 [ dnGaz=pat- 0 Gatt=m)].
(23)

S, poi(t), pro(t).  We next consider py (1) and write it as

Por(1) = Py (1) + pis (1) + por(6) + por (1) (24)
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To develop expressions for the terms on the right-hand side of Eq. (24) it is
very convenient to work with the backward recurrence time and its associated
instantaneous kill rate. For the first term, recall both Bs are initially aiming at
the same A and refer back to Figure 10 and consider the following sequence
of events:

1. One of the Bs killed an A in the time interval (t — v~ dv, t ~ v).
2. Then both Bs reaimed and one of the Bs was subsequently killed by the surviving A
in the time interval (1 — u — du, t — u).

Therefore, at time ¢ the surviving A has a backward recurrence time of u with
instantaneous kill rate ra(u) and the surviving B has a backward recurrence
time of v with instantaneous kill rate rg(v).

Consider now the time interval (1, 1+ A) and, in the usual fashion, write an
expression for p}.‘l’(t+ A) retaining only the first order terms in A. Thus the
probability of being in state (0, 1)'" at time 1+ A is equal to the sum of two
probabilities, namely, (1) the probability of being in state (0, 1)’ at time ¢
times the probability of remaining there in (¢, ¢ + A) [which is one since (0, 1)V
is an absorbing state], and (2) the probability p(,ll)(t, u, v) dudv, of being in the
state (1, 1)V at time ¢ with backward recurrence times of « and v for survivors
on the A side and B side, respectively, times the probability, rg(v)A(1 —
ra(u)A), that the B-side survivor kills the A and A fails to kill. Thus, we get
taking into account all (u, v) pairs,

poi+a) = pi,‘l’m+j dvj du pie, w, 0)ra(0)A( = ralu)d).
O (§3

Rearranging terms, dividing by A, and letting A— 0. we have that

n

t v
(1) di = J dv j dupt, u, v)ra(v).
(}] (4]
Using the initial condition pi,‘l)(O) =0, we may write
M

t { v
poi (1) = j d(J’ dv J du p(,],)({. u, v)rg(v).
0 0 (1]

Finally, after substituting in for rg(v) = fg(v)/ Gg(v) and p.“l)({, u, v) [see Eq.
(14)], we get

4 4
poln) = j dg j dv [fa(v)fa(;~ 0)Ga({ ~ 1)Ga(L - v)
x I du Gulv = ) fall ~ u)GA(u)]. (25)

Procecding in the above manner, i.e., making use of the backward recur-
rence times and the instantancous kill rate associated with each, it is casy to




#‘
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get the next three equations, namely,

P20 —%{j d [fa(oj o[ fotd = 2)GalE =)

x

L du G(o = w)falg = W Gata) |
+Ld J dv[fa(v)fa({—v)GA(;_v)

xj du Ga({ ~ w)fa(l —u)GA(u)]}, (26)

3)

! {
pm(z)—j dt J' du [fA(z— 1) Gal{ — ) Galu) Ga({ — u)
Xjudvfa(f'U)fa(U)GA(u“U)], 27
0

and

1)

P = %{j 4 G0 j du [ fal = W Galg - )

X

L do fa(0)fag = 1) Gatu = o) |
; j 1) (/¢ = 0)Gala) Gtz =
xj’o dv Ga(¢ = 0)falg = 0)fa(0)] | (28)

We next write the right-hand terms of

pro(1) = pholt) + pio(e) + pio() + po(s). (29)

Each of these are easily written by taking the appropriate pm(l) i=1,2,3,4
and interchanging A with B and u with p. Table 3 below lists these
identifications. Thus to get pm(t) interchange A and B and u with v in pm(t)
etc. These identifications result in the formulas

(N

o) ~j j dv [fa(;— 0)Gal({ = ) Ga(v) Ga(L ~ v)

x [ du fA(L — u)fa(u) Gl - u)], (30)




and
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2)

p20) = % {j ¢ | Gat0) j: dv | falg = 0)Galg - v)
x L du fali) fall - u) G p(v — u)]]
+j dg j: dv | falZ = 0) Ga(v) Gl ~ v)

xJ‘Ou du GB({—u)fA({-u)fA(u)]}, (31)

4 {
p‘fo’(x>=jo d;j du [fA(um(;— W) Gal¢ ~ u)Ga(L - u)

0

X J) dv Ga(u—v)fe(l— U)GB(U)], (32)

(4)

piaw=3{[ ae[sn@ [ au[1us - wGats -

X L" dt Galu~ v)fo(l - v)Ga(v)]]

+ LI d{ J'O{ du [fA(u)fA({- u)Ggp({ — u)

X J:)u IdU Gall—v)fe(l - U)GB(U)]}- (33)

Table 3. Identifications used to get p,o(t) from po,(t).

(1, H—(0,1) (1, H-0,0
, Initial aiming . Initial aiming
Por(t) configuration pilt) configuration
and winning side and winning side
Both Bs aiming - Both As aiming
Por(t) atsame Aand B p,(1) at same B and A
side wins side wins

, Each B aiming at " Each A aiming at
p:,‘,)(r) a different A and p(,o(l) a different B and
B side wins A side wins

, Both As aiming ™ Both Bs aiming at
pf,‘,’(l) at same B and B Pioll) the same A and A
side wins side wins

. Each A aiming at @ Each B aiming at
P:..)(l) a different B and pPia() a different A and
B side wins A side wins
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Model 1.2 (a¢=2. a, = 0; bo=2, b= 0; “Reselect Off")

The reader is reminded that in Version 2 of Model 1 (Model 1.2), ie.,
“reselect off,” if a marksman’s target is killed by the other member on the side,
his remaining time to a firing (or a killing) is carried over to the survivor (if
there is one). To develop the state probabilities for this model it is no longer
necessary to break down the analysis into terms of the initial aiming
configurations, i.e., both Bs aiming at the same A, etc. However, we still do
decompose state (1, 1) into states (1, 1)V, (1. ), (1, D, and (1, 1) and
these are defined in Figure 13 below.

I. pas(1). As in Model 1.1, we have

2:(1) = (Ga()X(Gg(1))*. (34)

2. pial1), pai(0). Reterring back to Figure 5 we define p(2(1, 7} dn =one
of the Bs kills an A in (t—n—dn,t~7), and there are no killings until
beyond 1. Now

pi2(t, ) dn =2 fg(t — 1) dn Gg(n) Galt — 7)) Gal2),

where

2fgl(t — n) dn = probability that one of the two Bs kills an A in the time interval
{t—n—dn, 1-7).
Gg(n) = probability that the B that killed reaimed and has an interkill time >,
Gp(1) = probability that the nonkiller B, since he just carries over his remaining
time to kill if he is aiming at the killed A, has a time to kill >,
GA(t— n) = probability that killed A had a time to kill >t— 19,

and finally G4(t) = probability that surviving A had a time to kill >t. Thus we
get

t

pia(t) = J’ dn pia(t. ) = 2Gp(t) Ga(r) J dn fe(t— M) Ga(n) Galt — 7).
) 0

(35)

(1.1 surviving B in state (1,1) killed A

(1.2)

\ (1.1 surviving B in state (1,1) did not kill A
/’ (1.1)3) surviving A in state (1,1) kiled B
(2‘1) \

(1.1){4) surviving A in state (1.1) did not kill B

Figure 13. Definition of the states I, ), (1, 1)®, (1, )™, and (1, 1) in the “reselect
ofl” model.
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Again, by an interchange of A with B, we get

par(t) = 2Gal1) Ga(0) L dZ fa(t = 0)Ga()Gall = ). (36)

3. pui(r). As described above we shall write py,(¢) as

puln = plny+pny+ pln)+ pii). (37)

For the p‘.l.)(t) and pﬁ)(r) computations refer to Figure 10. After the first kiil of
an A by a B, it is clear from the independence assumption and homogeneity of
the marksman on each side that with equal likelihood the surviving A is either
mmmg at the B that killed or the B that did not kill. Thus define
p”(t u, v) du dv = probability that one of the Bs killed an A in (t— v —dv, t—
v), the surviving A kills the nonklllmg B in (t— u—du, t— u), and there is no

subsequent killing until after time 1; pii(t, u, v) dudy may now be written as
1/2 times the product of

2fg(t~ v) dv = probability that one of the two Bs kills an A in the time interval (1— v —
dv, t—v).
Gy(v) = probability that the killing B reaims and has an interkill time > v (since this
is the B that will survive on the B side).

Gpg{t— u) = probability that the nonkilling B, which will be killed by surviving A, has a
time to kill >¢— u (this is true whether he were initially aiming at the A
that was killed or not, since if he were aiming at the killed A, he merely
transfers the remaining time to kill to the surviving A),

G, (- v) = probability that killed A had a time to kill >¢— v,

fa(t — u) du = probability that the surviving A kills a B in (t— u—du, t — u),

and finally Ga(u) = probability that the killing A reaims with an interkill time

>u. So we have

(0 = L dv[fB(r— 2)Ga(0) Galt - v) L duGp(t — u)falt - u)GA(u)].

(38)
In a similar fashion we define p(,zx’(t, u, v) du dv = probability that one of the Bs
killed an A in (r—v—dv, t—v), the surviving A kills the killing B in

(t— u—du, t— u), and there is no subsequent killing until after time ¢, and get

Pt u, v) dudv = fa(t - v) dv Ge(v — u) Ga(t) Galt — v) falt — u) du Galu),

with

P10 = Go(o) [ o[ fati=)Gatt=0) | " du Gp(v = u)fali - W Ga(w)]
(3] 4]
(39)

To write expressions for p({‘,)(l) and p(.‘,)(t) see Figure 11 to recall the




750 Naval Research Logistics, Vol 36 (1989)

definitions of u and v in the transition (2, 1)— (1, 1). As before, we can, by
interchanging A with B, u with v in Eqs. (38) and (39) set down

P = j "du [fA(x— 1) Ga(u) Ga(1 — ) j dv Galt— v)falt— v)cA(u)],
(4] 0

(40)
and

PO = Ga [ du [mz— u) Ga(t— u) j dv Ga(u - v)fa(t— U)GB(U)],
0 0

(41)
respectively.
4. pox(1), p2o(t). We now write

Pox() = pos(t) + poa(e), (42)

where pf,lz)(:) is the term that arises when the same B kills both As and pg}(t)
arises when each B Kills an A. Referring to Figure 12 for the definitions of {
and 7 we may write

(1)

t 4
P&y =2 j dg [fa(f— Gali—{) j dn fa({ ~ 1) Galt— n) Galt - n)],
0 Q
(43)
and

(2)

¢ {
p3(n =2 j dg [fa(f— DGalt—0) j dn Gs( - n)falt— 1) Galt - n)].
s} 0
(44)
Similarly, write

Paot) = p5o(t) + pSole). (45)

If we suppose the first B is killed in (t—¢—d{, t—¢) and the second B in
(t— n—dn, dn), then by simply interchanging A with B in Egs. (34) and (35)
we get

(3)

t {
P =2 j dg [mr— 0Ga(t-0) L dn fal{— 1) Galt — 1) Galt n)].

(46)
and

4)

' {
P =2 j dg [fA<r~ {) Ga(t= ) j dn Ga({~ 1) falt = 1) Galt - n>],
] 4]
(47)
respectively.
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S. pn[(’), pu)(t). We write

(4)

Pm(f)—P()l(‘)+P<)1(l)+P()l(l)+pm(t) (48)
and use. as in Model 1.1 instantaneous Kill rates, each of which depends on the

appropriate backward recurrence time, to develop the expressnons for the
terms on the right-hand side of Eq. (48). Thus in the case of ph\ (r) which
arises from the sequence (2,2)— (1,2)— (1, 1)— (0, 1), we take p”(t, u, v),in
" which u and v are the backward recurrence times, measured at time 1, of the
surviving A and B, respectively, and in the usual fashion write

(8%

PO+ A) = p0|(l)+J dvj dup'(e, u, )ra(0)A(L = ra(1)d).
Q

After rearrangmg terms, dividing by A, letting A— 0, and using the initial
condition p(,.(O) 0, we may write

pve) = [ 2| j: dv | falg = 0)fs()GalL = v)
x j du Golg = W fals = W) Ga(w)] | (49)

In a similar fashion we also get
' ¢
o= d d ~0)Gal{ -
P = [ de[fa(0) | do[fals-0)Gatz-v)

X J:)U du fa({ — u)Ga(u)Ga(v - u)]], (50)

(%))

A = I d{[f du [ fa(8 = W) Galu) G(g ~ w)

x j dv G - 0)fsls = ) al0) ], (51)

and

(4

() = [ a[ Gaw) If du| falg = W Gulg - w
x j v folg = 0 fa(V)Galu = v)] ] (52)

Again, as m Model 1.1, we may interchange A and B and u with v in the
appropriate pai(f), i =1,2,3,4 to get each of right-hand members in

Prol 1) = pLol) + pia(n) + pia() + pla(e) (53)
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P = j dg [r dv [ f5({ = 0)Ga(0) GalZ = 1)

)

x f duGa(¢ = wfals = wfati) ||,

(2)

1) = jo' 4| Gat) j: dv | fal§ = 0)Galg = v)
< )" dufalg = wfa)Gato =],

P20 = j df [j" du | fa( = ) fal4) GolZ = w)

(\]

x j d GA(Z - 0)fs(¢ - 0)Ga(o)] |

pie) = j 4| fa j{ du [ fal = 0 Gag = )

(0] 0

xj dv fs(¢ = 2)Gs(0) Gatu = )| |

Model 2.1 (ay =2, a, = 1; by =2, by = 0; “Reselect On”)

The transient states are given by

p22(t) = (Ga(( Gg(1))%,

pa(1) = Gal(t) [ dn falt = M) Galt = 1 Ga(m)? Galt - 1)

+ Ga(1)Gal1) j dn fa(t = 7)Gal(n)Galt - ).

The absorbing states are given by

pua(t) =2 L 4 (GalD))* Ga(0)fa(0),
' n
p.,m=j dnj du fa(n — u)Ga(n — u)(Ga(w)*Galn — u)fa(n)

+ j dn j dufa(n - w)Ga(n - u)Ga(u)Ga(n)fa(n),

(54)

(55)

(56)

(57

(58)

(59)

(60)

(61)
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t {
p:..m=zj d;[f,\(r—;\G,\(:—ocau—aj dnfall— )
(}) QO
xGA(/;—n)c,,u—n)]
‘ ¢
+j'“ ¢ [fatt- 0Golt =) j dn Gali = )
X falL = 1) Ggli ~ n>]
i [4
+ [ d{[fA(r— 0Ga(t-2) L dn Gal{ = 1)

X falt = 1) Ga(t - n>]. 62)

Model 2.2 (a,=2, a,=1; by=2, b = 0; “Reselect Off’)

The transient states are given by
pa(t) = (GA(D)Y(Gp(D)), (63)

pau(1) = 2Ga(1) Ga(1) j dL falt = )Gl Galt - ). (64)
The absorbing states are given by
pialt) =2 j (GaDF Gal)fald) ds. (65)
p(1) =2 j dn j du fa(n - u)Ga(u)Ga(n)Galn - ) falm), (66)
1 4
paolt) =2 j dl [f,«z— {) Gyl ~ oj dnfall — MGalt - m)Galt - n>]
(1 [V}
+2L d¢[ fati= 0Gs(t=0)
. .
x j dn Ga(Z — m)fa(t— m) Galt - n)]. 67)

Model 3 (20=2, a,=1; by =2, by = 1; “Reselect” not Material)
p22(1) = (GaA(1))*(Ga(1))%, (68)

while the absorbing state probabilities are

pia(t) =2 | (Gald)*Gs({)fs({) 4L, (69)
)




754 Nuval Research Logistics, Vol 36 (1989)
pu() =2 j (Ga(DP Ga(DfulD) dL. (70)
0

APPENDIX 2

As discussed in Section 4 we define parity to mean raaj = rgbj (since we are
assuming here that a; = b, = 0) so that if a, = b, parity is equivalent to ry = rg
and nonparity is equivalent to ra ¥ rg. Table 4 shows all the gamma(2)-
gamma(2) combats that we considered in the nonparity situation. Thus we
have here nine cases for “reselect on™ and nine cases for “‘reselect off” for a
total of 18 different cases.

We also ran the same probabilities displayed in Table 4 for the parity case
ra=rg=1. Again there were a total 18 different cases for the hypothesized
model (including “‘reselect on™ and *‘reselect off). It should be noted that in
the hypothesized case strict parity obtains only when p4 = pg; also, the results
for, say, pa=9/10 and ps=1/10 can be obtained by interchanging the
outcomes from the pa = 1/10 and pg = 9/10 battle. The ‘mixed” battles, one
side gamma(2) the other side exponential, included:

1A side gamma(2), ra=1, pa= 110, 1/2. 9/10: B side exponential. ry = 1.25;
nonparity. Run with “reselect on™ and “reselect off ~ for side A.

2. A side exponential, ry =1; B side gamma(). r, =125, py=1/10, /2, 9/10;
nonparity. Run with “reselect on™ and “reselect off ” for side B.

3. A side gamma(2), ra =1 pa = 110, 1/2. 9710, B side exponential, r, = 1: parity.
Run with “reselect on™ and “reselect off " for side A,

4. A side exponential, r, = 1: B side gamma(2), rg =1, pg = /10, 1/2, 9/10; parity.
Run with “'reselect on™ and “reselect off ™ for side B. (Note that the results here would
be obtiined by just interchanging the A side and B side results in 3.)

To make the relative difference calculations discussed earlier. only two
exponential-exponential and two deterministic—deterministic battles need be
considered; namely, ra=1.00, rg =1.25 and r, =1.00, rg = 1.00 for each

air.

P Tables 5-14 which follow, present all relative differences obtained when the
hypothesized model is compared with the exponential model. We have also
included, for the sake of completeness, some relative difference results when
the hypothesized model is compared with the deterministic model. These are
shown in Tables 15 and 16. Also in Tables 7, 8, 13, and 14, where there are

Table 4. Side A, gamma(2), r, =

1. side B, gamma(2), rs =1.25;

nonparity. Run with both “reselect
on” and “'reselect off.”

Pa Pa
1/10 1710, 1/2, 9/10
1/2 1710, 172, 9/10

9/10 110, 1/2, 9/10
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results shown for the exponential-exponential case with parity, ie., ra =rg =
1, the win probabilities are entered as P[A]= P[B]=0.4997. This is the
answer obtained using the Gaussian quadrature (we know that we must have
P[A]= P[B]=1)2).
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