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U. S. Army Research Office Workshop
"Smart Materials, Structures, and Mathematical Issues"

FORWARD

This workshop on "Smart Materials, Structures, and Mathematical Issues" is one of
a series of workshops organized by the U. S. Army Research Office to identify recent
significant developments and breakthroughs in science and technology. Its main
objective is to evolve a consensus on the definition and characteristics of a
"smart'/'intelligent' material or structure, and discuss mechanisms and possible
methods to produce them. Another objective is to identify directions of future re-
search in this field.

In the following pages the abstracts/papers as received by the invited speakers are
presented. The three sessions related to i) Smart Structures, ii) Smart Materials, and
iii) Related Mathematical Issues, contain a wide range of presentations concerning
numerous technologies for actuators, sensors, intelligence, control, constitutive
modeling, and other scientific fields that have become essential to the emerging sci-
ence and technologies of smart materials and structures. At the end of each session
a discussion period has been scheduled to address some of issues of general con-
cern related to the mission of the workshop. It is hoped that all in attendance will
contribute to the discussion and share with all of us your impressions, experiences
and desires for the future of smart materials and structures research.

Craig Rogers
lqbal Ahmad
Workshop Co-chairman
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"SMART" STRUCTURES AND MATERIALS

I. AHMAD

U.S. Army Research Office, Research Triangle Park, NC

ABSTRACT

The definition of 'smart' and the characteristics of 'smart' structures and
materials are reviewed.

As Professor Rogers has stated, the objectives of this workshop are as follows:

1. To arrive at a concensus about the definition of 'smart'/'intelligent'
structures or materials.

2. Identify their characteristics.
3. Discuss the logic and methodology of producing them.
4. Discuss mathematical issues relating to modeling and predictive

rel ati onshi ps.

This paper is addressed to the first two objectives. The terms 'smart',
'adaptive' and 'intelligent' have been used recently quite frequently in the. technical meetings and literature, interchangeably and rather loosely. For
example Professor Gandhi, who is one of the speakers at this workshop, reports
an electrorheological fluid as 'smart structural material' as it can change
properties' on demand'. In principle this fluid is placed in a graphite epoxy
composite beam as shown in Figure 1. When an electrical potential is applied,
the fluid stiffens, thereby stiffening the beam. This phenomenon can be used
to dampen vibrations in structures. Response time less than a millisecond is
reported. Professor Roger, who is the co-chairman of the workshop, uses the
term 'adaptive' to shape memory alloy wires which act as actuators in a
composite beam. He has developed a system (Figure 2) in which prestrained
Nitinol (an alloy of nickel and titanium) wires are embedded in an off-axis
position in the graphite fiber reinforced epoxy composite beam. When these
wires are heated by passing an electrical current they try to contract to their
original length, which generates a uniformly distributed shear load along their
length, causing the beam to bend in a predictive manner. In a recent issue of
Laser Focus (May 1988) a concept of 'smart structure' that contains embedded
f1her-optic sensors has been presented. The idea is to incorporate the sensors
at the time of the manufacture of the structure to monitor the manufacturing
process, check the integrity of the structure before installation in the system
and monitor its health during service. The output from various sensors is
multiplexed for transition to optical/electronic preprocessors whose output
goes to control computers. A fiber optical link can be used in connection with
the control system to activate actuators when required. So in this example,
the 'smart' structure includes sensors, a control system and actuators.

. Use of piezoelectric actuators as elements of 'intelligent' structures has been
actively pursued by many researchers. In the large space structures, these



* actuators are required to control both the rigid body and elastic deformations.
The feasibility of using segmented actuators for vibration and shape control
has been demonstrated both analytically and experimentally by Crawley et al
(AIAA Journal, vol 25, No. 10, p 1373-1385).

No intrinsically 'smart' or 'intelligent' material has been reported as such in
the literature. However, a carefel search does indicate a few materials, which
may qualify as 'intrinsically' smart. In other words, they have intrinsic
capability of sensing the stimulus and responding in a controlled manner, as a
result of their atomic or molecular structure. The former is exemplified by
photochromic glass and the latter is prevelant in the biosystems. These
examples will be very briefly described in the following.

Photochromic glass used in the popular ophthalmic lenses for the protection of
eyes from the ultraviolet radiation, was discovered by Arimstead and Stooky of
Corning Glass in 1964. This glass has the remarkable property of becoming dark
in the sunlight and reverting to the clear state indoors. This is accomplished
by incorporating in an appropriate glass composition, a small quantity of very
fine crystallites of silver chloride containing traces of copper. Figure 4
shows the arrangement of ions in one of the silver chloride crystals, before
and after darkening. The process resDonsible for darkening can be sumarized
by the following equations:

Cl + hv+ - Cl° + e (1)
e + Ag = Ago (Trapped electron) (2)

Cu+  + C1°  = C" + Cu++ (Trapped hole) (3)

Cu+ + Ag+  = Ag0 + Cu++  (4)

Thus the silver halide which is sensitive to the ultraviolet radiation acts
both as a sensor and as an actuator, as the darkening is the result of the

clustering of silver atoms (Ago). The fading is the reverse of reaction (4)
which is energetically favorable in the absence of ultraviolet radiation.

From the biosystems a large number of examples of molecular entities, which can
be termed as 'smart' or 'intelligent' can be mentioned. One simple example
(Encyclopedia Britanica, 'Science and the Future' 1981 Year Book, p 122-137) is
the cell membrane. All living beings are composed of cells which carry out
specialized functions with greatest efficiency. The life and performance of
living systems is due to the integration of these functions. Cells themselves
are highly complex systems. They are kept separate by a thin wall called cell
membrane. Until recently cell wall was considered to be a passive system
through which certain constituents can pass. But more recently, the structure
and function of this membrane have been elucidated, according to which it is
now believed that it is a dynamic system which controls (1) transport of raw
materials into the cell and secretory and waste materials out of the cell, and
(2) it carries specialized receptor molecules which function as sensors for the. cell and provides it with means to react with the outside stimuli such as
hormones, regulatory substances such as drugs or even other cells.

2



* The cell membrane is essentially composed of phospholipid molecules which are
hydrophobic on one end and hydrophilic on the other (Fig 5a). In aqueous
solutions, they form stable bilayers as shown in Figure 5(b), with the hydro-
philic groups on the surface. In these layers are incorporated protein mole-
cules, which consist of chains of amino acids some of which are hydrophobic and
others are hydrophilic. These molecules in aqueous solutions fold into three
dimensional structures (Figure 6a) that satisfy the surface properties of
individual amino acids. In the aqueous medium the protein chains fold in such
a way that the hydrophobic amino acids are collected together within the
structure, while the hydrophilic portions are on the surface. Although cells
use about 20 types of amino acids, essentially any one of them can appear at
any position on the protein chain which could have anywhere from 50-50,000
amino acids. This provides these molecules a large number of functional capa-
bilities. These chains are flexible and are quite sensitive to the conditions
that effect chemical reactions- temperature, pressure, acidity and exposure to
other molecules. Also some carbohydrate groups occur as chains attached to the
phospholipid and protein molecules of the membrane, which act as sensors. The
configuration of the protein molecule is very sensitive to an is determined by
the chemical environment in and outside the cell. For transport of molecules
such as glucose, the protein chain forms hydrophilic channels as shown in
Figure 7. whereby the attached molecule is transported into the cell. As soon
as the molecule detaches (caused by the environment in the cell interior) from
the protein surface, the chain reconfigures into the original shape as in
Figure 7a. Thus the protein molecule acts as a sensor and because of its abi-
lity to configure dictated by the environment, as an actuator. Control

e mechanisms are provided by the chemical environment. The key factor is the
W Intrinsic nature of the molecular structure. Other functions and the

mechanisms of transport used by the protein molecules are described in the
literature.

From the above examples, the common features of the so called 'smart' or
'intelligent' structures or materials, can be identified as follows:

1. They have embedded (or bonded) or intrinsic sensor/s which recognize and
measure the intensity of the stimulus, such as stress, strain, thermal,
electric, magnetic, electromagnetic, chemical or nuclear etc.

2. They have embedded or intrinsic actuator/s to respond to the stimulus.
3. For controlling the response in a predetermined manner they have available

mechanisms of control and sometime of selecting a particular response if
more than one option is available.

4. Time of response is short/appropriate.
5. The system returns to its original state as soon as the stimulus is

removed.

Now the question arises whether the above described structures or materials
should be termed as 'smart' 'adaptive', 'intelligent' or something else.
According to the Webster's International Dictionary, 'smart' is:

Suggesting vigor, speedy, spirited, lively;
showing mental alertness and quickness of
perception, shrewd, informed, resourceful;
sharp and of questionable integrity, well
turned out, neat, trim, spruce, tidy, natty

3



. This dictionary also defines 'intelligence' as follows:

To perceive ones environment;
to know/comprehend and learn;
to understand;
to foresee problems;
to use symbols and relationships and create new ones;
think abstractly;
to work towards a goal;

McGraw Hill Encyclopedia of Science and Technology (Vol. 9, p. 272) defines
'intelligence' as:

"general mental ability due to integrative and
adaptive functions of the brain that permit
complex, unstereotyped, purposive response
to novel and changing situations, involving
discrimination, generalization, learning,
concept formation, inference, mental manipulations
of memories, images, words and abstract symbols,
education of relations and correlations and problem
solving"

Then there is 'machine intelligence' which is defined as:

"that can accomplish its specified task in the
presence of uncertainty and variability in its
environments. Machine's ability to monitor
its environments allowing it to adjust its
action based on what it has sensed is a
prerequisite of intelligence"

Examples of 'machine intelligence' quoted in the literature include robots
equipped with sensors, computers equipped with voice recognition etc. Atomatic
feedbacks, regulatory systems such as thermostats, automobile cruise controls,
photoelectric door opener etc are not considered as machine intelligence. In
fact the term 'intelligence' represents an hierarchy which ranges from the
simple automatic feedback systems, 'machine intelligence', artificial intelli-
gence, and intelligence in vegetable kingdom, to that of viruses, bacteria and
higher order species including mammals and homosapiens.

In the light of the above discussion of the characteristics and definitions of
'smart' and 'intelligent', neither of these terms appear to be appropriate for
the systems described in the literature as 'smart" or "intelligent". However,
the term 'smart' has acquired some acceptability in the technical popular
literature. To avoid confusion one way out is to sanctify it as a technical
term and define it as follows:

'A system or a material which has built-in or intrinsic sensor/s,
actuator/s and control mechanlsm/s whereby it is capable of sensing a

* stimulus, responding to it in a predetermined manner and extent, in a
short/appropriate time and reverting to its original state as soon as
the stimulus is removed.'

4



* If this definition is adopted, then electrorheological fluids, shape memory
alloys or piezoelectric transducers are not 'smart' materials as such, but they
can be an important component (for example as a sensor or an actuator) of a
'smart' structure or a system. On the other hand photochromic glasses and
certain protein molecules can be termed as 'smart'.

It is hoped that these ideas about the definition and characteristics of
'smart' structures and materials, will be discussed in this work shop
thoroughly, as their clear conceptualisation is important for the furtherance
of this emerging technology.

List of Figures:

Figure 1. 'Smart Structural Material.' Prof. Gandhi

Figure 2. 'Novel ''%aptive/Smart Composite Material'. Prof. Rogers

Figure 3. Embedded sensors make structure 'smart'

Figure 4. Darkening mechanism of photochromic glasses.

Figure 5. (a) A monomolecular layer of phospholipid molecules.

(b) Self assembled two molecule thick layer.

Figure 6. (a) A folding pattern of protein molecule in an aqueous
I W medium in which hydrophobic regions face upwards

(b) Unfolded protein molecule.

Figure 7. (a) Showing the configuration of the protein molecule as
the molecule to be transported from the exterior of
the cell, attaches to it.

(b) Showing the configuration of the protein chain as the
molecule to be transported detaches in the interior of
the cell.

5



LL.

3

4J

LA



IO

N 4-J

41

U,-

*~ V,

-C

45-

u-%-
-P4 ) 0
o 0I

P4 4C

Iiii

LL.



4-1

LL.

43
W n

41 0
.0~ LL.

w C.

4'1

C 1=.c
GIa a,

4.'~.ii r



w pr4

(A 131 0
~ 1.41 '.4

.2~ .4-D

LU 4)

434

0OL E,; >

z~4-ZLU
EL u t;



-- d

C-)h

4A4

06

d)

4Az
gC

~ 0 *0 ~ -Lai

Ce

W I.
* . IJa

CD 0 0 ~ -I cc



-boundary Figure 6 (a)

Figure 5 (a)

.- Hydrophobic
O ". region

Figure 5(b)

Figure 5 : (a) Phoepholipid
molecules orient prefentlally at Hydrophilic
oil-water boundary, forming a region
monomolecular film. (b) When immersed
under water phospholipids for!#xtended .
layers exactly two molecules thick.
Figure 6 :A folding pattern of a protein i an
aqueous medium in which hydrophobic regions
fac outward. (b) Unfolded protein Figure ('b)



H -

0 (DH
4- 0- 4

0 " c
-eiA C cd C.

&D4 .14 0 I

4-: -4 4-3 0 (d (D

4)~ ~ 4u.a $44a

F-4I- 0: .Ol 0 9: :3

01I 04 4) k

C. .,61

0 0 bj0 cd 0
4) ;~.1 -4 r-4 r.0

x aw 5 W .) P

q. 4 r,

t- , 4 4 .

P A 00F4$

0W 
0

4H 0~-

0 ) 043

o6 4
04 0

F4 F4

M4214 4 4

03 0 34

C.) 
Q



AN OVERVIEW OF SMART MATERIALS & STRUCTURES

Carol A. Jaeger
Craig A. Rogers

Smart Materials & Structures Laboratory
Department of Mechanical Engineering

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Abstract

'Smart', 'Intelligent', 'Sense-able', and 'Adaptive' have all been used to described
and/or classify materials and structures which contain their own sensors, actuators
and computational/control capabilities and/or hardware. One of the definitions of
Smart Materials that has been proposed may be materials that possess adaptive ca-
pabilities to external stimuli such as load or environment with inherent or integral
intelligence. The control or intelligence of the material could perhaps be 'pro-
grammed' by material composition, processing, defect and microstructure, or condi-
tioning to adapt in a controlled manner to various levels of stimulus. Smart structures
may simply be constructed of Smart materials or may have dedicated or integrated
actuators, sensors, and intelligence in a more discrete form. The early 'Smart Mate-
rials' contained for the most part embedded and/or distributed sPnsors for strain and
temperature. However, the complexity and utility of smart materials has increased
rapidly to the present time where major advancements seem to be occurring on a
monthly basis in the areas of materials, actuators, sensors, and controls. Although
smart materials and structure concepts may be applied to the design and implemen-
tation of buildings, dams, bridges, pipelines, ships, and ground-based vehicles, re-
cent research efforts have been concentrated on potential aerospace applications in
advanced aircraft, launch vehicles, and large space-based platforms. This paper will
present a brief overview of the history of smart materials and structures and some
of the diverse technologies that have contributed to this dynamic field.

Introduction

'Smart' is only one of the many adjectives that have been used to describe and/or
classify materials and structures which contain their own sensors, actuators and
computational/control capabilities and/or hardware. No true consensus has been
reached concerning what categorizes a material or structure as 'smart,' 'intelligent,'
'sense-able' and/or 'adaptive.' The shape memory alloy is aptly named for it
remembers a shape and can remake that shape with the addition of heat (an external
stimuli). One is 'smart or 'adaptive' in the sense that it can respond or react to
stimuli or input. An electro-rheological fluid is adaptive in that it can be either a solid
or a liquid, as need be. The 'adaptiveness' of the materials could be in any one of
many forms. For shape memory alloys it is added in the annealing process, for
piezoelectric actuators and sensors it is achieved in the polarization of a polymer, in
fiber optics it is a characteristic of the glass fibers, and in variable viscosity fluids it
is found in the ability to react to temperature. Smart structures are more difficult to



categorize. They may be made of smart materials, they may have embedded or
distributed actuators or sensors, and they may have dedicated intelligence in the
form of microcomputers or microchips to perform dedicated control tasks. Most
smart structures research has been done in the aerospace industry - in the control
and adaptations of space structures. The stringent controls and demands of the
space industry have created a need for controllable structures, where the structures
demand built-in control. Now there is added interest in building structures that know
how to damp out vibrations, control shapes and attitudes, adapt to severe or extreme
environments, perform orbit transfers and stationkeeping maneuvers, reduce and
process data, model systems, and reject noises and disturbance. These applications
an controls can apply to bridges, dams and skyscrapers. The possibilities continue
to grow. The structures vary, and the 'intelligence' is groomed to meet new needs.
Smart structures and materials have a great range of possibilities, and definitions.

The definition of 'Smart Materials and Structures' has been a topic of discussion and
controversy since the late 1970's when a 'Smart Material' simply consisted of optical
fiber sensors embedded in a composite material. Some definitions state that the
material or structure simply have integral (perhaps embedded) sensors, actuators,
and 'intelligence.' The intelligence is most often dedicated (or integral)
computation/control hardware. However, other definitions state that all sensing,
actuating and intelligence capabilities be inherent to the material or structure.

The purpose of this paper is not to presume to set a hard and fast definition. The
definitions have evolved with the technology and they will continue to evolve.
Instead, a look at the technology will yield an understanding and insight into these
definitions. The technology began with fiber optics, perhaps, that is where this paper
should begin as well.

Review

Fiber optics can be traced back about 20 years when they entered the
communications field, and revolutionized it as well. The success of fiber optics in
communications can be attributed to the many advantages fiber optic
communications have over the other technologies. Main (1985) enumerates the
following advantages:

*freedom from influence by external electromagnetic disturbances

*immunity from 'crosstalk'

esignal flow is unidirectional if desired

*no problems with ground loops and offset dissimilar voltages where
conductors meet

every high data transmission rates - up to several GHz and more

*simple signal multiplexing by a variety of means

*reduced costs for equivalent transmission capabilities

*lower losses and less electrical power consumption

*a high degree of security against 'tapping' into signal trains

*greatly reduced electrical hazards and no problems with arcing or sparking

*highly resistant to adverse environmental conditions

2



*thinner, lighter, and more rugged than electrical cabling

Again, about ten years ago, they entered the sensor technology, and they are about
to revolutionize it too. As a transmitter, the optic fiber was a marvel, therefore it
seemed appropriate to use these fibers for the transmission of a sensor's signal - for
the same reasons. Fiber optics found a use in extrinsic sensors. Fiber optic sensors
can be classified into one of two types. Extrinsic sensor are the sensors where the
fiber itself operates as a light transmitter only, it performs none of the sensing. An
example of an extrinsic fiber optic sensor would be a light beam where the fiber is
used to detect the light from a source and what is being checked for is a break in the
beam. Such a sensor is often used in robotics to sense the presence of a workpiece.
An intrinsic utilizes some intrinsic property of the fiber to detect a phenomenon or to
quantify a measurement. An example of this would be the detection of radiation from
radiation-induced luminescence. A list of properties intrinsically measurable from
fibers is given in Table 1.

Table 1. Fiber Optic Sensing (Main, 1985, Mann, 1985).

Variable Methodology

Force Induced birefringence
Pressure Piezoelectric Effect

Bending Piezoabsorption
Density Change Luminescence
Electric Field Electro-Optical Effect
Dielectric Polarization Electrochromatism
Electric Current Electroluminescence
Magnetic Field Magneto-optical effect, Farraday Effect
Magnetic Polarization Magnetoabsorption
Temperature Thermal change in refractive indexabsorptive

properties, or fluorescence, thermoluminescence
Photoelectric Emission Fiber defects leading to alteration in refractive

index and absorptive properties
X-rays, Gamma rays Radiation-induced luminescence
Changes in chemical Changes in absorption and refractive index
composition owing to chemical effects,chemoluminescence

The future of fiber optics is indeed exciting and more sophisticated sensors are sure
to be developed. Examples of some sensing capabilities are shown in fig. 1 through
fig. 3. The fiber optic sensors will make the present day sensors seem rather
cumbersome and painstaking (Main, 1985;Mann, 1985).

What are fiber optics finding uses in now? The list is quite long, but a list of some
applications and research should prove instructive of what the technology has to offer
and can accomplish. In 1979 and 1980, R. 0. Claus participated in the first
documented smart structures experiments, conducted at NASA Langley, which
demonstrated the use of embedded optical fiber sensors for the measurement of
strain in low temperature composite materials. Since then R. 0. Claus has worked
on the development of optical fiber interferometric, blackbody, evanescent, modal
domain and time domain sensors for the evaluation of composite cure, in-service
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Counting on a parts Detecting start or end Checking presence
feeder line of paper or web material absence of holes/recesses

Film positioning Video tape Thread or wire break
alignment control detection

Shaft angle or
rotational Fill-level sensing Identification

speed encoder and regulation Edge detection of markings

Figure 3. Various sensors using fiber optics.

structural component monitoring, nondestructive materials evaluation, and damage
detection and evaluation. Claus, Jackson and May (1985) have developed an optical
waveguide embedded in composites that can be used to determine the two
dimensional dynamic strain by using the optical refractometry and signal processing
of the fibers. Electro-absorption phenomenon has been used by Su (1985) to show
magnetic field sensing capabilities. Martinelli (1984) describes a fiber optic
interferometer that can measure deformations and vibrations. Baumbick (1985) notes
the use of fiber optics and optical sensors in propulsion systems because of the
severe environmental conditions present there. Bucholtz, Kersey and Dandridge
(1986) describe a fiber optic accelerometer based on the displacement to strain
conversion suitable for use at DC and low frequencies.

Two separate sources speak of the possibilities of fiber optic actuators(Collier,
McGlade, and Stephens, 1985; Morikawa, 1985). Although a brand new technology,
Collier, McGlade and Stephens claim that total electrical isolation can be achieved
by complementing optical sensors with optical actuators - the 'control-by-light'
concept. Jones (1984) also proposes the 'control-by-light concept' in an article about
fiber optics' role in industry and discusses the use of intensity, wavelength, or rate
modulation for multimode technology and point-source sensors. Bogue (1984)
addresses the use of fiber optics in accelerometers. Allan (1985) describes the
development of one of the first tactile sensors at Tactile Robotics Systems using fiber
optic bundles, and a fine resolution development of 1190 fibers at MIT Mechanical



Engineering department (Allan, 1985, Pennywitt, 1986). An improved design was
investigated that uses the fibers as both emitter and receiver, allowing for greater
resolution -- the resolution of the sensor is limited by the size of the fiber.

The advantage of fiber optics, as is fast becoming evident, is that 'the glass and silica
fibers are themselves the basis for a broad range of sensors which utilize fiber
properties to provide optoelectronic signals indicative of external parameters to be
measured.'(Main, 1985). These intrinsic properties of the glass and the silica are
what qualify fiber optics as smart materials. Fiber optics are capable of performing
as the sensor as well as performing the transmission of the sensor's signal. They
have a wide area of applications and will become more and more prevalent as new
applications are developed and refined. These include measurements of
temperature, pressures, displacement, magnetic fields, chemical composition, and
others.

Other sensors have been incorporated into the 'smart' world, and one of the most
prevalent is the piezoelectric. Piezoelectric sensors are built of materials that
generate an electrical response to an applied force; that is their adaptive reaction to
stimuli. Piezoelectric materials can be crystals and ceramics, but because they have
a brittle nature the piezoelectric sensors are generally made of one of the family of
polymers, polyvinyldene fluoride also known as PVDF or PVF2 . Because it is a
polymer, it can be formed into very thin sheets and adhered to almost any surface.
It outperforms many other sensors in its mechanical strength and its high sensitivity
to pressure changes. Nevill and Patterson of the University of Florida have developed
a piezoelectric tactile sensor that is able to recognize objects with about 100 percent
accuracy, it is sensitive enough to distinguish the letters of the braille alphabet and
different grades of sandpaper, showing great promise in exploratory sensing or
object identification (Pennywitt, 1986). Researchers at the University of Pisa have
been working on a skin-like sensor utilizing piezoelectric material. It basically
replicates the temperature and pressure sensing capabilities of the human skin. In
different modes of operation it can detect edges, corners, and geometric features, or
it can distinguish between different grades of fabric (Allan, 1985,Pennywitt, 1986). Its
construction can be seen in a schematic in fig. 4 (Allan, 1985). Nakamura et al
propose a tactile sensor for robots in their paper using a ultra-thin film (200-300 Am)
and back this with mathematical analysis and numerical simulation (Nakamura,
Hanafusa, Ueno, 1985). It also exhibits what is called the pyroelectric effect in that it
exhibits response to temperature changes as well; this can be an advantage or
disadvantage contingent on the application. The polymer is made piezoelectric by
polarizing it in either a uniaxial or biaxial film. The uniaxial film indicates stress in
one direction by producing a voltage. Biaxial films indicate stress in one or two
directions with voltage (Bailey and Hubbard, 1985).

Piezoelectric materials are very versatile in that they can also be used as actuators.
Piezoelectric actuators are PVDF used in the reciprocating way of the sensors. By
putting a voltage across the piezoelectric, the material creates a distributed force.
Piezoelectric usage has increased in positioning applications because piezoelectric
polymers generate little heat and can conserve energy as compared to their
electromechanical counterparts. The piezoelectric actuator is a true distributed
actuator and can be analyzed and controlled in distributed systems using
distributed-parameter control theory. The high precision work is also prevalent in
piezoelectric actuators. A printer head is position driven by the piezoelectric effect
(Tanoshima, Araki, and Tsukada, 1984). Tojo and Sugihara (1985) have developed a
turntable driven with the piezoelectric effect and exhibiting very high positioning
accuracy - under 4.8 x 10-1 rad. Burke and Taft (1984) report the use of piezoelectric
benders in an electrofluidic converter. Takahashi proposes two types of piezoelectric



actuators , one with two piezoelectric plates stuck together and the other where are
number of plates are laminated together. These actuators can be driven with low
power and can be mass produced (Takahashi. 1985). Bailey and Hubbard (1985) of
MIT designed an active vibration damper using a piezoelectric actuator and
distributed-parameter control theory.

Microcoaxial cable

Fingertip Rubber layer

Electrode

)ermal sensor array

Epidermal sensor

Heating layer

Figure 4. A portion of the University of Pisa robot finger.

The force - or strain - created in these piezoelectric actuators is proportional to the
voltage or field put across the crystal. This simple relation makes for simptistic
control algorithms and distributed analysis. The relationship is

Op(xt) - V(x,t)x(d 311h2 )

where t. is the strain, V is the applied voltage, d is the appropriate piezoelectric
constant and h is the thickness of the PVF 2 layer (Bailey and Hubbard, 1985). The
equation is valid for both actuator' and sensor applications. It is clear that
piezoelectric crystal/polymers have a vast assortment of applications. They can be
used both as actuators and sensors. Perhaps more important is that they are
distributed devices, and can be readily used in control schemes for distributed
systems.

Another distributed actuator is shape memory alloys. Shape memory alloys (SMA)
devices convert the thermal energy of a compound into kinetic energy by the
martensitic transformation. A SMA remembers the shape in which it was annealed,
be that a straight or curved form. Upon heating it tries to remake that shape if
possible, creating large and tapable forces in the process. There are a few alloys that
exhibit the shape memory effect, but the most popular is the Nickel and Titanium
(Ni-Ti or Nitinol) alloy. Shape memory alloys have been applied to a number of items
including connectors and heat engines, but have usually found application in
bang-bang type actuators. This has begun to change. Recently in Japan, SMAs have
been developed into robot manipulators. The shape memory alloy has only recently
begun to attract serious attention as an actuator. Most of the work presently being
done seems to be occurring in Japan. Because of Japan's dominance in the SMA
research and since little of that work has been documented in English, it is hard to
know where the Japanese have taken the technology. The sampling available is
sufficient to give an overview of the technology. Hashimoto, et al., (1985) show the
use of SMAs in robotic actuators. Two types are discussed, biased and differential.
Biasing uses a spring to obtain the bias force against the unidirectional force of the
SMA. In the differential type, the spring is replaced with another SMA and the
opposing forces control the actuation (Hashimoto, et al., 1985). Figure 5 shows
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two configurations for SMA actuators. Yaeger (1984) has developed a one-pound
three-quarter-inch-stroke linear actuator using a spring made of nitinol wire; the
design includes prevention from ancillary jams. Miwa (1985) discusses the use of
SMA actuator to sequential robotic control of multiple degree of freedom robots.

Rogers and Robertshaw have developed Nitinol into a new class of adaptive
materials This class of adaptive materials utilize a shape-memory-alloy (Nitinol) in
a laminated, fiber-reinforced composite. Adaptive materials using shape memory
alloys are a relatively new class of materials that have the capability of changing their
physical geometry, or of altering their physical properties. The basic concept behind
the adaptive material developed at VPI&SU is that shape memory alloys are
integrated in a bulk material (i.e., laminated fiber-reinforced composite) as an
actuator for force, motion, and/or variable stiffness. Possible applications for this
class of adaptive materials are: in structures that are part of long-duration,
unattended space missions (for which the material must be able to compensate for
damage by redistributing the load around failed portions of the structure); in active
vibration control of large flexible structures, in active acoustic control for aircraft to
reduce interior sound levels, and in robotic manipulators. A more detailed account
of this technology will be presented by C. A. Rogers in companion paper published
at these proceedings.

,ias Spring

(a)

SMA wire

(b)

Figure 5. SMA actuators (a) the bias-type actuator (b) the differential-type
actuator.

With advances in the control algorithms, biasing with springs or opposing SMA's,
active cooling techniques, and the creation of SMA composites, the shape memory
alloys have improved their range of applications and are becoming more reliable and
promising actuators.
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Figure 6.   Schematic  Diagram   of  a   proposed   Hydraulic  Servomotor  (Choi, 
Thompson, and Ghandi, 1987) 

station keeping. Static shape distortion can be caused in a number of ways including 
incorrect deployment, and outside forces including gravity and temperature gradients 
(Weeks, 1984b). 

Shape Control 

Shape and attitude control are a paramount group of problems. Without this 
achievement the structure is ineffectual. If an antenna is not pointed to the right 
location its transmission is useless, and an optical reflector loses its integrity as its 
shape fails. Dynamic problems can contribute to these conditions with the system s 
low natural frequency, joint conditions, and normally low damping (Nurre, et al., 
1984) Previously shape control was accomplished at the design stage by stiffening 
the structure and providing a separation between the natural frequencies of the 
structure and the control system bandwidth. Shape control problem is actually the 
dual problem of shape determination followed by shape control. The method for 
determining and controlling the shape of continuous structures by means of discrete 
of point wise observation and control devices is required. This is referred to as the 
continuous- discrete nature of the problem. Static shape control is generally 
accomplished after the damping of dynamic vibration (Weeks, 1984a). Weeks uses 
the green function to convert boundary value problems into integral equations for 
shape determination of the continuous-discrete mathematics. Static shape control 
and determination algorithms are illustrated on a space antenna and simple beam 
(Weeks, 1984a,Weeks, 1984b). 

Damping 

Damping vibrations in space structures is critical to maintaining the integrity of any 
structure, space structures included. McClamroch develops a simple form of 
hierarchical control for structures consisting of interconnected flexible members 
where control forces are generated by electromechanical member dampers. The 
control scheme consisting of feedback of structural signals and compensation for the 
member dampers (McClamroch, 1985). Juang present a technique for applying 
expressions of the optimal tuning law for an elastic system including a truss beam 
(Juang 1984). Soni et al deal with methods of enhancing passive damping^ of 
spacecraft structures. First they examine various methods for synthesis of damping 
and   a   improved   method   was   proposed.      Viscoelastic   passive  damping   was 
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incorporated into the design of joints and honeycombs of flexible space structures,
verification was noted (Soni, Kluesener, and Drake, 1985). Ryaciotaki-Broussalis and
Broussalis consider flexible members in decentralized control using Lyapunov
functions. Controlled modes as well as residual modes must be considered in order
to obtain sufficient conditions for exponential stability (Ryaciotaki-Broussalis and
Broussalis. 1985). Kissel and Hegg apply linear-quadratic-Guassian/loop transfer
recovery techniques to the active control of flexible spaceborne optical support
structure. Closed-loop stability in the presence of 150 elastic modes is maintained
(Kissel and Hegg, 1986). Miller discusses a computational control method discussed
in the context of vibration suppression of large flexible space structures. Emphasis
is given in the proper specification of weighting matrices is the design and
determination of the combined optimization of the structural and control design.
Numerical simulations using finite element analysis for two and three bay trusses are
given in support. This specifically deals with the numerical and computational
questions of analysis (Miller, Venkayya, and Tischler, 1985). Sundararajan and
Montgomery of NASA Langley propose an indirect adaptive control scheme for the
control of flexible structures using least squares lattice filters for on-line identification
of the number of modes, mode shapes, and modal amplitudes. The control law
developed is based on modal pole placement. Successful implementation is
demonstrated using the simulations for the apparatus at NASA Langley Research
Center (Sundarajan and Montgomery, 1984). Plant excitation is another problem
because its low-frequency modes and low damping limit vibrational attenuation
(Nurre, et al., 1984). Rajaram and Junkins present novel identification schemes to
determine model parameters of vibrating structures. Three methods are discussed,
one using nonresonant harmonic excitation, another method is a time domain
identification using transient response, and finally a unique method using both free
and forced response methods (Raharam and Junkins, 1985). Joshi speaks of the
robustness of velocity feedback controllers and proves that the closed-loop system
using such controllers is asymptotically stable (Joshi, 1985).

Modelling

Large space structures are those structures which are designed exclusively for the
near zero g environment of space and are large by some measure. The difficulties
of large space structures are many. the design of a control system with natural
frequencies above several major structural resonant frequencies must be achievrd
to ensure that the design is robust enough to accommodate tolerances in the
structural model. An accurate model must be established usually implies a high order
model that reflects the many degrees of freedom of the structure processed to a
workable size through some means of model reduction. Numerical algorithms must
be available or developed to manipulate these models. (Nurre, et al., 1984). Hale and
Lisowski consider optimization based on a reduced order model. They find
optimization based on a reduced order model can yield an accurate numerical
solution to the integrated design problem (Hale and Lisowski, 1984). Silverberg and
Meirovitch propose a compromise between coupled control and independent
modal-space control, a block-independent control method is prooosed. The method
is designed to combine the computational advantages of independent modal-space
control with a reduced number of actuators for coupled control. The reduction is
achieved, but the number of actuators is not significantly lower (Silverberg and
Meirovitch, 1985). Goh and Caughey apply the concept of stiffness modification to the
vibration suppression of large space structures. They guarantee global stability by
virtue of the positive definite rate of energy decay (Goh and Caughey, 1985).

11



Control Schemes

Goh and Caughey consider position feedback in addressing stability problems of
finite actuator dynamics in the collocated control of large space structures. These
authors contend that if with the addition of the complicated 'tuning filters' restrictive
sufficient conditions can be derived like those with ve'ocity feedback that can
guarantee stability for all modes, including the uncontrolled and unmodelled modes.
This technique is much less sensitive to to the uncertain natural damping and model
structure of the system than the velocity feedback counterpart. Numerical
simulations of a simply supported shear beam are used as verification (Goh and
Caughey, 1983). With collocation of sensors and actuators good stable control of
flexible structures is easy to achieve. Without it it is very difficult, particularly if
structural damping is very low and spacecraft stiffness and inertial values are
changing as they often are. A crucial problem for some flexible spacecraft is that the
location of points at extremities must often be controlled, sometimes to very high
precision as with space antennas. Too often this must be done by controlling some
other section of the structure thus the noncollocated control problem. Cannon and
Rosenthal contend that there are noncollocated configurations where there are no
practical alternatives to adaptive control. Systems with sensor actuator
noncollocation can exhibit pole zero flipping when parameters vary (Greene, 1985).
An adaptive control technique deemed suitable for large structural systems is the
direct multivariable model reference adaptive control, developed by Sobel et al and
extended by Bar-Kana and Kaufman with the conditions that the system used velocity
feedback and sensors and actuators are collocated (Sobel, Kaufman, and Mabius,
1982,Bar-Kana and Kaufman, 1983). Bar-Kana applied the control algorithm to
systems with non collocated sensors and actuators and with position and velocity0I control. Simulation results show satisfactory behavior (Bar-Kana and Kaufman, 1983).
A flexible structure can be simply categorized as one that cannot be accurately
described with rigid body formulations. Accurate , here, is a relative term, and must
be governed by the application. Here are some of the problems inherent with flexible
bodies. rigid body mode cannot be controlled without affecting flexible modes.
disturbances activate flexible modes. damping factors for flexible modes are usually
quite low. in flexible systems points exist where no modal motion can be detected
and no modal motion can be produced. the presence of both control and observer
system spillover can easily cause closed-loop instability where spillover is an
excitement of higher states that undesirable for control and the presence of higher
states in the observer control. damping factors may not be constant modal shapes
and frequency can vary with the system configuration (Weeks, 1984a). Balas has
determined bounds on controller interaction with unmodelled part of structures that
can be used to guarantee the success of linear control even in the presence of
nonlinear interactions. This is good for those cases when the spillover from the
interaction of the controller and the unmodelled parts of distributed parameter
systems. Limitations of these theorems are given (Balas, 1985). Buchanan et al
discuss the on-orbit dynamic testing of a large solar array as well as the design of
a proposed experiment to demonstrate control technique applicable to large systems.
Results show that the amount of control authority is dependent on many factors
including the placement and slope of sensors and effectors. (Buchanan, Schock, and
Waites, 1984). Avramovic et al develop a control method for flexible structures using
a frequency domain algorithm to compute optimal gains and requiring spectral
factorization as a crucial step. This system was applied to control a simply supported
Euler beam (Avcamovic, Barkakati, and Blankenship,1983).
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Space Applications

Schaechter and Eldred have demonstrated active shape control, active dynamic
control, adaptive control of flexible structures. Excellent results were obtained in
shape, dynamic and adaptive control (Schaechter and Eldred, 1984). Wie and Plescia
present a reaction jet attitude control system for a spacecraft having large flexible
solar arrays since these interact strongly with pulse width and pulse-frequency
modulators. The stability margin and performance are verified from the three axis
nonlinear simulations (Wie and Plescia, 1983). Robertshaw et al., have developed a
variable geometry truss for use in control of broadband vibrations, both steady-state
and transient, of the truss and its attachments. The truss is controlled via motor
driven variable length links. Experimental control data and a schematic of the truss
can be found in fig. 7 and fig. 8 (Robertshaw, et al., 1988). Clark, Robertshaw, and
Warrington compare the effectiveness of four actuators in controlling the planar
vibrations of a truss-beam. These actuators are the proof-mass actuator, the reaction
wheel actuator, the planar truss actuator, and the planar truss proof-mass actuator,
see fig. 9. For the Tip deflection comparison of these actuators see fig. 10 (Clark,
Robertshaw, and Warrington, 1988).

Conclusions

Smart materials and structures have grown in scope the last few decades from
including only fiber optic sensors to variable geometry trusses and new material
systems such as shape memory alloy reinforced composites. Despite the recent
appearance of the terms 'smart,' adaptive,' 'sense-able/and 'intelligent,' adaptive
materials have existed for many years; but have only recently begun being used in
a wide variety of applications. The possibilities continue to grow. Smart materials
and structures have found applications in varied areas, and as the technology
advances and refines itself, it may find continuing uses and applications. The
adaptive materials are adapting themeselves to meet the needs of the technology that
birthed them.
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ABSTRACT

'Active modal modification' and 'active strain energy tuning' are concepts that have
only recently become a possibility with the recent development of shape memory al-
loy (SMA) reinforced composites. Shape memory alloy reinforced composites is a
class of materials that have the ability to; change thier material properties, induce
large internal forces in the materials, modify the stress and strain state of the struc-
ture, and alter its configuration, all in a controlled fashion. Active modal modification
uses the shape memory alloy's capability of changing its stiffness during a temper-
ature activated, reversible, phase transformation thereby modifying the modal re-
sponse of the structure. Active strain energy tuning adds to the active modal
modification concept the ability to use the shape memory alloys ability to impart large
distributed loads throughout the material to alter the stored strain energy within the
composite structure and therby modify the modal response of the structure.

This paper will present simulations of the modal response of square, quasi-isotropic,
SMA reinforced composite plates demonstrating several new concepts and applica-
tions for active control of composite structures. Naturally, when the Young's modulus
of SMA 'fibers' is increased or large forces are distributed throughout the structure
during the reversible phase transformation, not only is the modal response varied,
such as the natural frequency and mode shapes, but the maximum deflection and its
location on the plate is also changed. Both static deflection (stiffness) and modal
response simulations will be presented.

INTRODUCTION

Shape memory alloy reinforced composites are an extremely versatile class of ma-
terials recently developed at VPI&SU. Using shape memory alloys as fiber re-
inforcement gives structures numerous adaptive capabilities. Adaptive and 'Smart'
materials, which contain distributed actuators, sensors, and microprocessor capabil-
ities, can be used in many applications requiring a high degree of adaptability to
changing external and internal conditions. External conditions may consist of envi-
ronment, loads, or the desire to change the scope, purpose, or geometry of the
structure after it has been built and is in service. Internal conditions may be damage
or failure to isolated portions of the material or structure.

The number of applications requiring or desiring such adaptability is increasing rap-
idly and more are sure to follow as the technology is more readily transfered to the
production level. One of the current needs is for long-duration unattended materials
and structures that can be used in isolated environments (i.e., submarines, Naval



vessels, defense vehicles, and the space station) or in biomedical applications. Us-
ing adaptive/intelligent materials may result in structures with self-inspection and
self-identification capabilities which can direct the adaptive response based on the
environment and/or damage to the structure.

The ability to adaptively alter the mission, scope, objectives, and geometry of a
structure will have tremendous impact on the design philosophy of structures in the
future. For example, a structural member made of Shape Memory Alloy (SMA) rein-
forced composites can compensate for deterioration in absorptivity and thermal ex-
pansion properties that result in excessive change in length of that or other members
as well as control the motion and vibration of the structure. The same material can
be used to change load paths in a structure or within the material so that the com-
ponent can be replaced or repaired before it causes catastrophic failure of the system
or unacceptable degradation of performance.

Applications for adaptive/intelligent materials include:

* Failure detection/prevention of structures (i.e., bridges, walkways, phone and
electrical cables, and mechanical components).

• Active vibration control and structural acoustic suppression for acoustic enclo-
sures, propeller aircraft, large flexible structures, etc.

" Active vibration control of helicopter rotor blades.
" Thermal expansion balancing.
• Robot manipulators (fingers).
* Thermally activated valves and ducts.
• Thermal switches.
* Structural dimension adjustment and environment adaptation for large reflector

antennas.

The development and subsequent production of this class of materials could have
tremendous impact on several diverse technological fields, i.e., material science, vi-
brations and controls, ocean and aerospace structures, biotechnology, and may act
as a catalyst for the development of many new devices and technologies. Brief de-
scriptions of some the applications and the corresponding basic operational modes
of the shape memory alloy reinforced composites appear in Ref. (1].

Introduction to Shape Memory Alloys

In 1965, Buehler and Wiley of the U.S. Naval Ordnance Laboratory received a United
States Patent on a series of engineering alloys that possess a unique mechanical
(shape) "memory" (2]. The generic name of the series of alloys is 55-Nitinol. These
alloys have chemical compositions in the range of 53 to 57 weight percent nickel. A
great deal of effort was expended over the next ten years in characterizing the ma-
terial and developing new applications to exploit its remarkable shape memory effect
(SME) and its unusual mechanical properties. The Naval Ordnance Laboratory (now
known as the Naval Surface Weapons Center) was and still Is the leader in charac-
terizing Nitinol. Several other laboratories have made significant contributions to the
understanding of the Nitinol, in particular is Battelle Memorial Institute and NASA.

The shape-memory effect (SME) can be described very basically as follows: an object
in the low-temperature martensitic condition, when plastically deformed and the ex-
ternal stresses removed will regain its original (memory) shape when heated. The
process, or phenomenon, is the result of a martensitic transformation taking place
during heating. Although the exact mechanism by which the shape recovery takes
place is a subject of controversy, a great deal has been learned about the unique
properties of this class of materials in the past twenty years (10-12]. It appears clear



however that the process of regaining the original shape is associated with a reverse
transformation of the deformed martensitic phase to the higher temperature austenite
phase.

Many materials are known to exhibit the shape memory effect. They include the
copper alloy systems of Cu-Zn, Cu-Zn-Al, Cu-Zn-Ga, Cu-Zn-Sn, Cu-Zn-Si, Cu-Al-Ni,
Cu-Au-Zn, Cu-Sn, and the alloys of Au-Cd, Ni-Al, Fe-Pt, and others. The most common
of the shape memory alloys or transformation metals is a nickel-titanium alloy known
as Nitinol.

Nickel-titanium alloys (Nitinol, NiTi) of proper composition exhibit unique mechanical
memory" or restoration force characteristics. The name is derived I )m Ni (Nickel)

- Ti (Titanium) - NOL (Naval Ordinance Laboratory). The shape recovery performance
of Nitinol is phenomenal. The material can be plastically deformed in its low-
temperature martensite phase and then restored to the original configuration or
shape by heating it above the characteristic transition temperature. This unusual
behavior is limited to NiTi alloys having near-equiatomic composition. Plastic strains
of typically six-to-eight percent may be completely recovered by heating the material
so as to transform it to its austenite phase. Restraining the material from regaining
its memory shape can yield stresses of 100,000 psi (the yield strength of martensitic
Nitinol is approximately 12,000 psi).

For some applications, creating large internal forces within the material or structure
are not needed or desireable. Shape memory alloys have the unique ability of
changing its material properties, reversiblly, and this characteristic can be exploited
without embedding plastically deformed SMA 'fibers' nor creating large forces and
deformations of the structure. This capability is exploited in the concept that will be
further explained below, termed "Active Modal Modification'.

Substantial progress has been made in understanding the nature of the "shape
memory effect" (SME). A great deal of literature has been published over the past
twenty years presenting detailed thermal, electrical, magnetic, and mechanical char-
acterizations of this unusual alloy [3-10]. However, there is still much to be learned
about the influence of residual stress and high temperatures, that may be used in
composite fabrication and processing, on the extent, duration and repeatability on
SME as well as the dynamic actuator and sensing characteristics of Nitinol.

Shape Memory Alloy Reinforced Composites

The class of the material referred to as SMA reinforced composites in this paper is
simply a composite material that contains shape memory alloy fibers (or films) in
such a way that the material can be stiffened or controlled by the addition of heat (i.e.,
apply a current through the fibers) (1,2]. Shape memory alloys and the mechanism
by which they exhibit the characteristic shape memory effect (SME) is explained very
briefly below and in greater detail in references [3-9]. One of the many possible
configurations of the SMA reinforced composite material is one in which the shape
memory alloy fibers are embedded in a material off of the neutral axis on both sides
of the beam in agonist-antagonist pairs. Before embedding the fibers, the shape
memory alloy fibers are plastically elongated and constrained from contracting to
their 'normal' or 'memorized' length upon curing the composite material with high-
temperature. The plastically deformed fibers are therefore an integral part of the
composite material and the structure. When the fibers are heated, generally by
passing a current through the shape memory alloy, the fibers 'try' to contract to their
'normal' or 'memorized' length and therefore generate a uniformly distributed shear
load along the entire length of the fibers. The shear load offset from the neutral axis



of the structure will then cause the structure to bend in a known and predictable
manner.

There are numerous other configurations, such as creating 'sleeves' within the com-
posite laminate which the plastically elongated shape-memory alloy can be inserted
and then clamped to both ends. When the shape memory alloy is heated, the fibers
try to contract in the same fashion as explained above. When one end of the beam
is free, the fibers in a sleeve will exert a concentrated force on the ends of the
structure in a direction that is always tangent to the structure at the point where the
fibers are clamped to the structure. When both ends of the beam are fixed, heating
the SMA results in 'fibers' with a siginificantly increased stiffness and applied tension
that will resist any transverse motion. The difference between the embedded fibers
and the fibers in a sleeve is that in the first case the force of the shape memory alloy
is distributed over the length of the fiber and in the later case the force is concen-
trated at the end of the structure.

Shape Memory Alloy (SMA) reinforced composites have tremendous potential for
creating new paradigms for material-structures interaction (11]. The list of scientific
areas that can be influenlced by novel approaches possible with SMA reinforced
composites is quite large. For example, vibration control can be accomplished by
using the distributed force actuator capabilities similar to the common piezoelectric
systems. However, two unique approaches to active control are possible with a ma-
terial that can change its stiffness, physical properties and in the second case, apply
large distributed loads throughout the structure: i) Active Strain Energy Tuning, and
ii) Active Modal Modification. Simulation results showing the potential for SMA rein-
forced composites to vary the modal response of a composite plate will be presented
below.

Transient and steady-state vibration control can be accomplished with SMA rein-
forced composites using several techniques. Transient vibration control is defined
here as the ability to suppress or damp structural vibration by applying forces (dis-
tributed and/or point) to the structure in such a way as to dissipate the energy within
the structure. This is accomplished generally by applying point transverse loads to
the structure or applying an 'actuator film' to the surface of the structure. The ap-
proach with SMA reinforced composites is to simply embed the actuators (shape
memory alloys) in the structure such that, when actuated correctly, they exert
agonist-antagonist forces off the neutral axis thereby reducing vibrations (1]. Steady
state vibration control is the ability to change the modal characteristics of the struc-
ture. The mechanism in SMA reinforced composites is to increase the stiffness of the
composite in different directions by predetermined amounts through the SMA
actuators.

Applications for SMA reinforced composites extend far beyoi,d vibration control
tasks. Active buckling control, or more generically active structural modification
schemes, can be imagined in which SMA fibers are stiffened within a composite to
alter the critical buckling load of the structure. SMA composites that are used for
various vibration control tasks would also be used for motion or shape control, al-
lowing a structure to maintain a given shape or orientation for an extended period of
time. The physical, thermal, and controller design will be much more critical than in
the transient vibration control scenario. Motion and shape control will in all likelihood
involve the simultaneous use of force actuators (SMA) and stiffness actuators (the
technique in which the SMA is heated to change its modulus of elasticity) to create
a structure that behaves much like a mechanical muscle. Another possible design
approach is to actuate single fibers with pulse-type signals, much like the all-or-
nothing actuation of the individual muscle fibers in the human muscle.



Active Control Concepts

0 Steady-state vibration control which may also be used for structural acoustic control
can be accomplished with SMA reinforced composites using a novel technique
termed "Active Modal Modification' (121. The modal response of a structure or me-
chanical component (i.e., plate or beam) can be tuned or modified by simply heating
the SMA fibers or lamina to change the stiffness of all or portions of the structure.
When Nitinol is heated to cause the material transformation from the martensitic
phase to the austenite phase, the Young's modulus changes by a factor of approxi-
mately four as shown in Fig 1. Not only is the stiffness increased by a factor of four
but the yield strength also increases by a factor of ten. This change in the material
properties occur because of a phase transformation and does not result in any ap-
preciable force and does not need to be initiated by any plastic deformation.

In 'Active Strain Energy Tuning' the shape memory alloy fibers are placed in or on the
structure in such a way that when activated there is no resulting deflections but in-
stead the structure is placed in a 'residual' state of strain. The resulting stored strain
energy (tension or compression) changes the energy balance of the structure and
modifies the modal response much like tuning a guitar string.

Active strain energy tuning utilizes both the embedded fiber and sleeve method de-
scribed earlier. The difference between the epoxied fibers and the fibers in a sleeve
is that in the first case the force of the shape memory alloy is distributed over the
length of the fiber and in the latter case the force is concentrated at the end of the
structure or is used to resist transverse motion. Both of the design concepts de-
scribed above have been incorporated into prototypes and their potential demon-
strated on a limited scale. The simulations presented below assume embedded

* fibers unless otherwise specified.

FORMULATION

Simulations of active strain energy tuning by tuning the material properties of de-
formed SMA fibers and imparting distributed loads along the length of the fibers of a
'SMA-Epoxy' quasi-isotropic square plate will be presented by evaluating the free vi-
bration response and also the variation of the square plate's variation of bending
stiffness. Investigating the effect of active strain energy tuning on a quasi-isotropic
plate constrains the following formulation and discussion to midplane symmetric
laminates (B,, = 0) with the distributed 'fiber' loads assumed to be 'inplane loads'.
Therefor, the simulation for active strain energy tuning and active modal modification
use similar developments with the only difference being the inclusion of inplane
loads for ASET.

Bending of Simply-Supported Plates

The geometry used for all of the simulations and discussion presented in this paper
is shown in Fig. 2. Neglecting inertia terms, for static bending analysis, the govern-
ing differential equation of motion is

a~w + 0 ' w ' . . 'w w
1- -  6-''4w +2(12+2D.) 64W+4D264+ +D 22 -- [l
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The boundary conditions for simply-supported edges are
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The assumed solution for the energy expression, Eq. 4, using the separation of vari-
ables is

M N
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Substituting this series into the energy expression, Eq. 4, the following set of
equations result.
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The MxN linear simultaneous equations are then rewritten in matrix form as
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Using the Ritz method to solve the energy equation allows for the assumed solution
to only satisfy the displacement boundary conditions (a solution in a variables sepa-
rable form which satisfies the moment equations does not exist). For a simply-
supported plate, the double sine series in conjunction with the assumed solution
given by Eq. 5 is sufficient.

Xm(x) = sin D"" [8]

Yn(y) sin lry
b

At this point, the unknown coefficients, A,,,,,, are determined and the deflections cal-
culated using the assumed solution of Eq. 5. Because of the approximate nature of
the Ritz method, care must be taken to insure convergence of the solution and that
the coupling terms, D,, and D. , are accounted for appropriately (see ref. [13]).

Free Vibration of Simply-Supported Plates

The formulation of free vibration response of rectangular anisotropic plates is very
similar to that described above for the bending problem. The primary difference in
the two solutions is that inertia terms must be added to the governing equation for
free vibration analysis and the external load, q(x,y), used in the bending formulation
may now be neglected. However, the same basic approach must be followed,
namely, the Ritz solution method is followed which involves as before, writing the
energy equation governing free vibration (assuming no lateral loads).
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The natural modal response of the plate is found by using the same assumed solution
as given above, Eq. 4, and by substituting the same double sine series into the re-
sulting MxN homogeneous simultaneous equations
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Since the MxN simultaneous equations are homogeneous, a nontrivial solution can
be obtained only if the determinant of the coefficient matrix, [K], is zero. Therefor, the
eigenvalues of [K] are determined which then reflect the natural frequencies of free
vibration.

The formulation must be further expanded for SMA reinforced composites as the
bending stiffnesses (0,,) are functions of temperature and can be tuned by activating
individual plys of a laminate resulting in a change of the fiber modulus (see Fig. 1)
by as much as a factor of four. The change in the fiber modulus occurs over a rela-
tively small temperature range (selectable from 10 to 200C) and is a result of a solid
phase material transformation between the martensite and austenite phases. There-
fore, the superscripts 'M' and 'A' are used to denote the physical and mechanical
properties in each phase. Unsuperscripted values are intended to represent instan-
taneous values which are 'tunable' between the martensitic and austenitic (extreme)
values.

. Determination of Inplane 'Fiber' Loads

One of the basic assumptions or conditions used in the analysis described herein is
that the laminate remain midplane symmetric at all times. This means that corre-
sponding lamina with the same fiber orientation (on both sides of the midplane) are
activated simultaneously. This assumption then allows for the induced distributed
loads to be modeled as general inplane loads as they cause no transverse displace-
ments or moments.

The first numerical procedure that must be performed is to determine the resulting
inplane load that can be applied to the plate's boundary to model the distributed 'fi-
ber' loads. The method involves first considering a small element containing the
appropriate fraction of fiber and matrix. Recall that prior to embedding the SMA fiber
in the matrix, the SMA fiber is strained plastically an amount t,. The initial strain in
the fiber can then be used to generate large restoring stresses, a,, in the composite
when the fiber is 'activated'. Fig. 3 shows a typical maximum restoring stress vs.
initial strain for Nitinol. Therefore, upon activating the SMA fibers in a particular
lamina the fibers exert a large stress distributed throughout the laminate resulting in
a reduced strain of the fiber and an increased strain in the laminate, C (assuming the
boundary is free). The stress needed to recover the compressive strain, C, of the
laminate is the equivalent inplane load that is to applied to the laminate boundaries.
For example, if t, - 2.0% then from Fig. 3 the restoring stress is 24 kpsi. However, the
24 kpsi will compress the matrix material in some sense (assuming free boundary
conditions) and internal equilibrium will be satisfied by letting the fiber and matrix
stresses being equal, a, - e,. Now assuming that the fiber and matrix have the same

* deformation in the fiber direction the laminate strain is determined:

Or = E11]
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assuming E, = 4mpsi and o, = 24kps! results in the laminate strain, c, being 0.6 %.
The 0.6 percent strain then reduces the SMA fiber strain to 1.4% from the free con-
traction of the laminate and therefore the corresponding restoring stress is decreased
nonlinearly as shown in Fig. 3. Continuing the numerical example above; for 1.4%
SMA fiber strain the a, is 20 kpsi resulting in the total laminate strain being 0.5%.
This iterative procedure is then continued to convergence and may be described bt
the expressions below.

r fn = a~n) = E[ n) [12]

Upon convergence, the resulting z is then used to determine the necessary inplane
loads, N,N,. and N,.

RESULTS

Problem Definition

The simulation results have been generated based upon several assumptions. First,
the laminates are all quasi-isotropic, [ +45, - 45*,00,900], , in the unactivated state
and always remain midplane symmetric which means that the lamina pairs above and
below the midplane. with the same fiber orientation are activated simultaneously.
Secondly, all of the plates are square (even though the formulation allows for general
rectangular plates) with simply-supported boundaries.

The material used in all simulations is Nitinol/Epoxy with a fiber volume fraction of
50% unless otherwise noted. The macroscopic lamina properties are determined
from the rule-of-mixtures. Several simplifying assumptions were adopted relating to
the restoring stress of Nitinol and the variation of the fiber's elastic modulus upon
activation. The initial restoring stress, a, , of the SMA fibers as a function of fiber
strain was determined from Fig. 3, however in simulations in which the fibers are
partially activated the restoring stress is varied linearly from zero to its maximum
stress and the Young's modulus is also varied linearly from 4 mpsi to 16 mpsi. Future
work will generalize the nonlinear functions of restoring stress and elastic modulus
with temperature as well as consider thermal effects.

ACTIVE MODAL MODIFICATION (AMM)

Variation of Plate Stiffness and Maximum Deflections

The stiffness of a composite plate, extension or bending, can be taylored within rea-
sonable bounds. However, SMA reinforced composites can be taylored to not only
have a specified stiffness but can be taylored to have a range of material properties
that can be controlled or tuned. For example, Fig. 4 shows the change in the flexural
stiffness (0,,) of the square plate when one or all of the individual lamina are activated
such that the fiber modulus increases. Simply activating the top and bottom +450
ply can modify the plate flexural stiffness by over 40 percent. Activating all of the plys
to increase the fiber modulus by a factor of four increases the flexural stiffness by
approximately 90 percent. By utilizing the numerous permutations of activated
laminae to unactivated laminae and using modulation schemes in which some lamina
can be only partially activated can result in subtle and versatile control possibilities.
Changing the stiffness of a composite structure has some important practical impli-
cations. One prime example is in active structural acoustic control where the radi-



ated sound pressure levels can be reduced dramatically by reducing the amplitude
of the structural acoustic vibrations. Obviously changing the stiffness of the plate
also changes its dynamic response and has other significant implications on vibration
and acoustic control which will be described below.

Variation of Natural Frequencies and Mode Shapes

Naturally, changing the stiffness of a structure impacts on more than the maximum
deflection but also modifies the modal response of the structure, hence the term
'Active Modal Modification'. One of the objectives of Active Modal Modification is to
tune the structure based upon various performance criteria or external conditions
such as periodic force or pressure inputs to the structure that may be near resonant
frequencies or result in low transmission loss. Active or adaptive control of the
stiffness of the structure will influence the nature of the modal response of the
structure by changing the natural frequencies and the characteristic mode shapes.
Utilizing classical composite technology in which structures are fabricated with
taylored properties and various orientations of individual plys allow for tremendous
flexibility in the structural design of these tunable structures for various applications.

Figure 5 illustrates the potential for changing the natural frequency of a square
quasi-isotropic plate by activating one or all of the individual plys. Again, the greatest
authority is achieved, for single lamina activation, by activating the +45* plys that are
positioned on the top and bottom surfaces of the plate. However, by activating vari-
ous permutations of lamina the control of the natural frequencies and stiffnesses can
be accomplished in a more sophisticated manner perhaps allowing for dual-
requirements associated with the orthotropy of the structure and the modal response
in a coupled fashion.

The authority of SMA reinforced composites is quite dramatic for active modal mod-
ification. Activating the +450 plys result in approximately a 25 percent increase in
the natural frequencies and activating all of the plys increase the natural frequencies
by about 50 percent. The impact of tuning the stiffness of the fibers is also seen in
the modification of the mode shapes which naturally occur because of the increased
orthotropy introduced by changing the stiffness of a ply or plys of an initially quasi-
isotropic structure. Again, the concept of tuning the mode shapes of a structure is
another novel approach to composite design.

Modification of the mode shapes associated with the fourth natural frequency are
shown in Figs. 6 and 7. Figure 6 shows the mode shape for the quasi-isotropic square
plate without any activated fibers or plys. Note that quasi-isotropic plate does not
have an anti-node line In the center of the plate as it is only quasi-isotropic in exten-
sion and is but only a close approximation to isotropic in bending. When the +450
plys are activated in the plate, the flexural stiffness increases, the natural frequency
increases and the characteristic mode shapes also change as illustrated in Fig. 6.
Comparing Figs. 6 and 7 show the dramatic change in the location of the nodes and
anti-node lines which also indicate the possiblity of tuning the impedance and mo-
bility of any point on the plate. Lastly, Fig. 8 shows some of the variations in mode
shapes and natural frequencies that can be accomplished by activating individual
plys of the entire structure.
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ACTIVE STRAIN ENERGY TUNING (ASET)

Variation of Plate Stiffness and Maximum Deflections

One of the unique capabilities of SMA reinforced composite materials is that struc-
tures (or components) can be designed with a specific range of material properties
that can be controlled or tuned over a relatively large range. For example, Fig. 4
shows the change in the flexural stiffness (D,) of the square plate when one or all of
the individual lamina are activated by active modal modification (12], i.e., the fiber
modulus is increased by a factor of four. However, active strain energy tuning allows
for even greater authority. Figure 9 illustrates the increased authority over maximum
displacements for a uniformly loaded plate by comparing active modal modification
and active strain energy tuning. Recall that active strain energy tuning incorporates
the response of active modal modification as the Young's modulus of Nitinol is as-
sumed to increase linearly with restoring stress and the percent activation. The re-
sults shown in Fig. 9 also assumes an initial strain of the SMA 'fibers' of only 2%
even though Nitinol can regain 8% plastic strain and the maximum restoring stress
is also realized at 8% strain.

The authority of active strain energy tuning is obvious for SMA/Epoxy composites and
even greater authority may be possible if larger initial strains could be used in the
embedded fibers. The limiting initial strain of the fibers is dependent on several
physical considerations, including; the choice of resin system, the reliability and du-
rability of bond between the fibers and matrix, the maximum, average, and distrib-
ution of stresses throughout the matrix material. However, it is somewhat clear that
50% fiber volume fraction is not necessary and in many situations is not desireable.
Because of the effect of the inplane distributed loads, the fiber volume fraction can
be reduced without significantly increasing the maximum deflection relative to active
modal modification. Figure 10 shows the effect of the flexural stiffness, D,,, as a
function of fiber volume fraction. Similarly, Fig. 9 shows the maximum plate dis-
placement normalized with respect to the maximum plate displacement for active
modal modification with a 50% fiber volume fraction.

Variation of Natural Frequencies and Mode Shapes

Active strain energy tuning can be applied to a structure to influence numerous
structural interactions such as deflections, buckling, and of course, natural frequen-
cies and mode shapes. As was explained in Ref. [12], the primary objective of active
modal modification and active strain energy tuning is to 'tune' the structure based
upon various performance criteria or external conditions such as periodic force or
pressure inputs to the structure that may be near resonant frequencies or result in
low transmission loss. Active strain energy tuning again allows for greater authority
and versatility of control to be excersized over active modal modification to vary the
natural frequencies and to alter the modal shapes of the structure.

Simulations of the first ten mode shapes of the quasi-isotropic plate for a totally un-
activated plate, activation of only the 450 and 900 plys, and when all the layers are
activated, are shown in Fig. 11. Naturally the mode shapes for the unactivated and
totally activated plate are identical, however, the natural frequencies for the totally
activated plate are from five to ten times higher for the totally activated case. Table
1 shows the range of control of the natural frequencies that is possible with a
Nitinol/Epoxy composite with a 50% fiber volume fraction. Even though the range of
frequencies is quite broad, it is also somewhat clear that for most adaptive control
schemes that less dramatic variations will suffice and perhaps simplify fabrication,
processing, reliability, and durability of such a structure. Figure 12 shows the effect
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Table 1. Natural Frequency of 1 +450, -45*, 08, 900], Plate Using Active Strain Energy
Tuning

Mode Unactivated Activated Plys
Plate +45* -45°  0°  90 All

1 20 ill 119 113 124 225

2 49 179 192 120 132 358

3 50 180 193 143 157 358

4 80 233 249 190 208 456

5 99 263 281 227 250 511

6 99 264 281 234 258 512

7 129 305 326 252 277 587

8 129 312 330 260 285 588

9 167 360 382 287 315 674

10 168 360 382 345 378 676



of fiber volume fraction on the variation of the first four natural frequencies when all
layers of the plate are activated (recall that the second and third mode of a quasi-
isotropic plate are essentially degenerative, hence only three lines for the four modes
in Fig. 12). The first mode for 0.1% fiber volume fraction is approximately four times
greater than the unactivated plate. The fourth natural frequency is more than a factor
of two greater than unactivated plate. Figure 12 indicates that embedding relatively
small amounts of SMA fibers in conventional composites, (i.e., graphite/epoxy or
glass/epoxy), could prove to produce significant variations of the natural frequencies.

EXPERIMENT

Experimental Procedure and Apparatus

A nitinol reinforced fiber-glass beam was fabricated at the Composite Materials and
Structures Fabrication Center at VPI&SU. The beam was made of mainly 90 degree
plys to minimize the natural frequency of the beam. Thin strips of zero degree plys
were appropriately placed in the lay-up to create open channels along the neutral
axis of the beam. Teflon fibers, the same size as the nitinol wire, were placed in the
channels during the lay-up proceedure so that the epoxy in the fiber-glass would flow
around the teflon fibers during the cure cycle to create circular sleeves along the
entire length of the beam. After the cure cycle, the teflon fibers were removed from
the beam and plastically elongated nitinol wires were inserted in the sleeves. A 2.25
x .125 x 36 inch nitinol reinforced fiber-glass beam was created in this fashion with
six nitinol wires accounting for 1.6% of the volume of the beam. The nitinol used had
an austenite finish temperature of 630 C and a diameter of 0.031 inches.

The SMA composite beam was clamped at both ends so that it would vibrate out of
the gravitional field. The nitinol wires were also clamped at both ends of the beam
to prevent them from returning to their original length (memory shape). A mass was
added at the center of the composite beam to lower the natural frequency. A sche-
matic of this set-up and other apparatus is shown in Fig. 13.

A fiber optic sensor was used in this set-up to sense the dynamic response in the
composite beam. A length of Andrew type 48280-1-P fiber was threaded through a
sleeve in the beam and epoxied at both ends. When this elliptical core fiber is ex-
cited at 633 nm by a linearly polarized HeNe laser, one polarization of the LP01 and the
even LP, mode are supported, resulting in the desired two lobe output pattern. Op-
tical detection was accomplished using a Hamamatsu silicon pin diode, along with
appropriate amplification and a.c. coupling circuitry.

A standard piezo-electric accelerometer was also used to take data to compare with
the optical fiber data. Data was sampled in real time and an FFT was performed on
the discrete data points so that the frequency components of the data could be ex-
amined and compared.

The actuators were heated by applying a constant current through the nitinol wires.
Testing was done so that the beam had the same steady state temperature for each
test. Six actuators were used in the first test. The beam was allowed to reach a
steady state temperature and then data was taken using both the optical fiber and the
accelerometer. Two actuators were then released from the clamping device. Current
was applied through all six actuators giving the same steady state beam temperature
as the previous test, but only four actuators were used. Again, the composite beam
was allowed to reach steady state temperature before data was taken. Data for two
and zero actuators was obtained in a similar manner.
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Results - Active Strain Energy Tuning (ASET)

Data was taken in real real time using both the optical fiber and the accelerometer.
An FFT was then performed on the real time data. A comparison of the FIFT's for both
sensors, Fig. 14, shows good correlation at the natural frequency of the beam. The
optical fiber data does, however, contain a much lower signal to noise ratio than the
data obtained using the accelerometer. This is expected since the fiber optic sensor
is a distributed sensor, and is capable of sensing vibrations in the longitudinal and
lateral directions. The actual signal sensed is an integrated value over the entire
sensor length and in all directions. The accelerometer, on the other hand, is a dis-
crete sensor capable of sensing vibration in only one position and direction. The
accelerometer is strategically placed to measure only the first mode lateral vibration
of the beam and should therefor be expected to have a higher signal to noise ratio
than the optical fiber. The optical fiber output also contains a d.c. offset. This ex-
plains the peak seen at low frequency below 0.5 Hz. A 2.2 and 5.0 Hz signal is con-
tained in the data collected by the optical fiber but is not seen by the accelerometer.
A plot of the FFT of the optical fiber data taken from a stationary beam, Fig. 15, also
contains the 2.2 and 5.0 Hz signal. This confirms that these signals are not sensed
within the beam, but are sensed along the length of the optical fiber outside the beam
(refer to schematic of experimental apparatus, Fig. 13), and are regarded as ambient
noise.

Active strain energy tuning was accomplished. The natural frequency of the com-
posite beam was changed from 3.8 Hz, when six actuators were used, to 2.2 Hz, when
no actuators were used. This can be seen in Figs. 16 and 17. Fig 18 shows the FIFT
of the data taken by the accelerometer when zero, two, four, and six actuators are
used. All four cases are shown on the same plot for comparison. The mechanism
for active strain energy tuning is the increased strain in the nitinol wires upon heat-
ing. When the wires are heated above 630C (the austenite finish temperature), the
wires try to contract to their original length. Because the nitinol wires are con-
strained from returning to their original length, strain is effectively added to the wires
even though no change in length has occured. When the temperature of the nitinol
is below 633C, there is no strain in the wire. The nitinol wires can therefor be used
as actuators to modulate the amount of strain energy in the composite beam. In-
creased strain energy has the effect of increasing the natural frequency of the beam.
The natural frequency of the composite beam when no actuators are used was ex-
tracted from the frequency domain of the FFT and, using classical lumped parameter
methods, can be used to calculate the spring rate of an un-actuated beam. Elastic
spring theory is used to calculate the spring rate of an individual nitinol wire, as-
suming 75 lb tension in an actuated wire. Predicted values of frequency were calcu-
lated assuming actuators act as springs in parallel with the spring rate of the
composite beam with no actuators used. These values are tabulated and compared
with actual experimental results and pesented in Table 2.

CONCLUSIONS

Active Strain Energy Tuning shows much promise for active structural control and can
be designed to have much greater authority than Active Modal Modification. How-
ever, several problems have been identified with developing the material with active
strain energy tuning capabilities. It is clear that active strain energy tuning and active
modal modification represent two new concepts towards active control of structural
responses and may act as a catalyst for future developments in both material and
structures technology. Demonstrating, even computationally, the ability to change
the effective stiffness, natural frequencies and mode shapes of plates will hopefully
inspire new material/structural interaction paradigms.
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Table 2. Comparison of Theoretical and Experimental Normalized Natural Frequen-
cies of SMA Composite Beam

NORMALIZED

NO. Of IMSoINANT FRE9QUENCY

ACTUATORS

PREDICTED ACTUAL

0 1.00 1.00

2 1.13 1.18

4 1.24 1.64

6 1.35 1.73
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ABSTRACT

Optical fiber sensors are one of the candidate sensor technologies for
applications in smart materials and structures. The potential advantages of such
sensors are their small size and low weight, EMI and EMP immunity, geometrical
flexibility, large bandwidth, low power, multiple multiplexing options, and al-dielectric
profile. Although fiber sensors may be attached to the external surfaces of structures,
they also may be directly embedded within materials such as some advanced
composites to provide in situ measurements of composite cure as well as a method for

Sdynamic material evaluation during the normal use lifetime and degradation period of
the material. During the past nine years, we have studied a number of fiber sensor
methods based upon the measurement of optical intensity, phase, polarization, mode,
time, and wavelength to determine strain, temperature, chemical concentration, resin
cure, acoustic vibration, acoustic emission, crack propagation, and impact and battle
damage. We have also considered inline optical signal processing techniques which
improve the signal multiplexing and pre-processing capabilities of reviews the
capabilities of both optical fiber sensors and optical fiber sensor signal processing for
smart materials and structure applications.

1. INTRODUCTION

The desired complexity and missions of advanced aerospace, marine and
transportation materials and structures demands the development of intrinsic analysis
and control systems which are capable of independently optimizing structural
properties in response to particular exterual disturbances. Materials and structures
which incorporate environmental and material sensors, mechanical actuators, and
electronic signal processing and adaptive control systems to produce either appropriate
readouts or actuator responses for particular sensor inputs have been termed "smart,"
"intelligent," "sense-able or "organic" during the past several years. The primary
advantage of such materials and structures is that they may be designed to adapt to a
wide range of conditions during their normal use lifetimes. Some types of sensors and

* actuators, particularly small and lightweight optical fiber sensors and shape memory
metal actuators, may be directly embedded without seriously affecting material
integrity. Additionay, the optical fibers embedded in such material systems may be
used as life cycle sensors to monitor the way in which composite and metal structures
are fabricated, the in service lifetime performance conditions of the material, and the



onset of material degradation due to a variety of causes including fatigue and impact
damage.

Since 1979, sponsored research at Virginia Tech has led to the development of
novel sensors, actuators and control system concepts for smart structure applications.
To address the goals of this Workshop, this paper borrows heavily from this previous
body of work [i and reviews efforts directed at understanding 1) the micormechanics
of materials which contain embedded sensor fibers, 2) the peormance of optical fiber
sensors for materials testing, and 3) multiplexing and signal processing issues.

2. MICROMECHANICS OF EMBEDDED MATERIAL SENSORS

Central to the smart structures scenario is the concept that optical fiber sensors,
and fiber, wire or arrayed discrete element actuators, can be embedded within the
structural material without compromising structural integrity. The incorporation of
these devices into composite materials pnor to cure potentially allows the subsequent
in situ monitoring of the cure process as well as the internal application of local forces
to enhance local mechanical conditions during cure. Such embedding is of course
required if post-cure internal characterization of the material is to be realized.

Preferred optical sensor fiber orientation within multi-ply composite laminates is
determined by the intended application of the sensor; Udd, Measures and their co-
workers have considered fiber orientation specifically for the minimization of the
resulting perturbation to the laminate [2] and the detection of impact damage via the
observation of optical fiber breakage [3], respectively. Part of our recent related work
at Virginia Tech has involved the design and fabrication of fibers and fiber coatings to
improve the mechanical coupling between the core and cladding waveguide structure
of the fiber and the composite matrix [4], and the modeling and direct measurement of
the micromechanical effects resulting from fiber embedding [5]. Representative results
of those measurements, obtained graphite/epoxy coupon containing a single 50/125
glass-on-glass optical fiber near its component parallel to the applied load. A series of
measurements similar to these but obtained for different load levels on the composite
specimen indicate strain concentration. Factors of approximately 4 at the fiber-to-
matrix boundary for an applied load equal to half the failure load of the eight-ply
specimens tested. These large interface strain concentrations may pose significant
limits on the long term structural integrity of materials containing embedded sensor
fibers.

3. OPTICAL FIBER SENSOR IMPLEMENTATION

Optical fiber sensors may be used to evaluate the internal properties of materials,
and hence the performance of structures fabricated using those materials, during three
periods of the birth-to-retirement lifetime of the structure which require very different
sensor information. First, such sensors may be directly embedded in composite
prepreg lay-ups and subsequently used to momtor composite cure. Second, embedded
sensors may be used to monitor normal environmental factors such as strain,
temperature and vibration. And third, the same sensors may in principle be capable of
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* determining the onset of material degradation. This section describes sensor
implementations in each of these ways.

A. Fiber Sensors for Advanced Composite Cure Monitoring

Material cure or fabrication monitoring is the first application of internal sensors
as part of complete life cycle testing. In situ fiber optic cure monitoring has been
investigated for several years by Levy 16] who used distal end fiber components capable
of indicating changes in both curing adhesive color and index of refraction. More
recently, Afromowitz (7] has demonstrated the in-line adaptation of similar elements
which can be addressed via through transmission in an optical fiber instrumentation
system. Extensions of this type of sensor instrumentation may allow the distributed
measurement of the index of the curing matrix material throughout large workpieces of
varying thicknesses [8].

Our work in this area has been concentrated in the area of "sensitive-clad
sensors" (SCS) which are capable of direct localized sensing of the cure process via the
implementation of modified waveguide cladding/coatings. Glass-on-glass fibers are
acid etched to remove the clad, then re-clad and coated with a layer or layers of
appropriate polymers capable of effectively coupling to the glass core and interacting
with the surrounding curing matrix in such a way that the wavelength transmission
function of the "sensitive clad" region of fiber changes as a function of cure [4]. A
simple sketch of a single SCS element is shown in Figure 2. The use of this type ofO sensor is intended to allow the in situ monitoring of reaction path throughout the cure

process and throughout the workpiece.

Temperature, strain, and compaction pressure may be measured during materials
processing using fiber sensor systems similar to the interferometric configuration
shown in Figure 3. Analysis indicates that for shot noise limited detector performance,
a 1.0hz bandwidth, and reasonable laboratory equipment parameters, the minimum
detectable strain is on the order of micro-strain per centimeter of fiber sensor length
19]; this demonstrates the excellent sensitivity of inteferometric fiber sensor devices.
Although conventional interferometric fiber sensor designs are impeded by
indistinguishable multiparameter influences on output signal response, alternative
configurations which we have studied avoid such problems by compensated mechanical
designs or post-detection signal processing ( 10, 11].

B. Strain, Vibration and Stress Wave Sensing

The in-service mechanical performance of materials fabricated with internal
sensors may be evaluated using those sensors. Many authors have considered the
development bf optical fiber sensors for this type of evaluation [12]. Our group has
specifically placed most emphasis on the research of optical time domain and fiber
modal domain sensor systems, system components, and their evaluation.

Optical time domain reflectometry (OTDR) techniques may be used to measure
both distributed and localized strain in structures [13]. Our efforts here include both
amplitude and time measurement methods. Our early work utilized the principle of
transmitted optical power attenuation due to the localized bending of optical fibers
embedded within composite materials [14,15]. Because the spatial transient distance
of most optical fibers is larger than the desired spatial resolution. this OTDR method
is not applicable to high resolution system implementation which may be necessary in
some smart skins applications.



Alternatively, partially reflecting splices may be inserted along the length of a 
sensor fiber and ÖTDR methods used to determine the time of arrival of the optical 
pulses reflected from each splice [16]. Since position changes in such splices produce 
variations in the times of arrival of the pulses from the splices, observation of the time 
dependent arrival times yields the distributed strain. Extensions of the use of basic in- 
line splices for the measurement of strain between adjacent splices are 1) the 
multiplexing of a network of fiber sensor arms with adequate time delay length fibers 
between the arms to permit time domain separation of back reflected pulses and 
subsequent resolution of two-dimensional strain distributions (Figure 4), 2) the use of 
fiber-to-fiber intensity coupling loss in a single strained splice housing to determine 
strain localized to the vicinity of the housing, and 3) the low-profile packaging of in- 
line splices to permit the embedding of such sensors within advanced composite 
materials [17]. 

Another sensor method developed for the in-service lifetime monitoring of 
materials monitors the interference between two or more modes in a few mode über 
[18]. We have applied such sensors to the detection of quasi-static strain, low 
frequency structural vibrations and relative high frequency stress waves [19]. For the 
evaluations of structural vibrations such as those of the panel shown in Figure 5, it can 
be shown that the output signal from a modal domain sensor may be interpreted to 
yield the mode shape amplitudes of the vibrating structure's mechanical response [20]. 
This type of response is essential for the type of vibration damping control descnbed 
below. 

Modal sensing has also been applied to the detection of stress waves generated 
by acoustic emission (AE) events in mechanically loaded graphite/epoxy specimens. 
As shown in the fiber-detected AE event shown in Figure 6, the observed risetime of 
such systems is on the order 1.0 microsecond [21]. 

4, OPTICAL FIBER SENSOR MULTIPLEXING AND SIGNAL 
PROCESSING 

Although the internal evaluation of materials and the distributed characterization 
of structures is an attractive concept in principle, sensor signal multiplexing and 
processing limits the spatial resolution of the embedded or attached sensor network. 
Damage detection in advanced composites, for example, would require spatial 
resolution perhaps as high as one measurement for every square millimeter of surface 
area [22], and thus would place a significant demand on signal processing hardware 
and/or software. Several damage detection systems have been proposed. Early work 
by Crane and coworkers [23] and recent work by Measures and coworkers [3] relies 
upon the internal breakage of fibers embedded in an array to locate regions of impact 
damage or excessive local strain. Signal processing suggested by this work includes the 
visual observation of a number of illuminated and non-illuminated fiber ends, the use 
of a multi-element optical detector to perform the same observation, or the visual 
inspection of light leakage from fiber break locations in transparent or translucent 
materials. 

For quantitative sensing of the type of impact shown in Figure 8, we have 
investigated the use of in-line fiber signal processing elements such as the one shown in 
Figure 9 [24]. Here, 2x2 biconical fused tapered couplers having different s-parameters 
are interconnected in such a way as to yield a single valued output intensity to indicate 
the three-dimensional location of damage. Since such processors operate as fast as the 
light signals can propagate through the coupler system, their use is especially attractive 



* for structural analysis systems requiring good spatial resolution and minimal processing
time.

5. SENSORS, ACTUATORS AND STRUCTURAL CONTROL

Recent work at Virginia Tech has stressed the incorporation of fiber sensors with
actuators in a material structure which can be controlled via external electronics.
.Current research includes the evaluation of the type of beam shown in Figure 9
containing both optical fiber modal sensors and distributed resistive strain gauges to
verify fiber system outputs. The sensor output signals are used as inputs to the control
system electronics developed by implementing a polynomical model of beam response.
In a companion paper presented at this ARO Workshop [24], the performance of both
this system and that of a beam containing both embedded fiber sensors and nitinol wire
actuators are described [25].

6. SUMMARY

The area of smart skins includes elements from a number of disciplines. Since
1979 the smart skins research and teaching program at Virginia Tech has involved
basic analysis and development of 1) optical fiber sensors for cure monitoring, in-
service lifetime structural testing, and nondestructive evaluation of gradual material
degradation, 2) fiber sensor multiplexing and signal processing demanded by such
systems, and 3) the integration of embedded sensors, actuators and control electronics
to affect structural control systems.
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Figure I. U and V dispalcement fields in fiber-embedded composite
laminate (5].
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A NEW GENERATION OF REVOLUTIONARY ULTRA-ADVANCED
INTELLIGENT COMPOSITE MATERIALS FEATURING ELECTRO-RHEOLOGICAL FLUIDS

by

M.V. Gandhi and B.S. Thompson
Intelligent Materials and Structures Laboratory

Composite Materials and Structures Center
Michigan State University
East Lansing, MI 48824-1326

ABSTRACT

A new generation of revolutionary, intelligent, ultra-advanced composite
materials featuring electro-rheological fluids is presented herein for the
active continuum vibration-control of structural and mechanical systems.
These ultra-advanced composite materials capitalize on the superior
characteristics of advanced composite materials which are interfaced with
dynamically-tunable ER fluids contained in voids in the advanced composite
structure. Changes in the electrical field imposed upon the
electrorheological fluids can dramatically alter the rheological
characteristics of the fluids and hence the global mass, stiffness and
dissipative characteristics of the ultra-advanced composite structures. The
instantaneous response-time of the ER fluids and the inherent ability of these
materials to interface with solid-state electronics and modern control systems
provides designers, for the first time, with a unique capability to synthesize
ultra-advanced intelligent composite structures, whose continuum electro-
elastodynamic response can be actively controlled in real-time. The
revolutionary capabilities of these materials can be exploited by integrating
fundamental phenomenological theories with intelligent sensor technologies and
modern control strategies in order to significantly accelerate the evolution
of this innovative class of multi-functional, dynamically-tunable, ultra-
advanced, intelligent composite materials for military, aerospace, and
advanced manufacturing applications.

PREFACE: BACKGROUND ON ELECTRO-RHEOLOGICAL FLUIDS

Electro-rheological (ER) fluids are typically suspensions of micron-sized
hydrophilic particles suspended in suitable hydrophobic carrier liquids, which
undergo significant instantaneous reversible changes in material
characteristics when subjected to electrostatic potentials. The most
significant change in the material characteristics of an ER fluid is
associated with the bulk viscosity of the suspension, which varies
dramatically upon applying an electrical field to the fluid. The tailoring of
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this rheological property by the imposition of a suitable electrical potential
can be usefully exploited in vibration-control applications. Figure 1
presents photomicrographs of an ER fluid subjected to electrical field
intensities of 0 kV/mm and 2 kV/mmm respectively. The current levels
associated with the high voltage states are typically in the order of a few
micro-amperes, consequently, the power consumption is minimal.

Figure 1. Photomicrograph of ER fluid microstructure at two discrete voltage

states.

PREVIOUS WORK: PROOF-OF-CONCEPT STUDIES

Experimental investigations have been undertaken by the authors by
employing hollow cantilevered beams fabricated with graphite-epoxy prepreg
material filled with various electro-rheological fluids. Typical experimental
results are presented in Figure 2 for two discrete voltage states. The
dramatic difference in the two elastodynamic response characteristics clearly
demonstrates for the first time the viability of the proposed concept af
employing ultra-advanced intelligent composite materials for vibration contro

applications.
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Figure 2. Experimental results demonstrating the controllability of beam
vibrations by employing constant voltage fields on smart materials
incorporating ER fluids.

The real-time controllability of this revolutionary class of intelligent
ultra-advanced composite materials ' employing variable time- histories of
the voltage field is demonstrated iT. 'igure 3.
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Figure 3. Experimental results demonstrating the controllability of beam
vibrations by employing time-dependent variable voltage fiele's on
smart materials incorporating ER fluids.

MOTIVATION

The preliminary research being undertaken in the Intelligent Materials
and Structures Laboratory (IMSL) and the Composite Materials and StructuresCenter (CMSC) at Michigan State University is a coherent experimental andtheoretical program of basic research on a revolutionary class of ultra-
advanced intelligent composite materials incorporating electro-rheological
(ER) fluids for active continuum vibration control applications. These ultra-advanced composite materials capitalize on the superior characteristics of
advanced composite materials which are interfaced with dynamically-tunable ERfluids contained in voids in the composite structure. Changes in the
electrical field imposed upon ER fluids dramatically alter the rheological
characteristics of the fluids, and hence the global stiffness and dissipative
characteristics of the ultra-advanced composite structure. The researchprogram is motivated by the promising results from the pioneering proof-of-
concept studies on cantilevered beams fabricated from ultra-advanced
intelligent composite materials, which clearly demonstrate for the first time
how the elastodynamic response of beam-like continua can be dynamically tunedin real--ime by actively controlling the electrical field imposed upon the ER
fluid . shown in Figure 2.

The capability of these materials to interface with modern solid-state
electronics can be exploited by integrating fundamental phenomenological
theories with intelligent sensor technologies and modern control strategies inorder to significantly accelerate the evolution of this innovative class of
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multi-functional, dynamically-tunable, ultra-advanced, intelligent composite
materials for military, aerospace, and advanced manufacturing applications.

This class of innovative materials derive their versatility from the
merger of sensors, built into the finite element control segments of the
ultra-advanced composite material continuum, microprocessors, and dynamically-
tunable electro-rheological fluids. The sensors monitor the elastodynamic
behavior of the ultra-advanced composite structure, and the signals from the
sensors are fed to the appropriate microprocessor which evaluates the signals
prior to determining an appropriate control strategy in order to synthesize
the desired elastodynamic response characteristics. An application of this
philosophy to control the vibrational response of an aircraft wing is
schematically represented in Figure 4.

Figure 4. Schematic of an intelligent aircraft wing.

The technology on smart materials presented herein represents a quantum
jump in the technology-base relative to the current generation of advanced
composite materials in the marketplace at this time. This can be readily
'llustzated by considering the response of a helicopter rotor. With
traditional advanced composite materials, the optimization strategies result
in an optimal design, which is passive in nature, and cannot respond to
unstructured environments, and changes in the rotational speed, aerodynamic
loading, payload, and the ambient hygrothermal environment. Therefore, even
an optimally-tailored rotor designed in a traditional advanced composite
material is clearly sub-optimal ,r all service conditions except the one for
which the rotor was optimally designed. In sharp contrast to this undesirable
scenario, if the rotor were fabricated in one of the intelligent ultra-
advanced composite materials presented herein, then the performance of the
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rotor could be dynamically tuned to ensure optimal performance under various
service conditions and unstructured environments.

Since elastodynamic phenomena manifest themselves in practically all
applications such as submarines, machine tools, aerospace environments, and
high-speed machinery and robotics, for example, clearly there is a significant
need for the evolution of a new class of advanced composite materials whose
elastodynamic response can be optimally tailored in real-time in order to
significantly enhance the performance of structural and mechanical systems
under diverse operating conditions. The successful evolution of this class of
revolutionary materials is crucial to U.S. Army's mission, since it would
significantly enhance the development of a new generation of advanced
mechanical systems, such as, helicopter rotors, adaptive suspension vehicles,
and robotized applications in armament, ammunition-supply and materiel-
handling systems. An application of intelligent ultra-advanced composite
materials to control the elastodynamic response of a typical robotic system is
schematically presented in Figure 5. A methodology for synthesizing this
class of smart materials is presented in Figure 6.

V ER Fluid

ER Actuating Joints -

Figure 5. Schematic of Intelligent Robot Arm
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PIEZOCERMAIC DEVICES AND PVDF FILM4S AS SENSORS AND ACTUATORS
FOR INTELLIGENT STRUCTURES

by

S. Hanagud, M.W. Obal,* and A.G. Calise
Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, Georgia 30332-0150

ABSTRACT

During the past few years, developments in the area of intelligent
structures and active vibration control of flexible structures have resulted
in a significant amount of research work leading to an exploration of the
associated benefits of embedded and bonded sensors and actuators. Amongst the
available choice for sensors and actuators, piezoceramic transducers fall in
the category of devices that can be used as both sensors and actuators. These
piezoceramic transducers consist of piezoceramic materials sandwiched between. conductive surfaces and polarized in a direction suitable for the particular
application. When used as a sensor, deformations of the bonded dynamic struc-
ture produce an electric charge resulting in an electric current in the
sensing circuit. When used as an actuator, a high voltage signal is applied
to the same piezoceramic device. This results in the deformation of the
transducer and transmission of energy to the bonded structure. A desired
control strategy can be developed by an appropriate conditioning of the sensed
signal before feed4ng the signal to the actuator. A selection of the spatial
placement of the actuators also influences the control strategy.

In earlier works, procedures have been d~veloped for optimum control of
flexible beam like structures by using a limited state feedback and the
minimization of a quadratic performance index of state and control. The
problem of optimum spatial location of actuators has also been discussed.
During the course of the performance of these research tasks certain research
areas have been identified. In this presentation, following a brief review of
the previous research work, the identified research areas and their importance
in developing the concept of an intelligent structure will be discussed.

INTRODUCTION

During the past few years, there has been a considerable amount of
interest in the use of bonded and embedded sensors and actuators for vibration
control and failure detection in flexible structures. The discussions in this
paper are concerned with the use of bonded piezoceramic sensors and piezoce-. ramic actuators to control vibrations in structural dynamic systems. The rate

*Dr. Obal is currently with the flight testing group at Edwards Air Force
Base.



of deformation of the bonded piezoceramic transducer results in an electrical
voltage in the sensor detection unit. This signal is conditioned by opera-
tions such as filtering, phase shift and amplification. The conditioned
signals are used as an input to bonded piezoceramic actuators located at
selected locations. The piezoceramic actuators transmit mechanical energy to
the flexible structure. The objective of the operations of sensing the
deformation, conditioning the sensed signal and the transmission of energy to
the flexible structure is to control the vibration of the flexible structure.

Some of the reported applications of piezoceramics to active vibration
control are due to Mchennie,' Forward, 2 Forward and Liu, 3 Forward and
Swigert," Forward, Swigert, and Obal, 5 Hanagud and Obal, 6 and Crawley and
deLuis.7

Bailey and Hubbard8 have discussed the use of distributed PVDF film
actuators instead of piezoceramic actuators to control flexible structures.
In a recent article Hubbard 9 has also discussed the problem of using varying
geometrics of PVDF films to obtain different types of actuator forces applied
to selected flexible structures. The development of an optimal control
procedure for a flexible structure with limited state feedback and the use of
piezoceramic sensors and actuators has been discussed by Hanagud, Obal, and
Calise.10  In reference (10) a quadratic performance index of state and
control has been used. In such an optimal control problem the choice of
control design variable include the gain, weights to be used on the state and
control variables, location or placement of the sensors and actuators, number
of sensors and actuators, dimensions of the sensors and actuators, centralized
or decentralized control, methods of bonding the sensors and actuators to the
structure and the types of signal conditioning. In reference (10), issues of
gain optimization have been discussed. Differences due to centralization and
decentralization have been illustrated in example problems, along with the
effects of different selected weights in the quadratic performance index.

The emphasis in this paper is on a brief review of the developments of
the optimal control strategy and discussion of research areas to improve the
state of the technology.

OPTIMAL CONTROL PROCEDURE

In an earlier paper," finite element models have been developed by the
authors for a structural dynamic systems if a Bernouli-Euler beam, bonded
piezoceramic sensors, signal conditioning systems and piezoceramic actuators.
In the model, a strain rate feedback and a filtered feedback centered around
selected frequencies and bandwidths have been considered. Equations foe the
strain rate feedback are simpler in comparison to the filtered feedback
equations. For a beam similar to the one illustrated in figure 1 the finite
element model with rate feedback is0

Mq + C4 + Kq + Fc  (1)

FcT (C = (0, -MI, 0, ... e r (2)

WiT a , . ...... w n} (3)



In this equation M, C, K ar% the mass, damping, and stiffness matrices.
The external force vector is F and the control force vector is FC. In
equation (2), CED for on element is given by

0 0 0 0

Ce e GK' 1oo o (4)
0-1 0 1

KO = a lHbah &D (5)

ks = b S0'hHRf~s (6)

In these equations G = -G is the gain, K and Ke are the sensor andD s aretesno n

actuator piezoelectric constants resulting in control moments M . The width

and height of the piezoceramic devices are denoted by b and k respectively.

Quantities 0 and H represent constants in piezoceramic constitutive
relationships. The reduced electromechanical coupling efficiency due to
bonding has been represented by & for the sensor and & for the actuator. In

* general & and & have been assumad to be constants. TRe deflection and slope
of the belm at n~des have been denoted by wi and ei .

The equations have been reduced to the form required for the derivation
of optimal output feedback gains:

= Ax + Bu, xeRn (7)

y = dx, yeRr (8)

u = -dy (9)

where

A =. ,_ (10)

B 0rK (11)

C CO Ks]  (12)

XT x x1,. .. ,X27n = e1, . .. , en; e1, ... 4n} (13)



The reduced size matrices Mr, Kr, and Cr have been obtained by eliminat-
ing the translational degrees of freedom from M, K, C by using Guyan condensa-
tion procedure.

Y = [0) [Ks] ) x (14)

and

G KDG (15)

Index of performance is defined as"1

J = EXo f(X T  x + uT R u)dt + y(G) (16)

00EQx oI = 0; E[XoX } T Xo  (17)

where the quantity yG) is any scalar function having continuous gradients in
G. Minimization yields the following set of equations

(A-BGC)L + L(A-BGC) T + X 0 0

S c(G,K c)=(A-BGC) TKc+K c (A-BGC)+Q TRGE = 0

= R'I{BT c LET - 1 yG(d)]( LT)-l (18)

A convergent numerical solution procedure for these equations have been
discussed in reference (11).

For a system, with filtered feedback, equations for the closed system can
be summarized as follows. In particular, for a beam with n elements, r
piezoceramir actuators and r signal conditioners the equations are as follows:

ND+ A*;D + B'VD = Ks Ts s (19)

M4+ C4 + Kq = TDKDvD+ F (20)



In these equations elements of vd vector are the output from the signal
conditioning systems

VT=( (21)TDO VD1' "' Dr}(1

The matrices A* and B* are diagonal matrices with diagonal elements.

A j 2Wfj/Q j , ... r (22)

2. j 1,... r (23)

where Wf is the filter center frequency and Qi is the band width of the ith

signal tUnditioning system. The matrix Ks is also a diagonal matrix with
elements.

=Gw

Ksjj  Qj Ksj (24)

where Gi is gain ofh the ith signal conditioning system and Ksi is the
sensor constant of the i piezoceramic sensor

ks = b SAhHRf (25)

In this equation b is the width, h is the thickness, p is the dielectric
constant and H is the piezoelectric constant of the piezoceramic sensor. The
quantity R is the resistance in the sensor signal analyser portion of the
signal conditioning system illustrated in figure 2. The efficiency of the
energy transfer from the beam to the sensor through the bonding has been
defined by a coupling coefficient s. In general s can be a function of
space and time. As a first step, in this analysis has been assumed to be
a constant. Quantities M, C, and K are the system mals, damping and stiffness
matrices. The vector q is the displacement vector.

(q}T = (wi, e .... Wn, en} (26)

[F)T = {VI, M1, .... n, Mn} (27)

The matrix K represents the actuator characteristics and is assembled from
element matres

Re 0 0 a

0 1 0 0] BlHbah &d (28)

0 0 0 1



The matrices Tn and TS are actuator and sensor location matrices used in
assembling the 'parsely located sensor and actuator contributions into global
matrices. The coupling of coefficient & has been defined similar to
Equations (19) and (28) can be used to devglop optimal control strategies.

Numerical Results

An example of a cantilever beam has been considered to illustrate the
developed procedure for optimal vibration control of structures by the use of
piezoceramic sensors, actuators and rate feedbacks with appropriate gains.
The cantilever beam is of length 22.86 cm and cross sectional dimensions 1.65
cm x 0.44 cm. The beam is made of an aluminum alloy. Two piezoceramic
transducers made of lead zirconate titanate (G1195) of sizes 1.91 cm x 1.91 cm
x 0.02154 cm and 3.9;6 cm x 0.02154 cm have been selected for use as collocat-
ed sensors and actuators as shown in Figure . In this study, sensor and
actuator pairs have been assumed to be at given locations. Optimization of
the sensor/actuator placement has not been considered. A finite element model
with ten degrees of freedom has been initially formulated for the open loop
beam without feedback. In the current state of the art, the desired finite
element model does not contain the values of the damping matrices. An assumed
linear viscous damping matrix has been determined from tests conducted on the
beam and a structural dynamic system identification procedure. The first ten
eigenvalues, ten eigenvectors and an a priori model are required in the use of
the selected identification procedure - which is based on the equation error
approach. The derived finite element model has been used as an a priori
model. Laboratory tests have been conducted and the required eigendata have
been obtained using a GENRAD computer aided data acquisition system and SDRC
modal plus software. The identified model resulting from the identification
algorithm yields the experimentally obtained eigendata and a symmetric damping
matrix. This damping matrix has been noted as the baseline matrix in the
paper to distinguish it from the augmented damping matrix due to an active
control input vector to the piezoceramic actuators.

The matrices A, B, and Z for the cantilever beam have been obtained from
the identified mass, stiffness and damping matrices. In the process of
obtaining matrices A, B, and C, five transl&tional degrees of freedom have
been eliminated by using a Guyan condensation technique. The function y(G)
has been selected to be

_ v g2 2

Y(G) 2 + g21) (29)

whenever off diagonal gain terms are not desired. Three different types of
weight have been selected. The diagonal elements of the weighting matrix are
inversely proportional to the square of the eigenvalues, inversely proportion-
al to the eigenvalues and an identity matrix. For all cases R=I. Optimal
gains have been obtained for cases in which off diagonal terms have been
penalized in accordance with (29), and cases where off diagonal terms have not
been penalized. The latter case corresponds to the case where each sensor
output fed back to both actuators with appropriate gains.



Figure 2 is the time history of an open loop sensor output at x=16.60 cm.
Figure 3 is the corresponding closed loop time history of sensory output When
off diagonal terms have been penalized. Figures 4 and 5 are closed loop time
histories for sensor output and tip velocity for systems with cross feedback,
where it is not necessary to penalize the off diagonal terms.

RESEARCH AREAS AND FUTURE DIRECTIONS

Dynamic coupling and Constitutive Equations: During the course of the
performance of reviewed tasks and the the current work in progress at Georgia
Tech, it has been observed that a significant amount energy is not
transferred fro' the ptezoceramic actuator to the structure. This energy is
lost in the bonding material or the adhesive. The efficiency is as low as 10
to 20 percent. Research efforts are needed in improving the efficiency.
Furthermore, most of the current analytical work is based on classical linear
piezoelectric constitutive relations. These equations were derived and used
to study these crystals at resonant conditions. Very likely, they are valid
for our purposes of active control. However, it is necessary to reexamine
these constitutive relations including their effects with varying temperature
and aging. It is necessary to design appropriate experiments and identify the
appropriate parameters.

Load and Energy Transfer: Following discussions of the previous para-
graph, it is necesstry to understand the energy and load transfer mechanisms. for PVDF films, piezoceramic sensors or other actuators to the structural
dynamic system. This problem should be addressed for both bonded and embedded
actuators. It is also necessary to consider the effect of the adhesive
material. A thorough understanding is possible by progressively considering
one, two, and three dimensional models with their dynamic analysis. It is
also important to consider different types of structures. A specific area of
concern will be the multiple layers of the film actuators.

Composite Structures: An important area of the application of the smart
structure concept will be in the use of embedded sensors and actuators in
composite structures. Modeling these composite structures with embedded
sensors and actuators and verifying the accuracy of the model results are
necessary in evaluating the performance of composite structures.

Optimal Dynamic Compensation: In the results presented thus far, only the
case of constant gain output feedback has been considered. The output signal
conditioning were prespecified using highly tuned bandpass filtering. This
approach is in general not robust in that it relies on accurate knowledge of
the modal frequencies. An alternative approach is to use LQG theory to define
the compensation. Unfortunately, this also can be shown to lead to highly
turned notch filtering. Moreover, the order of the system would preclude the
practical implementation of a full order observer (compensator). An alterna-
tive approach is to design a fixed order dynamic compensator, of order less
than the minimal order observer. This in concept is a straight forward
extension of constant gain output feedback. However, there are a number of

* difficulties associated with this approach which have been recently addressed
in the literature. One problem is that the compensator formulation is over
parameterized, which invariably leads to convergence probl~fsihen attempting
to numerically optimize the design, several authors ' have adopted
canonical formulations which yield a minimal parameterization. A second



problem is that there are few guidelines for penalizing plant and compensator
states in the performance index to achieve desirable performance. 14Finally,
there are no guarantees on stability margins. In a recent paper a Loop
Transfer recovery procedure is outlined for approximating the properties of a
full state feedback design, including the well known stability robustness
margins. In addition, this approach leads to a well defined approach for
defining the weighting matrices in the performance index, and the initial
condition distribution matrix (X ) as well. A singular perturbation method
for extending this approach to "two time scale design appears in Reference
(15). In this setting, fast and slow compensators result, that operate in a
parallel architecture with different sampling rates. This approach offers the
possibility of decentralized control. These approaches warrant further
investigation and development for potential application to control of flexible
structures.

Estimation and Identification: Accurate models are necessary from the
point of view of sensing the information only or sensing and control. Accu-
rate model improvement procedures for adaptive control techniques and optimum
control. Because of the coupling between the smart structural elements and
benign structural elements and uncertainties such as adhesive material (or
bonding) effects and noise in the process models and measurement it is very
important that appropriate model and parameter identification techniques as
well as State estimation techniques are developed. Estimation is very impor-
tant in structures where smart elements are primarily used for sending and
monitoring the health of the structure.

Distributed Controls: One of the benefits of PVDF films, piezoceramic or
other similar actuators is that control of distributed paramter system can be
developed by using distributed actuators. Techniques for exploiting the
maximum benefits of the distributed sensor and actuators are needed.
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Variable Geometry Trusses

Harry H. Robertshaw
Charles F. Reinholtz

Smart Materials and Structures Laboratory
Department of Mechanical Engineering

Virginia Polytechnic Institute and State University

Introduction

Work into the analysis and experimentation with Variable Geometry Trusses (VGT's) has been
carried out in the Mechanical Engineering Department at VP[&SU since 1985. The purpose of the
work at that time was to explore the vibration control capabilities of these VGT's. The first focus
for the work was a-four-bar linkage with three variable-length links used to give the structure three
degrees of freedom (DOF). The structure was grounded at one end and had a continuum attached
at the other end with the object being to control the vibration, the dynamics, of the continuum.
Since that time a spatial three DOF active truss (with an octohedral-octohedral configuration) has
been analyzed and tested for vibration control and for performing rudimentary robotic tasks. A
twenty-one DOF truss has been designed and is being assembled for testing.

Varible geometry trusses are an embodiment of the 'Smart Structure' concept: possessing the three
needed attributes of integral actuators, integral sensors, and some intelligence to direct the actuators.
Them are many terms currently being used for structures that have some or all of the concepts in-
ferred by "smart': variable, adaptable, adaptive, active, adjustable, and organic. It seems that
'smart' has been chosen because of it's alliterative qualities and not bemuse of it's emphasis on the
intelligence aspect, the most developed of the three needed attributes. 'Organic' may be the best
choice.

'Organic' suggests the biological process, at least the musculo-skeletal processes, that we attempt,
directly or indirectly, to mimic with our smart structures. Looking at the macroscopic and possibly
microscopic behavior of organisms will lead us to developing goals and perhaps mechanisms for
actuators, sensors, and intelligence for structures and materials. For example, the human arm when
performing any of the advanced tasks it is capable of (e.g. painting, pitching, punching, or piano-
playing) can be considered as a variable stiffness actuator with a control law (the intelligence) that
has significant open-loop, preprogrammed, behavior. These observations (and others) may have
significant impact on the development of new smart structures.

The development of VGT's at VPI&SU, described below, is in the beginning stages. The overall
goal of this work is to design, build, and test variible geometry structures that are adaptable and
controllable. The work has focused on vibration control and robotic tasks using 'integral' actuators
composed of dc motors driving machine screws, sensors composed of resistive devices to measure
motions and strains, and intelligence composed of desktop digital microcomputers.

Vibration Control With VGT's

Vibration control of continua with VGT's has been studied and carried out using a planar three
DOF truss (Lovejoy, 1987, Patten, 1988) (Fig. 1) and a three DOF spatial octahedral-octahedral
truss (Robertshaw, 1988) (Fig. 2). Additionally, an analytical, planar, comparison of inertia-type
actuators and VGT actuators has been carried out for a planar structure (Clark, 1988).

*A particular area of interest is the vibration control of truss structures built up as long flexible
beams. Many future space applications, such as the proposed space station, incorporate such
truss-beams in their main structures and appendages. There have been various methods introduced
in the literature to actively damp these truss-beams. Some of these include the use of piezoelectric
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materials (Bailey, 1985, Fanson, 1986, Hanagud, 1987) and applications of thermal gradients to
enhance the structure's own internal damping capabilities (Edberg, 1987). One of the primary
methods being studied today is the use of inertia-type actuators to apply controlling forces to the
beam. These actuators produce forces and moments on the structure by using inertial reaction
forces of a small mass or rotational inertia. The oldest and most tested of these actuators are vai-
ous configurations of the reaction wheel (a rotational actuator), (Anderson, 1975, Aubrun, 1985,
Joshi, 1980, Margulies, 1978), which was followed several years later by the development of the
proof mass (a linear actuator), (Aubrun, 1980, Doane, 1986, Ham, 1987, Zimmerman, 1984). In
1981 Mills performed a theoretical case study comparing the effectiveness of those two inertia-type
actuators (Mills, 1981). He modelled the actuators as having dc motors driving the inertial ele-
ments. In the study he placed the actuators at the tip of a cantilevered beam and determined each
actuator's effectiveness in damping the first three modes of the beam. His results showed that for
first mode the two actuators were very evenly matched, but for second and third modes, the reaction
wheel actuator proved to be superior to the proof mass actuator.

Even though inertia-type actuators have been studied a great deal over the past years for their vi-
bration control capabilities, they lack the ability to perform pointing or slewing maneuvers. VGT's
can provide both forces and moments to the structure and accomplish slewing maneuvers as well.
VGT's had been studied in the past for their vibration characteristics, and for their pointing and
shape control capabilities (Natori, 1987), but they had never been applied directly to vibration
control. In 1987 Lovejoy showed that a planar truss actuator could be used to damp the vibrations
of a beam, and in so doing, showed that the truss has a great deal of authority over the beam. This
work has opened the possibility of three-dimensional truss actuators which are built into the
structure, thus eliminating the added weight of inertial elements.

Inertia-type actuators and VGT's represent two distinct concepts for controlling vibrations of flex-
ible structures. Each concept brings with it characteristics which may or may not be beneficial in
performing the vibration control task. Clark (1988) describes the method and results of a study
comparing the effectiveness of four actuators in controlling the planar vibrations of a truss-beam.
The four actuators studied are the proof-mass actuator, the reaction wheel actuator, the planar truss
actuator (a VGT), and the planar truss proof-mass actuator (a combination VGT/inertia-type
actuator), Fig. 1. The work involves simulating the response of a finite element model of a
cantilevered truss-beam to initial conditions, with each of the actuators acting in turn to damp the
imposed vibrations.

The analytical approach taken was to model each actuator with lumped masses and model the
beam with finite elements, including in each model the generalized reaction forces from the beam
on the actuator or vice versa. The two systems (beam and actuator) are combined by solving for
corresponding reaction forces and then setting the resulting equations equal to one another to form
the complete system. All actuators are assumed to have no means of storing appreciable amounts
of potential energy. Figure 3 shows that the VGT actuators each have three active parts while the
proof mass and reaction wheel actuators have only one active part. To make up for this disad-
vantage, three proof mass and three-reaction wheel actuators are placed on the beam at different
locations. For the proof mnas and reaction wheel actuator models, parameters such as motor
constants, secondary masses, and balIscrew leads are chosen based on the results of a parametric
study. The study involved varying the actuator parameters and choosing the set which provided
the best closed loop system response (determined by eigenvalue location). The parameters for the
truss actuator models (motors and ballscrews) in this study were chosen from an experimental setup
of a similar system. A parametric study of the planar truss actuators has not yet been carried out.
Using the previous method for choosing actuator parameters means that any disadvantage seen by
the reaction wheel or proof mass actuators is brought about by actuator configuration and not by
choice of parameters. In order to be consistent a constant, fll-state-feedback, linear, optimal
control law (Linear Quadratic Regulator) is used for all actuators.

Three performance indices are used to evaluate the actuators in this study. One obvious choice is
the linear quadratic regulator performance index used to determine the feedback control gains.
Perhaps a better, more meaningful index of performance is the energy consumed by the actuators
during control, since, for practical purposes, the energy consumed by each actuator may be the
limiting factor in actual control situations. The LQR performance index, J, does not adequately
represent energy consumed. Where J is a function of the motor input voltage, it should be a
function of both the input voltage and armature current. . different performance index which does
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represent energy consumed, J., is calculated during each simulation for each actuator system. The
third performance index, .D, was chosen to represent the damping added to the system. Integrating
the energy in the system over time provides a relative 'damping factor' (dependent upon initial
conditions) which can be used to compare one actuator to another for a given set of initial condi-
tions. All three of these performance indices are tabulated with the results of the simulations.

The response of each beam/actuator system was simulated to various initial condition inputs. The
results of the simulations are shown in Table I. Figure 4 shows the response plots of the system
controlled by the VGT actuator for the initial condition of all modes. The figure shows two plots;
the first shows the energy of the system versus time, and for an illustration of what would actually
be seen in the real system, the second plot shows the tip deflection of the beam versus time.

The data in Table 1 show that the planar truss actuator does the best job of damping the vibrations
of a beam excited by first mode initial conditions. The third column shows the integral of the total
system energy over time, that is, the area under the energy curve shown. From these numbers it
is seen that all actuators do a better job of damping higher modes than lower modes, and all
actuators are very similar in their ability to damp higher modes. The planar truss proof mass
actuator lags behind the other actuators in its controlability, however this is due in large part to the
fact that it adds a large lumped mass to the end of the beam. Placing more actuators at different
locations on the beam should improve its performance.

Table 1 also shows that the inertia-type actuators are all very close in the amount of energy con-
sumed in controlling any mode. The planar truss actuator, however, consumes significantly more
energy than the inertia-type actuators. This can be explained by the fact that the planar truss
actuator must affect rigid body motion on the beam, a process which consumes more energy than
moving a secondary mass. Placing the planar truss actuator at some other position along the truss
should cause the energy required for control to decrease because the part of the beam being moved
rigidly is decreased.

There are several final points concerning various actuator characteristics which should be considered
when comparing one actuator to another. These points are not drawn directly from the simulation
results, but have an impact on actuator design or on the choice of an actuator for a particular ap-
plication. An important characteristic of the VGT actuator is that it can be an extension, by one
bay, of the truss-beam to which it is attached, with the difference that the links making up the
actuator are active. This active bay could be located anywhere along the beam, which makes the
planar truss actuator convenient for applications such as pointing or shape control. Global beam
motions can be applied and controlled by the actuator to accomplish tasks such as positioning solar
arrays or antennas. Global motions cannot be applied by the inertia-type actuators. Another ad-
vantage of the planar truss is that it does not require the added mass necessary for the operation
of inertia-type actuators. That added mass will be costly when these ideas ar implemented in
space.

The conclusion to be drawn from this discussion is that, from an operational standpoint, the VGT
actuator is more favorable than the inertia-type actuators. It allows for global positioning (slewing,
shape control) of the beam, it does not come with the penalty of an added secondary mass, and the
planar VGT actuator is effective in controlling vibrations of a flexible beam.

Experimental work with a planar VGT actuator has been carried out by Lovejoy (1987) and Patten
(1988). The experimental work was carried out on the same experimental appparatus but used
different control laws. Unlike the control laws used by Clark (1988) in his comparison study, both
Lovejoy and Patten did not have the full state measurements available for feedback during the ex-
periments; rate information is notoriously difficult to measure. Both these investigators used partial
state feedback with similarly good results. The response of Lovejoy's control law in controlling a
continuum with a clamped-free first mode of approximately 0.5 Hz and almost zero open-loop
damping is shown in Fig. S. Patten's more advanced control law used open-loop responses between
widely spaced sampling periods to perform this control and resulted in better yet similar responses.

Experiments and analyses with a spatial VGT have been carried out, Robertshaw (1988). As in the
planar case, the spatial VGT is actuated via variable-length links that are driven by dc motors and
machine screws. The truss used for the experiments and as the focus of the analysis is a three
degree-of-freedom, statically-determinate, two-bay, octahedral-octahedral truss developed at the
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NASA Langley Research Center to demonstrate deployment concepts, (Rhodes, 1985). The truss
has been adapted to perform closed-loop position control and vibration control at VPI&SU.

A schematic diagam of the spatial truss actuator with an attached generic beam continuum is
shown in Fig. 2. The truss is a two bay, statically determinate, octahedral-octahedral structure with
three motorlead screw actuators. Joshi, (1988) has analyzed many different cases for variable ge-
ometry trusses and has shown that the three variable-length links give this structure three degrees
of freedom. The continuum attached could represent the remainder of an unactuated truss struc-
ture. The continuum chosen for use is a 1/4' dia. brass rod 75' long. The combination of the rod
and the two truss bays is nearly fourteen feet in length. The equations of motion for the system
were developed and then were used to develop the linear, suboptimal control laws for the system
and to simulate the system response.

The approach taken in deriving the equations of motion was to consider the actuator and beam
continuum separately. The spatial VGT actuator was modeled by identifying coefficients of a
second-order differential equation model for each of the variable-length links using experimental
frequency response and time response data. The truss base motion was found from these link
motions using a linearized version of the non-linear, iterative, kinematic transformation developed
by Reinholtz (1987). The truss, therefore, supplied kinematic inputs to the rod continuum
equations. The rod continuum was modelled using energy methods (with a Ritz discretization) and
the resulting ordinary differential equations were linearized about the operating point.

In the development of the system model five different coordinate systems are utilized at one time
or another. The Newtonian coordinates of the base of the truss (the root of the clamped rod) can
be described in terms of the primitive coordinates or in terms of the variable-link lengths. Once the
base position is known, the rod continuum can be located in the Newtonian frame using either the
Ritz time-dependent coordinates or by using coordinates consisting of strain measurements along
the beam.

Finding an optimal, linear state-variable feedback, control law for this system is a variation of the
classic Digital Linear Quadratic Regulator (LQR) problem. Iterations with different penalty ma-
trices produced sets of gains which had acceptable eigenvalues. With an eye toward the exper-
imentation the eigenvalues were computed assuming that there were no rates available for feedback;
therefore, the computed rate Kalman gains were set to zero for the eigenvalue determinations.
Additionaly, the digital computer calculation delays, one for each of the active links, were included
in the eigenvalue calculations as well as the simulations. In order to verify the anlytical model and
the control approach an experiment was performed.

The active link positions were measured with linear potentiometers and the beam strains at six lo-
cations (three in each direction) were transduced using full (four-arm) bridges at each location. The
digital control algorithm was implemented on an AT style computer using two commercially
available data acouisition boards to perform the A/D and D/A operations. The controlled response
of the nearly undamped rod to first-mode like initial conditions is shown in Fig. 6. Note that this
controlled response shows some energy being moved into the second mode and also being con-
trolled by the algorithm. The control algorithm gain sets chosen produced output voltages that
saturated at certain times during the transient response. The linear control algorithm was robust
in the face of this saturation non-linearity.

As a further check of the system model an ACSL smulation of the system equations was carried
out. The saturation non-linearities, the digital calculation delays, as well as the effects of the zero-
order hold in the D/A circuit were included in the simulations. Figure 8 shows the simulation of
the controlled root strain in response to a first mode excitation. Care was taken to account for all
transducer and amplifier constants so that comparisons can be made between actual and simualted
strain values. Comparison of the experimental and simulated control voltages showed that the
simulation took longer to come off the saturation non-linearity. However, the agreement between
the experimental and simulated responses is encouraging as was the response of the spatial VGT
in controlling vibrations of the continuum attached to it.
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Kinematic Control With VGT's

Reinholtz (1987) has presented work that shows the complexity of the forward and inverse
kinematic solutions for any of the possible configurations of the basic unit oi a VGT. The solution
of these equations are mostly iterative and have optimized at VPI&SU in order that they may be
used in the real-time code designed to move the experimental VGT's. The spatial VGT has been
used to test out rudimentary robotic tasks by programming it to draw letters with a pen fixed to the
tip of a stiff rod attached to it. As in the vibration control experiments, the whole apoaratus is
approximately 14 ft. long. The letters NASA among others have been drawn with what may
amount to the worlds longest pen. Figure 8 shows a reduction of two of these letters. Note the
irregularities. These have been shown to reproduceable when the letters are traced overmore than
one time. The irregularities were caused by the discretization of the letters and the fact that the
resultant trajectories between points were dominated by motor differnces and not by needed shapes
between the letters. The reproduceability of these trajectories is encouraging and indicates that
VGT's have a strong future as so-called VGT (parallel) manipulators.

Salerno (1988) has discussed the problem of determining the desired link lengths in a truss that may
have more degrees of freedom than are needed to satisfy the terminal constraints of the end of a long
chain VGT manipulator, such as the one shown in Fig. 8. Many geometric configurations, both
planar and spatial are possible candidates for VGT manipulators. Salerno presented only two ge-
ometries: the 3 degree-of-freedom (DOF) spatial octahedral/octahedral truss and the 3 DOF planar
tetrahedral truss. These truss geometries were used as the fundamental element in a repeating chain
of trusses. This resulted in a highly dexterous manipulator with perhaps 30 or 60 degrees of freedom
that retains the favorable stiffness properties of a conventional truss. From a fixed base, this type
of manipulator could perform shape or vibration control while extending and 'snaking' through
complex passageways or moving around obstacles to perform robotic tasks.

In order for this new technology to be useful in terms of robotic applictions the forward and inverse
kinematic solutions must be efficiently solved. The approach taken here was to first concentrate
on fully understanding the forward and inverse kinematics of the fundamental elements and then
utilizing the insight thus gained to solve the more complex problem of the kinematic chains. Ob-
stacle avoidance criteria and assumed shapes for the overspecified VGT chain were used as criteria
to choose the needed VGT variable link lengths.

Conclusions

The present state of the art in the analysis and application of variable geometry trusses has been
reviewed. The development of the potential of these smart structures is still in it's beginning. Fu-
ture work will focus on implementation of high degree of freedom VGT's, the implementation of
parallel intelligence to operate these high order systems, and the implementation of new actuators
and sensors to drive the systems.

This work was supported by NASA Langley Research Center, Spacecraft Dynamics Branch, under
grant NAG-l-570.
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Table 1. Results of Multiple Actuator Comparison

Actuator *Initial LQR Performance Energy Consumed System Energy
Conditions Index By Actuators Performance Index

_ JE (Joules) J4 (Joule-sec)

1st Mode 13,600 8.93 40.9
Proof 2nd Mode 2,090 58.5 5.77
Mass 3rd Mode 869 9.77 2.01

All Modes 7,780 40.5 12.4
1st Mode 70,800 57.2 289

Reaction 2nd Mode 4,600 14.9 19.4
Wheel 3rd Mode 991 37.4 3.80

All Modes 13,960 17.8 49.8

1st Mode 32,800 92.6 183.
Planar Truss/ 2nd Mode 18,000 778. 191.
Proof Mass 3rd Mode 6,350 236. 29.4

All Modes 19,400 93.5 72.7
1st Mode 5,640 137. 8.75

Planar Truss 2nd Mode 6,010 501. 30.2
3rd Mode 5,150 427. 11.5

All Modes 25,400 396. 8.4

*Single mode initial conditions imparted 100 of strain energy
to the beam; multiple mode initial conditions imparted 1601
of strain energy to the beam (201 for each modelled mode).
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Figure 1. Planar Variable Geometry Truss Actuator

Variable Geometry Trusses 7



BASE PLANE

MODULE IINTERMEDIATE PLANE
OF VARIABLE. LINKS

TOP PLANE OF THE
MODULE /FIRST MODULE

VIBRATING ROD

I

Figure 2. Spatial Variable Geometry Truss Actuator

Variable Geometry Trusses 8



a. Linear Proof UMss b. Reoction Wheat

Proof Moss

Eztensibl Links

£ztuwiWS

c. Mnor Truss d. P~s TrUGS Pof MMS

Figure 3. Illustration of Actuators Being Compared

0

Variable Geometry Trusses 9



PLANAR TRUSS ACTUATOR

N

o

d-

0

o:

a.0 1 .3.00

T

a. System EnU (Joueta) s. Time 1()

Va rLANbR TRGSS TCTUsTOR
0-

N

d0.00 1.00 z.oo r .0 4o 'c

I ]i... ip Deneda. (metes) ,s. Time (use)

Figure 4. Response of Mini-Mast/VGT Actuator System to Initial Conditions

Variable Geomtry Trusses l0



e0

(D

CD

CD
C)

-

C

CD

C)

dl

0.00 4.00 8.00 12.0 16.0 20.0
T

Figure S. Root Strain of Be=m Controlled by Planar VGT Actuator

Variable Geometry Truces I



X1I0-3
1 Ie se

0.8

0.8

0.4

0.2

-0.

Figure 6. Root Strain of Rod Coftto~kd by Spatilj VGT Atao.x~mn

Variad. Geometry Tnuma 

1



X 10-3

Tim (ee

- 0.

Figure 7. Root Sraina o Rod controkj by Spatial VGT Atao~mk.

V arW * GO-W &., T rusa a 

1



Figure 8. Twenty-One Degree of Freedom VGT

Variable Geometry Trusses 14



References

tures, Structural Dynamics, and Materials
Anderson, W.W., and Groom, NJ., 'The Conference, 28th, Monterey, CA, April 9-10,
Annular Momentum Control Device (AMCD) 1987, Technical Papers, Part 2B, pp.987-997,
and Potential Applications,' NASA TN AIAA Paper 87-0959.
D-7866, March 1975.

Joshi, N., 'Mobility Analysis of Variable Ge-
Aubrun, J.N., "Analytical and Experimental ometry Trusses', MS Thesis, Department of
Research in Large Space Structures Control,' Mechanical Engineering, VPI&SU,
AIAA 23rd Aerospace Sciences Meeting, Blacksburg, VA, Feb. 1988.
Reno, Nevada, January 14-17, 1985, pp. 1-15,
AIAA Paper 85-0356. Joshi, S.M., and Groom, NJ., 'Modal Damp-

ing Enhancement in Large Space Structures
Aubrun, J.N., 'Theory of the Control of Using AMCD's,' Journal of Guidance and
Structures by Low-Authority Controllers,' Control, Vol. 3, No. 5, September-October
Journal of Guidance and Control, Vol. 3, No. 1980, pp. 477-479.
5, September-October, 1980, pp. 444-451.

Lovejoy, V.D., Robertshaw, H.H., Patten,
Bailey, T., and Hubbard J.E. Jr., 'Distributed W.N., and Homer, G.C., 'Dynamics and
Piezoelectric-Polymer Active Vibration Con- Control of a Planar Truss Actuator,' Vibration
trol of a Cantilever Beam,' Journal of Guidance Control and Active Vibration Suppression,
and Control, Vol. 8, No. 5, September- DE-Vol. 4, 1987, pp. 47-55.
October, 1985, pp. 605-611.

Margulies, G., and Aubrun, J.N., 'Geometric
Clark, W. W., H. H. Robertshaw, and T. J. Theory of Single-Gimbal Control Moment
Warrington, 'A Planar Comparison of Gyro Systems,' The Journal of the
Actuators for Vibration Control," submitted to Astronautical Sciences, Vol. XXVI, No. 2,
the 30th Structures, Structural Dynamics, and April-June 1978, pp. 159-191.
Materials Conference, to be held April 3-5,
1989, Mobile, Alabama. Mills, R.A., 'Active Vibration Control of a

Cantilevered Beam: A Study of Control
Doane, G.B., Waites, H., and Edgemon, G.D., Actuators,' Proceedings of the 34th Intema-
"Development and Use of a Linear Momentum tional Astronautical Congress, Budapest,
Exchange Device,' Proceedings of the First Hungary, October 10-15, 1983.
NASA/DOD Control/structures Technology
Conference, Norfolk, VA, Nov. 18-21, 1986, Natori, M., Iwasaki, K., and Kuwao, F.,
pp. 431-440. 'Adaptive Planar Truss Structures and Their

Vibration Characteristics,' Structures, Struc-
Edberg, D.L., "Control of Flexible Structures tural Dynamics, and Materials Conference,
by Applied Thermal Gradients,' AIAA 28th, Monterey, CA, April 6-8, 1987, Technical
Journal, Vol. 25, No. 6, June 1987, pp. Papers, Part 2B, pp. 125-134, AIAA Paper
877-883. 87-0743.

Fanson, J.L., and Chen, J-C., 'Structural Patten, W. N., H. H. Robertshaw, D. Pierpont,
Control by the Use of Piezoelectric Active and R. H. Wynn, 'Active Vibration Mitigation
Members,' Proceedings of the First of Distributed Parameter, Smart-Type Struc-
NASA/DOD Control/Structures Interaction tures Using Psuedo Feedback Optimal Con-
Technology Conference, Norfolk, VA, No- trol,' presented at Computational Aspects in
vember 18-21, 1986, pp.809-829. the Control of Flexible Structures

Workshop,NASA Langley Research Center,
Ham, F.M., Hennings, B.L., and Greeley, July 12-14, 1988.
S.W., Harris Corporation, AIAA Paper
87-2321. Reinholtz, C. F., and D. Gokhale, 'Design and

Analysis of Variable Geometry Truss Robots',
Hanagud, S., Obal, M.W., and Calise, AJ., Proceedings of the 10th Applied Mechanisms
'Optimal Vibration Control By the Use of Conference, Dec. 6-7, 1987, New Orleans, La.
Piezoceramic Sensors and Actuators,' Struc-

Referencs IS



Rhodes, M. D., and M. M. Mikulas, 'Deploy- Control of Flexible Structures
able Controllable Geometry Truss Beam', Workshop,NASA Langley Research Center,
NASA Technical Memorandum 86366, June July 12-14, 1988.
1985.

Strunce, R.R., and Carman, R.W., 'Active
Robertshaw, H. H., R. H. Wynn, Jr., H. F. Control of Space Structures (ACOSS): A Sta-
Kung, S. L. Hendricks, and W. W. Clark, tus Report,' Structures, Structural Dynamics,
'Dynamics and Control of a Spatial Active and Materials Conference, 25th, Palm Springs,

Truss Actuator,' Submitted to the 30th Struc- CA, May 14-16, 1984, Technical Papers, Part
tures, Structural Dynamics, and Materials 2, pp.348-356, AIAA Paper 84-1027.
Conference to be held April 3-5, 1989, Mobile,
Alabama. Zimmerman, D.C., Inman, DJ., and Homer,

G.C., "Dynamic Characterization and Micro-
Salerno, R. J., C. F. Reinholtz, and H. H. processor Control of the NASA/UVA Proof
Robertshaw, 'Shape Control of High Degree- Mass Actuator,' Structures, Structural Dy-
of-Freedom Variable Geometry Trusses', Us- namics, and Materials Conference, 25th, Palm
ing Psuedo Feedback Optimal Control,' Springs, CA, May 14-16, 1984, Technical Pa-
presented at Computational Aspects in the pers, Part 2, pp. 573-577, AIAA Paper 84-1077.

References 16



PASSIVE SELF-ADAPTIVE STRUCTURES
Eugene I. Rivin

Department of Mechanical Engineering
Wayne State University
Detroit, Michigan 48202

Many critical applications of vibration isolators require
adaptability to changing conditions (such as changing weight and
weight distribution in the isolated object, rpm, ambient
temperature, etc.), or easy adjustability (of selected natural
frequencies of the isolation system, of effective damping, of
stiffness ratios, etc.), or both. It is widely held that such
properties can be achieved only through active control. Since
the levels of cost, reliability and maintainability for active
vibration control systems are presently not in the desirable
range, the use of active systems is limited. However, it was
shown (e.g., [2],[3],[4],[l]) that judiciously-designed passive
nonlinear systems have an amazing potential for self-adaDtation
to changing conditions, as well as significant adjustability when
subject to internal preload. For example, a single model of a
constant natural frequency mount has been successfully used for
installation of millions of very diverse industrial machines with
weights-per-mount in the range of 400-10,000 lbs. [2]. Its
performance characteristics are superior to conventional (linear)
isolators, which are also more expensive and require lengthy
computations and large inventories of mounts [4].

Our recent studies (5] have demonstrated that such desirable
nonlinear characteristics can be obtained by very simple means,
using elastomeric (rubber) elements simple streamlined shapes. It
has also been shown that the use of streamlined elastomeric
elements leads to reduced creep rates and to
improved fatigue endurance, thus allowing the use of rubber
blends with such desirable characteristics as high internal
damping, which is usually associated with higher creep rates.
The dimensions of the isolators can also be greatly reduced.

Benefits of streamlined elastomeric elements have also been
demonstrated in torsionally flexible power transmission couplings
[6],[7).

Nonlinear wire-mesh materials have a paradoxical d
nonlinearity 2 - hardening nonlinearity at static and
softening nonlinearity during vibratory loading (4]. the former
property results in the constant natural frequency characteristic
in a wide load range, ("smartness" for changing weight/weight
distribution) while the latter property (which exhibits itself in
strong amplitude dependences of effective stiffness and damping)
provides a basis for "smart" behavior in complex vibratory
environments. Stiffness at low amplitudes is very high, and
damping is very low, while at high amplitudes stiffness is
reduced while damping is very high (up to log decrements 2-3).
Such characteristics are optimal, for example, for mounting



automotive engines: for large amplitude shake vibrations and for
passage through resonance damping is very high, while at high
frequencies which usually are associated with low amplitudes, low
damping results in a good isolation.

If two nonlinear elements-1 and 2 in Fig. 1 (e.g., constant
natural frequency isolators) are paired and subjected to internal
preload (e.g. using preloading bolt 5 in Fig.l), then stiffness
between object 3 and base 4 becomes dependent on the preload
magnitude as illustrated by the plot in Fig. 1. This occurs due
to shift of working points on load deflection characteristics
with changing preload. This design could be made even "smarter"
by using shape memory alloys or similar materials for preloader
5.

Use of "smart" passive nonlinear devices, some examples of
which are briefly described above, in some cases supplemented
with application of "smart" materials, can greatly improve
performance of critical vibration control systems.
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APPLICATIONS FOR SMART MATERIALS IN THE
FIELD OF VIBRATION CONTROL

Theodore G. Duclos John P. Coulter Lane R. Miller

Lord Corporation
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Cary, North Carolina 27512-8225, U.S.A.

ABSTRACT

Vibration isolation technology is a part of the general science of motion control. As such, the science
of vibration isolation has grown and matured as motion control and, more specifically, ransportation
technology has become more sophisticated. The widespread availability of electronics and, more recently,
digital "smart" electronics has broadened the performance capabilities of motion control systems and placed
higher demands on vibration isolation technology. At the same time, new light materials and the
placement of powerful powerplants on flexible and light stuctures has produced a need for new vibration
isolation technologies for controlling the vibration problems caused by the new motion control and material
technologies.

This paper discusses four general classes of vibration control problems, some commercial applications
where they are important, and some of the newer vibration control technologies applicable to each area.
The classes range from a single degree of freedom, spring, mass, damper system with a single disturbance
input to flexible structures with distributed disturbance inputs.

INTRODUCTION

In the past ten years, controllable vibration isolation systems have become a commercial reality.
The driving force behind the new isolation technology is the ability to achieve better isolation with
controllable systems. Undoubtedly, the availability of microprocessors, controllable devices and
smart materials is fueling the proliferation of controllable systems. As computing power increases
and controllable hardware improves, the number of proposed applications for controllable isolation
systems has and will continue to multiply.

The practicality of any controllable isolation system will depend on several factors. Cost,
*complexity, and reliability vs. the performance gains will determine the ultimate success of any

proposed system. Reducing the complexity of a system will synergistically reduce the system
cost, increase the reliability, and increase the practicality of the system. The ability to perform
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multiple tasks such as vibration signature analysis for diagnostic purposes will increase the value
of controlled isolation systems. Single component performance of multiple tasks will offset higher
costs and system complexity normally associated with controllable systems.

To achieve low system complexity and still attain the benefits of control, the control strategy and
the hardware must be complementary. The derivation of a control strategy realizable in hardware
represents the first significant challenge to a system designer. Since a particular control strategy
can be realized by many types of hardware, but not as efficiently in all cases, selecting hardware to
most efficiently implement the control is the next major step. For example, a control requiring a
force to be proportional to a velocity can be accomplished with a hydraulic actuator, but a linear
damper is'a much more efficient method of accomplishing the same thing. Successful integration
of the hardware's passive characteristics into the control strategy is necessary to minimize system
complexity.

In this paper, integration of control strategy and hardware is illustrated with four vibration isolation
examples: 1) isolation of a mass with a single degree of freedom; 2) isolation of a mass with
multiple degrees of freedom; 3) isolation of an engine on a structure; and 4) isolation of a structure
from distributed inputs. The first example contains a detailed description of current control
strategies and hardware illustrating the ability to integrate the hardware with the control strategy.
The remaining three examples describe more complex vibration problems with less well developed
control strategies and hardware solutions. In each of these examples, some solutions for the
problems including the potential use of smart materials are considered and applications where the
problems are prevalent are discussed. While not intended to be a comprehensive review of
vibration isolation, the present discussion is aimed at providing a view of vibration isolation
technology and add perspective to the current discussion of smart materials.

ISOLATION OF A MASS WITH A SINGLE DEGREE OF FREEDOM

Figure 1 shows the simplest, resonant, dynamic system imaginable - a mass on a spring. In this
example, the goal of the vibration isolation system is to hold up the mass, minimize the mass
acceleration (ii) and minimize the suspension travel (xl-w). To illustrate the need to integrate the
control strategy with the hardware, a desired control policy must first be derived. A quadratic
performance criteria based on il and (x1-w) can be used with optimal control theory to derive a
force control law based on the system states. The control law, which specifies the force applied to
the mass has the form:

F = gtlx + g2(x1-w) (1)

Where g, and g2 are gains specified by the designer. With the control law in hand, it is instructive
to study five different isolation systems used to suspend masses. These five systems are: 1) a
spring, 2) a spring and a damper, 3) a force generator, 4) a spring and a force generator, and 5) a
spring and a controllable damper.

The first suspension system, a spring, is shown in figure 1. The force of the spring on the mass
will be proportional to (xl-w), therefore, this system can only produce a part of the desired control
law given as equation (1). As a consequence, this system will not satisfy the performance criteria
and the resulting tradeoff in this system is apparent from inspection of the transmissibility plot,
presented as figure 2, between the mass velocity (it) and the input velocity (w). For this system,
the resonant frequency, cOn, is determined by the well known relation
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0) = ' M(2)

where K is the spring stiffness and M is the mass. The use of a soft spring will improve the
isolation at lower frequencies by lowering the resonant frequency. Unfortunately, softer springs
also have higher static displacements for given loads and provide large motions when a disturbance
force is applied to the mass. Small changes in the mass can also produce large changes in the static
displacement. In designs using this simple system the static displacement of the spring is traded
off with the low frequency isolation.

If the input disturbances are broadband, impulsive, or have any way of exciting the resonance,
then the system in figure 1 will not be acceptable because of the very high displacements near the
resonance. Adding a damper as shown in figure 3 is an obvious solution for the resonance
problem. Since the damper produces a force proportional to (x1 - ), the force on the mass will be
given by the equation:

F = K(xl-w) + C(x1 - W') (3)

where K and C are the spring and damping constants respectively. Since the force on the mass is
not the same as the optimal control force, this system also has a design tradeoff. As seen from the
plot in figure 2, the addition of damping brings the transmissibility at the resonant frequency
down, but at the price of less isolation ir -he higher freraency range.

In this system, the location of the resonant frequency will change if the mass changes (changing
loads in a passenger car, for instance). Since the damping will be designed to tradeoff
displacements at the resonant frequency against isolation at high frequencies, then the change in the
resonant frequency means a different damping is needed to achieve the same tradeoff. The
resonant frequency can theoretically be made invariant for a range of loads by using a non-linear
spring (1]. If the non-linear spring gets stiffer as its deflection is increased, then the resonant
frequency can be kept constant regardless of the load. However, this approach still cannot produce
the optimal force nor compensate for the changes in material properties that can occur due to
temperature fluctuations or aging. Another approach is needed.

The optimal control force can be produced by the passive system shown in figure 4. In contrast to
the preceding system, the damper in figure 4 has been attached to an inertial ground. This change
in the damper connection makes the damper force proportional to xl and makes the force on the
mass equal to

F = K(x1-w) + Cil (4)

If the damping is adjusted to be critical, then the transmissibility between the mass velocity and the
input velocity will be as shown in figure 2. This system controls the resonance and provides high
frequency isolation. Unfortunately, since an inertial ground is not usually available, this hardware
implementation of the optimal control law is generally not realizable. In fact, the control law
cannot be satisfied using purely passive hardware.

The fully active suspension shown in figure 5 is a direct approach for achieving the proper control
force and, in contrast to the passive solution, the fully active system is realizable in hardware. The
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entire suspension consists of a force generator between the mass and the input. The desired
optimal force is produced in this system by measuring x, and (xl-w), feeding the values to a
microprocessor which multiplies them by selected gains and then outputs a control signal to the
force generator. As seen from the transmissibility plot in figure 2, this system provides the correct
force to the damper. Unfortunately, the system is not efficient because in real hardware, the
system will use power to hold up the mass, even when the input disturbance is zero.

The efficiency of the fully active system can be markedly improved by borrowing pieces from the
passive systems. For instance, the first suspension system, the spring, provided a part of the
control force without using any power. If a spring is put in parallel with the force generator, as in
figure 6, then the fully active system performance can be maintained and the efficiency is greatly
improved. If K=g2 in equation (1), then the actuator only needs to supply glxi in equation (1) or
Cil in equation (4). Further modification of the system with a nonlinear spring would integrate
another performance improvement from the passive suspensions.

The fully active system in figure 6 still has several drawbacks. First, malfunctions in the control
system can cause the suspension to pump energy into the mass and create a safety problem or
instability. Second, it will still use much more power than is actually necessary to achieve the
desired performance. In figure 7, the force generator has been replaced by a controllable damper.
This system is called a semi-active suspension system. If the damper in the semi-active system is
controlled using the logic:

If xi(xi -wv) < 0, then the damping is zero
If x1(x - Vv) > 0, then the damper force is C 1 ,

then the suspension will produce the transmissibility plot shown in figure 2 [2]. As seen from the
curve, the semi-active suspension produces nearly the same performance as the fully active system.
Significantly, the performance is attained by using very little power. Also, unlike the fully active
suspension, the semi-active suspension will never add energy to the system and in the case of
breakdown, it will revert to a stable, damped, passive system.

In the future, smart materials could have a place in these suspension systems. Controllable springs
made of memory metals could compensate for changing loads. They could also replace the
hydraulic actuators presently used in fully active systems. Electorheological fluids may simplify
the design of controllable dampers and actuators and, at the same time, speed up the device
responses. Piezoelectric materials are already used in sensors. Their incorporation into springs,
dampers, or actuators could integrate the sensing functions into the suspension elements. This
combination would fulfill some of the promise offered by smart materials.

SYSTEMS WITH MULTIPLE DEGREES OF FREEDOM

The single degree of freedom system provides an easily understood demonstration of the need to
make the suspension hardware complement the control strategy. The insight gained from this
system can be carried over to the study of more complex, multiple degree of freedom systems.
Since most of the vibration isolation problems encountered in practice are multiple degree of
freedom systems, relating the concepts discovered from the single degree of freedom system is
crucial to their translation into engineering practice. The following examples demonstrate some V
ways to make the translation and offer guidance for future research.
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ISOLATION OF A MASS WITH MULTIPLE DEGREES OF FREEDOM

A more complex isolation problem is shown in figure 8. In the figure, the mass is no longer
constrained to move in one direction and forces are allowed to act on the mass. As it is drawn, the
configuration is actually a schematic representation of an automobile, neglecting the so-called
"unsprung mass" of the wheels and axles. The isolation system is represented by the four springs
and the objective of the isolation system is to minimize the acceleration of the mass and the
displacements of the suspension system.

The approaches to controlling the motions of the mass in figure 8 are similar to those used to
control the single degree of freedom system. Using a performance criteria composed of the
suspension displacements and the mass accelerations, an optimal force control law can be derived.
Unlike the single degree of freedom control law, the multiple degree of freedom control law for
controlling the mass in figure 8 will consist of four equations and all of the twelve state variables
each multiplied by a gain will appear somewhere in the equations. In general, a control law
developed for this type of system will have as many equations as there are suspension elements.
In the case shown, there are four springs, therefore, there will be four equations.

The existence and form of an optimal force control law is dependent on the suspension geometry
and the number of suspension elements. To preserve the generality of the discussion, an exact
solution will not be given here. Rather, the tradeoffs between springs, dampers, force actuators
and controllable ,ampers in the multiple degree of freedom system will be discussed with reference
to the results found in the single degree of freedom system..The six degree of freedom system shown in figure 8 has six distinct resonant frequencies. If, as
shown in the figure, springs are used as the suspension system, then, as was the case in the single
degree of freedom example, isolation will be good at high frequencies. Also, the displacements
will be very high near the resonances and the static displacement will need to be traded off against
high frequency isolation.

Putting dampers in parallel with the springs will help control the displacements near the resonant
frequencies. However, unless the suspension geometry is carefully designed to uncouple them,
the modes of the mass in figure 8 will be coupled. That is, the displacement of one spring or the
application of a force to one point on the mass will excite more than one mode. If the modes are
coupled (as they are in most systems), then critically damping one degree of freedom in figure 8
virtually guarantees that the other five degrees of freedom (or modes) will either be overdamped or
underdamped.

In actual practice, this situation is not as bad as it seems, since the coupling between some modes
is not strong and not all modes are excited. For example, in autos, the tradeoff made between the
handling and the ride is really a tradeoff in the damping of one mode and the isolation of another.
The tradeoff is simlar to the tradeoff between the stiffness and damping in the single degree of
freedom system, but it actually arises because the damping of one mode affects the isolation of the
other.

This tradeoff can be seen by assuming that the configuration of figure 8 represents a car and that
the suspension elements are rearranged such that they are parallel to the x direction. A measure of
handling is the amount of roll produced about the y axis (assuming the y axis points along the
traveling direction of the car) as the car enters a turn. The ride can be judged by the displacement
of the mass in the x direction in response to inputs in the x-direction. Assuming the resonant
frequency of the mass in the x-direction will be lower than the resonant frequency in the roll
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direction, if the roll is critically damped with passive dampers, the ride wi suffer because it will be
overdamped. Conversely, if the ride is critically damped, then the roll will be underdamped and
the handling will suffer. While this is an oversimplification of the problem, this essentially is the
tradeoff seen in passenger cars. Smooth riding cars generally handle poorly while cars with
excellent handling usually have harsh rides.

One answer to the handling versus ride tradeoff can be found on many newer cars. In these
vehicles, the driver or a computer can change the dampers to soft or hard depending on the driving
situation. While these adaptive solutions partially solve the problem, fully active or semi-active
systems are better solutions. These systems are simply more complex versions of the controllable
isolation systems discussed in reference to the single degree of freedom problem. In the fully
active system, force generators are placed in parallel with springs. Similarly the semi-active
system uses controllable dampers in parallel with springs.

The implementation of the control policies for these two systems are much more complex than the
implementation of the single degree of freedom control law. For instance, to control each of the
degrees of freedom, these systems require knowledge of the states of the system (twelve for the six
degree of freedom system) and therefore, if observers or Kalman filters are not used in the control
calculations, at least twelve independent sensors are required. Of course, in a real system all the
modes are not important, therefore less than twelve sensors are usually used. Generally, the
displacements of the springs are measured as well as the acceleration of the mass in at least the
heave (motion along the x axis) and the roll about the y and z axes. The decisions of how to
control the force generators or the dampers are based on a balance between spring deflection and
accelerations in the measured directions. Since control of the various acceleration directions
involve tradeoffs, weighting functions are used to balance the control. Although it is not possible
to simultaneously control the mass acceleration optimally in each direction, with the proper
weighting function it is possible to reduce the accelerations in each direction more with an active
control or semi-active control than with a passive system (3].

As in the single degree of freedom example, the applications for smart materials in the control of
the mass in figure 8 will be in controllable springs, dampers, sensors, and possibly actuators.
Smart materials whose properties are independently controllable in several directions will be
especially valuable. Since the control laws for the system in figure 8 will specify different forces
in each direction, the simultaneous control of the forces in different directions by smart materials
will reduce the amount of necessary hardware. For example, if the control law calls for damping
in the x and y directions, then a smart material with controllable damping in two directions could
perform the role of two passive dampers.

MASS ON A STRUCTURE

The isolation problem depicted in figure 9 represents a general engine mounting system. This
system has multiple degrees of freedom and differs from the previous two problems in two
respects. First, the structure is flexible and therefore cannot be modeled and handled as a rigid
body, i.e., it will have an infinite number of modes. Secondly, the motions of both the mass and
the structure need to be minimized. Cyclic disturbances come from the mass and must be isolated
from the structure. Impulsive disturbances will be applied to the structure suspension and the
responses of the structure and the mass to these disturbances must be minimized.

As in the previous example, the control law will be heavily dependent on the geometries of the
suspension systems. In addition, the structure may not be easy to modeL Therefore, the design of
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the suspension systems, particularly the mass suspension system, will be discussed in general
terms where the tradeoffs are related back to the single degree of freedom system.

The basic tradeoff encountered in systems of this type is the tradeoff between holding the mass up
and keeping the disturbance vibrations from exciting the structure. Also, in response to sudden
motions of the structure it is desirable to closely connect the mass to the structure to help reduce the
structural motions. These desires are conflicting because the mounts must be stiff to hold up the
mass and damped to closely connect the mass to the structure when the structure moves. In
contrast, the mounts should be soft and lightly damped to isolate the vibrations from the structure.

One solution to the aradeoff is to use a property of multiple degree of freedom systems mentioned
in the previous section. That is, if properly designed, the modes of the mass can be decoupled.
The mounting system connecting the mass to the structure can be made very stiff to motions in the
x direction yet very soft to roll motions about the y axis. This decoupling is the principle of
focalized engine mounting systems. Although the concept can be easily demonstrated and has been
used successfully in commercial products, there are some drawbacks. Most notably, a
considerable amount of static torque windup can occur due to the soft roll stiffness.

The recently developed fluid filled mounts can also overcome some of the engine mounting system
tradeoffs. Fluid filled mounts, such as the one shown in Figure 10, can be designed to have
frequency dependent complex stiffnesses as shown in figure 11. If designed correctly, the mount
can be tuned to accommodate the tradeoffs in the mounting system. With the proper internal
structure, the mount can be made statically stiff, highly damped at a resonant frequency of the
mass, and also either very stiff or very soft at higher frequencies depending on the engine speed
and amplitude of the mount's displacement. Thus, this seemingly simple device can be made to
sort out some of the complex vibration environment in figure 9.

Unfortunately, even the most complex passive internal structure of a fluid mount cannot produce a
low dynamic stiffness over a wide frequency range - a characteristic needed for many aircraft and
automotive applications. This characteristic can only be achieved with an adaptive, semi-active, or
fully active mounting system.

An adaptive system which has a low dynamic stiffness over a wide frequency range is described
by Duclos [4]. This system uses electrorheological fluids and valves to tune a dynamic stiffness
"notch". As the engine speed changes, the system adapts itself to tune the notch to the dominant
vibration frequency. The system has been demonstrated on a car and the commercialization of
tunable mounts is proceeding in several products.

Both fully active and semi-active systems have been applied to vibration problems of the type
shown in figure 9, but they are only in the early prototype stages. Deciding on the control law is
perhaps the most difficult aspect of the system designs. The total vibration environment of the
system shown in figure 9 may be too complicated to ever yield analytic solutions to the control law
problem.

Smart materials, distributed over the structure, may be a better method for controlling the structure
vibrations. Both constrained and unconstrained layer passive damping materials are examples of
currently available distributed control methods (figure 12) (5,6] and controllable materials have
recently been proposed as possible future methods for controlling the structure vibrations [8].
Distributed control of the structure vibrations with smart materials may make the structure look like
a rigid body to the suspension systems. This change would make the derivation of the suspension
system control laws a more tractable problem. If distributed control of the struture by smart
materials eliminated the need for the suspension systems, then this would be the best of all
solutions.
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DISTRIBUTED EXCITATION OF A FLEXIBLE STRUCTURE

The final vibration problem is shown in Figure 13. In this problem a flexible structure is excited
by distributed forces. An example of this would be an airplane encountering turbulence in flight.
Another example is airborne engine sound coupled to a car structure through the air.

Generally, the tradeoffs in these systems are complex, but as an example, in transportation
applications an important tradeoff is made between the weight and stiffness of structural
components. For efficiency, low mass is desirable but for fast response to control forces and few
resonance problems, high stiffness is desirable. For a given material, lowering the mass of a
structure generally means lowering its stiffness, therefore low mass and high stiffness are often
conflicting requirements.

The constrained or unconstrained layer damping as shown in figure 12 is one method controls the
structural resonances without significantly reducing the structural mass. This method will reduce
the resonant peaks through the material damping without adding as much weight as an increase in
stiffness would require. A drawback is that the increase in damping can generally only be
optimized for specific narrow temperature and frequency ranges.

Most proposed methods for adaptive, semi-active, and fully active control of the vibration problem
in figure 13 use smart materials. They consist of distributed actuators (memory metals,
piezoelectric polymers, piezoelecuic ceramics) or controllable modulus materials (phase transition
controlled by temperature, electrorheological fluids). While many of these solutions have been
proposed, only the control of piezoelectric layers has been developed to any great extent (71.

DISCUSSION

The vibration isolation problems presented have proceeded from the simple to the very complex.
In parallel, the corresponding solutions proceed from the nearly perfect to the incomplete. A
continuous thread through the problem and solution presentations is a need for control strategies
and hardware in the solution. Together, the control strategy and the hardware form a complete
solution to a vibration control problem. When passive hardware is used, the control strategy is
defined by the hardware and vice versa. Controllable hardware places fewer restrictions on the
control strategies. The price for this flexibility is system complexity and the need to develop
appropriate control policies for controlling the hardware. As the complexity of the problems
increase from single degree of freedom systems multiple degree of freedom rigid bodies and
flexible strcuues, the number of sensors increases and the proper control strategy becomes more
difficult to define. The success of controllable hardware will also depend as much on the
successful derivation of practical control strategies as it will on the successful demonstration of the
hardware.

Many fully active control strategies have been proposed in the literature for the use of discrete
actuators to solve the stucture and rigid body motion control problems. The control mathematics
of distributed actuators has also received considerable attention. For semi-active systems, the
control strategies are less developed, especially in the control of flexible stuctures. This situation
is an opportunity for pioneering work covering a wide range of potential applications. The low
power consumption and essentially fail-safe nature of semi-active control makes the approach ideal *
for vibration isolation applications.

-8-



The solutions, as presented here have been idealized. In real hardware, high frequency
performance usually can only be attained at the cost of increased power consumption. In some
cases, heat transfer limits will prevent proper high frequency performance altogether. As
controllable hardware and smart materials are developed, they must overcome the limitations of
high speed, power consumption and complexity present in the currently available hardware.
Piezoelectrics and electrorheological fluids offer the promise of high speed performance. Memory
metal composite structures present the possibility of solid state, high flexion actuators moving at
reasonable speeds. Control of the heat transfer must be obtained before memory metal devices will
become practical.

Smart materials can be used in the hardware for each of the four example motion control problems.
Since these problems cover many of the motion control problems encountered in practice, the
specific potential applications for smart materials are too numerous to be listed here. In addition,
once these materials are used to solve motion control problems, their usefulness in performing
other functions (such as diagnostic sensing) will become more apparent. Additional functionality,
beyond vibration control, will enhance their value in vibration control systems and add to the list of
potential applications. In some situations, dual role, smart materials could replace currently
available vibration control technology and add capacities which are currently unattainable.

While many approaches are under research to tackle problems similar to the four presented here,
the practicality of smart materials in real vibration control systems is still unclear. This uncertainty
is especially true for the control of large structure motions and vibrations. It is easy to see how a
simple cantilever beam or a plate may be controlled or damped with a controllable layer of material,
but it is a giant leap from those simple situations to an airplane or a car.
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Figure 3: Single degree of freedom isolation of a mass including damping.
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Figure 4: Single degree of freedom isolation encompassing a "skyhook" damper.



xq

F

Figure 5: Single degree of freedom isolation utilizing fully active control.
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Figure 6: Single degree of freedom isolation with a spring and force actuator.
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Figure 7: Single degree of freedom isolation with a spring and controllable damper.
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Figure 8: Multiple degree of freedom isolation of a mass.



Figure 9: Schematic representation of a mass on a distributed flexible
structure.
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Figure 10: Typical configuration of a fluid filled structural mount.
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MATERIALS ISSUES FOR SMART STRUCTURES

Garth L. Wilkes
Chemical Engineering Department

Virginia Polytechnic Institute & State University
Blacksburg, Virginia 24061

ABSTRACT

The term "smart materials and structures" carries the implication that a given mate-
rial or structure when provided a particular stimulus, will generate a specific re-
sponse. What the specific stimuli are as well as the nature and magnitude of the
response will depend upon the type of 'smart structures' desired for a given appli-
cation. This brief talk will focus on material parameter considerations with respect
to generating smart structures and will illustrate a number of specific cases by ex-
ample. While a somewhat higher emphasis will be given to those concerned with
polymeric based materials, discussion will also consider those based on either me-
tallic or ceramic systems as well. Finally, some new directions toward the develop-
ment of new hybrid or complex material structures will be presented.
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The Golden Age of Electroceramics 

RO8ERT- E. NEWNHAM*. 
Materials Research Lab. oernsyivania Stale University, University Park. PA 16802 

For 30 years 1 have collected gemstones and crystals: faceted 
stones of orange sphalerite, pink kunzite, pleochroic cordierite, 
purple apatite, and golden orthoclase continue to fascinate and 
delight me. Each gem is a beautiful piece of nature, cut and 
polished in a way to appeal to the human eye. Collectors classify 
gems according to the Seven Seas: composition, color, clarity, 
commoness. cutting, carats, and cost. 

In many ways, thick film circuits, multilayer packages, and 
other electroceramics strike a similar chord. Each is a small bit 
of inorganic material carefully fashioned to carry out an elec- 
tronic function. Much of the excitement (and hype!) of present- 
day electroceramics can also be summarized by the Seven Seas: 
conducting cuprates, ceramic circuitry, co-fired compatibility, 
curable chemicals, composite connectivity, core-clad couplers, 
and colloidal components, 

ELECTROCERAMICS MARKET 

The multibillion dollar electroceramics market (Fig. 1) in- 
cludes Mn-Zn ferrites, PZT transducers, BaTiOj multilayer ca- 
pacitors. ZnO varistors, Al2Oj packages, and Si02 optical fibers. 
Roughly speaking, the market is divided into six equal parts.1 

Rapidly developing technologies can be identified within each 
market segment: tellurium oxide coatings for video disks, bar- 
ium hexaferrites for perpendicular recording, silver and copper 
electrode systems for multilayer capacitors, buried resistors and 
capacitors in ceramic packages, catalytic coatings for chemical 
sensors, and PZT piezoelectric motors. As in all rapidly evolving 
fields of science and engineering, there is a sense of excitement 
as a number of different technologies come together in a syn- 
ergistic manner. The golden age of electroceramics involves the 
miniaturization and integration of ceramic components into a 
wide variety of optoelectronic systems. 

STRUCTURE-PROPERTY RELATIONS 

An overview of electroceramics is given in Fig. 2, which 
illustrates the various atomistic mechanisms utilized in ceramic 
circuit components. Multilayer capacitors, piezoelectric trans- 
ducers, and PTC thermistors make use of the properties of 
ferroelectric perovskites with their high-dielectric permittivity, 
large piezoelectric coefficients, and anomalous electric conduc- 
tivity. Similar domain phenomena are observed in ferrimagnetic 
oxide ceramics such as NiFe20«. Hard and soft ferrites are 
analogous to hard and soft PZT and have found substantial 
markets in magnetic tape and electric motors, 

Several kinds of mechanisms are operative in thermistors 
and other ceramics used as sensors. Most are based on changes 
in electrical resistivity, but the causes are different. The critical 
temperature thermistor involves a semiconductor-metal phase 
transition. NTC thermistors make use of the semiconducting 
properties of doped transition-metal oxides. Ionic conductivity 
is used in oxygen sensors and batteries. Stabilized zirconia is 
an excellent anion conductor, and ^-alumina is one of the best 
catic conductors. 

Member, ihe American Ceramic Society. 

Humidity sensors make use of surface conduction. Ad- 
sorbed water molecules dissociate into hydroxyl and hydronium 
ions, which alter the electrical resistivity. 

Grain-boundary phenomena are involved in boundary layer 
capacitors, varistors, and PTC thermistors. The formation of 
thin insulating layers between conducting grains is crucial to 
the operation of all three electroceramic components. Last, the 
importance of electroceramic insulators and substrates should 
not be overlooked. Here one strives to eliminate most of the 
interesting effects just described, but this is not always easy. 

SUPERCONDUCTING CERAMICS 

Until two years ago it was taken for granted that super- 
conducting transition temperatures were limited to 25 K. But 
with the discovery of lanthanum strontium cuprate.: the tem- 
perature doubled, and doubled again with YBa;Cu,Oi, the so- 
called 1-2-3 compound,3 The triple perovskite unit cell (Fig. 3) 
contains seven oxygen and two empty oxygen sites. 

Ceramic and thin-film specimens both exhibit supercon- 
ductivity above liquid air temperatures, opened up a large num- 
ber of possible applications: frictionless generators, motors and 
high-speed trains; levitating toys and gimmicks; electronic Jc- 
sephson junctions and resistancetess interconnects; large mag- 
netic fields for NMR medicai diagnosis, nuciear accelerators 
and hydrogen fusion; power transmission lines and closed-loop 
energy storage for load leveling; and radiation detectors for 
astronomy, oil exploration, and brain-wave research. The fea- 
sibility of many applications rests upon improvements in the 
critical current density. Ways must be found for stabilizing the 
superconducting phase under high magnetic fields and electric 
currents. Several interesting composite structures are under in- 
vestigation. 

But although ceramic superconductors have captured the 
imagination of thousands of scientists, the work is outside the 
mainstream of electroceramics. Until a major market is dem- 
onstrated, it will remain a curiosity. The main thrust in elec- 
troceramics research is not in the discovery of new materials 
but in the miniaturization and integration of components al- 
ready known. 

CERAMIC CIRCUITRY 

Miniaturization and integration are technological goals in 
virtually all electronic materials. Several kinds of circuitry are 
under study by electroceramists, as shown in Fig, 4. 

Electronic circuitry is the most advanced, especially in thick 

Presented at the 89th Annual Meeting, the American Ceramic Society, Pitts- 
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Fig. 1.   Electroceramics market. 

ADVANCED CERAMIC MATERIALS. VOL. 3, NO. t. 1988 ( ? ACerS) 



-e^RCEtecrfüC   . 
DOMAINS 1 
CAPACITORS AMD I 
°:EZCELECTPiC3 | 
=>rc THERMIS70R 

SLE^CNIC 
CCfJCUCTlOrl 
MTC -HE3M1ST0R 

L^ 

H3ULATCRS 
U8STRATE5 

'. JBFACE 
C*MOUCT:CN 

-t'jMlClTY SENSCR5 
tHEMICAL SEfJSCPo 

•50   i 

A 
r* 

!**•' 

*v 
1 

s3 1 
1 <7 ! V 3 

rERRIMAGNETIC 
CO MAINS. 

PERRITE HARD 
i SCFT MAGNETS 
MAGNETIC TAPE 

IONIC 
CONDUCTION 

GAS SENSORS 
laATTERIES 

METAL • SEMICONDUCTOR 
TRANSITION CRITICAL 
TEMPERATURE  NTC 
THERMISTOR 

GRAIN 
80UNDARY 
PHENOMENA. 

VARISTORS. 
8QUMOARY 

 !     LAYER. 
CAPACITORS. 

PTC THERMISTORS 

Fig. 2.   Ionic and electronic mechanisms involved in elec- 
tfoceramic components. 

rilm and multilayer packaging technology, where control of elec- 
trical conductivity (<?) and dielectric constant {K) are the key 
parameters. Integrated optic systems utilizing LiNbOj make 
use of small changes in refractive index (n) to guide and control 
light waves. Low absorption coefficients (or) are also important 
in optical circuitry. Thermal circuitry is important in packaging 
technology where heat must be removed as efficiently as pos- 
sible. Thermal conductivity (k) and convective fluid flow veloc- 
ities (v) are effective means of heat dissipation. Information 
storage utilizes magnetic circuitry made from high permeability 
C«) and high conductivity (<r) materials to concentrate and ma- 
nipulate regions of high magnetic flux. Electric flux concentra- 
tion is used in ceramic actuators to produce large displacements 
with small voltages. Field concentration is accomplished with 
multilayer systems made up of internal electrodes (high con- 
ductivity <r) and high permittivity (K) dielectric layers. Multi- 
layer capacitors operate on a similar flux concentration prin- 
ciple. Ionic movement in battery systems constitutes another 
type of circuitry in ceramics like ^-alumina and stabilized zir- 
conia. Ionic conductivities (<r) and diffusion coefficients (D) 
through intervening membranes are crucial property coeffi- 
cients. Porous ceramics with high surface areas are used in 
fabricating chemical sensors. The movement of molecules and 
dissociation products constitutes a type of chemical circuitry 
controlled by diffusion coefficients (Z?) and surface electrical 
resistivity (p). Illustrations will be presented in succeeding sec- 
tions. 

PACKAGING MATERIALS 

Important attributes of packaging materials for electronic 
circuitry include high thermal conductivity, high electrical re- 
sistivity, high mechanical strength, low dielectric constant, low 
dielectric loss, and good thermal expansion match with silicon. 

Current research is focused on finding a replacement for 
alumina. High power transistor circuits generate an immense 
amount of heat; for this market, a substrate with high thermal 
conductivity is highly desirable. Aluminum nitride, beryllium 
oxide, cubic boron nitride, and diamond are candidate materials. 
The thermal conductivity of AIN and BeO is ten times higher 
than that of alumina ceramic, whereas that of BN and C is a 
hundred times better. Substrates of AIN made by hot-pressing 
are used as heat sinks lor transistors and light-emitting diodes.4 

Recent experiments on the vapor deposition of diamond films 
give promise of even higher thermal conductivities. Thin dia- 
mond films have been grown on a silicon substrate using mi- 
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Fig. 3.   Resistivity of the newly-discovered 1-2-3 cuprate ceramics: the 
structure contains many missing oxygen sites (Refs. 4 and 5). 

crowave plasma and methane and hydrogen gases.' 
A second objective is the development of low dielectric 

constant materials for high-speed computer packages. Replac- 
ing alumina with a glass-bonded ceramic lowers the dielectric 
constant by 30% and greatly reduces the propagation delay. 
Further reductions have been achieved with porous silica nanc- 
composites prepared from colloidal silica gels.1 To some extent 
the requirements for a large thermal conductivity and a small 
dielectric constant are mutually contradictory since introducing 
porosity decreases both K and A: values. 

INTEGRATED CERAMICS 

The age of ceramic integration is upon us. Until recently 
multilayer ceramic packages consisted of dielectric strata with 
metallic circuitry printed on each layer and interconnectedthrough 
metallized via holes between layers. Now additional circuit ele- 
ments are being added. In the past two years buried capacitors 
and resistors have been added to the three-dimensional pack-. 
ages, and other components will follow shortly. Future devcl- 
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Fig. 4. Circuitry in ceramic materials for use in elec- 
tronic packages, integrated optics, cooling systems, elec- 
tromechanical transducers, magnetic recording, multilay- 
er actuators, ionic batteries, and chemical sensors. 
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Fig. 5.   integrated ceramic packages of the future may in- 
corporate many different components. 

opments in the field of integrated ceramics are illustrated by 
the following tree in Fig. 5. Smart sensors, adaptive actuators, 
and ceramic packages with electroluminescent display panels, 
enclosed printing units, and voice modules are on the horizon. 
To conduct these functions it will be necessary to incorporate 
a wide variety of sensors, transducers, and actuators, together 
with thermistors and varistors to guard against current and volt- 
age overloads. 

The process of preparing co-fired mukicomponent ceramic 
packages involves a marriage of tape casting and thick film 
technologies, augmented by photolithography, etching, sol-gel 
films, and fugitive phases (Fig. 6). In these multilayer packages, 
thick-film conductors, resistors, and dielectrics are screen-print- 
ed on green low-firing ceramic tapes to produce patterned cir- 
cuitry in single layers. Vias are punched through the tapes and 
metallized to establish interconnects with adjacent layers. Low- 
permittivity tapes are used for signal transmission layers, and 
high-K tapes are used for the power plane.' After lamination 
into a single green body, the stack is sintered to produce a 
monolithic ceramic body with co-fired components buried within 
it. These substrate packages have the advantages of reduced 
size and fewer surface-mounted components, as well as low firing 
temperatures. Moreover, the buried capacitors, resistors, and 
metal interconnects are hermetically sealed within the ceramic 
package, thereby protecting the circuit elements against mois- 
ture, chemical attack, and mechanical damage. 

In the NEC monolithic package,' the substrate material is 
a glass-ceramic composed of 55 wt% AljOj bonded with a lead 
borosilicate glass. The firing temperature was optimized at 900*C 
to allow co-firing with RuOj resistor compositions, Ag-Pd metal 
conductors, and tape-cast layers of lead iron tungstate-lead iron 
niobate capacitor formulations. 

Similar systems have been developed by duPont, Sprague, 
and Narumi China. Sprague's multiiythic packages are made 
by a wet laydown process in which a supporting substrate passes 
through a waterfall of substrate slip.10 After the material is dried 
and screen-printed, it again passes through the waterfall curtain, 
producing additional layers in the multilayer package. 

Liquid-cooled VLSI packages demonstrate the importance 
of thermal circuitry in integrated ceramic devices." Multilayer 
alumina packages containing electronic circuitry and fine cool- 
ant channels have been fabricated. A series of mechanical 
punching and molding steps on the green tape is used to form 

Fig. 6.   Processing methods used in making 
multilayer, multtcomponem ceramic packages. 

the electrical vias and fluid distribution network. 
Another approach to making fine-scale circuitry in ce- 

ramics is through the use of uv-curable pastes. The large-scale 
integration of high-speed computer systems requires high com- 
ponent density and fine line patterns. To meet these require- 
ments, the photolithographic techniques used in semiconductor 
processing can be adapted to integrated electroceramic pack- 
aging. 

A family of uv-curable pastes can be made by mixing the 
electroceramic powder within a photosensitive organic vehicle. 
Ceramists at Nippon Electric Company12 have fabricated via 
holes by this method. A paste is made from a mixture of lead 
borosilicate glass and alumina powder. After the mixture is ball- 
milled, it is added to an organic medium consisting of methyl- 
methacrylate copolymer together with a solvent, initiator, in- 
hibitor, and some dyes. 

To position via holes in the dielectric, the paste layer is laid 
down over a conductor pattern. The via regions are then covered 
with a mask and the surrounding areas exposed to uv radiation. 
After polymerizing the exposed photopolymer, the via regions 
are removed with a trichloroethane developer. The remaining 
dielectric tape is then fired to give a thin ceramic layer with 
via holes as small as 40 ^m. 

To process other electroceramics in the same way, it will 
be necessary to develop photoinitiators compatible with each 
type of ceramic component. Thioxanthone, benzathrone, and 
other commonly used photoinitiators are sensitive to wave- 
lengths near 0.38 jim. Silica is transparent in this region but 
titania is not. New photofragmentation systems will be required 
for the ferroelectric titanates and niobates. 

TRANSDUCERS AND FUGITIVE PHASE PROCESSING 

There is a need for open space in many electroceramic 
devices for cooling systems, ink jets, resonant motion, and for 
backfilling with compliant polyers or conducting electrodes. The 
family of PZT-polymer transducers shown in Fig. 7 illustrates 
some of the geometries of interest. 

Electromechanical transducers convert mechanical force to 
electric voltage. By concentrating the applied force on the pi- 
ezoelectric portions of the transducer, greater sensitivity can be 
obtained. Force amplification is accomplished by utilizing the 
higher mechanical compliance of the polymer phase; the poly- 
mer transfers its stress to the stiffer piezoelectric ceramic in a 
type of mechanical circuitry (Fig. 4), thereby increasing the 
electrical response of the transducer. At the same time the ca- 
pacitance of the transducer is reduced because of the smaller 
dielectric constant of the polymer. Reducing the capacitance 
increases the voltage coefficient of the piezoelectric composite. 
Several of the designs in Fig. 7 are effective as hydrophones for 
detecting weak pressure waves in fluids. 

Polymer-ceramic composites can be made by a number of 
methods but the fugitive phase technique is especially versa- 
tile." Transducers with 3-3 connectivity are fabricated by mix- 
ing polymer spheres in the ceramic slip. The spheres burn out 
during firing, leaving a porous ceramic skeleton that can be 
backfilled with epoxy. 
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Fig. 7.   Twelve PZT-polymer composites used as piezoelectric transducers; numbers refer to the 
connectivity pattern of the composite (Ret". 13). 

Fig. 8. Spiral grooves etched into thickness 
mode resonators effectively damp lateral res- 
onance modes (Ref. 14). 

Transducers with checkerboard void patterns have been 
fabricated by Kahn et a/.15 A fugitive ink consisting of resin, 
carbon, PZT, and a solvent solution was screened onto PZT tape 
to produce the patterns. 

. The designed-space forming technology,16 developed at 
N.E.C., combines tape-casting, photolithography, and a fugitive 
phase. A photosensitive polymer is deposited on a polyester 
carrier film and then exposed to uv light through a patterned 
mask. The photosensitive layer is then developed, leaving the 
irradiated portion of the pattern on the carrier film. This space- 
forming pattern is transferred to the tape-cast green ceramic 
and burns out during firing to leave a designed space within the 
multilayer package. 

Drop-on-demand ink jets are made by this process.17 Chan- 
nel and reservoir spaces for the ink are incorporated within the 
piezoelectric printer made of PZT. Driving electrodes embedded 
within the poled ceramic provide the electric impulse required 
to propel ink droplets from the nozzle. 

Humidity detectors and chemical sensors can be incorpo- 
rated in the electroceramic packages in a similar way." Fugitive 
electrodes have also been used to advantage in multilayer ca- 
pacitors and multilayer boundary layer capacitors. 

Photolithography and chemical etching have also been used 
in transducer design. A layer of uv-curable polymer is deposited 
on a thin wafer of piezoelectric ceramic. After the photopotymer 
is irradiated through a patterned mask, the unpolymerized re- 
gions are removed, exposing the PZT ceramic underneath. The 
exposed ceramic is then etched away in an acid bath. Tiny, 
double-cantilever transducers for measuring the viscosity and 
density of fluids are fashioned in this way. The transducer with 
an etched spiral shown in Fig, 8 has a very pure thickness mode 
vibration; coupled planar modes are dampened by the spiral 
groove." 

Unfortunately, the etching rates for most ceramics are rath- 
er slow, making it difficult to use on thick specimens. For many 
oxides the etching speed is only a few micrometers per minute, 
even in strong acids at elevated temepratures, Customized laser- 
assisted etching improves the rates markedly.* 

ELECTRIC FIELD CONCENTRATION 

The multilayer design used for ceramic capacitors is an 
effective configuration for concentrating electric fields. By in- 
terleaving metal electrodes and ceramic dielectrics in a 2-2 con- 

nectivity pattern, relatively modest voltages are capable of pro- 
ducing high electric fields. 

Second harmonic generation and other nonlinear optical 
effects are well-known, but the corresponding low-frequency 
phenomena have not been thoroughly investigated. The recent 
upsurge of interest in actuators" is changing this situation. Elec- 
trostriction is a second-order electromechanical coupling be- 
tween strain of electric field. For small fields, electrostrictive 
strains are small compared to piezoelectric strain, but this be- 
havior is not true for the high fields generated in composite 
transducers. 

Multilayer electrostrictive transducers made from relaxor 
ferroelectrics, such as lead magnesium niobate (PMN), are ca- 
pable of generating strains larger than PZT. Since there are no 
macrodomains in PMN, there are no "walk-off" effects in elec- 
trostrictive micropositioners. Moreover, poling is'not required, 
and there are no aging effects. The concentration of electric 
fields in composite transducers makes nonlinear effects increas- 
ingly important. 

SCALING DOWN IN SIZE: NANOCOMPOSITES 

An inexorable trend to smaller and smaller sizes is char- 
acteristic of the age of integration and miniaturization. It has 
been said, "There is plenty of room at the bottom," for electronic 
and optical systems. The dependence of ultrasonic and electro- 
magnetic wavelengths on frequency is sketched in Fig. 9. A 
range of wavelengths is observed in ceramic materials because 
of differences in elastic constants and refractive indices. 

Nonlinear optical devices are of special interest because of 
their importance in communication, computing, and nuclear 
fusion. A transparent nanocomposite for second harmonic gen- 
eration is one such technical goal. To build such a window re- 
quires phase matching the fundamental and harmonic beams 
by balancing dispersion and birefringence. This procedure is 
possible in principle using aligned nanometer-size needles or 
platelets but has yet to be demonstrated. In addition, either the 
matrix phase or the dispersed particles must have sizable non- 
linear optic coefficients, requiring the use of ferroic nanocrystals 
such as PbTiOj. 

INTRINSIC SIZE EFFECTS 

In ferromagnetic materials, there are three kinds of mag- 
netic structures for small particles." Multidomain structures 
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Fig. 9.   High-frequency ultrasonic resonators and optical components 
require nanocomposite materials with very small particle sizes. 

are common for particles larger than a critical size: magneti- 
zation in large particles takes place through domain wall motion, 
Below this critical size, single domain particles are observed, 
and switching takes place by rotation rather than wall move- 
ment, thereby increasing the coercive field. Very.small particles 
exhibit a superparamagnetic effect in which the spins rotate in 
unison under thermal excitation. Only modest magnetic fields 
are required to align the spins of adjacent particles. 

Analogous behavior in ferroelectric particles and ferro- 
elastic particles has yet to be fully established, but a variety of 
interesting experimental results are accumulating.23 In BaTi03 
ceramics, single domain behavior is observed in grains less than 
1 urn in size,2' whereas dielectric phenomena resembling su- 
perparamagnetism are found in relaxor ferroelectrics. The fluc- 
tuating microdomains in this superparaelectric state are =»20 
nm across." 

Composite materials made up of single domain and su- 
perparaelectric particles have yet to be investigated in a sys- 
tematic way with proper control of the connectivity and sur- 
rounding environment. The controlled synthesis of submicrometer 
ferroelectric grains will do much to stimulate research in this 
area. 

SUMMARY 

Rapid progress in the integration and miniaturization of 
ceramic components has led to the development of multipurpose 
electronic packages containing complex three-dimensional cir- 
cuitry. At the same time, a wide variety of smart sensors, trans- 
ducers, and actuators are being constructed utilizing composite 
materials to concentrate fields and forces. At present the pro- 
cessing methods make use of tape casting the thick film tech- 
niques, but several upset technologies loom on the horizon. Dur- 
ing the years ahead we can expect electroceramic devices to 
follow in the footsteps of semiconductor technology as the com- 
ponent sizes drop below 1 pm, and nanocomposite devices be- 
come a reality. 

A great deal has been written about the importance of scale 
in magnetic, optical, and semiconductor materials, and many 

of the same effects occur in electroceramics: critical domain 
sizes, resonance phenomena, electron tunneling, and nonlinear 
effects. 

The Golden Age of eleciroceramics will not last forever. 
The age of integration, followed by the age of miniaturization, 
will inevitably lead to new ideas and new systems. Integrated 
ceramic systems will reach limits—grain size for one—as ce- 
ramists strive to make optoelectronic systems with extremely 
small feature size. A marriage of materials will result with sev- 
eral upset technologies emerging to replace integrated ceramic 
packages. Patterned thin film systems, involving oxides on sil- 
icon or silicon on oxide substrates, are already on the horizon, 
and others will follow. Sensor, actuator, and information pro- 
cessing systems as complex and compact as the human body 
one day will emerge. 

REFERENCES 

'Japan Electronics Almanac 1986. Dempa Publications. Inc.. Tokyo; 412 pp. 
:J. G. Bednorz and K. A. Müller, "Possible High T Superconductivitv in 

the Ba-La-Cu-O Svstem." Z. Phvs. B-Condensed Mauer. 64. 189-93 (1986). 
>M. K. Wu. J.' R. Ashburn, C. J. Torng, P. H. Hor. R. L. Meng. L. Gao. Z. 

J. Huang, Y. Q. Wang, and C. W. Chu. "Superconductivity at 93K in a New 
Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure." Phys. Rev. 
Lett.. 58 (9| 908-10 (1987). 

'R. J. Cava. B. Batiogg, R. B. Van Doner. D. W. Murphy. S. Sunshine. T. 
Siegrist. J. P. Remeika, E. A. Rietman, S. Zahurak. and G P. Espinosa. "Bulk 
Superconductivity at 91 K in Single Phase Oxygen-Deficient Perovskite 
Ba:YCu,0,,,- ibid. (161 1676-79. 

'F. Beech. S. Miraglia. A. Santoro. and R. S. Roth. "Neutron Study of the 
Crystal Structure and Vacancy Distribution of the Superconductor Ba.YCu,- 
.0,.,." unpublished work. 

*Y. Kurokawa. K. Utsumi.H. Takamizawa, T. Kamata.andS. Noguchi."AIN 
Substrates with High Thermal Conductivity," IEEE Trans. CHMT. 8 (2) 247-52 
(1985). 

:A. Badzian. B. Simonton. T. Bad2ian. R. Messier, K. E. Spear, and R. Rov. 
"Vapor Deposition Synthesis of Diamond Films." Proc. SPIE. 683, 127-38 (1986). 

'W A. Yarbrough. T. R. Gururaja. and L. E. Cross. "Materials for IC Pack- 
aging with Very Low Permittivity via Colloidal Sol-Gel Processing": unpublished 
work. 

'K. Ulsumi. Y. Shimada. T. Ikeda. and H. Takamizawa. "Monolithic Mui- 
ticomponent Ceramic (MMC) Substrate," Ferroelectrics. 68. 157-79 (1986). 

ICG. R. Love, "Multilythics—A New Circuit Technology, IEEE Trans. CHMT. 
9 [4| 341-16(1986). 

"T. Kishimoto and T. Ohsaki. "VLSI Packaging Technique Using Liquid- 
Cooled Channels." ibid., 328-35. 

,:H.Takamizawa, K. Utsumi.and M.Suzuki, "MultilayerCeramicSubstrate 
with UV Curable Dielectric Paste for Multi-Chip Package." Proc. Int. Symp. on 
Microelectronics, 373-79 (1985). 

"R. E. Newnham, D. P. Skinner, and L. E. Cross. "Connectivity and Piezo- 
electric-Pyroleetric Composites," Mater. Res. Bull., 13 525-36 (1978). 

"K. Riltenmyer, T. Shrout, W. A. Schulze, and R. E. Newnham, "Piezo- 
electric 3-3 Composite." Ferroelectrics. 4. 189-95 (1982). 

"M. Kahn. A. Dalzell. and B. Kovel. "Ceramic-Air Composites for Hydro- 
static Pressure Sensing," Proc. Sixth IEEE Int. Symp. on Appl. Ferroelectrics. 
June 8-H. 1986; pp. 273-76. 

"K. Ulsumi. M. Tsuzuki. M. Suga, and H. Takamizawa. "Designed-Space 
Forming Technology in Ceramics," l.M.C. Proc., Kobe, May 28-30, 1986; pp. 
36-42. 

"M. Suga. K. Utsumi. M. Tsuzuki. and H. Takamizawa. "Drop-on-Demand 
Ceramic ink-Jet Head Made from Piezoelectric Material," S.l.D. Digest. 193-96 
(1986). 

■*T. Nitta. "Ceramic Humidity Sensor." Ind. Eng. Ckem. Prod. Res. Dtv., 
20.669-74(1981). 

"S. Trolier. C. Geist. A. Safari. R. E. Newnham. and Q. C. Xu. "Etched 
Piezoelectric Structures," Proc. Sixth IEEE Int. Svmp. on Appl. Ferroelectrics, 
June 8-11, 1986; pp. 707-10. 

^T. Shiosaki. M. Tanizawa, H. Kamei, and A. Kawabata. "Laser Micro- 
machining of Modified PbTiO, Ceramics in KOH Water Solution." Jpn. J. Appl. 
Phys.. 11, Suppl. 22-2, 109-12 (1983). 

:,K. Uchino. "Electrostrictive Actuators: Materials and Applications," Am. 
Ceram. Soc. Bull.. 6$ (4J 647-52 (1986). 

"[. S. Jacobs and C. P. Bean. "Fine Particles. Thin Films, and Exchange 
Anisotropy," pp. 271-350 in Magnetism, Vol. III. Edited by G. T. Rado and H. 
Suhl. Academic. New York, 1963. 

:JM. Multani; pp. 185-214 in The Finite Solid Slate Lattice, Preparation 
and Characterization of Materials. Edited by J. M. Honig and C.N.R. Rao. 
Academic. New York, 1981. 

:,Y. Ozaki. "Ultrafine Electroceramic Powder Preparation from Metal Alk- 
oxides." Ferroelectrics. 49. 285-88 (1983). 

"V. A. Bokov and I. E. Myl'nikova. "Electrical and Optical Properties of 
Single Crystals of Ferroelectrics with a Diffused Phase Transition," SOY. Phys.- 
Solid State. 3 613-19 (1961). Q 

16 ADVANCED CERAMIC MATERIALS. VOL   3. NO. 1, 1988 ( TAOrS) 



Self Assembly and "Smart Materials"

B. B. Rath
Naval Research Laboratory

Washington, D. C. 20375

ABSTRACT

Phospholipids are an important example of a class of molecule that have the ability
to self-organize into complex assemblies. These molecules comprise the major
fraction of biological membranes. The specific arrangement of phospholipids in bi-
ological membranes. The specific arrangement of phospholipids in biological mem-
branes and the matrix these lipids provide for membrane proteins, play an important
functional membrane properties such as energy transduction and molecular recog-
nition. All of which can be considered smart functions or properties. One of the goals
of technological development in the area of lipid based self-assembly is to impart
similar smart functionality into a designed microstructure. The study of the relation-
ship of phospholopid molecular structure to assemblies of increaseing size and
complexity may lead to applications in such diverse areas as electronic materials,
drug delivery, improved composites, and advanced biosensors.

The research programs being pursued in NRL's Bio/molecular Engineering branch
focus upon ways to utilize or emulate biological approaches for the fabrication of
micron sized microstructures. Fundamental research in the design of molecular
structure important to microstructure formation, the fabrication of these microstruc-
tures, and their subsequent characterization. Exploratory research programs that
assess the utility of these structures, develops processing technology for the manip-
ulation of sub micron structures, assess the requirements for and the potential of
scale up, and determines the requirements and benefits for ultimate application also
ongoing.

We have chosen lipid systems to be the initial trial for the design study of the fabri-
cation of sub micron structures. This choice has proven to be quite fortuitous with
respect to the development of smart materials. The resulting research and results
are the basis for this talk.
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BASIC PRINCIPLES FOR THE IMPROVEMENT
OF SHAPE-MEMORY AND RELATED MATERIALS

R. D. James
Department of Aerospace Engineering

and Mechanics
University of Minnesota
Minneapolis, MN 55455

ABSTRACT

The goal of the research described here is to give reliable rules for making improved shape-
memory and related materials.

INTRODUCTION

We give a brief survey of research on shape-memory and related piezoelectric and magnetostrictive
materials. The goal of this research is to identify the important material parameters which are typically
highly nonclassical and require the development of new tests for their measurement. Once the key material
parameters are identified, the aim is the to relate the important material behavior to these parameters and to
decide what choice of parameters gives optimum behavior. In the materials under consideration in which
phase transformations play a crucial role, the mathematical problem of relating the material parameters to
behavior is extremely difficult and has motivated the development of recent analytical techniques and has
attracted the attention of leading analysts and constitutive theorists. The picture that is emerging for shape-
memory materials is that only very special values of the material parameters lead to the interesting
behavior. Finally, once this relationship has been found, it is then recognized that these material
parameters are not really fixed but can be changed by changing the composition of the alloy. Often small
changes of composition change the behavior dramatically, particularly the introduction of small
percentages of rare-earths. The behavior is then optimized by pursuing compositions which give rise to
the material parameters which in turn optimize the desired behavior.

At this stage we are developing and confirming experimentally a theory for shape-memory
materials. This theory is sufficiently general to treat complex microstructures and general boundary
conditions and therefore could serve as a vehicle for calculating the relation between material parameters
and behavior. Below, we briefly describe this theory and indicate modifications necessary to discuss
closely related piezoelectric and magnetostrictive materials.

THEORY OF STRUCTURAL PHASE TRANSFORMATIONS

We very briefly outline a theory for structural phase transformations in its simplest form. We
begin with a lattice describing the high temperature phase, say described by lattice vectors

el, e2, e3. (1)

The atoms of the high temperature phase are given by niei, where (n, n2, n3) are integers. Typically,
these vectors change slightly with temperatures due to ordinary thermal expansion. Upon reaching the

* transformation temperature 0 c, these vectors change spontaneously into another set



f1, f2, f3

We consider a free energy function (p which depends on lattice vectors and temperature 0. We imagine

that (p is minimized by ei for e > ec and by fi for 9 < 0c. Recognizing that two sets of lattice vectors may
determine the same lattice and that we really want (p only to depend on the atomic positions, then (p inherits
certain invariance properties. These properties are determined by a symmetry group G, which represents
the symmetry of the lattice vectors ei. It turns out that if the lattice vectors have been chosen properly, then
the Born rule relating atomic to gross motion is reliable. This rule states that if u(x) represents the

A
displacement field, then deformed lattice vectors ei are related to reference lattice vectors, here for
convenience chosen to be ei, by the rule

A
ei = (Vu(x)) ej, i=1,2,3. (3)

A well-defined procedure, described in [1], can be used to define a free energy function (p(Vu, 0). The
basic problem describing equilibrium configurations of a free crystal is

rain f (p (Vu(x), 0) dx. (4)

It turns out that the Free energy functions that emerge from this argument have various potential well
For 0 > 6c, 4p is minimized at a matrix U0 and all matrices of the form RUO where R is a rotation matrix
and for 0 < Oc (p is minimized at a set of matrices U1 , ... , Un. The number n and the matrices U2, ... Un
turn out to depend on the group G and on the transformation strain matrix U1. In addition, (p is also
minimized at RUI, ... , RUI where R is any rotation matrix. Most of the free transformation behavior can
be understood by calculating the minimizers of (4), which in turn relate to this potential-well structure
of (P.

Piezoelectric and magntostrictive materials have movement of atoms within the unit cell which
cannot simply be described by three lattice vectors as in (1). Additional vectors called shifts are
introduced to account for these movements and the free energy becomes a function of these as well.

SOME RESULTS

We give a brief qualitative description of predictions of this theory. One consequence is that
minimizers can have planes of discontinuity of Vu(x). The calculation of these planes then can be
compared with experimentally observed twin planes for the alloy; this is an elementary check that the
theory is set up correctly. A more sophisticated check is other minimizers, actually minimizing sequences
[see 31, which model the austenite/marensite interface. The calculation of these microstructures agrees
exactly with the Crystallographic Theory of Martensite. Such interfaces, which really distinguish
martensitic materials from others, are only possible at special matrices U1, and for special choices of the
group G.

More generally, when we deform a shape-memory material, it deforms easily as long as it c
simply rearrange variants, that is, rearrange displacement gradients among the potential wells. For large
enough imposed deformations, this can no longer happen and the material suddenly "gets stiff." The point

-2-



at which this occurs has obvious importance. Current calculations involve the relation of this stiffening

point to the pair UI, G.
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A NEW COECFT OF DOUNDAIT LUBRICATION

by

Michael J. Furey
Department of Mechanical Engineering
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Blacksburg, Virginia 24061

ABSTRACT

This paper concerns tribology - the study of friction, wear, and

lubrication -- and in particular a new approach to the design of

molecules which will act to form protective films in response to

tribological conditions (e.g., high surface temperatures and pressures).

The concept of tribopolymerization as a new and potent mechanism of

boundary lubrication is reviewed and discussed. By tribopolymerization,
we mean the planned or intentional formation of protective polymeric

films directly on tribological surfaces to reduce damage and wear by the

use of minor (e.g., 0.1%, 1%) amounts of selected monomerr capable of

forming such polymer film "in situ." A diagrammatic and oversimplified
representation of the tribopolymerization process is shown below.

FORMED TRIBOPOLYMERS
AFFECT:

VELOCI1Y OAD

RUBBING ENERGY AND MATERIAL
LUuu SAVING DUE TO

MONOMERS -, REDUCTIONS IN:
=+ 0 *. FRICTION

PROCESS 0 * WEAR

iDAMAGE

Tribopolymers are not to be confused with the collective term

"friction polymer" which is often used in the literature and generally

includes oxidative/degradative products formed from hydrocarbon and

other lubricant components.

Furey's concept of tribopolymerization is described and key
evidence in support of this concept is reviewed. Most of this work was

carried out with compounds capable of forming polymers by a



polycondensation process (e.g., mixtures of long-chain diacids and
glycols or single compounds containing both acid and glycol groups). An
outstanding example is the class of monoesters made from C3 6 dimer acid
and various glycols (e.g., ethylene glycol). These compounds are
extremely effective in increasing the gear antiscuff ratings of
hydrocarbon fuels and in reducing valve train wear in automotive
engines. In the latter respece, they are equal in effectiveness in
reducing wear (by over 90%) as the potent, commonly-used antiwear
additive, zinc dialkyl dithiophosphate.

In addition, related research on tribopolymerization by Kajdas is
discussed. This includes the role of the low-energy electron emission
process (exoelectrons) on addition-type tribopolymerization (e.g., of
vinyl type monomers).

Although there is considerable evidence in support of the use of
the tribopolymerization process to reduce wear, several important
fundamental questions remain. The authors present additional and more
detailed hypotheses to help answer these questions. One hypothesis,
offered to explain why monoesters of C, dimer acid and glycols are
extermely effective in reducing wear wh te tetraesters are relatively
ineffective, involves the special orientation of these compounds on the
surfaces prior to tribopolymerization. As can be seen in the diagram
below, the surface density of adjacent -COOH and -OH pairs is greatest
for the monoester; thus the probability of polymerization by
condensation reactions on the surface is enhanced.

MONOESTER
R.R 2  R CORZ i.CORR, co o', Roo I -Coo.,

ENERGY EVOLVED DURING SUDING
(EXPRESSED AS TEMPERATURE)

TETRAESTER

R I %. .R2
COO \Coo-R R R. R2 R -R2

---- I '% %Coo. 0 COO H--" " OOT/l / 1 1 II 7- 7 1/ ; / / / I'/77 -"1

A plan of future research aimed at testing these hypotheses and at
obtaining a better understanding of tripolymerization is described
briefly. A key part of the planned research is the coupling of an
infrared microscope system already used in tribology research at VPI&SU
with advanced surface analytical techniques such as FTIRS and FTIRMA.
Results of this collaborative research will be given in future papers.
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RECENT PROGRESS IN THE MATHEMATICAL MODELING OF COMPOSITE MATERIALS

Robert V. Kohn

Courant Institute of Mathematical Sciences

251 Mercer Street

New York, NY 10012

ABSTRACT

We review some of the recent mathematical progress on the effective moduli of com-

posites. Specific attention is devoted to mathematically precise definitions of effective

moduli, new methods for bounding effective moduli, new constructions of mixtures with

explicitly computable properties, and applications to structural optimization.

1. INTRODUCTION

We are concerned with materials that are spatially heterogeneous on a suitably small

length scale, and with linear models of material behavior, for example linear elasticity.

The effective moduli of such a "composite" describe its overall, large-scale behavior. They

have long been an object of study by physicists and materials scientists; selective reviews

of the extensive literature include [14,22,68,69,72]. More recently, the study of effective

moduli has attracted the attention of a growing community of mathematicians as well. The

relatively new notions of homogenization and G-convergence provide a firm mathematical

foundation [48,62,65,71]; moreover, the effective moduli of composites have been linked to

fundamental issues arising in the optimal control of certain distributed parameter systems.

and to deep questions involving the lower sericontinuity of variational functionals, see e.g.

[1,12,28,30,32,38,39,49,50,58,67]. The specific questions about effective moduli raised by

these new applications are sometimes different from those that were the focus of the older

literature: for example, applications to structural optimization require the specification

of all (anisotropic) composites attainable as mixtures of given components in specified

1



proportions. However, the mathematical tools developed to address such questions have

also led to new results that are very much within the purview of the older theory. Examples

include the simultaneous attainability of the Hashin-Shtrikman shear modulus and bulk

modulus bounds [17.36.42,51]; the validity of a conjecture of Schulgasser about the effective

conductivity of polycrystalline composites [5]; and the attainability of certain mean field

theories [2,41].

The goal of this paper is to review selected aspects of this recent mathematical

progress, which it is hoped will be of interest to a broad community of specialists in

materials science. It should be emphasized that the ideas presented here are a synthesis of

the work of many individuals, and that the selection of topics is somewhat arbitrary - in

no way representing a comprehensive survey of the most important recent developments.

2. MATHEMATICALLY PRECISE DEFINITIONS OF EFFECTIVE MODULI.

We are concerned with mixtures of continua on a length scale small compared to that on

which the loads and boundary conditions vary, but still large enough for continuum theory

to apply. Such a "composite" is clearly an idealization: it represents the limiting behavior

of a sequence of structures, as the ratio e = 1/L relating the "microscopic" length scale

e to the "macroscopic" one L tends to zero. There are in fact several distinct theories,

differing as to the form assumed for the fine scale structure. A periodic composite is one

whose microscopic structure is periodic with a specified unit cell; a random composite is

one whose fine scale structure is a stochastic process with specified statistics. There is also

a third approach which makes no such hypothesis on the fine scale structure, appealing

instead to a compactness theorem for systems of partial differential equations. This last

theory, known variously as G-convergence or homogenization, represents in a sense the

most general approach.

To fix ideas, let us focus the discussion on mixtures of two isotropic, linearly elastic

materials in Rd (d = 2 and d = 3 being, of course, the cases of physical interest). Each

2



of the component materials is characterized by a bulk modulus xj and a shear modulusjs,

O (i = 1, 2), determining a unique Hooke's law tensor A, - a symmetric linear map on the

space of symmetric tensors - such that

(2.1) Aie = Pc(tr e)I + 2M, (e - d(tre)I)

for any symmetric tensor e. The associated "elastic energy" quadratic form is the inner

product of stress and strain:

(2.2) (Ae, e) = (x, - d )(tre)2 + 2/.s, 12

A structure which mixes the two materials will have a spatially varying Hooke's law,

equal to either A 1 or A2 at each material point x. Introducing a parameter e, representing

(at least in the periodic and random cases) the length scale of the microstructure, the

* spatially varying Hooke's law is

(2.3) A'(x) = Xj(x)Al + X'(x)A2,

where

(2.4) f on the set occupied by material i
0 elsewhere

so that X = 1 - X2. By definition the structure is periodic (with cubic symmetry) if

X!(x) = X.(E) for some function y,(y),

(2.5) taking only the values 0 and 1, defined for all y E R'

and periodic in each component of y with period 1.

* An example would be a periodic array of spherical inclusions centered on a cubic lattice

of mesh e, each sphere having radius ep (p < 2). In the random case there is an additional
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variable w, belonging to a suitable probability space:

= x,(_,w) for some stochastic process w -- x,(yw), defined

for y E R" and w in a probability space, and taking only the values

0 and 1. It is required that ,be translation invariant, in the sense
(2.6)

that w; - X (y + c, w) gives the same stochastic process for each

c E R".Furthermore, the translations are azumed to be ergodic,

so that ensemble averaging is equivalent to spatial averaging.

An example would be a family of (possibly overlapping) spherical inclusions of radius

ep whose centers have a multidimensional Poisson distribution, the expected number of

balls in a unit-sized region being of order e- . The hypotheses (2.3) or (2.6) specify

rather precisely the character of the fine scale structure. The G-convergence approach, by

contrast, makes no such hypothesis:

X'.(z) is any family of functions taking only the values 0
(2.7)

andl, parametrized by e -+ 0, and(2 = 1 - X4.

It is specifically not assumed in (2.7) that e represents the length scale of the microstruc-

ture: even a sequence which has no clear separation of scales is permitted. Clearly (2.7)

includes both the periodic case and the random one; indeed, in our opinion it includes any

reasonable notion of a linearly elastic composite obtained by mixing two materials (with

perfect bonding at all material interfaces).

The tensor of effective moduli A* is simply the Hooke's law tensor of the compos-

ite. It represents the limiting behavior of the mixture as e -. 0. This means that for

any (e-independent) load f, the associated elastostatic displacement u' - which solves the

equilibrium equations

ad At e

(2 .8) 1, ( = +
2axt 49xk

div a' f
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with an appropriate boundary condition - converges as e --+ 0 to u, the solution of the

corresponding system with A' replaced by A'. The starting point of the mathematical the-

ory is the ez:stence of effective moduli. In the spatially periodic and stationary stochastic

contexts (2.5), (2.6), translation invariance assures that the tensor A* of effective moduli

is constant. For periodic composites it can be given in terms of the solutions of certain

canonical "cel problems," see e.g. [8,60], but we prefer this variational characterization.

cf. [64]:

(2.9) (A,) =inf (A(y)[( + e(O)], + e(6))dy,

in which

(2.10) A(y) = xi(y)Aj + X2(y)A2,

Q = [0, 1]' is the unit cell of the periodic structure, 0 varies over Q-periodic displacement

fields, and e(O) = 1(VO + VOT) is the linearized strain associated to 0. An entirely

analogous formula is available in the random case, cf. [19,a3,55,70]:

(2.11) (A* , ) = inf E[(Ae,e)],Z (*)==(

in which E represents the ensemble average and e ranges over stationary, random strain

fields with mean value . In the more general G-convergence setting (2.7) there is no

hypothesis of translation invariance, so the tensor of effective moduli A* (x) can vary with

z. Moreover, there is obviously not enough structure to give a formula as explicit as (2.9) or

(2.11). But it is nevertheless true that for any sequence X: as in (2.7) there is a subsequence

e -. 0 for which there exists a limiting tensor of effective moduli A'(x), see for example

[48,62,65,71].

We shall be interested in bounds for A* in terms of the volume fractions of the com-

ponent materials, so let us note here how to express these volume fractions in each of the

different settings. For the periodic composite (2.5) the volume fraction of material i is the
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proportion of the period cell occupied by it: 

(2.12) e( = J xt{y)dy. 
Q 

Similarly, in the stationary, random case (2.6) it is the expected value of Xi(y,w): 

(2.13) *,=E(x,). 

In the G-convergence context (2.7) it is instead given by the L°° — weak* limit 

(2.14) (?i(x) = wkMimy<(4 
*-♦ u 

no longer necessarily constant, denned by the property that 

(2.15) / xl(x)9(x)dx -+ j 9i(x)g(x) dx 

for continuous functions g. 

These notions of effective moduli are easily seen to be equivalent to the operational 

definitions more commonly used in materials science, based on the average stress and strain 

or average elastic energy in a physical domain that is large compared with the microstruc- 

ture but small compared with the length scale of the loads and boundary conditions, see 

e.g. [22,24). They are important for the development of a proper mathematical theory, 

because they make it possible to give fully rigorous proofs of results about effective moduli. 

But why should they be of interest to a materials scientist? One answer lies in the following 

"density" result [16]: if an algebraic relation between the tensor of effective moduli the 

component volume fractions holds for all spatially periodic composites (or for all station- 

ary, stochastic composites), then it holds in the more general context of G-convergence 

as well. Thus, for bounds on effective moduli in terms of volume fractions alone, neither 

long-range disorder nor a definite separation of scales is relevant. This resolves a point 

which has been the object of considerable controversy in the literature, see e.g. [22]. 
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. 3. NEW METHODS FOR BOUNDING EFFECTIVE MODULI.

A typical goal of the new mathematical theory is the so-called G-cloaure problem: find the

precise set of Hooke's laws A* achievable by mixing two given isotropic, elastic materials in

specified proportions. The motivation comes from applications to structural optimization.

as we shall explain in section 5. The special case when A* is isotropic was considered by

Hashin and Shtrikman [231, under the further hypothesis that the component materials

are well-ordered, i.e. that

(3. 1) A1i <_ 02, K1 <5 2.

They gave upper and lower bounds for the effective bulk and shear moduli, x" and p', which

are now known to be simultaneously achievable [17,51]. An improvement of the Hashin-

Shtrikman bounds can be found in [10,47], but the precise set of attainable isotropic. composites is still not known. In any event, results of this kind - concerning A* with

specified symmetry - are not adequate for applications to structural optimization, since the

best composites for use in an optimal structure can (and generally will) be fully anisotropic.

While the complete solution of the G-closure problem seems beyond the reach of current

methods, the analogues of the Hashin-Shtrikman bounds on c" and " are now understood

for fully anisotropic composites [3,4,45]. In particular, we now know those parts of the

boundary of the G-closure which represent the "strongest" and the "weakest" anisotropic

composites.

In the course of exploring these and other bounds for effective moduli, a number of

powerful new tools have been introduced. The well-known Hashin-Shtrikman variational

principles have been applied in new ways [3,4,26,34,45], and new variational principles

have been introduced, obtained from more classical ones by the addition of a quadratic

null-Lagrangian [5,27]. In addition, entirely new approaches have been introduced: one is. based on an equivalence between bounds for effective moduli and the lower semicontinuity

of certain variational functionals [30,32,63]; another uses the fact that the effective moduli

7



depend analytically on the component properties [9,19,25,44]; a third uses "compensated

compactness- to construct certain lower semicontinuous functionals [17,18,35,37.66], and

a fourth makes use of Hilbert space decompositions and continued fractions [43]. (These

references represent a mere sampling of the relevant literature in each area.) The interested

reader will find several of thse new methods applied to a single problem in a self-contained

manner in [27]. The power and limitations of these various methods are just beginning to

be understood, as are the relationships among them [46].

To convey some of the flavor of these new developments, we present in detail one of

the recently established bounds, an upper bound on the elastic energy quadratic form.

There is of course a well-known bound due to Paul [56]:

(3.2) (A* , ) 5 81(A 1 , ) + 92(A2 , ),

where 8i is the volume fraction of the i" material, i = 1, 2. This bound is sharp, in the sense

that for certain choices of the "average strain" there is a microstructure whose associated

A" achieves equality in (3.2). However, for most choices of (3.2) is not saturated by any

composite; therefore a better bound

(3.3) (A6 )_ F(91, 02, Ail, A2, Ir1,,IC2,?

is possible. We shall in fact prove the optimal bound of this type, in other words one which

is saturated, for each f, by an appropriately chosen mixture of the two given materials.

The method, which is based on the Hashin-Shtrikman variational principle, requires that

the component materials be well-ordered. Our presentation follows that of [26]; equivalent

results can be found presented somewhat differently in [3,4] and [45]. The function F on

the right of (3.3) is given by (3.16) below, as the extremal value of a finite-dimensional

mathematical programming problem.

As discussed in Section 2, it is sufficient to prove the bound for spatially periodic

composites. We may therefore fix Q = [0, 1]d as the period cell; the microstructure is

8



* determined by the indicator functions Xi(y) and X2(Y) = 1 - xi(Y), E Q, constrained by

the given volume fractions (2.12); and the effective Hooke's law is determined by (2.9).

The first step is to derive the Hashin-Shtrikman variational principle:

(A' , f) _< -2 1(a, f + e(O)),yldy
q

(3.4) + 1 ((A2 - A1)-'a,o'a)Xldy

Q

+ J (A( + e(O)), + e(O))dy
Q

for any Q-periodic displacement field 0, and any Q-periodic field of symmetric tensors o,.

The proof is elementary: expanding the pointwise inequality

(3.5) I(A2 - A1 )'1 2 ( + e(O)) - (A2 - Ai)- 1,20, 2 > 0

and multiplying by X1 gives

* (3.6) -Xl((A 2 - A 1 )( + e(o)), + e(O)) -2(a, + e(O))X + Xl((A2-A)-'a, a).

The left side equals

(3.7) ((1 - A2 )( + e(¢)), + e(¢));

therefore integrating over Q and applying (2.9) we conclude (3.4).

The next step is to specialize to coni&tant a, and to evaluate the integrals in (3.4)

wherever possible. This gives

((A* - A2), .) + 201 (a,) - 81 ((A 2 - Aj)- 'a,
(3.8) <-2J (ax, e(O))dy + I (Ae(), (,)),

Q Q

for any Q-periodic displacement field 40.

The third step is to minimize the expression on the right over 0. This amounts to

*solving the elastostatic equilibrium equation

(3.9) DIV(A2 e(¢)) - DIV(aXl) = 0

9



with a periodic boundary condition. It is convenient to use Fourier analysis: since A2

and a are constant. (3.9) determines the Fourier transform of 0 at each frequency k E V

directly in terms of the transform of X1 at the same frequency. After some algbra. one

finds that the extremal value of the right side of (3.8) is

(3.10) -E JI (k)12(f(k)a, a)

where

(3.11) Xi(y) y 2 j(k),
kEZI

and for any unit vector v E Rd, f(v) is the "degenerate Hooke's law" defined by

f M~a = d _ (av, V)V (D V(3.12) f~ =d,2 + 2(d - 1)A2

1
+ -[((v) 0 V - (a.,, v)v . V].
/A2

Here a is any symmetric tensor, and we use the notation v D w = 0( ®w + w 0 v) for the

symmetric tensor product of two vectors in R.

It remains to eliminate the explicit dependence of the bound on X1, which is after all

arbitrary except for the volume fraction constraint. We use this constraint to see that

(3.13) j(X1 - 61 )2 dy = 6162,

whence by Plancherel's theorem

(3.14) , I (k)12 = 0192.

This gives a bound on the "nonlocal" term:

(3.15) (3.10) < - 62 min(f(v)a, a).
I?,1=1

Substitution into (3.8) gives a bound on A* which still depends on the choice of a symmetric

tensor a, and minimization over a gives a result of the desired form (A' , ) :_ F, with

(3.16) F = (A24,,) + 61. nin{-2(a,, ) + ((A2 - A)- 1a, a') -62 min(f(v)a.a)}.
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Our interest in this bound lies in the fact that it is the best possible bound for (A-." , r)

in terms of the given parameters , 01, 02 = 1 - 81, and the bulk and shear moduli of the

component materials ic1 
< K2, P1s < 112. This will be proved in the next section. as an

application of the formula for the effective behavior of a sequentially laminated composite.

4. CONSTRUCTION OF MIXTURES WITH EXPLICITLY COMPUTABLE

EFFECTIVE MODULI.

For most microstructures there is no explicit, algebraic formula for the tensor of ef-

fective moduli A'; one must make do instead with a variational principle such as (2.9) or

(2.11), or perhaps with the partial differential equation characterizing its extremal. If this

were the only available tool it would be virtually impossible to establish the optimality

of any bound! Fortunately there are certain, rather special microstructures for which the

effective moduli are computable; and, remarkably, this class of composites is rich enough

* to demonstrate the optimality of a variety of bounds, including (3.3).

There are some simple and more or less classical examples of composites with ex-

plicitly computable properties. One example is that of a layered microstructure [6.11.40];

another is the "concentric sphere construction," which was used by Hashin in [73] to prove

the optimality of their bulk modulus bounds. It is natural enough to iterate such construc-

tions, for example layering together two composites each of which has its own fine-scale

structure, obtained perhaps by layering or by a version of the concentric sphere construct-

cion. This idea, which can be found in Bruggeman's work [111, has been rediscovered by

various individuals and applied to prove the attainability of many different bounds, e.g.

(3-5,17,18.26,34,35,37,38,42,61,66].

-An important new development concerns the attainability of certain mean field the-

ories. The formulas they predict for the tensor of effective moduli A' were originally

intended as approximations, not as exact results. Nevertheless, it has recently been shown

* that certain effective medium theories are ezactly attainable by composites with approxi-

mately chosen microstructures [2,36,411. Obviously, this result greatly expands the class of
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composites with explicitly computable effective moduli - particularly since these effective

medium theories (the "coherent potential approximation" and the "differential effective

medium theory ") have been widely studied in the mechanics literature, see e.g. [74,75].

The microstructures that arise from these constructions are, it should be understood.

somewhat idealized materials. They are highly ordered, neither periodic nor stochastic in

character, and they frequently involve multiple length scales. It may seem like cheating

that we allow the use of such microstructures to establish the attainability of a bound,

whereas the proof of the bound may make use of special structure such as periodicity. This

is in fact perfectly legitimate; indeed, it is here that we use the power of the mathematical

theory. The point is that these constructions fit perfectly into the mathematical context

of G-convergence (see especially [2]); therefore, by the "density" result mentioned at the

end of Section 2, their effective moduli can be approximated arbitrarily well by those

of spatially periodic composites. Actually, it is quite natural to use the most restrictive

possible setting for proving bounds, and the most general one for showing that they are

achieved.

The remainder of this section is devoted to a discussion of sequentially laminated

composites, and to a proof of the attainability of the new upper bound (3.3). Closely

related ideas and results can be found in [3,4,26,45]. The construction of a sequentially

laminated composite is an iterative procedure, producing a microstructure that has several

different length scales. A laminar composite of rank 1 is obtained by layering two initially

given materials, specifying the proportion of each and the layer direction, and using a

small parameter el as the layer thickness. As el --+ 0, the eljtic behavior is described

by an effective Hooke's law C1 . A laminar composite of rank 2 is ob :ned by layering

two laminar composites of rank 1, again specifying the proportion of earnl and the layer

direction, and using another small parameter e2 for the layer thickness. As el., E2 -' 0 with

ej << e2, the elastic behavior is described by an effective Hooke's law C2 . This process

can clear!v be continued indefinitely: the general sequentially laminated composite of rank
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r is obtained by layering together two sequentially laminated composites of rank r - 1. We

shall consider here only a special case, in which one of these two material,$ is the isotropic

one with shear modulus A12 and bulk modulus K2 at each successive stage. An elegant.

iterative formula for representing the effective moduli of such a composite was derived in

[17], following a method developed for scalar equations in [661. We now give a derivation

of this result.

The basic building block is a formula for the effective tensor C corresponding to

a layered mixture of the isotropic material with Hooke's law A 2 and a general elastic

material with Hooke's law B, using layers orthogonal to the unit vector v E Rn, and using

proportions P2 and PB = 1 - P2 of A2 and B, respectively:

(4.1) PH (A2 - C)- ' = (A2 - B)- 'a - P2f((v)a

for any symmetric tensor a. Here f(v) is the same degenerate Hooke's law that arose in

* our proof of the bound, defined by (3.12). In writing (4.1) we have implicitly assumed that

A2 - C and A 2 - B are invertible, when viewed as symmetric linear maps on the space

of symmetric tensors. This is the case whenever B < A2 , since then C < A 2 as well. by

Paul's bound (3.2); this ordering hypothesis will be sufficient for our purposes, since we are

concerned with mixtures of two well-ordered isotropic materials, i.e. (3.1) holds. (There

is a version of (4.1) without invertibility hypotheses, see for example [17].) To prove (4.1).

one must of course begin with a characterization of C. In a layered composite of the type

under consideration, the local values of the stress and strain are essentially constant within

each component. Therefore, arguing for example as in [40], the calculation of C given

is easily reduced to this algebraic probicni: find a pair of symmetric matrices 2 and ,8

(representing the strain in the layers occupied by materials A2 and B respectively) such

that

P2'42 +PH 4B =

(4.2a - c) 4B - 2 =v ® w for some w E R',

(A242 -B4 )v = 0.
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The first relation says that is the average strain; the second is the consistency condition

for the existence of a deformation with the specified piecewise constant strain (recall that

-1 w = (v - w + w 0 v)/2); and the third represents the continuity of the normal stress

at the laver interface. In terms of these quantities, C is determined by

(4.2d) C = p2 A2 2 + PB B B,

which identifies it as the average stress. The solution of (4.2a-d) is easiest to represent in

terms of o = (A2 - C) . One calculates that 2 and B are given in terms of a by

(4.3) B = P-1 (A 2 -B)- 'a, 2 = B - V 'w,

where w E R is chosen so that

(4.4) PB A2(v 0 w) = 2(av) 0 v - (av, v)v 0 v,

whence

(4.5) pH [A2 (v 0w )]v = av.

The unique w satisfying (4.4) is

d 1

(4.6) w = P[d d _ (av, v)v + -- (av - (arv, v)v)],
dM2 + 2(d - 1)92 A2

and it has the property that

(4.7) PB V w = f M~r

with f(v) defined by (3.12). Therefore

(A 2 - C)-aP=it= p3 a + P22

(4.8) =. 2 ( - vOW

= pB'(A2 - B)-'a -P P2f(V)a,
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* which is precisely the desired formula (4.1).

Now consider a sequence Co, C 1, C 2,... of effective tensors such that

Co = A1 represents an isotropic material with bulk modulus
(4.9a)

Pel and shear modulus M1.,

and, for r > 1,

C,. is obtained by layeringA 2 with C,. -in volume fractionsa,. and
(4.9b)

(1 - a,. ) respectively, using the unit vector v,. as the layer normal.

Evidently, C,. represents the effective behavior of a certain sequentially laminated compos-

ite of rank r. The volume fraction of A2 in C, is

(4.10) 3,-1-1(1-a,), r>1; 3=0.
I-1

* A formula for C,. is easily obtained by iterating (4.i):

(4.11) (1 - 3,.)(A 2 - C,.)-1 = (A 2 - Aj) - -1 (i3 - 3, 1)f(vj).

Let us terminate this process at r = N, and write

92 = 3N = overall volume fraction of A 2

(4.12) 81 = 1 - Oj = overall volume fraction of Al

A* = CN = effective Hooke's law of the associated rank N composite.

It is easy to see that the sequence

(4.13) = (3,-3,-.) r 1 < N,

can be any nonnegative sequence which sums to 1, by making an appropriate choice of

the parameters {a, }. Thus we have shown that for any integer N > 1, any unit vectors

{vi};L in R, any real numbers {m },= 1 with 0 < m, < 1 and T m, = 1 and any real

number 02, 0 < 02 < 1, there is a sequentially laminated composite made by mixing .4
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and A2 as in (4.9), using overall volume fractions 01 = 1 - 02 and 02 respectively, whose

effective Hookei' law A is characterized by

N

(4.14) 01 (A2 - A') -1 =(A 2 - A1)- 1 - 02 " mf(v,).
i=1

We now apply this construction to establish the optimality of the new upper bound

(3.16). Our task is to show that for each symmetric tensor there is a choice of the

parameters {v,,m,} such that A*, defined by (4.14), satisfies (A*, ) = F with F as in

(3.16). Now, (3.16) gives F in terms of a mathematical programming problem

(4.15) min{-2(o,, ) + ((A2 - A 1 ) o, o) - 02 min (f(v)o, o)}
a 101=1

over symmetric tensors a, so it is reasonable to expect the proper choices of {vi, m, } to

emerge from the optimality conditions for (4.15). Since the last term is not a smooth

function of o, it is natural to use the methods of "nonsmooth analysis," see for example

[15]. To this end we rewrite (4.15) as

(4.16) min{-2(a,) + g(a)}

with

(4.17) g(a) = max((A2 - A 1)- 02f(v)a, a).
I,1I=1

For each fixed v the expression on the right is a positive, quadratic function of a (one way

to establish positivity is to make use of (4.1)). Therefore g is convex, and the optimality

condition for (4.17) is that for any extremal a*

(4.18) 2 E 3g(a'),

where 8g(a*) is the subdifferential of g at a* (see e.g. [15, 2.3.1-2.3.3 and Corollary 1, §2.3]).

Moreover, 8g(a") is the closed convex hull of the differentials of the various quadratic forms

in (4.17) as v ranges over all extremals (see e.g. [15, §2.8, Corollary 1]). Since the space
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of symmetric tensors is finite dimensional, each element of the closed convex hull is in fact

a convex combination of finitely many extreme points. Therefore the optimality condition

(4.18) becomes

N

(4.19) =(A 2 - A1 )-1o" -0 2 Z mif(V,)a*,
i--1

with mi* > 0, ram, = 1, vI 1, N < oo, and

(4.20) g(ao) = ((A 2 - A 1 )- a, o") - 82(f(v, )o", a"), 1 < i < N.

Comparing (4.19) with (4.14), we see that

(4.21) = 91(A2 - A*)- o ,

* where AO is the sequentially laminated composite of rank N constructed using {m,, vi

We claim that this A' satisfies (A* , ) = F. Indeed, the value of F is

(4.22) F = (A2, ) + Olf{-2(a', ) + g(a")},

using (3.16) and the fact that a* is extremal for (4.15). We have

(4.23) (a") = g(a')

by (4.19) and (4.20), so (4.22) becomes

(4.24) F = (A 2 , ) - 81W,

But Ola" = (A 2 - A') by (4.21), and substitution gives the desired result F = (A
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5. APPLICATIONS TO STRUCTURAL OPTIMIZATION.

The recent interest in optimal bounds on the effective moduli of composites has been stimu-

lated in large part by applications to structural optimization, see e.g. [1,28,38.39,49,50.671.

That discipline is concerned with choosing the geometry or composition of a load-bearing

structure so as to use the available materials as efficiently as possible. The subject has

a rich history and an extensive literature; books and articles reviewing various aspects

include [7,21,53,57]. Initially attention was focused primarily on analytical methods -

optimality conditions, conformal mapping, isoperimetric inequalities, and so forth. More

recently, with the growing feasibility of large scale computing, attention has naturally been

turned to methods for the direct, numerical calculation of optimal structures.

To fix ideas, let us consider a particular problem involving shape optimization and

plane stress. We begin with a homogeneous, isotropic elastic body occupying a region

f2 C R 2 , loadcd along its boundary &I by a specified traction f. We desire to lighten

this body by removing material from a subset H C 2, consisting of one or more holes

of arbitrary size and shape. The goal is to achieve the minimum possible weight, i.e. to

maximize the area of the "holes" H, subject to a performance corwtraint on the stress am

or displacement u, of the resulting elastic structure. Typical constraints are

that the work done by the load ("compliance")

(a) be not too large: J ug f _ C;or

an,

that the average displacement on a subdomain

5.Zb) ill be not too large : Jn IUHI C; or

that the pointwise maximum stress be not too

(C) large: sup 11a () < C.

Highly efficient and sophisticated algorithms have been developed for the numerical

solution of such problems; [21] gives an excellent review. Typically, one begins by deciding
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how many holes to consider. Each hole boundary is determined by finitely many points.

for example using splines. The resulting domain is triangulated, and the equations of

elastostatics are modeled as a finite system of linear equations using the finnite element

method. The design problem is thus transformed to a (highly nonlinear!) mathematical

programming problem, and one can seek an "optimal" design - or at least an improvement

of a given design - using streepest descent, or perhaps some more sophisticated method.

Though its utility is beyond disupte, this "conventional" approach has one troublesome

aspect: the gross features of the design - especially, the number of holes - must be chosen

at the outset; they are not a part of the optimization. Thus the output is likely to be

a local optimum, or at best an optimum among all designs with a specified number of

holes. In fact, numerical attempts at global optimization for related model problems have

led in some cases to "optimal" designs that vary on the scale of the mesh size itself, with

no convergence evident as the mesh size tends to zerro [1,13 ]! This phenomenon is now

well-understood. In the context of shape optimization, the situation is as follows: consider

first the best design with one hole, then that with two, and so forth. As the number of

holes gets larger, the performance may get better (depending, of course, on the specific

problem under consideration). In the limit of infinitely many holes one thus finds a global

optimum which is not a "conventional" design at all, but instead a structure made from

composite materials obtained by perforation.

With hindsight it seems almost obvious: if one is prepared to consider designs with

many small holes, then one ought also to consider their limits. We thus arrive at a new

approach to structural optimization: if the goal is to find a global optimum then it is best to

work from the start in the class of all structures made up of composite materials obtainable

by perforation from the one initially given. It should be emphasized that the underlying

problem is not being changed, since we allow only composites achievable by perforation,

and we are careful to model them properly. However, the resulting optimization problem

looks quite different: whereas initially we were considering structures made up of a single
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material (or the absence thereof), now we propose to allow a continuum of materials - each

representing a perforated composite with a different microscopic geometry. (As a technical

matter. the mathematical theory discussed in the preceding sections does not quite apply

to perforated composites, since it requires pi > 0 and oci > 0. This can be circumvented, at

least for compliance optimization problems, by the methods of [30,32]. Alternatively. we

can simply treat the "holes" as though they were filled with a very weak elastic material.)

The introduction of composites as generalized designs - sometimes called the relaz-

ation of the design problem - has been studied extensively by several groups over the past

ten years, see e.g. [20,30,38,50,52,54,58,59,67]. From a theoretical standpoint, the principal

advantage of relaxation is that it assures the existence of an optimal design; roughly, this

means that a numerical solution of the relaxed problem will converge as the mesh size tends

to zero. There is also a practical advantage, based on the fact that the initial material and

the absence of material are included (as extreme cases) among the candidate composites:

evidently, for a given finite element subdivision the introduction of composites serves to

enlarge the design space and hence to improve the performance of a numerically obtained

optimal design. Moreover, precisely because it has the effect (within a finite element con-

text) of enlarging the design space, the process of relaxation can destroy local minima -

making it easier to locate a globally optimal design. Finally, since the relaxed problem

is known to have a solution, it is meaningful to use the associated optimality conditions;

this has led in some contexts to closed-form examples of optimal designs making use of

composites, e.g. [29,30,31). The method of relaxation has its limitations: the optimal

designs obtained this way may be difficult or even impossible to manufacture, because of

the presence of composites. Even so, these solutions can be used as benchmar. against

which to compare the output of a more conventional algorithm.

The process of relaxation is conceptually simple: we must simply reformulate the de-

sign problem in a form that permits perforated composites as admissible materials. The

actual execution, however, is not so simple: it requires specific knowledge about the prop-
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erties of the relevant composites. For a local performance criterion such as the maximum

stress (5.1c) we would have to know optimal bounds relating the effective Hooke's law, the

density of holes, the average stress, and the local maximum stress in a general perforated

composite. This represents a challenge for the future: no such result is presently known.

For a performance criterion involving some integral of the displacement, such as (5.16). it

would suffice to know the solution of the G-closure problem - in other words, to know the

class of all effective Hooke's laws obtainable using perforations that remove a given fraction

of the material. The analogous problem has been solved for scalar equations [37,661. and

it has been applied to solve various optimization problems involving conductivity, see e.g.

[12,20,30,38,50,67]; but unfortunately the G-closure problem for elasticity remains open at

this time except in certain rather special cases [34,35]. However, problems involving com-

pliance constraints such as (5. la) do not require the full solution of the G-closure problem;

rather, bounds of the type presented in Sections 3 and 4 are sufficient. To explain why, we

note that it is not really necessary to consider all composites; one might as well consider

just those that can actually occur in an optimal design. Now, by Green's formula the

compliance is equal to the internal elastic energy:

(5.2) uf = j(A(x)e(u), e(u)) dx,

where A(x) is the spatially varying tensor of elastic moduli and u the associated dis-

placement. A structure which minimizes weight for fixed compliance will also minimize

compliance for given weight; it is not hard to see from this that A(x) should maximize

(Ae(u), e(u)) at each point x in an optimal design. Thus the values that A(x) can take in

an optimal design are restricted to those that maximize (Ac, ) for some tensor .

The preceding discussion shows that we have enough information to solve optimal

design problems with compliance constraints, but it falls short of specifying an algorithm

to do so. How, operationally, should one proceed? Following 130], we advocate an algorithm

based on the principle of minimum complementary energy, a variational principle for the
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stress whose extremal value is equal to the compliance:

(5.3) J u f= min J (A- ( x)oa, a) dx.df di u a,=O. a v%=f

Introducing a Lagrange multiplier for the performance constraint (5. Ia) our design problem

is

(5.4) MIN {,,, WEIGHT + A. COMPLIANCE}.

The outer minimization over designs is quantified by introducing functions O(x) and .4(x).

the density and effective Hooke's law, constrained by the pointwise conditions

0 < 0 < 1, and A is the effective Hooke's law of a

(5.5) perforated composite obtained by removing volume

fraction 1 - 6 of the initially given material.]cr

The compliance is itself a minimum, according to (5.3), so (5.4) becomes

(5.6) min{J6(x)dx + A. ri f (A- 1 (x)aa) dx}.
lA " O div .: __0, = I

The order of minimization is unimportant, and switching it gives

(5.7) min 4x (a) dx(57)dig o=O.,.n=ff

with

(5.8) 4%(a) = min(O + A(A- 'a, a)]
CA

The minimization in (5.8) is over real numbers 0 and tensors .4, constrained by (5.5). This

is slightly different than the problem we treated in Sections 3 and 4, but it can be solved

by exactly the jame method - as can considerably more general problems, for example the

analogue of (5.8) when there are compliance constraints under two or more loads.

The next step, of course, is to evaluate (5.8) analytically or numerically, and to carry

out the optimization by solving (5.7) for realistic design problems. Work in these directions
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* is currently in progress. The minimization of (5.8) was executed in [30] for the special case

of an elastic material in plane stress with Poisson's ratio zero - i.e. when P = Ic = E.

where E is Young's modulus - using a different method, based on quasiconvexification.

The answer is surprisingly simple: scaling A = E = 1 for simplicity,

I +a +a2l 2 _
*(17)= I 2(laol + 1021) - 21ola21, Ijall + 1o2[ < 1

where al. and a2 are the principal stresses (the eigenvalues of a').
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Wave Propagation in Layered Elastic Media

Rouben Rostamian
Department of Mathematics

University of Naryland Baltimore County
Baltimore, MD 21228

In a joint work with William Hager we have studied propagation of plane waves
in layered, linearly elastic media. An elastic material is layered if its properties
depend only on one coordinate of a Cartesian coordinate system. Consider an
elastic body consisting of a homogeneous half-space attached to a layered half-
space, and a plane wave traveling in the homogenrous half-space and obliquely
impinging onto the layered interface. We compute the strengths of the resulting
reflected and refracted waves. As a special case, we consider the situation where
a layered elastic slab is sandwiched between two homogeneous half-spaces. An
important problem in submarine technology is to determine the mechanical
properties of the sandwiched layer to minimize the strength of the reflected
waves. We will describe our results in the isotropic case and outline our ongoing
research for the anisotropic case. This leads to some interesting problems in
homogenization and optimization which will be discussed here and in W. Hager's
talk.
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Wave Propagation in Anisotropic Elastic Media *

William W. Hager
Department of Mathematics
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*1. Introduction

In this paper we describe a generalization to anisotropic materials of our theory [3] of
analysis of reflection and refraction of obliquely incident, plane, time-harmonic waves
in stratified elastic media. Specifically, we address the following questions: What
is the fraction of energy that is reflected from a stratified slab sandwiched between
two homogeneous half-spaces? What is the fraction of energy transmitted through
the slab? By a stratified medium, we mean a generally anisotropic, linearly elastic
material whose mechanical properties vary in only one direction in an arbitrarily
prescribed way. The ability to handle general stratifications is an important feature
of our approach. Furthermore, in the optimal design of coatings, cf. [3], this generality
is essential.

To determine the reflection and transmission tensors for a stratified slab, we in-
troduce the concept of impedance tensor which contains information about the local
mechanical properties of the medium and wave propagation directions. An overall
impedance tensor is then obtained for a stratified slab by integrating a Riccati equa-
tion across the thickness of the slab; the local impedance tensor enters into the coeffi-
cients of the Riccati equation. The reflection and transmission tensors of a stratified
slab then can be expressed in terms of its global impedance tensor.

The specific application that motivated our formulation for the reflectivity and
the transmissivity concerns the design of an optimal coating that minimizes reflected

'Research supported by grants from NSF, ONR and ARO
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energy from a surface for waves in some frequency band. The optimization is subject
to design constraints such as upper and lower bounds for the Lame moduli in the
isotropic case, for the dissipation coefficient, and for the density within the coating;
however, the dependence of mechanical properties on the depth in the coating is not
specified a priori. In order to implement gradient-based optimization algorithms, we
need a formula for the gradient of the reflectivity with respect to parameters describing
the coating. It turns out (see [2]) that i) these gradients can be expressed compactly
in terms of the impedances, ii) the optimal mechanical properties have a bang-bang
structure over part of the coating while they vary continuously over the remaining
part of the coating, and (iii) if we focus on waves of a specific frequency (rather than a
frequency band), then the optimal coating is completely bang-bang. (By a bang-bang
structure, we mean that the coating is composed of homogeneous layers, and in each
layer the mechanical properties are either at the upper bound or at the lower bound.)
The bang-bang structure for the optimal coating can be deduced from the minimum
principle of control theory and the way the mechanical properties enter in the Riccati
equation.

2. Notation

9 denotes the three-dimensional euclidean space (set of points) and V is the associated
vector space. We topologize V by the usual dot product. A second order tensor is a
linear mapping of V into V; C denotes the linear space of the second order tensors.
We topologize C by using the inner product E . F d=f tr(ETF), where 'tr' denotes the
trace and the superscript T denotes the transpo-e (same as adjoint.) We use 1I1 do
denote norms both on V and C. The tensor product a 9 b of two elements a and b
of V is the second order tensor that assigns to each vector u E V the vector (b • u)a:

(a @ b)(u) = (b. u)a Vu E V.

The inner product induces a natural orthogonal decomposition S 9 K of the £ where
S and K are, respectively, the linear spaces of symmetric and skew-symmetric second
order tensors.

The (fourth order) elasticity tensor at each point x of an elastic body a C C is a
linear operator C : V - V satisfying the following hypotheses:

1. C is self-adjoint

2. kerC =K

3. C is strongly elliptic, i.e., there exists a positive constant a such that

U. CX[U] > aflUfl 2

for all x E e and all rank-one second order tensors U in S.
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Note that U E S is of rank-one if and only if U = ul ® u2 for some ul and u2
in V.

When necessary, we explicitly indicate the dependence of C on x by writing C. or as

C(x). We assume throughout that C is bounded and measurable as a function of x.
The equation of motion of a linearly elastic material 3 is

pi = div C[Vv] (2.1)

where v = v(x, t) is is the (infinitesimal) displacement at time t and at point x, p :q
the mass density, and superimposed dots denote time derivatives. In general, p ana
C are functions of x. Subsets of B where C and p are independent of x are said to be
homogeneous.

Consider a homogeneous elastic material that occupies the entire space 4C. A plane
wave is a motion of the form

v(x, t) = af(t - x . p/c) (2.2)

that satisfies the equation of motion (2.1). Here a is the amplitude vector, p is
the propagation direction vector, and if p is of unit length, then c is the speed of
propagation. The function f is the wave profile. Substitution of equation (2.2) in the
equation of motion (2.1) implies that

pa = 1 C[a @ p p. (2.3)
C2

The acoustic tensor is a function A 6 -- C defined by

A(p)a = -C[a 9 p]p, a E C. (2.4)A pa

Thus we may write (2.3)as an eigenvalue problem:

A(p)a = c2 a. (2.5)

Proposition 1 (Cf. Gurtinfl]) Assume that the hypotheses on the elasticity teisor
C stated above hold. Then for any nonzero vector p E C, the second order tensor
A(p) is symmetric and positive-definite.

The formula (2.2) describes a plane wave if and only if the parameters a, p, and
c satisfy the eigenvalue problem (2.5). In any direction given by a unit vector p, the
symmetric and positive-definite matrix A(p) has three real, positive eigenvalues cl,
c2, c2 and a corresponding orthonormal set of eigenvectors {a, a 2 , a83. Order the
eigenvalues such that cl < c2 5 c3 , and set pi(p) := p/ci for i = 1,2,3. Equation
(2.5) then implies that

A(pi)ai = aj, i = 1, 2, 3. (2.6)
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Definition I The three surfaces

Si = {x E : x= 0+pi(p), JpJ-1} i = 1,2,3

are called the descriptor surfaces for the elastic material with the elasticity tensor C.

Here, and in what follows we denote the arbitrarily fixed origin in & by 0. Note that

since A is quadratic in p then each Si is symmetric with respect to 0.

Observation 1 A vector r E V such that 0 + r is in one of descriptor surfaces

determines a plane wave that propagates in the direction of r at speed 1/Ir, and an
amplitude vector a such that, by (2.6), A(r)a = a.

Ezample 1: The elasticity tensor for isotropic material has the following simple rep-
resentation in cartesian coordinates:

Cjkl = M'(6 ik6 j1 + 60ljk) + A6136kl.

where M and A are the Lami moduli. It may be shown that C is strongly elliptic if

and only if IA> 0 and 2,u + A > 0. It follows that

A(p) = A-pI 2+ IA -A
P P

where I is the identity in C. We thus have

det (A(p) - c'I) = (!IpI' - C2)2[( 2 ,+ A ;j2 C2]

whence, with IPI = 1 we get

CI  C2 =C 3 =

Moreover, a3 = p, and the eigenvectors a, and a 2 may be taken as any orthonormal

pair of vectors in the orthogonal complement of span of p. The lengths of the vectors

pi = p/ci of Definition I in this case are fixed and are independent of the vector p.

The descriptor surfaces Si therefore are spheres:

S, = S2 = {X E 6 : x = 0 + r, r= -,

S3 = {X E 6: x = 0 + r,rl - 2
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Example 2: The elasticity tensor of an originally isotropic material with added rein-
forcing fibers running along the direction of a unit vector h is

cjkl = IA(bikbjl + 6 iL6 jk) + A6ijSk, + ichihihkh

where the constant r. measures the tensile strength of the reinforcement. It follows
that

A(p) + ----- p p + -(Ph)2 h® h.

A representative set of descriptor surfaces for this material is shown in the figure at
the end of this paper.

3. Wave propagation in a homogeneous half-space

Consider a homogeneous elastic half-space 3 with boundary 00, elasticity tensor C
satisfying the hypotheses of Section 2. Let n denote the unit external normal at 8.
Consider a plane wave in the form

v(x, t) = aitf(t - x p)

for some propagation vector p in one of the descriptor surfaces Si for the material. We
assume that p • ri > 0; this may be interpreted as asserting that the wave is 'coming
from infinity.' The unit vector a is determined from (2.6) (see also Observation 1),
and a is a scalar coefficient. The line L : 0 + p + kn, k E (-oo, oo), intersects
the descriptor surfaces 51, S2, S3 in a total of six points in general, one of which
is 0 + p corresponding to k = 0. Denote these points, in the order of increasing k,
by r 3 , r 2 ,rl,Pl,p2, Ps. The assumption p. n > 0 implies that p E {P1,P2,P3}. The
letter r is chosen as a mnemonic for reflection as we will show that the reflected waves
generated by the incident wave p propagate in the directions of the vectors ri, r2, r3.
In fact, any one of the three incident wave of the type

v(x,tV ajaif(t - x. pi)

gives rise to a combination of reflected waves in all three directions ri, r 2, r 3. Extend-
ing an idea in our previous work[3] we thus look at a slightly more general problem,
where instead of one incident wave in the direction pi we have three simultaneous

incident waves in directions pi, P2, P3.

Definition 2 A wave ensemble is a superposition of three plane waves of the form

3

v(x, t) = " a~aif(t - x. p), (3.1)
i=e

O where for i = 1, 2, 3
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1. the vectors pi are in the descriptor surfaces Si

2. pi • n > 0 for all i or pi • n < 0 for all i

3. ai are unit vectors and (2.6) holds

4. For j $ i, p, - pi is parallel to n

The incident wave ensemble (3.1) upon interaction with the boundary a5 gives
rise to the reflected wave ensemble

3
v(x, t) = -" fibif(t - x. ri). (3.2)

i=1

When x E M3B the arguments of f in (3.1) and (3.2) by their construction are identical.

The motion generated at the boundary by (3.1) is proportional to a aj and
the motion generated by (3.2) is proportional to b d e f j 1b. We now proceed to
define the concept of the impedance tensor which plays a central role in the remainder
this paper.

The traction at the boundary of the half-space due to the wave (3.1) is Sn, where
the stress S is given by C[Vvj:

3
traction = Sn = C[Vv]n = - a i C[ai 0 p1 ]nf'. (3.3)

i=1

Fix an arbitrary set of cartesian coordinates and temporarily (with an abuse of no-
tation) let us use ai to denote the representation of ai as a 3 x 1 matrix. Define the
3 x 3 matrix

A [a 1  a2  ia 3  ] (3.4)

and the 3 x 1 matrix

B [ C[a, 0 pi]n " C[a 2 @ p2In " C[a3 @ p3n ] (3.5)

and let
H = BA'. (3.6)

It may be verified that H is represents a second order tensor which is independent
of the choice of coordinates. We now state a definition in a somewhat more general
context.

Definition 3 Let the triple of vectors pi, i = 1, 2, 3, be such that 0 + pi E Si for each
i, where 5, are the descriptor surfaces of an elastic material. Let the unit vectors aj
be the solutions of the equation (2.6). With an arbitrary unit vector n construct the
matrices A and B as in (3.4) and (3.5), and the tensor H as in (3.6). We call H the
impedance tensor of the elastic material with respect to the the incident wave system
{(pi, a, )},= and the normal vector n.
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Recalling the notation a = sia we may write

a = A a2 or, equivalently at = A-'a. (3.7)
a 3  a3

Therefore we rewrite (3.3) as

traction = Sn = -B a 2  -BA-'af' -Haf'. (3.8)

4. Reflection at the interface of two homogeneous half-spaces

Consider two homogeneous elastic half-spaces, BI and B2 , with a common boundary
1, and unit external normal vectors n, and n 2 at their respective boundaries. Assume
that no slippage occurs at the boundary, and that the elasticity tensors C1 and C2
each satisfy the hypotheses of Section 2.

Consider an ensemble (cf. Definition 2) of the form

3
v("'n)(x, t)= a czaf(t - x " pi), (4.1)

representing a triple of plane waves traveling in B1. Assume that pi • n, > 0, that is
the waves are originated at infinity. Let the ensemble

3

V(ref 1)(x, t) = E3 3bi f(t - x . ri) (4.2)

i=1

represent the resulting reflected wave system as constructed in Section 2. We wish
to compute the amplitude coefficients Oi in terms of ai. The success of the compu-
tation will implicitly validate the foi 1 (4.2) that we have adopted for representing
the reflected waves. The intensity of the reflected waves in 81 of course depend on
the properties of the adjoining half-space 82. We now proceed to describe the wave
pattern in 82.

The starting point of construction of the ensembles involved in (4.1) and (4.2)
is the construction of the line LI : 0 + pi + k nI, as described in the beginning of
Section 3. The choice of index i is immaterial, since by part 4 of Definition 2 all such
lines will coincide. The next stage of the construction of the ensemble involves the
descriptor surfaces which depend on material properties. Thus the properties of the
half-space B, are implicitly involved in the representation (4.1) and (4.2).
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Consider now the line L 2 : 0 + pi + k n2 which coincides (for any i) with the line L,
except that the parameter k orients it in the opposite direction. This line intersects
the descriptor surfaces of the elastic material B 2 in six points which we label, in the
increasing direction of k, with t 3 , t 2 , tI, sI, s 2 , s 3 . The vectors ti, i = 1, 2, 3 are the
directions of the transmitted (i.e. refracted) waves. The transmitted wave in the
half-space B2 then has the following repreentation:

3

v(traln)(x, t) = E 71cif(t - x" ti) (4.3)
i=I

The unknown amplitude factors Oi and -yi are determined by equating the displace-
ments and by balancing the tractions at the interface. The equality of displacements
V(i 'C) + V (

-
e / ) = V(trans) at the interface immediately gives

ft t ftI

Sajai + E ,b, = E 7,ic,

=1 -i=1

which, with the notation

ft t ft

a =Z iai b =ZE ibi c= Yici (4.4)
i=t i=1i=

reduces to
a + b = c. (4.5)

To match the tractions, we use the expression in terms of impedances (3.8) in
Section 3. We need to distinguish, however, three impedances, based on three different
sets of parameters, as follows.

The impedance HI, based on the elasticity tensor C1, the incident wave descriptors
{(p,,ai)}?=1 , and the normal vector nj.

The impedance A,, based on the elasticity tensor C1 , the reflected wave descriptors
b(rb)} , and the normal vector ni.

The impedance A 2, based on the elasticity tensor C2, the transmitted wave de-
scriptors {(t, )}j= 1 , and the normal vector n 2.

Then, according (3.8) the tractions measured in terms of external vectors at the
interface of the two half-spaces are given by

-Hlaf' - A1 bf' on B, and - A 2cf' on B1 ,

whence
Hla + Hb + H 2c = 0. (4.6)



Solving equations (4.5) and (4.6) for b and c we get

b = Ra, c = Ta,

where

R = -(ill + i 2 )'(H 1 + A 2 ), T = -(Al -4- A 2 )1 (H - JAI). (4.7T)

We refer to R and T as the reflection and transmission tensors at the interface.
Using these values for b and c, the coefficients Oi and -yi of the reflected and

refracted waves (4.2), (4.3) then may be computed from (4.4) as in (3.7)..

5. Layered media

In Section 3 we introduced the concept of impedance for a homogeneous elastic half-
space and used it in Section 4 to compute the reflectivity of the interface of two
homogeneous half-spaces. In this section we extend the definition of impedance to
layered media and then use it to compute the reflectivity of the interface of two half-
spaces, one of which is homogeneous and the other is layered. For technical reasons
we restrict our attention to steady-state sinusoidal waves. As in 131, we approach the
problem via invariant imbedding. This is done in two steps:

Step 1: Solve the auxiliary problem of computing reflectivities in the case of a homo-
geneous slab sandwiched between a homogeneous half-space and a layered half-space.
Step 2: Compute limits as the thickness of the slab in Step I approaches zero.

This leads to the concept of localized impedance and a differential equation satisfied
by it.

5.1. The auxiliary problem

Consider a homogeneous slab B2 of thickness r interposed between a a homogeneous
half-space 81 and a stratified half-space 53. We denote the variables associated with
the homogeneous half-space, the homogeneous slab, and the stratified half-space by
indices 1, 2. and 3, respectively. We denote the interface of L1 and 82 by 112, the
interface of 82 and 83 by 123, the unit external normals to the boundaries of 31 and
B3 by ni and n3, and the unit external normals at the boundaries "ij of B2 by n1i.
We assume that the origin 0 of 6 is contained in 123. The reflectivity of the interface
112 with respect to waves impinging from the 5 1-side depends on the thickness r of
the slab and is denoted by R(r). The reflectivity of the interface 123 with respect
to waves impinging from the 8 2-side will be denoted by R0 . Note that R.0 does not
equal R(O) in general since these represent reflectivities of the boundary of 83 with
respect to waves traveling in two deferent media 81 and 13. Our objective in this
subsection is to compute R(r) in terms of R0 .
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As in Section 4 consider he ensemble

3
v(inc)(x, t) = E kaa exp[iw(t - (x - rn3). Pk)] (5.1)

k=1

which travels in B1 such that p, . n1 > 0 for k = 1, 2, 3. This represents a triple of
plane, steady-state, sinusoidal incident waves. Let the ensemble

3
V(fefI)(X, t) = E I,3 b, exp[iw(t - (x - r"n3)" rk)] (5.2)

k=1

represent the resulting reflected ensemble in B 1.
In B2 we construct the propagation vectors t3, t2 , t1 , sI, s 2 ,s 3 as in Section 4 and

the ensembles corresponding to them:
3

V(auzl)(Xt) = Z 7hch exp(iw(t - (x - n3 ). t4)] (5.3)
k=1

3

V(ad2)(X' t) =-- j bd, exp(iw(t - (x - Tn 3 ) 91)]. (5.4)

r.guratively, (5.3) and (5.3) represent the resultant of the reverberation set up in £32
by the incident wave system.

In what follows we will use the following notation:

3 3 3 3

a =Zcka, Ib= i3Ab C E kck dZ1: kdk
k=1 k=1 k=i k=I

3 3

c0 = E , ck, exp[iwrn 3 ' t,)] do = 1 8kd expfiwirn 3 • .

h=I k=1

Furthermore, temporarily fix a cartesian coordinate system and construct the

matrices

C =[c c 2 :" C3 D=[ di d2  d3

and set

C(r) = C diag[exp(-iwrn 3 • tj), exp(-iwin3 • t 2 ), exp(-iwrn3 . t3 )] C -1  (5.5)

D(r) = D diag[exp(-iwrn 3 , s1), exp(-iwrn3 s2), exp(-iwrn3 s3) D (5.6)



where diag' denotes the diagonal matrix of the given elements. It is readily seen that
C(r) and D(r) are tensors hence independent of the specific choice of coordinates.
The vectors c, co, d, do are related by

co = C(r)c do = D(r)d. (5.7)

The reflectivities Ro and R(r) then satisfy the relations

do = Roco (5.8)

and
b = R(r)a. (5.9)

The continuity of the displacement at the interface 112 is expressed:

a + b = c + d. (5.10)

To express the balance of traction at 12 we introduce the following four impedances:

" The impedance H 1, based on the elasticity tensor C1 , the incident wave descrip-
tors {(p., ak)}J'= 1 , and the normal vector n1 .

" The impedance H, based on the elasticity tensor C1, the reflected wave de-
scriptors {(rk, bk)}'=l, and the normal vector nj.

" The impedance HA2 , based on the elasticity tensor C2 , the transmitted wave
descriptors {(tk,C, c)}= 1 , and the normal vector n12.

* The impedance H 2, based on the elasticity tensor C2, the transmitted wave
descriptors {(sk, d,)}3,, and the normal vector n12.

Then, using (3.8), we compute and equate the traction vectors at the interface 123

and obtain:
H 1a + H 1b + A2 c + H 2d = 0. (5.11)

We may solve (5.7), (5.8), (5.10), (5.11) as a system of five equations in five
unknowns b, c, d, co, do. In particular we obtain

[ft, + G(r)Jb = -(Hl + G(T)Ja, (5.12)

where we have let

G(r) = (Ht2 + H 2 D(r)1'RoC(r)) (I + D(r)-'RoC(r)) (5.13)
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Comparing with (5.9) we see that

R(r) = -(H + G(r))(Hi + G(r)). (5.14)

Thus we have obtained a relationship between the reflectivities R(r) and Ro. Note
the similarity between the expressions (5.14) and (4.7). In particular, G(r) in (5.14)
plays the role of the impedance tensor H in (4.7). For this reason, we consider G(r)
as the imoedance of the boundary 112 of the stratified half-space 133 U 12. This will
be further clarified in the following subsection.

5.2. Derivative of G(r) at r = 0

Let us now compute the rate of change of G(r) with respect to the thickness r of
the slab. In particular, we are interested in computing the derivative G'(0) which
expresses the rate of change of the impedance of the stratified half-space 83 due to
the addition of an 'infinitesimal' veneer with mechanical properties equal to that of
B2. For this, let

L( r) = D(r)-RoC( ") (5.15)

and rewrite (5.13) as

G(r) = (H2 + HeL(r))(I + L )) - 1. (5.16)

Then we have

G'(r) = H2L'(I + L) - 1 - (A2 + H2L)(I + L)-L'(I + L)-'

= (H2- i2)(I + L)-'L'(I + L) - . (5.17)

To simplify this, compute L in (5.16):

L = (G - H2)-'(t - G),

whence
I + L = (G - H2)(H, - H2).

Substitute in (5.17) to get

G'(") = -(G - H2)L'(H, - H 2)-(G - H 2 ). (5.18)

Now we proceed to compute L'(r), and L'(0) in particular. Recall the definition
of L(r) in (5.15) those of C(r) and D(r) in (5.5) and (5.6). Observe that C(0) =

D(0) = I, and let

C0 t- f C'(0) = -iwC diag[n 3 , ti, n3 t 2 , n 3 - t3 l C- 1 (5.19)
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D0 
'f D'(0) = -iwD diag[n 3 - s,, n 3 s2 , n 3 s31 D- 1 (5.20)

Then

L'(0) = -DORo + RoC0

= -D 0 L(0) + L(0)C°

= -Do[(G(0)- H2)- (H2- G(0))]

+ [(G(O) - H 2)-'(H 2 - G(O))]Co. (5.21)

Let r = 0 in (5.18), substitute for L'(0) from (5.21), use the matrix identity

(G - H 2)-'(H 2 - G)(H 2 - H 2)-'(G - 12)
= (G - H2)-I [012 - H2) + (H2 - G)](A 2 - H2)-I(G - H2)

= (H 2 - H 2 )-I(H 2 - G)

and simplify the result to arrive at

G'(0) = (G(0) - H 2)D°(H 2 - H 2)-'(H 2 - G(0)

- (12 - G(O))C°(H 2 - H 2)-'(G(O) - H2). (5.22)

5.3. The Riccati equation

Equation (5.22) shows the effect on the impedance at the boundary of the stratified
half-space B3 due to an augmentation by an infinitesimal layer at its boundary. We
may build up a stratified slab of finite thickness and a prescribed distribution of
mechanical properties by 'integrating' (5.22) over the width of the slab. Specifically, as
before, let 83 be a stratified half-space and B, be a homogeneous half-space. However,
in contrast to what we have done thus far, let B2 also be a stratified, rather than a
homogenous, slab of some finite thickness a. Suppose that we know the reflectivity
Ro of the interface eqna created by bringing the half-spaces B3 and 81 in contact.'.
We wish to interpose 82 between B, and B3 and to compute the reflectivity of the
boundary of the composite half-space B3 U 82. The crux of the invariant imbedding
idea is to replace this problem with the one-parameter family of problems where
instead of augmenting B3 by the slab 82 of thickness a, one gradually 'builds up' to
the desired thickness a by gradual addition of infinitesimal layers, accounting for the
change of reflectivity at each step, and integrating the changes over the whole process.

Thus let the parameter - denote the thickness of the partially formed slab 8(r) of
thickness + and let G(r) denote the impedance of the boundary of the composite half-
space 53 U 8(r). When this half-space is further augmented by adding an infinitesimal

'For instance, if B3 is homogeneous then RL may be computed from (4.7)
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veneer of material with the desired mechanical properties, the rate of change of G
can be computed using equation (5.22) as

G'(r) = (G(r) - H(r))D0(r)(A(r) - - G(r)

- (H(r) - G(-))C°(r)(H( ") - H(,r))-(G(r) - H(r)). (5.23)

Here H(r) is the impedance tensor based on the local properties of the material found
at distance r from the surface of 53. Note that the propagation vectors t 3 , t 2 , t1 and
sI, S2, S3 that enter in the computation of H(r) are now functions of 1r. The tensors
CO and Do, which were defined in (5.19) and (5.20) for the special case " = 0 are
now also functions of r since they depend on the propagation vectors sk and te.

The Riccati differential equation (5.23) may be integrated on the interval (0, a) to
compute G(a). The reflectivity of the boundary of the composite half-space 83 U B2
then may be computed from (5.14). See (31 for further analysis of special cases in the
context of isotropic materials.
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Abstract. We give computational results for the martensitic-austenitic phase transition in the indium-
thalium alloy. We use the free energy density developed by Ericksen for cubic-tetragonal phase transitions.
We have developed numerical algorithms and a finite element code to compute approximate minima for
the bulk energy functional. Our numerical results give twinning on the scale of the grid . We are also able
to compute an austenitic - finely twinned martensitic interface.

1. Introduction. Much of the interesting behavior of shape memory materials is
associated with the fact that loads and temperature changes influence martensitic phase
transitions. The austenitic-martensitic phase transition is a solid-solid phase transition
usually characterized by a decrease in crystal symmetry at a transition temperature. The
indium-thallium alloy with composition near 20 atomic % thallium exhibits such a phase
transition from a high temperature solid phase with cubic symmetry (austenite) to a
low temperature solid phase with tetragonal symmetry (martensite) [5]. It is observed
that the martensitic phase is often "finely twinned" along planes related to the crystal
lattice and that an austenitic-finely twinned martensitic interface can be observed at the
transition temperature along special planes related to the crystal lattice [5]. In this paper,

we give results which demonstrate that the experimentally observed phenomena of fine
scale martensitic twinning and the austenitic-finely twinned martensitic interface can be
obtained by numerical computations based on the Ericksen theory for cubic-tetragonal.

phase transitions [9,10].

The Ericksen theory gives a free energy density for first-order cubic-tetragonal phase
transitions. The moduli have been determined by R. D. James to match the transformation
strain and the linear elastic moduli for the martensitic phase at the transition temperature.
Ball and James [2] and Chipot and Kinderlehrer (6,15] have explained how the Erzcksen

theory gives the interesting phenomena of fine scale twinning and of an austenitic-finely
twinned martensitic interface.

We have developed numerical algorithms and a three-dimensional finite element code

to compute approximate minima for the bulk energy functional [8]. Our numerical results

tProceedings of the ARO Smart Materials, Structures, and Mathematical Issues Workshop, Virginia
Polytechnic Institute and State University, September 15-16, 1988.
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Institute.



give twinning on the scale of the grid and an austenitic-finely twinned martensitic interface
on the planes predicted by the Ball-James theory [2].

Alt, Hoffman. Niezg6dka, and Sprekels have given a numerical study of a
one-dimensional mathematical model for the dynamics of the austenitic-martensitic phase
transition [1]. Silling has used a non-physical bulk energy in two space dimensions to

numerically simulate martensitic transformation and twinning [16].

2. Continuum Theory. Let the reference configuration for the crystal, Q C R3 ,

be undistorted austenite at the critical temperature, Oc. Let y(x) : Q - R3 be the
deformation. As usual, we assume that y(x) is continuous, injective, and orientation
.preserving [7]. The deformation gradient is given by F(z) = Vy(x) and the right Cauchy-

Green strain tensor is given by C = FTF [13]. We denote the temperature by 0 and the

free energy per unit volume by O(F, 9). The bulk energy for the deformation y(x) at the

temperature 0 is then given by

(Y)= j (Vy(x), O)dx.

We want our constitutive equation to be invariant under observer changes [13], so we
want € to satisfy

O(F, 6) = 0((FTF)I/2 , 0) (2.1)

and we define
W(C,9 ) = O(C/ 1 2 ,9) = O(F, 0).

Since the reference configuration has cubic symmetry, we want W to satisfy

W(RSCRT, ) - W(C,9) (2.2)

for R, E S where 9 = {R 1,..., R24 } is the cubic symmetry group of proper rotations.

In an unstressed state, the Cauchy-Green strain for the martensitic phase is given by

one of the variants
C1 = CI(0)= diag(1 + 2e, 1 - e, 1 - e),

C2 = C2(0)= diag(1 - e, 1 + 2e, I - e),

C 3 = C3(9)= diag(1 - e, 1 - e, 1 + 2e),

where e = e(9). Note that

{RCIRTI = 1,..., 24} ={C1,C 2 C3 }

We also define the right stretch tensors

Ui = C 12.

2



Our energy density must predict that in an unstressed state the austenitic phase is
stable for 9 > P .the austenitic phase and the martensitic phase can coexist for 9 near 9,
and the martensitic phase is stable for 9 < 9. More precisely, we must have that

W(C,9) > W(I,9) (2.3)

for C # I, 9 > 9,

W(C,9) > W(Cl,9) = W(C 2 ,9) = W(C 3,P) (2.4)

for C # C, C2 , C, 9 < 9c,

and

W(C,Oc) > W(I,9,) = W(ClA) = W(C 2 ,8) = W(C 3 ,9c) (2.5)

for C # C1 , C 2, C 3, I.

Ericksen has proposed the following energy density for a constrained elastic crystal (101

W(C, 9) = b()J + c(O)K + d(9)J 2,

S6=-- (, - 1)2 + ( 2 - 1)2 + (A3 - 1)2}

K= (Al - 1)(A 2 - 1)(0 3 - 1),

A 1=C 11, A2 =C 22, A3 =C 33

subject to the constraints

C 12 =C 23 =C 1 3=0, trC=3.

Ericksen has shown that the coefficients b, c, and d can be chosen so that W satisfies

*(2.1)-(2.5). Ericksen also proposed to the authors that the constraints could be replaced
by adding penalty terms to the energy density to obtain

W(C9) = bJ +cK + dJ 2+

e ( 2
2( 12 +C3 23 2+C1 +C +C 2) +f(tr C - 3)2 ,

= !{(A 1 - 1)2 + (A2 - 1)2 + (A3 -

where the A, are modified s., that

3



A= for i = 1, 2, 3.
tr C

R. D. James has determined coefficients for W so that (2.1)-(2.5) are satisfied, so that
W matches available experimental linear elastic moduli at 9 = 9, for the martensitic phase
(F = U1), and so that C1, the Cauchy-Green strain for the unstressed martensitic phase,
matches experimental data at 0 = 0, for the indium-thallium alloy with 20.5 atomic %
thallium. James' coefficients also match experimental data [5] for the effect of uniaxial
stress on transition temperature. James' moduli are (0 in °C and moduli in gigapascals)

b =0.38 + (1.22 x 10-3)(0 - 70)

c = - 29.23

d=562.13

e =3.26

f =5.25

The critical temperature, the temperature at which (2.5) holds, is 0, = 70 for these coeffi-
cients.

3. Internally Twinned Martensite. For an unstressed solid at 9 < 0, the above
theory allows the existence of minimum energy deformations which have deformation gra-
dients which are discontinuous across twin planes [2,6,8,9,10,15]. Ball and James [2] have
shown that there exists a proper rotation, R, such that

RU 1 = U3 +a on

where 1= -(j+ )
n v e(3.1)

= e"((1 -e)1/
2 e -(1 + 2e) 1 2 e3).

Planes orthogonal to n are twin planes. It then follows that

y(x) = Ux + a 3(t)dt,

where 3(t) takes only the values 0 and 1, is a deformation which has minimum energy and
which has a discontinuous deformation gradient if 3(t) is not constant. We note that

Vy(X) = U3 where O(x.n) = 0

Vy(x) = RU1  where (x. n) = 1.
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The mathematical properties of the Ericksen energy density is very different from the
properties of the energy density of linear elastic materials. The Ericksen energy density is
clearly not convex since

O(Ui) + O(U3 ) U1 + U3

2 2

The energy densities of linear elastic materials are quadratic and convex. We saw above
that there are minimun energy deformations with discontinuous deformation gradients if
the energy density attains its minimun value at distinct deformation gradients which differ
by a rank-1 matrix. A nontrivial energy density with distinct minima clearly cannot be
convex.

As a consequence of the lack of convexity of the Ericksen energy density, for some
boundary conditions there do not exist deformations which achieve the miminum energy.
Instead, deformations attempt to attain the minimun energy by having arbitrarily fine
scale twinning. In the language of mathematical analysis, our bulk energy is not lower
semi-continuous[2,6,15]. To see this, let i3(t) be periodic of period 1 and define

Yk(X) -= k-ly(kx).

Then yk(X) - y() =_ (U3 + Aa ® n)x uniformly

and J Vy(z) dx -. Vy*(x) dx

as k --* oo for all domains D C 0. However, y'(x) is not a deformation with minimum
energy even though all of the y,(X) are deformations with minimum energy. We note that
convex bulk energy functionals are lower semi-continuous and thus do not allow fine scale

twinning[2,6,151.

Now for 0 < 0, and 0 < A < 1 the bulk energy function, 3(y), cannot attain its
minimum value on the set of admissible deformations [3]

A = {y(x) I y(x) = (U3 + Aa (9n)x for z E 0f/}.

This is because the deformation gradients of minimizing sequences attempt to take values
which minimize the energy density. This results in fine twinning to give compatibility with
the boundary conditions. The information to be obtained from the minimizing sequences
for this problem can be summarized using the concept of the Young measure [6,151. In
fact, any minimizing sequence for this problem gives a unique, nontrivial Young measure
which converges to a single laminate [3].

We are interested in the possibility of numerically computing minima of the bulk

energy on finite-dimensional approximations of the set of admissible deformations as a

5



means toward understanding the material microstructure given by minimizing sequences.

For our numerical experiments we let our reference configuration be

f2 = {x = (xI,x 2 ,x 3 )1O < xi < 1 for i = 1,2,3}.

To construct our finite element approximation to A we let N be a positive integer, h = 1/N.
and

Qik = {x = (XI,X 2 , X3)lih < x, < (i + 1)h, jh < X2 < (j + 1)h, kh < X3 < (k + 1)h}

for i, j, k = 0,... , N - 1. We then define the space of trilinear polynomial functions

1 C=jkXlk)X = Xa for ajk E R3 }

ij,k=O

and the space of continuous, piecewise trilinear deformations by

Mh = {y(x)Iy(x) is continuous for X E 0 and Yin,,, E Q1 for i,j, k - 0, ... N - 1}.

We approximate the set of admissible deformations by the finite-dimensional space

Ah = {y E Mh I y(x) = (U3 + Aa ® n)x for x E,%1}. (3.2)

We then wish to compute 9 E Ah such that

3(a) < 9(y), Vy E Ah. (3.3)

Note that we have not required deformations in A and Ah to be orientation preserving
(det Vy > 0). This is acceptable since our computed solutions to (3.3) have all been orien-
tation preserving. We have approximated the integrals in (3.3) by mid-point quadrature,
and we have used the gradient method and the Fletcher-Reeves version of the conjugate
gradient method [11,12] to compute minima of (3.3). Of course, both the gradient method
and the conjugate gradient method can converge to local minima.

We were unable to obtain a fine scale twinned minima for (3.2). The reason seems to be
that the twin planes (planes across which the deformation gradient is discontinuous) should
be orthogonal to n = 2(el + e3), but the deformations in Ah are not allowed to have
discontinuities in their deformation gradients across planes orthogonal to n. However, we
have obtained martensitic twinning on the scale of the mesh if the reference configuration is

rotated so that the expected twin planes lie along planes for which the deformations in Ah

can have discontinuous deformation gradients. This is easily done by rotating the reference
configuration by j about the x2-axis. We shall continue to denote the coordinates in the

6



* new reference configuration by x = (X1 , X2, X3) and the displacement by y(x). We assume
that the body in the new coordinates is described by

= {X = (XI,X 2 ,X 3 )10 < X, < 1 for i = 1,2,3}.

The energy density is now given by

o(F, 0) = O(FS, 0)

where S is the rotatior ." j about the x2-axis, and the bulk energy is given by

O(y) = j(Vy, )dx.

The martensitic strains are now given by

= SC,ST

and

O = SU S T ,

and we set
a = Sa and 7i = Sn = ei.

The set of admissible deformations for the continuous problem is now

A={y(x)jy(x)=(Us+A®&O)x forzEafl}

and the finite element subspace is

Ah={YE hly(x)=(U 3 +Aa®,i)x forxEa2}.

The problem is then to compute E Ah such that

ju) <5 i(y), Vy E Ah.

In order to see the effect of twinning more easily in our graphical output of the deformed

state, we have replaced b by 16b and c by 4c. This has the effect of replacing e(8,) by 4e(oc).

Thus, e(Oc) for the new coefficients equals .104.

The most dramatic technique for showing the finely twinned structure we obtained

from our numerical computation for this problem is to mark each cell in our reference

7



M Austenitic State X3
11 Martensite Variant 1
* Martensite Variant 2
* Martensite Variant 3 X,
* Not in any of the above states Axes for all graphs

Figure 1. Key to later figures.

configuration to denote whether the right Cauchy-Green strain at the mid-point is close

to the austenitic state, C = I, or any of the martensitic variants, C,(O). In Figure 2 and

Figure 3 we show our results for the case A = 1/2 and 0 = 69 (recall that 0, = 70) after 700

iterations of the gradient method with h - 1/16. The initial state is y(z) = (&3 + Ai®xi)x.

We consider a cell to be in the austenitic state if at the midpoint,

JIC - I1 < minimum{lIC - C111, IC - C2 11, IC - C311, (.02)1/21

where the matrix norm is defined by

3 1/2

IIBIi = (tr B TB)h1/ 2 
-( B?)1/

We consider a cell to be in variant i of the martensitic state if at the midpoint

JIC - CI1 _< minimum{lIC - CjII for j 0 i, IC - Ill, (.02)1/2},

and we consider a cell to be not in a austenitic or a martensitic state if

amnimum{IIC - III, IIC - C1 1, IC - C211, (IC - C311} > .021/.

Figure 1 gives a key for all of the later figures.
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Figure 2. Planar cross-sections for X2 =(i + I)h for i =0,... ,8 with
A = 1/2.
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Figure 3. Planar cross-sections for x2 =(i + )h for? 1 9,... ,15 with

A =1/2.
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Figure 4. Planar cross-section of the deformation for X2 - j with~A = 1/2.

It is also informative to study the deformation of the crystal. In Figure 4 and Figure
5 we show the z1-13 deformation of the crystal for the planar cross-sections Z 2 = -L

16
and X2= . It is easy to see the shearing in the planar layers. It is also evident from
Figures 2-5 that there is a planar defect in the crystal which is characterized by a change
in the martensitic variant in the layers. This defect indicates that we are stuck in a local
minimum. The final distribution of states is given by

austenitic state 221
martensite variant 1 1894
martensite variant 2 0
martensite variant 3 1889
not in any of the above states 92

We note that

O= # of states in martensite variant 1 =.50066
# of states in martensite

which is in excellent agreement with A = 1/2.
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Figure 5. Planar cross-section of the deformation for X2 1/2 with
A = 1/2.

§4. The Austenitic-Finely Twinned Martensitic Interface. Ball and James
have shown how the existence of an austenitic-finely twinned martensitic interface can be
explained by the theory of finite elasticity and minimizing sequences [2]. To construct the

interface, they show that there exists A* such that 0 < A* < 1 and that there exists a
proper rotation, Q, such that

0" + 'a ii = Q(. + 0®h) (4.1)

where
mh =Sm,

=Sb,

b = -10 -r), 0, 1(M + '

r =(1 - 4e)' / 2

¢ =e(1 + (I + 2e) /2) - l ,

e(I + 2e)1/ 2 (1 + (1 + 2e)1/2) - '

12



* As before, we then compute g E Ah such that

SVy EA. (4.2)

We have solved (4.1) by the gradient method with the initialization y(x) = y(x) at

interpolation points (grid points) in Q.

In Figure 6 and Figure 7 we give our iesults for the right Cauchy-Green strain for

= 1/v-. h = 1/16 and 8 = dc = 70 after 350 iterations. The interface is clearly given

as the boundary between an austenitic region and a finely twinned region. We note the

presence of some twin planes oriented orthogonal to the twin planes which are orthogonal

to ft. The final gradient distribution is given by

austenitic state 1492

martensite variant 1 992

martensite variant 2 0

martensite variant 3 1566
not in any of the above states 46

We note that Acalc ----# of states in martensite variant 1 .8
# of states in martensite =.388

whereas A* = .372. In Figure 8 and 9 we give the deformation of the plane X2 = - and

X2 for the above problem.

14



As a consequence of (4.1) they show that at 9 = 8, for any a E R, there exists a minimizing
sequence Yk of deformations such that

j(Yk) -- 0,

yk --* y* uniformly

and

f Vkd -- fVydx

as k -- oo for all domains ') C Q2 and where

M{QX for x. <k
y'(m) = (U +( +\*a+i)(z-am) forx*. >a.

Further, outside of a boundary layer about x A = a whose width, w(k), converges to
zero as k -+ o,

Q for xI <aVTyk=
03 + O(k x. )a for X .M > a + w(k)

where 3 is a function which takes only the values 0 and 1, which is periodic with period 1

and which satisfies

A* = $(t)dt.

Note that

(yO) #0.

Thus, the crystal is in the austenite state for x m < a and is in a finely twinned martensite

state for x > a. The plane of the interface satisfies x = a.

We now consider the minimization of S(y) on the set of admissible deformations

A = {y(x) I y(x) = y*(x) for x E oQ}.

We think that the minimum of j is not attained in the set A [4], although this has not yet

been rigorously proven. However, minimizing sequences give an austenitic-finely twinned

martensitic interface as described above.

We have been able to numerically compute such an austenitic-finely twinned marten-

sitic interface. We approximate A by the finite dimensional space.

Ah = {y E MhIY(X) = y*(z) for x at interpolation points in f}.

13
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isFigure 6. Planar cross-sections for X2 = (i + 1)h for 1 0 , ..8 for

the austenite /finely twinned martensite interface.



Figure 7. Planar cross-sections for x 2 =(i + -1)h for i 9,.. 15 for

the austenite/ finely twinned martensite interface.
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Figure 8. Planar cross-sections of the deformation for X2 =5/16 for
the austenite/finely twinned martensite interface.

Figure 9. Planar cross-sections of the deformation for X2 =1/2 for
the austenite/finely twinned nartensite interface.
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§5. Numerical Methods. In this section, we shall describe the gradient method and
the conjugate gradient methods that we have used to find minima of the functional, 3.

The gradient method starts with an initial guess, y° E Ah, and determines an iteration
sequence, y' E Ah, such that (under appropriate conditions) y' --+ y. After y't E Ah
has been computed, we compute y"+1 E Ah as follows. First, we compute the gradient,
gn E Ah, by

zdx= ,B7 Vz dx, Vz E Ah

Then we compute pn E R, p, > 0 such that

S(Y - pngf) 5 (Y - pg") Vp > 0. (5.2)

Finally, we set
n+1 n n

Y L' Png.
We note that (5.2) is a univariate optimization problem for p > 0. In practice, we compute
the first local minima for p > 0 in (5.2).

It is well-known that even for quadratic, convex functionals the gradient method can

converge slowly [11]. For such problems the conjugate gradient method often converges in
an order of magnitude fewer iterations.

The Fletcher-Reeves variant of the conjugate gradient method is initialized by an initial
guess y° E Ah and an initial search direction d* E g° E Ah is computed. After y." E Ah

and the search direction d' E Ah have been computed, we compute

yn+1 = yn _ ,nd n

where pn E R, p, > 0 is the solution to the one-dimensional minimization problem
(,n - pndn) 5 - pds), Vp > 0.

We then compute the new gradient, gnf+l E A1,, by
jgn+1. zdx -J (Vyn+l,O)'Vzdx, VzEA.

08F
The new search direction, dn+l E Ah, is then computed by

dn+l = gn+1 + Andn

where

An = [Jn+1 .9 n1dx] / [I.g n . gm dx]

Our computational experiments have show that the energy of the iterates for the

conjugate gradient method initially decays faster than the energy of the iterates for the

gradient method. However, the gradient method reaches our criterion for convergence as

fast as the conjugate gradient method. In Figure 10, we give a comparison of the decay of

the energy for iterates of the gradient method and the conjugate gradient method for the

internally twinned martensite problem with A = 1/2 as described in section 3.
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Figure 10. Comparison of the decay of the energy for iterates com-
puted with the gradient method and the conjugate gradient method
for the internally twinned martensite problem with A = 1/2.
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Dynamics of Phase Transitions

Smart materials such as materials with shape memory often exhibit the

abilit to change phase. In this report I will discuss two approaches to

understanding the dynamics of phase transitions. There are (i) phenomological

continuum modeling based on the van der Waals equation of state for a

compressible fluid and (ii) reductionist modecular kinematic modeling based on

the Becker-DHring cluster equations. Both approaches yield conditions for

dynamic change of phase though the mathematical issues in each case are quite

di sti nct.
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Here a is Piola-Kirchoff stress and w is the specific volume (=

(density) - l for an elastic fluid (the deformation gradient for an

elastic solid.)

'me let u(x.t) denote the velocity of the fluid (solia) at

Lagrangian coordinate x and time t. The balance of mass and momen-

tum can be expressed by the 2x2 system of conservation laws

Ut = a(w)x
(I)

Wt = u x , t > 0 , - - < x <

Of course (1) should be coupled with initial conditions for

the motion

u(x.O) = uo(x) . w(x.O) - wo(x) . (2)

Due to the fact that a' < 0 in (as) and a' > 0 elsewhere. (1)

is a mixed hyperbolic-elliptic system.

An ambitious program would be to investigate solvability of

(1) , (.~ gss ambitious task is to study solvability for a

simpler test problem namely the Riemann problem where

uo(x) - ur . wo(x) - wr . x > 0 .
(3)

uo(x) - ut , wo(x) WW a , x < 0 ,

ur, ut-, wr. wZ constants. We may then try to piece together a

solution of the Riemann problem in terms of elementary waves. As

usual the waves of interest are shock waves whose speed of propaga-

tion s satisfies the Rankine-Hugoniot jump condition

- scu] - [a] .
(4)

- sEw] - Eu) .

rarefaction waves, and a contact discontinuity for which [a] - 0.

Here Eu) - u+ - u. etc. where + . - denotes the limits of u from

the right and left of the shock. When w+ . w. lies (b.) or (s.-)

or vice-verse the shock is said to be a phase boundary.

This concept of phase boundary just reflects the usual elemen-

tary notions of a model like that in Figure 1. That is we(b.m) and

wc(s.-) are supposed to denote different phases of the same material.

e.g. (b.a) a liquid phase. (o.-) - vapor phase in a van der Waals

* fluid.

Of course as is well known even for strictly hyperbolic problems

we cannot expect a unique weak solution for the Cauchy initial value



problem. We need some admissibility criteria for choosing preferred

sol utions.

In this note we consider four admissibility criteria: the

viscosity criterion, the entropy criterion, the viscosity-capillarity

criterion, and the entropy rate criterion. To keep matters simple

we shall consider the simplest Riemann problem exhibiting a phase

transition i.e. the case where w, c(b.a), wre(B.-) and ut. ur. wt.

wr are constants consistent with the Rankine-Hugoniot jump condition

for some s. In this case the shock wave solution

w = wL . x < St ; w = wr , X > st
(5)

U = Up U = Ur

is a phase boundary.

(I) The viscosity criterion.

Our phase boundary (5) is admissible according to the viscosity

criterion if the wave is a limit as u 0 0+ of traveling

wave solutions

N A.
U u ( X - s t )  . w - w X-st) (6)

U

to the viscous problem

Ut = a(w)x + UUXx, (7)
Wt 0 Ux

Traveling wave solutions u . w satisfy

" su I  a + UN

ft, , 6
- sw -u .

where d . C - x-std{

Since we wish u + u, , w + w L , x < st ;

U * Ur , w + wr * x > st ; as u * 0+

it is natural to impose the boundary conditions

u(--) - ut. t(+-) - ur, '(--) • wt. %(+") * wr. (9)

Integration of (8) coupled with (9) yields

- s(u -uL) " a(- ) - C(w) + ' .

- s(w wt) a -u.



or simply

A,

sw + s2(w-w ) - 0(w) + C(wX) - 0 . (10)

The equilibrium points of (10) are wL. wr. and possibly an

intermediate value w where the chord connecting (wt, a(wL)) and

(Wr, O(Wr)) cuts the graph of a. For (10) to have a continuous

solution satisfying (9) it is impossible to have such a middle

equilibrium point. For example a solution s - 0 - uL - ur - 0.

o(wz) - O(Wr) as shown in Fig. 2 would not be admissible from

this point of view.

W

On the other if one allows discontinuous traveling waves then

w - wL < 0 ; w - wr , > 0 ; is a solution of (10).

If one allows such discontinuous traveling waves Shearer Ell

has proven existence of solutions to the general Riemann problem (l).

(3) whose solutions are admissible according to the viscosity

criterion.

(II) Entropy criterion.

The entropy criterion postulates that there is a non-trivial

function H(u.w) which satisfies an additional conservation law

Ht + Qx " 0 (11)

for smooth solutions (u,w) of (1) but for which Ht + Qx has a pre-

ferred sign for non-smooth solutions. For example in our problem



the natural "entropy" is the total mechanical energy

H(u.w) z I u2  + Jwa( )d .2

It is easy to check that (11) is satisfied for smooth solutions of

(1) with Q(u.w) = - ua(w). For non-smooth solutions the entropy

criterion asserts

Ht + Qx < 0 • (12)

Mechanistically (12) reflects that the fact that an isothermal non-

conductor of heat with no heat sources will dissipate mechanical

energy. More simply, shock formation does mechanical work.

For our simple solution (12) implies

wr
- s {1 ( w r ) + a(wO))(wt-wr) + J C()e} 0 13)

This inequality also has a geometric interpretation: The phase bound-

ary joining the state (ul.wl) to (ur.wr) must have area > area B for

s > 0 . area A < area B for s < 0 . For s a 0 all equilibria satis-

fying o(wt) - a(wr) are admissible as was the case in the viscosity

criterion (I).

(III) Vi scosity-capi 11 ar ty criterion.

A third approach to the phase boundary problem admissibility

criterion was proposed in [2). In that paper it was suggested that

perhaps viscosity and capillarity should play a role in studying

shock structure. The idea of including capillarity in studying



interfaces in phase transitions can be traced to the work of van der

Waals [3) and has been reconsidered by many others since then. e.g.

Cahn and Hilliard [4]. Aifantis and Serrin [5).

Simply put in the framework of our problem we amend the balance

law (1) by including the effects on viscosity and capillarity:

ut = a(w)x + UUxx - V2 Awxxx
(14)

wt 2 Ux .

As in (1) we wish to &pproximate the discontinuous phase bound-

ary solution by traveling wave solution u =u(x-st )

w = w (xoSt) as u P 0+. Here A is a positive constant.

A simple argument shows
A 4" s' + s 2 (w-w ) - 0(&) + a(w,) = 0 (15)

w(--) = wx . w(+-) = Wr

w'(--) =  0 . w'(+-) a 0

For fixed (ul.w t ) in (b,a) there is always some state to which

it can be connected by a phase boundary. This result and several

others may be found in the papers of Slemrod [2]. Hagan and Slemrod

[6). Shearer £7.8). It is easy to see. however, that where s = 0
w must satisfy

Aw" - o(w) + (w) - 0. (16)

Multiply (16) by w' and integrate from { - - to + - -.

This shows

J (a(w(4)) - a(wL)) w'(&)d& - 0

or
Wr

J (a(w) - a(w))dw - 0 (17)
wl&

i.e. the only equilibrium states consistent with a stagnant phase

boundary must have area A - area B. (The Maxwell equal area rule.)

Notice the difference between this highly restricted stagnant

phase boundary condition and the concinuum of possibilities in (I)

and (II). We also note that phase boundaries satisfying the

viscosity-capilarity criterion satisfy the entropy criterion (see

£2)).



In a remarkable paper [8 Shearer has shown existence of a

solution to the general Riemann problem for w,. w r close to wm . w M

all of whose shocks satisfy the viscosity-capillarity criterion.

(IV) Entropy rate criterion.

The entropy rate criterion was proposed by Dafermos [9] for

the study of admissible solutions to hyperbolic conservation laws.

It has been extended by Hattori C10].[II], to the case of van der

Waals like materials.

The idea behind the entropy rate criterion is as follows. The

total mechanical energy on any Interval [a.b] satisfies at time T

D+ jb H(u.w)dx = C(T) A(w..w+) (18)
a jump

di sconti nui ties

for any piecewise smooth solutions u.w of (1) which possesses a fi-

nite number of shock waves. Here o(T) is the speed of the jump dis-

continuity and
W+

A(w .w ) - (O(w.)+O1w+)(w+-w.)) - J a(C)d .

Thus (18) computes the rate of energy dissipation. The entropy rate

criterion says that among all solutions which agree up to time T the

preferable one is the one that maximizes the rate of energy dissi-

pation at time T. i.e. we choose the process which renders

Z a(T)A(w..w )
jump
discontinuities

a minimum. Philosophically the criteria asks that nature should

choose a solution which renders the already decaying mechanical

energy decay as rapidly as allowed by the balance laws and constitu-

tive equations.

The difficulty in applying the entropy rate criterion is the

need to check a candidate for an admissible solution against all

other solution competitors at each time T. To check the admissi-
bility of shocks Dafermos 91 has suggested a modified version of

the entropy rate criterion. In the modified version the shock is

admissible when compared against solutions of the Riemann problem

(defined by the shock) made up of the usual fan of shocks, rarefac-

tion waves, contact discontinuities. Hattori [10] has applied this



modification to check admissiblity of phase boundaries for (1).

As an illustrative example consider once again the equilibrium

Riemann problem ut - ur - O, O(wz) = O(Wr). Hattori has shown that

if a(wz). a(wr) are not on the Maxwell line (given by the equal area

rule) there is another solution of the Riemann problem which dissi-

pates energy more rapidly at T a 0+. Hence such a solution will not

be admissible according to the entropy rate criterion. Moreover if

O(wL). O(wr) are on the Maxwell line i.e. wL = WmWr = wM . Hattori

has shown that when compared against competitive solutions made up

of shocks, rarefraction waves, and phase boundaries (in a manner

motivated by Dafermos's entropy rate shock criterion) this Maxwell

solution dissipates energy most rapidly. These results are similar

to those given by the viscosity-capillarity criterion (III).

In conclusion we see the viscosity criterion and entropy crite-

rion play no role in distinguishing stagnant phase boundaries. On

the other hand the viscosity-capillarity criterion and entropy rate

criterion do. In fluids the classical theory of phase transitions

(both theoretically and experimentally) gives a preferred equili-

brium with co-existing phases. Hence for fluid problems one might

think either the viscosity-capillarity criterion or entropy rate

criterion will be appropriate. For solids where viscous forces may

dominate Pego [12] has argued for the viscosity criterion. Pending

further results (theoretical, numerical, and experimental) I would

be hesitant to say there is any "correct." universal Jmissibility

criteria for all materials modeled by (1).
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