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1 Statement of the Problem

This project is devoted to the study of diagnosis of additive malfunctions in linear

dynamic systems. This class of failures is relevant to control-actuator failures in

aircraft, as well as to other situations. In particular, we are interested in optimizing

multi-hypothesis maximum-likelihood algorithms for malfunction diagnosis, since

this concept is the most widely accepted basis for automatic malfunction diagnosis.

The engineering system to be studied is a linearized aerodynamic model for

small disturbances about a. reference condition of steady rectilinear flight over a

flat, earth. The advantage of this system is its simple description of a wide range

of aerodynamic situations, and the fact, that, control-actuator malfunctions can be

modelled as additive failures.

The formulation of a multi-hypothesis algorithm for malfunction diagnosis in-

volves the choice of a, set of hypothesized malfu nctions. On-line measurements of

the systemy are compared with the behavior to be expected from each hypothesized

failure, and a likelihood-ratio algorithm is used to identify the hypothesized failure

which is most, likely to have given rise to the observed measurements. Optimiza-

tion of such an algorithm centers on the choice of the set of failure hypotheses:

fhow many failure hypotheses should be chosen, and what should those failure

hypotheses be?

The methodology of convex modelling presented in this report is to be used to

address these questions. Convex modelling provides two distinct tools for optimiza-

tion of malfiunction diagnosis algorithms. The first, called benchmark diagnosts, is

an assessment of the best state space malfunction diagnosis capability which can

be obtained by any state space algorithm, whether based on the multi-hypothesis

mraximurn-likelihood concept. or not. Evaluation of the optimum diagnosis capa-

bility is use( as a benchmark, against which the performance of implementable

algorithms can be compared. The second tool provided by convex modelling,

called multi-hypothr..i.q distinquishability, enables assessment, of the malfunction

, , .. ,
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diagnosis performance of a specific multi-hypothesis algorithm. This enables the

quantitative comparison of the performance of multi-hypothesis malfunction diag-

nosis algorithms based on distinct sets of failure hypotheses. Optimization of the

malfunction diagnosis algorithm is based on these comparisons. For example, the

performance of different sets containing N failure hypotheses can be compared, and

the best, set of hypotheses can be sought. Furthermore, the utility of the marginal

((IV + l)th) hypothesis can be established by comparing the best N-fold set of

hypotheses with the best, (N + 1)-fold set.. Finally, the multi-hypothesis diagnosis

capability of any specific implementable algorithm can be compared with the best

possible malfunction diagnosis capability, as expressed by the benchmark distin-

guishability. In this way, rational design decisions can be made in the formulation

of a multi-hypothesis maximum-likelihood algorithm for malfunction diagnosis.

2 Background and Approach

The diagnosis or additive malfunctions in linear dynamic systems has been stud-

ied from various points of view. Fiorina. and Maffezzoni (1979) use the generalized

likelihood ratio to detect, additive step failures in the Italian power system. Kerr

(1982) discusses the application of the confidence region concept to the detection of

additive failures relevant to inertial navigation systems. Willsky and Jones (1976)

discuss adaptive filtering and its application to the detection of additive failures

in linear systems. Caglayan (1980) establishes conditions for detectability of ad-

ditive jump failures in linear systems. Nash et al (1971) use optimal smoothing

to model step, ramp and other additive disturbances to gyroscopic inertial navi-

gat ion systems. Ba.ruh uses a modal method to detect actuator (1986) and sensor

(1987) failures in distribilted systems. Massoumnia and Vander Velde (1988) use a

parity-check technique to diagnose sensor and actuator failures in linear systems.

A primary challenge in diagnosing a malfunction arises from the uncertainty

in the forrri and properties (of the failure. Determination of the best possible
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malfunction diagnosis capability depends on modelling the failure uncertainty. A

set-theoretic, rather than probabilistic, representation of uncertainty in the fail-

ure is employed in this work. This approach is motivated by the lack of detailed

probabilistic information on the possible failures. Set theoretical representations

of uncertainty have been employed in a. wide range of engineering applications.

Schweppe (1968, 1973), Bertsekas and Rhodes (1971), Witsenhausen (1968a,b),

Schmitendorf (1987), ern po (1988) and others have used unknown-but-bounded

set theoretic models to represent uncertain inputs in the control and estimation

of linear systems. Ben-Ilaim (1986, 1989) has represented uncertain malfunctions

in dynamical systems with a set-theoretical approach. Ben-Itaim (1985) has used

set rrodels of uncertainty in the optimal design of assay systems for measuring

spatially random material. Ben-lla.im and Elias (1987) have represented uncer-

tainty in inverse heat transfer measurements with sets of spatially varying heat

transfer coefficients. Ben-Ilaimn and Elishakoff (1989) have described geometric

imperfections in thin shells using sets of imperfection functions. Common to all

these treatments of uncertainty is the fact ,hat convex sets of functions charac-

terize the uncertain temporally and/or spatially varying quantity. This approach

will be succintly referred to as convex modelling.

A multitude of powerful concepts for failure diagnosis has been developed, but

a. comprehensive methodology for designing diagnosis algorithms is lacking. One

component. in a.n overall design analysis is the determination of the best diagnosis

capability which can be attained by any state space algorithm. The benchmark

diaqnosi. developed in this report, does precisely that, for additive failures in a

linear deterministic dynamic system.

A common approach to malfunction diagnosis is based on hypothesizing a set,

of possible malfunctions, and then subjecting measurements of the system to a

maximuin likelihood test, in order to decide which hypothesized malfu|nction is

most likely to have given rise to the measurements. This approach is appealing

for several reasons. The concept of maximium likelihood is intuitively satisfying as
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a criterion of optimality. In addition, prior information about the system can be

exploited by judicious selection of the hypothesized malfunctions.

The performance of a multi-hypothesis algorithm for malfunction diagnosis is

limited by the disparity between its finite set of hypothesized malfunctions and

the infinity of possible failures. A large number of hypothesized malfunctions is

usually deemed necessary for reliable diagnosis in the presence of the substantial

u ncertainty which accompanies the occurrence of failures. However, real-time im-

plementation of a multi-hypothesis algorithm of high multiplicity is problematical.

The second concept developed in this report multi-hypothesis distinguishability

provides a method for evaluating the performance of a multi-hypothesis algo-

rithm with respect to failure uncertainty. This performance-evaluation forms the

basis for selecting a. robust and efficient collection of hypothesized malfunctions.

3 Normal Dynamics and Control of the AFTI/F16

3.1 Formulation of the Normal Dynamics

The representation of the dynamics of the AFTI/F16 aircraft is based on data

presented by Schneider (1986). The dynaMics for steady-state linearized flight are

presented in state space form as:

dxdx- Ax + Bu (1)

d t 
-

where x is an 8-dimensional state vector, t is a. 6-dimensional control vector, and

A and B are constant. dynamics and control matrices. The 8 state variables are:

pitch angle, forward velocity, angle of attack, pitch rate, bank angle, sideslip angle,

roll rate and yaw rate. The 6 control variables are: right and left, horizontal tails

(elevators), right and left, wing flaps, canards (operated symmeti ically) and rudder.

The structure of matrices A an(l B are reproduced in tables I and 2.
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3.2 Formulation of an Automatic Controller

An autmatic controller has been formulated for the linear dynamic model de-

scribed in the previous subsection. The aim of the controller is to restore the

state variables to nearly zero values, by applying control proportional to the state.

The duration of the control period is fixed, and denote as if. The feedback gain

is chosen so as to minimize the integrated state-variable deviations from zero, to

minimize the integrated control, and to minimize the magnitude of the final state

variables. Specifically, the control is reqiired to minimize the following expression:

ti

J =(X 7'SfX) t1 -1- J (X TRX T I/,, T ) dt (2)
0

With this formulation it can be shown (Brysori and 1to, 1975, p 148-53), that,

the control vector is given by:

,(I) = -V-1 BTS(f) X() (3)

where the gain matrix, S(I), must satisfy the following differential matrix Riccati

equation:
dS -SA - A"S + SBV - BTS - R (4)
di

with the endpoint boundary condition: S(If) = Sf.

3.3 Numerical Demonstration of the Normal Dynamics

The dynamical behavior of the AFTI/I 16 aircraft, model employed in this project,

is briefly demonstrated in this section. Open-loop and closed-loop flight is pre-

seiled. In the open-loop mode one of the control variables is fixed at, a, non-zero

value, while the others are all fixed at zero. The dynamic behavior is calculated

from eq.(1). In the closed-loop mode the flight is initiated as in the open-loop

mode: with one fixed non-zero control function. The time-dependent controller

is actuated as soon as any of the state variables exceeds a preset threshold value.
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0 0 0 1.00000 0 0 0 0
-32.1830 0.012075 38.2906 -30.1376 0 0 0 0
-0.00112 -0.000022 -1.48446 0.994789 0 0 0 0

-0.000309 -0.00013 4.27171 -0.777221 0 0 0 0
0 0 0 0 0 0 1.00000 0
0 0 0 0 0.03449 -0.343554 0.0326360 -0.997556
0 0 0 0 0 -55.2526 -2.80004 0.145671
0 0 0 0 0 7.23700 -0.0231840 -0.362530

[able 1: The Matrix A. The units of the state variables are radians, radians/sec
or feet/sec (after Schneider, (1986)).

0 0 0 0 0 0
1.00296 1.00296 1.15840 1.15840 0 0

-0.0746135 -0.0746135 -0.122462 -0.122462 0 0
-12.0291 -12.0291 -3.23635 -3.23635 0 0

0 0 0 0 0 0
0.0133045 -0.0133045 -0.0006855 0.0006855 0.0267340 0.0370320
-25.3645 25.3645 -25.5251 25.5251 5.53185 10.3955
-2.56855 2.56855 -0.625030 0.625030 5.89254 -5.80890

Table 2: The Matrix 13. The units of the state and control variables are radians,
radians/sec or reet/sec (after Schneider, (1986)).
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Symbol State Variable Control Variable
octagon pitch right elevator
A forward velocity left elevator

+ angle of attack right wing flap
x pitch rate left wing flap
diamond roll canard

T yaw rudder
table roll rate
Z yaw rate

Table 3: Legend for figures in this section.

The controller is operated for the duration of t1 = 0.15 seconds. At the end of this

control period the control actuators are all fixed at their last values, and the flight

is continued in open-loop (fixed control) mode until a state variable again exceeds

the threshold value. The controller is again imposed, and so on. The values of the

matrices A and B are given in tables I and 2 (from Schneider, (1986)).

Figures 1 - 4 show open loop behavior of the aircraft at 0.9 Mach and 20,000 feet

altitude. These four figures show the time dependence of the 8 state variables in

response to four different. fixed-control conditions. The units are feet, seconds and

degrees. The single non-zero control function is fixed at +4 degrees in each case.

In figure I the non-zero control is the right horizontal tail (otherwise known as the

right elevator); the right flap in Figure 2; the canards (operated symmetrically) in

Figure 3; and the rudder in Figure 4. The legend of the symbols for the figures in

this section appears in table 3.

The open-loop dynamics have been calculated from eq.(l) by a simple finite-

difference method. The Riccati equation, relation (4), must be solved for the

closed-loop calculation. This is done by a backward finite difference calculation.

Then eq.(l) is solved, together with eq.(3), by finite difference. The time step

size for all finite difference calculations is 0.001 second. The matrices S and R in
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TIME (SECS)

flgiire 1: IDyrarni. open-loop response to a. +1 degree deflection or the righlt
eleva tor.
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0

0

0

I - I

000 0.10 0.20 0.30 0.40 0.50
TIME (SECS)

Figure 2: D~yniamic opcn loop responlse to a. +1 dJegree deflection or' the right wing
fla 1).



3 NORAL DYNAMICS AND) CONTROL OF THlE AITTI/F16 13
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Figtire 3: Dynamric open-loop response to0 a, +4 degree symmnetricali deflection or
tlip canardIs.
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0 00 0d10o d20 030 0d40 0.50

TIME (SECS)

Figure 4: D~ynamic open-loop response to a +4 degree dleflection or the rudder.
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the Riccati equation are positive semi-definite while V is positive definite. In the

numerical calculations to be discussed, these matrices are chosen to be diagonal,

with equal diagonal elements. The diagonal elements of R equal 50/1f, of V equal

2/tf and of ,f equal 0.25.

Figures I and 2 show substantial similarity in the effect of the right. wing flap

and the right. elevator. In each, a, +4 degree deflection results in appreciable roll

rate: about -30 degrees/sec at the end of 0.5 second. The elevator produces more

pitching motion than the wing flap. The other state variables are less affected

d(iring the first, 0.5 second.

Figure 3 shows the dynamic response to a, +1 degree symmetrical deflection of

the canards. The roll and yaw motions are strongly induced, while the longitudinal

state variables are completely unaffected.

Figure 4 demonstrates the response to a +4 degree deflection of the rudder. The

yawing moment is predominant, and the rolling moment is pronounced and reverses

its sign after about 0.4 second. The longitudinal state variables are unaffected.

Figures 5 12 show the state and control variables in four different closed-loop

modes. As explained above, each flight is initiated in the open-loop mode with

a, single non-zero control held at a fixed value of +4 degrees. (This initial value

of the control is not depicted in the figures because it is far off scale. Rather, all

the control variables are shown as initially equal to zero). In figures 5 and 6 the

non-zero control function is the right elevator; in figures 7 a.nd 8 the right wing

flap; in figures 9 and 10 the canards; in figures 11 the rudder.

Figure 5 shows the dynamic, closed-loop response to an initial +4 degree de-

flection of the right elevator. Rolling and pitching moments develop quickly, as in

figure 1. However, after only 5 milliseconds, the absolute value of the roll rate ex-

ceeds the threshold of 0.5 for triggering the controller. The controller is actuated,

as seen in figure 6, for 0.15 second, during which time the rolling and pitching

moments are rapidly reduced. This is achieved by positive deflections of canards

an( the rudder, and negative deflections of the right, wing flap and the left and
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right elevators. The left, wing flap varies from positive to negative values. After

completion of the 0.15 second control period, the control functions are fixed at

their last values and the flight is continued in the open-loop (fixed-control) mode.

Figures 7 and 8 show the response and controls when the initial fixed-control

perturbation was a +4 degree deflection of the right wing flap. The dynamic and

control responses are qualitatively similar to those shown in response to an initial

right elevator deflection.

Figures 9 and 10 show the dynamic and control responses to a +4 degree

deflection of the canards. Strong rolling and yawing moments develop quickly,

as in figure 3. This results in actuation of the controller after 0.022 seconds.

Positive right flap and elevator, positive rudder and symmetrical negative left flap

and elevator, together with negative deflection of the canards, result in reversal

of the lateral moments. Note, however, that the control period terminates (at

0.172 second) before the yawing an(] rolling moments are completely zeroed. In

the fixed-control period a. negative yaw rate develops, resulting in re-activation of

the controls at, 0.471 second.

Figures 1 I and 12 show the dynamic and control responses to an initial positive

deflection of the rudder.

4 Representing Control-Actuator Failure

Our aim in this section is to develop a convenient formalism for representing the

measurements of a linear system with control actuator failure.

The dynamic behavior and measurements of the failure-free linear deterministic

system are represented as:

dx- - A(t)x(t) + B(I)(t) (5)

dt

yhere= a(stt.)) (6)

where x, y an] u are state, measurement and control vectors of dimensions N, b
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C)-

-4

U)

C)

'd.00 0.10 0.20 0.30 0.40 0.50
TIME (SECS)~

hire 5:. DIMuarn CIORNd-loop response to a 4-4 degree deflection of the right
eleva.t or.
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0.00.10 0.20 d30 .40 d.,30
TIME (SECS)

Figure 6: Aiitornalie control variables in response to a ±+1 degree deflection of the
right, elevator.
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Figure 7: )yramic closed-loop response Co a. +1 degree defleclion of the right, wing
flap.
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Figure 8: Antomnatic. control variables in response to a. +4 degree deflection or the
right, wing flap.
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0.00 0.10 0.20 0.30 0.40 d5
TIME~ (SECS)

F igure 9: D~ynamic closed-loop response to a. +4 symmetrical degree deflection or
the canards.
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F'iguire 11: D~ynamic (iosc(I-IO0P response to a, +4 degree deflection of the rudder.
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U)
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0.00 0.10 d-20 0.30 6.40.50

Figure 12: Automatic control variables in response to a, +4 dlegree deflection of

the ridder.
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and A respectively and A, B and G are known matrices. The system is regulated

automatically by a feedback controller proportional to the state:

u(i) = S(I)z(t) (7)

Let, us now consider the representation of J control actuator failures. The

indices of the failed actuators are j = (jl,.., jj). When a malfunction occurs

in the jkth control actuator its normal control function, uj(), is replaced by

an autonomous expression, fj,(t). Let f(f) be an M-element vector whose jkth

element, is the autonomous behavior of the failed jkth actuator, for k = 1,..., J,

and whose other elements are zero. Let Ij be the matrix obtained from the M x M

identity matrix by removing each of the J rows jl, ... ,JJ. Thus Iju(t) is a vector

of length At - .1 obtained by removing the elements jl,...,jj from the nominal

control vector, u(I). Similarly, B17T is an N x (A -J) matrix obtained by removing

the columns j1 , . .. ,jj from the matrix B. (The superscript T denotes t, atrix

transposition.) Using this notation, the dynamic response of the system to failure

of .1 actuators whose indices are j is described by:
dxd- A(t) (t) + B(t)lIJjTu(.) + B(t)f() (8)
di

The normal algorithm still calculates the feedback control vector from eq.(7).

Hlowever, fj, is implemented rather than uj,(I). Combining eqs. (7) and (8) yields:

dx = [A(/,) + B(+) ?T !S()] x() + B(1)f() (9)

The state vector x(t) can be expressed in terms of a. transition matrix Xj, which

is the solution of the following differential equation (Bellman, 1974):

diI= [A(I) + B(t)T !jS()] Xj(t) Xj (0) = 1 (10)

Finally, the measurement vector in response to failure vector f(l) is:

Y(1) G(i)Xj(t) X(0) + G (t) J Xj(I)Xj-' (r)B(r)f(r) dr (11).If~()
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5 Convex Models of Malfunction Uncertainty

The satisfactory diagnosis of malfunction depends upon prior knowledge of the

malfunction phenomenon as a whole. However, malfunction is often so complex

that one is unable to formulate a probability measure, defined in a space of fail-

ure functions, which expresses the probability density for occurrence of specific

malfunctions. On the other hand, partial information is likely to enable the char-

acterization of possible malfunctions in set-theoretic terms.

In a set-theoretic model of malfunction the failure vector f(i) belongs to a

set of malfunctions which all share some gabai, phenomenological property in

common. For example, one may consider failure sets of step-like functions which

occur at, or around a particulair time. ,r ramp-like functions all with similar slopes.

Alternatively, the failure-functions may be uniformly bounded and of extended

duration, or may be transient disturbances of bounded total energy.

In general, the failure set F(p), where p is a parameter vector, is the set of

vector-valued functions which represent all realizable failures of type p. It is often

found in practice that. the information available for characterizing the possible

malfunctions leads naturally to assuming F(p) to be a convex set. We shall assume

our failure -,ts to be convex, and refer to F(p) as a. eonvex. model for failures of type

p. The adoption of a convex model for representing the variability of each type of

failure can be motivated by theoretical considerations. This is briefly discussed in

the Appendix.

A widely used convex model for set-theoretic representation of uncertainty is

based on assuming that, the functions in question are uniformly bounded. The

failure sets are defined as:

,(p) = {f T _(f ,...,fst): i',< fr(,) <

h E ,0, 00) , th a (,m2, . .. Alf (12)

where p /,/t .. /a,fp^). Thus the autonomous (malfunctioning) value of the
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rnth control function varies arbitrarily between Pm and Pm. Usually the number

of actuator failures is less than the dimension At of the control vector. This is

represented by choosing fi, = 3m = 0 for each of the functioning actuators.

Eq. (I I) maps each failure vector f(t) in F(p) to a vector yj(t) in measurement

space. Let C(p) be the set of all the measurement vectors obtained from failures

in the set, F'(p). That is:

C(p) = Iy: y(t) = yf (1) for all f E F(p)} (13)

We will call C(p) the cornplete response sel for failures of type p.

6 Benchmark Diagnosis Capability

6.1 The Concept of Benchmark Diagnosis

Malfunction diagnosis1 is based on distinguishing between response sets which cor-

respond to distinct types of failure. Response sets which are far apart will be easily

distinguished, while malfiunction diagnosis becomes more difficult and uncertain

for response sets which are closer together. Finally, if two response sets C(p) and

C(q) overlap, then no algorithm will be able to distinguish every occurrence of

failure of type p from every occurrence of failure-type q. The capability for mal-

function diagnosis is thus ultimately limited by the overlapping of response sets.

The disJointness of response sets determines the limiting or benchmark malfunction

diagnosis capability. This benchmark is an expression of the failure uncertainty

characteristic of the system studied, of the failure environment within which it

operates, and of the knowledge embodied in the system and failure models. Im-

proved malfunction diagnosis can be obtained only by modifying the system or its

rneasurements or the failure environment, or by augmenting the knowledge with

which the system and its failures are modelled.

'The material of this section will he presented at the IFAC Conference on Advanced Information
Processing in Automatic Control, 3 5 July 1989, Nancy, France. (Ren-flaim, 1989a).
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If the complete response sets for two types of failures are disjoint we will say

that the Failures are benchmark distinguishable, meaning that it is possible, in

principle, to distinguish between all occurrences of these failure types. On the

other hand, failure types whose response sets intersect are said to be benchmark

indistinguishable, indicating that no algorithm can distinguish between every pos-

sible occurrence of these failure types. Determination of the benchmark diagnosis

capability thus involves establishing the disjointness or intersection of response

sets.

The disjointness of response sets, and hence the benchmark diagnosis capabil-

ity, is readily formulated by using a hyperplane separation theorem for convex sets

(Rockafellar, 1970). Let C(p) and C(q) be non-empty, closed and bounded convex

response sets in a. finite dimensional Euclidean space. C(p) and C(q) are disjoint

if and only if there exists a hyperplane P such that C(p) is in one half-space de-

fined by P and C(q) is in the other half-space. This theorem can be expressed

algebraically as follows:

C(p) n C(q)= (14)

if and only if there exists a. real vector w such that:

max wTc < min wTd (15)
CEG(P) dEC(q)

For further discussion of relations 14 and 15 see Ben-laim, 1985.

The disjointness of complete response sets is established by determining the

extremal values on the complete response sets of the linear function wTx. The

complete response sets C(p) and C(q) are images of the failure sets F(p) and

[(q), as in eq. (13). Consequently, a necessary and sufficient condition for the

disjointness of C(p) and C(q) is the existence of a. vector w such that:

max w T < min wTyl, (16)OEF(p) O, F(q)

This relation forms the basis for an algorithmic determination of the disjoint-

ness of response sets. The algorithm searches for a vector w which satisfies relation
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(16). (It is sufficient to search on the unit sphere because (16) is homogeneous

in w.) 1)is.jointness is established if such a vector is found. If no such vector

exists, then the sets intersect. In this way the benchmark malfunction diagnosis

capability of the system can be determined.

6.2 Hyperplane Separation for Uniformly Bounded Mal-
functions

The benchmark diagnosis capability is based on determining the disjointness of

complete response sets for different types of failure. Each complete response set

C(p) is the image in measurement space of the set F(p) of possible failures of type p.

The failure set F(p) represents the uncertainty in the realization of failures of type

p. In this section we develop the hyperplane separation algorithm for determining

the disjointness of complete response sets for uniformly bounded actuator failures.

Consider two different failure sets: F(p) represents the failure of J control actu-

ators whose indices arej = (jl,...,jj) and with uniform bounds p = (fili , ... , M, m)

on the failure Functions. F(q) represents the failure of K actuators whose indices

are k = (k,,..., k-) with uniform bounds q = (4,,. .. , ,M) on the failure

functions. The corresponding complete response sets are C(p) and C(q), as de-

fined by eq. (13). Our aim is to determine whether or not there exists a vector W

satisfying relation (16).

Let Xj(/) and Xk(l) represent the transition matrices for the two types of fail-

ure, obtained as solutions of eq. (10). Note that the transition matrix depends

on which actuators have failed, but is entirely independent of the uniform bounds

on the failed actuators. For convenience of notation define Am(t, -) and /m(1, r)

as the rnth colmns of G(/)Xj(i)X[1 '(r) B(r) and G(1)Xk(1)Xk'(r)B(7-), respec-

tively. Also denote y?(1) = G(I)Xj( )x(O) and y4(1) = G(QXk( )X(0).

Using this notation one finds that., for an arbitrary q0 E F(p), the inner product
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wTyO assumes the form:
M t

y = wTy(l) ± , f ¢m(.)WTAm(t, r) dr (17)
Mn--- 0

Likewise, for an arbitrary element ¢' E F(q), the inner product wTy, becomes:
M t

k = ± Z J m()wTm( T) d7- (18)
mn=1 0

Examination of eq. (17) shows that wTy5 achieves its maximum when each

mr(T) is chosen to switch between its extremal values as WTAm(I, r) changes sign.

Specifically, w Ty, is maximized by choosing the elements of € as:
S() { , w TAm(, r) > 0 (19)

WT A-(t, T-) < 0

Let D,+ and D_ denote the subsets of [0, 1] for which wTAm(t, 7-) is non-negative

and negative, respectively. Thus:

max w6 = T yoj() +
OEF(p)

M m J WTA(1, dT)d- + W T A"(t, r) dT (20)
m=1-- Din+ Dmn-I

Similarly, wTy , in eq. (18) is minimized by choosing each Om(T) as a switching

function which follows the sign changes of wT pm(i, r). Let A.+ and Am- denote

the subsets of [0, 1] for which wT,mQ(, r) is non-negative and negative, respectively.

Thus:

min wT yo = wT y~T(t) ±
,OEF(q)

M 4. J WT ,m(, -r) dr + q wTpm(i, r) d T  (21)
m=t . Am]

Relations (20), (21) and (16) together define a necessary and sufficient condition for

the disjointness of C(p) and C(q), and hence for the benchmark distinguishability

of the corresponding failure sets.
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6.3 Example: Actuator Failures in AFTI/F16 Aircraft

The benchmark malfunction diagnosis capability has been evaluated for a. range

of uniformly bounded control actuator failures in the AFTI/F16 aircraft in steady

rectilinear flight at 0.9 Mach and 20,000 feet altitude. The 8 state variables are:

pitch angle, forward velocity, angle of attack, pitch rate, bank angle, sideslip angle,

roll rate and yaw rate. The 6 control variables are: right and left horizontal tails

(elevators), right and left wing flaps, canards (operated symmetrically) and rudder.

The dynamics, control and measurement matrices A, B and G are constant in

time. The values of the matrices A and B presented in tables 1 and 2 (from

Schneider (1986)) and G is the identity matrix.

The system is controlled by an automatic regulator whose aim is to restore

the state variables to nearly zero values by applying minimal control proportional

to the state. The duration of the control period is fixed, and denoted as t f . The

controller minimizes the following expression:

if

J = (Xs,5X)t, + J (XT + dt (22)
0

With this formulation it can be shown (Bryson and Hlo, 1975) that the control

vector is given by:

u(t) = -V-' BTS(t)x(t) (23)

where the gain matrix, S(I), must satisfy the following differential matrix Riccati

equation:
dSd- SA - ATS + SBV - ' RTS - R (24)dt

with the endpoint boundary condition: S(Ij) = 1,.

The Riccati equation is solved numerically by backward finite difference calcu-

lation. The eq. (5) is solved, together with eq. (23), by finite difference. The time

step size for all finite difference calculations is 0.001 second. The matrices S, R

and V are diagonal, with equal diagonal elements. The diagonal elements of R
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equal 50/1f, of V equal 2 /tf and of Sf equal 0.25. The duration of the control

period is If = 0.15 sec.

Let us consider two failure sets. One set, F(p), will be a set of failures in the

2nd and 6th control actuators (left, elevators and rudder). Thus:

p = (0, 0, f2, P2, 0, 0, 0, 0, 0, 0, fr, A6) (25)

We will choose:

2 = =PC ° ,2=r= 2' (26)

Thus F(p) represents all failures in which the deflection of the left elevator and

the rudder vary arbitrarily and independently between 1 and 20, while all the

remaining actuators vary according to the nominal feedback controller.

The second failure set, F(q), is a, set of failures in the 2nd and 5th control

actuators (left elevators and canards). Thus:

q = (0, 0, q2, q2 , 0, 0, 0, 0, q., q5, 0, 0) (27)

We will assume that:

2 = 42 1 , 4 5  ± = + (28)

Thus F(q) represents all malfunctions in which the deflection of the left elevator

varies between 42 and 42 + 1, while the canard deflection varies between 45 and

4 + I".

We will use relation (16) to determine what failure sets F(p) and F(q) are

benchmark distinguishable, a-s a function of the values of 42 and 4,5. The real-

time identification of the failure sets must be performed in a. very short duration.

It is thus of particular interest to determine which subsets of the 8-component

measurement, vector provide benchmark distinguishability of the failure sets.

Figure 13 shows part. of the 4ji-versus 42 plane. Each point on this plane

specifies a value of q2 and of 4.5 and thus specifies the parameter vector q, defined

by eqs.(27) and (28). Thus each point represents a failure set F(q). Those failure
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Figure 13: Regions of benchmark distinguishability of F(q) from F(p) for single
measurement of the first stale variable, pitch angle.
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Figure 14: Regions of benchmark distinguishability of F(q) from F(p) for single
measurerriernt of the second state variable, Forward velocity.
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Figuire 15: iRegions or I)enchrmark distingtishalbility ofr (q) rrom F(p) for single
ni'easrement, or the third state variable, angle or altack.
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Figure 16: Regions of benchmark distin'gulishability of F(q) from F(p) for single
measuJrement of the FonrIh state variable, pilch rate.
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Figure 17: Regions of benchma.rk distinguishability of F(q) from F(p) for single

rineasurpment or the filrth state variable, hank angle.
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Figure 18: Regions or benchmark distingiiishahililty or F(q) from F(p) for single
meastnrerrment, or the sixth stale variable, sideslip angle.
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-2

Figure 19: Rlegions of berichrrark distinguislabiiiy or T",(q) from F(p) for single
rneasuurpmen, of the seventh state variable, roll rate.
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Iigiirv 20: Ricgiors of Ienchrmark distinguishabili.y of l(q) from F(p) for single
rneasu retent. of the eighth si,al e variable, yaw rate.
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set.s represented by points in the regions marked 'D' are benchmark distinguishable

from the failure set F(p), while those failure sets in the region marked 'ND' are

not benchmark distinguishable from F(p), where p is defined by eqs.(25) and (26).

Furthermore, this distinguishability is based on measurement of the first state

variable alone (pitch angle) 0.15 sec after onset of the failure.

Figures 1,4 to 20 also portray regions of benchmark distinguishability on the

4.5 versus 42 plane, for measurement of a single state variable 0.15 sec after onset

of failure. The state variables employed in Figures 14 to 20 are: forward velocity,

angle of attack, pitch rate, bank angle, sideslip angle, roll rate and yaw rate,

respectively. It is seen that the benchmark distinguishability of F(q) from F(p)

obtained by measuring any one of the following state variables is approximately

the same: 1st, 2nd, 4th, 5th or 7th. On the other hand, measurement of the 6th or

8th state variable provides benchmark distinguishability in a different region of the

plane, while measurement of the 3rd state variable provides little distinguishability

at, all.

It, is note(] that most, of these single-measurement examples provide bench-

mark distinguishability for roughly half of the range of failure sets F(q) examined.

Furthermore, certain pairs of measurements provide complementary distinguisha-

bility. For example, the regions of distinghuishability with the 2nd (Figure 14)

and the 8th (Figure 20) state variables together nearly cover the entire range of

(4j2, 45) values considered. Figure 21 shows the regions of benchmark distinguish-

able and non-distinguishable malfunctions based on simultaneous measurement

(at I = 0.15 sec) of the 2nd and 8th state variables. It is evident that F(q) and

F(p) are tbenchmark distinguishable over most of the values of (42, 45) considered.

Figre 22 shows an overlay of Figures 14 (small dash), 20 (large dash) and 21

(solid). The non-distinguishable region with two measurements is smaller than the

intersection of the non-distinguishable regions of the two single measurement cases.

Thus sirrnltarleous mneasiirernents of two state variables provides better benchmark

distinguishability than would be expected from each state variable alone.
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A similar phenomenon is observed in Figure 23, which shows the regions of

benchmark distinguishablity for simutaneous measurement (at 1 = 0.15 see) of the

1st (pitch angle) and 6th (sideslip angle) variables (solid line). Figures 13 (large

dash) and 18 (small dash) are overlayed for comparison. The non-distinguishable

region of the double measurement is smaller than the intersection of the non dis-

tinguishable regions of the two single measurements.

flowever, this mutual improvement is riot obtained in every case. Figure 24

shows the benchmark performance of the simultaneous measurement (at I = 0.15

see) of the 2nd (forward velocity) and 7th (roll rate) state variables. In this

case the region of two-measurement benchmark distinguishability is precisely the

intersection of the two single-measurement regions (Figures 14 and 19).

These examples suffice to demonstrate that relation (16) provides a means of

identifying efficient combinations of state variables whose measurement enables

reliable, benchmark, differentiation between distinct failure sets.

6.4 Energy-Bounded Failure Functions

The uniform-bound convex model is by far the most widely used set-theoretical

representation of uncertainty. It is particularly useful to describe uncertainty with

uniform bounds when the failure functions are roughly constant in time. For in-

stance, the deflection uncertainty of nearly hard failures, wherein the deflections of

the failed control surfaces flutter around fixed values, are conveniently represented

by uniform bounds. On the other hand, the uncertainty inherent in malfunctions

which involve a. strong transient component is not conveniently represented with a

uniform-bound model. A variety of convex mrodels can be employed for represent-

ing the uncertainty in strongly varying malfunctions. In this section we formulate

One such model and derive the hyperplane separation criterion for benchmark dis-

tinguishability of these sets of failures

'[he energy-bound convex model of failure uncertainty is formulated as follows.



6 I3ENCIIARK IlAGNOSIS CAP~AILITY 413

N3O

Fgic21 Rein orbnh akdsigihbltorPq rmFp fo stil

Cacosinasrrntf.offhe2d nd8h ttevaibls



6 H N(I1A1AI?.I 
I)IA G NOS lS CA A '1 TY 

44l

3i

N!

N.x 

'

N
Nt

N

N

Nt

N 
N1N 

'%

'--Nt

NN 
;5 

' \

-'\ 

, -'

* 
N

N-

-J-2 

-I 

0IN

-3N

Niu 
e2 : R g o s o 

N~rh 

a k d s n~ s bl~ o ~ ) F o ( ) r ts m l

-,,- 
-1 

0i 
I 

2 
3II



S6 ENCII 
1A RK I)IAG 

N O SIS GA PA I1LI'I'Y 

15

\
\

N

Ni2 

,

\N

IN 

\

O. 

I 
\N

N

N

-1 

; 

\N

N

* 

N

-2-I0

Figure 
2: IIAegions 

of" benchmark 
distinguishabiiLy 

of F'(q) 
from 

F(p) 
fo~r simmil-

taneotm 
measurement, 

o the 
st, and 

6th stale 
variables 

(solid), 
and 

'or 
single

measuremtent. 

,,f 
he 1sf (smail 

dash) 
and 

the 61,h (large 
dash) 

state 
variable.



6 RF-INCIIMA Il I)IACNOSIS CA PA fIlIY ,16

-I

-2

-1

-3 -2 . -1 o l23

Figure 21: itegions or benihmark distingiiisha.bilit.y of !,(q) from F(p) for simi -
taneons measurement, of the 2nd and 7th state variaI les.
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Consider malfunction of .1 actuators, whose indices are j = (jl,..., jj). Let f(t)

be an At-element vector whose jkth element represents the autonomous behavior

of the failed jkth actuator, for k = I,..., 1, and whose other elements are zero.

Let E be a postive number and f(t1) a specified vector function whose elements,

other than the element jj,.. ., jj, are zero. The set of possible control actuator

failures is:

F E) {: f (f(T) - I(T))T (f(T) - I(T)) dr < E (29)
0

The elements of F(f, E) are vector functions whose elements h 7,..., fji deviate

from f(l) with an energy not exceeding E. (It is implicitly understood in the

definition of IV(f, E) that the Al - J other elements of f are identically zero).

Let V(f, E, ) be a set of energy-bounded failures in actuators j = (j,, . M

and let F(1, E2) be a set. of energy-bounded failures in actuators k = (k1 ,..., k.1).

Let Xj(1) and Xk(I) be the corresponding transition matrices.

From the discussion in section 6.1 it is evident that every failure in F(f, E1)

can be distinguished from every failure in F(.4, E2), and thus these failure sets are

benchmark distinguishable, if and only if there exists a vector w such that:

max W~yl < min w TYg (30)
f E F( ,I, ) ) EPr( p,E2 )

We now proceed to develop explicit expressions for these extrema. Let y4(I) and

y(/) be defined as before and define:

Wj (1, T) = G ()Xj(1)X-'(r)B(r) (31)

Wk(l, T) = (N()Xk()Xk-'(r)B(r) (32)

Then, for f E F(f, I¢,),

Wo" (i) = w 7
14y(i) + UJw*4 j(1, T)f(T) dT (33)

0
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-~~~ ~ - 4t W~a~~ , (f (T) - f(i-)) d-

0
t

+ I w A
T 

'(t, 7)f(r) d- (34)
0

Likewise, for g E F(.q, E2 ),
t

wyg(t) wTy (i) + T wT'*k(t, T-) (g(T) - (r)) dT

0

+ wT *k(t,7).q(7)dT (35)

0

Let u(I) and v(t) be vector functions. The Cauchy inequality asserts that:

(uTv)2 < (uTu)(vTv) (36)

with equality if u is proportional to v (Hlardy, Littlewood and P6lya, 1952). The

Schwarz inequality asserts that:

(VitVvv )2 <Jfu udt Iv v dt (37)

with equality if V is proportional to vv. Thus,

I <Tvdi < (38)

with equality if u is proportional to v. By a similar argument one finds that

J ?dt > - ~ JudlI J v di (39)

again with equality if u is proportional to v.

We now apply relation (38) to eq.( 31) to find the maximum of U)Ty 1. The

functin f ca.n be chosen from F(f, E,) so that f- f is proportional to *Tw.

Because f belongs to F(j, E,) the energy of deviation of f from f equarlS El.
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Employing these considerations and relation (38) one finds the maximum of the

expression in eq.(34) to be:

max w Tyf( ) = wTy (t) + W"*'(l, r)f(7) drfEF(f,E1)o

0+ viJJwr1i(t, r)'*f(t, T)wdr (40)

By a similar argument one finds that the minimum of wTyg is:
t

min WTYg(t) - wT YOV) + J wf U%(I, T)0(r) dr
gEF(O,E2)

0

- WT k(l, r)*T(1, r)wdr (41)

Now eqs.(40) and (41) can be combined with relation (30) to obtain an expres-

sion for the necessary and sufficient condition for the benchmark distinguishability

of F(f, E,) from F(., E2).

6.5 Benchmark Diagnosis: Conclusions

Two types of failures - each represented by a failure set --- are benchmark dis-

tingiiishable if the corresponding response sets are disjoint. Benchmark distin-

guishability means that it is possible, in principle, to distinguish between these

two failure types in all their possible manifestations. On the other hand, no algo-

rithm can distinguish between every possible manifestation of failures belonging

to failure sets which are benchmark indistinguishable. This report has developed

a method for evaluating benchmark distinguishability for control actuator failures.

The following conclusions and implications can be identified.

1. The benchmark distinguishability of a system assesses the malfunction di-

agnostic capability inherent in the system. It does so by exploiting fragmentary

information about the range of possible failures. This is important since detailed
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knowledge about failure systematics -- such as required in formulating a proba-

b1ilistic model of malfunction - is rarely available.

2. Benchmark distinguishability is a conservative assessment of the malfunc-

tion diagnostic properties of a system, in the following sense. Two failure sets

are benchmark indistinguishable even if "most" but not all of the (infinity) of

failures in each set are distinguishable. On the other hand, this conservatism can

be balanced by evaluating the benchmark distinguishability of failure sets whose

complete distinguishability is essential for successful malfunction management.

3. Malfunction diagnosis is often formulated as a multi-hypothesis decision

problem. In the multi-hypothesis approach the observed behavior of the system

is compared against the behavior expected from each of a finite set of postulated,

archetypical failures. The performance of a multi-hypothesis algorithm for mal-

function diagnosis is limited by the disparity between its finite set of hypothesized

malfunctions and the infinity of possible failures. In section 7 we develop a method

for evaluating the ability of a. multi-hypothesis algorithm to distinguish between

convex failure sets. Viewed from the perspective of multi-hypothesis diagnosis,

the benchmark diagnosis capability of a. system is seen to express the malfunc-

tion diagnosis performance which would be obtained with a judiciously chosen

an( infinile selection of failure hypotheses (in the absence of noise). As such, the

benchmark capability provides a limiting measure of performance against which

the diagnostic capabilities of a finite algorithm can be compared.

4. It is important to stress that, while the benchmark distinguishability can be

viewed as the performance of an infinite dimensional multi-hypothesis algorithm,

the benchmark distinguishability is not evaluated numerically as the limit of a

sequence of finite designs. This would be impractical. Rather, the benchmark

distinguishability is evaluated very simply for additive failures in linear systems by

exploiting the convexity of the failure and response sets. The geometric concept of

hyperplane separation leads directly to a sequence of linear optimization problems

whose resull, is the determination of the benchmark diagnosis capability.
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5. Application of the concept of benchmark distinguishability to the diagnosis

of control actuator failures in linear flight, of an AFTI/F16 aircraft leads to the

conclusion that. measurement, of even a single state variable can provide substantial

malfunction diagnostic capability. Furthermore, the benchmark analysis of the

single-measurement diagnosis led to the identification of double measurements

whose diagnostic capability is iairly comprehensive.

6. Finally, it must, be stressed that the concept of benchmark distinguishability

is riot, in itself, a method for malfunction diagnosis. Rather, benchmark distin-

guishability provides a measure of the malfunction diagnosis capability which is

inherent, in the system being controlled. As such, benchmark distinguishability

can serve as an objective quantitative aid in the design of a. malfunction diagnosis

algorithm.

7 Multi-Hypothesis Malfunction Distinguishabil-
ity

7.1 Formulation of Multi-Hypothesis Diagnosis

In' this subsection we state the maximum-likelihood multi-hypothesis approach to

diagnosing additive failures in linear dynamic systems and formulate the problem

to be studied. Let f(1) be a. vector function representing a specific control-actuator

malfuntion, and let, y..(t) represent, the average mea.sured system response to f(t).

Because the system is linear and the failure is additive, yf(1) is an affine transfor-

mation of f(). (The specific form which yf(t) assumes for control actuator failure

will be discussed later.) Throughout the report we let EL represent a. Euclidean

space of dimension L to which measurement vectors y belong. Let p(yIf) be the

conditional probability density of the system response given a malfunction f. We

shall assurrme that p(yjf) decreases monotonically with a norm of y - yj.. This re-

2The resutIs_ nf section 7 will appear in the AIA A . ournal of Guidance, Control and Dynamics,
Fien-flaim (i989h).
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quirernent is filfilled, for example, ifp(ylf) is a multivariate Gaussian density and

if the square of the norm of y is yfTV-y, where 1f is the covariance matrix of

y given malfunction f. The superscript 7' implies matrix transposition. Different

norms can be defined with respect to different malfunctions, for example if the

covariance matrix depends on the malfunction. We denote the various norms as

follows. An inner product of elements x and y in E ', with respect to the mal-

function f, is denoted [x, y]i. Our only assumption regarding this inner product is

that [x,.]/, is a. norm, which will be denoted 11 

Many distinct classes of actuator failures can occur: single or multiple failures;

locked surfaces or widely varying surface deflections. In an important class of mal-

functions the affected control surfaces fail to trail the control commands. Instead,

these control surfaces deflect autonomously. The failure vectors f(t) are assumed

to belong to a set of uniformly bounded but otherwise freely varying functions.

The failure sets are defined in section 5 as:

F'(p) {fT=(f,.. f) : Pm <f.(t) <5 X. , i E[0, o) , m=M

(42)

where p = pT,...,/p,/3). Thus the autonomous value of the rth control

function varies arbitrarily in time between /,S and bt. Usually the number of ac-

tuator failures is less than the dimension of the control vector. This is represented

by choosing P, = Im = 0 for each of the functioning actuators. F(p) will be

referred to as the failure set for malfunctions of type p. The set F(p) is convex.

Let F(p'),..., F(p') be disjoint failure sets and let "k be a finite collection of

malfunctions chosen from F(pk), for k = 1,..., K. Let II = UK= Ilk. A maximum-

likelihood multi-hypothesis algorithm for malfunction diagnosis is based on the

collection it of vector functions representing hypothesized malfunctions. iaving

oblained a measurement, y, the algorithm seeks a hypothesized malfunction h, E

II which satisfies:

II Y =
- Y I1hrn i m II - Y (43)
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The function hint is most. likely to be the system condition which caused the mea-

s,,rement y, because p(yjh) decreases monotonically w;i ' Y - yh IIh.
Given failure sets F(p'),..., F(pK) and given sets of hypothesized malfunc-

tions lt1, ... , IlK, we will say that failures of type pi are correctly diagnosed if

every failure in F(p ' ) is ascribed by the multi-hypothesis algorithm to a hypoth-

esized failure in Ilk. A collection II = UK= Ilk of malfunction hypotheses is robust

if the failure sets F(p t),..., F(pK) are correctly diagnosed. A robust collection

I of rmalfunction hypotheses is efficient if no smaller set of hypotheses is robust.

The problem to be studied here is to develop a computationally feasible method

for determining whether or not a given set of hypothesized malfunctions is ro-

bust. This determination forms the basis for searching for an efficient collection

of hypotheses.

An important simplification occurs when the norms II-11h, are the same for all

hypothesized malfunctions. An example is developed in section 7.3 for actuator

failures in an open-loop linear system.

7.2 Representing Uniformly Bounded Control-Actuator Fail-
ires

Our aim in this section is to develop a convenient formalism for representing

the measurements of a, closed-loop linear system with uniformly bounded control-

actuator failure. The main result of this section is eq.(55), which is an expression

for the complete response set. Several relations from section 4 have been repeated

for convenience.

Consider the failure-free dynamic systei:

dx - A,(t) + Bu,(t) + vj(t) (44)

dt

Y(t) GX(1) + 7)2(t) (45)

S~)=,(t)x,(t)(1)
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wvhere r, y, and it are state, measurement, and control vectors of dimension N, L

and Al, respectively, v1 and v2 are zero-mean white Gaussian noise vectors with

known, constant covariance matrices, and A, B and G are known constant matri-

ces. The choice of the feedback gain matrix S(1) is immaterial to our discussion.

Let us now consider the representation of ,i control actuator failures. The

indices of the failed actuators are j = (jU ,..,j1). When a malfunction occurs

in the jkh control actuator its normal control function, /,h(i), is replaced by

an autonomous expression, fj,(I), Let f(l) be an A-element vector whose jkth

element is the autonomous behaviour of the failed jkth actuator, for k = 1, J,

and whose other elements are zero. Let j be the matrix obtained from the A x AM

identity matrix by removing each of the .1 rows j), .. ., j. Thus !p(l) is a vector

obtained by removing the elements j, . ., j. from the nominal control vector,

ii(1). Similarly, B1j]' is an N x (Al - .1) matrix obtained by removing the columns

jI,...,jj from the matrix B. Using this notation, the dynamic response of the

system to failure of .1 actuators whose indices are j is described by:

dd = A (t) + BIT jit () + B f(1) ± v(t) (47)
di

The normal control algorithm still calculates the feedback control vector from

eq.(I16). However, fik(t) is implemented rather than lji(l). Combining eqs.(16)
and (17) yields:

d x = ± B 1 7'I jS (i,)] ( l) + B f ( ) + v,(1) (18)
dt

The state vector x(l) can be expressed in terms of a transition matrix Xj(/),

which is the solut ion of the following differential equation [14]:

d ij _ - BIT]l(] V\/) Xj(0) = I (),)

Finally, the tnasirement vector (with noise) in response to failure vector f(l) is:

- (7'\j()xr(O) + (' /Xj(t)A'j-'(r)(Bf(r) 4. v (r)) dr 4- "2(1) (150)

0
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IUnless S(I) = 0 (the open-loop case) the transition matrix, Xj, depends on which

actiators are malfinctio ning, so the covariance rnatrix of . depends on the fail-

ure. Consequently the quadratic norm, based on the covariance matrix of the

measurement, varies with the failure.

'The failure set for malfinctions of type p is l"(p), as in eq.(42). Each failure

f(1) in l"(p) is mapped Co an average measurerment vector yf(l) (witho,,t noise)

in measurement space (eq.(50) with v, = 12 = 0). Let, C(p) be the set, of all the

average measuremnent, vecl,ors obtained from failures in the set, F(p). That is:

((p) 7{zIy : y(/,) = yf (1) for all f E F(p)} (51)

Ve will call ((p) the complite rcspon sget for failuires of type p. Since the faihlre

set, "(p) is convex, the response set, C(p) is likewise convex because yf(i) is an

afline transformation of f.

It is more convenient, however, to define ((p) in terms of its boundary. )efine

the constant failure vector p = (fit,.. , PM), where P,, = (yi, + ,,)/2 for rn, =

I, . ., M.1et Ij(1) be the average response to the constant, failure P, so y(t) = yp(t).

That, is,

ii(l) ,'j(1)x(O) + Gf j(),Xj-'(T)IJpdT (52)
0

Let, I"(p) be the set,:

/,,(p) P {f= (,... ,fAI). (1I() Pm . m} (53)

lEvery element, q in I"(p) can be expressed as *q p + f where f belongs to l*(p).

lhus the response to g ca n be expressed as the sum of the response to P and1 the

reslnse to f. Let 41(t, r) = G'Xj(/)X-'(7")li. Now the response set (,(p) can be

expressed as:

(,)- {Y: Y = Y() ,(1, 'r)f(r) (/T for f E l"(p) (51)
r)
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B P

Y

C(p)

F'igure 25: Illustration of the procedure for findihg boundary points of C(p).

From this expression it is evident that C(p) is convex, contains the point f/(/,) and

is symmetric with respect to inversion through #(i). Also, every element of C(p)

can be expressed as y = ))(1) + ap(w)w where w is a. unit vector in the direction

from fj to y, p(w) is the distance along w from fj to the bounrdary of C(p) and(

0 < (Y < I. That, is, the complete response set can be represented as:

"(P) = { Y: Y = f/(/)±+p(W)W , O < (,< I, &W'W= 1 (55)

'1'o evaluate the radius function p(w) we must first. identify the eletrenis of I"

which generate the boundary point.s of C(p). Let q0 be a. vector in E'. For a. given
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f E P(p), the set of points z which satisfy:

OTZ = OT + *,(I, r)f (r) d- (56)

constitutes a plane in E' through the point y! and perpendicular to 0, as shown

by the line b, in Figure 25. The distance of this plane from 9 is:

dis(yf, ) O
T  *I(t, r)f(r) dr (57)

This distance varies as f varies on the set *. That element of F* which maximizes

dis(y., V-) defines a boundary point of C(p), denoted BP in Figure 25. Let i'k(t, T)

represent the rth column of *(1, 7-). Then dis(yf, V) is maximized on F* when the

elements of the vector f are chosen as'

f. ( Pr; Pm - M sgn( r )) ( m,  1 )). = , M (58)

2

where sgn(x) = ±1, matching the sign of x. Boundary points of C(p) are now

represented as:

Y(I; () (i) + f *(t, r)f(-r; 0) d- (59)
0

where f(r; 0) in this expression is defined in eq.(58). Distinct boundary points

are obtained by varying g. Each boundary point in turn defines a value of the

radius vector. For each q the radius of C(p) along direction w = y(t; #)- I(i)

is w'w, which can be tabulated numerically as a function of the direction w.

Let p(w) represent this tabulation. The argument of p need not be a normalized

vector, b,, we will adopt the convention that, for any scalar a, p(Ow) = lalp(w)

and that p(w) precisely equals the radius of C(p) along w when w is a unit vector.

'A similar maximivation prohlem is disciussed in eqs.(6,) (68), to which the reader is referred
for j nstfication of eq.(58).
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7.3 Designing the Multi-Hypothesis Diagnosis of Open-
Loop Malfunctions

In the absence of feedback in the control loop (S(t) = 0 in eq.(46) and u(1) is

independent of x) the transition matrix, eq.(49), is independent of the malfunc-

tion. Consequently the quadratic norm based on the covariance matrix of the

measurement does not depend on the failure. Determination of the robustness

of a collection 1 of hypothesized malfunctions can be based on the solution of a

sequence of linear optimization problems, as shown in this section.

As in section 7.1, let k = U lk4 be the complete set of hypothesized mal-

functions. Let *q and h belong to H, and define the minimum, relative norm on

C(pk) with respect to q and h as:

Dk(g, h) = min (1 yg- y12 - I y - y 112) (60)
YEC(p*)

If Dk(g, h) is positive, then every occurrence of failure of type pk will be ascribed

to hypothesized malfunction h rather than to .q. It is evident from the definition

of correct diagnosis that, failures of type pk are correctly diagnosed if, for each

. E It - Hk, there is an element h E Ik such that

Dk(g, h) > 0 (61)

This means that, for every failure in F(pk), no hypothesis outside 1k will be chosen

by the multi-hypothesis algorithm. Consequently type p, failures will be correctly

diagnosed.

Expanding the norms in eq.(60) in terms of the inner product, one finds:

!)k(g, h) =11 112 -II m Y 11' -2 ma.x [Y,- Yh, ii] (62)
yEC(p&)

The maximum on the righthand side does in fact, exist since [yq - yh, Y1 is a linear

(and thus continuous) function from the compact set C(pk) to the real numbers.

Consequently, determination of the correct diagnosis of failure type pk is based on
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evaluating the maximum of the linear function [Yg - Y/h, Y] on C(pk), for each g

and h in II. Eq.(43) indicates that the multi-hypothesis algorithm itself evaluates

a quadratic expression in y. The adequacy of a linear expression for determining

correct diagnosis derives from the fact, expressed in eq.(60), that correct diagnosis

is established by comparing norms which are independent of the hypothesized

mal fUInctions.

7.4 Example: Designing Multi-Hypothesis Diagnosis

To illustrate this analysis, we consider part of the design process for constructing

a maximum-likelihood multi-hypothesis algorithm for diagnosing control actuator

failures in AFTI/F16 aircraft in steady open-loop flight at 0.9 Mach and 20,000 feet

altitude. The dynamic behavior and measurements of the failure-free linear system

are represented by eqs.(44) (46) with S(1) = 0. The 8 state variables, in order of

their appearance in x, are: pitch angle, forward velocity, angle of attack, pitch

rate, bank angle, sideslip angle, roll rate and yaw rate. The 6 control variables, in

order of their appearance in u, are: right and left, horizontal tails (elevators), right

and left wing flaps, canards (operated symmetrically) and rudder. These control

variables are zero in steady open-loop flight, but vary automatically after failure.

GO is the 8 x 8 identity matrix and the values of A and B are presented in tables

(1) and (2).

We will now develop an explicit expression for the maximum in eq.(62). Let

the initial state vector be x(0) = 0. From eqs.(4,) and (45) one finds the average

response to the malfunctioning control vector it to be:

t

Y) - A( r)Bn(r) dr (63)

Let the inner product take the form [.,y] = xT v-i1y, where V is the cova.riance

mat rix of the response vector. A iso, let A"(1, 7-) be the rnth column of the matrix
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V-GeA(i-r)B. Let 6(1) = Yg(f)- Yh(t). Then one finds:
M t

[Y(t) - h(I), Y()] = 5(1)'An(/, r)um(r) dr (64)
= 0

Examination of eq.(64) shows that the rnth integral achieves its maximum when

u, (7) is chosen to switch between its extremal values as (i)rAm(, T) changes sign.

Specifically, eq.(64) is maximized by choosing the elements of u as:

,,,(r) = Pm for 6(t)TAm( t , r) _ 0 (65)

= Pn for 6( T A' Ct , 7) < 0 (16)

Let 1),+ and !,._ denote the subsets of the interval [0, 1] for which 6(t)TAi(1, r)

is non-negative and negative, respectively. Thus the maximum value of the inner

product becomes:

max [y,(I) - yh(i), y,(I)IuEF(pk)

f f 6 2 (t, r)dT+ ji)TAm(j r, )) d (67)

rn-IIV.(,)

M+l.n 2 , ( ) dr + 0 15 ()T)m(j, T)l 4g

The minimum relative norm on C(pk) with respect to g and h is obtained by

substituting eq.(68) in eq.(62). We are now able to determine whether or not a

given collection of hypothesized malfunctions is robust.

The starting point for selecting hypothesized failures is specification of the

failure sets which must be correctly diagnosed. Identification of a. robust and

eflIcient set of hypothesized malfunctions is then an iterative process. At least

one hypothesis must be included in H for each failure set which is to be correctly

diagnosed. Given an initial choice of H, eqs.(62) and (68) are used to determine

whether or not the require(] failure sets are correctly diagnosed. Elements of H are
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Figure 26: Ilypothesized ma.lfunctions represented by points in the hi 2 versus hi5
plane.
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then modified and new elements are included, until correct diagnosis is attained

for each specified failure set.

The procedure for determining the robustness of a. given set of hypotheses can

he inverted, in part, to aid in the search for hypothesized malfunctions. A simple

numerical example will illustrate this analysis. Suppose it is desired to correctly

diagnose malfunctions of failures in the second and fifth control functions (left el-

evator and canards), when these control surfaces are deflecting autonomously. For

graphical simplicity we will select hypothesized malfunctions hi which are constant

in time and non-zero only in the second and fifth elements. Thus hypothesized

malfunctions can be represented as points in the plane, where the horizontal and

vertical coordinates are the second and fifth elements of the failure vector, hi2

and hi.5 respectively. Three hypothesized malfunctions, hl, h2 and h3 have been

included in If to diagnose other failures, as shown in Figure 26. It is now desired

to select the minimum set of hypotheses needed to assure correct diagnosis of left

elevator and canard deflections between, for example, 0.60 and 0.80. Let us denote

this failure set F(0.6, 0.8).

Each point in the square region of Figure 26 represents a constant failure in

F'(0.6, 0.8). However not each such point, ir used as a. hypothesized malfunction,

would yield correct diagnosis of the malfunctions in F(0.6, 0.8). Let h be a point in

the square region oF Figure 26, and consider the maximum likelihood comparison

between h and h,. Eqs.(62) and (68) are used to evaluate D(h,, h), the minimum

relative norm on C(0.6, 0.8) with respect to h and h. The minimum relative norm

for each point h below the curve in Figure 27 is found to be positive, indicating that

these hypotheses yield correct diagnosis of the failures in question, when compared

with hypothesis hi. The minimum relative norm of all points above the curve in

Figure 27 is negative, which means that, hypothesized failures above the curve will

not. yield correct diagnsis. Figure 28 shows a. similar analysis based on comparison

with h2. Again the minimum relative norm, D(h2 , h), is positive for points below
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Figurre 27: Malrunctiores in the square region and below the curve yield correct
diagnosis in corm parison with hi.
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the curve and negative for points above the curve. Thus correct diagnosis in

comparison with h 2 can be achieved only if a point below the curve in Figure 28

is included in 11. Comparison of Figures 27 and 28 shows that correct diagnosis

with respect to h, assures correct diagnosis with respect to h2. The analysis is

repeated to determine the hypothesized malfunctions which yield correct. diagnosis

in comparison with h 3, and the results appear in Figure 29. Points above the curve

yield correct diagnosis of all failures in F(0.6, 0.8), while points below the curve

do not. Overlaying Figures 27 29 as in Figure 30, shows that two hypothesized

malfunctions are necessary and sufficient to achieve correct diagnosis of all failures

in F(0.6, 0.8). One hypothesis must lie between the intermediate and upper curves,

while one nuist, lie below the lowest curve. Correct diagnosis of the failure set

F(O.6, 0.8) requires that two such hypotheses be included in I!, as long as hi, h2 and

h. are in 1I. Likewise, unless additional hypotheses are added to H for diagnosis of

different, Failure sets, the two hypotheses which have been identified are sufficient to

assure correct, diagnosis of F(0.6, 0.8). This analysis is continued until conditions

are established for defining the smallest set. of hypothesized malfunctions which

assure correct diagnosis for each of the specified failure sets.

7.5 Designing The Multi-Hypothesis Diagnosis of Closed-
Loop Malfunctions

let I =- Uk= 1 Ilk, where each set lk contains malfunctions drawn from the set.

F(p') of uniformly bounded failures. The system is described by eqs.(44) and (,15),

and the feedback gain in eq.(46) is non-zero. We wish to determine whether or

not malfunctions of type pk are correctly diagnosed. Eq.(60) must be modified to

account, for the fact, that, due to the Feedback in the control loop, the quadratic

norrn depends on the failure. Accordingly, let, q and h belong to It and define the

rninimurn relative norm on C(pk) with respect to g and h as:

Ik(.q, h) = min, ( Y .,- V I11 - II . , - Y I11) (69)YEt;p 9)
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Figunre 28: Malfunctions in the square region and below the curve yield correct
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diagnosis in comparison with h..
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The main result of this section is the evaluation of this minimum relative norm.

Once that is achieved, the hypothesized malfunctions are selected by the iterative

procedure illustrated in section 7.4.

Let g and h be hypothesized malfunctions, and let y,, and Yh be the correspond-

ing average responses. Let y + 'q be an element of C(pk), where . is defined,

with respect to the parameters pk, as in connection with eq.(54) and il =tp(w)w

as in eq.(55). The expression to be minimized in eq.(69) becomes:

IYgUJIq - IIh - Y I1h
S(Yg -- ) V- )v-(g - 77) - (Yh -- 7I)TVCI(yh 47Y - 0)

= 7rAr- 2(Tr, + /1 (71)

where A = V - _ , V 1 ( _- and p =11 y- 1 _ 11

Yh - . Failures of type p are correctly diagnosed if, for each g E H - Hk,

there is an element h E Hk such that:

D,(g,h) > 0 (72)

Referring to eq.(55) it is evident that, q is a vector of arbitrary orientation whose

length does not, exceed the distance in direction r7 of p from the boundary of C(pk).

Thus qj is constrained by:

I/T-< p ( -) i/ 1 P('?) (73)

where p(w) is determined numerically as explained in section 7.2. This inequal-

it y constraint on the maximization of eq.(71) can be replaced by an equality by

introd, ing an undetermined quantity, f"

±77 + #2 P(7) (74)

Adjoin the constraint to the expression in eq.(71) as:

W" -- 77A, - 2(¢" +/, + (,7T,7 + p2 _ P(,q)) (75)
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Necessary conditions for a stationary point of eq.(71) are:

o OD* = 2A I- 2C+2Ar, -AL (76)

= 19* = 2A/ (77)
00

Eq.(77) together with the constraint imply that A = 0 if 77/Tq < p(/). Thus an

extremum of eq.(7l) occurs in the interior of C(p') if the solution of:

A77 =(78)

satisfies 'qTq < p(ij). If not, then the extrema of eq.(71) occur on the boundary of

C(p') and must satisfy:

(A + A),= + IA L- (79)
2 Ol

and
*7 T = P(77) (80)

Eqs.(78) - (80) determine the constrained extrema of Dk(.q, h). Failures of type

p are correctly diagnosed if the condition in eq.(72) is satisfied.

The solution of eqs.(79) and (80) is computationally somewhat cumbersome.

It, is therefore useful to know that, if A is a, positive definite matrix, then eq.(71)

has precisely one minimum and may have several local maxima. Or, if A is nega-

tive definite, then eq.(71) has precisely one maximum and may have several local

minima. If A is indefinite, then eq.(71) can have several minima and maxima..

7.6 Multi-Hypothesis Diagnosis: Conclusions

This section has described a method for designing a maximum-likelihood multi-

hypothesis algorithm for diagnosing control-actuator failures in linear systems.

Uncertainty in the temporal behavior of a malfunctioning actuator is represented

by employing the set, theoretic technique called convex modelling. For open-loop

systems (autonomous controllers) the diagnosis algorithm is designed by solving
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a sequence of linear optimization problems. For closed-loop feedback systems the

design of the diagnosis algorithm requires the solution of non-linear equations. The

resulting diagnosis algorithm is robust and efficient. Robust in that the diagnosis

invariably distinguishes between failure sets which represent complex uncertainty

in the temporal form of the malfunctions. Efficient in that no smaller set of hy-

pothesized malfunctions could achieve correct diagnosis of the required classes of

failures. The significance of this result is that design of an algorithm for diag-

nosis of control actuator failure can be based on a systematic and numerically

implementable procedure which yields the best possible algorithm, in the sense of

robustness and efficiency defined here.

8 Concluding Remarks and Future Research

The diagnosis of additive failures in a linear dynamic system has been studied

in this project. This class of failures includes control-actuator failures, which

are emphasized in this report. Several theoretical concepts relating to the design

of control-actuator failure-diagnosis have been developed. Illustrative numerical

examples have been presented based on a linearized steady-flight model of the

AFTI/FI6 aircraft.

The successful diagnosis of failure relies on knowledge of the malfunction phe-

nomrrenon in general, Hlowever, malfunction is usually so complicated that it is

unfeasible to formulate a probability measure which expresses the relative likeli-

hood of each of the infinite range of possible specific malfunctions. On the other

hand, sufficient partial information is often available with which to formulate a

set-theoretic convex model of failure uncertainty. This approach has been adopted

in the present study.

Convex modelling provides two distinct tools for optimization of malfunction

diagnosis algorithms. The first., called brnrhmark diagnosi.q, is an assessment of

the best, state space malfunction diagnosis capability which can be obtained by any
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algorithm, whether based on the multi-hypothesis maximum-likelihood concept or

not. Evaluation of the optimum distinguishability is useful as a benchmark, against

which the performance of implementable algorithms can be compared. Conclusions

regarding benchmark diagnosis in general and its application to aircraft systems

in particular have been discussed in section 6.5.

The second tool provided by convex modelling, called mulli-hypothesis dis-

tinguishability, enables assessment of the malfunction diagnosis performance of a.

specific multi-hypothesis algorithm. This enables the quantitative comparison of

the performance of multi-hypothesis malfunction diagnosis algorithms based on

distinct sets of failure hypotheses. Optimization of the malfunction diagnosis al-

gorithm is based on these comparisons. Implications of the results concerning

I'multi-hypothesis diagnosis are discussed in section 7.6.

Several areas of further research are of immediate interest. Many engineer-

ing systems of importance in aeronautics and other fields display malfunctions

which may be modelled as additive failures. The application of convex modelling

to such systems can be pursued. This may include either different aerodynamic

models than the one studied in this report, or different classes of failures. Alter-

natively, convex modelling can be applied to the development and optimization

of algorithms for malfunction diagnosis in sub-systems, such as inertial navigation

systems.

An additional problem area is the study of the algorithmic basis of convex

modelling. The development of efficient computer algorithms for evaluating the

disjointness of convex sets is essential for a large scale benchmark analysis. Rapid

algorithms for evaluating the minimum relative norm are needed for optimizing

the design of a multi-hypothesis diagnosis algorithm in a large complex system.

A further area of importance is the incorporation of the diagnosis task in the

overall framework of malfunction management. Diagnosis of failure should lead to

the implementation of a compensatory controller whose task is to lead to graceful

recovery of the system. Central unsolved problems are:
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I. D~esign (lhe dliagniosis algorithm to incorporate Cte suibsequient needs of the

in ipensatory controller.

2. Synrthesize the conipensatory controller.

3. Integrate the tasks of failuire diagnosis and Failnre comrpenisationi so that

management of the m-alfunction begins to Ibe imrplementedl before learning of

the failure has been completed.

A fina~l area, of interest, for further work is the study of non-additive failures.

Imuporta nt classes of malfunrctionis dleviate fromn the assumption of a.(ditivity. In

p~articuIlar, those failures in which the rnodel parameters (e.g. aerodynamic coeffi-
cienits) undergo alteration violate the assumption of additivity. In such cases the

- property (of convexity of the failuire set, is still plausible, and the genera.l modIe (of

thouight. of convex modlelling is still relevanrt,. However, (difficulties (develop which

need ito be studied bo0th analyticalIly arid rumerically.

Appendix
Plausibility of Convex Models of Uncertainty

In a set theoretic model of mralfu7tnction uincertainty the malfunction is modelled

as a, Ctme- or space-dependent vector funiction drawn from a. set of possible func-

tions. We wish to identily conditions in which it is plausible to assume such sets of

fuu nctionus are convex. TIhe central limit, theorem will motivate our discussion. Let

91i, . . , gq,, lbe ind~epenudenit,, idlertically (listribiled randI~om variables with zero mea~n

arid Finite variance. As n - 00 the distribution (of the sumn f = Eitends C~o a

normal (Iistrilmutiori, regardless orf how the gi a-re distributed. TIhe physical analog

of thiis theorem siiggest~s that. if a. certain mneasuirable macroscopic quantity f
e.g. a voltage 'ir a temperature is the suiperposition or(if nmerous randomn, inide-

pendent. a rid ideniticalIly d istribu tedl microscopic variables *qi, then we should expect.

the macroscoipic piuarntity f to dIisplay a ga ussian distribution, regardless of how

the *q, are distribuited. Indleed, this expectation is fulIfi lled in mniry circumstances.



YREI' I,; ES 73

Now let us consider a set-theoretic approach to modelling the uncertainty of

a time-dependent macroscopic vector function f. Let F be a set of vector-valued

functions. For a positive integer n, consider the set of functions:

f{ f l (t -j.q,(1) , .i E Fl, i =1, n} (81)
Fn :f ) ni=, I '

It is well known (Aumann, 1965; Artstein, 1974; Artstein and tansen, 1985) that,

as n *~ ~o, the sequence of sets E;, converges to the convex hull of r. This result

invites the following physical interpretation. If a macroscopic time-dependent

vector f(i) (sujch as a malfunction) is formed as the superposition of numerous

microscopic time-varying events gi(t) chosen from a set F, then the set of all such

functions f(t) will tend to be convex, regardless of the structure of the set 1'.
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