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I STATEMENT OF THE PROBLEM 4
1 Statement of the Problem

This project is devoted to the study of diagnosis of additive malfunctions in linear
dynamic systems. This class of failures is relevant to control-actuator failures in
aircraft, as well as to other situations. In particular, we are interested 1n optimizing
multi-hypothesis maximum-likelihood algorithms for malfunction diagnosis, since
this concept is the most widely accepted basis for automatic malfunction diagnosis.

The enginecring system to be studied is a lincarized aerodynamic model for
small disturbances about a reference condition of steady rectilinear flight over a
flat earth. The advantage of this system is its simple description of a wide range
of acrodynamic situations, and the fact thal conirol-actuator malfunctions can be
modelled as additive failures.

The formulation of a multi-hypothesis algorithm lor malfunction diagnosis in-
volves the choice of a set of hypothesized malfunctions. On-line measurements of
the system are compared with the behavior (o be expected from each hypothesized
failure, and a likelihood-ratio algorithm is used to identify the hypothesized failure
which is most likely to have given rise to the observed measurements. Optimiza-
tion of such an algorithm centers on the choice of the set of failure hypotheses:
How many failure hypotheses should be chosen, and what should these failure
hypotheses be?

The methodology of convex modelling presented in this report is to be used to
address these questions. Convex modelling provides two distinct tools for optimiza-
tion of malfunction diagnosis algorithms. The first, called benchmark diagnosis, is
an assessment of the best state space malfunction diagnosis capability which can
he oblained by any state space algorithm, whether based on the multi-hypothesis
maximum-likelihood concept or not. Fvaluation of the optimum diagnosis capa-
bility is used as a benchmark, against which the performance of implementable
algorithms can be compared. The second tool provided by convex modelling,

called mulli-hypothesis distinguishability, cnables assessment of the malfunction
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diagnosis performance of a specific multi-hypothesis algorithm. This enables the
quantitative comparison of the performance of multi-hypothesis malfunction diag-
nosis algorithms based on distinct sets of failure hypotheses. Optimization of the
malfunction diagnosis algorithm is based on these comparisons. For example, the
performance of different sets containing N failure hypotheses can be compared, and
the best set of hypotheses can be sought. Furthermore, the utility of the marginal
((V + 1)th) hypothesis can be established by comparing the best N-fold set of
hypotheses with the best (N + 1)-fold set. Finally, the multi-hypothesis diagnosis
capability of any specific implementable algorithm can be compared with the best
possible malfunction diagnosis capability, as expressed by the benchmark distin-
guishability. Tn this way, rational design decisions can be made in the formulation

of a multi-hypothesis maximum-likelihood algorithm for malfunction diagnosis.

2 Background and Approach

The diagnosis of additive malfunctions in linear dynamic systems has been stud-
ied from various points of view. Fiorina and Maffezzoni (1979) use the generalized
likelihood ratio to detect additive step failures in the Italian power system. Kerr
(1982) discusses the application of the confidence region concept to the detection of
additive failures relevant to inertial navigation systems. Willsky and Jones (1976)
discuss adaptive filtering and its application to the detection of additive failures
in linear systems. Caglayan (1980) establishes conditions for detectability of ad-
ditive jump failures in linear systems. Nash el al (1971) use optimal smoothing
to model step, ramp and other additive disturbances to gyroscopic inertial navi-
gation systems. Baruh uses a modal method to detect actuator (1986) and sensor
(1987) failures in distributed systems. Massoumnia and Vander Velde (1988) use a
parity-check fechnique to diagnose sensor and actuator failures in linear systems.

A primary challenge in diagnosing a malfunction arises from the uncertainty

in the form and properties of the failure. Determination of the best possible




2 BACKGROUND AND APPROACH 6

malfunciion diagnosis capability depends on modelling the failure uncertainty. A
set-theoretic, rather than probabilistic, representation of uncertainty in the fail-
ure is employed in this work. This approach is motivated by the lack of detailed
probabilistic information on the possible failures. Set theoretical representations
of uncertainty have been employed in a wide range of engineering applications.
Schweppe (1968, 1973), Bertsekas and Rhodes (1971), Witsenhausen (1968a,b),
Schmitendorl (1987), Tempo (1988) and others have used unknown-but-bounded
set theoretic models to represent uncertain inputs in the control and estimation
of linear systems. Ben-Haim (1986, 1989) has represented uncertain malfunctions
in dynamical systems with a set-theoretical approach. Ben-Haim (1985) has used
set models of uncertainty in the optimal design of assay systems for measuring
spatially random material. Ben-laim and Flias (1987) have represented uncer-
tainly in inverse heat transfer measurements with sets of spatially varying heat
transfer coefficients. Ben-Haim and Elishakoff (1989) have described geometric
imperfections in thin shells using sets of imperfection functions. Common to all
these treatments of uncertainty is the fact vhat conver sels of functions charac-
terize the uncertain temporally and/or spatially varying quantity. This approach
will be succintly referred to as conver modelling.

A multitude of powerful concepts for failure diagnosis has been developed, but
a comprehensive methodology for designing diagnosis algorithms is lacking. One
component in an overall design analysis is the determination of the best diagnosis
capability which can be attained by any state space algorithm. The benchmark
diagnosis developed in this report does precisely that for additive failures in a
linear deterministic dynamic system.

A common approach to malfunction diagnosis is based on hypothesizing a set
of possible malfunctions, and then subjecting measurements of the system to a
maximum likelihood test, in order to decide which hypothesized malfunction is
most likely to have given rise to the measurements. This approach is appealing

for several reasons. The concept of maximum likelihood is intuitively satisfying as
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a criterion of optimality. In addition, prior information about the system can be
exploited by judicious selection of the hypothesized malfunctions.

The performance of a multi-hypothesis algorithm for malfunction diagnosis is
limited by the disparity between its finite set of hypothesized malfunctions and
the infinity of possible failures. A large number of hypothesized malfunctions is
usnally deemed necessary for reliable diagnosis in the presence of the substantial
uncertainty which accompanies the occurrence of failures. However, real-time im-
plementation of a multi-hypothesis algorithm of high multiplicity is problematical.
The second concept developed in this report - mulli-hypothesis distinguishability

provides a method for evaluating the performance of a multi-hypothesis algo-
rithm with respect to failure uncertainty. This performance-evaluation forms the

basis for selecting a robust and efficient collection of hypothesized malfunctions.

3 Normal Dynamics and Control of the AFTI/F16

3.1 Formulation of the Normal Dynamics

The representation of the dynamics of the AFTI/F16 aircraft is based on data
presented by Schneider (1986). The dynamiics for steady-state linearized flight are

presented in state space form as:

dx
;E.—_Am-i—Bu (1)

where z is an 8-dimensional state vector, u is a 6-dimensional control vector, and
A and B are constant dynamics and control matrices. The 8 state variables are:
pitch angle, forward velocity, angle of attack, pitch rate, bank angle, sideslip angle,
roll rate and yaw rate. The 6 control variables are: right and left horizontal tails
(elevators), right and left wing flaps, canards (operated symmetiically) and rudder.

The structure of matrices A and B are reproduced in tables 1 and 2.
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3.2 Formulation of an Automatic Controller

An automatic controller has been formulated for the linear dynamic model de-
scribed in the previous subsection. The aim of the controller is to restore the
state variables to nearly zero values, by applying control proportional to the state.
The duration of the control period is fixed, and denote as {;. The feedback gain
is chosen so as to minimize the integrated state-variable deviations from zero, to
minimize the integrated control, and to minimize the magnitude of the final state
variables. Specifically, the control is required to minimize the following expression:
t
J=(z"8z),, + / (mTR.T + uTVu) dt (2)
0
With this formulation it can be shown (Bryson and Ho, 1975, p 148-53), that

the control vector is given by:
u(t) = ~V'BTS(t)=(1) (3)

where the gain matrix, S(1), must satisfy the following differential matrix Riccati

cquation:

dS
di

with the endpoint houndary condition: S(t;) = §,.

=-SA-A"S +SBV'BTS - R (4)

3.3 Numerical Demonstration of the Normal Dynamics

The dynamical behavior of the AT'TT/F16 aircralt model employed in this project
is briefly demonstrated in this section. Open-loop and closed-loop flight is pre-
sented. In the open-loop mode one of the control variables is fixed at a non-zere
value, while the others are all fixed at zero. The dynamic behavior is calculated
from eq.(1). In the closed-loop mode the flight is initiated as in the open-loop
mode: with one fixed non-zero control function. The time-dependent controller

is actuated as soon as any of the state variables exceeds a preset threshold value.
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0 0 0 1.00000 0 0 0 0
—32.1830 0.012075 38.2906 -30.1376 0 0 0 0
—0.00112 | -0.000022 | —1.48446 0.994789 0 0 0 0
—0.000309 -0.00013 4.27171 | —0.777221 0 0 0 0
0 0 0 0 0 0 1.00000 0
0 0 0 0] 0.03449 | —0.343554 0.0326360 | —0.997556
0 0 0 o 0| —55.2526 —2.80004 0.145671
0 0 0 0 0 7.23700 | —0.0231840 | —0.362530

Table 1: The Matrix A. The units of the state variables are radians, radians/sec

or feet/sec (after Schneider, (1986)).

0 0 0 0

1.00296 1.00296 1.15840 1.15840
—0.0746135 | —0.0746135 —0.122462 | -0.122462
—12.0291 —12.0291 —3.23635 -3.23635

0 0 0 0
0.0133045 | —0.0133045 | —0.0006855 | 0.0006855
—~25.3645 25.3645 —25.5251 25.5251
—~2.56855 2.56855 —0.625030 0.625030

[av i en i e B ea B an}

0.0267340
5.53185
5.89254

oo B en i oo i e B e}

0.0370320
10.3955
—5.80890

‘Table 2: The Matrix B. The units of the state and control variables are radians,

radians/sec or feet/sec (after Schneider, (1986)).
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Symbol | State Variable Control Variable
octagon | pitch right elevator
A forward velocity | left elevator
+ angle of attack | right wing flap
X pitch rate left wing flap
diamond | roll canard
) yaw rudder
table roll rate —-

% Z yaw rate - -

Table 3: Legend for figures in this section.

The controller is operated for the duration of {; = 0.15 seconds. At the end of this
control period the control actuators are all fixed at their last values, and the flight
is continued in open-loop (fixed control) mode until a state variable again exceeds
the threshold value. The controller is again imposed, and so on. The values of the

matrices A and B are given in tables 1 and 2 (from Schneider, (1986)).
Figures 1 - 4 show open loop behavior of the aircraft at 0.9 Mach and 20,000 feet

altitude. These four figures show the time dependence of the 8 state variables in
response to four different fixed-control conditions. The units are feet, seconds and
degrees. The single non-zero control function is fixed at +4 degrees in each case.
In figure | the non-zero control is the right horizontal tail (otherwise known as the
right elevator); the right flap in Figure 2; the canards (operated symmetrically) in
Figure 3; and the rudder in Figure 4. The legend of the symbols for the figures in
this section appears in table 3.

The open-loop dynamics have been calculated from eq.(1) by a simple finite-
difference method. The Riccali equation, relation (4), must be solved for the
closed-loop calculation. This is done by a backward finite difference calculation.
Then eq.(1) is solved, together with eq.(3), by finite difference. The time step

size for all finite difference calculations is 0.001 second. The matrices S; and R in
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the Riccati equation are positive semi-definite while V' is positive definite. In the
numerical calculations to be discussed, these matrices are chosen to be diagonal,
with equal diagonal elements. The diagonal elements of R equal 50/1;, of V equal
2/t; and of Sy equal 0.25.

Figures | and 2 show substantial similarity in the effect of the right wing flap
and the right elevator. In cach, a +4 degree deflection results in appreciable roll
rate: about —30 degrees/sec at the end of 0.5 second. The elevator produces more
pitching motion than the wing flap. The other state variables are less affected
during the first 0.5 second.

Figure 3 shows the dynamic response to a +4 degree symmetrical deflection of
the canards. The roll and yaw motions are strongly induced, while the longitudinal
state variables are completely unaffected.

Figure 4 demonstrates the response to a +4 degree deflection of the rudder. The
yawing moment is predominant, and the rolling moment is prononnced and reverses
its sign after about 0.4 second. The longitudinal state variables are unaffected.

Figures 5 - 12 show the state and control variables in four different closed-loop
modes. As explained above, each flight is initiated in the open-loop mode with
a single non-zero control held at a fixed value of +4 degrees. (This initial value
of the control is not depicted in the figures because it is far off scale. Rather, all
the control variables are shown as initially equal to zero). In figures 5 and 6 the
non-zero control function is the right elevator; in figures 7 and 8 the right wing
flap; in figures 9 and 10 the canards; in figures 11 the rudder.

Figure 5 shows the dynamic, closed-loop response to an initial +4 degree de-
flection of the right elevator. Rolling and pitching moments develop quickly, as in
figure 1. However, after only 5 milliseconds, the absolute value of the roll rate ex-
ceeds the threshold of 0.5 for triggering the controller. The controller is actuated,
as seen in figure 6, for 0.15 second, during which time the rolling and pitching
moments are rapidly reduced. This is achieved by positive deflections of canards

and the rudder, and negative deflections of the right wing flap and the left and
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right elevators. The left wing flap varies from positive to negative values. After
completion of the 0.15 second control period, the control functions are fixed at
their last values and the flight is continued in the open-loop (fixed-control) mode.

Figures 7 and 8 show the response and controls when the initial fixed-control
perturbation was a +1 degree deflection of the right wing flap. The dynamic and
control responses are qualitatively similar to those shown in response to an inmtial
right elevator deflection.

Figures 9 and 10 show the dynamic and control responses to a +4 degree
deflection of the canards. Strong rolling and yawing moments develop quickly,
as in figure 3. This results in actuation of the controller after 0.022 seconds.
Positive right flap and elevator, positive rudder and symmetrical negative left flap
and elevator, together with negative deflection of the canards, result in reversal
of the lateral moments. Note, however, that the control period terminates (at
0.172 second) before the yawing and rolling moments are completely zeroed. In
the fixed-control period a negative yaw rate develops, resulting in re-activation of
the controls at 0.471 second.

Fignres 11 and 12 show the dynamic and control responses to an initial positive

deflection of the rudder.

4 Representing Control-Actuator Failure

Our aim in this section is to develop a convenient formalism for representing the
measurements of a linear system with control actuator failure.
The dynamic behavior and measurements of the failure-free linear deterministic

system are represented as:

dz
= = A1) + Bu(t) (5)

y() = G()=(1) (6)

where z, y and u are stale, measurement and control vectors of dimensions N, I,
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Figure 6: Automaltic control variables in response to a +4 degree defllection of the

right elevator.
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flap.
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and M respectively and A, B and G are known matrices. The system is regulated

automatically by a feedback controller proportional to the state:

u(t) = S(t)e(t) (7)

et us now consider the representation of J control actuator failures. The
indices of the failed actuators are j = (5;,...,77). When a malfunction occurs
in the jith control actuator its normal control function, u; (1), is replaced by
an autonomous expression, f;(1). Let f(1) be an M-element vector whose j,th
clement is the autonomous behavior of the failed jith actuator, for k =1,..., J,
and whose other elements are zero. Let I; be the matrix obtained from the M x M
identity matrix by removing each of the J rows j,..., j;. Thus Iju(t) is a vector
of length A — .J obtained by removing the elements j;,...,j; from the nominal
control vector, u(t). Similarly, Ble is an N x (M ~J) matrix obtained by removing
the columns j,,...,j; from the matrix B. (The superscript T denotes 1 atrix
transposition.) Using this notation, the dynamic response of the system to failure

of J actuators whose indices are j is described by:
%’f = AD)z(t) + BOIT Ku(t) + B)F (1) (8)

The normal algorithm still calculates the feedback control vector from eq.(7).

However, f;, is implemented rather than u;,(f). Combining eqs. (7) and (8) yields:

— = [A@®) + BOIT S)] =() + BRI (1) (9

The state vector (1) can be expressed in terms of a transition matrix Xj, which

is the solution of the following differential equation (Bellman, 1974):
dX; . .
= [A() + BOIT SO X500, X300 =1 (10)

Finally, the measurement vector in response to failure vector f(t) is:

ys(1) = GO X;()=(0) + G(1) / X; ()X (D) B(7)f (r) dr (11)
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5 Convex Models of Malfunction Uncertainty

The salisfactory diagnosis of malfunction depends upon prior knowledge of the
malfunction phenomenon as a whole. However, malfunction is often so complex
that one is unable to formulate a probability measure, defined in a space of fail-
ure functions, which expresses the probability density for occurrence of specific
malfunctions. On the other hand, partial information is hikely to enable the char-
acterization of possible malfunctions in set-theoretic terms.

In a set-theoretic model of malfunction the failure vector f(t) belongs to a
set of malfunctions which all share some g'obal, phenomenological property in
common. TFor example, one may consider failure sets of step-like functions which
occur at or around a particnlar time. or ramp-like functions all with similar slopes.
Alternatively, the failure-functions may be uniformly bounded and of extended
duration, or may be transient disturbances of bounded total energy.

In general, the failure set F(p), where p is a parameter vector, is the set of
vector-valued functions which represent all realizable failures of type p. It is often
found in practice that the information available for characterizing the possible
malfunctions leads naturally to assuming F(p) to be a convex set. We shall assume
our failure sets to be convex, and refer to F(p) as a conver model for failures of type
p. The adoption of a convex model for representing the variability of each type of
failure can be motivated by theoretical considerations. This is briefly discussed in
the Appendix.

A widely used convex model for set-theorctic representation of uncertainty is
based on assuming thal the functions in question are uniformly bounded. The

failure sets are defined as:

F(p) = {fT:(fla'-'an): ﬁmem(f)SPm )
te0,00) , m=12... M} (12)

where p = (py, p1, - .-, Par, par)- Thus the autonomous (malfunctioning) value of the
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mth control function varies arbitrarily between p,,, and p,,. Usually the number
of actuator faitures is less than the dimension M of the control vector. This is
represented by choosing p,, = pn = 0 for each of the functioning actuators.

Fq. (11) maps each failure vector f(1) in F(p) to a vector y;(¢) in measurement
space. Let C(p) be the set of all the measurcment vectors obtained from failures

in the set F(p). That is:

Clp)={y: y(t) =y, (1) forall fe F(p)} (13)

We will call C(p) the completle response sel for [ailures of type p.

6 Benchmark Diagnosis Capability

6.1 The Concept of Benchmark Diagnosis

Malfunction diagnosis' is based on disiinguishing between response sets which cor-
respond to distinct types of failure. Response sets which are far apart will be easily
distinguished, while malfunction diagnosis becomes more difficult and uncertain
for response sets which are closer together. Finally, if two response sets C(p) and
C(q) overlap, then no algorithm will be able to distinguish every occurrence of
failure of type p from every occurrence of failure-type q. The capability for mal-
function diagnosis is thus ultimately limited by the overlapping of response sets.
The disjointness of response sets determines the limiting or benchmark malfunction
diagnosis capability. This benchmark is an expression of the failure uncertainty
characteristic of the system studied, of the failure environment within which it
operates, and of the knowledge embodied in the system and failure models. Im-
proved malfunction diagnosis can be obtained only by modifying the system or its
measurements or the failure environment, or by augmenting the knowledge with

which the system and its failures are modelled.

"I'he material of this section will be presented at the IFAC Conference on Advanced Information
Processing in Antomatic Control, 3 - 5 July 1989, Nancy, France. (Ben-H{aim, 198%a).
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If the complete response sets for two types of failures are disjoint we will say
that the failurcs are benchmark dislinguishable, meaning that it is possible, in
principle, to distinguish between all occurrences of these failure types. On the
other hand, failure types whose response sets inlersect are said to be benchmark
indistinguishable, indicating that no algorithm can distinguish between every pos-
sible occurrence of these failure types. Determination of the benchmark diagnosis
capability thus involves establishing the disjointness or intersection of response
sels.

The disjointness of response sets, and hence the benchmark diagnosis capabil-
ity, is readily formulated by using a hyperplane separation theorem for convex sets
(Rockafellar, 1970). Let C(p) and C(gq) be non-empty, closed and bounded convex
response sets in a finite dimensional Euclidean space. C(p) and C(q) are disjoint
if and only if there exists a hyperplane P such that C(p) is in one half-space de-
fined by P and (C'(q) is in the other hall-space. This theorem can be expressed

algebraically as follows:

Clp) N Clq) =0 (14)

if and only if there exists a real vector w such that:

max w'e < min w'd (15)
c€C(p) deC(q)

For further discussion of relations 14 and 15 sce Ben-Haim, 1985.

The disjointness of complete response sets is established by determining the
extremal values on the complete response sets of the linear function w”z. The
complete response sels C(p) and C(q) are images of the failure sets F(p) and
F(q), as in eq. (13). Consequently, a necessary and sufficient condition for the

disjointness of C(p) and C(q) is the existence of a vector w such that:

T . T
max w < min w' Yy 16
ey Y8 S S W (16)

This relation forms the basis for an algorithmic determination of the disjoint-

ness of response sets. The algorithm searches for a vector w which satisfies relation
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(16). (It is sufficient to scarch on the unit sphere because (16) is homogeneous
in w.) Disjointness is established if such a vector is found. If no such vector
exists, then the sets intersect. In this way the benchmark malfunction diagnosis

capability of the system can be determined.

6.2 Hyperplane Separation for Uniformly Bounded Mal-
functions

The benchmark diagnosis capability is based on determining the disjointness of
complete response sets for different types of failure. Fach complete response set
C(p) is the image in measurement space of the set F(p) of possible failures of type p.
The failure set F(p) represents the uncertainty in the realization of failures of type
p. In this section we develop the hyperplane separation algorithm for determining
the disjointness of complete response sets for uniformly bounded actuator failures.

Consider two different failure sets: F(p) represents the failure of J control actu-
ators whose indices are j = (jy, . .., Js) and with uniform bounds p = (p1, b1, - - -, Pm, Pm)
on the failure functions. F(q) represents the failure of K actuators whose indices
arc k = (ky,..., kg) with uniform bounds ¢ = (¢, i, ..., Gm, gu) on the failure
functions. The corresponding compleie response sets are C(p) and C(q), as de-
fined by eq. (13). Our aim is to determine whether or not there exists a vector w
satisfying relation (16).

Let Xj(t) and () represent the transition matrices for the two types of fail-
ure, obtained as solutions of eq. (10). Note that the transition matrix depends
on which actuators have failed, but is entirely independent of the uniform bounds
on the failed actuators. For convenience of notation define X™(t, 7) and pu™(t, 7)
as the mth columns of G(1)X;(t)X; ' (7)B(r) and G(1) Xk (1) Xy ' (1) B(7), respec-
tively. Also denote y2(1) = G(1) X;(t)2(0) and g3 (1) = G(t) X (1)=(0).

Using this notation one finds that, for an arbitrary ¢ € F(p), the inner product
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wTy4 assumes the form:

wly, = wTy_I )+ Z /QS,,. YwIA™(t, ) dr (17)

m=1q
Likewise, for an arbitrary clement ¥ € F(g), the inner product w”yy becomes:

wly, = wTyi’((t) + 2_: /1/),,, YT p™(t, 7)dr (18)

m=1
Fxamination of eq. (17) shows that w”y, achieves its maximum when each
¢m(7) is chosen to switch between its extremal values as wTA™(f, 7) changes sign.
Specifically, wTy,4 is maximized by choosing the elements of ¢ as:
A Tym

_ [P, WTAT(,T) 20

¢m(T) - { ﬁm ’ wT/\m(t, T) <0
Let D,., and D,._ denote the subsets of [0,] for which wTA™(1, 7) is non-negative

(19)

and negative, respectively. Thus:

T T,o
max w =w yi(t) +
oCFin) Yo Z/_,( )

M
Z [ﬁm / WwTA™ (¢, 1) dT + P / wTX™(t, 1) dr ] (20)

Dmy+ Dm-

Similarly, wTy, in eq. (18) is minimized by choosing each 1,,(T) as a switching
function which follows the sign changes of w”p™(t, 7). Let A4 and A,,_ denote
the subscts of [0,1] for which w” y™(1, 7) is non-negative and negative, respectively.

Thus:

min Ty, = wTy(0) +

YEF(q)

M

> |Gm / Wl g™, 1) d7T + G / wlhp™@t, 7) dr (21)
m=1 Amy Am—

Relations (20), (21) and (16) together define a necessary and sufficient condition for
the disjointness of C(p) and C(q), and hence for the henchmark distinguishability

of the corresponding failure sets.
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6.3 Example: Actuator Failures in AFTI/F16 Aircraft

The benchmark mallunction diagnosis capability has been evaluated for a range
of uniformly bounded control actuator failures in the AFTI/F16 aircraft in steady
rectilinear flight at 0.9 Mach and 20,000 feet altitude. The 8 state variables are:
pitch angle, forward velocity, angle of attack, pitch rate, bank angle, sideslip angle,
roll rate and yaw rate. The 6 control variables are: right and left horizontal tails
(clevators), right and left wing flaps, canards (operated symmetrically) and rudder.
The dynamics, control and measurement matrices A, B and G are constant in
time. The values of the matrices A and B presented in tables 1 and 2 (from
Schneider (1986)) and G is the identity matrix.

The system is controlled by an automatic regulator whose aim is to restore
the state variables to nearly zero values by applying minimal control proportional
to the state. The duration of the control period is fixed, and denoted as {;. The
controller minimizes the following expression:

ty
J = (27Sz), + / (=7 Rz +uVu) dt (22)
0
With this formulation it can be shown (Bryson and Ho, 1975) that the control

vector is given by:

u(t) = ~V'BT§(1)z(1) (23)
where the gain matrix, S(1), must satisfy the following differential matrix Riccati
equation:

dl
d—:; =-SA-ATS +SBV'BTS - R (24)

with the endpoint boundary condition: S(t;) = §;.

The Riccati equation is solved numerically by backward finite difference calcu-
lation. The eq. (5) is solved, together with eq. (23), by finite difference. The time
step size for all finite difference calculations is 0.001 second. The matrices Sy, R

and V are diagonal, with equal diagonal elements. The diagonal elements of R
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equal 50/t;, of V equal 2/t; and of S; equal 0.25. The duration of the control
period is {; = 0.15 sec.
Let us consider two failure sets. One set, F(p), will be a set of failures in the

2nd and 6th control actuators (left elevators and rudder). Thus:
P = (0, 0, pa, f’?a 0,0,0,0,0,0, ps, ’36) (25)

We will choose:
P2=ps=1°, pr=ps=2° (26)
Thus F(p) represents all failures in which the deflection of the left elevator and
the rudder vary arbitrarily and independently between 1° and 2° while all the
remaining actuators vary according to the nominal feedback controller.
The second failure set, F(q), is a set of failures in the 2nd and 5th control

actuators (left elevators and canards). Thus:
q= (07 01 ‘721 qu, 01 0’ 0; 01 651 4510’ 0) (27)

We will assume that:

G2=G¢+1° , Gs=¢+1° (28)
Thus F(q) represents all malfunctions in which the deflection of the left elevator
varies between §, and §, + 1°, while the canard deflection varies between ¢s and
gs + 17,

We will use relation (16) to determine what failure sets F(p) and F(q) are
benchmark distinguishable, as a function of the values of ¢, and §5. The real-
time identification of the failure sets must be performed in a very shorl duration.
It is thus of particnlar interest to determine which subsets of the 8-component
measurement vector provide benchmark distinguishability of the failure sets.

Figure 13 shows part of the §s-versus ¢, plane. FEach point on this plane
specifies a value of §, and of g5 and thus specifies the parameter vector ¢, defined

by eqs.(27) and (28). Thus each point represents a failure set F(q). Those failure
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Figure 13: Regions of benchmark distinguishability of F(q) from F(p) for single
measurement of the first stale variable, pitch angle.
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2

Figure 14: Regions of benchmark distinguishability of I'(g) from F(p) for single
measurement of the second state variable, forward velocity.
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Figure 15: Regions of benchmark distinguishability of F(q) from F(p) for single
measurement of the third state variable, angle of altack.
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Figure 16: Regions of benchmark distinguishability of F(q) from F(p) for single

measurement, of the fourth state variable, pitch rate.
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Iignre 17: Regions of benchmark distinguishability of F(q) from F(p) for single
measurement of the fifth state variable, bank angle.
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Figure 18: Regions of benchmark distinguishability of F(q) from F(p) for single
measurement. of the sixth state variable, sideslip angle.
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Figure 19: Regions of benchmark distinguishability of I'(g) from F(p) for single
measurement, of the seventh state variable, roll rate.
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Iigure 20: Regions of benchimark distinguishability of I(q) from F(p) for single
measurement of the eighth siate variable, yaw rate.
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sets represented by points in the regions marked ‘D’ are benchmark distinguishable
from the failure set F(p), while those failure sets in the region marked ‘ND’ are
not henchmark distinguishable from F(p), where p is defined by eqs.(25) and (26).
Furthermore, this distinguishability is based on measurement of the first state
variable alone (pitch angle) 0.15 sec after onset of the failure.

Figures 14 to 20 also portray regions of benchmark distinguishability on the
gs versus (o plane, for measurement of a single state variable 0.15 sec after onset
of failure. The stale variables employed in Figures 14 to 20 are: forward velocity,
angle of attack, pitch rate, bank angle, sideslip angle, roll rate and yaw rate,
respectively. Tt is seen that the benchmark distinguishability of F(g) from F(p)
obtained by measuring any one of the following state variables is approximately
the same: Ist, 2nd, 4th, 5th or 7th. On the other hand, measurement of the 6th or
8th state variable provides benchmark distinguishability in a different region of the
plane, while measurement of the 3rd state variable provides little distinguishability
at all.

It is noted that most of these single-measurement examples provide bench-
mark distinguishability for ronghly half of the range of failure sets F(g) examined.
Furthermore, certain pairs of measurements provide complementary distinguisha-
bility. For example, the regions of distinghuishability with the 2nd (Figure 14)
and the 8th (Figure 20) state variables together nearly cover the entire range of
(G2, §5) values considered. Figure 21 shows the regions of benchmark distingunish-
able and non-distinguishable malfunctions based on simultancous measurement
(at 1 = 0.15 sec) of the 2nd and 8th state variables. Tt is evident that F(q) and
F'(p) are benchmark distinguishable over most of the values of (g3, §5) considered.

Figure 22 shows an overlay of Figures 14 (small dash), 20 (large dash) and 21
(solid). The non-distinguishable region with two measurements is smaller than the
intersection of the non-distingnishable regions of the two single measurement cases.
T'hus sirmmnltaneous measurements of two state variables provides better benchmark

distinguishability than would be expected from cach state variable alone.




6 BENCHMARK DIAGNOSIS CAPABILITY 42

A similar phenomenon is observed in Figure 23, which shows the regions of
benchmark distinguishablity for simutancous measurement (at ¢ = 0.15 sec) of the
Ist (pitch angle) and 6th (sideslip angle) variables (solid line). Figures 13 (large
dash) and 18 (small dash) are overlayed for comparison. The non-distinguishable
region of the double measurement is smaller than the intersection of the non dis-
tinguishable regions of the two single measurements.

However, this mutual improvement is not obiained in every case. Figure 24
shows the benchmark performance of the simultancous measurement (at { = 0.15
sec) of the 2nd (forward velocity) and 7th (roll rate) state variables. In this
case the region of two-measurement benchmark distinguishability is precisely the
intersection of the two single-measurement regions (Figures 14 and 19).

These examples suflice to demonstrate that relation (16) provides a means of
identifying eflicient combinations of state variables whose measurement enables

reliable, benchmark, differentiation between distinct failure sets.

6.4 FEnergy-Bounded Failure Functions

The uniform-bound convex model is by far the most widely used set-theoretical
representation of uncertainty. It is particularly useful to describe uncertainty with
untform bounds when the failure functions are roughly constant in time. For in-
stance, the deflection uncertainty of nearly hard failures, wherein the deflections of
the failed control surfaces flutter around fixed values, are conveniently represented
by uniform bounds. On the other hand, the uncertainty inherent in malfunctions
which involve a strong transient component is not conveniently represented with a
uniform-bound model. A variely of convex models can be employed for represent-
ing the uncertainty in strongly varying malfunctions. In this section we formulate
one such model and derive the hyperplane separation criterion for benchmark dis-
tingnishability of these sets of failures.

The energy-bound convex maodel of failure uncertainty is formulated as follows.
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Figure 21: Regions of benchmark distinguishability of F(q) from F(p) for simul-

tancous measurement. of the 2nd and 8th state variables.
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Iigure 22: Regions of benchmark distingnishability of F(q) from F(p) for simul-
tancous measurement of the 2nd and 8th stale variables (solid), and for single
measurement of the 2nd (small dash) and the 8th (large dash) stale variable.
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Figure 23: Regions of benchinark distinguishability of F(q) from F(p) for simul-
tancous measnrement of the 1st and 6th stale variables (solid), and for single
measurement of the 1st (small dash) and the 6th (large dash) state variable.
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Figure 21: Regions of benchmark distinguishability of F'(¢) from F(p) for simul-
tancons measurement of the 2nd and Tth state variables.
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Consider malfunction of J actuators, whose indices are j = (j;,...,7s). Let f(1)
be an M-clement vector whose jeth element represents the autonomous behavior
of the failed jith actuator, for k = 1,...,J, and whose other elements are zero.
et E be a postive number and f(1) a specified vector function whose elements,
other than the element j,,...,j;, are zero. The set of possible control actuator

failures is:
Hm =4 U= 50) G- sy er<r)

The elements of F(f, E) are vector functions whose elements f;,,.. ., f;, deviate
from f(t) with an energy not exceeding E. (It is implicitly understood in the
definition of I'(f, E) that the M — J other elements of f are identically zero).

Let F(f, F\) be a set of energy-bounded failures in actuators j = (ji, ..., js),
and let F(g, I3) be a sct of energy-bounded failures in actuators k = (ky,..., ky).
Let Xj(t) and Xg(t) be the corresponding transition matrices.

From the discussion in section 6.1 it is evident that every failure in F(f, E;)
can be distinguished from every failure in F(g, F;), and thus these failure sets are
benchmark distinguishable, if and only if there exists a vector w such that:

T
max w < min w 30
fEF(],Fr) i g€F(3,F2) Yo (30)

We now proceed to develop explicit expressions for these extrema. Let y_‘i’(t) and

yp(1) be defined as before and define:

W1, 7) = GO X;(0) X; ' (r)B(7) (31)
Uy (1, 7) = G(1) X (1) X' (7) B(7) (32)

Then, for f € F(f, ),
why(1) = W 1/J +/w7 V;(t, T)f(7)dr (33)
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= WwTyi(t) + / wT(t,7) (£(r) = (7)) dr

+ /wT‘I’j(t,T)f(T) dr (34)

Likewise, for g € F(g, E5),
t
WTy() = W) + [T T) (o(r) — §(r) dr
0

¢
+ / WT O (L, 7)g(r) dr (35)
o
Let u(2) and v(t) be vector functions. The Cauchy inequality asserts that:
(uTv)? < (uTu)(v"v) (36)

with equality if u is proportional to v (Hardy, Littlewood and Pélya, 1952). The

Schwarz inequality asserts that:
2
(/VuTu\/vTv dt) < /uTudt/vTv dt (37)

with equality if VuTu is proportional to vV vTv. Thus,

/uTv dt < \// uTu dt/vTvdt (38)

with equality if u is proportional to v. By a similar argument one finds that

/uTv dt > —‘// uTu dt/vTv di (39)

again with equality if u is proportional to v.

We now apply relation (38) to eq.(34) to find the maximum of w'y,. The
function f can be chosen from F(f, E) so that f — f is proportional to ‘I’ij.
Because f belongs to F(f, E\) the energy of deviation of f from f equals E,.
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Employing these considerations and relation (38) one finds the maximum of the

expression in eq.(34) to be:

t
Ty() = wT?t+/wT‘I!-t,r_ d
e

+ \/E; /wT\I'j(t, TV (t, ywdr (40)

By a similar argument one finds that the minimum of w7y, is:

t
min W7y, (1) = W R + / WUy (1, 7)§(r) dr
g€F(3,BE2) 4

t
— VFs /wT‘Ilk(t,T)‘II{(t,T)wd'r (41)

0

Now eqs.(40) and (41) can be combined with relation (30) to obtain an expres-
sion for the necessary and sufficient condition for the benchmark distinguishability
of F(f, Ey) from F(g, F3).

6.5 Benchmark Diagnosis: Conclusions

Two types of failures - cach represented by a failure set -— are benchmark dis-
tinguishable if the corresponding response sets are disjoint. Benchmark distin-
guishability means that it is possible, in principle, to distinguish between these
two failure types in all their possible manifestations. On the other hand, no algo-
rithm can distinguish between every possible manifestation of failures belonging
to failure sets which are benchmark indistinguishable. This report has developed
a method for evaluating benchmark distingunishability for control actuator failures.
The following conclusions and implications can be identified.

1. The benchmark distinguishability of a system assesses the malfunction di-
agnostic capability inherent in the system. It does so by exploiting fragmentary

information about the range of possible failures. This is important since detailed




6 BENCHMARK DIAGNOSIS CAPABILITY 50

knowledge about failure systematics — such as required in formulating a proba-
bilistic model of malfunction - is rarely available.

2. Benchmark distinguishability is a conservative assessment of the malfunc-
tion diagnostic properties of a system, in the following sense. Two failure sets
arc benchmark indistinguishable even if “most” but not all of the (infinity) of
failures in each set are distinguishable. On the other hand, this conservatism can
be balanced by evaluating the benchmark distinguishability of failure sets whose
complete distinguishability is essential for successful malfunction management.

3. Malfunction diagnosis is often formulated as a multi-hypothesis decision
problem. In the multi-hypothesis approach the observed behavior of the system
is compared against the behavior expected from each of a finite set of postulated,
archetypical failures. The performance of a multi-hypothesis algorithm for mal-
function diagnosis is limited by the disparity between its finite set of hypothesized
malfunctions and the infinity of possible failures. Tn section 7 we develop a method
for evaluating the ability of a multi-hypothesis algorithm to distinguish between
convex failure sets. Viewed from the perspectivé of multi-hypothesis diagnosis,
the benchmark diagnosis capability of a system is seen to express the malfunc-
tion diagnosis performance which would be obtained with a judiciously chosen
and infinile selection of failure hypotheses (in the absence of noise). As such, the
benchmark capability provides a limiting measure of performance against which
the diagnostic capabilities of a finite algorithm can be compared.

4. It is important to stress that, while the benchmark distinguishability can be
viewed as the performance of an infinite dimensional multi-hypothesis algorithm,
the benchmark distinguishability is not evaluated numerically as the limit of a
sequence of finite designs. This would be impractical. Rather, the benchmark
distinguishability is evaluated very simply for additive failures in linear systems by
exploiting the convexity of the failure and response sets. The geometric concept of
hyperplane separation leads directly to a sequence of linear optimization problems

whose result is the determination of the benchmark diagnosis capability.
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5. Application of the concept of benchmark distinguishability to the diagnosis
of control actuator failures in linear flight of an AFTI/F16 aircraft leads to the
conclusion that measurement of even a single state variable can provide substantial
malfunction diagnostic capability. Furthermore, the benchmark analysis of the
single-measurement diagnosis led to the identification of double measurements
whose diagnostic capability is fairly comprehensive.

6. Finally, it must be stressed that the concept of benchmark distinguishability
is not, in itself, a method for malfunction diagnosis. Rather, benchmark distin-
guishability provides a measure of the malfunction diagnosis capability which is
inherent in the system being controlled. As such, benchmark distinguishability
can serve as an objective quantitative aid in the design of a malfunction diagnosis

algorithm.

7 Multi-Hypothesis Malfunction Distinguishabil-
ity
7.1 Formulation of Multi-Hypothesis Diagnosis

In? this subsection we state the maximum-likelihood multi-hypothesis approach to
diagnosing additive failures in linear dynamic systems and formulate the problem
to be studied. Let f(2) be a vector function representing a specific control-actuator
malfuntion, and let y;(t) represent the average measured system response to f(1).
Because the system is linear and the failure is additive, y;(2) is an affine transfor-
mation of f(1). (The specific form which y;(f) assumes for control actuator failure
will be discussed later.) Throughout the report we let EF represent a Fuclidean
space of dimension I, to which measurement vectors y belong. Let p(y|f) be the
conditional probability density of the system response given a malfunction f. We

shall assume that p(y|f) decreases monotonically with a norm of y — y;. This re-

2The results of section 7 will appear in the ATAA Journal of Guidance, Control and Nynamics,
Ben-1laim (1989h).
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quirement is fulfilled, for example, if p(y|f) is a multivariate Gaussian density and
if the square of the norm of y is yTVI_'y, where V; is the covariance matrix of
y given malfunction f. The superscript T' implies matrix transposition. Different
norms can be defined with respect to different malfunctions, for example if the
covariance matrix depends on the malfunction. We denote the various norms as
follows. An inner product of elements z and y in E", with respect to the mal-
function f, is denoted [z, y];. Our only assumption regarding this inner product is
that [z, y].lf/? is a norm, which will be denoted || z ||, .

Many distinct classes of actuator failures can occur: single or multiple failures;
locked surfaces or widely varying surface deflections. In an important class of mal-
functions the affected control surfaces fail to trail the control commands. Instead,
these control surfaces deflect autonomously. The failure vectors f(t) are assumed
to belong to a set of uniformly bounded but otherwise freely varying functions.

The failure sets are defined in section 5 as:

Fip)={/T=(/i,-- s /M) : Pm < fm(t) < Pm , L E€[0,00) , m=1,..., M}
(42)
where p = (pi,P1,-..,Par, Par)- Thus the autonomous value of the mth control
function varies arbitrarily in time between p,, and p,,. Usually the number of ac-
tuator failures is less than the dimension of the control vector. This is represented
by choosing pm = pm = 0 for each of the functioning actuators. F(p) will be

referred to as the fatlure sef for malfunctions of type p. The set F(p) is convex.
Let F(p'),..., F(p®) be disjoint failure sets and let Hy be a finite collection of
malfunctions chasen from F(p*), for k= 1,..., K. Let H = UK H,. A maximum-
likelihood multi-hypothesis algorithm for malfunction diagnosis is based on the
collection I of vector functions representing hypothesized malfunctions. Having
obtained a measurement, y, the algorithm seeks a hypothesized malfunction h,y; €

Il which satisfies:

| 9hms — ¥ ||i,,,.= }2‘,’,‘ Nyn—vli2 (43)
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The function h,,; is most likely to be the system condition which caused the mea-
surement y, because p(ylh) decreases monotonically with || y — yu ||n -

Given failure sets F(p'),..., F(pX) and given sets of hypothesized malfunc-
tions I,..., Hg, we will say that failures of type p* are correctly diagnosed if
every failure in F(p*) is ascribed by the multi-hypothesis algorithm to a hypoth-
esized failure in . A collection H = UK., H, of malfunction hypotheses is robust
if the failure sets F(p'),..., F(p¥) are correctly diagnosed. A robust collection
IT of malfunction hypotheses is efficient if no smaller set of hypotheses is robust.
The problem to be studied here is to develop a computationally feasible method
for determining whether or not a given set of hypothesized malfunctions is ro-
bust. This determination forms the basis for searching for an efficient collection
of hypotheses.

An important simplification occurs when the norms || - ||, are the same for all
hypothesized malfunctions. An example is developed in section 7.3 for actuator

failures in an open-loop linear system.

7.2 Representing Uniformly Bounded Control-Actuator Fail-
ures

Our aim in this section is to develop a convenient formalism for representing
the measurements of a closed-loop linear system with uniformly bounded control-
actuator failure. The main result of this section is eq.(55), which is an expression
for the complete response set. Several relations from section 4 have been repeated
for convenience.

Consider the failure-free dynamic system:

dz
=7 = Ax(t) + Bu(t) + v (1) (44)

y(1) = Gz(1) + (1) (45)
u(t) = S(O)=(1) (16)
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where x, y, and u are state, measurement and control vectors of dimension N, I,
and M, respectively, v; and v, are zero-mean white Gaussian noise vectors with
known, constant covariance matrices, and A, B and G are known constant matri-
ces. The choice of the feedback gain matrix S(t) is immaterial to our discussion.

Let us now consider the representation of J control actuator failures. The
indices of the failed actuators are j = (ji,...,Js). When a malfunction occurs
in the jith control actuator its normal control function, u; (1), is replaced by
an autonomous expression, f;,(1). Let f(t) be an M-clement vector whose jyth
element is the autonomous behaviour of the failed jith actuator, for k=1,...,J,
and whose other elements are zero. Let Ij be the matrix obtained from the M x M
identity matrix by removing each of the J rows ji, ..., j;. Thus Lu(t) is a vector
obtained by removing the elements j,...,j; from the nominal control vector,
u(t). Similarly, BIjT is an N x (M —.J) matrix obtained by removing the columns
Jiy---,Js from the matrix B. Using this notation, the dynamic response of the
system to failure of J actuators whose indices are j is described by:

dz

o= Az(l) + BI] Tiu(t) + Bf(1) + v (1) (47)
The normal control algorithm still calculates the feedback control vector from

cq.(16). However, f; (1) is implemented rather than u;, (). Combining eqs.(46)

and (17) yields:
= (A4 BITISO] 2(0) + BIG) + 0 () (18)

The state vector 2(1) can be expressed in terms of a transition matrix Xj(t),
which is the solution of the following differential equation [14]:
AE .
J vi - -
= A+ B GSO] X500 , X5(0) =1 (19)
FMinally, the measurement vector (with noise) in response to failure vector f(1) is:

t

i) = GX;(1)(0) + G / XX ()BI(E) + 0 (n) dr 4+ wo(t)  (50)

0
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Unless S(f) = 0 (the open-loop case) the transition matrix, Xj, depends on which
actnators are malfunctioning, so the covariance matrix of g, depends on the fail-
ure. Consequently the quadratic norm, based on the covariance matrix of the
measurement, varies with the failure.

The failure set for malfunctions of type p is F(p), as in eq.(42). Fach failure
S(1) in F(p) is mapped to an average measurement vector yy(¢) (without noise)
in measurement, space (eq.(70) with v; = v, = 0). Let C(p) be the set of all the

average measurement vectors obtained from failures in the set F'(p). That is:

Clp) ={y: y(t) = y,(1) forall fe F(p)} (51)

We will call C(p) the complete response set for failures of type p. Since the failure
set. I'(p) is convex, the response sel (C(p) is likewise convex because yy(1) is an
afline transformation of f.

It is more convenient, however, to define C(p) in terms of its boundary. Define
the constant failure vector p = (py,...,par), where pn = (P + Pm)/2 for m =
I,..., M. Let y(1) be the average response to the constant failure p, so (1) = y;(1).

That is,
¢

i) = GX;(D)z(0) + G / X5()X{ (1) Bpdr (52)

0

Let I'*(p) be the set:
P = {17 = U i)+ (0] < P2 P (59)

Fvery element g in I'(p) can be expressed as g = p 4+ f where £ belongs to F*(p).
Thus the response to g can be expressed as the sum of the response to p and the

response to fo Let W(l, 1) = (},\'j(l).\'j“'(r)lf. Now the response set (C(p) can be

expressed as:

C(p) = {y: y = y(1) '*/"’U»T)I(T) dr for [ € "“(P)} (51)
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Clp)

Figure 25: Hlusiration of the procedure for finding boundary points of C(p).

From this expression it is evidenl that C(p) is convex, contains the point j(1) and
is symmelric with respect Lo inversion through §(1). Also, every clement of C(p)
can be expressed as y = §({) + ap(w)w where w is a unit veclor in the direclion
from § to y, p(w) is the distance along w from § to the boundary of C(p) and

0 < o < I. That is, the complete response set can be represented as:

Cop)={y: y=i) +op(ww , 0<a<l, o w=1} (75)

To evaluate the radius function p(w) we must first identify the elements of F*

which generate the boundary poinis of C(p). Let ¢ be a vector in E". For a given
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f € F*(p), the set of points 2 which satisfy:

472 = ¢ (.«z(t) + [9t, 15 dr) (56)

0

constitutes a planc in E¥ through the point y; and perpendicular to ¢, as shown

by the line I, in Figure 25. The distance of this plane from ¥ is:

(57)

. 1 ;
dis(ys, ) = \/—¢—T=¢ |¢T ‘0/ (i, r)f(7)dr

This distance varies as f varies on the set F*. That element of F'* which maximizes
dis(y;, §) defines a boundary point of C(p), denoted BP in Figure 25. Let ¥™(t, )
represent the mth column of ¥(¢, 7). Then dis(yy, §) is maximized on F* when the

elements of the vector [ are chosen as®

(T d) = &"%)ﬂsgn(qux[)m(t,r)) , m=1,...,. M (58)

where sgn(z) = +1, matching the sign of z. Boundary points of C(p) are now

represented as:
t
w(t;8) = §(0) + [, TS (rs 8) dr (59)
0

where f(7;¢) in this expression is defined in eq.(58). Distinct boundary points
are ohtained by varying ¢. Fach boundary point in turn defines a value of the
radius vector. For each ¢ the radius of C(p) along direction w = y(; ¢) — (1)
(] m, which can be tabulated numerically as a function of the direction w.
Let p(w) represent this tabulation. The argument of p need not be a normalized
vector, but we will adopt the convention that, for any scalar o, p(aw) = |a|p(w)

and that p(w) precisely equals the radius of C(p) along w when w is a unit vector.

YA similar maximization problem is discussed in eqs.(64)- (68), to which the reader is referred
for jnstification of eq.(58).




7 MULTI-HYPOTHESIS MALFUNCTION DISTINGUISHABILITY 58

7.3 Designing the Multi-Hypothesis Diagnosis of Open-
Loop Malfunctions

In the absence of feedback in the control loop (§(1) = 0 in eq.(46) and u(l) is
independent of z) the transition matrix, eq.(49), is independent of the malfunc-
tion. Consequently the quadratic norm based on the covariance matrix of the
measurement does not depend on the failure. Determination of the robustness
of a collection H of hypothesized malfunctions can be based on the solution of a
sequence of linear optimization problems, as shown in this section.

As in section 7.1, let H = UK, H, be the complete set of hypothesized mal-
functions. Let g and h belong to H, and define the minimum relative norm on
C(p*) with respect to g and h as:

Dulg,h) = min (1 v =y I =)~y ) (60)

If Di(g, h) is positive, then every occurrence of failure of type p* will be ascribed
to hypothesized malfunction h rather than to g. It is evident from the definition
of correct diagnosis that failures of type p* are correctly diagnosed if, for each

g € H — I, there is an element h € I}, such that
Di(g,h) >0 (61)

'This means that, for every failure in F(p*), no hypothesis outside H, will be chosen
by the multi-hypothesis algorithm. Consequently type p* failures will be correctly
diagnosed.

I'xpanding the norms in eq.(60) in terms of the inner product, one finds:
Di(g,h) =ll wo II* = 1 wa I =2 max [y, — yn, 3] (62)
y€C(p*)

The maximum on the righthand side does in fact exist since [y, — yx, y] is a lincar
(and thus continuous) function from the compact set C(p*) to the real numbers.

Consequently, determination of the correct diagnosis of failure type p* is based on




W
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cvaluating the maximum of the linear function [y, — yx,y] on C(p*), for each g
and h in H. Eq.(43) indicates that the multi-hypothesis algorithm itsell evaluates
a quadratic expression in y. The adequacy of a linear expression for determining
correct diagnosis derives from the fact, expressed in eq.(60), that correct diagnosis
is established by comparing norms which are independent of the hypothesized

malfunctions.

7.4 Example: Designing Multi-Hypothesis Diagnosis

To illustrate this analysis, we consider part of the design process for constructing
a maximum-likelihood multi-hypothesis algorithm for diagnosing control actuator
failures in AFTI/F16 aircraft in steady open-loop flight at 0.9 Mach and 20,000 feet
altitude. The dynamic behavior and measurements of the failure-free linear system
are represented by eqs.(44) (46) with S(t) = 0. The 8 state variables, in order of
their appearance in z, are: pitch angle, forward velocity, angle of attack, pitch
rate, bank angle, sideslip angle, roll rate and yaw rate. The 6 control variables, in
order of their appearance in u, are: right and left horizontal tails (elevators), right
and left wing flaps, canards (operated symmetrically) and rudder. These control
variables are zero in steady open-loop flight, but vary automatically after failure.
G is the 8 x 8 identity matrix and the values of A and B are presented in tables
(1) and (2).

We will now develop an explicit expression for the maximum in eq.(62). Let
the initial state vector be z(0) = 0. From eqs.(44) and (45) one finds the average
response to the malfunctioning control vector u to be:

¢
yu(t) = / GeM"" Bu(r) dr (63)

0

Let the inner product take the form [z, y] = 2"V "'y, where V' is the covariance

matrix of the response vector. Also, let A™ (1, 7) be the mth column of the matrix
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V='Get"1 B, Let (1) = y,(t) — ya(t). Then one finds:

M ]
[we(®) = (), 3] = 3 [ 80T A (t, TYum(r) dr (64)

m=1j

Examination of eq.(64) shows that the mth integral achieves its maximum when
um(7) is chosen to switch between its extremal values as §(1)T A™(t, 7) changes sign.

Specifically, eq.(64) is maximized by choosing the elements of u as:

Um(T) = Pm for §)TA™(t,7) >0 (65)

= pm for 8O)TA™(L,7) <0 (56)

Let D,.y and D,,_ denote the subsets of the interval [0, 1] for which §(¢)T A™(1, 7)
is non-negative and negative, respectively. Thus the maximum value of the inner
product becomes:

ug’lr?;’xb)[yg(t) ~ (1), yu(t)]

= i {ﬁm / §()TA™(t, 7) dT + m / 6(t)TX"(l,‘r)d'r} (67)

Dm4 Dpy—
M b+ P | b — P
— fm ° I'm Tym Fm — Fm Tym
- Z{ ; / 8(t)7 A (t, 7) dr + P / 6()7 A (t,r>|4e%)

‘The minimum relative norm on C(p*) with respect to g and h is obtained by
substituting eq.(68) in eq.(62). We are now able to determine whether or not a
given collection of hypothesized malfunctions is robust.

The starting point for selecting hypothesized failures is specification of the
failure sets which must be correctly diagnosed. Identification of a robust and
efficient. set of hypothesized malfunctions is then an iterative process. At least
one hypothesis must be included in I for each failure set which is to be correctly
diagnosed. Given an initial choice of H, eqs.(62) and (68) are used to determine

whether or not the required failure sets are correctly diagnosed. Elements of i are
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then modified and new elements are included, until correct diagnosis is attained

for each specified failure set.

The procedure for determining the robustness of a given set of hypotheses can
be inverted, in part, to aid in the search for hypothesized malfunctions. A simple
numerical example will illustrate this analysis. Suppose it is desired to correctly
diagnose malfunctions of failures in the second and fifth control functions (left el-
evator and canards), when these control surfaces are deflecting autonomously. For
graphical simplicity we will select hypothesized malfunctions h; which are constant
in time and non-zero only in the second and fifth elements. Thus hypothesized
mallunctions can be represented as points in the plane, where the horizontal and
vertical coordinates are the second and fifth elements of the failure vector, h;y
and h;; respectively. Three hypothesized malfunctions, hy, hy and hy have been
included in H to diagnose other failures, as shown in Figure 26. It is now desired
to select the minrimum set of hypotheses needed to assure correct diagnosis of left
clevator and canard deflections between, for example, 0.6° and 0.8°. Let us denote

this failure set F(0.6,0.8).

Fach point in the square region of Figure 26 represents a constant failure in
I’(0.6,0.8). However not each such point, if used as a hypothesized malfunction,
would yield correct diagnosis of the malfunctions in F(0.6,0.8). Let & be a point in
the square region of Figure 26, and consider the maximum likelihood comparison
between h and hy. Fqs.(62) and (68) are used to evaluate D(h;, k), the minimum
relative norm on (0.6, 0.8) with respect to by and h. The minimum relative norm
for cach point h below the curve in Figure 27 is found to be positive, indicating that
these hypotheses yield correct diagnosis of the failures in question, when compared
with hypothesis ;. The minimum relative norm of all points above the curve in
I'igure 27 1s negative, which means that hypothesized failures above the curve will
not yield correct diagnosis. IMigure 28 shows a similar analysis based on comparison

with hy. Again the minimum relative norm, D(hq, k), is positive for points below
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the curve and negative for points above the curve. Thus correct diagnosis in
comparison with hy can be achieved only if a point below the curve in Figure 28
is included in /1. Comparison of Figures 27 and 28 shows that correct diagnosis
with respect to h; assures correct diagnosis with respect to h,. The analysis is
repeated to determine the hypothesized malfunctions which yield correct diagnosis
in comparison with k3, and the results appear in Figure 29. Points above the curve
yield correct diagnosis of all failures in F(0.6,0.8), while points below the curve
do not. Overlaying Figures 27 - 29 as in Figure 30, shows that two hypothesized
malfunctions are necessary and sufficient to achieve correct diagnosis of all failures
in I'(0.6,0.8). One hypothesis must lie between the intermediate and upper curves,
while one must lie below the lowest curve. Correct diagnosis of the failure set
F(0.6,0.8) requires that two such hypotheses be included in H, as long as h, hy and
hj are in I1. Likewise, unless additional hypotheses are added to H for diagnosis of
different failure sets, the two hypotheses which have been identified are sufficient to
assure correct diagnosis of F(0.6,0.8). This analysis is continued until conditions
are established for defining the smallest set of hypothesized malfunctions which

assure correct diagnosis for each of the specified failure sets.

7.5 Designing The Multi-Hypothesis Diagnosis of Closed-
Loop Malfunctions

Let H = UK. I, where cach set H, contains malfunctions drawn from the set
F(p*) of uniformly bounded failures. The system is described by eqs.(44) and (45),
and the feedback gain in eq.(46) is non-zero. We wish to determine whether or
not malfunctions of type p* are correctly diagnosed. Eq.(60) must be modified to
account for the fact that, due to the feedback in the control loop, the quadratic
norm depends on the failure. Accordingly, let g and A belong to I and define the

minitmum relative norm on C(p*) with respect to g and h as:

_ : . 2 _ 2
Dilg, b = min, (I gg =y = 1l wn — v I) (69)




7T MULTIFHYPOTHIESIS MALFUNCTION DISTINGUISHABILITY 65
L
% h3(0.9,0.9)
0.8
w0
Py CORRECT
iy DIAGNOSIS
o
0.6
(7p]
(@
Q.
(@]
% ®h,(0.7,0.5)
Z
g
O
0.4} .h2(0.7,0.4)
1 ! 1 -
0.6 0.8

LEFT ELEVATOR POSITION, h;,

Figure 28: Malfunctions in the square region and below the curve yield correct

diagnosis in comparison with h,.




.7 MULTI-HYPOTHESIS MALFUNCTION DISTINGUISHABILITY 66

®
ﬁ hs(0.9,0.9)
0.8

CORRECT

DIAGNOSIS
e} \,\L—_\
2
z 0.6L
©
=
w
< e h,(0.7,0.5)
o
x
<
=
S o4l e N2(0.7,0.4)
O

| | | —

0.6 0.8
LEFT ELEVATOR POSITION, h;,

Figure 29: Malfunclions in the square region and above the curve yield correct
diagnosis in comparison with hj.




. 7 MULTI-HYPOTHESIS MALFUNCTION DISTINGUISHABILITY 67

o
hs(0.9,0.9}

0.8L

CORRECT

\‘Jk\,f DIAGNOSIS

®h,(0.7,0.5)

CANARD POSITION, hjs
o
(2]
I

0.4} e h,(0.7,0.4)

! | | -
0.6 0.8

LEFT ELEVATOR POSITION, hj,

Figure 30: Overlay of the previous three figures, showing necessity of two hypoth-
esized malfunctions for correct diagnosis in comparison with hy, hy and h;.




7 MULTEHYPOTHESIS MALFUNCTION DISTINGUISHABILITY 68

The main result of this section is the evaluation of this minimum relative norm.
Once that is achieved, the hypothesized malfunctions are selected by the iterative
procedure illustrated in section 7.4.

Let g and h be hypothesized malfunctions, and let y, and y, be the correspond-
ing average responses. Let y = § + 1 be an element of C(p*), where § is defined,
with respect to the parameters p*, as in connection with eq.(54) and 1 = ap(w)w

as in eq.(55). The expression to be minimized in eq.(69) becomes:

Nya—vl2 — Nuw—wlla
= (Wo—9-m"V, " (wo—9-n) - (wn—§—0)"Vy " (yn — 5 — 470)
= 7" An-2"Tn+p (71)

where A = V7 =V C=V,  yy —9) - Vi '(yn —9) and =[]l gy - 7 I} — |
yn ~ ¥ ||I? . Failures of type p* are correctly diagnosed if, for each g € H — H,,

there is an element h € H, such that:

Referring to eq.(55) it is evident that 5 is a vector of arbitrary orientation whose
length does not exceed the distance in direction 5 of § from the boundary of C(p*).

Thus 7 is constrained by:

i< _"_)= ! 3
lml_p( I\/nTnIp(n) (73)

n"n
where p(w) is determined numerically as explained in section 7.2. This inequal-
ity constraint on the maximization of eq.(71) can be replaced by an equality by

introducing an undetermined quantity, 3

0 n+ A = p(n) (71)

Adjoin the constraint to the expression in eq.(71) as:

D*=q"An - 2"+ p+ MXn"n+ 8% - p(n)) (75)
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Necessary conditions for a stationary point of eq.(71) are:

oD dp

0 = 3, = 280 =20+ 22 - Ag - (76)
oD
0 57 = (17)

Fq.(77) together with the constraint imply that A = 0 if T < . Thus an
g nn<pn

extremum of eq.(71) occurs in the interior of C(p*) if the solution of:

An=¢ (78)

satisfies 77 < p(n). If not, then the extrema of eq.(71) occur on the boundary of
C(p*) and must satisfy:
1. 0p

(A+AMn=(+3 3 (79)

and
n'n=p(n) (80)

Eqs.(78) - (80) determine the constrained extrema of Dy(g, k). Failures of type
p* are correctly diagnosed if the condition in eq.(72) is satisfied.

The solution of eqs.(79) and (80) is computationally somewhat cumbersome.
It is therefore useful to know that, if A is a positive definite matrix, then eq.(71)
has precisely one minimum and may have several local maxima. Or, if A 1s nega-
tive definite, then eq.(71) has precisely one maximum and may have several local

minima. Il A is indefinite, then eq.(71) can have several minima and maxima.

7.6 Multi-Hypothesis Diagnosis: Conclusions

This section has described a method for designing a maximum-likelihood multi-
hypothesis algorithm for diagnosing control-actuator failures in linear systems.
Uncertainty in the temporal behavior of a malfunctioning actuator is represented
by employing the set theoretic technique called convex modelling. For open-loop

systems (autonomous controllers) the diagnosis algorithm is designed by solving
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a sequence of linear optimization problems. For closed-loop feedback systems the
design of the diagnosis algorithm requires the solution of non-linear equations. The
resulting diagnosis algorithm is robust and efficient. Robust in that the diagnosis
invariably distinguishes between failure sets which represent complex uncertainty
in the temporal form of the malfunctions. Efficient in that no smaller set of hy-
pothesized malfunctions could achieve correct diagnosis of the required classes of
failures. The significance of this result is that design of an algorithm for diag-
nosis of control actuator failure can be based on a systematic and numerically
implementable procedure which yields the best possible algorithm, in the sense of

robustness and efliciency defined here.

8 Concluding Remarks and Future Research

The diagnosis of additive failures in a linear dynamic system has been studied
in this project. This class of failures includes control-actuator failures, which
are emphasized in this report. Several theoretical concepts relating to the design
of control-actuator failure-diagnosis have been developed. Tllustrative numerical
examples have been presented based on a linearized steady-flight model of the
AFTI/F16 aircraft.

The successful diagnosis of failure relies on knowledge of the malfunction phe-
nomenon in general. However, malfunction is usually so complicated that it is
unfeasible to formulate a probability measure which expresses the relative likeli-
hood of each of the infinite range of possible specific malfunctions. On the other
hand, suflicient partial information is often available with which to formulate a
set-theoretic conver model of failure uncertainty. This approach has been adopted
in the present study.

Convex modelling provides two distinct tools for optimization of malfunction
diagnosis algorithms. 'The first, called benchmark diagnosis, is an assessment of

the best state space malfunction diagnosis capability which can be obtained by any
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algorithm, whether based on the multi-hypothesis maximum-likelihood concept or
not. Evaluation of the optimum distinguishability is useful as a benchmark, against
which the performance of implementable algorithms can be compared. Conclusions
regarding benchmark diagnosis in general and its application to aircraft systems
in particular have been discussed in section 6.5.

The second tool provided by convex modelling, called mulli-hypothests dis-
tinguishabilily, enables assessment of the malfunction diagnosis performance of a
specific multi-hypothesis algorithm. This enables the quantitative comparison of
the performance of multi-hypothesis malfunction diagnosis algorithms based on
distinct sets of failure hypotheses. Optimization of the malfunction diagnosis al-
gorithm is based on these comparisons. Implications of the results concerning
multi-hypothesis diagnosis are discussed in section 7.6.

Several arcas of further research are of immediate interest. Many engineer-
ing systems of importance in aeronautics and other fields display malfunctions
which may be modelled as additive failures. The application of convex modelling
to such systems can be pursued. This may include either different aerodynamic
models than the one studied in this report, or different classes of failures. Alter-
natively, convex modelling can be applied to the development and optimization
of algorithms for malfunction diagnosis in sub-systems, such as inertial navigation
systems.

An additional problem area is the study of the algorithmic basis of convex
modelling. The development of eflicient computer algorithms for evaluating the
disjointness of convex sets is essential for a large scale benchmark analysis. Rapid
algorithms for evaluating the minimum relative norm are needed for optimizing
the design of a multi-hypothesis diagnosis algorithm in a large complex system.

A further area of importance is the incorporation of the diagnosis task in the
overall framework of malfunction management. Diagnosis of failure should lead to
the implementation of a compensatory controller whose task is to lead to graceful

recovery of the system. Central unsolved problems are:
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[. Design the diagnosis algorithm to incorporate the subsequent needs of the

compensatory controller.
2. Synthesize the compensatory controller.

3. Integrate the tasks of failure diagnosis and failure compensation so that
management of the malfunction begins to be implemented before learning of

the failure has been completed.

A final area of interest for further work is the study of non-additive failures.
Important. classes of malfunctions deviate from the assumption of additivity. In
particular, those failures in which the model parameters (e.g. acrodynamic coefli-
cients) undergo alteration violate the assumption of additivity. In such cases the
property of convexity of the failure set is still plausible, and the general mode of
thought of convex modelling is still relevant. However, difficulties develop which

need Lo be studied both analytically and numerically.

Appendix
Plausibility of Convex Models of Uncertainty

In a set-theoretic model of malfunction uncertainty the malfunction is modelled
as a time- or space-dependent vector function drawn from a set of possible func-
tions. We wish to identify conditions in which it is plausible to assume such sets of
functions are convex. T'he central limit theorem will motivate our discussion. Let
diy-- - gn be independent, identically distributed random variables with zero mean
and finite variance. As n - oo the distribution of the sum f = :};Eg,- tends to a
normal distribution, regardless of how the g; are distributed. The physical analog
of this theorem suggests that if a certain measurable macroscopic quantity f
c.g. a voltage or a temperature  is the superposition of numerous random, inde-
pendent and identically distributed microscopic variables g;, then we should expect
the macroscopic qnantity f to display a gaussian distribution, regardless of how

the g; are distributed. Indeed, this expectation is fulfilled in many circumstances.
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Now let us consider a set-theoretic approach to modelling the uncertainty of
a time-dependent macroscopic vector function f. Let I be a set of vector-valued

functions. For a positive integer n, consider the set of functions:

i:.q.'(t) , gi €l i=],...,n} (81)

It is well known (Aumann, 1965; Artstein, 1974; Artstein and Hansen, 1985) that,

3|

r«;={f= 1) =

as n — no, the sequence of sets F, converges to the convex hull of I'. This result
invites the following physical interpretation. If a macroscopic time-dependent
vector f(1) (such as a malfunclion) is formed as the superposition of numerous
microscopic time-varying events g;(1) chosen from a set T', then the set of all such

functions f() will tend to be convex, regardless of the structure of the set T
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