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Foreword

This report describes results obtained in the second year of a three year research study on
nonlinear modeling and control of flexible space structures with application to rapid slewing
and precision pointing of space-based, directed energy weapons. The project is funded by
SDIO/IST and managed by AFOSR/SDIO (AFSC). Results reported herein are for the
period 1 Sept. 1988 - 31 Aug. 1989.

The project is managed by Ltn. Colonel J. Crowley and Dr. A. Amos. We wish to thank
* both of these individuals for their insight and direction on this project.
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1 Research Objectives and Project Summary

The objectives of the research project are to develop nonlinear control design techniques
based on the idea of feedback linearization for application to control of flexible space struc-
tures. The first year effort focused on the development of a generic model of the dynamics of
a multi-body system with elastic interactions undergoing large angle slewing motions. The
model was specialized and scaled to represent available data on the SBL prototype system
and a computer simulation was developed. The significance of partial feedback linearizing
compensation where principal nonlinear couplings are dynamically compensated for by non-
linear feedback control was demonstrated for the problem of rapid and precision large angle
slewing of a central rigid body with elastic structure. To achieve large angle slewing de-

coupling control was used in concert with nonlinear, time-optimal switching control for the
rapid slew. Results were presented at the 27th IEEE CDC in Austin, Texas.

At the request of Dr. A. Amos, second year project activities included the development
of a detailed simulation model including multiaxis attitude dynamics and structural flexure.
The model is described in detail in Section 5.1 along with parameters chosen for simulation
tradeoff studies. The system model parameters were chosen from available data to approx-
imately model the dynamics of the test article under construction at the ASTREX facility
at Air Force Astronautics Laboratory.

Implementation Alternatives for Feedback Linearizing Control. In the second year
we have focused on several practical aspects of the implementation of such decoupling control
laws. Reduced order modeling of the flexible structure elastic dynamics was considered for
implementation of nonlinear feedback compensation. A time scale analysis was performed
and simulation studies were performed to illustrate tradeoffs in LOS slewing and pointing
precision vs. peak torque requirements. A relatively soft structural stiffness model was used
to illustrate the tradeoffs. The time scale analysis based on singulF.r perturbations identified
several alternatives for enhanced precision of decoupling control implementation without
model order increase. The use of structural actuators for deformation shaping in concert
with slewing control was considered and additional simulation studies are being performed.

Considerations for robust implementation of slewing control has focused on precision of
the decoupling compensation and stability robustness with parasitic dynamics arising from
elastic structure response. This question directs attention to the sensitivity of the control
to structural damping and will provide direction for experiments to be designed in the last
quarter of this years effort.

A critical observation in our studies of control architectures for SBL systems is the inte-
gration of a variety of actuators for spacecraft attitude control (e.g. thruster jets, momentum
wheels, CMG's, etc.), multibody articulation, optical system components (e.g. steering and

deformable focusing mirrors), and structural vibration control (e.g. proof mass devices,
embedded piezoelectrics, etc.) to achieve principal system performance objectives. In this

report we describe alternative implementations for coordinating control activity between
actuators of different types.
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Tradeoff Studies in Implementation of Nonlinear Decoupling Control Performed.
The idea behind feedback linearizing compensation is to compensate for nonlinear couplings
by cancelation of critical nonlinear terms effecting system dynamics. Implementation in-
volves the introduction of additional control authority and may suggest the use of special
actuator configurations. Coordinating control activity between various types of actuators is
an important feature of such control laws. As part of the second year effort detailed simula-
tion studies were performed to delineate tradeoffs in implementation of feedback linearizing
control of a SBL system model undergoing multiaxis slewing,

An important alternative implementation is possible based on the use of fast, switching
control laws. The implementation of feedback linearization by smooth control involves ex-

plicit compensation for critical nonlinear dynamic couplings. In the current study we have
shown that feedback linearization can be achieved by implicit compensation based on the
notion of variable structure or sliding mode control (see Section 2.4). In this case the control
law is discontinuous with respect to a switching or sliding surface in the model (slow time

scale) state space. An important advantage is that the control law can be implemented based
only on measurements of primary body attitude parameters. Given sufficient control author-
ity to maintain sliding robust performance can be maintained independent of variations in
flexible multibody dynamics.

New Results Obtained. A potentially important feature of feedback linearization is the
extent to which the idea can be integrated with other standard design methods for multi-
variable control systems. We have described several alternatives which indicate advantages

of the approach for control of flexible structures. In particular, the integration of relatively
weak structural actuation for vibration suppression can be incorporated with the approach.

The idea of deformation shaping control has been developed by Dr. T.A.W. Dwyer is re-

ported in several papers prepared as part of this project. An alternative approach which is
briefly described in this report is to study the tradeoff between implementation costs for feed-
back linearizing control with passive structural damping vs. active structural damping. An
approach to the required feedforward compensation is developed based on computations of
Partial Linearizing Feedback compensation in terms of the normal form equations of Byrnes
and Isidori.

Robust stabilization and control performance of nonlinear systems is an important issue
in applications. Several techniques for robust stabilization have been developed by Spong

and Vidyassagor, Slotine and Sastry, Corless, Gutman, and others. These methods all rely on
special structure matching conditions for the model uncertainty in developing robust control
design methods. In this research we have developed a new approach which utilizes the frame-
work of adaptive control to provide robust stabilization of nonlinear systems. The approach

does not rely on structure matching conditions and represents a significant improvement over

available methods.

Professional Personnel The principal investigator for this project is Dr. William H.
Bennett and co-principal investigators are Drs. Harry G. Kwatny and Gilmer L. Blankenship
from TSI. Dr. Thomas A. W. Dwyer was consultant on the project. We would also like toI
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acknowledge the parttime support from Dr. Oussima Akhrif who graduated in July 1989
with Ph. D. from Electrical Engineering Department of the University of Maryland. Dr.
Akhrif's dissertation developed aspects of feedback linearization for the multibody SBL
models developed in this study and some important results are summarized in this report.

Technical Reports/Presentations. As part of the research program we have organized
two invited technical sessions, presented several technical papers, and submitted several
additional papers for publication as follows.

1. Nonlinear Dynamics and Control of Aerospace Systems, invited session at 27th IEEE
Cntrl. Dec. Conf., Austin, TX, Dec. 1989.

2. Robust Control of Uncertain Nonlinear Systems, invited session at 1989 Amer. Cntrl.
Conf., Pittsburgh, PA, June 1989.

Publications/Presentations

1. H.G. Kwatny and W.H. Bennett, "Nonlinear Dynamics and Control Issues for Flexible
Space Platforms," Proc. IEEE Cntrl. Dec. Conf., Austin, TX, Dec. 1988.

2. T.A.W. Dwyer, III, "Slew-Induced Deformation Shaping", Proc. IEEE Cntrl. Dec.
Conf., Austin, TX, Dec. 1988.

3. 0. Akhrif, G. L. Blankenship, and W.H. Bennett, "Robust Control for Rapid Reorien-
tation of Flexible Structures," Proc. 1989 Amer. Cntrl. Conf., Pittsburgh, PA, June
1989.

4. Ht.G. Kwatny and H. Kim, "Variable Structure Control of Partially Linearizable Dy-
namics," Proc. 1989 Amer. Cntrl. Conf., Pittsburgh, PA, June 1989.

5. W.H. Bennett, "Frequency Response Modeling and Control of Flexible Structures:
Computational Methods," 3rd Annual Conf. on Aerospace Computational Control,
Oxnard, CA, Aug.

6. T.A.W. Dwyer, III and F.K. Kim, "Nonlinear robust Variable Structure Control of
Pointing and Tracking with Operator Spline Estimation", Proc. IEEE International
Symposium on Circuits and Systems, Covallis, Oregon, May 9-11, 1989, Paper No.

SSP15-5.

7. T.A.W. Dwyer, III and F.K. Kim, "Bilinear Modeling and Estimation of Slew-Induced
Deformations," J. Astro. Sci. submitted.

8. T.A.W. Dwyer, III, "Slew-Induced Deformation Shaping on Slow Integral Manifolds,"
Control Theory and Multibody Dynamics, Eds. J. Marsden and P.S. Krishnaprasad,
(to appear), Amer. Math. Society.



I

TSI-89-12-12-WB 4

9. T.A.W. Dwyer, III, F. Karray, and W.H. Bennett, "Bilinear Modeling and Nonlinear
Estimation", Proc. Flight Mechanics/Estimation Theory Symposium, NASA Goddard

*Space Flight Center, May 1989.

10. T.A.W. Dwyer, III and J. R. Hoyle, Jr., "Elastically Coupled Precision Pointing by
Slew-Induced Deformation Shaping," Proc. 1989 Amer. Cntrl. Conf., Pittsburgh, PA,

June 21-23, 1989.

11. T.A.W. Dwyer, III and Jinho Kim, "Bandwidth-Limited Robust Nonlinear Sliding
Control of Pointing and Tracking Maneuvers," Proc. 1989 Amer. Cntrl. Conf., Pitts-
burgh, PA, June 21-23, 1989.

12. T.A.W. Dwyer, III , F. Karray and Jinho Kim, "Sliding Control of Pointing and Track-
ing with Operator Spline Estimation," 3rd Annual Conf. on Aerospace Computational

Control, Oxnard, CA, Aug. 28-30, 1989.
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2 Feedback Linearization and Stabilization of Nonlinear Systems

Conventional techniques for stabilization of nonlinear systems via feedback control are still
very limited and tend to be tailored to specific situations. Among the most promising new,
general approaches utilize linearization (local or possibly global) by Exact Feedback Lin-
earization (EFL) [HSM83, KC87]. EFL methods are based on earlier work of Krener [Kre73]
and Brockett [Bro78 which demonstrated that a large class of nonlinear dynamical systems
can be exactly (i.e. globally linearized) by a combination of nonlinear transformation of
the state coordinates with nonlinear state feedback. More recently, the connection between

these methods and the idea of input-output (or Partial) Linearizing Feedback (PLF) by con-
struction of a system inverse [Hir79] has been articulated in a series of papers by Byrnes
and Isidori [B185, B184]. These connections have engendered a series of design methods with
representative results for specific applications by Kravaris and Chung [KC87] and Fernan-
dez and Hedrick [FH87]. In this section we will show how fundamental these constructions
can become in control system design, discuss alternatives for implementation, and suggest
some approaches to integrating the nonlinear design philosophy with more conventional ap-
proaches. We focus attention in this section on fundamental concepts culminating in the
description of the design approach for multibody systems from the perspective of Lagranianmechanics.

The idea behind feedback linearization is conceptually simple. We start with a nonlinear

system model,

S= f(x) + G(x)u., (2.1)

y = h(x), (2.2)

where x E S', it, y E R' with G = [gi,. .. , gm] and assuming the vector fields f, gi are C-

for each i = 1, ... ,m and f(0) = 0. The model structure assumes that the control u enters
linearly. The feedback linearization problem is to find a change of basis in the state space,

T(x), with T diffeomorphic and a feedback law,

u = a(x) + /(x)v,

such that in the new (z, v) coordinates the (closed loop) model has the form,

= Az + Bv.

We remark that if it possible to find such a control law then the linearization is achieved
through the introduction of active control authority. An important feature for control system
design is that the range of validity of the linearization is given by the transformations,
T(x), a(x),/3(x). The functions may be defined locally or globally.

In contrast, the conventional approach to control design would be based on a linear model
obtained by Taylor expansion of the vector fields about given equilibrium conditions; Xq, 1 q,

satisfying,
0 = f(xeq) + G(xeq)V q
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The conventional linear model used for control design represents perturbation dynamics with
respect to the equilibrium conditions and assumes the form,

(Ax) = A Ax + B Au,

y = CAx

where Ax = x - xeq, At = u- 11 q and

Of BC A
aOx 0XGx)

A major source of model uncertainty in linear control system design arises from assumptions

leading to the linear perturbation model. In many cases it may be difficult to estimate the

domain of attraction for the equilibria, Indeed, in aerospace applications the control design is
often based on a combination of gain scheduling to take into account the dependence of linear
perturbation models on operating point conditions which are subject to variation (e.g. trim
conditions in aircraft flight control.) For example, the function of a conventional autopilot

for aircraft is to compensate for changes in trim conditions and provide stabilization so that
the pilot "feels" a standard, linear response to stick commands.

Although the concept of feedback linearization in control system design is potentially
revolutionary, its application has many antecedents in applications. The significance for

nonlinear control of flexible space structures is the emerging technology for active control

arid sensing, the dynamics associated with the CSI technology, and the ability of a con-

prehensive approach to nonlinear dynamic modeling and control design offered by the ap-

proaches discussed in this report. Feedback linearization functions in certain applications
in a manner similar to gain scheduling [MC80], however, linearization is achieved about a
"nominal model" rather than about an operating point. rhus equilibria conditions do not

arise explicitly in linearization. One view of such a controller structure is illustrated in block

diagram of Figure 2.1. The process linearization which facilitates the design of the linear
controller is obtained by the introduction of an Inverse Force Model (lFi) for the nonlinear

multibody system. The inverse force model transforms commanded accelerations, ac, into

equivalent system generalized forces, f. Thus the linear controller is designed to yield desired

system accelerations given the generalized coordinates, q, and their rates, q.

Precursors to the idea of feedback linearization is pervasive in control applications abound.

With the development of the geometric theory of nonlinear systems, computational tools and

design methods are becoming available to address control system design on a much larger

scope. It is clear that the concept of feedback linearization is pervasive in many fundamental

control methods. Our study has focused on the considerations for practical implementation

of feedback linearization for rapid slewing and precision pointing of aerospace systems with

multibody and elastic interactions. Implementation of feedback linearization definitely re-

quires enhanced control authority and issues related to technology for control actuation will

either enable or restrict its application.
It is often suggested that controllers designed based on feedback linearization may be

sensitive to model assumptions since the linearization is achieved by cancelation of cer-

tain nonlinear terms in the system model. Our study of rapid slewing control of a generic
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I r_ I~~~inear Inverse __MulteibOdYa=L inmts q

contrlear Force f-System a Kinematics q
Icontroller MolKinetics

x = (q, q)' [Estimation

Figure 2.1: Nonlinear Control Concept Using Dynamical System Inverse

space-based laser model has shown that modeling sensitivity and robustness can be obtained
through judicious application of control authority. A central issue in nonlinear coatrol design

is the limits of available control authority. For example, actuator saturation contributes to
limits on control authority. Discontinuous or saturation mode operation of control actua-
tors can often be desirable but such considerations are often not addressed by linear design
methods. We have shown that specific consideration for coordination of discontinuous and
continuous modes of control actuation in slewing control methods for multibody systems
can be readily found. Finally, it is clear that the cost of feedback linearization, in terms
of increased control authority, sensor measurement complexity, or computational burden for
online implementation may not always be necessary to achieve system performance objec-
tives. We have also demonstrated that such methods can be readily integrated with standard

approaches for linear design once a primary system control objective is identified in terms
of a primary system output. As we shall show the role of conventional linearization and
control design can be relegated to a subsystem whose dynamics are decoupled (by the action

of PLF) from a set of system primary outputs.

2.1 Computation of Partial Linearizing Feedback Compensation

Partial linearization derives directly from the Byrnes-Isidori normal form for nonlinear sys-
temis. The essentials of the approach are most easily developed for single-input, single output
systems and we will present the approach in that context. The theory for extending these
results for multi-input, multi-output problems is now complete and references are included.

Consider a nonlinear dynamical system in the form,

i = f(X) + g(X)V (2.3)

y = h(x) (2.4)

where f, g are smooth C'O vecto, fields on R' and h is a smooth function mapping R" -R.

Now if we differentiate (2.4) wc, obtain

=-(f W) + g(r)u). (2.5)
Ox
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In the case that the scalar coefficient of u (viz. 2.(x)) is zero we can differentiate again until

a nonzero control coefficient appears. The number of required differentiations is fundamental
system invariant which plays a role in constructing a system inverse and therefore in PLF.

The Byrnes-Isidori analysis shows that this integer number is analogous to the relative degree
for a linear system [B184].

The above construction can be made precise using the notation of differential geometry
which has found application in analytical mechanics [Arn78]. We will need only the notion
of Lie derivative and Lie bracket. The Lie (directional) derivative of the scalar function h
with respect to the vector field f is

L,(h = (h~f) Oh

Lff)) = (dh,/ P= (2.6)

Since the above operation results in a scalar function on R", higher order derivatives can be
successively defined

I(h) = (Lk-1(h))'= (dL"-1(h),f). (2.7)

Then we can write (2.5) as

y = (dh,f) + (dh, g)u

= Lf(h) + L,(h)u. (2.8)

If Lg(h) = 0 then we differentiate again to obtain

y = (dL(h),f) + ,dz j(h),g)u

= L'(h) + Lg(L(h))u. (2.9)

H If Lg(Lk- 1 (h)) = 0 for k = 1,...,r- 1, but Lg(L~'-(h)) $ 0 then the process terminates
with

dry _ Lr(h) + Lg(L'-'(h))u. (2.10)

The system (2.10) can be effectively inverted by introducing a feedback transformation of
Ithe form1

u Lg(L _1(h))[V- L (h)] (2.11)

which results in an input-output response from v -- y given by

dr" -

a linear system.

The integer r > 0 can be viewed as a relative degree for the nonlinear system (2.3)-(2.4).
Note that if we define new state coordinates z E R' as

I zk = Lk-'(h), k = 1,...,r (2.12)
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for the r-dimensional nonlinear system (2.10), then the system model can be written in state
space form as,

0
I 0 1 0 .. 0 0

0 0 1 . . . 0 Z +( . 3I : -ax) " (2.13)" -0 0 0 ... I
S0 0 0 ... 0 0

() + p(+ )u

where
a(x) = L(h), p(x) = Lg(Lr-1(h)). (2.14)

More generally, using the new coordinates z (2.12) and introducing a nonlinear feedback
control of the form

I 
where

a(X) = /3kLk(h) + Lr(h), (2.16)
k=O

p(x) = Lg(Lf-1(h)), (2.17)

with /3k for k = 0,... , r - 1 real positive coefficients then the equations (2.8)-(2.9) can be
written in 'reduced' form; 0 0 1 0 .. 0 !0

0 0 1 ... 0 0r= + v (2,18)
I0 0 0 . (28

-/3o -/31 -/32 -,-1

y [1,0,...,0]z. (2.19)

2.2 Nonlinear System Transmission Zeros

Note that the process leading to (2.18)-(2.19) provides an equivalent state space realization
for the v y input-output response of McMillan degree r < n (the dimension of the original
state space model (2.3)-(2.4)) by decoupling a portion of the system dynamics from the output
response. This is depicted in Figure 2.3. Thus the new state coordinates z are a 'Partial' state
for the system. Thus stabilization of (2.18)-(2.19) cannot guarantee stabilization of the full
state model (2.3)-(2.4). We remark that in the case that b(x) is such that the relative degree

r = n then the state space transformation (2.12) for k = 1,... ,r together with the feedback
transformation (2.15) exactly linearizes the full system state model (2.3). The methods
described in [HSM83] identify necessary and sufficient conditions for the existence of a C o

function h(x) such that r = n and provides a computational approach. The necessary and
sufficient conditions for (local) EFL are nongeneric and not likely to be satisfied in general.
In the sequel we show how that essential property of involutivity of the f and g vector
fields will almost never be satisfied for realistic models of flexible space structures due to the
infinite dimensional nature of the state space.
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Byrnes and Isidori [Bl851 describe the transformation of (2.3)-(2.4) to a normal form in
which the feasibility of PLF control can be assessed. The main result provides the existence
of a diffeomorphic transformation of coordinates Th : R' - R,' with (Th)(x) .- ( , z), with
the state partition in the new coordinates E R-", z C -R and inverse, (Th)(x) - ( , z), so

that the full state representation in the new coordinates is

z ), (2.20)[ 1,- +~ ] z 0 [ 1 [(,z±( , Z)u, (2.21)

where
Az) =a(x)I_,t(,,)

B(., z) p(x)l=t(,,)

Definition: The zero dynamics of the input-output model (2.3)-(2.4) are given by the
autonomous system,

= F( , 0). (2.22)

And the system is locally minimum phase if the the diffeomorphic transformation Th is

defined on a neighborhood of the origin and (2.22) is asymptotically stable to the origin;

= 0.

2.3 PLF Computations for Nonlinear MIMO Systems

The nonlinear input/output model is

i = f(x) + G(x)u (2.23)

y = h(z) (2.24)

where x E R', u, y C R' and f, gi (resp. yi) for i = 1,..., m are smooth vector fields defined
on V' (resp. R"). For notational simplicity we write,

G(x) = [gi(x),...,gm(x)].

In a process similar to the previous section PLF is determined by transformation of the

system model (2.23)-(2.24) to a normal form in which we identify a certain (mxrm) decoupling

matrix which is locally nonsingular.
The process begins with the computation of an appropriate generalization of the MIMO

system relative degrees. Let

ri:=min{k = 1,2,... :Lg,(Lk-(h,)) 50, for some j= 1,...,m}, (2.25)

the ith characteristic number [Fre75]. Each ri is then the minimal relative degree of the set

of m individual output responses yi obtained from each input u2 for j = 1,...,m. Let

[ c=(x)
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w= L(hi) and

0,,(W: ... 0'.( W

where O3i(x) = Lg,(L-'(hj)). Then the desired normal form coordinates are z E R' where
r = j ri, which are obtained as

Z 2 (2.26)

with each zi E W"V for i = 1,... , m in the form,

I ( h,
zi= L(hi) (2.27)

Lf'-'(hi)

I Proposition: Given the system (2.23)-(2.24), there exists a diffeoniorphic transformation

(T)(x) = (z, ) to normal form coordinates,

z = Az + E{A(z) + B(z)u} (2.28)

= F(z, ) (2.29)

where A = diag{A1,.. .,Am} with

Ai = 0 I,.i ]

of dimension ri x ri for each i = 1, ... , m and E is an r x m matrix with elements given as,

{ 1, if i = ri and j = i[E~j = 0, otherwise

Then the PLF control,
u -B- 1 (x){A(x) - v}, (2.30)

renders the v s- y input/output response in linear form,

= Az + Et, (2.31)

y = Cz. (2.32)

Definition: The system (2.23)-(2.24) (output constrained) zero dynamics are given by

= F(0, ). (2.33)
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Definition: We say the system is locally minimum phase if the zero dynamics are asymp-
totically stable to the origin = 0.

Remark: In general the computation of the normal form with (2.29) independent of it is
difficult and not required to establish the minimum phase property. Instead, note that the
system zero dynamics are just the dynamics of (2.23)-(2.24) constrained to the manifold
.AMh C W?" of dinmension n - m given by,

Mh { E R": h(x) = 0}.

Proposition: The zero dynamics are asymptotically stable if and only if the system,Ix = f(x) - G(x)-'(x)A(x), x(0) E Mh

is asymptotically stable to origin. We note that Mh is an integral manifold for (2.23)-(2.24).

2.4 Partial Linearization and Variable Structure Control Systems

The theory of Variable Structure (VS) systems addresses the design of control laws which are
discontinuous functions of the system state. VS control offers practical solutions for systems
employing actuators which can be efficiently operated in bang-bang and other discontinuous
modes. Our interest in VS control for rapid slewing of inultibody systems arises from the
following observations:

1. Design methods for VS control for output regulation have been shown to effect an
implicit partial feedback linearization. The implicit partial linearization is achieved
through the use of VS control requires only output feedback.

2. Direct implementations of VS control laws can attain a level of robustness to plant
model assumptions which is difficult to achieve with smooth control. Moreover, ro-
bustness is achieved without overly conservative restrictions on performance. The
limitations of robustness for VS designs are clearly related to the minimum phase
conditions for PLF design.

3. The use of discontinuous control and the connections between VS and PLF designs
suggest several alternatives for integration of various types of actuators, including both
switched and continuous modes of operation. Integration of several control actuation
systems will be required for implementation of rapid slewing requirements for several
candidate large space platforms.

The general theory of VS control design is well known and we will not attempt to present
a complete description of its scope. For details see the survey [DZM88]. However, to focus
attention on the concepts we seek to exploit we start with a brief description of the basic
ideas.
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VS control systems utilize high speed switching control to drive the system trajectories
toward a specified manifold called the switching surface. Given the nonlinear system (2.23),
the VS control laws are of discontinuous type;

u+(x), for si(x)>
u= (x), for si(x) < 0 (2.34)

with si(x) = 0 smooth switching surfaces chosen in the state space for each i = 1,... ,m.
The design approach which is preferred is based on the introduction of sliding modes.

Definition (sliding modes): A manifold, A4, consisting of the intersection of p < m
switching surfaces, si(x) = 0, with the property that sis'i < 0 for each i = 1,... ,p in
the neighborhood of almost every point in 34, is called a sliding manifold. Under these
conditions any trajectory of the system which enters M4, remains confined to the manifold
for a finite length of time. We call the motion on M, a sliding mode.

VS design methods involve a two step process: 1) design the switching surface so that once
sliding is achieved the natural sliding mode achieves design objectives such as regulation,
stabilization, etc., and 2) design of discontinuous control laws which achieve sliding on desired
regions of the switching surfaces. The method of equivalent control is a popular approach
for designing the switching surface to achieve desired sliding mode dynamics.

Given the system (2.23) and a manifold, .M, = {x E R' : s(x) = 0}, with s :R" , R'
then sliding is characterized by satisfaction of the constraint equations,

I s(X) = 0, S'(x) = 0 (2.35)

over the finite time interval, t, > t > t 2 where s(x(ti)) = 0. Note that a sliding mode is an
instance of an integral manifold for the closed loop system. The equivalent control, u,,q is
the control required to maintain the system trajectory within the manifold A4, and is given
by the condition,

, = Vs(x) * = Vs(x){f(x) + G(x)uq} = 0 (2.36)

where Vs(x) = Os/Ox. Under the assumption that det{Vs(x)G(x)} # 0 for x E M. we
have,

Uq = -[Vs(x)G(x)]-'Vs(x)f(x), (2.37)

I and the motion in sliding is given by,

i = {I - G(x)[Vs(x)G(x)]-'Vs(x)}f(z), s(x(t1 )) = 0. (2.38)

Connections between the design of VS control and feedback linearizing control have re-
ceived considerable attention [FH87]. The principal focus has been on the problem of synthe-
sis of VS designs for nonlinear systems of the form (2.23) using (exact) feedback linearization.
In the sequel we direct attention to the problem of output regulation. The connection we
establish with PLF design also illuminates several questions relative to robustness properties
of VS designs with sliding modes.

I
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Design objective-Output Regulation. Given the system (2.23)-(2.24) where y indi-
cates a set of regulated outputs, the control problem is to drive the outputs asymptotically
to zero.

Since output regulation problem seeks to enforce the set of constraints

hi (x)= 0o, i= 1,. .., ,

asymptotically it seems reasonable that VS design could be employed. However, the naive
choice si(x) = hi(x) leads to the complication that in general-in fact, most often-[Vh(x)G(x)]
is singular for almost all x E R". The approach suggested in [KK89] is to design sliding mode
via the choice of switching surfaces relative to the normal form coordinates for (2.23)-(2.24)

as given by (2.28)-(2.29).

Proposition: Given the system (2.23)-(2.24) obtain the diffeomorphic transformation
given by (2.26), (2.27) to the form (2.28)-(2.29). The selection of switching surface,

s(z) = Kz (2.39)

with K an m x rn constant matrix, solves the output regulation problem if sliding can be
achieved. In sliding the equivalent control is,

1,q = -B(x)-KAz - B-(z)A(z) (2.40)

and the sliding dynamics are given by the r linear equations,

- [I, - EK]Az, Kz(O) = 0 (2.41)

Proof: The proof is given in detail in [KK89] together with a method for stabilization.
By defintion, the transformation (T)(z) -4 (z, ) is invertible; (f)(z,4) x, and the

switching surface s(z) = 0 can be reflected to the original coordinates s(x) = 0. The
dynamics in the x coordinates are best understood in terms of the geometry. Define the
m-dimensional manifolds M, = {x E R' : s(x) = 0} and Mh = {x E R': h(x) = 0}. The
n - r dimensional manifold M, = {X E R" : x = T(0, )} is contained in both M. and Mh.

Assume that in some neighborhood D E .R" a sliding mode exists on D, = DnM., which
is assumed nonempty. Suppose that D. = D, n M., is nonempty. Let a denote a bounded,
stable attractor of the zero dynamics contained in D.. Assume that all trajectories in D.
converge to a. Then if the initial state is sufficiently close to V, the trajectory will eventually
reach D, and sliding will occur. Clearly the stability of the attractor is critical to the stability
of the overall design. In the sequel, we establish conditions for output regulation of multibody
systems which guarantee that the zero dynamics have well defined local equilibria so that
linear stability analysis of the zero dynamics is appropriate. We remark that the problem of
establishing estimates for the domain of attraction in the zero dynamics is an open question.



TSl-89-12-12-WB 16

2.5 Robust Stabilization of Nonlinear Systems

For practical implementation of PLF compensation various researchers have focused atten-
tion on conditions which guarantee robust stabilization of the nonlinear system (2.3)-(2.4)
with feedback transformation of the form (2.11) by introduction of linear feedback v = Kz.

A brief survey of the wide range of methods which have been proposed is given in [BBKA88].
In this section we focus attention on a ubiquitous assumption in most of the work on robust
stabilization of nonlinear systems based on PLF compensation.

Consider the usual case for engineering design where the open loop system dynamics for
(2.23)-(2.24) is given by a nominal model of the form

= f°(x)+ G°(x)u (2.42)

y = h°(x), (2.43)

where f0 ,g' are C' vector fields for i = 1, ... , m, defined on a manifold M E 3", with

f'(O) = 0. We assume the (true) system response can be modeled via a perturbation of the

vector fields;

f = f + Af, G= G + AG

with Af, Agi each C- defined on M and Af(0) = 0. In [AB88] a detailed analysis is given
leading to sufficient conditions on Af, AG which-together with the assumption that (2.42)
is feedback linearizable-guarantees that (2.23) is also linearizable. The conditions given are
less restrictive then the usual structure matching conditions [AB87]. The structure matching
conditions also play a role in establishing conditions for robust stabilization and we repeat
them for convenience.

The structure matching conditions. Under the assumption that the perturbation vec-
tor fields satisfy,

Af, Agi E A (2.44)

where A = Sp{gi,. . . , g} then any such model (2.23) is exactly linearizable-in fact, by the
same diffeomorphic transformations. The above conditions are equivalent to the statement
that the perturbations to the vector fields can be factored as:

Af(x) = G°(x)df(x), (2.45)

AG(x) = G°(x)D,(x). (2.46)

The importance of the structure matching conditions in establishing robust stability is
that under these conditions the model uncertainty-after application of PLF compensation-
can be equivalently represented by a perturbation (or disturbance) at the compensated sys-
tem inputs. This facilitates the design of disturbance rejection techniques using either ex-
plicitly nonlinear control designs such as Gutman [GL76] or linear control design such as in
[Kra87J. To see this we summarize the construction under the assumption that h(x) = ho(x).

Substitute the PLF compensation (2.30) obtained for the nominal model (2.42)-(2.43) into
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the model for the true system (2.23) to obtain,

i = fO +- Af +(GO + AG)B-[v- A]

= fo + GOAdf + GO(I + Dg) 1 -[v - A]

= fO + GOB-1 [v - A] + G0 [df + DgB(tv - A)]. (2.47)

The model after nominal PLF compensation can (by the above assumptions) be transformed
to z-coordinates defined in (2.26)-(2.27) to obtain,

- + A E+±E{v+ 7} (2.48)

= F(z, ), (2.49)

where

77( u,) [ df(x) ±Dg(x)B3(x) {v - A(x)}1 ,,=-I, (2.50)

= [df(x)- Dg(x)B(x)-.A(x)] =r-,() + [D g (x )1 ( x ) - v] L=-,(.-," (2.51)

Thus it is clear that robust stabilization must address the disturbance rejection of the class

of input disturbances d,(t) which bound the model error; 117711 <_ jIdol. An effective design

approach, in the case when the nominal model is exactly feedback linearizable, is given by

Spong and Vidyasagar [SV87]. There approach utilizes an LO stabilization criterion and

obtains a linear, time-invariant feedback control for the v-input.

Remarks: The design methods for robust stabilization of nnlinear systems available in the

literature are almost exclusively based on the structure matching conditions. By reflecting
the model uncertainty to the system inputs (after nonlinear feedback compensation) they

can employ either:

1. linear compensator design which seeks to reduce loop gains consistent with bounded
model uncertainty, or

2. nonlinear switching mode compensator design which seeks to over-bound input distur-
bances by high gain implementations using fast switching control.

Both methods result in essentially conservative designs since the worst case bounds on the
input disturbances must be assumed.

In [Akh89] the basis for robust stabilization of nonlinear systems is considered further

and new results are obtained for the case of parametric model uncertainty. The new con-

trol laws obtained in [Akh89] employ basic constructions of adaptive control in the context

of feedback linearization. The results show that robust stabilization can be obtained under
much less restrictive conditions than the structure matching conditions. Significantly, feed-

back linearization plays the role of enforcing linearity for subsequent control loop designs.

To the extent that this can be achieved in practical applications it can enhance reliability
and repeatability thus achieving improved performance prediction-an important feature

for space-based systems. Standard constructs in adaptive control can then be applied to
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enhance the robustness of feedback linearization with model uncertainty. We emphasize
that the constructions described below are new and offer stability results for the nonlinear
system under very general assumptions. In the next few paragraphs we briefly review some
significant aspects of these results.

Robust Stabilization of Nonlinear Systems by Adaptive Methods. Again, starting
with the system model in the form (2.23) we assume the model uncertainty can be represented
by parametric dependence of the vector fields so that the model has the form,

i = f(x,O) + G(x,9)u, (2.52)

with 0 a p-vector of unknown parameters. We assume that for every 0 E Be, a closed,

compact neighborhood of the nominal parameter 0,, f and gi, for i = 1,... , m, are (7
vector fields and f(0, 0) = 0 for 0 E B9 . The nominal design model is characterized by the
set of nominal parameters and we take f(x) = f(x, 0o), G(x) = G(x, 0o).

The following assumptions are used in [Akh89] to establish a robust stabilizing controller
for the nonlinear system.

Assumption 1: The nominal system is exactly feedback linearizable. 1

It is important to note that assumption I is applied only at the nominal plant model
with fixed and known parameters 0,. This is in contrast to the structure matching conditions
which are almost universally assumed in the current literature.

Assumption 2: For any x E U _C R and 9 E B9 ,

Ag,(x, 9 ) E Sp {g,(Xo),... ,gm(x, 0o)}

for i = 1,..., m. This assumption implies that there exists an m x 7n matrix valued function,
D(x, 0), with smooth elements such that AG = GOD.

Assumption 3: Either there exists an m x m, strictly positive definite matrix, K such
that,

Vx E U, VOE Be, 0 < D(x,9) <K,

or there exist a K, negative definite, such that,

VxE U, VO E Be, K < D(x,O) <0.

This assumption (in various forms) is typical in adaptive control stability analysis and
design. It says that the "sign" of this term must be definite and known a priori.

The design approach is natural and begins with the transformation

z = T(x, 0o),

1The extension of the results described below to the case of stabilization by PLF is in progress.
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to normal form and choice of feedback linearizing compensation (2.30). The v control is

chosen in two parts. First, for the nominal design and performance objectives we find
v = Fz where A + EF in (2.31) is a stable matrix. In this case, there exists a unique,

positive definite, symmetric solution to the Lyapunov equation,

(A + EF)Tp + P(A + EF) = -I.

The design for the nominal model is now modified by the introduction of adaptation.
The control law obtained is described by the following equations;

u = -- 1(x){A(x) - v}, (2.53)

z = T(x, 0,), (2.54)

v = FZ +C'( ,)9, (2.55)

6 = F_6riCT(ZO)ETpZ, (2.56)

C(z, 0) = -/18(z)GT(z, O)PzT. (2.57)

In these control laws the p x p matrix F > 0 is the "adaptation gain" which is chosen so that
the Lyapunov function,

V = zTp + 0rF0

is positive definite for all x E U and I is a positive scalar. The result established in [Akh89J

is the following.

Theorem: The adaptive control with feedback linearizing transformation is asymptotically
stable to the origin x = 0 and 9 - 0, asymptotically, if for x E U and 0 E Be there exists
c2 > 1 and 211 TT (X)P(x,O) - PyT Dy 119112 II < c2llT(x)112,

where
'P(x,O) = [Af(z,f) + AG(z,8){A(z) + 1-'Fz}j

and
y = GT(z, 0 )PTz.

Proof: [Akh89].

2.6 Partial Livearization for Lagrangian Systems

Despite the apparent simplicity of determining the zero dynamics from the normal form as

above it is, however, quite complex to compute the complete transformation leading to the
full state normal form as given above. One approach (if possible) is to obtain the full state

exact linearizing transformation via the procedure given by Hunt, Su, and Meyer [HSM83]
which requires the solution of a set of simultaneous partial differential equations. However,

in many special cases the zero dynamics as well as the required transformations for partial

linearizing control can be obtained more directly. In the sequel we discuss the required
constructions for Lagrangian systems.



I

TSI-89-12-12-WB 20

Consider the case of a square Lagrangian system with inputs 7 E R'm and outputs y E W'.
Suppose that the n generalized coordinates can be partitioned into components q, E R' and
q2 E R,,-m so that the equations of motion take the form

d OL - OL (2.58)
dt 0q', 9q, -
dOcL agL- 0, (2.59)dt 194 2 (9q2

y = h(qj,q 2 ). (2.60)

Assume that the origin is an equilibrium point with r = 0, h(O, 0) = 0, and that the Jacobian
Oh./q is nonsingular on some neighborhood of the origin. Furthermore, we assume that
the Lagrangian is a positive definite quadratic form in the generalized velocities. Then the
input-output map (7 - y) has relative degree 2 (locally), a PLF control exists and the
zero dynamics may be computed by a relatively simple coordinate transformation applied to
(2..58)-(2.60).

In order to demonstrate these properties we introduce a change of coordinates (qj, q2)
(y, u) via the relations

y = h(q, q2), u = q2 (2.61)

Note that the assumption det Oh/Oqi 7 0 at the origin assures that this is a valid local
coordinates transformation and the inverse relations can be given as

q, = g(y,u), q2 = u. (2.62)

Since any "point" transformation preserves the Lagrangian structure of the equations, in the
new coordinates we can write the variational problem in the form

d y - -- r '  (2.63)

dt ayt au
d O L 19OLt . (2.64)

where
L(y, , u, it) = L(q1 , q , q , q2 )1 q,=g(y,U) (2.65)

q2= U

and

S= ,gj T r, ITf [N (2.66)

Equations (2.63)-(2.64) reduce to the form

jiy + NVii + k,(y, Y, u, it) = fyr, (2.67)

ArTP + Jji ± fQY, i, U, u) = f,7. (2.68)
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Let us define the partitioned matrices Ed, E.U, 41Y, -r, via the relations

and

(:NK T v lq (2.70)
( Y = y .

Note the choice of control
T - I - v} (2.71)

reduces (2.67)-(2.68) to

= v (2.72)
T(yu)p + J.(yu)ii + K(y,P, it) =F,(y,u),t -(yu){E,(y,u)+'} (2.73)

where we have explicitly displayed the dependence of the model parameters on the generalized
coordinates. Equation (2.72) provides the linearized input-output dynamics and the zero
dynamics are obtained from (2.73) upon setting y(t) = 0, which implies y = 0, = 0, and
I, = 0. Thus, we obtain the zero dynamics in the form

J(0, o)i + (o, 0, u, I) - f.(0, U)qD 1 (0, U)(ou ) = 0 (2.74)

which represents an autonomous nonlinear dynamical system in the state coordinates u,Ut.
We say the system is locally minimum phase if the origin in the (u, it) coordinates is a
stable equilibrium for (2.74). If the system is minimum phase then selecting the control I,
to stabilize the origin of (2.72) guarantees stability of the origin of the dynamical system
(2.58)-(2.60). Thus the computational complexity of obtaining the zero dynamics depends
on the complexity of the required inverse relation g in (2.62).
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3 Reduced Order Modeling of Multibody Systems and Nonlin-
ear Control Design

The approach described in [BBKA88] to obtain finite dimensional models for multibody sys-
tems with elastic interactions utilizes Finite Element Methods (FEM) based on the method
of collocation by splines. In this section we focus attention on a system model for attitude re-

orientation including a primary set of rigid bodies whose attitude relative to an inertial frame
is given by a set of attitude parameters x, = .b e . The system model includes spatially
distributed elastic interactions with FEM deformation coordinates, x, = ( T, T)T E W2n,.

After some manipulation, the general class of multibody systems we will consider can be
written in the generic form,

M,(x,,x,)ir + Ni, + K, (xr, .,s,j ) = 7b (3.1)

M,(Xr,, X).:, + N Ti, + K,(X, ,.',, X, °) = Gf., (3.2)

where rb E W'" are independent torques applied to rigid bodies and f, G 2k are generalized

forces acting on the flexible structure. By virtue of the collocation FEM model coordinates
we note that the influence of structural control enters through the 2n, x 2k matrix,

where Gj, G, are n, x k with elements given by,

[fij= {1 if at Z= zi control force fj is applied, (3.3)[Gy~iJ 0 else(3)

[Gmn]ij = { 1 sif at z= zi control moment mj is applied, (34)

As a result there exists a n, x n, nonsingular permutation 1V, such that

which defines a change of basis for the structural deformation coordinates,
~(-)

X,,2

with Y,,, R ,.2 E R2(nk) The model can then be decomposed as,

Afr(X, ,)4 + N1',,,, + .2xs,2 + kr(Xrir, ,, s,) = Tb, (3.5)
IM,1,1 ,, 1 + , ,,2 + -r + Ka'j(Xr, , irj, = f, (3.6)
M8,2 ;3,, + M, 22x5, 2 + N2Xr +/ ,,2(x i , , .- 8 ) = 0. (3.7)

Let m = nb + 2k and introduce the definitions,71( )Xr
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Then we can write the model (3.5)-(3.7) in the simplified form,

Ml 1 + M12 2 + K, = f, (3.8)

A' 21 1 + A1I2 2 + K2( ,O) 0. (3.9)

To illustrate the practical simplicity of decoupling control computations and the fun-
damental design issues we focus attention on a M-vector of independent system outputs
consisting of linear combination of deformation coordinates,

y= [C1,2] ( (3.10)

where C' = [C'1, C2] is constant, m x n matrix with n =b + 2n,. Without loss of generality
we assume the m x m matrix C, is nonsingular. To identify the specific form of decoupling

control for this special case we rewrite (3.8)-(3.9) in y-coordinates (3.10);

A11C7li + (111 1 2 - I1,1Cll2 )'2 -+-/'(y, 'Y, , 2) = f, (3.11)

M 2,Ciy + (M22 - M121 C C2)'2 + K 2(y, ,=2 ,#2 ) 0. (3.12)

It is then straightforward to identify the required decoupling control;

f = Ky + (11112 - h1 C11C2)&' + 1',,C'-lu. (3.13)

Applying the decoupling control (3.13) obtains the first m degrees of freedom (3.11) in
decoupled, linearized coordinates with synthetic control in 'acceleration coordinates';

=u. (3.11)

The remaining n - m degrees of freedoni (3.12) comprise the dynamics which are then
decoupled from the output. We note that the 62 coordinates will be driven by the synthetic
control u. However, for most practical designs the principal consideration is for the stability
of the zero-output constrained dynamics in 2; i.e., the system zero dynamics. Here the zero
dynamics are readily identified from (3.12) with = = y = 0;

(A 2 2 - M21 C1 1 C2) 2 + K 2(0, 0, 6, 2) = 0. (3.15)

The form of (3.15) is significant since PFL/decoupling is feasible only if the zero dynamics
are stable in an appropriate sense. In this study we take rapid slewing to be a 'rest-to-rest'
maneuver. At the end of the maneuver we will require precision pointing; i.e., structural
alignment. Thus we focus attention on asymptotic stability of the structural alignment
state; i.e., 6 = 0, 2 = 0 in (3.15). As seen from (3.15), a general choice of outputs as
linear combination of the deformation coordinates together with the primary body attitude
coordinates may lead to nonlinear, possibly unstable zero dynamics.

For various practical considerations we focus attention on implementation of decoupling
control for the special choice of outputs collocated with the control forces; i.e.,

y =[1,,G T(X? ) 6[rJi) (3.16)
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This choice of outputs for decoupling will obtain the zero dynamics in the form,

M2 2 + IA2 (0, 0, 2,: 2 ) = 0. (3.17)

More importantly, our assumptions on elastic potential energy for the structural deformation
[BBKA88] focuses attention on small amplitude deformation dynamics and we have,

K, (x,,x,, i,) = B,i. + x, + D(x, ,x,,' i) (3.18)

with D : R" -- .V with D = 0 for 4, = 0 (i.e., when the rigid body is at rest), and
B,, K, constant, positive semidefinite matrices (see Section 5.1). Under these assumptions it

is easy to show that (3.17) is a set of n - m linear, second order equations for the structural
deformation dynamics constrained at the physical output locations given by (3.10); i.e.,

the structural dynamics with certain combinations of localized pinned and/or cantilevered
supports. Thus stability properties of the zero dynamics for the case of outputs collocated
with the control forces follow from the natural structural properties of stiffness and damping.

3.1 PFL with Reduced Order Models

In this section we will outline general considerations for implementation of PFL via nonlinear

partial state feedback. Considerations for rapid slewing of flexible space structures suggest
that the relative stiffness of the structure by comparison with the severity of the maneuver

dynamics will dominate the complexity of the process model for control design. In addition to
nonlinear couplings the distributed parameter nature of the structural deformation suggests
that time scaling via singular perturbation methods be applied. In the previous section we
described nonlinear controller realization which achieves exact decoupling using full state
feedback. We remark that considerations for good mechanical design suggest that space

systems designed for rapid slewing maneuvers will be structurally stiff [Le87]. Considerable
attention has been given to the use of composite material for enhanced damping and stiffness
properties of such structures [RR87]. However, a primary system cost for any space system is

mass and the resulting constraints on system mass will ultimately limit structural stiffness.

Our models have been configured to represent generic considerations for rapid slewing of
space structures but have been scaled to focus dynamic effects expected to dominate behavior
of optical systems such as the SBL.

In previous studies where the singular perturbation approach was used [Dwy88, K088],
a scaling parameter E was introduced as a measure of the system compliance; for example,

Dwyer [Dwy881 considers e while dimensionless scaling of the form c = "- JK088], is

more often chosen. In both cases, scaling is chosen relative to wi, the lowest modal frequency
due to the structural flexure, and wo, the natural frequency of the rigid system. For relatively

stiff systems the scaling leads to e < 1. Using standard singular perturbation approach, the
dynamics of the system can then be approximated by the dynamics of the reduced slow

subsystem (i.e., rigid body dynamics).
We have considered a slightly different time scale separation which identifies a reduced

order model; viz., a quasi-rigid model. The dynamics of the quasi-rigid model do not coincide
necessarily (as in previous time scale separations) with the rigid body dynamics. The slow
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modes will consist of the rigid body modes together with an arbitrary number, p, of low

frequency flexure modes. The fast modes will consist of the remaining (higher frequency)
flexure modes. Thus we can study the tradeoff of model order reduction vs. decoupling

performance directly.
We assume that any structure designed for repeated rapid slewing will be relatively stiff

and we investigate the obvious time scale decomposition of (3.1)-(3.2) as follows. We assume

that M, is positive definite and K,, B, in (3.18) are each positive semidefinite. To obtain
appropriate time scaling we transform (3.1)-(3.2) to modal coordinates as follows. Under
the above assumptions there exists a nonsingular matrix P such that:

p TA, p = I", and pT Kp = K

where R = diag(w ,...,,) with 1 <w 2 <....<. L.. We also assume P is such that

n. )pTBP B -

where B is a diagonal matrix.

Note that -f = pTX, transforms (3.1), (3.2) from displacement coordinates x, into modal

coordinates Yf;

-(X,,) + 7rTf + T ,(f,,,,) = f (3.19)

xj + Nx, + B3cx + -c;f + D(x,, ,,, f, fa) = fo (3.20)

where

D = pTD(x,, i,, PTX" pTr,)p,

N = NP, PTG M(xj) = M(XPTX,)

and
K,(x,, x, 5j, f) = A;( r, -, PrX,, pTX). (3.21)

In the sequel the overbars will be omitted and we assume the model is given in modal

coordinates, (3.19)-(3.20).
Time scale decomposition is obtained by identifying a separation between the first p low

order modes, w ,...., from the remaining higher modal frequencies 2 W, ' . The
separation above induces a decomposition of the state xf as:

UXf = ] , oERx

with the corresponding decomposition for the matrices N, G, K , Bc and D being

N = [Nor, NTIT, with No E RP, N, E R' -p  (3.22)

[G = [Gr, GTIT, with Go c Rpx2 k, G, E R(n' -P)xm (3.23)

K=( ° I j ) with Ko E Rpxp, Ki E R( ' - p)x(n' -p) (3.24)

BC= ( 0 B0 )B with Bo E RPxP, Bi E R("' (3.25)
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D(x,, x, X) = (D r? (xr, X4 , X ), (3.26)

I with D, R, ,P, D2'R '

With this decomposition, (3.20) becomes:

I +  + Boi + Koxo + D, (xox') = Gif8  (3.27)
;i.f 1 + Niir + Blxj' + Kix1 + D2(x, x) = G2f. (3.28)I Basupintemdlfeunis 2

By assumption the modal frequencies ... , are of the same (large) order of mag-
nitude and we can express them as multiples of 1/E with E =4---. Thus the stiffness,

K1  diag(, 2 1 1 2,W 2 can be scaled as:

K = Kjo, (3.29)

and the "fast time" state, xf, will satisfy,

Xi = ez where z - 0(1). (3.30)

Substituting (3.27), (3.28), (3.29) and (3.30) into (3.19), (3.20) yields the standard form for
singular perturbation analysis;

.o' N - K,( x,, ' , €e, 6- (3.31)

+No&, + Bo.i°s + Koo± + D,(x,,xO, Ez) = G.f. (3.32)
E[E + BI.L] + N,&r + D2 (X,, X ,EZ) + K1 oZ = G2 f,. (3.33)

The reduced state consists of the rigid state, Xr, and a p-dimensional part of the flexible
state for the elastic structural deformation.

3.1.1 Quasi-Rigid Model

The singular perturbation approach models the time responses as decomposed into slow time
or quasi-steady state and boundary layer terms. Neglecting the boundary layer amounts to
letting E -- 0 and the resulting slow subsystem is:

io(X,, X', + Nji + KO(Xr,(,.Xi) : , (3.34)

No&, + Sos + hoX + Do°(x,, i,, xO, *°0 ) = Glf3, (3.3.5)

Ni,. +/Kjoz + D°(x,, r,, i_) = G 2 f,, (3.36)

where
Mo(X,,X0,) = M(x,,%0,0)

and
I• o 0,0).
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The dimension of the state space is thus reduced from 2(n, + n,) to 2(n, +p) and we identify
the quasi-rigid model in the form

MO(Z"'Xf)X 0 +Co(X,., ., X/) =f E (f'r (3.37)

where

I' Mo(x,x') No
M o(XrXf) NO f .) (3.38)

0,Boxio + Koxo + Do(x,,x% ) ,i
E = 1' (0 . (3.40)

By assumption K10 is nonsingular and the n, - p algebraic equations (3.36) yields the
following expression for z in terms of Xr, 4r, Xf, xf and Tb:

z -K [D.(Xr,4,,X>+) + NI - G2!,],
= -K-1 ' ± 0(M) - NNo)-'{b - .

+NoT(Bo.i + Kozx + D(xr,,,,,rf, io)- G If.)} - G 2 ff,. (3.41)

Equation (3.41) defines a 2(n, + p)-dimensional manifold M 0 in the 2(n, + n,) dimensional
state space called the slow manifold.

The quasi-rigid model (3.37) approximates the slow response as a quasi-steady-state for
the full model (3.31)-(3.33). The difference between the response of the quasi-rigid model
and that of the full model (3.31)-(3.33) is given by a the boundary-layer system which is
obtained as follows. Let zf be the fast time scale part of z (i.e., in the stretched time scale
T '). Then the fast time scale system is;

d2 z+ Bior + K  _o:! = 62f',  (3.42)

where the B10 is obtained via the appropriate scaling of the damping; BI = V/eBio.
The trajectories of the full system (3.31)-(3.33) can be approximated by examining the

solutions of the quasi-rigid model (3.37). The approximation is O(e) under the assumption
that the fast subsystem (3.42) is asymptotically stable. For E small (i.e., sufficient separation
of adjacent modal frequencies) stability of the boundary layer must be obtained by inherent
damping or by the introduction of fast time scale (wide bandwidth) control fi. This anal-
ysis suggests the alternatives for material damping vs. active control will be significant in
achieving robust high performance nonlinear decoupling control. The role of stabilization
of the boundary layer is in improving the approximation offered by model order reduction.
The forces required are relatively weak but of wide bandwidth. They can, in principle, be
generated by internal material properties deliberately introduced through the use of passive
damping or by active control using imbedded actuators.
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3.1.2 The reduced flexible model

In analyzing the qualitative robustness of nonlinear decoupling and PFL we may require

refinements of the quasi-steady state analysis described above. In this section, we describe
alternatives for refined reduced order modeling by application of the method of integral man-
ifolds. Following [KK086], we note that the solutions x(t, e), z(t, E) of (3.30)-(3.32) consist

of a fast boundary layer and a slow quasi-steady-state. The boundary layer is significant
only in z(t, e) since x(t, E) is predominantly slow and its boundary layer is no larger than
O(E). As we have seen in the previous section, (3.41), obtained for E = 0, defines a 2(n, +p)-
dimensional manifold, M0 C R". For nonzero e, we define a 2(n, + p)-dimensional manifold,
I, C R, depending on the scalar parameter e by

M'1'= L z = h(x, , rb, f,E), Z- = h(x, ,-rb, f,,)} , (3.43)

where it is assumed that h is continuously differentiable sufficiently many times in all of its
arguments. The manifold M1 is said to be an integral manifold for the system (3.44)-(3.30)
if. for given initial conditions r(O), .i(0), z(O), L(0) in Af,, then the trajectories r(t), z(t) are
in M for all t > 0. Following [KK086], it follows that the existence of a stable equilibrium
manifold M0 of (3.34)-(3.36) for e = 0 (since K 10 is nonsingular), implies the existence of
an integral manifold M, of (3.31)- (3.33). When the fast dynamics (3.42) are asymptotically
stable, then if z(0), ,i(0) are not initially in M,, z will converge to A after the decay of a fast
transient; zi. Thus the response x(t) of the full system (3.31)-(3.33) will rapidly approach
M, and then flow along M,. As 6 -- 0, the manifold M, converges to M0 .

By definition, the function h defining the integral manifold in (3.43), satisfies (3.33)-the
manifold condition;

[h + Bih] + N,i, + Kloh. + D2(X,,;ir,, Xf, iX. Eh, Eh) G2f,. (3.44)

Solving for h in (3.44), then by replacing z by h and .' by h in (3.31)-(3.32), we obtain the
reduced flexible model [SKK87]:

M,.(xr.,Eh)i, + No°T + EN Th + Kf,(X,, ',Eh,Eh) = rb (3.45)

S+ Noi, + Bo±o + KIox + Di (xO,.io,Eh.,Eh) = Gf,. (3.46)

We remark that although this model has the same dimension as the quasi-rigid model (3.37)
it is not an approximation to the singularly perturbed model (3.31)-(3.33); instead, it repre-
sents the exact system (3.1)-(3.2) restricted to the manifold AI,. The reduced flexible model
(3.45)-(3.46) therefore models the flexible system more accurately than does the quasi-rigid
model (3.37). Unfortunately, to construct the reduced flexible model (3.45)-(3.46), one needs

(in general) to solve a partial differential equation for h. The approach presented in [SKK87],
is to approximate the manifold M, and the reduced flexible model up to any order in E. The

first step consists of expanding h(x, X, E) in a power series;

h(x,.,E) = ho(x,.i) + Ehi(x,.i) + ... (3.47)
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and substituting into the manifold condition (3.33) to obtain the coefficients. Then the
control is synthesized via an expansion;

rb(x,,,) = rb'(x,&) + er-(x,&) +... (3.48)
L ~ . , ) = f")(X '- ) + f (X ,X) + ...- (3.49)

which highlights the importance of the relatively weak forces in the refined analysis. To

compute the hi's, we equate terms in like powers of E in the manifold condition (3.33) from
which we obtain

ho= -K 1-o[D2(,, Xr,,XOP - ) + N~,, - G2f,,J (3.50)
hi -K[D2(x,,&,hoho) + B 1h0 + h0 - G 2 f8 ,]. (3.51)

As expected, ho has the same expression as (3.41). We can also write:

M(x,eh) = Mo(x) + EM(x, ho) + ... (3.52)

K,(x,.X,Eh,eh) = K,(x,') + eK,(x,',ho,0ho) + ... (3.53)

Substituting (3.47)-(3.49), (3.52), (3.53) in (3.45)-(3.46) obtains a reduced flexible model
up to any desired degree of accuracy in E. Let the m-dimensional control vector f = (rT, fT)T

and recall that x = [XT, x T]T . The reduced flexible model (3.45)-(3.46) can then be written

[Mo(x,.i, + Co(x.,,) - Efo]

+6 [MI(Xr, ho)4 + CI(x ,, Xi,, ho, ho, ho) - Ef1 ] + O(f2) = 0 (3.54)

where M o(x,), Co(x,,i,) and E are as defined in (3.38)-(3.40). The order 1 correction
terms M, and C1 are

M1(xr, h°) = ll (x, h ) 0 (3.55)

Cl(x,, ',, ho, ho)N. 3.5)

Thus neglecting terms of order E2 and higher in (3.54), we obtain the First-Order Corrected
Model (FOCM);

[M4O -+ EM1l](X-, ho)ir ± [CO + ECII(Xl , ,, ho, h0 , h0 ) = E(fo + Efl), (3.57)

an O(e) improved approximation to the reduced flexible model.

3.1.3 Feedback linearization and decoupling of the quasi-rigid model

Recall the quasi-rigid model (3.37):

Mo(x)i + Co(x, &) = Efo (3.58)

where x = [x, X fIT and to [rbO, fT]T. Depending on the number, 2k, of structural
controllers available and the number p of flexible states available for feedback, the controls, r.
and fo, can be synthesized using feedback linearization to completely, or partially, decouple
the quasi-rigid model (3.58) from the deformation z. We consider three cases as follows.
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Case 1 (m < p): An important question which we first consider concerning the ap-
proximating model (3.58) is whether it is exactly feedback linearizable? That is, can the
linearization be performed by identifying a critical set of outputs for which the input/output
relation is invertible? If such a set of outputs can be found then no further consideration for
decoupling and/or stability of system zero dynamics is required. To answer this question,
let us write the model in state space form with x, = x = [xT, xT]T e R. +p,

(z) d(x, lX2)+ 9(X1,,X2)f (3.59)

where

d(xl, 2 ) ( _ j(x 1 )C0(x1 x2) ) (x1 ) = M-'(x1 )E. (3.60)

Conditions for exact linearization are well known but can be tedious to check. The
required computations are straightforward and can be performed using a symbolic algebra
system. We utilized CONDENS, a symbolic manipulation package for analysis and design
of nonlinear control systems using geometric methods, to check the feedback linearizability
conditions [?]. Checking the conditions for each p = 0, 1, 2,..., we find that the first condition
(i.e., controlability) is generically satisfied; i.e.,

dim{g,[f,9],adlQ,...,ad'P+i9} = 2p + 2.

However, as we suspected, if m < p the second condition of linearizability-the involutivity
condition [Isi85]-is not satisfied. This means that the distribution

SO{9, [f, 9] .... ad'P91

is not involutive and hence, that the system (3.58) is not exactly feedback linearizable in
the case m < p. This is the generic case for control of distributed parameter systems with a

finite number of localized controls.
To consider PFL we identify a set of m system outputs for the inverse dynamics com-

putations. A natural choice which guarantees the minimum phase property is to identify
collocated outputs as:

y = E TX.

In this case the decoupled, quasi-steady state zero dynamics include the dynamics of the
last p - m modes of the structure with additional boundary conditions arising from y = 0.
After the decay of the fast transients, the uncontrolled deformation z approaches the slow
manifold M defined by (3.41) with the controls rb and f, replaced by the resulting linearizing
input-output controls.

Case 2 (rn = p): In this case, the reduced order model (3.58) is exactly feedback lineariz-
able with the linearizing control

fo = E - 1 (Co(x, ) + Mo(x)t'). (3.61)I
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where v (vT,vT R. The effective I -steady state response from the synthetic

1 -7- E R.Teefciequasi-tdy rsoe

control ty to output y is given by:
xi = v. (3.62)

As in the previous case, the deformation z approaches the slow manifold M0 defined by (3.41)
with r and f,, the components of fo are as in (3.61).I
Case 3 (m > p): If the number of dominant flexible modes p we choose to incorporate
in the reduced-order model is smaller than the number of available structural controls, then
p of these controllers can be used for decoupling and linearization of the reduced order
model (3.58), while the remaining m - p controllers can be used to shape the slow manifold,

110, as well as to compensate for the structural elastic response, z, within reasonable limits.

The ideas is due to Dwyer [Dwy88] who studied the method of deformation shaping in the
particular case p = 0; i.e., when the reduced order model (quasi-rigid model) coincides with
the rigid body dynamics and the "fast" subsystem coincides with the dynamics of the whole

flexible appendage.
In the case m > p, the structural control forces, fl, can be decomposed as

S= (fs ) ,f, f3 e RI f, 2 e R 2 -P"

The p x m full rank matrix G, in the slow subsystem (3.34)-(3.36) can be put in the
form [Gil 0] using elementary permutations, where Gil is a p x p and nonsingular matrix.

Similarly, the (2k - p) x in matrix G2 takes the form [0 , G22] with the (2k - p) x (m. - p)
matrix G 2 2 having full rank (m- p). The reduced order model (3.58) can then be written as

I Mo(x) + Co(x,.) = Elf °  (3.63)

where fo (rio f¢oV) r n d= 'b i --+P and

E ( 1  ) (3.64)i E = 0 Gil '

The model (3.63) is exactly feedback linearizable with the linearizing feedback as in (3.61)
but with E1 replacing E. The algebraic constraint (3.41) defining the slow manifold M0

becomes in this case
S-K-[D 2(X,, ,,X0,) + Nli, + G22f,,,-,, (3.65)

where the acceleration ;,. can be replaced by the synthetic control vl. Contrary to the

previous cases, the deformation z can be controlled or compensated (completely in the case
?n = q) by the structural controllers f,, which will require high bandwidth, but "low-

authority" (i.e. relatively weak) actuators for implementation.
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3.1.4 Partial feedback linearization of the Reduced Flexible Model

In some applications, and depending upon the choice of the scaling, f may not be "small"

enough relative to the decoupling requirement. In this case, it is necessary to replace the
quasi-rigid model (3.58) by the more accurate FOCM (3.57) for control design. The appli-
cation of feedback linearization to the FOCM introduces a correction term in the controls
which improves the decoupling (and thus linearization) of the system by an order of 6. The
corrected controls are obtained via an expansion;

f = fu + ef, (3.66)

where f0 is the linearizing torque for the quasi-rigid (zero-order approximation) model.

Design of the corrective control f': The corrective control fl is designed to improve
the decoupling by annihilating the O(e) terms in (3.57), i.e.,

[Mi(x,ho) i Cl(r,.', ho, hJo, o) - Ef'] = 0. (3.67)

The construction will depend, as in the previous section, on the values of p and m. In the
case m < p the corrective control, f', can be constructed to annihilate part of (3.67). In the
case m = p, (3.67) can be exactly annihilated by:

f 1= E-1 (Ci(X, i, ho, ho, ho) + Mi(x, ho)v) (3.68)

If we apply the control, f = f 0 + Ef', to the reduced flexible model (3.54), where Tb, r,f,
and f,' are as designed above, we obtain:

I = 17 + O(E 2 ) (3.69)

which linearizes the reduced flexible system up to order E

3.2 Conclusions and Directions

The results described in this section represent a preliminary analysis of the problem of PLF
compensation for multibody system with flexible interactions. (A preliminary version of the
analysis was presented at the 1989 American Control Conference in Pittsburgh, PA [ABB89].

Our interest in this phase of the research was primarily motivated by concerns for the com-
plexity of implementation of PLF compensation required for high order FEM models of the
elastic response of a multibody system. The primary objective was to demonstrate rapid
slewing and precision pointing of the system attitude as defined relative to a body-fixed frame
attached to the primary system body. The analytical approach based on integral manifold

methods offers a refinement of the standard singular perturbation approach which suggests
that higher order corrections applied to the rigid body torques can improve performance of

PLF compensation for relatively low order models of structural flexure. Simulation studies
performed during this study did not reveal substantial improvement from such corrections.

In response to the observed responses of simulation studies we can draw several conclu-
sions. The SBL system model developed in this study consists of a multibody system with
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primary system outputs to be regulated consisting of rigid body positions and parasitics
arising from low mass structural interactions. Primary system controls are collocated with
the position coordinates for regulation. Singular perturbation analysis reveals that the sys-

tem flexure dynamics in such cases are only weakly controllable in the sense that control of
the fast time scale enters only through the slow time system. As is well known, such system
will require additional control authority to affect control of the fast time scale response.

For the problem of rapid slewing and precision pointing this means that active structural
control which interacts with the low mass density, structural components may be important
in achieving enhanced robustness of the system slewing and alignment responses. This ob-
servation is potentially important given the increasing reliance on passive damping methods
for space structure applications [RR87]. Unfortunately a comprehensive study will require
some analysis of emerging technology for imbedded actuation and sensing of flexible struc-
ture response. This was viewed outside the scope of the second year effort on the subject
contract.

I
I
I
I
I
I
I
I
I
I
I
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4 Some Design Approaches for Combined Rapid Slewing and
Precision Pointing

Consider the general form of the equations of motion for a multibody system undergoing
attitude reorientation. The model includes n degrees of freedom (including elastic degrees
of freedom retained from a FEM expansion) with position coordinates q E R' and velocities
p E W .The model has the form,

q f(q)p (4.1)

mlq)p B(q,p)p + K(q,p)q = Gf (4.2)

where M, B, K are n x n symmetric, matrix-valued functions and G is an n x m. matrix.
The n.-vector f includes generalized forces (and torques) acting on the multibody system.
For simplicity we assume the position coordinates are ordered as: q = [ 7 T, T]T where
-y E 3 parametrizes the rotation of the body fixed frame of the system principal body.
Also, p = [w T , IjI]T , where w is the body angular rates. The general model includes nonlinear
kinematics (4.1) which is assumed to have the form,

(q) =~ j 0 ,_

where the 3 x 3 matrix is defined previously depending on the parametrization of SO(3).
The general problem of control of system pointing and inultibody alignment is addressed

by establishing a set of m principal system outputs taken as an in-vector of position coordi-
nates,

y = C'q. (4.3)

Claim 1: The decoupling/PLF control

f = (CfA1Gy 1 v - (CF A1'G)'CTA1 1[(MD - B)p -Kq], (4.4)

with

D() [TW3 03,n-3D() 0,n-3,3 0n-3,n-3 '

renders the input/output response from v - y as a linear, 2m-dimensional system of the
form,

=V.

Proof: To obtain (4.4) we proceed by direct computation of the normal form coordinates for
the general model (4.1)-(4.2) with outputs (4.3). First, identify a change of state coordinates,

(T)((), q)(

z T (q
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[O,0 C]' f(q) ( (4.5)
Z, Z2 I

with Z1 , Z 2 chosen so that T has rank 2n. Thus a direct computation yields,

-1 = Cq (4.6)

z, = C'qt = CT(q)p (4.7)

= Ziq + Zir(-)p (4.8)

an invertible transformation.
Before we obtain the system model in the (z, ) coordinates we express the accelerations

in a convenient form. From (4.1)-(4.2) we have,

q = --q = -{F(q)}q + F(q)P. (4.9)

Note that the n-vector valued function,

a- a-
{F=(q)pl4 - {I(q)p}F(q)p (4.10)

[ Pr-w}l 0] [IN1) 0]() (4.11)

A principal advantage of the use of the Gibbs vector parametrization for attitude position
is the simple algebraic form of the kinematic relation. Appendix A establishes the following

based on the Gibbs vector parametrization,
1{0o w}( 7 w= w(yw

Using this relation we obtain,

[~ r-~. I ] - [ (-Y) o ] A(q) -{fBp + Kq - Gf}1 (4.12)/=0 - 0 1n-3

= P(y)M(q)-f{[AI(q)D(q) - B(q,p)]p- K(q,p)q + G f} (4.13)

where,

D(q) T 01 0 "

Thr' model can be cxpresse- in normal form coordinates as,

- r(4.14)

Z2 = A(z, )13(z, )f, (4.15)

= F(z, ). (4.16)
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From (4.5), (4.13) we have,

A(q,p) = f(y)M(q)-'{(M(q)D(q)- B(q,p))p- K(q,p)q} (4.17)

13(q,p) = F(y)M(q)-'G. (4.18)

The decoupling control is then,

f = 1(p,q)-i{ v- A(p,q)},

and (4.4) follows.

Claim 2: Given the model (4.1)-(4.3) we can find (n-m) x n valued functions ZI(q), Z2(q)

such that

Z1 F(q)M(q)- 1CT = 0, (4.19)

Z2 F(q)M(q)-ICT  = 0, (4.20)

and
C 0

T(q) : 0 C
Z,(q) Z 2 (q) I

is nonsingular.

Claim 3: In the case that outputs for regulation, linearization, and decoupling defined by
(4.3) are collocated with the generalized control forces; i.e.,

span{G} = span{CT}

then the (output-constrained) zero dynamics are given as,

" F(z.- )j=. (4.21)

where F(z, flpq) with (p, q) such that

w e () f () q, )(4.22)

and

f(p,q) = Z,(q)q + Zl(q)I(q)p+ Z2 (q)r(y,)p

+Z 2(q)F(q)M-{[M(q)D(q)- B(q,p)]p+ K(p,q)q}. (4.23)
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Proof- From (4.13) and (4.5) we obtain = Zq+ Z2. Direct evaluation of (4.16) obtains,

Z:(q)q+Z1(q)q± + Z 2(q)f(-y)p (4.24)3 +Z 2(q)F(y)M(q)-'{[M(q)D(q) - B(q,p)]p- K(q,p)q + Gf}. (4.25)

Then by Claim 2 and the assumption we have,

Z 2(q)F(-f)M(q)-G = 0.

4.1 Practical Implementation of Time-optimal Slewing for an Inertial Load

The advantage of the PLF control which implements the system inverse is the slewing control
can now be implemented in the new coordinates. A switching control law is designed for the
independent decoupled axis motions in acceleration coordinates. The decoupled single axis
response obtained after PLF compensation is:

(t) = a(t) (4.26)

where 0 is the attitude parameter for ith axis (subscripts suppressed) and a (the acceler-
ation) is the control. Requirements for rapid slewing suggest a minimum time criterion is
appropriate for the design of control laws.

Necessary conditions for a control law, optimal with respect to a minimum time objective,
can be obtained directly from the maximum principle. Under magnitude constraint on the
available acceleration,

Ia(t)l < amax (4.27)

the optimal control is of bang-bang type with switching strategy described by a switch-
ing surface in the state space 3?2 with coordinates x = [9, . For the double integrator
plant the optimal control involves determining a single switch point. Briefly, the optimal
switching surface is a quadratic curve in W?2 which can be obtained as follows. For constant
accelerations, a(t) = am,,x, the natural trajectories are,

9(t) = i + amt, (4.28)

0(t) = 60 + t + 2amaxt 2 , (4.29)

where 0(0) = 0 and 9(0) = are initial conditions. The optimal trajectory reaches the equi-
librium at the origin in ninimum time. To identify the required switching surface choose the
trajectories which reach the origin at time t t by solving the above equations simultaneously
and eliminating dependence on tf, to obtain,

S= 2amx ,. (4.30)

It is easy to see that the required switching surface in the state space R?2 with coordinates
z = [0,9]T is

.s(z) = f(z 2 ) + 2a.....zi = 0, (4.31)
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with f(z2) = Z2 1Z21 and the time-optimal control is bang-bang;

Ca(t) = -amax sgn{s(z)}. (4.32)

However, any practical implementation of the time-optimal control law will involve an ap-
proximation of the ideal discontinuous actuation. Most realistic actuators have slew rate
limits, dead zones, delays, or other dynamics which may play a role in implementation dy-
namics. A simple example of the difficulty of implementing time-optimal control can be
illustrated if we replace the ideal signum function with a saturating element. In this case
it can be shown that the origin is not an asymptotically stable equilibrium. To see this
consider a Lyapunov function,

V(z) = .TZ

defined on W2 with coordinates as given above. For the practical control law,

c(t) = -,,sat{s(z)}, (4.33)

where { , for _ 1/g,
sat() gi , for 1 < 1/gi (4.34)

-1, for ! < -1/1

where gi is a positive constant gain representing slew rate limiting in the actuator.
In a neighborhood of the origin such that Iz21 < 1/g we can evaluate the time derivative

of the Lyapunov function along trajectories of the closed loop system;

IT,; (4.35)

ST{[0 1] []sat{2amnxzz 2 z2 I}} (4.36)

-T 21 Z. (4.37)

The V-function is positive definite, decreasent, and radially unbounded. In the neighborhood
of the origin we have 1V < 0 for 1.21 < 1/g1. Any finite precision implementation of f(z 2 )

will ultimately become negligible near the origin and the closed loop system response will
ultimately oscillate with frequency V and amplitude given by the precision of f near
the origin.

The above limitations are simple examples of the general tradeoffs involved in design
of nonlinear control systems where dual mode operation must be considered to resolve the
tradeoffs between requirements for static accuracy such as local stability, noise rejection, etc.
and dynamic accuracy such as speed of response. These issues are well known to control
engineers but do not receive a lot of attention in the theoretical literature. Considerations
for dual mode operation in this case suggest that the optimal switching function be replaced
with a dual mode version which approximates time optimal operation for large signal motion
but achieves asymptotic stability of the origin for small angle displacements. Additionally,
considerations for small signal overshoot, stability margins, etc. can be included without
sacrifice of the large signal response.
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A dual mode version of the time-optimal control law can be obtained by replacing the
nonlinear function f with a peicewise continuous modification with finite slope near z2 = 0.

The choice,
[ z+- for z2>g2 /2

2+9;,for Z2 <-g 2/2f(z 2 ) := 22, for 1z21 < 92/2 (4.38)

obtains asymptotic stability of the origin for any 92 > 0 with closed loop control (4.33).
The resulting practical implementation of the time-optimal servo control law is shown

in Figure 4.1. Here 0, is the commanded attitude angle. To the extent that practical
limits of actuators permit, the gains g' and 92 should be chosen to satisfy local stability
and overshoot as well as large angle rapid (time-optimal) slewing. These tradeoffs can be
reconciled by appealing to the ideal bang-bang control law (4.32) with the modified f. With
ideal switching the surface, s(z) = 0, (4.31) is an integral manifold for the closed loop
system. From the theory of discontinuous differential equations we can obtain stability
analysis by decomposition of the closed loop system dynamics into two phases: 1) reaching
to the switching surface and 2) ideal sliding on the switching surface.

Assume the closed loop system achieves ideal sliding condition s(z) = 0 for t > t,. Then
the sliding dynamics are obtained from the constraint (z) = 0 for t > t,;

S(Z) = f'(z2)2+ 2amx.i = 0

where f = Of/&z2 . In the linear region of the peicewise function f-namely, when Iz21 <
g2 /2-we obtain,

, s(z) = g2a + 2am,,z 2 =0. (4.39)

The equivalent control in sliding is

arq = - Z2. (4.40)
92

The sliding dynamics on the manifold M, = {z E g2 : s(z) = 0} are then obtained by
substitution of the equivalent control in the closed loop equations. In the linear region we
obtain,

1= 2 (4.41)

2= 2 (4.42)

and together with the constraint s(z) 0 the ideal sliding dynamics reduce to

"2 = 2 Z2 (4.43)
92

which are asymptotically stable to Z2 = 0 for any 92 > 0. The local time constant in sliding

is
s 92 (4.44)

2ctmax
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To choose the gain 92 we take 01 as the desired tolerance for large angle slewing; i.e., for
any initial offsets exceeding 01 we want to apply large angle, time-optimal slewing control,
but for any offsets smaller than 01 we want linear mode action. Then the required gain is
obtained by substituting z= 01 into (4.31);

92 = V2Oamax81 (4.45)

The resulting linear mode time constant is

IA" 1

Note that the ideal sliding dynamics retain the feature of no overshoot characteristic of
time-optimal slewing into the linear mode operation.

To implement the time-optimal servo we need to understand the limits of saturation

mode operation of the actuator and the effect of available torque. From the theory of sliding
mode design it remains to show in what region sliding will be achieved. A straightforward
application of the reaching analysis of [DZM88] follows. From (4.31) let V(z) = ls2. To

achieve sliding we need to show that sis < 0. Here

. (z) f'(z 2 )z 2 + 2mamx'i (4.46)

where
Of 2z 2 , for Z2 > 92/2

f Z_2- 92, for IZ2 1 < 92/2 (4.47)
-2z 2 , for z2 < -g2,/2

A necessary and sufficient condition for sliding to be achieved globally with the ideal switch-
ing control law

a(t) = -a.,tXsgn{s(z)},

is

amax > amnax

Within the linear region sliding is achieved when

amax > >_amx.

For practical implementation of time-optimal slewing the choice of actuator slew rate gi
is critical. With the (practical) closed loop control (4.33) the dynamics in a neighborhood

Sof the origin are given by [ 0 1 1
= 2 1x z. (4.48)

Sensitivity of the stability properties can be determined from a root locus analysis withU respect to gi (see Figure 4.2). The characteristic equation of the closed loop system is

A2 + tmax99 2 ,\ + 2Ca~Xgj = 0I
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Figure 4.1: Implemenation of Time-Optimal Servo

1.7

a Z

Figure 4.2: Root Locus for Linear Mode Sensitivity of Saturation Mode Slewing

which we write in the form
A2 + k(g 2A + 2amx) = 0

with k = amaxgi. To approximate ideal sliding in the linear region we require

8
g, > -

which guarantees that the roots are real and stable. As g, > 0 is increased the small
signal response is dominantly a single time constant which approaches the ideal sliding
mode response in the limit as g, - oo [SS83].

4.2 Implementation of Rapid Slewing with Coordinated Modes of Actuation

In this section we describe the basis for design of coordinated use of different modes of ac-
tuation for rapid slewing. The idea is to utilize the smooth (or continuous) mode actuators
(such as AMED's) to implement a component of the PLF compensation. This implemen-
tation permits a simple decomposition of the slewing control into individual single axis
commands. The slewing control is implemented using discrete (discontinuous) mode actua-
tion (such as reaction jets). This is consistent with the very large torque requirements for
large angle, rapid slewing of significant system inertias. Bang-bang mode operation of high
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torque AMED's (such as reaction wheels and CMG's) is inconsistent with (or at least tech-
nically very challenging for) the state-of-the-art. Whereas reaction jets can-depending on
physical placement issues-generate very large torques with rapid, discontinuous action; but
their use in throttled (continuous) mode is technically challenging. The decomposition of
control authority suggested in the following design approach is chosen to exploit the benefits
of current actuation technology for attitude control.IOne design approach for rapid slewing focuses on controlling the dynamics of the rigid
body motion. We discuss the implications of dynamic reaction from the elastic appendage
in the context of robust control performance. Recall that the rigid body dynamics can be

given in the form,

(y)-,b Wb) +(4.49)

Wb = IT'(Ib X b) + 61b (4.50)

where -y, wb G '3 are respectively the vector attitude parameters and angular rates referenced
to the body fixed frame.

To control the vehicle attitude we now design an implementation of PLF compensation
for the system outputs,

given the external torques, rb, applied to the rigid body. We remark that the assumptions

leading to the model (4.50) together with the choice of primary system outputs, y, indicate
that the relative degree from each input/output pair, rb,i -- yi is 2. Transformations obtained
as in (2.27) indicate that the system can be exactly linearized by feedback (i.e., no zero

dynamics are obtained in the transformation to the normal form).
The computation of the normal form coordinates is obtained as in section 2 by differen-

tiation of the output. In this case,

z1 = Y = ?(4.51)

Z2 = y = r(-y)w (4.52)

and since the 3 x 3 matrix F is nonsingular for almost all -y the transformation is invertible.
A straightforward computation obtains the normal form as,

Z I  =-- Z2

2 = A(zi, z 2 ) + B(ZI, z 2 )r (4.53)
where

B(z,) = F(z)IC' 
(4.54)

A(zm,- 2 ) = + ×(-),'bw x w)] (4.55)

IThus the feedback compensation which linearizes the system (4.50) for large angle motion
is [Dwy84],

r b B(zi)-'{ a(t)- A(- z, )}

ST -IbWW - Ibw X w + Ibr()a(t) (4.56)
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where a E R3 is the "synthetic control" (in acceleration coordinates). To implnment the
rapid, large angle slewing control we apply the bang-bang, time-optimal switching logic to
each axis; i.e.,

a, -a,x sgn{f(z2 ,i) + 20OmaxZlii}

as in (4.32) with f(.) as in (4.38). This form assumes identical acceleration limiting is desired
in each axis.

A straightforward computation reveals that we can write,

A(zi, z2 ) = B(zi)d(z1 , z 2), (4.57)

with
d(zi, z 2 ) = [_Twlbw + Ibw x w] .=, w=r(z,)Z2 (4.58)

The normal form equations can be written,

- 2 (4.59)

L2 = B(z1,z2){d(z,,z 2 ) + Tb}. (4.60)

Note that the factorization obtained in (4.57) indicates that the matching condition for
robust feedback linearization is valid for the model terms contributing to d(z1 , z2 ).

One approach to implementation of feedback linearizing control for rapid slewing is to
implement the compensation in two components;

Tb = 7C + -r, (4.61)

where the continuous mode torque component is,

7 = -d(zi, Z2)I ,=.,=r( )w

= -[TIbob + IbW x w]. (4.62)

This component compensates by decoupling the Coriolis and centripetal accelerations arising
from large angle, rapid, rigid body rotations. Note a typical source of model uncertainty
arises due to asymmetries in system inertia properties which are typically not considered in
control system design studies. Such asymmetries arise in the SBL system with the addition
of trackers or additional mirror components. We see that the smooth control is not directly
driven by the subsequent synthetic control which obtains the desired slewing maneuver.
Thus the smooth control functions to reliably achieve linearization.

The second component, r7, will be implemented by discontinuous or saturation mode
actuation. We shall now indicate a simple approach to identify a switching control law for
r' based on VS control design. After application of the control (4.61) to (4.60) we obtain
the design system for the choice of the saturation mode control law,

z1 = Z2

2 = B(z 1,z 2 )r (4.63)
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For design of VS control we follow the method described in section 2. Thus we choose
the switching surface in the normal form, z-coordinates. The choice of the switching surface
establishes the ideal dynamic behavior in sliding and its design should embody the system
design goals. In section 2 and [KK89] we outlined options for stabilization of the origin. In the
present design the large angle slewing motion is critical and the design goal is time optimal
motion. Solution of the general problem of time-optimal attitude control for the rigid body
equations (4.50) with independent saturation constraints on the available torques, Ifi < 7m.x

is an open problem [AF66]. The formal time-optinial control problem does not embody
considerations for robustness or implementation issues as described above and we will not
consider it further. Our approach is to develop requirements for the torque authority of the
saturation mode control, r, so that decoupled, independent single axis slewing is obtained.

In section 2 we showed that, in sliding, the inverse dynamic control which linearizes the
system response is obtained implicitly. The PLF also obtains decoupling of the individual
response of the motion about each axis. Our approach is to choose the switching surfaces for
independent axis slewing by applying the modified, quadratic switching surfaces for time-
optimal servocontrol (4.31) to each axis.

To make these statements precise we introduce the following notation. In the normal
form coordinates we decompose the positions and rates in terms of decoupled axis motions
as,

(Zk' I
Zk  Zk, 2

Zk,3

for k 1, 2. Then in the normal form coordinates we establish three switching surfaces,

si(z) = f(z 2 ,i) + 2a 1,, Zi

for i 1,... ,3. Let s(z) = [s,s 2 ,s3
S ' .

It is easy to see that if we can enforce the sliding mode over a significant region of the
switching manifold, M, then the independent axis, time-optimal slewing will be obtained.
The design of the required switching control to achieve sliding on M, and to guarantee
reaching the manifold from the expected region of operation after a sufficiently small transient
can be based on Lyapunov stability arguments as follows.

Consider a V-function,

v =

defined in the normal form coordinates. The time derivative of V along trajectories of (4.63)
is,

V. = T(() = e9s.

= sT(Z)[2m.txI 3 , F'(z)] B(z)rT

= T(z){2an,xZ2 + F'(z)5(z,)r'}, (4.64)

where
F'(z2 ) diag{f'(z2,i), i = 1,2, 3}, (4.65)
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{ 2 , for 9>g2/2
f) g2, for I1 < g2/2 (4.66)

1-2 , for _< -g2/2

To guarantee that the switching manifold is reached in finite time and that sliding is
achieved we seek the control law which satisfies,

min sT(z)F'(z)B(z)rs < -it (4.67)

for it > 0 with admissible controls

Tad = {17 E R' 17 i 1, 2, 3}. (4.68)

Claim 4: The saturation mode control law which is optimal for (4.67)-(4.68) is,

rs = - Tmax sgn{BT( zi)[F'(z2 )]Ts(z) } (4.69)

for i = 1,2, 3. Together with the optimal switching strategy (4.69) a sufficient condition for
the required saturation mode control authority to guarantee that V < 0 in a given closed
set, y E B , containing the origin is

Tnm . max,=,, 3 ,nax B, =,[1(-y)i']-' (4.70)

Proof: From (4.64) it is sufficient to show that

TmrX > max max [ 2a
i= ,,3 Y S I 3 rf-j t [ ( 2L Zl l'

From (4.65)-(4.66) and (4.54) we can simplify the ratio for each i as,

2ckmaxIZ'2,il _ 2amax IZ2,i I
IZ =1 [F'(z2)B(Z1 )]ijl I I f'(Z2,,)[r(.z,)I '],jI "

To find the worst case for each i from the discontinuous definition (4.66) we note that for
IZ2,il > g2/ 2  ,I If'(z 2,I 2Iz2 JI

and for the case Jz2.ij < 92/2 ,

I 2a,.ex 12,Ij 2amxIz2,uI
-2,1 /2 If'(Z2 ,)I - = max.0

I0



TSI-89-12-12-WB 46

2ana +----- ii
j et A ttitu d e

i AMED's Dynamics --

Figure 4.3: Coordinated Rapid Slewing Control Implementation

To obtain the required strict negative requirement 1V < -i similar relations can be de-
veloped which involve assumptions on the a priori maximal rates, IZ21 < imax. Our principal
concern is in implementing the bang-bang control with sufficient control authority Tmx,, such
that reaction of the flexible appendage response will be effectively decoupled from the rigid
body attitude so that time-optimal slewing can be obtained. Note that the control law
(4.69) can be implemented independently of state measurements associated with the flexible
appendage deformation. The overall control structure is illustrated in Figure 4.3. From
the above analysis we see that robustness to model uncertainty can be obtained if sufficient
control authority in slewing torque r' (in particular T.A. is large enough) is available so that
(4.70) is satisfied for all model variations [GP82].

4.3 Coordinating Control for System Slewing and Multibody Alignment

Throughout the modeling and control development for multibody slewing we have empha-
sized the importance of establishing a body fixed coordinate system attached to a system
primary body. The dominant system nonlinearities arise from the introduction of nonlinear
kinematics and dynamics of large angle rotations. We have implicitly assumed that struc-
tural deformation contributing to multibody misalignment dynamics are small and therefore
linear when referenced to the body fixed frame. Our approach for coordinating multibody
alignment and rapid slewing will be based on these assumptions. We now show that appli-
cation of PLF compensation for linearizing and decoupling the natural nonlinear response
of rapid, large angle slewing motions of the system primary body results in decoupling the
multibody alignment problem from the slewing problem.

Referring the general multibody dynamics model (4.1)-(4.2), consider now the special
case of (5.47)-(5.52). Let q = [yT, uT]T, p = [wT,itt]T, and it = [ TT]T. Then the SBL
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model for multiaxis slewing developed in section 5.1 can be written in the form,

[l 1 i(q) All 2(q) )(b ) + r B, 1(q, p) B12(q, p) 1 . b

Ii'(q) A' 2 2 (q)]~i, B'(q, p) B22(q, p) j~'J~
K' (q,p) K 22(q,p) u 0

We focus attention on the regulation of the primary system body frame attitude and take
as primary system outputs,Oq = C-,

where we assume that y and 7b are 3-vectors and the 3 x 3 matrix C, is full rank. We further
assume that the regulated outputs (note that, these outputs do not necessarily coincide with

sensor locations) are collocated with the primary body torques;

C, -- Grb.

Under these assumptions it is by now easy to see that the zero dynamics resulting from PLF
compensation are given by,

M22 u + B 22ii + K 22u = 0. (4.72)

Note that (4.72) is linear time invariant equation of the free response of the multibody

alignment and structural vibration with

I 7=-W=0.

Stability of the zero dynamics is a prerequisite for stabilization using PLF, but for practical
implementations the degree of stability may be an important factor. For the SBL rapid
slewing and pointing problem this decomposition of control problems is critical to system
performance.

Decomposition of Control Authority and Stabilization of the Zero Dynamics.
Consider the general model of (4.1)-(4.2) modified to include additional controls,

41 = L(q)p (4.73)

A(q)p + B(q,p)p + K(q,p)q = Gbrb + Gf, (4.74)

primary control alignment control

A direct computation based on (4.4) indicates that the required PLF compensation for
the output (4.3) includes feedforward from the structural controls;

T b= (Cfl'Gbr-V - 0CFM'Gb)1 CfAr'[(MD B)p - Kq + G ~f, (4.75)

and the resulting zero dynamics are

AI22ti + B22 + K221 = G, (4.76)
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For application to rapid slewing of the multibody system the primary system output will
be taken to be y = b (or in terms of the Gibbs vector y = y ). Referring to the equations of

motion for the generic multibody system derived in Section 5.1 we see that the zero dynamics

(4.76) are merely the linear dynamics of the flexible structure with cantilevered boundary

conditions. The structure controls effect multibody alignment and vibration suppression

relative to the system body fixed frame.

The design approach we suggest is the integration of precision multibody alignment and

vibration suppression based on robust stabilization of (4.76) together with the PLF compen-

sation and slewing design described above. We remark that the design approach is predicated

on the fact that multibody alignment for precision pointing and tracking is required at the
termination of the slewing maneuver. Stabilization of (4.76) by the introduction of local feed-

back will effect transient responses during the slewing maneuver but the principal concern

is stabilization at the end of the slew.

Remark: The decomposition for coordination of multibody alignment with rapid slewing
can be viewed as a generalization of implementations commonly used for vibration suppres-

sion in flexible space structures. As described in [Jos89] implementation of feedback control

for active vibration damping commonly uses pairs of actuators and sensors symmetrically

located so as to eliminate sensitivity to rigid body modes. Such configurations are required

since the low levels of control authority typically available for structural damping are too

small to effect attitude and translation of the space vehicle. If the response of the rigid

body modes are not decoupled from these control loops the actuators would saturate during

any maneuver. Although the approach based on PLF for decoupling clarifies the role of

local linear mode vibration damping in the context of the nonlinear system dynamics. Note

however that in general, stabilization of the local linearization of the zero dynamics may not

guarantee global stabilization with feedback linearizing control [KS89].
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I5 Simulation Tradeoff Studies for Multiaxis Slewing of SBL Sys-
tem Model

In this section we develop a model for generic SBL system beam expander as a two body
system with elastic support structure. The model is refined from that developed and reported
in [BBKA881 by:

* 3 rotational degrees-of-freedom included in system primary rigid body motion,

* area moments of attached structure modified to represent tripod metering truss,

* system inertias and slewing requirements scaled to represent capabilities of ASTREX
facility and initial test article.

5.1 Multibody System Model for Multiaxis Slewing and Precision Alignment

The modeling method of Lagrange's equations, as described in the report [BBKA88], along
with spatial discretization via collocation by splines to develop a finite dimensional model

suitable for simulation of large angle. multiaxis motion of a generic, two-body model of a
SBL system beam expander is described in this section. Beginning with the generic flexible
spacecraft model [BBKA88, sec 4] the following model assumptions are made:

1. axial appendage deformations are negligible, r73 - Z,

2. translation velocity of the system primary body is negligible, R _ 0,

3. torsional appendage deformations are negligible, V,(z) ;-, 0.

Thus, following the DPS modeling approach discussed in [BBKA88, sec 3], the configuration
space for the distributed parameter model is SO(3) x H1, where Hg is the set of continuously

I differentiable functions, x(z) = [77 1, 7 2 ,h]T e H1 defined on the interval z E [0, f], and
which satisfy the geometric boundary conditions

G : 771(z)= 0, 77 2W =0, O(z)=0, O(z) = 0, at z =0.

With the notational conventions in [BBKA88], the model will be described by the appendage
lateral deformation, 7 (t, Z) = 771, ?2]r , along the body-fixed x and y axes, respectively, and
appendage angular deformation, (z, t) = [O(z),k(-)]T. The attitude angular rates referenced
to the body fixed frame are denoted, Wb.

The potential functions for the variational analysis leading to the dynamic equations of
motion reduce in this case to:

T = t 4 IbWb (5.1)

f °jIb?7(=) + 7 (Z)II 2pA dz

+ j[Wb + PS(z)TI[Wb + Pt(z)]p dz,I
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Notation Explanation
p mass density
A cross section area
E elasticity
KG effective shear modulus

I
area moment of inertia
i -_ d time differentiation

dt
Xz(t, z) =(zt) partial differentiation

Table 5.1: Standard Notation for Lagrangian Mechanics

1,{EI1#2(z) + EI €0(z) (5.2)

+KIGA[(771(z))z- 9(z)]2 + K 2 GA[(712 (z))- - (z)]2} dz, (5.3)

R7 = / {rhT'm + 'T:27t + (ltz)Esllt + ( -t')-.4 (tz-)}dz, (5.4)

where

[0 0 JP= 0 1 0,

1 0 0

T is the kinetic energy, V the potential energy, and R the Rayleigh dissipation function. The
notation used is standard in continuum mechanics of beams and is summarized in Table 5.1.
The area moment tensor is assumed to have the form2 ,

1.. 0 0

I(z) f 0 IU 0
0 0 1-.

For simulation studies contained in this report we utilize a simple damping model given
by the assumption that the matrix coefficients in the dissipation function are of the form,

1i~ 0]-i= 0 (2,i "

Note that E1, 2 model external dissipation while --3, '-4model internal dissipation [BK89].
The control forces acting on the system primary body are modeled as external torques

and enter the variational setup through a virtual work expression of the form,

8W =rbS6

2 We use the so-called NASA standard or 321 convention [Gol82].
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In the sequel, we refer to the kinetic energy expression in terms of three components;

Trigid body = lwTIbwb, (5.5)

Tflexi = 2 fr 2b7(z) + il,(z)jj'pA dz, (5.6)

Tflex 2  ---- j [ b + _t(z)]Tl[Wb + -t(z)]p dz. (5.7)

5.1.1 FEM: Collocation by Splines

A model based on the Finite Element Method (FEM) is obtained by spatial discretization
via collocation by splines. The use of splines for such purposes is described in [BBKA88].

Given the geometric boundary conditions described above the discrete approximations of the
scalar valued functions, 71 (z),i72(z),0(z),O(z), are decoupled and reduce to approximation
of a single scalar function, say -(z), on the interval z G [0, ej with boundary condition,
y(0, t) = 0. Dividing the interval [0, t] into N uniform subintervals and using first-order

B-splines we obtain the approximation:

* N-t(z,t)j (t ) i- z (5.8)

with the boundary condition, 
= 0

N

Si (t) Bil-1(0) = 0.Ii=O
Then following the reduction procedure described in [BBKA88, §4.4.2] we obtain the FEM
approximations with 'f(z) as given in [BBKA88, Eqn. (4.47)],

771zt 0 'T'(z)ChOt (5.9)

772(Z, t) 't'( z)fl2(t )  (5.10)
O(Z' t) tTe(z)O(t) (5.11)

(zt) qje(Z)¢(t). (5.12)

5.1.2 Reduction of the Kinetic Energy Function

Using the FEM approximations of order N we obtain the spatial discretization of the kinetic
energy terms,

Tflex+ 2 r ( + 2 ( ± z.I} (5.13)

Tflex2 2 b +2J (5.14)

where
r N,,7r2 + Ir71 7 2

I.,,(i) - N,7 , 2 1 N,'N+ ,-j 2 + ] (5.15)
_I N2_frN, r 2-r N,7, q2- +rN,,
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NM=fpA4( Z) T( z) dz, (5.16)

NT = f'pAz42'(z)dz, (5.17)

0. j o pAz 2 dz= -M (5.18)

- o -NT3,
1-I17 NT7 0 ] , (5.19)

177N,71 ] (5.20)

JfPI(z) dz, (5.21)

J Nq2'  0 (5.22)

and

N19 0 ] (5.23)J = 0 NOO

The following terms are used in the above expressions,

N = pzj'(z) dz, (5.24)

N =pOT  jpI ,pT(z) dz, (5.25)

NT = oPI (z)d, (5.26)

N,, = jpI.4 ,(z),T(z) dz, (5.27)

Nee = fo p.,p(z)T(z) dz. (5.28)

Note that the total kinetic energy can be written in the standard form,

2 b 7 t( (5.29)

where

M(1b , 1(,,77 0 . (5.30)J- [ 0 JI
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5.1.3 Reduction of the Potential Energy and Dissipation Functions

As above, the potential energy and dissipation functions are reduced by substitution of the
FEM approximations. For the potential energy we obtain,

V=- 1 {OT Kj + TKO + T Kj,, + TIK,, + 2OT K,,7, ±2¢kTK i 2 }, (5.31)

where

Ke = f{EI A(z)(z) + KiGA1(z)¢r(z)}dz (5.32)

K, = {EI ,Dz(z) r(z) + K2GAI(z)$T(z)}dz (5.33)

Ki, = fiAk (T(zl- (5.34)

K, 2  = 'jlKGA¢z(z) T(z)}dz (5.35)

Ptt 

TK2 = {KGA-t(z) (z)}dz (5.36)

ft{K2GAt :)r(z)}dz. (5.37)

Similarly, the dissipation function reduces to the form,
T TT T

R B= 771 + 72j B±7 772  + 9 B9 + + B + 20 Bq,7 1 + 20 B ,7 2 }, (5.38)

where given the expressions,

Ro := 1O(Z)pT( z) dz, (5.39)

Ro := )4( z) dz, (5.40)

0R /f f .Z:=( ) (5.41)

we find it convenient to express the individual matrix coefficients in R (arising from the

FEM approximation) as:

B, = CiR 0 ± i3' for i = 1,2, (5.42)

Be = (6 2 + ( 13 )Ro + ( 14 R', (5.43)

BO = ((22 + ( 23 )Ro + 2 4 Ro, (5.44)

B1,1  = -( 1 3 Ro, (5.45)

B70= -, 23Ro. (5.46)

Finally, we summarize the model stiffness and damping using the expressions,

07 K , 0 K, K e ,1  0

B 7 . B77 2] B,74=Be, B0 B [ B ]
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5.1.4 Lagrange's Equations

Finally, we compute the equations of motion using Lagrange's equations in the form:

q = f(q)p (5.47)

M(q)* ± [ 'M(q)] P- 1 [ (q) p T  +  
-6V = _R + Qq (5.48)J9 2[ 9q 6P q P

with generalized coordinates q = {4, i, }, and velocities, p ={b, , -}-

Equations of Motion for Multiaxis Slewing Applying Lagrange's equation results

(after some simplification) in the equations of motion with kinematics of the system attitude

expressed in terms of the Gibbs vector, y;

-y = F('))wb, (5.49)

and kinetics,

Iw + I - }HTwb ± R + K.I ± K ± B, + B' = G H- (5.51)
TI + "W- + -I-W +T 1-77 + T.4 +"--I +I.+J.]b+1,,7

J TLb + R + K7 + ±j + B + = G j , (5.52)

w here JT( b + + < 74 +j B =i(

- T NT 2 N , LTa-

2 - 3 T 2i, 1
H= + 2 ±N77 -w,r,qTV - 2wL3N J (5.53)

w-7 3 20'N7rN + -W 2NT + w32? N.. +

R(wb) [ W3 N,, 0 ] (5.54)

5.2 Computer Simulation Model for Nonlinear Control Law Tradeoff Studies

A computer simulation model was developed and coded based on the above FEM model for
attitude slewing of a flexible space craft (5.49)-(5.52). The model parameters and geometry
was chosen to represent the dynamics of a SBL system beam expander with structural

flexure arising from the flexure response of the metering truss. A goal of the second year
effort was to develop concepts for experimental testing of nonlinear control concepts for

flexible space structures. A suitable facility for testing large angle, multiaxis slewing and
precision pointing is currently under construction at the Astronautics Laboratory. The

ASTREX facility with include 3 axis slewing and the initial test article is a scaled model

of a SBL beam expander. We have adapted our nonlinear slewing control simulation model
to represent available parameters and geometry of the ASTREX test article. Details of the

modeling assumptions and geometry are given below.
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5.2.1 Simulation model geometry assumptions and parameters

The objective of the simulation model design was to generate a simplified model that would
duplicate, as closely as possible, the geometry and dynamics of the ASTREX test article.
Information describing the test article was sparse, therefore, the following assumptions were
required to develop a working simulation model:

1. The basic configuration of the model consisted of a rigid body, representing the main
mirror assembly and associated structure, and an attached tripod structure, represent-
ing the flexible metering truss with secondary mirror, see Figure 5.1.

z

X

7RiJ5S

Figure 5.1: Simulation model.

2. The metering truss geometry consisted of a tripod of tubes located at the corners of
an equilateral triangular base. The generic model discussed above was readily adapted
to represent this geometry by including spatial variation of the area moments I,,(z)
and I,(z) based on this geometry. Details of the computation of the area moments
and the resulting FEM model approximations are given in Appendix A.

3. The dimensions of the metering truss model were as follows:

Length, 1- 5.0 m
Base width, b - 3.8 in
Tube inner dia. - 8.0 cm
Tube outer dia. - 12.7 cm
Mass of secondary mirror - 190 kg (5 % of total sys. mass)

4. The overall system characteristics were as follows:
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Mass moments of inertia 16640 kg m 2

IYY = 16590 kg in 2

Iz- = 11660kg in 2

System mass m = 3810 kg
First modal freq. of metering truss = 12.2 Hiz

5. The dynamics of the secondary mirror were neglected and it was modeled as a point
mass at the end of the truss.

6. The modulus of elasticity of the truss material was chosen so that its first modal
frequency matched that of the ASTREX test article.

5.3 Simulation Results for PLF Control with Rapid Slewing and Precision
Pointing

Based on the above simulation model a digital simulation was developed using PC-Matlab

to perform tradeoff studies for implementation rapid slewing and precision pointing of an

SBL beani expander with PLF compensation.
The model equations (5.49)--(5.52) with position coordinates, q = I', T, flT, and ve-

locities, p = b 17 IT, can be reduced to the generic form (4.1)--(4.2). The simulation
models and parameters assumed for the tradeoff studies are summarized in Table 5.2. Sim-

ulated time responses for each model with several different control laws are displayed in

the figures contained in Appendix C. Each simulated maneuver is summarized in a set of

figures including the responses of position y, attitude rates, j, system torques applied to the

primary body, rb, and deformations at the apex of the truss, 7 ().(). Table 5.3 describes
the simulation runs performed and illustrates the relationship between system models and

control laws used.

Slewing with Smooth PLF Compensation. For precision pointing of the system at-
titude we take the primary system outputs as y = -y. PLF compensation for the resulting

system is given by the formula, (4.4). Multiaxis slewing and pointing control was imple-

mented on an independent axis basis subsequent to PLF compensation. Thus the PLF
Slewing control is obtained by setting the v controls appearing in (4.4) as,

Vi = i, for i = 1,2,3

where the commanded accelerations, cyi are generated by the independent axis, time-optimal

slewing control,
ci(t) = -ct,,,, sat{f(,) + 2a,,..j'i},

as described in Section 4.1.

Simulation tradeoff studies completed this year focused on the implementation of PLF

compensation for various reduced-order models of the metering truss flexure. The reduction

methods described in Section 3 were used to obtain implementation alternatives for PLF

compensation in terms of the quasi-rigid model with DOF, r = 3, 4,,5, 11. The case r = 11
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Parameter Simulation Model
MODI MOD2 MOD3 MOD4 MOD5 MOD6 MOD7 MOD8 MOD9

SBL beam expander model parameters
p - mass density 1520 -

E - elasticity 200 -

N - # finite elements 2 - - - - - - - -

c damping factor .001 .001 .004 .004 .001 .001 .001 .001 .001

?nt./mt,,t  0.05 0.0 0.05 0.0 0.0 0.0 0.05 0.0 0.05
Control/Actuator parameters

,,x [rad/sec 2] .349 - - - - - - -

T111,X Peak Torque N/A N/A N/A N/A 9.3 1.4 27.0 22. 22.
(x 103 )

g, - control gain (x 10') 6.477 6.477 6.477 6.477 5.E6 5.E6 5.E6 5.E6 5.E6

92 - control gain 0.0374 - - - -

Simiulation Solution Precision

ODE tolerance 0.001 -

Table 5.2: Matrix of Simulation Models Considered

Models Control Laws
Continuous PLF/Slewing Disontinuous PLF/Slewing

r = 3 r = 4 r = 5 r = 11 Slew rate Discontinuous
limited torque torque

Multiaxis Slew

MOD1 SIMll SIM12 SIM13 SIM14
MOD2 SIM21 SIM22 SIM23 SIM24
MOD3 SIM31 SIM32 SIM33
MOD4 SIM41 SIM42 SIM43
MOD5 SIM51
MOD6 SIM61 SIM62
MOD7 SIM72
MOD8 SIM81
MOD9 SIM91

Multiaxis Large Angle Slew

MODI SIM1 SI1M16
MOD2 SI1M25 SIM26

Table 5.3: Matrix of PLF/Slewing Control mnplementations
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U Slew Times (sec) to 1yij < .001
PLF Model DOF

r= 3 4 1.5 11
Model MOD1

Axis 1 .8005 .8218 .8268 .8258
2 .6709 .6725 .6933 .6930
3 .5145 .5162 .5241 .5223

Model MOD2

Axis 1 > 1.00 .8257 .8246 .8296
2 .8402 .8335 .6868 .6872
3 .5145 .5168 .5189 .5183

Model MOD3

Axis 1 > 1.00 .8260 .8273
2 .8497 .8494 .6892
3 .5172 .5193 .5227

Model MOD4

Axis 1 .8094 .8277 .8302
2 .6732 .6920 .6888
3 .5184 .5136 .5191

Table 5.4: Slewing Times for Standard 3-axis Maneuver

corresponds to compensation for all the simulated elastic degrees of freedom of the flexible
structure response and was included as a baseline for ideal PLF compensation.

Simulation runs SIM11-SIM43 were made to compare slewing time and peak torque
requirements for implementation of PLF compensation for multiaxis slewing. For com-
parison of subsequent time responses, a nominally small angle, multiaxis maneuver was

considered with desired system attitude given by -y = 0 and initial orientation given by
-y = [.07, .05, .0 3 IT

. This attitude maneuver can be expressed in Euler angles as,

[V,, 0, ] = [1.40, -1.7°,2.3°].

Performance results for continuous mode PTF implementation are summarized in Ta-
ble 5.4 and 5.5. The performance sensitivity to the presence of a significant mass (approx-
imately 5 % of the system mass) at the apex of the truss was also examined. Despite the
relative stiffness of the structure the multibody coupling is evident in the attitude overshoot
r'r the small angle maneuver. (All simulation runs are included in Appendix C.) hnple-
mentation of the PLF compensation for multiaxis slewing requires increased bandwidth and
peak torques on the system rigid body. The importance of damping in the appendage can be
seen in Tables 5.4-5.5. With increased damping peak torque required for PLF compensation
will decrease.

To illustrate the large angle response with PLF compensation we also simulated a ma-
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Peak Torque ATp(r)/Tpk(3)

Relative to rigid body case
simulation PLF Model DOF

model r 3 4 5 11
MOD1 0 1.11 1.10 1.12
MOD2 0 .278 .282 .293
MOD3 0 .848 .842

MOD4 0 .238 .243

Table .5.5: Relative Peak Torque Increase with PLF Compensation DOF

neuver characterized by -y = [.5, .4, .3]T, which can be expressed in Euler angles as,

[V,, 0, 1 = [45.0, -19.50, 61.30].

The simulated time responses with PLF compensation for the rigid body modes only reveals

significant overshoot and in the case of a mass at the apex significant torque switching activity
is generated. The addition of PLF compensation for the rigid body plus first two elastic

modes of the beam recovers ideal time-optimal attitude orientation. This also noticeably
reduces chattering activity near the time-optinal switching surface. For these large angle

maneuvers (probably difficult to test experimentally at the ASTREX facility) the lateral
deformation of the apex (with tip mass) is less than 1 cm. indicating the stiffness of this
structure.

Slewing with Discontinuous/Continuous Actuation. Simulation studies SIM51-SIM91
were performed using coordination of discontinuous and continuous modes of actuation for

PLF compensation and rapid slewing as described in section 4.2. The simulation trade-
off studies for this case focused on the requirements for increased peak torque to recover
near ideal time-optimal, independent axis slewing using only the rigid body attitude output

information for control law implementation.

As discussed in Section 4.1 actuators are often subject to slew rate limits which will
limit switching response for on-line implementation of discontinuous mode control laws of

the form (4.69). Simulation runs were completed with slew rate limited implementation of

the discontinuous controls, r', by replacing the sgn function with a saturation function with
linear slope, g9 (cf. Table 5.2).

The significance of implicit PLF compensation achieved in sliding is apparent by com-
parison of the time responses of SIM13 and SIM72. In both cases the models include a

secondary body at the apex of the metering truss which involves significant multibody dy-

namic response. Using continuous mode actuation, PLF compensation is maintained during
the entire slewing transient by control torques applied to the primary body. Using discon-

tinuous actuation PLF compensation is achieved after an initial transient-once the sliding

condition is attained. Thus during the acceleration phase of system slewing the action of the

continuous compensation component, r' does not compensate for multibody dynamics. It
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is also clear that increased torque authority, Tn.x, is necessary to maintain sliding over that
required for purely continuous mode PLF compensation of SIM13. The primary difference is
that the continuous mode PLF compensation achieves decoupling by 'in-phase' compensa-
tion of the multibody motion while the discontinuous/continuous mode approach of SIM72
is achieved without explicit feedback of the motion of the secondary body.

It is not clear at this point in our study how significant it is to maintain PLF compensation
during initial transients. For system slewing the total slew time and terminal pointing
accuracy are clearly dominant concerns. However, it is possible to include compensation for
multibody motion in the combined implementation and we hope to investigate this further
in the next year.

Our simulation studies of the method of PLF compensation and slewing by coordinated
discontinuous and continuous modes of actuation should be viewed as preliminary. A goal
of the next years activities will be to further investigate implementation alternatives and
performance tradeoffs in this area. The simulation results obtained to date reveal that

implicit PLF compensation and near time optimal slewing can be obtained with increased
system torques. We believe that the peak torque requirements for slewing can be relaxed
using dual mode actuation if the secondary body motion can be taken into account in the
continuous mode component -rc of the torque acting on the rigid body.

I
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6 Conclusions and Directions

The second year study has provided some new insights in implementation alternatives for
coordinated multiple actuation mechanisms for achieving rapid, large angle, multiaxis slewing

control of multibody systems. The simulation studies illustrate several important design

issues in implementation of PLF control for slewing and pointing. Implementation of PLFI_ control by continuous mode actuation enforces decoupling during system transient responses

by additional control authority. Its implementation will require available measurements of

structural flexure. Implementation using discontinuous mode actuation, based on sliding

mode control, enforces feedback linearization implicitly and only after an initial transient.

An open question is the importance of enforcing feedback linearization during such transients

for retargeting and pointing maneuvers.
Simulation studies have been scaled as much as possible based on available data and

system parameters for the ASTREX test article. It is hoped that the control concepts for

nonlinear PLF compensation and slewing can be tested experimentally on the ASTREX or

similar facility. A goal of the third year effort is to develop designs for control law vah-

dation using laboratory simulations and experiments for the control concepts developed in
this study. Although detailed designs and laboratory simulations are outside the scope of

the present study we hope to describe a framework for an experimental test plan which will

identify significant nonlinear dynamic responses and validate the importance of feedback

linearization for their compensation. We feel that the presence of such nonlinear dynamical

interactions can be an important limiting factor in predicting the responses of control system
designs for multibody systems. It is widely recognized that such nonlinear dynamics will

be evident in rapid, large angle, multiaxis slewing. We feel that in the presence of signifi-

cant multibody coupling that pointing and tracking precision may also be limited by weak

nonlinear interactions. If such limitations are significant they can best be demonstrated in

laboratory simulations.
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A Advantages of Gibbs vector description of nonlinear kinemat-
ics.

Dwyer (Dwy84] uses the Gibbs vector parametrization of the rigid body attitude to com-
pute an exact feedback linearizing transformation for rigid body attitude dynamics. The
simple, algebraic form of the resulting kinematic relations aid in the computation of PLF
compensation. In this appendix we review the basis for certain relations useful in the general
case.

Euler's theorem says that a general rotation between three dimensional orthogonal frames

can be described by rotation through an angle 0 about a unit vector (F. Thus any L e S0(3)

can be given by,
L(F, 0) = cos I3 + sin 0 Q(') + (1 -cos )Fe'T

where

(X) X 3 0 -x (A.1)
-X2 Xg1  0

In terms of the Gibbs vector [Wer78, pp. 416], _ G W3, given by,

-y tan (- g (A.2)

the general rotation (or direction cosine matrix [Wer78]) can be expressed,

L( )= (1 - Tf)I 3 + 2-yT _ Q(%y)

1 + fT7

In terms of the Gibbs vector the kinematic relation for rigid body rotation [Wer78, pp.

513] can be expressed as,
y= r(-y)w

1 [W ± W +(w'y)], (A.3)
2

where,

F(7) = -[I 3 + -7Y- + (_Y)]. (A.4)

Facts about skew symmetric matrices. The following relations summarize the salient
geometric properties of SO(3). Let 0 : 3- SO(3) (as defined above) and take as the
inverse map. Let A E SO(3) and u, v E R3 . Then the following relations hold.

1. v x u = QU Q(v),Q(u)]) 3

2. v X u =(,vT - VUT)

3. Au = Q(A) x u

4. a-(u x v) = Q2(-v)

'Here [A, B] = AB - BA, the matrix con mmutator.
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Proof: See Baillieul and Levi [BL87] for proofs of (i)-(iii). To show (4) note that from (3)

[0 -113 112 V] ) = ( U23- 113V2
U X V U"3 0 -U. II 2  1 3t'l - UIlV 3

--U '2 Ul 0 V 3 / K 2 - U 2 1 /

p and we have,

9a

0 V3 -V2

- -V3 0 v] • (A.6)

V2  - U1 0

Lemna: Using the Gibbs vector (A.2) the following kinematic relations hold;

- {F()w} _YTWI 3 + _WT + Q(-W)], (A.7)

-{F(9)w}r(y)w=y wF(y)w (A.8)

Proof: To show (A.7) compute the indicated differentiation of (A.3) using fact (4). To
show (A.8) use (A.7) and (A.3) and expand term by term in vector notation,

S1(y)w} [,i3 + twr + Q(-w_)][w + -,YT + , x tX] (A.9)

- -[(3 .w)w (w.w) - w x O (A.10)
4
+(-y. W)-f(-Y,. U) + -'(3" w -)' - u, X -/(3Y .-0 (A. 11)

+(-t yw)(3y x w) + (u. (7 x w)) - u x (-t x w)]. (A.12)

Recalling the basic vector relations;

U. (y/ x w) (. x W) = 0,

W X ( x W) = (u. w)0Y - (u. 3 )W,

then the right hand side of (A.12) simplifies to:

1 2(.) + 2" L,)[ w + -y]x} (A.13)4

_ (tT_)[(-YTW)3 + W + _Y X w] (A.14)
= TwF(y)w (A.15)

0l
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B Supporting Computations for area moment of inertia and B-
spline model for 3-axis slewing with tripod shaped appendage

In this appendix we summarize the computation of the area moments of inertia of the tripod
metering truss model and the computation by explicit integration of the required matrix
parameters obtained from the B-spline finite element model for 3-axis slewing of a rigid

I body with attached appendage consisting of a tripod with equilateral triangular base. Only
those matrix parameters that are a function of the area moments are presented here. The
supporting computations for the matrix parameters that are not a function of the area

moments can be found in [BBKA88].

Computation of area moments As described earlier, the metering truss was modeled
as a tripod of tubes located at the vertices of an equilateral triangle. A cross-section of the
structure appears in Figure 2.1. The area moments of inertia can be computed using the
following relations:

I, = 3Ici, + Ixllaxis (B.1)I = 3i:. + Iyjaxii (B.2)

1Z = I, + Iu , I(B.3)

where Ii, is the area moment of inertia of a circle and is given by

7rr 4
Ici -= , (B.4)

and /,llaxis , 
I

t,1axi, are additional terms that are a consequence of the axis of rotation being
translated fron an axis through the centroid of the circle to tht x or y axis respectively.

/ \\

I /X

/

H Figure 2.1: Cross-section of tripod metering truss.
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Beginning with the x-axis, the area moment associated with the axis translation can beI computed as,
2 rr~deIxIla s = irr d + 2 

(B.5)

From the truss geometry it can be shown that,!z d= b(1--), (B.6)

where b is the distance from the center of the tripod base to the center of one of the tubes,

and I is the distance from the base of the tripod to the end of the truss. Using (B.6), (B.5)
becomes,

=xlaxis r )2 + b(1 - )2 (B.7)

= 2 7rr2b 2 37rb2 + 3-rr 2b2 
2

2 1 212 (B.8)

Finally, substituting (B.4) and (B.8) into (B.1) gives,

.37rr 4  3irr 2b2  37rr 2b2  3rr2b2

4 2 1 212- (B.9)

Next, the area moment of inertia for the y-axis is computed similiarly as the sum of

the moments of inertia of three circles about their centroids and the additional moments of

inertia of two circles whose rotational axes have been translated (see Figure 2.1). The latter

term is given by,I 3irr2d2

Iyaxi = 2 (B.10)

substituting (B.6) into (B.10) and simplifying we obtain,

I 37rr 2 b2 _ 37rr 2 2b2 2
Ila~is - 2 1 + 212 (B . 1)

I Finally, I is computed from (B.2) using (B.11) and (B.4) as,

Iu_ 37rr 4  3irr 2b2  37rr 2b2  3irr 2b 2
-4 2 I z 2l12 (B.12)

The area moment of inertia for the z-axis is obtained by substituting (B.8) and (B.11)
into (B.3) which gives,

4  rr 2b2  2
I= ±2 37rr 2 b2 - + - - - - b 2 (B. 13)

2 1 12 -(.3
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Computation of matrix FEM parameters In [BBKA88] the flexible appendage was
modeled as a beam with uniform cross-section and with corresponding constant area mo-

ments of inertia along its length. However, in this report, the tripod shaped appendage has

area moments of inertia that vary along its length according to (B.9), (B.12), and (B.13).

Therefore, it is necessary to recompute the four matrix parameter relations which are a

function of the area moments using the new relations. The affected integral equations are:

1V, = f{Z2pA + pI(z)} dz, (B.14)

N = f pi(z)(z) (z) dz, (B.15)

N = jpI()T(z) dz, (B.16)

hK f{EI(z)-t(z) r(z) + rGA'I(z) T (z)} dz. (B.17)

Computation of N,,

According to (B.9) and (B.12) I, = Iy. Therefore, let

I(z) = 1= I = c1 + c2 Z + c3 z (B.18)

where

3rr4  37rr2b 2

c, - +-
4 2

C2 I I

37rr2b2
C3 - 212

Substituting (B.18) into (B.14) gives,

N, {zpA + p(c, + c2z + c3z)} dz. (B.19)

By direct integration of (B.19) we obtain,

13 12

N., = p[-(A + c3 ) + -c 2 + lC1].
3 2

Computation of No
By definition the right hand side of (B.15) has elements given in terms of linear B-splines

as
No = I(z)B'._,(z)B_, (z) dz (B.20)

for i,j = 1,..., N. Given the "hat" shaped, linear B-spline,

B1 (z) := (,)[z - i( )]B°(z) + (L)[(i + 2)- - z]B,°+(z)
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where the zero order B-spline is chosen with continuity from the left; i.e.,

BO~) = 11,if ix < xj+1
0, else

Substituting (B.18) into (B.20) we obtain,

No = p (c, + C2 + c3 Z2 )B, 1-_(z)BJ_,(z) dz

Then we have three nonzero cases to consider.

Case 1: i=j =N. Then
/ N 2) .v) 2 ) 2

[N], p I (ci + c2z + C3Z )() 2 (zN - dz

l2) 12 13
: p[ (cI + c2z-N + C3 )- -(c 2 c+3ZN)+ -C3

3N 4NI 5N 3c

Case 2: i =j 1. Here we obtain a simple form for the integral by transformation of the

variable and limits of integration;

[Ne = p f(cI + c2Z + c3 z 2 )Bil 1 (z)BJ (z) dz

= pfZj (cI + c2Z + c 3 Z )(- ) (Z - )(Zj - z) dz

p(-)2j[(Cl + ( - X) + C3(Zi x)2)( x)] dx
1 2) 12 ,13

- [ (C + c2z1 + C3Zj)-1N (c,2c 3 Zj) + 2o 1 -

Case 3: i j < N.

[Neij = p f(CI + c2 - + C3 Z 2)B:_,(z)B -_(.-) dz
3- -' + C Z 2 L 2 ( Z ) 2

= p Z (c+cz+c 32 )(-)(zj-2 dz
, -2

+pf (cI + c2z + c3z2)( )(z, dz
:2- 1/21

=- pJ(Cl + C2 (zj - X) + c3 (Z, ))j 2 2 x) 2 dx

+PjfN(CI + C2(Z, - X) + C3 (Z) _ X) 2 )( E) 2 X2 dx
21 c 212 ill/

= p[2(c, + c2 Zj + C3 -. ) - 12(c2 + 2C3 Zj) + l113-C31

Computation of N,e
Under the assumptions of the 3-axis slewing model, the 1 x N coupling coefficient matrix

NhO has elements

[N,,*], = p j (cI + C2 Z + c3z )B 1 (z) dz,
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for i = 1. N. There are two cases of interest.
Case 1: i < N. Then

j(cI + c2Z + c3 Z2)B,'(z)d- (El)(CI + c2Z + c3Z2)[z - i(k)]dz

+ ()(c + c2 - + c 3 2)[(i + 2)( z)] dz.

Changing limits of integration by the transformation x = z - zi in the first integral gives
, 2 ) [Z _I! ]d

)(Cl + C2 Z +c3 - i(-)I dN

I
(-)o N [cl + C2(X + Zi1 + c3(X + zi1 ]x dx

2) 12 13

('hanging variables (and limits) of integration in the second integral yields

()(cI + c2Z + c3z 2 )[(i + 2)(1) - z] dz
,|+1

2f

N [C 2(X + Zi) + C3(X + Zi) 21(k-)d

2 2 12 II3
(CI C2 Zi c 3 ) 3- 2 (C2 + 2C 3 Z i ) + l C3.

From which we can obtain

2fo 2 12 7 3
I(c, + c2 z + c3 Z )B,'(:) dz N (c + c2Z1 + c3 z) + -(c2 + 2c 3 Z,) ±N3

Case 2: i = N.

(cI + c2 Z + c3 z 2)B'(z)dz = (ci + c2 z + r3z)(-)[z - zNl]dz

-f(+)[c c2 (X + ZN) + c3 (X+ZN)21(X + -) dx

2 12 13____

-W(CI + C2zN +C3ZN)± 7 (c2+± 2C3ZN) +± l2  33

Computation 
of K,

Under the assumptions of the 3-axis slewing model, the N x N coefficient matrix /t 9 has
elements

[olj = f{EI(z),(z)4T(z) + KGA4(-)4t(z)} dz,

= EIN" + KGAN .
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where N" has elements

[N"],j = -. -B,_,(z)B 1 (z)(cj + c2z + c3z 2 ) dz

and iVr is given in [BBKA88]. For the N x N tridiagonal matrix N" and i,j = 1,... ,N we
obtain three nonzero cases.

Case 1: i j < N.

[N = j(e)2(ci + c2 z + c3 z 2 ) dz + I(V)2(c + c2 z + c3 z 2) dz

2N 21
- C + C C + -C 3 .

I 3N
Case 2: ij N.

[N" 1ij = No )'(CI + C2Z + c3 z 2)dz

N 1 1
=-cCl + -c 2 + -C 3 .

1 2 3N

Case 3: i j ± 1. For i =j + 1 we obtain,

[N"]ij = f- -(T )2 (c I -+ c 2z + c 3 z 2 ) dz

= JN -(i)(c 1 + c2(x + zi) + c3(X + z)2) dz

-N 12) _3 71
N(c + c--i + C - (c + 2c 3 -,i) - -C 3.
1a2 3N

Similarly, for i = I 1
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C Simulated Time Responses for Multiaxis Slewing
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