
DTIe. FILEF COPY
REPORT DOCUMENTATION PAGE For 0MB rO,

F=ii .. nn 9~ . t Ins -~~ueo nomtai5asiw oa.~."~ Mrte. ~s~qm tie t@ or fav Wwsn9 inarjtift ww "atng uaa mca.~ ~ ti dta eeei ad o revw~vfnq Mie calif" an' of Afannaano.. S.n ILremr~esqits~ae nts rM t. wSo
coWtoio nals"e "Moons for ro0.icnq ti Csvoe. to *a~sitnqton silig UU S i~caL DIV~oat fa ifrmtion oografjael & sam fill.2 Jft t

OEM 1 mp. iotil? 204 Aringtn. A 22024302 40 tothe offiea Mansoaqfeff t and $W96qt. POSVDWOft i441161mon Progect (07040 in), Waftlnqwon OC 201103.

1. AGENCY USE ONLY (Leav* bilnk) I2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

00 September_7. 1989 Final Report. 1 Apr 87 to 31 Mar 89 ..
4. TITLE AND SUBTITLE S. FUNDING NUMBER1S

NBAYESIAN4 14ONPARA&IETRIC PREDICTIO14 AND STATISTICAL INFERENCE AFOSR-87-0192
61102/ 2304/A5

E. AUTHOR(S)OBurce 11. Hill

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 11. PERFORMING ORGANIZATION
University of Mlichigan REPORT NUMBER
Department of Statistics
A-in Arbor, MI 48109-1092 AFOSR-67-0192

9. SPONSRNG/MONITORNG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIN / MONITORING
AF 0S~r. / TLHAGENCY REPORT NUMEER

Building 410
Boiling AFB, DC 20332-6448 AP6. * 90,*0 2i1,

II. SUPPLEMENTARV NOTES

I Za. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUJTION CODE

ELECTE
Approved f or publ ic roeIrtse;F 2619
distribution unlimited. F 26I

1I& ABSTRACT (Maimum 200 wardi)

The problem of Bayesian nonpararnetric prediction and statistical in-
ference is formulated and discussed. A solution is proposed based upon
A. and H, as in Hil (:968). The meaning of parameters in the subjec-
tive Bayesian theory of Bruno de Finetti is discussed in connection both
with Aft and with conventional parametric models. It is argued that the
usual sharp distinction between prediction and parametric inference is
largely ilusory. The finite version of de Finetti's theorem is emphasized
for the practice of statistics, with the infinite case used only to obtain
apptoximations and insight.

14. SUBJECT TERMS 1S. NUMBER OF PAGES
28

Ilk PRICE CODE

17. SICURhT CLASSIICATION 13. SECURITY CLASSIFICATION 19B. SECURITY CLASOIFCON 20. LIMITATION OF ABSTRACT
or REPOR OF THIS PAGE Of ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7S4G.OI.2W0SSO0 Standard Form 290 (Rev. 2.89)



BAYESIAN NONPARAMETRIC PREDICTION
AND STATISTICAL INFERENCE

Bruce M. Hill'

September 7, 1989

Abstract
The problem of Bayesian nonparametric prediction and statistical in-

ference is formulated and discussed. A solution is proposed based upon
A,. and H,. as in Hill (1968). The meaning of parameters in the subjec-
tive Bayesian theory of Bruno de Finetti is discussed in connection both
with A,. and with conventional parametric models. It is argued that the
usual sharp distinction between prediction and parametric inference is
largely illusory. The finite version of de Finetti's theorem is emphasized
for the practice of statistics, with the infinite case used only to obtain
approximations and insight.

1 Introduction

Bayesian nonparametric statistics consists of methods for statistical inference
and prediction based upon weak apriori knowledge as to the form of the under-
lying population. In real world problems one typically does not have the type of
sharp apriori knowledge usually assumed about models. Indeed, it is well known
that in the practice of statistics the most difficult and important phase consists
of the specification of such models. In this article we wish to discuss the case in
which it is difficult, or impossible, to model the data in terms of conventional
parametric models such as the Gaussian, exponential. or even exponential fam-
ily, at least without resorting to complex mixtures of such distributions. Our
inference will instead be based upon A,,, the nonparametric Bayesian approach
of Hill (1968, 1980a. 1988b, 1987b). A version of this approach was originally
suggested from a fiducial point of view by R. A. Fisher (1939. 1948). See also
Dempster (1963).

In his celebrated article La Prevision (1937), Bruno de Finetti proposed a
subjective Bayesian solut:on to the problem of scientific induction, as formu-
lated, for example, by the Scottish philosopher, David Hume , 1748). De Finetti

*This work was supported by the U. S Air Force under grant AFOSR-87-0192, and by the
National Science Foundation under grant DMS-8901234.
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did so in terms of the concept of exchangeability, which is a special form of
dependence that he introduced and studied extensively (1937). Other key refer-
ences are Hewitt and Savage (1955), Savage (1972), Heath and Sudderth (1976),
and Diaconis and Freedman (1980, 1981). In this article I shall first give a some-
what personal review of the history and substance of the connection between
induction and subjectivistic perceptions of symmetry, with particular attention
to A,, and H, which I developed for the case of vague or diffuse prior knowledge
as to the shape of the underlying distribution of the observables.

The problem of induction is the problem of drawing inference about the
future based upon the past. This problem has long plagued philosophers and
others, partly because there is no way to prove that induction works (apart from
induction itself), and also because in the real world it can be extremely difficult
to formulate inferential or decision procedures, i.e., inductive techniques, that
are appropriate in a given situation. The problem is best thought of in terms
of the probabilistic prediction of potentially observable random quantities (not
necessarily exchangeable), say X 1, ... , X,,. Given the values of the first n ob-
servations, X, = z1, ... ,X,, = zX what can we say about X,+ I or any other
future observations? In the Bayesian approach this is done in terms of the eval-
uation of a probability distribution for the future observables, given the data X,
= x1, ... ,X, = Mn. Conventional Bayesian methods, using a prior distribution
for a 'parameter,' such as the parameter of a Bernoulli sequence, yield such a
predictive posterior distribution, in addition to the more customary posterior
distribution for the parameter. In such situations, once a statistical model and
prior distribution have been formulated and specified, the posterior distribution
of the future observations, given the past, is thereby completely determined.
Such a scheme may be called inductive, since it prescribes a (coherent) mode of
inference and behavior with respect to the future observables, given any set of
data.

This scheme, as usually interpreted, requires that there exist 'true' known
probabilities that represent the conditional distribution of the data, given the
parameter, i. e., a conventional statistical model. However, at the deepest level,
where 'true' probabilities either do not exist, or even if in some as yet unknown
sense they do exist, they are at least unknown, the conventional model-based
Bayesian theory is incomplete, since it is difficult even to give operational mean-
ing to the assertion that a particular model is 'true,' much less to find such a
model. The problem that de Finetti clearly formulated and largely solved was
the problem of giving meaning to Bayesian inferential procedures without rely-
ing upon the usual crutch of an assumed statistical model. Before the funda-
mental work of de Finetti, the assumption of such a true model was simply an
unjustified act of faith. One could, of course, refer to some underlying physical
theory, or to the central limit theorem, or some previous analogous data, to
support belief in such a model. But deep down this remained at best a mat-
ter of delicate subjective judgment, and it was not even clear how to express
what such subjective judgments concerned. For example, consider the use of
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the normal or Gaussian distribution. Poincard (1912, p. 171) states in con-
nection with this distribution, "Tout le monde y croit cependant, me disait un
jour M. Lippmann, car les expirimentateurs s'imaginent que c'est un thiordme
de mathdmatiques, et les mathematiciens que c'est un fait expdrimental," or
"everybody believes in the law of errors, the experimenters because they think
it is a mathematical theorem, and the mathematicians because they think it is
an experimental fact." In the real world it is justified, in fact, by neither. In
Hill (1969) it is shown that the use of the normal distribution can instead be
based simply upon a subjective judgment of spherical symmetry for the 'actual'
errors in the observations. See also Borel (1914, p. 66, 90-93) and Barel (1906).
Hill (1969, p. 95) gives the exact density for the marginal distribution of n
coordinates based upon spherical symmetry, or conditional uniformity, on the
N-dimensional sphere. By Scheffi's lemma that convergence of densities to a
proper density implies convergence in distribution, it immediately follows that
each fixed r-dimensional marginal distribution of the joint distribution of the n
coordinates converges to the Gaussian, even as n goes to infinity as well as N.
In this sense spherical symmetry implies approximate normality. It should be
noted that my statement of the result, which is for the case of spherical symme-
try without a constraint on the average of all N coordinates, agrees with that of
Borel, who discovered and stated the result for the case of one coordinate, and
appears to have understood the general case. When there is also a constraint on
the average of the N coordinates, then my exponent N - n - 2 should be changed
to N - n - 3.

In the theory that I proposed spherical symmetry, or more generally, con-
ditional uniformity on surfaces, is itself only an approximation based upon the
available knowledge, and does not purport to be more than this, or to have any
other objective meaning. For example, in the case of errors of measurement,
one may view the usual orthogonal axes of a coordinate system as arbitrary,
and therefore introduce rotational symmetry. Ultimately, it is simply a matter
of judging that spherical symmetry represents a sufficiently good approximation
to one's opinions in order to be useful for inference, prediction, and decision-
making. In my opinion there is no hope to demonstrate that such a judgment bri"
is either 'correct' or 'incorrect,' other than empirically, for example, by seeing
how well it works predictively.

At an even more basic level, as de Finetti first realized, induction can be
based upon a direct subjective judgment of exchangeability for the sequence of
observables. Once this subjective judgment is made, it is a mathematical fact
that one will be acting (nearly) as though some statistical model were true. ceSsion For
Conditional upon the parameters of such a model, the data will be regarded as IS CRA&I
independent and identically distributed, if the exchangeable sequence is infinite, -C TAB 0
and approximately so if it is a sufficiently long finite sequence. See Diaconis and inounced Q3
Freedman (1980). (It should be noted that the conventional assumption of in- ttrioation
dependent, identically distributed observations, with an unknown distribution,
corresponds to the subjective Bayesian assumption of exchangeability.) This is
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de Finetti's theorem, and its significance is that it provides a subjective justifica-
tion for the use of statistical models and for conventional model-based Bayesian
inference, provided that care is taken in the interpretation of such techniques.
See Savage (1972) for a treatment of exchangeability from this point of view.
De Finetti stressed the fact that the judgment of exchangeability is itself only a
subjective judgment, and perhaps only an approximation to one's actual opin-
ions. To the extent that one judges the sequence as exchangeable, then one is
led to conventional Bayesian inferential techniques. Often, in fact, approximate.
or even partial exchangeability, will suffice to justify such techniques. Further-
more, as will be discussed in Section 3, 1 believe that it is necessary to integrate
the conventional Bayesian theory with data-analytic methods for the selection
of models, parameters, and hypotheses. See Hill (1987a) for discussion of the
deeper structures that may underlie conventional statistical models, Hill (1985)
for Bayesian selection of models, and Hill (1988) for a theory of Bayesian data
analysis.

In a practical sense, based upon the subjective judgment of exchangeabil-
ity, de Finetti had completely solved the problem of inductive inference for the
case of Bernoulli data, or, more generally, for multinorial data with a known
finite number of categories. Combined with the beautiful result of W. E. John-
son (1932), as discussed in Zabell (1982), there was little more to be said at
the foundational or even practical level for these cases, other than to elabo-
rate on the choice of prior distribution for the Bernoulli parameter p or for the
parameter 8 of a multinornial distribution. Thus the precise measurement (or
stable estimation) argument of L. 1. Savage (1961, p. Ch. 4; 1962, p.20), or
as presented in Degroot (1970, p. 199), deals with the case in which the prior
distribution is diffuse relative to the likelihood function, so that it is of little
consequence, and the posterior density for the parameter can be approximated
by the likelihood function. On the other hand, H. Jeffreys's theory of hypothesis
testing covers the most important situations in which the prior is not diffuse.
See Edwards, Lindman and Savage (1963), and Hill (1974a, 1982) for discus-
sions. The problem of so-called 'uninformative' priors has also been dealt with
very effectively by a number of people for the case of multinomial data. See
Good (1965, Ch. 4) for a review and discussion. Furthermore, it has long been
recognized that many real world problems can be adequately modelled by such
finite partitions, Fisher (1959, p. 111 ), Savage (1961, p. 4.23), so when this
can be done effectively there is available a more or less complete system (apart
from details and various complications that arise in practice) for inductive in-
ference and decision-making, including the prediction of future observations. In
de Finetti's own words (1937, p. 147): "It is thus that when the subjectivistic
point of view is adopted , the problem of induction receives an answer which is
naturally subjective but in itself perfectly logical, while on the other hand, when
one pretends to eliminate the subjective factors one succeeds only in hiding them
(that is, at least, in my opinion), more or less skillfully, but never in avoiding
a gap in logic. It is true that in many cases-as for example on the hypothesis
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of exchangeability-these subjective factors never have too pronounced an in-
fluence, provided that the experience be rich enough; this circumstance is very
important, for it explains how in certain conditions more or less close agreement
between the predictions of different individuals is produced, but it also shows
that discordant opinions are always legitimate. This does not make any change
in the purely subjective character of the whole theory of probability." See also
de Finetti (1974, Ch. 11).

Thus in the exchangeable case the only type of situation that had not been
essentially resolved was that in which no finite partition model was appropri-
ate, or more generally, when the number of parameters requisite realistically
to model the data is large relative to the number of observations. One can
speak of this either in terms of multinornial data with an infinite number of
categories, or alternatively, in terms of an unknown and possibly quite large
or even infinite number of categories. Still again, to suggest the general type
of problem, one can speak of Bayesian nonparametric statistics, or of Bayesian
inference about an 'unknown' distribution function. Whatever words we may
use, what we are trying to describe is the situation in which no conventional
parametric statistical model is thought to be appropriate for the exchangeable
sequence of observations. This situation seems often to arise in the p. actice of
statistics. Indeed, from my own point of view, which will be explained further
below, they in fact represent the great majority of statistical situations, with
Gaussian and other conventional parametric models being appropriate only in
very limited contexts.

What then can be said about the nonparametric case from a subjective
Bayesian point of view? The first thing to observe is that de Finetti's theorem
still holds, so that in the case of an infinite exchangeable sequence of observables,
one will be mixing over a dummy variable that represents the 'unknown' distri-
bution, say F, in the population. De Finetti (1937, Ch. 4), had already given
an insightful development of the mathematics of this situation for exchangeable
random quantities. Diaconis and Freedman (1980, 1981) have presented easily
accessible proofs for even more general cases. Just as in the case of exchangeable
events, what must be specified in order to implement the Bayesian approach, is
the mixing function, or apriori distribution for F. In the case of exchangeable
events, F is concentrated at only two known values, 0 and 1, while in the present
case the distribution F can in principle be any distribution function on the real
line. Special mixing distributions will correspond to the subset of F appropriate
for a finite multinomial situation, in which the categories are coded numerically,
or for sure knowledge that F is Gaussian, etc. The fully nonparametric case is
that in which F cannot be restricted to such special subsets of the space of all
distribution functions. In principle, what the Bayesian must do is to specify
a prior distribution, it. on the space of all distribution functions, F: and then,
given the data, update this prior distribution to become a posterior distribution,
7r*, in accord with Bayes's theorem.

How then can a subjective Bayesian specify a prior distribution that ex-
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presses a realistic degree of vagueness about F? Since we are dealing with pos-
sibly infinitely many parameters, it is clear that the problem is formidable even
from the point of view of the mathematics involved, and of course even much
more so conceptually. Furthermore, after observing a sample from the popula-
tion, and obtaining 7t*, in order to obtain the posterior predictive distribution of
future observations, one would have to integrate the conditional distribution of
the future observations, given F, with respect to this posterior distribution of F.
Here the 'unknown' F plays the same role as the 'unknown' 0 of a conventional
multinomial model, but the mathematics is again enormously more complicated.
In addition, a basic difficulty arises here that did not appear in the case of finite
multinomial models. It is no longer the case that one can rely on some form
of Savage's precise measurement argument. Thus the distribution function F
may have infinitely many parameters, and no matter how large a finite sample
is taken from the population, the prior distribution for F may still play a crucial
role. Even if, more realistically, we regard F as having a large finite number
of parameters, in a practical sense the same phenomenon occurs, since realistic
sample sizes will be small relative to the total number of parameters. See Hill
(1975b) for a discussion of this phenomenon. Typically there is no such thing
as global robustness (for all possible distributions of F), or in other words, the
posterior distribution may be extremely sensitive to the prior distribution for
F.

The problem is not, however, so hopeless of solution as may first appear. The
first modern day hint or suggestion as to the nature of a possible solution occurs
in the work of R. A. Fisher (1939, 1948), who proposed a fiducial interpretation
for what I later called A,. and who gives credit to 'Student' for the underlying
idea.

Consider a conventional formulation ot statstical inference, in which the
observations are conditionally independent with cumulative distribution func-
tion F(z; 0), where ' is a conventional unknown parameter. Assume that the
distribution function is continuous in x for each 0. Let X(,) denote the ascend-
ing order statistics of the data, for i = 1,... ,n. Then let 0, = F(X(,) ; 4) -
F(X(_ 1 );O), for i = 1,... ,n + 1, where by definition X(o) = - oo and X(,+I)
= oo. Before the data are drawn, clearly the distribution of the 6i is a uniform
distribution on the n-dimensional simplex, i . e., a special Dirichlet distribution
in which all the parameters are equal to unity. This is the fundamental frequen-
tistic intuition with regard to A,,, and which Fisher presumably used to put
forth his proposed fiducial solution. Thus Fisher suggested (or implied) that
even when the random variables X(,) are replaced by their observed values zx(),
that the uniform distribution for the 6, would still be appropriate. It should be
mentioned that the articles by Fisher (1939, 1948) only briefly and cryptically
discuss the nonparametric fiducial case that we are concerned with. The first
clear formal statement of something like A, is by Dempster (1963), who stated
the Fisherian argument precisely, changed the name from fiducial to 'direct'
probability, and applied the argument for prediction of future observables as
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well. Dempster also asserted that what I later called A, "does not appear to
have a Bayesian interpretation."

In my 1968 article I showed that in fact A,, does have a Bayesian interpreta-
tion. Before discussing this, however, let me note that Fisher's proposed fiducial
distribution is an example of a posterior predictive distribution, since whatever
the rationale, it is posterior to the data, and does partially specify a probability
distribution for the future data. This predictive distribution is not completely
specified, since what it does is to attach a probability of " to each of the n +
1 open intervals formed by the consecutive order statistics of the given sample,
assuming that there are no ties, and goes no further. The fiducial argument that
Fisher gave for this evaluation depends upon one's willingness to persist with the
pre-data evaluation of the distribution of, say, F(X(); 0) - F(X(i -l);¢), after
the X(j) are replaced by their observed numerical values. Such a fiducial argu-
ment, although intriguing, was logically suspect. See Edwards (1972, p. 207) for
a totally devastating example against the logic of the fiducial argument. Also,
Lindley (1958) had already shown, under certain special conditions, that the
fiducial argument leads to a genuine posterior distribution only in simple cases
reducible to that of a location parameter. However, Fisher, in a footnote (1959,
p.51), asserted that "Probability statements derived by arguments of the fidu-
cial type have often been called statements of 'fiducial probability'. This usage
is a convenient one so long as it is recognized that the concept of probability
involved is entirely identical with the classical probability of the early writers,
such as Bayes. It is only the mode of derivation which was unknown to them."

In short, the situation with regard to A,, was anything but clear, and at the
time it was not even known whether A,, was a coherent evaluation in the sense
of de Finetti. If it was, then presumably it could have been derived by means of
a prior distribution for F, Bayes theorem, and an integration with respect to the
posterior distribution of F, as discussed above. The problem that I addressed in
my 1968 article was that of giving such a derivation of Ai. The first step in my
formulation was to consider the case of arbitrary finite populations, in which
the size of the population may be unknown, rather than infinite populations, or
in other words, to deal with finite exchangeable sequences.

This step is not only more realistic, since in the real world we are not or-
dinarily called upon to deal with more than finite populations or sequences of
observables, but it also greatly simplifies the mathematics. Indeed, the proofs
of de Finetti's theorem for the infinite case by Heath and Sudderth (1976) and
by Diaconis and Freedman (1980, 1981), proceed by taking limits for the finite
case. Thus for the case of events, one can condition on the sum of the indicators
after N observations, and note that because of exchangeability, all paths to a
given sum are equally likely. The exchangeable distribution of any N indicators
(for example, for red and white balls in an urn) is then identical with one that
arises from sampling without replacement from a 'randomly selected' urn with
N balls, i. e., the draws are made from an urn with composition (R,W), R +
W = N, with a probability equal to the original subjective probability that the
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sum of the N indicators is R. More generally, one can consider the empirical
distribution function that arises from 'sampling' the first N coordinates from an
exchangeable sequence. Conditional on this empirical distribution function, the
individual coordinates are distributed uniformly over the collection of N-tuples
having this empirical distribution. Because sampling without replacement is,
for large N, close to sampling with replacement from this empirical distribution,
and because of the convergence of this empirical distribution to some limit-
ing distribution (with probability one, under exchangeability), one obtains de
Finetti's theorem for the infinite sequence in this way. See Diaconis and Freed-
man (1980, p. 749; 1981, p. 209) for details. These authors have emphasized the
importance of the finite case even for the underlying mathematics, and as I shall
argue later, it is also the appropriate formulation for inferential purposes. The
model for A,, in Hill (1968, p. 679) is actually equivalent to the specification of
a diffuse prior distribution for the empirical distribution of a finite population.
In the context of Heath and Sudderth. or of Diaconis and Freedman, it is equiv-
alent to specifying the subjective distribution for the sufficient statistic based
upon N trials within their models. Thus instead of specifying a diffuse prior
distribution on the space of all distribution functions F, what I have done is to
specify such a prior distribution for the empirical distribution function of the
entire finite population from which a simple random sample has been drawn.
Here the number of units in the finite populations can be unknown, as well as
the number of jump-points of the empirical distribution of the population, and
the points at which the jumps occur and the sizes of the jumps. The details
concerning this diffuse prior distribution will be given in Section 2. Here what
I want to discuss is the underlying sampling model.

The statistical model for this problem can be thought of in terms of sampling
with or without replacement from a finite population of units. Imagine that each
unit carries an attached tag or label, for example giving the color of the unit,
or the name of the species to which the unit belongs, or a numerical value such
as the mass of the unit, or the future time of death of the unit. It does no harm
to visualize the population of units, with their attached labels, as sitting in an
urn. A simple random sample, with or without replacement, is then drawn, and
we observe the value of the label for each unit in the sample. It is assumed
for simplicity here that the label or numerical value is observed without error,
although the theory can easily be extended to deal with errors of measurement.

The population of labels or numerical values can be described in terms of the
empirical distribution of such jabels or values. Indeed, because we are dealing
with only finite populations, the case of colors or names can be viewed as a
special case of the case of numerical values. Thus we can imagine, without loss
of generality, that the finite collection of colors or names in the entire population
have been encoded numerically, thus yielding numerical values. For simplicity,
we shall describe the situation for the case of such numerical values. When we
return to the case of 'colors.' as in the species sampling problem, we shall point
out the special features that arise in this case. For the time being, visualize the
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urn population as consisting of the numerical values attached to the units, such
as their masses. This population can then be described in terms of the number of
units in the population, say N, and the empirical distribution of the values in the
population. Note, for example, that if sampling is with replacement from this
population, and if the number of distinct values in the population is known to
be say, M, then this model is a special case of a conventional multinornial model
with exactly M non-empty categories. In general, of course, M need not be
known, except that M < N, and sampling can be without replacement. In any
case, the number of units in the population, N, and the empirical distribution
of population values, completely characterize the finite population of values. In
fact here the empirical distribution for the entire finite population of values plays
a similar role to that of the 'unknown' probabilities in a conventional statistical
model. Following the spirit of de Finetti (1937), 1 regard the fundamental
problem of induction to be reducible to that which arises in sampling without
replacement from an urn consisting of units that are labelled with numerical
values.

The solution that I proposed for this problem, which consists of a model
for a generalized version of An in which ties can occur, will be discussed in
Section 2. Historically, the sequence of events concerning An after Dempster
(1963) was as follows. I proved in my 1968 article that An cannot hold exactly
for countably additive proper prior distributions, in the case of exchangeable
sequences in which ties have probability 0. At the same time I recommended it
as an approximation for a variety of situations, that can be roughly described
as situations in which the data is measured on a "rubbery scale," and gave
several models in which it would be appropriate. I also proved in Hill (1968, p.
686) that An for all n implies that the posterior distribution of the Gi defined
earlier is the uniform Dirichlet distribution on the (n -- 1) dimensional simplex,
thus giving support to Fisher's fiducial argument. Also, Hill (1967) derived the
posterior expectation of a future observation, and of the mean of the population,
using An. The next historically significant development regarding A,, was the
proof by Lane and Sudderth (1978), using finite additivity, that An for all n
is coherent in the sense of de Finetti, i. e., it is impossible to be made a sure
loser, and the further result by the same authors (1984) that it is predictively
coherent. The robustness and invariance properties of An were investigated by
myself in Hill (1980a) with the general result that it is robust in the modern
Bayesian sense of Berger 1985), Hill (1980b). Then my doctoral student Peter
Lenk (1984) showed, along with many other things, that An can arise as a limit
of proper priors, using a log gaussian model for the prior distribution of the
unknown density function of the population. Next, Berliner and Hill (1988)
used A,, to obtain the predictive distribution for future observations in the case
of censored data, as for example in survival analysis. Finally, in Hill (1987b) I
have constructed a class of simple parametric models, called splitting processes,
such that A,, holds for all n. A modification of this construction also yields
H, for all n. The Dirichlet process of Ferguson (1973) turns out to be a very
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special type of splitting process. It is also shown how A,, arises from sampling of
complex mixtures of distributions, and the relationship with the oneway random
effects analysis of variance is explained.

In the next Section I will restate A, give my model for inference and pre-
diction, and suggest a new and compelling (for me) subjectivistic argument for
At.

2 A, andH,

In Hill (1968) a direct specification, denoted A, for the posterior predictive
distribution of future observations was proposed. A,, was meant to express ex-
tremely vague subjective prior knowledge as to the form of the underlying pop-
ulation distribution. For the case of n = 1 and 2, A, follows from conventional
parametric models (Gaussian. for example) with a uniform prior distribution
on the location parameter. or on the location parameter and logarithm of the
scale parameter, respectiveiy, Jeffreys (1961, p. 171), Hill (1968, p. 688). For
example, when n = 1, suppose that the parameter 0 is the mean of a nor-
mal population with known standard deviation of unity. Given an observation
X1 = x, from this population, the posterior distribution of 0 is N(xl, 1). The
predictive distribution of the next observation, X 2 , is then easily seen to be
N(zi, 2). Hence the posterior probability that X2 _< z is .5. Note that for
any prior distribution which is diffuse relative to the likelihood function, A1
will hold to a good approximation, since the posterior distribution of 0 will still
be approximately N(x1, 1). A similar analysis applies in the case n = 2. At
the time of Hill (1968), it was not known whether A,, could be obtained for
conventional parametric models when n > 3. However, Hill (1987b) shows that
this is the case for both A,, and H,.

A,, for untied data, or H,, for the case of ties, are exactly appropriate for
data measured on a merely ordinal scale, or with a trivial modification, for
data that consists of labels (such as the names of species, as in the species
sampling problem), and can yield an extremely good approximation for data
on a ratio or interval scale, such as the weights in a population of penguins,
as will be discussed at the end of this section. The cases where it is exactly
appropriate can be described as data measured on a "rubbery" scale. Just as
with other nonparametric mo,4pls, it is hardly necessary for the assumptions
to hold literally, in order that the conclusions be appropriate to a very good
approximation.

The condition A, is defined as follows. A,. asserts that conditional upon
X 1,... ,X, the next observation X,-, is equally likely to fall in any of the open
intervals between successive order statistics of the given sample (Hill, 1968, p.
677). Note that in our dc.inton of .4,, we do not assume that the sequence
is necessarily exchangeabie or that ties have probability 11. Thus. we can also
include cases where there :s a positive probability that the next observation ties
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one of the previous observations, and also partially exchangeable situations that
satisfy A,,. At the present time I wish to slightly modify this notation, use H,
to denote the situation in which ties can occur, and reserve A,, for the special
case of H,, in which their are no ties (or ties have probability 0). In this article
I will also assume that the observations are exchangeable, although this will not
be included in the definition of A, and H,,.

A, specifies a predictive distribution for one future observation. If also A,,,,
holds, then by conditioning upon which interval the first new observation falls
in, we can obtain a predictive distribution for two new observations, and by
extension for an arbitrary number of new observations. See Hill (1968, p.684)
for such predictive schemes. 1 Furthermore, we can use this same idea to deal
with censored data, again by conditioning upon which intervals the censored
observations will fall in. Beriiner and Hill (1988) carry through such an analysis
for the case of survival data. present upper and lower bounds for the survival
function, and simple algorithms with which to make the analysis. In the sur-
vival problem, for example. we assess the predictive probability distribution for
the time of death of new patients given a treatment, using as data the death
times, and the intervals in which censoring occurred, i. e., the partial censoring
information, for a previous group of patients who were given the treatment,
and with whom the new patients are regarded as exchangeable. Chang (1989)
provides additional computational algorithms, and extends the results to the
two sample case.

In addition to de Finetti (1937, 1974), other key references on exchangeabil-
ity are Hewitt and Savage (1955), Savage (1972), Heath and Sudderth (1976),
and Diaconis and Freedman (1980, 1981). (The article by Heath and Sudderth
gives an extremely simple and yet rigorous proof of de Finetti's theorem for the
case of events. The articles by Diaconis and Freedman do so for the general
case.) The definition of exchangeability that we shall use is that motivated by
the subjective Bayesian viewpoint. namely, in terms of a subjective judgment
that the order is irrelevant. (Mathematically. this is the same as all other def-
initions of exchangeability but psychologically it is different, in that we do not
assume the sequence is 'truly' exchangeable, but merely that one regards it as
exchangeable, perhaps only as an approximation to the truth.)

To be precise, let X1.... Xk-i, be k - 1 random variables that are (finitely)
exchangeable in the subjective Bayesian sense; that is, the joint distribution of
any r distinct variables is the same as that for any other such r variables, r =
1,... ,k. An infinite sequence of such variables is said to be exchangeable if
the above condition is true for each k. Such models arise from the following
Bayesian formulation: Assume that. given some distribution. say F.X 1 .... !X,,
are independent and idert':cali' distributed according to F. For F unknown it is
natural for the Bayesian t-, model F itself as 'random' with some apriori prob-

'Note that the equation (r. he top of page 684 is only valJid d i t 1. _ = J it
is necessary to add another te.r wrucr, corresponds to the possibdaty that the second new
observation ties the first. A srn.,ar correction is necessary in the formula for E(O, x 6,).
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ability specification. This can be done either parametrically or nonparametri-
cally. In either case, 'integrating out' F leads to an exchangeable unconditional
joint distribution for the X's. Conversely, de Finetti's theorem implies that
if the exchangeable sequence is infinite, then their exists a distribution on F,
called the prior distribution of F, for which the joint distribution of the observa-
tions obtained by 'integrating out' F is the original exchangeable distribution.
See Hewitt and Savage (1955). Heath and Sudderth (1976), and Diaconis and
Freedman (1980, 1981) for proofs. The 1980 article, which emphasizes the finite
exchangeable case, is particularly appropriate for my purposes. Thus the au-
thors show that the most general exchangeable sequences arise by taking limits
of the finite exchangeable sequences that arise in sampling without replacement
from urns.

I will now present my model for A, or more precisely, for my generalization
of A, called H,, which allows for ties, and of which A,, is a special case.

We assume that there exists a finite population of units, with each unit
having an attached value or label. For example the value might be the mass
of the unit, or the label might be the name of the species to which the unit
belongs. We assume that the set of values is simply ordered, or at least can be
simply ordered. By a simple ordering we mean a relationship, say <, which for
any two elements x,y, of the set of values, is such that either x < y or y < z,
and which is transitive. (See Jeffreys (1957, Chs. 5-6), Luce and Narens(1987),
and Whitrow (1980, Sec. 4.7) for discussions of the concept of measurement.)

Thus masses would be on a ratio scale, and are certainly simply ordered;
while labels can be simply ordered for a finite population simply by designating
an ordering. (This can be done for infinite populations as well, using the well-
ordering theorem, but there is no need to go into such things here.) Suppose
there are N units in the population, and that the set of attached values or
labels is {Z,. i = 1,... ,N}. We shall now refer only to values, with it being
understood that we include labels as a special case after the finite population
has been simply ordered. Some of the values Z, may be equal to one another.
Suppose that in fact there are only M distinct values amongst the Z,, and denote
these in ascending order of magnitude as X(w) < X(2) < ... < X(M), where of
course M < N. Finally, suppose that the value X(2 ) occurs in L, units, where

L, 1, since by assumption the value X(O does in fact occur, and M , =
N.

The above model constitutes our description of the finite population of val-
ues Zi. Note that this determines the empirical distribution of values in the
finite population, i. e., the empirical distribution has jumps occurring at X(l),
... , X(M), and the jump that occurs at X(,) has height L,/N . Of course in
general all of these quantities are unknown, i. e., N, M, the X(), and the Li.
From the subjective Bayesian point of view one must then specify a probability
distribution for all of these quantities. It should be noted that this point of view
corresp','r. exactly to the recent probabilistic treatments of exchangeability for
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finite sequences, as in Diaconis and Freedman (1980), where the finite exchange-
able sequence of length N is the vector Yi,-..., YN, which would be generated by
sampling without replacement all N elements of the finite population, so that
these , are some permutation of the Z,.

The case of an infinite exchangeable sequence may be viewed as an ideal-
ization of this scheme, and gives rise to de Finetti's theorem. But the model
in terms of sampling from a finite population is simpler, avoids difficulties and
paradoxes of infinity, is more realistic, and in view of the results of Diaconis and
Freedman, loses no generality in any case. For example, in my model we require
only a prior distribution for the composition of the finite population, i. e., for
(M, N, X, L), rather than a prior distribution on F, the theoretical distribution
for an infinite exchangeable population. It is far simpler to specify such a prior
distribution on the finite number of parameters (at most 2N +2) needed to
describe this finite population, than to do so on the infinite dimensional space
of distribution functions F. Furthermore, we shall argue that there is a natu-
ral way to represent vagueness for the finite population, which would be much
more difficult to achieve for an infinite population (for example, one would have
to confront some basic issues concerning the difference between countable and
finite additivity).

Now let us consider the data that we shall be analyzing. It is assumed that a
simple random sample is drawn without replacement from the finite population
that we have described above. Let the sample size be n. The data will consist
of the numerical values attached to the n units that are thus selected from the
finite population. Let Z(W) < Z( 2 ) < ... < x(,), be the ascending order statistics
of the sample, with m distinct values, 1 < m < n, and with n, sample units
having the value x(j). Taus n, > 1 , and Ern=I n, = n. It is assumed here that
the values are measured without error, so that each Z(,) is necessarily some X(,)
in the population, but of course we do not know with certainty which. By data
we mean the set of m distinct x0) values, and the n,. Thus the data determines
the empirical distribution of the sample, but is more informative because n and
the n, are known as well. We now require only one further bit of notation.
Given the data, define J, to be the rank, in the population, of the the value
xz,) in the sample, for i = 1,... m. The vector J = (JI,... ,J,) then gives the
true ranks, in the population, corresponding to the sample values z(,). Thus
1 < J1 < J 2 < J 3 ... < J,,, < M, because of the fact that the z() and Xw) are
strictly ordered. We now are ready for the basic equations of the Hill model for
H.

In the first equation. we condition on the true composition of the finite
population, by which we mean the unknown quantities X, L. M, and N. This
equation gives the probability for observing the data together with J = j, for
each possible vector of ranks j:
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Pr{ data, J_- jX, L, M, N } (N) x I ()
n--n-

if X, ) = ,i= 1 ... ,m, and is otherwise 0.
Note that this would be the likelihood function for the population quantities,

except that we have included J = j together with the data, because this is the
key to making an effective evaluatTion; the ordinary likelihood function would
involve a mixture of (1) with respect to j. For sampling with replacement, it is

only necessary to replace the factor (k) by (j,) , etc. We shall not further deal
with the case of sampling with replacement, since sampling without replacement
is the more common, more difficult to analyze, and more important form of
sampling.

The next step is to integrate out over the unknown X values in the pop-
ulation. In general such an integration requires the assumption of countable
additivity, or conglomerability in the finitely additive theory, as in Hill and
Lane (1985). However, in the present case with only two values for the proba-
bility in quesion, i. e., that given by (1), or else the value 0, it follows without
any additiona! assumptions, that

Pr{ data, L=j IL= _, Al, N }

=(N) x xPr{X(,,) = xZj),... X(,,,) = 1) L = L M, N}. (2)

t=1

We thus obtain the basic result,

Pr{Jj=j, L=t, data !M,N } =Pr{data, J=j IL=1, Al, N }xPr{L=j AI,N }

=(N) ( xPr{X,,)= Z(l)...X( , = L = . Al, N}xPr{L= =1,N }. (3)

Clearly all trlat must be specified in order to make further evaluations are
simply the three components of the prior distribution on the composition of the
population, namely

Pr{L = M. N}. (4)

Pr{ X(1 ,) = x( .. X =( ) L = I! M, N }, (5)
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and
Pr{MA IN Ix PrN}. (6)

Although our primary interest in this article is the specification of (5) in such
a way as to express diffuse or vague knowledge about the underlying population
of values, we note that our formulation is sufficiently general so as to include
conventional parametric specifications as well. For example, we may be of the
opinion that the population distribution is approximately normal, in which case
the distribution of X can be chosen so that the X(1 ) are order statistics of
a sample from a normal population, and similarly for any other parametric
distribution. We shall not pursue this idea here, however, since the most basic
case is the nonparametric one.

We shall specify (4) and (5) as follows:

PrfL _ M,N N= M 1 , (7)
(M(7)

while, for each possible Z( 1 ),... ,

Pr{ X(j,) = z(l),...,X(_) =z(,) L=, M, N } (8)

does not depend upon j.
Any specification of (4) and (5) is equivalent to a specification of the prior

distribution for the empirical distribution of the population, given M and N.
Obviously this can be done in infinitely many ways, any one of which might be
appropriate in a specific real world situation. But it is of value to single out those
specifications that are of special significance, such as for example correspond to a
diffuse prior distribution (as is commonly done with improper prior distributions
on conventional parameters), and also those that are known to be compatible
with much real world data. The specification (7) that I originally chose was to

take Pr M, N } = (N-1)-, which is the Bose-Einstein distribution
for non-empty cells, as in Feller (1968, p. 40). Thus the results in Hill (1968)
are based upon this choice, while those in Hill (1980a) discuss the robustness
of this choice within the class of exchangeable distributions for L. My doctoral
student, Wen-Chen Chen, in his Ph. D. dissertation (1978) and Chen (1980)
generalized this choice to include arbitrary symmetrical Dirichlet-multinomial
distributions, and argued that for some data it is desirable to choose a Dirichlet
prior other than the Bose-Einstein, which of course is a Dirichlet-multinomial
corresponding to a uniform Dirichlet distribution. See also Lewins and ,Joanes
(1984) and Boender and Kan (1987) who use the same model. My primary
motivation for the Bose-Einstein distribution (which I still regard as the single
most appropriate choice) is the connection with Zipf's Law. This law represents
more real world data than any other known law. including the Gaussian. It is
shown in my articles Hill (1970, 1974a. 1975a. 1979, 1980a, 1981), and in Hill
and Woodroofe (1975) and Woodroofe and Hill (1975), that the Bose-Einstein

15



choice yields Zipf's Law. This is why I singled it out as of special significance
within the class of exchangeable prior distributions for L. See also Ijiri and
Simon (1975) for discussion of the Bose-Einstein distribution. Of course it is
mathematically straightforward to replace the Bose-Einstein distribution by any
other Dirichlet-multinomial distribution, and sometimes this may be of value in
modelling the data. The logic underlying my model would only at best suggest
that the distribution of L should be chosen to be exchangeable, and even this
is not really necessary. See also Hl (1987b) for the relationship between my
model for Zipf's Law and the random discrete distributions of Kingman (1975).

Next, one must also make some specification for the prior distribution of
M and N. The most basic case for inference is simply where N is known to be
large, and M has a uniform distribution, given N. This was the case considered
in Hill (1968). Hill (1979) then considered the case where M has a truncated
negative binomial distribution, of which the uniform is a special case. Although
the specification of the distribution for M. given N, is of lesser importance here
than the specification of (4) and (5), it does play a crucial role in obtaining
Zipf's Law, as in the cited articles by myself and by Chen.

Even more important than the choice of the Bose-Einstein distribution for
L is the choice of (8). Here we directly confront the problem of formulating a
diffuse prior distribution on the empirical distribution of the population. Note
that if M = N, so that all L, = 1, then we obtain the case where ties have proba-
bility 0, and must then only express vagueness of opinion about the jump-points
X() in the population. Thus the problem of expressing a diffuse distribution
for the jump-points is logically independent of that of expressing one for L. It
was shown by Lane and Sudderth (1978, Theorem 1), defining A,, for the case
where ties have probability 0 and where the sequence is exchangeable, that (8)
is equivalent to A,,.

Consider then the specification (8). What it says is that no matter what the
distinct values n0) may be, they contain no information whatsoever about the
ranks J, of these values in the population. Clearly this is not always appropriate.
For example, if one believed that the population was approximately Gaussian
in form, then one would favor some j vectors over others. Or if one knew
sufficiently much about the set of values in the population, then one might
know, for example, that x(,) was in fact the largest value in the population. Or
again, if the X(j) are necessarily integers, and if two are consecutive, then one
knows that the corresponding J, are also consecutive. To understand the force
of the argument for (8) however, consider the following example.

Suppose for the sake of argument that there are 100,000 adult male emperor
penguins, and that their weights can be measured sufficiently precisely so that
no two agree exactly. (This is assumed only to make the essential point clear.
My model Hf, with ties, can deal with any degree of rounding.) Consider your
apriori subjective opinions about the population of weights of these penguins.
Suppose now that I were to give you all but one of these weights as the data zx(),
i. e., 99999 positive numbers, no two of which are equal. The question I wish
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you to think about concerns your opinions about the vector L, which specifies
the ranks of these 99999 numbers in the population of all 100000 numbers.
Condition (8) here would require that you be aposteriori indifferent as to which
ranks these observations have in the population with M = N = 100,000. Note
that this is meant to apply no matter what the z(i) values are, provided that
only possible values are included, so that negative values are excluded, as well as
weights that are known to be impossibly large or impossibly small. For example,
if (8) holds, then you are indifferent as to which of the 100000 possible values is
missing in the data. It could just as well be the largest as the smallest, or any
other member of the population. Thus it would be the largest that is missing if
it were the case that J consists of the ranks I, ... , 99999 in the population, and
it would be the smallest that is missing if J consists of the ranks 2,..., 100, 000
in the population. Are you so indifferent?

A fairly natural first reaction is to say that you might or might not be
indifferent, depending upon what the numbers z(i) that I give you are. And
you might feel that for lots of such sets of 99999 numbers you might be, and for
others you might not be. But think again. Suppose, to take an extreme case
that might seem to speak against A(999w), that the z(j) that I give you are such
that there is an enormous gap between the largest, z(9ggg), and all the others.
In fact, suppose that z(9"9 , is an extremely large value, say 1000 pounds,
one that (although perhaps not impossible), seems highly improbable, while the
other sample weights are all less than 100 pounds. You do not appreciate the
full force of A,, until you realize that if the largest weight in the sample were in
fact 1000 pounds, then there might well be another penguin that weighs even
more than this! Thus the naive reaction, which would be that no penguin weighs
anything like 1000 pounds, is immediately dispelled once one fully appreciates
the fact that you have already seen one such (in the scenario of the problem)
and may therefore well see another one. Still another example of this type
concerns human age. One might well regard it as extraordinarily improbable
that any human being has lived to the age 500 years. But if one such could be
demonstrated, then you might well think that another might also, and even find
that your opinions were roughly in accord with A,. 2

What condition (8) is expressing is a completely pragmatic attitude towards
the population. Such an attitude is not only a subjectively Bayesian coherent
attitude but in the case at hand even seems quite compelling; and this is for
the case of weights on a ratio scaie, which is the worst type of example for A,,,
as opposed to data on a merely ordinal scale, such as the Mohs scale for hard-
ness of rocks, where the hardness values are more or less meaningless. See, for
example, Whitrow (1980, p. 216). And yet I think, after reflection, you may
find it compelling even in the extreme example I have given. It would of course

2The Encyclopedia Americana. 1981, referring to penguins, states "In size they range from
the gigantic emperor penguins. standing about 40 inches high, and weighing up to 90 pounds,
to the diminutive fairy penguin of the AustraLian region that attains a length of just over a
foot.
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be even more compelling if the largest weight in the data were say, 120 pounds,
rather than 1000 pbunds. The general argument that I would give is that (8)
with m = M - 1, and N = M (so there are no ties), is a highly compelling
subjective evaluation, and this implies AM-1. Note that there is no possibility
of a mathematical proof that (8) is 'correct,' just as there is never any way of
proving that one ordinary prior distribution is more appropriate than any other.
All prior distributions are possible, and each is to be given 'equal rights,' as de
Finetti says. But just as some prior distributions are sometimes regarded as
more appropriate than others, for example, a uniform prior distribution on the
parameter of a Bernoulli process is sometimes regarded as particularly appropri-
ate, so too I claim that (8) is quite compelling, and I personally regard it is the
most generally appropriate specification. My reasons are perhaps not entirely
unrelated to those of Bayes (1764), and the fiducial intuitions by 'Student' and
Fisher, .

That A,, for large n should be highly compelling also agrees with certain fre-
quentistic ideas in conventional nonparametric statistics. Very few statisticians
use parametric models when dealing with large samples from some underlying
population F. The reason is that one is nearly certain that the true distribution
is not of any specific parametric form, for example, Gaussian, and that with a
sufficiently large sample the discrepancies will almost certainly appear and be
serious. This is part of the approach to hypothesis testing of J. Berkson (1938),
for example, who pointed out that with a sufficiently large sample you will cer-
tainly reject most conventional null hypotheses. Thus for a sufficiently large
sample one might be nearly certain that the data will allow rejection of any pre-
specified fixed dimensional parametric model, even using a subjective Bayesian
test of the hypothesis, for which it is more difficult to reject the null hypothesis.
On the other hand, if the sample from the very same population F were suffi-
ciently small, then one might well use the Gaussian or some other parametric
model. Because of the relationship of A,, to the empirical distribution function,
as in Berliner and Hill (1988, p. 773), it is clear that the same considerations
that make conventional statisticians prefer the empirical distribution function
when dealing with large samples should also apply to A,,.

Now we come to a rather strange and interesting fact. Suppose I have man-
aged to convince you of the appropriateness of AM-,. But it is a mathematical
fact, proved in Hill (1968. p.688), that Ak implies A, for j < k. Thus if you
accept AM-i as appropriate exactly, then you are forced into A1 as well. Of
course, both A1 and A 2 correspond to conventional Bayesian and frequentistic
procedures, with a diffuse prior on location, or on location and scale parame-
ters, respectively, and they are certainly sometimes appropriate as an approx-
imation. But it is equally ciear that they are not always appropriate. How
are we to explain this? My argument for AM-,, which I regard as extremely
compelling when M is large. if accepted, then implies A1 as well, which is not
always compelling. I believe that the explanation is as follows. In my proof
that At implies A, for j < k there is a backwards induction. In carrying the

18



argument backwards, it is possible that slight discrepancies from AM-, may
build up, yielding a possibly much larger discrepancy for A,. I should also
point out that even Am-, need not hold literally. For example, suppose that
you knew a great deal about the average weight in the population of penguins.
Then if I gave you all but one of these weights, you would have a good idea
about the missing weight. Indeed, you would know it exactly if you knew the
average weight exactly. Similarly, one might observe that a particular weight
that one knows occurs in the population is missing in the sample. Thus one
might have a discrepancy even from AM-,, and this could build up even more
in reaching down to A,. It is considerations such as these which point out the
importance of recognizing, once and for all, that we are at best only dealing
with approximations. These approximations can nonetheless be very useful. It
is my opinion that the nonparametric formulation, as in H,,, although itself only
an approximation, is ordinarily the most important way to perform predictive
inference, with parametric representations, such as the Gaussian, being useful
primarily for inference and prediction when the sample size is small.

I remarked earlier that A, is exactly appropriate for merely ordinal data,
such as hardness of rocks, in the absence of ties. The argument is as follows.
Suppose one draws a simple random sample of n rocks from a population of N
rocks in which no two are of the same composition or of the same hardness.
(Here, as is usual, one rock is said to be harder than another if it scratches
the other rock.) Before the data is taken you are surely of the opinion that J
is equally likely to be any of the (N) possible j vectors, since this is precisely
what sampling without replacement means. In the present case, however, even
after the sample is drawn you must still be of the same opinion, since no 'data'
becomes available other than the relative orderings of the rocks in hardness,
i. e., there are no values. (Even if some arbitrary scale is used, such as the
Mohs scale, it means nothing, and its 'values' are totally uninformative, as
in Whitrow (1980, p. 216).) Thus in this situation one is forced to make the
evaluatior (8). Furthermore, this provides a justification for the original fiducial
intuition, which also ignores the 'values' of the observations. Finally, if we now
consider the case of ties, as for example if we draw a simple random sample from
the rocks on some mountain, then it can easily be seen that H,, rather than A,,
applies, using an appropriate exchangeable distribution for L.

Finally, in the case of 'colors' or 'species,' the natural way to proceed is
as follows. Suppose that we go to a new region and, taking samples, find n
living creatures that we decide belong to m distinct species. We can number
these species in any way we like, for example, we can take species 1 to be
the first type caught, etc., with species m the last type caught in our sample.
Define the quantity -v,, i = 1, ... ,m, to be the proportion of the unsampled
population belonging to the same species as the ith sample species, and 8, to
be the proportion of the unsampled popuiation with value strictly between z(,)
and Z(,, 1), just as in Hill (1968, p. 682). In this case the 9, are necessarily 0 for
i < m - 1, since any creature belonging to a new species must then be given a
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number larger than m. Then although neither A, nor H, is exactly appropriate,
it is shown in Hill (1980a) that the posterior distribution of the quantities -v,,
i = 1,... ,m, is exactly as under H,,, and that the posterior distribution of M
and the posterior probability of catching a new species is as in Hill (1968, p.
681, p. 691; 1979)

3 On the meaning of parameters

The role and meaning of parameters in the de Finetti theory is quite different
from that in conventional statistics. Consider a finite exchangeable sequence
of 0-1 valued observations, X,, for I =- 1 ... N. In the de Finetti approach,
there need not be any pre-existing 'true' probability, p, for a success, i. e.,
for X, = 1. However. according to de Finetti's theorem, if the sequence were
infinite, then one would impiicitly be acting as though there were such a p, and
the prior distribution for such a p would be simply the de Finetti measure r

for the sequence, i. e.. it is as though the a priori distribution for p was v,
and one's opinions about the observable X, were such that conditional on p, the
observations formed a Bernoulli sequence. If the sequence is only finite, but N is
sufficiently large, to a good approximation the same thing is true. In this case,

is simply the average of the N random quantities, p = k t=( Xi)/N.
Conditional upon this p, one no longer has exact independence of the X,, but
some degree of dependence. The difference between the infinite case and the
finite case amounts to the difference between sampling with replacement versus
without replacement from an urn. See Heath and Sudderth (1976) and Diaconis
and Freedman (1980). Of course all real world sequences are necessarily finite,
but for moderate N the difference between the infinite and finite case is of little
importance, and one uses the infinite case as a convenient approximation to the
finite case. This is also the spirit in which I originally proposed A,.

In this formulation note that before the sequence is actually determined,
for example, before the coin is flipped, there is no pre-existing p, and what p
actually represents is the random average .X of the N observables, which is as yet
to be determined. The a priori distribution for p is merely the prior distribution
for X, and this is in fact a useful way to elicit opinions about the conventional
Bernoulli parameter p. Although p is usually thought of as a quantity with an
objective existence even before the coin is tossed, this is not really the case.
Of course, one can imagine if one likes, that the coin has already been tossed
N times, so that the X, have already been determined, but that one has not
yet observed them. In trs case there would be an existing quantity, which is
as yet unknown, and is simpy . for the realized sequence X,. Provided there
is no additional informatior., in the subjective Bayesian framework it is then
precisely as though the t,.ssfs had no: vet been made. See Hill ( 1988, Sec. 3)
for futher discussion. I- :s .7-n' largely immaterial, for practical purposes, which
point of view one taxes as :c. the 'objective' existence of p. i Note, however, that
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even in the case where X has already been realized, the interpretation of this
quantity as the 'true' probability cannot be made without assumptions as to
the sampling mechanism.) In this framework the distinction between 'inference'
and 'prediction' becomes blurred. On the one hand, if the sequence has not yet
been determined, one would view p as a random quantity which one might want
to predict, i. e., it is the future proportion of heads. On the other hand, if the
sequence has been determined, but is as yet unobserved, then p might be thought
of as a parameter in the conventional sense. The upshot of this discussion is
that the usual sharp distinction between prediction and parametric inference is
largely illusory.

The situation with regard to parameters in A,, is more subtle. Given the
data, X,, for i = 1,..., n, I have defined the 'parameters' 6, and "Y, to be the
proportions of observations in the unsampled population, between and at the
order statistics of the data. Such parameters are defined in terms of the data,
and so are not the usual kinds of parameters. Nonetheless, they are unknown
quantities, and so in the de Finetti theory one can deal with them just as with
any other unknown or 'random' quantities. Because the sequence of observable
random quantities, X,, is viewed as exchangeable, it follows from the general
form of the theorem of de Finetti, that one is acting as though one had a distri-
bution r on the space of all possible distribution functions, F. In principle the
situation is as follows. Given the data, the prior distribution 7r is updated, as
usual, to become a posterior distribution 7r*, and posterior predictive probabil-
ities for future observables can be obtained by taking expectations with respect
to ir*. For example, if ties have probability 0, then

Pr{X,,.l E It i data} = E1,0 data] = EF(z(,)) - F(z(,_1 )) data],

where in this equation F is the empirical distribution function for the unsampled
population 3, and where the expectation is taken with respect to the posterior
distribution of F. Thus despite the fact that the 0, depend upon the data for their
definition, in principle their posterior expectation can be defined in terms of the
'parameter' F, just as in conventional parametric statistics. Here, practically
speaking, F is simply the empirical distribution for the entire finite population of
the X,, for large N, and plays the same role as does X for a Bernoulli sequence.
The only aspect that is more subtle is the fact that because we are dealing with
the huge space of all possible empirical distributions, it is difficult analytically
to specify the prior and posterior distributions ir and 7r*. respectively. However,
the parametric model of Hill ( 1987b) makes it clear just what these distributions
are.

The two cases we have considered here, namely the 0-: case. and the fully
nonparametric case, are i. fact the extreme cases with respect to complexity of
the underlying model. Much of statistical inference and prediction takes place in

1 Ths distinction is necesswar when N as fhute
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an intermediate case, namely of a conventional parametric model for real-valued
observations. However, such intermediate cases can be considered in much the
same way. Consider, for example, the case of an exponential model for data.
Let the parameter be taken to be, say, a, the expectation of the exponential
distribution. Again imagine only a finite population of values, Xi, for i =
1, ... , N, and consider t for this population. Then one's apriori distribution
for a is approximately one's prior distribution for I, and conditional upon .9,
the observations are approximately independently distributed according to an
exponential distribution with 'parameter' X.

The final point I wish to discuss concerns the role of Bayesian data analysis
with respect to An. In Hill (1987b) two theorems are proved. The first gives a
simple parametric model, called a nested splitting process, that gives rise to A,,
exactly. The second shows that from a subjectivistic point of view, A, holds in
sampling from complex mixtures of distributions, where here m represents the
number of groups or types formed from the n observations via data analysis.
For example, in sampling from the population of cetaceans (whales, porpoises,
dolphins) the sample animals may be classified according to species (or other
variables) into m groups. From my point of view, such classification should
be done by a form of data analysis. After performing such classification, the
statistical problem can be reduced to one concerning the random effects model
in the analysis of variance. See Box and Tiao (1973), Hill (1965, 1967, 1977,
1980b), and Lindley and Smith (1972) for Bayesian analysis of such models.

In Hill (1988) a theory of Bayesian data analysis is put forth in which, be-
cause of computational complexity, or because of thoughts that are triggered off
during the analysis of the data, a departure is made from the classical Bayesian
theory in which models and prior distributions are all specified before seeing
the data. I believe that this modification is essential in order to make the clas-
sical Bayesian approach more realistic in applications. Any scientist worth his
salt would play with his data, analysing it in a variety of ways, and giving free
rein to his imagination and creativity. As argued in Hill (1985), classical non-
Bayesian theory breaks down completely in connection with such data analysis,
since all probabilities would have to be conditional on the exact procedures em-
ployed, including their order, and even the thoughts that cross one's mind. This
also poses a challenge for the Bayesian approach. However, one can view the
data-analytic procedures as occurring prior to the point at which the Bayesian
analysis, proper, begins; and it should be observed that the Bayesian theory has
always had an arbitrary element in it as to the time point at which one proceeds
to make a formal Bayesian analysis. I have suggested that often the appropriate
point is following the process of data analysis. After one has reformulated old
models, or formulated entirely new models, by means of data analysis, one can
proceed with the classical form of Bayesian reasoning, including robustness and
sensitivity analysis, as in Berger (1984), Hill (1980b). See also Hacking (1967)
and Smith (1986).

In the context of A, and H,, this means that the 'parameters' 0, and -y, are
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actually the results of such Bayesian data analysis, as discussed in Hill (1987b).
This need not, however, change the basic interpretation of these quantities. As
shown in Hill (1988), a generalization of the restricted likelihood principle of
Hill (1987a) remains valid in the context of data analysis. Of course classical
non-Bayesian reasoning, for example conventional asymptotic theory, becomes
entirely irrelevant. However, in low dimensional problems one can still plot like-
lihood functions, and these may turn out to be sharp relative to 'apriori' dis-
tributions for the parameters introduced following the data analysis. The force
of such a Bayesian analysis of data must depend upon an agreement amongst
scientists that specific prior distributions and likelihood functions are pertinent
to the problem, and can be considered on their own merits, even after the data
has been observed. In high dimensional problems one must learn new techniques
for the analysis and display of likelihood functions, as in Hill (1975) with an ex-
ample concerning the tails of distributions. See Mosteller and Wallace (1964),
and Hill (1987b, 1988) for examples of Bayesian data analysis.

4 CONCLUDING REMARKS

The initial intuition as regards A,, seems to be due to 'Student,' or at least
Fisher (1939) implies that this is the case. Fisher then generalized the idea and
interpreted it in a fiducial spirit, which Dempster (1963) crystrallized and called
'direct probability.' Note that for all three of these authors the justification for
A,, seems to be purely intuitive. Thus none give anything vaguely represent-
ing a 'proof' for A,,, or suggest a way in which its coherency or rationale can
be discussed, or even indicate in what circumstances it might or might not be
appropriate. While I believe that sound intuition (or inspiration) is what all
scientific progress ultimately comes from, it is nonetheless the case that a criti-
cal attitude is necessary, and that one must ask when and why A,, is sensible,
and whether there are any qualifications and pitfalls associated with it. For
example, one must ask immediately, when, if ever, should one be using conven-
tional parametric models as opposed to A,,. It is in helping to understand such
questions that I believe the subjective Bayesian approach plays a fundamental
role.

Consider, for example, the case of a normal model with known standard
deviation of 1 and unknown mean, 0. The fiducial argument of Fisher suggests
that the pivotal quantity (X -8) should continue to have the N(0,1) distribution
even after X is replaced by its observed value x, which is a number. (The
confidence argument of Neyman does not assume this, but provides no way
of telling whether there is anything peculiar about the particular x for which
the confidence is quoted. As is well known, there are many examples, such as
the Fieller-Creasy example, in which such a procedure is patently absurd, in
that the whole real line may have confidence 95 percent. More generally, such
confidence procedures do not provide a way to allow one to deal with data for
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which the conventional confidence level is obviously inappropriate based upon
prior knowledge that is generdly accepted. Thus the confidence argument, as
applied in practice by sensible statisticians, is instead a conditional argument,
i. e., it is conditional upon not getting data that is wildly contrary to prior
knowledge. As shown in Hill (1985), the 'true' confidence coefficients, when
adjusted to be conditional upon not getting such data, are necessarily both
unknown and unknowable. )

The Bayesian argument goes far beyond this. It first tells one that if one has
a prior distribution for 0 which is sufficiently diffuse relative to the likelihood
function, then in fact Fisher's fiducial conclusion is justified. (This fact, which
Harold Jeffreys had been telling Fisher for years, seems finally to have been
accepted by Fisher, as the previously quoted footnote of Fisher (1959, p. 51)
seems to indicate.) Next, the Bayesian argument tells you that there are many
situations in which instead the prior distribution may be sharp relative to the
likelihood function, in which case the appropriate conclusions are quite different;
and still again, there are important cases in which the prior and the likelihood
are of comparable magnitude. Thus one sees clearly in what situations the
fiducial argument is relevant, and what the nature of its limitations are. See
Hill (1974, p.570) for a mathematical discussion of the behavior of a posterior
distribution for various kinds of extreme data.

The situation with regard to A,, is of the same general nature as that for
a normal mean, except it is much more complicated. Thus the primary basis
for A, or H, is (8), which really says that the observed values xi are totally
uninformative about J. Once again the initial intuition comes from a form of
Fisher's fiducial argument. Even if one finds his argument compelling, how-
ever, one would presumably want to put it into a broader context, including at
least sampling without replacement and the case of ties. Thus the generaliza-
tion from A, to H,,, and from sampling with replacement to sampling from a
finite population without replacement, is important, since the case of ties and
of sampling without replacement is both more fundamental and more realistic.
The Bayesian approach does not stop here, however, for the underlying assump-
tions, especially (8), are themselves only approximations. They are extremely
valuable, because without such approximations there is nothing that one can
do in a rational and logical way. But as with all things, they too are only
approximations, and the trick is to learn when they are appropriate.

Finally, because A,, is a de Finetti coherent procedure, one knows that there
are no operationally meaningful ways in which one can be made a loser by using
A,, or H,. Obviously, this property is a desirable one, but it is not sufficient
to justify use of these procedures. Thus in addition to the internal coherency
property, one wants also to know whether the procedure is 'reasonable,' that is
to say, whether it corresponds to prior knowledge that is generally considered
to be appropriate for the situation at hand, or for which a reasonable case can
be made. In my opinion, it ordinarily is, but with a few qualifications.

Let me conclude by observing that A,, is supported by all of the major
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approaches to statistical inference. It is Bayesian, fiducial, and even a confi-
dence/tolerance procedure. It is simple, coherent, and plausible. It can even be
argued, I believe, that when viewed in the context of Bayesian data analysis,
A,,, along with H,,, constitute the best solution we now have to the problem of
induction as formulated by Hume.
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