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Preface

This paper was originally intended as a report on some large sample

results for quasidensity and pattern probability estimation, results that

provide a foundation for our methods for ability distribution estimation and

item response function estimation. While attempting to determine the

generality of one of the results, I happened upon a promising new line of

research. The new methods and results (Section Three) admittedly haven't

been integrated into this report very well. The main result, relating

models with a continuum of abilities to finite models, seems at least as

important as the large sample results. (It asserts that every item response

model with a smooth ability distribution and smooth item response functions

is isomorphic to a latent class model obtained by replacing the ability

distribution with a discrete distribution.) The reader primarily interested

in the generality of latent class models may wish to skim Sections One and

Two for notation and then read Section Three. Two separate papers

eventually will be prepared for publication.



ABILITY DISTRIBUTIONS, PATTERN PROBABILITIES, AND QUASIDENSITIES

Introduction

This paper solves a problem closely related to ability distribution

estimation, which is arguably the central problem of item response theory.

The problem, quasidensity estimation, comes up when one needs to know the

probability of sampling an examinee with a specified item response pattern

from a very large pool of examinees. The situation in which item response

functions are specified but nothing is known about the distribution of

ability is considered in this paper.

If the ability distribution has a density, then the density can be used

to calculate the probability of sampling an examinee with a specified

pattern. A pattern's probability is simply the integral of the product of

the pattern's likelihood function times the ability density.

It is shown that even if the ability distribution is a step function or

some other distribution that doesn't have a density there is an essentially

unique, continuous function that can be used in place of a density to

compute pattern probabilities. The integral of the product of this function

(the quasidensity) and any pattern's likelihood function is exactly equal to

the pattern's probability.

When the ability distribution is unknown, estimates must be used.

Quasidensity estimation is easier than ability distribution estimation

because the quasidensity is identifiable, but the ability distribution is

not. Many different ability distributions will fit large samples equally

well (Levine, 1989). By contrast, the maximum likelihood quasidensity

estimate is unique (Section 11.2, below).

Quasidensity estimation is related to ability distribution estimation

in two ways. First, under general conditions the indefinite integral of the
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quasidensity equals or closely approximates the cumulative distribution of

ability. Second, the methods of quasidensity estimation have been

generalized to obtain a nonparametric theory for ability density estimation.

As others (Lord, 1970; Samejima, 1981) have observed, item response

function estimation is closely related to ability distribution estimation.

The results in this paper are central to our current work on nonparametric

item response function and option response function estimation.

A quasidensity estimation theory is developed in this paper. The

quasidensity is represented as a linear combination of orthogonal functions.

The set of linear combination coefficients is shown to be convex and

compact. It is shown that the maximum likelihood estimate of the

coefficients is strongly consistent. The asymptotic distribution of the

coefficients is derived.

Some general results on ability distributions are also proven. For

example, it is shown that for the most commonly used item response models,

every ability distribution is equivalent to a distribution with only

finitely many points of increase. An upper bound for the number of points

of increase is obtained.
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Section One

Quasidensities, Parameterizations, and Approximations

In many applications it is necessary to compute the probability of

sampling an examinee with a specified item response function. For example,

pattern probabilities are needed in situations in which it is important to

decide whether because of cheating, language problems or an ill-advised

test-taking strategy, an individual's test-taking behavior is so unlike

other examinees' that his/her test score is virtually uninterpretable. With

pattern probabilities a uniformly most powerful statistical test for faulty

answer sheets can be computed (Levine and Drasgow, 1988).

In this section a general strategy for computing pattern probabilities

is derived and discussed. We begin with some notation and a brief review of

basic item response theory.

Section I.1: Terminology, Notation and Assumptions

Let u - <uI, u2  u > denote a vector of ones and zeros

indicating right and wrong answers to n test items. Sampled vectors are

locally independent relative to a random variable e if the conditional
*

probability of sampling pattern u given any value of 0 can be factored

and written

n
Probu = t) = Probu - ui - t)

i=l

where u denotes the sampled vector, u. is its ith component and t is1

one of the possible values of 0

Usually in item response theory the item response functions P,(t) =

Prob(u i - 11 - t) are assumed to have some specific (generally logistic)

functional form with values strictly between zero and one. The results in

this paper (except for the last part of Section III) assume only that the
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item response functions are continuous functions with values that are

strictly between zero and one.

Usually item response functions are defined over an unbounded range and

applied over a finite range, typically the interval [-3,3] The results

in this paper only use item response function values over a finite range of

abilities. Thus, throughout this paper the Pi are continuous functions

with values strictly between zero and one that are defined on some finite

closed interval [c,d] . This results in no loss of generality because the

interval c je very large and because an unbounded ability continuum can be

transformed into an interval. In applications, we make the interval [c,d]

big enough so that the assumption that all abilities are in [c,d] is

plausible.

This paper is concerned with distributions on [c,d] , i.e.

distributions of random variables that are between c and d with

probability one. The condition that a distribution function G is a

distribution on [c,d] can be expressed without explicitly referring to

random variables as follows: for t < c, G(t) - 1-G(d).

To summarize, the results to follow assume

1. local independence relative to a unidimensional random variable

2. continuous item response functions defined on an interval (c,d]

and taking values strictly between zero and one, and

3. Prob(c : 9 s d) - 1.
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Section 1.2: The Canonical Space and its Quasidensities

The assumption that the P. are strictly between zero and one implies1

that for every pattern u , the pattern likelihood function 2(u ,.) given

by

n u. l-u.
* U. 1

1(u ,t) - Prob(u=u j0=t) = II Pi(t) [1 - Pi(t))

will also be a continuous, positive function defined on [c,d] By forming

linear combinations of likelihood functions we obtain a finite dimensional

real vector space which is called the test's canonical space (CS). Thus f

is in the CS if and only if for some real constants a

2 
n

f(.) Z a V(u ,.)

* V( n
where uI , u 2 , ... u ... is any enumeration of the 2 possible item

response patterns. Since the functions in the CS are continuous, an inner

product for the CS is defined by <f,g> = fd f(t)g(t) dt

Note that since the likelihood functions may be linearly dependent, it

may be possible to write a function as a linear combination of likelihood

functions in several ways. The uniqueness referred to in the following

result applies to functions, not vectors of coefficients (a )

I.1 There is a unique function g in the CS such that for all response

patterns u

Prob(u=u) = 1(u *,t)g(t) dt

Equivalentt, for any distribution G on [c,d there is a unique g

in the CS such that

d 1(u t) dG(t) = d 2(ut)g(t) dt

Proof: Tbl formula
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h - Z a I E[h(O)] - Z a Prob(u--u)V 'IL V V V

defines a linear mapping on the CS since expectation is linear. Since every

linear functional defined on an inner product space that is isomorphic to a

Euclidean space can be written as an inner product, there is some g in the

CS such that the mn,-ping can be written

Z a 2 (') - < Z a I (.),g>
V V V V V V

*

In particular, if all the a's are zero except one, then for every u

VV
Prob(u-U) <I(u V,.),g> .

If g also satisfies these conditions then for all v

0- <2 ,g> - <2 ,g>V V

- <2 ,g-g>

Thus g-g - 0 because no nonzero element of a vector space can be

orthogonal to all of the vector space's generators. //

The function g is called the quasidensicy of G because it functions

like a density in the calculation of pattern probabilities. In fact, it can

be used in place of a density to calculate the expected value of any

statistic that is a function of item responses (Levine, 1989, Section 2).

Although the quasidensity integrates to one, it is generally not non-

negative. A discussion of their properties can be found in (Levine, 1989).

When an orthonormal basis for the CS is available the quasidensity

has a simple formula which is often used.
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1.2: If 9 has distribution G where G is a distribution on [c,d] and

hoPh 1 ,  ... h

is an orthonormal basis for the canonical space, then the quasidensity

for G is

J

g(-) - Z E[h.(O)]h.(.)

J-0 3

Proof: Since {hj. is an orthonormal basis, ea ,, pattern likelihood
.3 j-0

function satisfies 2(u ,t) = Z. < ,h.>h (t) . Consequently
VO .3 L/J.3

P(u-u*) . fd Z.<V,h.>h.(t) dG(t)

- E.j <2V,h> E[h.(0)]

= Z. d I (t)h.(t)dt E[h.(8)]

- yd 2(u ,t) Z. E(h (0)%h (t)dt.

From uniqueness proven in 1.1 it follows that g(.) Z. Erh.(8)lh.(.) //

The value of the quasidensity in studying pattern probabilities derives

from the following obvious but very useful fact:

1.3: if (h.).0 is a basis for the CS and the guasidensit"
i 0

distribution of 0 satisfies

j
g(.) - Z h

0

then

Prob(u = u) = Z i.<hl2 >

Thus, each pattern probability can also be represented as an inner product

of a known vector depending only on the pattern and a vector tl&at must be

estimated.
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Section 1.3: Approximations and Bases

For applications, the size of J is important. For the Rasch model

(Pi(t) - [l+e (t'bi ] ) J cannot be larger than the number of items, n

(levine, 1989, Section 2). On the other hand for the three parameter
"a-.(t'bi) ]i

logistic model (Pi(t) - ci + (l-ci)[l+e 1 1 ,l J may be as large

nas 2 . Fortunately by careful choice of the functions h. , approximationsJ

can be obtained that have very few terms but are still accurate in one sense

or another. Two examples follow.

For a first example suppose it is desirable to keep the total squared

error

Z [Prob(u - uI) - approximated Prob(u - u)]
V

small. A basis can be obtained by analyzing the function of two variables

n
H(s,t) = Pi(s)Pi(t) + [1-Pi(s)][l-Pi(t)])

i=l

defined for css, t5d . By solving the functional equation

fd H(s,t)h(s)ds = Ah(t)

one obtains a maximal set of orthonormal functions h. in the CS and
3

positive constants A 0A 1 ... > 0 such that

J

H(s,t) = Z A.h.(s)hW(t)
j=O JJ

These functions can be shown to form an orthonormal basis for the CS

(Levine 1989). From this fact and the identity

2 
n

H(s,t) = Z I(u*,s)2(u*,t)

v=l

it follows that the total squared error with a K<J term ar imation

satisfies
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E [Prob(u - u Z .<2 ,h.>]2 - E A<g,h>
V VPo~ ii 3

j .< K3 j K I d g

<-AK 4 g2 (t)dt
when r - >

This relation is important because for all tests we have analyzed, the

A very rapidly decrease to zero. Typically, K-15 provides very accurate

least squares pattern probability approximation.

To introduce a second and final example concerning the choice of a CS

basis, suppose it is important to control the maximum absolute error. In

addition suppose an approximation of the distribution function G is

available. Then it is often possible to select an orthonormal basis h

such that E[h.(0)] will be small for large j . Of course, small

E[h.(0)] guarantees that the finite sum Z IE[h.(0))I is also small.Sj K J

This is important because for wt - <g,h.> - E(h.(8)] the K term

approximation satisfies

IProb(u - u ) E r <2 ,h.>I - Z Ir.<2 V,h.>1
j<K _j!K

j 1K 1 j-K L J

: Z I i 11 2 Max I / < h> 2  1/2

j:K j j 2K -
j  j 2K

5 K Z I7r.I)1/2 Max I7r 1 /2 l Kd 2 (t)dt)
1 /2

j >K i i-aK C I/

Maxli .I/ 2 {Z 17I) 1/ 2 (d-c)1/ 2 Max 2 (t)

j K 3 jeK c5t5d V

This paper is concerned with using maximum likelihood estimation of the

Ir from sampled patterns to obtain approximations of pattern probabilities.

It will be shown that the mnaximum likelihood estimate for the vector 7r is

strongly consistent and asymptotically efficient. In addition some results

about the set of vectors w corresponding to distributions are proven.
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Section Two

Uniqueness and Consistency of the Maximum Likelihood Estimate

In the remainder of this paper F is used to denote the unknown

distribution of the ability random variable 0 , (h J 0  is a fixed

orthonormal basis for the CS, and x is the vector of expectations with jth

coordinate f J- E ~h (0)] Thus the pattern probability for u can be

written

P (u ) - Z <A(u*,.),h.> r.

or with the abbreviation j(u) - <2(u ,.),h.> , P (u ) - (u *). . If G

is the distribution of 0 or any other distribution on [c,d] and gW,(.) -

Ew'h (.) is its quasidensity then the pattern probabilities obtained by

using G in place of F are given by

P,'(U*)- fd (u*,t) dG(t)

- (u ).7,

This section begins the task of estimating F's quasidensity, or

equivalently the vector i , from a sample of patterns u

Section II.: Distributions Viewed as Points in a Convex, Compact Subset

of Euclidean Space

Procedures for recovering the unknown 7r. from samples of observed3

patterns have been developed. Each requires the maximization of some

continuous function defined over a set A of vectors corresponding to

quasidensities

A - Wi' in E + i : Z h(-) is the quasidensity of at least one

distribution on [c,d] )

The set A has three properties that greatly simplify maximization:

i. Convexity: the line segment connecting any two points in
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A is also in A

ii. Boundedness: There is a constant K such that for all r'
in A i'-r I , 1/2- .

iii. Closure: Every continuous, bounded function defined on A

has a maximizer in A .

The proof requires a simple result that is repeatedly used elsewhere.

II.: The vectors (W(u 2) span a J+1 dimensional vector space.

Equivalently, for any choice of positive constants w the matrix

2 N T
Z P(u)(uTw
=l

is positive definite.

Proof: Let 1,2 ... 2 be likelihood functions forming a basis for
v 2 VJ+1

the CS. Since 2 (.) - Z. fi(u ) h.(.) linear independence of the 2V. JJ V .' V.

implies linear independence of the fi(u ) Thus the set (/(u *) of
V-V

J+l vectors contains J+l linearly independent vectors. //

11.2: The set A of coordinates of distributions on [c,d] is convex,

closed and bounded.

Proof: (i) Convexity: For n' and ff
2 in A and 0 c e 1 let G1 and

G2 be distributions on (c,d] with quasidensities g 1 and gW2

respectively. Since for any positive c , G3 = cG1 + (l-c)G 2  is also a

distribution on [c,d] and since for any h in the CS

fd h(t) d~cG pt)+(1-c)G (t)) - c fdh(t)dG (t) + (1_6) fd h(t)dG (t) , it

follows from I.1 that g6 '+(l-)r 2  is the quasidensity of G3 ' Thus a

convex combination of points in A is in A
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(ii) Boundedness: Let ff' be any vector in A other than 7r . Let, ff'

be the intersection of the unit sphere about ff and the ray from n

passing through ff' . Thus 1r' " i = I and w-' - [w' - /k + w , (or

equivalently, i' - w + k(w' w) ) for k"Ii-w'I>. Since n'-fl(u)
* * *

P (u) and ff.f(u ) = P (u) are probabilities,

* (*)
0 : P ,(u) [w + k(' f)].fP(u )5 1

and

-1i_< -P 7r(u* k(-' - T w (u* _ 1-P7(u*

After squaring and summing over all 2n patterns we obtain

2(- T Z*fP(u*)(u*)T (-, ) 2 n0:5k (7T' -i7t) * r- ):
u

But in II.1, Z, p(u*)fp(u *)T was shown to be positive definite. Since

I it' - w[ - 1 uthe expression multiplying k2 must be at least as large as

the smallest eigenvalue of this matrix. Thus for

X 2n/(smallest eigenvalue], 1ir' - iti x , and A is bounded.

(iii) Closure: Let ( n) be a Cauchy sequence in A . Since A is

bounded, the sequence converges to some n' in E J +  To show it' is in

A , let (G n) be any sequence of distributions on [c,d] such that g n

is the quasidensity of G . By Helly's theorem, (G ) contains an n

subsequence Cm(n) ) such that Gm(n) converges to some distribution G

on [c,d] at every point of continuity of G . Since each h. isJ

continuous, f h.(t) dG (t) fd h.(t) dG(t) . Thus, by 1.2 it.(n)

c m(n) c j

fh.(t) dG(t) .Since (wm(n)) is a subsequence of (fn) 7r r(n)

fd h.(t) dG(t) !i , and g , is the quasidensity of G . //
cj t 3 i

Note that since the CS is also a metric space with distance (g,h)=
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<g-h,g-h>I/ 2 and since r' - gn, is an isometry, it follows that the

subset of the CS corresponding to quasidensities of distributions on [c,d]

is also convex and compact.

Section 11.2: Uniqueness of the Maximum Likelihood Estimate

Consider now drawing a random sample of N patterns

u1 , u 2, ... ua , ... uN

and attempting to recover the quasidensity g by maximizing the sample

likelihood function H P ,(ua) defined for vectors n' in A or its
a=1

logarithm
N

La(r') = S log r'.f(ua)
a=l

It will be shown that if the sample is large enough that LN  almost surely

has a unique maximum N

11.3: With probability one LN(.) eventually has a unique maximizer in

A .

Proof: For each pattern u and vector w' in A ,P(u) i'.fi(u )

is positive. Therefore, LN(.) is defined and continuous on A . Since A

is compact, L,(.) has at least one maximizer in A . Suppose iv' iv" both

maximize A Since the line segment connecting two points of A is

entirely in A , a function of one variable is defined by

p(e) = LN[7r' + c(7r'-i"))

for O:slI From the formula for LN  and the fact the n' and w" are

maximizers, p has 2 continuous dcrivatives, and p(O) p(l) . Since the

second derivative of p is the negative of a sum of squares

N * 2
p"(e) = -Z w ()[('-") • (u )

al aa
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for Wa ( ) = (P '(ua) + [P .(U*)-P (U) 2 >0 and max(p(c)) = p(O) =
a ? a 7~rtI\a irI aI f

p(l) , p must be constant. Thus, the second derivative of p evaluated

at, say, c=.5 must be zero. However,

N NT * * T _,

0 = -Z w (.5) (7'r7r) (U MUa) (7r7r

a-l a a a

implies that the N vectors 0(ua) span a subspace of dimension less than
a

J+l . Since each of the 2n response patterns has positive probability of

being sampled and since by II.1 the full set spans a space of dimension

J+l , with probability one eventually a linearly independent set of J+l

patterns will be sampled, and the maximizer will henceforth be unique. //

Section 11.3: Strong Consistency of the Maximum Likelihood Estimate

In order to study the asymptotic behavior of ^N ' the maximum

likelihood estimate, it is convenient to have an open set containing A on

which any LN  can be extended to o differentiable function. To this end we

choose a positive number d such that if a vector x is within distance d

of at least one point of A , then x./3(u ) a 0 for all patterns u

11.4: Let d = inf UNION (jx-7t'l : 7r' is in A and x.f(u )=O) and
u

A+ - (x for some w' in A , Ix-n'l<d)

Then A+ is an- open set containing A on which the formula

N

Z log x./(u )
a=l

extends LN to a differentiable function defined on A

Proof: It remains only to show d is positive. Since A is compact, for

each u the set (jx-n'j : x.f(u ) = 0 and ft' is in A) has a positive

minimum. Thus d is the minimum of 2n positive numbers. //
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If there is some w' in A such that P (.) assigns exactly the same

probabilities to patterns as P (.) then it will not be possible to prove

A
7N converges to . Thus the following intrinsically important result is

needed.

11.5: If 's#r" and both are in A , then for at least one pattern u

P (U) # P,,(U*

Proof: If P,(.) P,(.) , then for all u

0 = P(u ).(n'-n")

Since from II.1 the 3(u*) span a J+l dimensional space, the J+1 vector

ir' must equal ir" //

Finally, strong consistency for the maximum likelihood estimate can be

proven by an argument Wald used to prove the consistency in a different

context (Wald, 1949).

11.6: (Strong consistency of the mle) With probability 1 , N converges to

7rf.

Proof: Using the inequality log x < x-l for x#l and 11.5 it follows that

for f'#n , E logP ,(u) < E log P (u) . For if the set

D = ( u : P, (u)P7(u)) is not empty then

E [log P ,(u)] - Etlog P7r(u)]

= E log[P i(u) / e (u)]

i (u) log [P (u*)/P (u )I
u in D

D Z P ,(u ) - Z P (u)
DD
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- Z P ,(u*) [1 - Z P I(u )]
D u not in D

=0
.

To obtain a finite open covering of some subsets of A , note that x.1(u )

is positive for x in A+ For w'o let s(u *W',p) = sup (W".f(u ):I1

is in A+ and Iir'-r"I < p) Since for ir" in A , 7r" in A+ and

< p

".0p(u ) - [r' + (7t"-i I)].(u *

P (u*) + I-'tIlh IIP(u*)I

P(*) + pIP(U*)I

log s(u ,i',p) :5 log P ,(u) + pIP(u) /P ,(u*). Consequently

E log s(u,w',p) _< E log P f,(U) + pE[IP(u)I /P ,(u)] I

- E log P (u)

[ E log P (u) - E log P,(u) I

+ pE[I1(u)I /P (u)]

and for each r'lir in A , a positive p(r') less than d can be selected

so that

E log s(u,w',p(r') ) < E log P (u)

Let B be a closed subset of A not containing wr To show that with

probability one

N
sup 1 P II(ua)/P (u)

7" in B a=l

tends to zero as N tends to infinity, consider the open covering of A

formed by the sets

B(n') { in A+ : """r'I < p(7r')
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Since B is also compact 7ir i2 .... i' can be selected such that B(ni)

B(i), ...B(7mr) covers B . By the strong law of large numbers,

2 N
i* *

z (log S(U ,ir,p(7ir)) log P (U)
a-I

almost surely tends to E log s(u,ni,p(i!)) E log P(u) < 0

Consequently with probability one,

N
E log S(U ,ir,p(i) /P (u a) -0 o

a-l a 1 1 it a

N
and lim sup I T "j'(u a)/P (u a - 0 . Since

N w" in B a-a
1

N
0 < sup fl P,, (ua )

n" in B a-l

m N
-< sup H i".f3(u )

i-I r" in B. a-l
1

with probability one

N N

lim sup II P ,,(Ua)/ H P (U) .
N w" in B a-i a i1

Finally, to show 7N converges almost surely to w , it is shown that for
N

any positive c , with probability one, r N-iI is eventually less than

Let B be the closed set excluding iw

B = {i' in A l 7 ' -> c

With probability one

N N* *
sup II P (U)/ H P (u)

nt in B a=i i a a=l-

A
is less than one for sufficiently large N Thus with probability one ?rN

is eventually in the complement of B , i.e., 7 N-i[ is eventually less

than e //



Section III

A Dichotomy for Ability Distributions

A common starting point for studying the asymptotic distribution of

maximum likelihood estimates is the family of likelihood equations

0 - a .LN() j-Ol .... J3

It turns out that these equations are false for our current formulation of

the estimation problem.

The equations are valid if ^N is the maximum of LN over an open

J+l dimensional subset of A . But A has no J+l dimensional subsets

because, as shown below, it is a J dimensional subset of a J+l

dimensional space.

In this section A is reparameterized as a J dimensional set, i.e.,

the points of A are expressed as functions of J numbers. The

reparameterization suggests a dichotomy of the distributions on [c,d] .We

distinguish "regular" distributions that correspond to points in the

interior of the new set of parameters for A and "irregular" distributions

that correspond to boundary points. The distinction is important because in

this paper the asymptotic distribution of the mle is worked out in detail

only for regular distributions.

In the process of attempting to show that the irregular distributions

were pathological and safe to ignore a surprising result was obtained. It

was found that for the most popular item response models, every distribution

is equivalent to some discrete probability distribution on at most J+l

points.
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Section III.: Reparameterization

Since I-Z * P,(u*) f n'.Z * (u) every vector n' in A
u u

satisfies the equation ff'.f3 = 1 for /3 E * P(u*) Thus A is
U

contained in a J dimensional subset of EJ + l and no point of A has an

open neighborhood contained in A .

To reparameterize A let ({/II,z ,z , ... z } be an orthonormal

basis for EJ + l and Z be the (J+l)xJ matrix

Z [zI1z2 J

TThus x - Z x maps the set of vectors orthogonal to P one-to-one onto

EJ . Since x - Z Tx is also linear, it follows that for any fixed w° in

A

- zT (iv'-n ° )

maps A one-to-one, onto some convex, compact subset of E and that each

7r' in A can be expressed as

7r= O + Zs

for exactly one J vector s in a convex, compact subset of E

Let B -(Z T(7'-7r0 ) : ?'cA ) be the set of possible J vectors

s . It will be shown that B is J dimensional so that distributions on

[c,d] can be classified into two non-empt ..ets: regular distributions

with s in the interior of B and irregular distributions corresponding to

vectors on the boundary of B . Before resuming the study of the

distribution of the maximum likelihood estim.e some facts about regular and

irregular distributions will be proven.
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Section 111.2: Regular and Irregular Distributions

A distribution on [c,d] , its quasidensity g , , and its coordinate

vector 7r' will be called regular if for some p>O the J-dimensional open

ball centered at fr'

{r" in EJ +  : ir". = I and Iw"- ir'I<p)

is a subset of A . If a distribution is not regular, then it (and its

quasidensity and coordinate vector) will be called irregular. Equivalently,

a distribution with quasidensity g , is regular if and only if Z T('-7ra)

is an interior point of B

The uniform distribution and most distributions expected in

applications are regular. However, if the pattern likelihood function

1(u ,t) is unimodal with maximum at to in [c,d] , then the unit step

function at to is an irregular distribution on [c,d] . The first result

shows that some distributions are regular, i.e., that B is J

dimensional.

III. If G is a distribution on [c,d] with a positive guasidensity and

if for c<t<d the quasidensity of G evaluated at t eguals the

derivative of G at t then G is regular. In particular, the

uniform distribution is regular.

d
Proof: If G(t) - Z w h.(t) = g,(t) > 0 for c<t<d , and g is

0 
7r 

7

j

also positive at c and d, then min g7,(t) > 0 . If 7r7"-ir'l,= max 17r-

t J

7r'I is sufficiently small, then Ig,,,(t)l 1/2 min g
t

Consequently for sufficiently small lir,-irl'o

g 7r,.'M = gff,(t) + g -7r,(M

Smin g ,(t) - maxlg,.7,(t)
t t
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>0
I I I J+1

Since 1 12 and 1 1. determine the same topology on E for some

P0>O ' r7"-'12 < PO implies g,,(t)>o for t in [c,d]

To show Iir"-ir'<p 0 and r".j3-l imply 7r" is in A it suffices to show

that these assumptions imply that the function G

10 ,) if c < x

) fx dt ifc x d-7_

iE d < x

is a distribution on [c,d] and g,, is its quasidensity. The only

nontrivial step in verifying that G is a distribution on [c,d] is

showing G(d)=l . Since for all t , Z * (u*,t) - 1 , G(d) f g,,(t)dt =

fd 
U.

fc E *(u*,t)g 7,(t)dt - Z <Z* I(u*,.),h.>r 3 = / '.i' - 1 . Consequently,
U ~ j U J

is a distribution on [c,d] , g,, is the restriction of its probability

density to [c,d] , g ,, is its quasidensity (by the uniqueness of

quasidensities in I.1), and r" is in A . In particular, since
* 1I

1 - Z * 1(u ,t) is in the CS, the uniform density g(t) - [d-c] is in
U

the CS, and the uniform distribution is regular. //

The next result gives examples of regular distributions that do not

have continuous densities. It shows how to approximate any distribution on

(c,d] with a regular distribution.

111.2 If t0<t1 ... <tj are in [c,d] and the vectors wr = lhj(ti)] are

linearly independent then for any vector a in EJ+ l  if

a. > 0 j =0, .. JJ

JJ

then the discrete distribution function

G(t) 1z

(i: t.5t)i
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is regular. More generally if Go  G1  .. .... Gj are

i
distributions on [c,d] with quasidensities g i and the n are

7r

linearly independent, then a>O and E a.=l imply that Z.c.G. is a

regular distribution on [c,d]

Proof: Clearly each for vector a>0 such that Z a.=l the convex

combination Z.a. i Gi(.) of distributions G. on (c,d) is a distribution

on [c,d] . Let a0>0 be the vector of coefficients of any such

combination. A value of p will be computed to show Z. a? 7t1  is regular.1 1

For any a

zi 7? i_ Z.Q a i 
t

1 2  Zi (a? - ai) Ir'7ir (c? - a.)

= (a° - )T Q~a ° - a)

i
for positive definite or poritive semidefinite Q . Since the w are

linearly independent, Q is definite. Consequently

za? 7ri.z i lao - -1/2 '1  where c>0 is the smallest eigenvalue
i 3+1

of Q . Since the J+l linearly independent i form a basis for EJ + l

and for any n' in EJ + l , there is a unique a' in EJ + l  such that n'

i
E a!r .if

I.a? iO - 7'I<1 c1/2 min(a?)
11 2

then

lao - a'l <I min(a?)
2 1

maxI a? -a,! I < i min(a9)
1a~a a. 2

and

0 < a for i 0. 1, ... J
1

Furthermore, if it'.f3 1 , then
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1 - ( i).

ii1

-Z a!
i.

1 1/Thus for p -y mi ~

ao W i r'I <p and r'. - 1

imply g, is the quasidensity of some distribution on [c,d] , i.e. Ir' is

in A and E a0 G, is regular. //

The following result helps to visualize irregular distributions.

111.3 1f r' is regilar and w" is in A then for sufficiently small

positive c , x" + (l+e)('-r") is also in A

Thus to obtain an irregular point one starts with any two points of A , *0

and wldw °  Since A is convex, closed and bounded one can move through

A along the ray from ,r through x' to a point i0 + k(w'- 0 ) in A

such that wo + k'(r'-o) is not in A for any k'>k . Thus

xO + k(x'-ir) can not be regular.

Proof: P.[w" + (l+1)( '-1")] - I + (1+c)(1-1) - 1 and, for sufficiently

small posit.ve e Ir' - (i"+(l+c)(.'-r")fl - cl'-,r"I < p . //

Irregular distributions can be obtained from the many upimodal

functions (e.g. most likel.hood functions) in the CS too.

111.4 If f is a function in the CS with a unique maximizer to I i.e., if

f(t) ; f(t0 ) imnlieA t - to for all t in fc,d] , then the unit

step function at t0  is irregular.

Proof: Since f is a linear combination of likelihood functions for any

distribution function on [c,d] , .f f(t) dG(t) - <f,g> where g is thedistibuton fnctin th
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quasidensity of G . In particular for g =(t0) = the quasidensity of the

unit step at to , <f,g (t0)> - f(t0 Note that if G is the

distribution of a random variable w then <f,g> - E[f(w)] . Thus for every

quasidensity r' in A , <f,g ,> ma* f(t) = f(t0) In particular for

t

g r(tl the quasidensity of the unit step at tldt0 ,

<f,g 7(t1 ) >  f(tl1) < f~t 0 ) =<f,g (t 0) >•

Consequently for any >0 , for ff() 7r(tl + (l+E)[(t 0 )-7r(t)]

<f,g (c)> - <f,g (t0)> + [f-<g >-f,g (t )> ]

-f(t0) + E[f(t 0 )-f(tl)) > f(t 0 )

Thus go(c) cannot be the quasidensity of any distribution on [c,d] and

from 111.3, the unit step at t0  is not regular. //

In fact a stronger result can be proven. It can be shown that the unit

step at a maximizer corresponds to a point r' in A situated like a

vertex of a polyhedron or a boundary point of an ellipsoid: If c>O and

i" is also in A , then 7r' + (l+e)(r"-i') is not in A . In other words,

I is not an interior point of the intersection of A and any line through

t

111.5 If f is a function in the CS with unique maximizer to , then

ir(t0 ) is not an interior point of the intersection of A and any

line through ir'

Proof: Let G be any distribution on [c,d] other than the unit step at

to  Let [c',d'] be any closed subinterval of [c,d] not containing t
*0 0

such that J,: dG(t) > 0 . Then for g, equal to the quasidensity of G

<fg = d: f(t) dG(t) + ft not in [c',d'] f(t) dG(t)
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<5 max f(t) .fd : dG(t) + f(t) [ _ fd' dG(t)]
c':5t:d' 01 c

< f(t ) fd : dG(t) + f(t) [ 1 - d dG~t)]

=f(t 0) - <f,g rt0

From the argument in 111.4 applied to ir(c) =ir' + (l+c)[ar(t 0)i it

follows that for all i' o r(t 0) in A for c>O , wr(e) is not in A ./

N~ot every irregular distribution is mapped to one of these points that

"stick out" from A like a vertex or a point of positive Gaussian curvature

on a boundary. By taking linear combinations of unimodal functions in the

CS one can construct bimodal, and multimodal functions with modes of equal

height. The reasoning used in 111.4 and 111.5 can then be used to show

that A has edges and faces too.

111.6 Let f be a function in the CS ;iaving modes of egual height at

t< t I < ... t so that f(t 0)=f(t I) .. f(t M) and for t in

[c,d]\(t0, tit ... t M) , f(t) < f(t 0) .Jet Got0 Gi ... G Mdenote

the unit step functions at top t1, ... . Then for any positive

numbers a.i such that Z a.i 1 , the distribution F, a.iG.i is

irreguqla,.

Proof: Let gw(5 ) be the quasidensity of the unit step function at s in
m

[c,d]\(t0,t1,.. t) . Then <f ,g(s) > = f(s) < f(t 0) E o f(t, . Thus
0

for g irtdequal to the quasidensity of tho unit step at t. and

Wt(C) W i(S) + (l+e)(z a i r(t d - It(s)]

C>O implies <f,g r(c) > =f(t 0) + Cff(t 0 )-f(s)J > f(t 0) Thus Z a G i is

irregular. //

The following corollary reconciles the apparent contradiction between



page 26

111.2 and 111.6

111.7 If for f in the CS there are more than J numbers t satisfying

f(t) f(s) for all s in [c,d] then the quasidensities of the unit

step distributions at these numbers are linearly dependent.

Two ability distributions are called equivalent if the probability

distribution of any function of the item scores does not depend on which of

the two ability distributions is used to compute the distribution. Thus, if

F and C are equivalent, then data cannot be used to determine which of

the two distributions is correct. A necessary and sufficient condition for

two distributions on [c,d] to be equivalent is that they have the same

quasidensity (Levine, 1989). We will show that for logistic models all

distributions are equivalent to discrete distributions. The result is valid

for models with item response functions P. such that for each t there is

a power series for PI that converges absolutely in some neighborhood of

t .

111.8 If the constant functions are the only functions in the CS that are

constant on some nonempty open subset of [c,dJ , then every

distribution on [c,d] is equivalent to a distribution with at most

J+l points of increase.

Proof: It is sufficient to prove that there are finitely many points of

increase because A has been shown to be J dimensional. It is sufficient

to limit attention to irregular distributions because if 7r' is not on the

boundary aA of A then compactness of A implies that for any i in

8A we can choose t>l such that ?r2 -=X+t(n
1 -w') is also on aA . The

equation

t-7l1I + 12

t t
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shows that 7r' corresponds to a probability mixture of distributions mapped

to the boundary of A

Let G be a distribution on [c,d] with quasidensity g , for w' on

8A . Let H=(x in EJ + l : n.x=c) be a hyperplane in EJ+ l containing

ff' and no points of the interior of A . Without loss of generality it can

be assumed that x in A implies n-x-c because n-x-c implies

(-n).x--c . It follows that among distributions on [c,d] C is a

maximizer of fd Zn.h.(t) dG(t) = n.r' . Either gn( .) = Z n.h.(.) is
C J JJ ii

constant on some subinterval of [c,d] (and therefore constant) or there

are only finitely many numbers t such that g n(t)g n(s) for all s in

[c,d] . g cannot be constant for otherwise n.r" = fc gn(t).g,,(t) dt - c

would be independent of w" and A would have no interior points. Thus

for finitely many numbers c5tl< ... tK<d gn(tk) max g (t) . Thus a
n k [c,d]

distribution C (such as G ) maximizes fd gn(t) dG(t) if and only if it

is equivalent to

K
Z kFk( )

k=l

where Fk is the unit step at tk for some positive numbers ok such that

whr F Is



Section Four

Asymptotic Normality for Regular Distributions

In this section it will be shown that if the ability distribution is

regular then 7N ' the maximum likelihood estimate of n , is asymptotically

normal. A formula is derived for the asymptotic dispersion matrix.

Throughout this section the distribution for 0 is assumed to be

regular. Throughout this section let p be a fixed posit.'e number chosen

so that the intersection of the open ball with radius p centered at W

(' in EJ + l  I '-7ir < p)

and the hyperplane

(w' in EJ+ l  r'.6 = 1)

is a subset of A . As in Section III.1, let z ,z ... z be any
I 2 J

orthonormal basis for the annihilator of fl and let Z = fz1 , z .... z ]

be the (J+l)xJ matrix formed from the z's so that ff' zzTr ' is the

orthogonal projection onto the annihilator of /3

To describe the asymptotic behavior of 7N we will need the

information matrix, i.e. the matrix I of expected second derivatives with

typical entry I..

I 3 -E an!an: log P7(u)I
1 3ri

.~P~* a2 .
E P !a(U log nt'.f(u* i rir 7 '=7r

/3i(u )/3j(u )

=Z, P(u*) * 2
uu )J

u 7r ((rPu ) 2 *

Thus I can be written in the form 7, w(u*) j(u*)fM(u) T  and II.1 can be
u

used to show it is non-singular. Since the columns of Z are independent,

II. also implies that for any positive weights w = w(u) the matrix
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T n*TT* T
Z w Z T(uV) (T(u)Z is non-singular. In particular, Z IZ is non-
V-1 V

singular.

Since ?N almost surely converges to r , with probability one lrN

will eventually be within p of r . For SN ZTArN r) the mle can

be written

A 7r + ZN

Since IXN - rl - I£NI , almost surely I NI < p for sufficiently large

N . Defining MN on open ( s in E : Isi < p ) by MN(S) - LN[ + Zs]

it follows that AN maximizes MN and consequently must satisfy the

equations

a
0 - M(S) j - 1,2, ... J

J

In fact, SN almost surely eventually is the only solution of the equations

with length less than p because with probability one, for sufficiently

large N J+1 patterns with linearly independent O's will be sampled,

and this implies that the Hessian matrix evaluated at Isi < p
N

2 T N * T* -2 *
a M N (s) - -Z Z 0 (u )r(u) eu + Zs(Ua) ]Z

a-i

is definite

The asymptotic distribution of 7N is obtained with Taylor's formula

applied to the gradient of MN  *

IV.2 (Asymptotic distribution of the maximum likelihood estimate). Let

1 J
z ... z be any orthonormal basis for Nul(P) and Z =

[z1 ,  zJ ]  If the ability distribution is regular then AN

converges in distribution to

i+ N" 1/2Zn
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where n is multinormal with zero mean and covariance matrix

T -A

-N zT(^N - r)  implies that Z'N = N r the theorem canProof: Since S

be proven by showing that NI/2N converges in distribution to multinormal

n . This will be done by showing that for any non-zero J-vector t , the

1/2 Arandom variable N tSN is asymptotically normal with mean zero and

variance t T(ZTIz)It .

Each component of the gradient of MN

aN(u l * kIas- M~ ) "- [P +z(ua) W 1 aN)'zk k = 1, ... J
as k MN(S) Z- rZ a 1  ~(ae k 1 J

is defined and has continuous partial derivatives of order two for Isl < p.

Thus when N' is less than p there will be some N,k 0<N,k<

such that for each k<J

0 N 0 L a %2 (0 A s a M)A ]
as 8s as 0N + Z[Zi 8s 8s MN N ^N)NjVsNi
k i i k' ij ij k

a 2  1 _ 
3

AA )

sMN(0) + [ asas MN(0) + 2E asis ask MN(CN,k N) Nj ] Niik0siisk k

In matrix notation

0 - aMN(0) + [a2MN(0) + 2 N]S N

and

ia 2MN() 11 C] A[-(0) - N]s N  amN (0)
NN N 2 N N N~ NM 0

The right hand side of the last equation, being a mean of independent,

identically distributed random vectors with zero expectation and covariance

matrix Z IZ , is asymptotically normal with expectation 0 and covariance

matrix Z TIZ/N . Thus N'M/2amN (0) is asymptotically normal with mean

zero and covariance matrix ZTIZ Since the summands in
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1 2 i N *-2T * T
aMN(0) (P ZP(u*)P(u*)TZ)

N- N a a a a

are independent and identically distributed, a (0) converges almost

surely to the non-singular matrix of expected values

2n

-2 T T 2 n * -2 T * T
E[P 7 (u) Z T(u)M(u) Z] - P(uI)[P (uV)]' Z T(u )(u ) ZV-i

. TIz

The kth row and ith column of CN is

Sas.as as k  MN(6N,k'N) SN,jj ij k
N*)] ( *).z k  (Ua).Z i  (Ua).ZAN

a-l 7rcN,k sNaaaa
A

Since sN converges almost surely to zero and the probabilities are bounded

away from zero, the matrix N 1CN converges almost surely to a matrix of

zeros. Consequently the matrix DN

DN I a MN(O) -N 2 CN

converges almost surely to non-singular Z TIZ . Thus with robability one

DN  is eventually non-singular and eventually both

A -1 -1
N - DNI[N IaMN(O)]

and

1/2?TA - 1 -N1/28 O\
N ItT N = tDN I[NIamN(0)]

t D if D is non-singular
Let YT - j N ' N

L N 0 T , otherwise

and XN -1/2 aMN(0) so that YT X almost surely eventually equals
N 1  N N N

N l2.s N  If it can be shown that YNAN converges in distribution to

t T(Z TIZ) X where X is multivariate normal with covariance matrix Z TIZ

then it follows that YNXN and NI/ 2tT N  are asymptotically normal with

variance tT (Z TIZ) (Z TIZ)[tT (Z TIZ)- ] T tT(ZTIZ) t , and the proof will

be complete. Yt T(ZTIz)-I wpl > 0T  so Y -tT(ZTIz) "I P--> 0T . SinceN N
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TT T -1 d
XN converges in distribution, [YN tT(Z IZ) ]X N =:>O and ->0

Finally, since t T(Z TIZ)- 1 - > tT (Z TIZ)- 1X

YT [YT T T -1l T (ZT z- 1 x d >tT (ZT I)-1l
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