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Preface

This paper was originally intended as a report on some large sample
results for quasidensity and pattern probability estimation, results that
provide a foundation for our methods for ability distribution estimation and
item response function estimation. While attempting to determine the
generality of one of the results, I happened upon a promising new line of
research. The new methods and results (Section Three) admittedly haven’t
been integrated into this report very well. The main result, relating
models with a continuum of abilities to finite models, seems at least as
important as the large sample results. (It asserts that every item response
model with a smooth ability distribution and smooth item response functions
is isomorphic to a latent class model obtained by replacing the ability
distribution with a discrete distribution.) The reader primarily interested
in the generality of latent class models may wish to skim Sections One and
Two for notation and then read Section Three. Two separate papers

eventually will be prepared for publication.




ABILITY DISTRIBUTIONS, PATTERN PROBABILITIES, AND QUASIDENSITIES
Introduction

This paper solves a problem closely related to ability distribution
estimation, which is arguably the central problem of item response theory.
The problem, quasidensity estimation, comes up when one needs to know the
probability of sampling an examinee with a specified item response pattern
from a very large pool of examinees. The situation in which item response
functions are specified but nothing is known about the distribution of
ability is considered in this paper.

If the ability distribution has a density, then the density can be used
to calculate the probability of sampling an examinee with a specified
pattern. A pattern’s probability is simply the integral of the product of
the pattern’s likelihood function times the ability density.

It is shown that even if the ability distribution is a step function or
some other distribution that doesn’t have a density there is an essentially
unique, continuous function that can be used in place of a density to
compute pattern probabilities. The integral of the product of this function
(the quasidensity) and any pattern’s likelihood furnction is exactly equal to
the pattern’s probability,

When the ability distribution is unknown, estimates must be used.
Quasidensity estimation is easier than ability distribution estimation
because the quasidensity is identifiable, but the ability distribution is
not. Many different ability distributions will fit large samples equally
well (Levine, 1989). By contrast, the maximum likelihood quasidensity
estimate is unique (Section II.2, below).

Quasidensity estimation is related to ability distribution estimation

in two ways. First, under general conditions the indefinite integral of the
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quasidensity equals or closely approximates the cumulative distribution of
ability. Second, the methods of quasidensity estimation have been
generalized to obtain a nonparametric theory for ability density estimation,

As others (Loxd, 1970; Samejima, 1981) have observed, item response
function estimation is closely related to ability distribution estimation.
The results in this paper are central to our current work on nonparametric
item response function and option response function estimation.

A quasidensity estimation theory is developed in this paper. The
quasidensity is represented as a linear combination of orthogonal functions.
The set of linear combination coefficients is shown to be convex and
compact. It is shown that the maximum likelihood estimate of the
coefficients is strongly consistent. The asymptotic distribution of the
coefficients is derived.

Some general results on ability distributions are also proven. For
example, it is shown that for the most commonly used item response models,
every ability distribution is equivalent to a distribution with only
finitely many points of increase. An upper bound for the number of points

of increase is obtained.
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Section One
Quasidensities, Parameterizations, and Approximations

In many applications it is necessary to compute the probability of
sampling an examinee with a specified item response function. For example,
pattern probabilities are needed in situations in which it is important to
decide whether because of cheating, language problems or an ill-advised
test-taking strategy, an individual’s test-taking behavior is so unlike
other examinees’ that his/her test score is virtually uninterpretable. With
pattern probabilities a uniformly most powerful statistical test for faulty
answer sheets can be computed (Levine and Drasgow, 1988).

In this section a general strategy for computing pattern probabilities
is derived and discussed. We begin with some notation and a brief review of

basic item response theory.

Section I.1l: Terminology, Notation and Assumptions

* * %
Let u = <u1, Uy,

indicating right and wrong answers to n test items. Sampled vectors are

%
ceey un> denote a vector of ones and zeros
locally independent relative to a random variable @ if the conditional
%*
probability of sampling pattern u given any value of # can be factored

and written

* n *
Prob{u = u |§ = t) = I Prob{u, = u,|§ = t)
i=1 ool

where u denotes the sampled vector, us is its ith component and t is
one of the possible values of §

Usually in item response theory the item response functions Pi(t) =
Prob(ui - 1|0 = £} are assumed to have some specific (generally logistic)
functional form with values strictly between zero and one. The results in

this paper (except for the last part of Section III) assume only that the
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item response functions are continuous functions with values that are
strictly between zero and one.

Usually item response functions are defined over an unbounded range and
applied over a finite range, typically the interval [-3,3] . The results
in this paper only use item response function values over a finite range of
abilities. Thus, throughout this paper the Pi are continuous functions
with values strictly between zero and one that are defined on some finite
closed interval [c,d] . This results in no loss of generality because the
interval ¢ 2e very large and because an unbounded ability continuum can be
transformed into an interval. 1In applications, we make the interval [c,d]
big enough so that the assumption that all abilities are in [c,d] is
plausible.

This paper is concerned with distributions on [e¢,d] , i.e.
distributions of random variables that are between ¢ and d with
probability one. The condition that a distribution function G 1is a
distribution on [c,d] can be expressed without explicitly referring to
random variables as follows: for t < ¢, G(t) = 1-G(d).

To summarize, the results to follow assume

1. local independence relative to a unidimensional random variable
g,

2. continuous item response functions defined on an interval [c,d]

and taking values strictly between zero and one, and

3. Prob(¢ <9 =sd) =1,
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Section I.2: The Canonical Space and its Quasidensities

The assumption that the Pi are strictly between zero and one implies

%
that for every pattern u , the pattern likelihood function B(ux,‘) given

|
i
|
E
f
E
.
|
|

* b
* " n u, l-ui
£(u ,t) = Prob(u=u |f=t) =1II P, (t) (1 - P, (1))
1
will also be a continuous, positive function defined on [c,d] . By forming

linear combinaticns of likelihood functions we obtain a finite dimensional
real vector space which is called the test's canonical space (CS). Thus £

is in the CS if and only if for some real constants a,

o0
%
f(s) =2 a 2(u ,+)
v v
v=1
* v 13 . . n . .
where U, Uy, ... u ... 1is any enumeration of the 2 possible item

response patterns. Since the functions in the CS are continious, an inner
product for the CS is defined by <£f,g> = fg f(t)g(t) de .

Note that since the likelihood functions may be linearly dependent, it
may be possible to write a function as a linear combination of likelihood
functions in several ways. The uniqueness referred to in the following

result applies to functions, not vectors of coefficients (av)

é I.1 There is a unique function g in the CS such that for all response

%

Eatterns u
Prob(u=u") = [3 2(u",t)g(t) dt .

Equivalent.y, for any distribution G on {c,d] ¢there is a unique g

in _the CS such that

I8 2", ey ao(e) = 9 aa¥ 0rg(e) a

Proof: Tbh~ formula
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%*
h = § avlu -+ Efh(8)] = § auProb(u=uV)

defines a linear mapping on the CS since expectation is linear. Since every
linear functional defined on an inner product space that is isomorphic to a
Euclidean space can be written as an iuner product, there is some g in the

CS such that the matping can be written
§ avzu(.) - < § auzu(.)’g> :
*
In particular, if all the a’'s are zero except one, then for every u
* *
Prob(u=u ) = <f(u ,+),g> .
v 14
If g also satisfies these conditions then for all v
0 =<2 ,g> - <L ,8>
- <£y,g-g> .
Thus g-g = 0 because no nonzero element of a vector space can be
orthogonal to all of the vector space’s generators. //

The function g is called the quasidensity of G because it functions
like a density in the calculation of pattern probabilities. In fact, it can
be used in place of a density to calculate the expected value of any
statistic that is a function of item responses (Levine, 1989, Section 2).
Although the quasidensity integrates to one, it is generally not non-
negative. A discussion of their properties can be found in (Levine, 1989).

When an orthonormal basis for the CS is available the quasidensity

has a simple formula which is often used.
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1.2: If @ has distribution G where G is a distribution on {c¢,d] and

hO’hl’ ce hJ

is an orthonormal basis for the canonical space, then the quasidensity
for G is
J
g(¢) =2 E[h . (8)]h.(+)
J=0 J J

Proof: Since {h.)J

515=0 is an orthonormal basis, eaca pattern likelihood

function satisfies E(uj,t) = Zj <£u’hj>hj(t) . Consequently
Pumu’) = [ £.<0 h.>h.(t) dG(t)
v T e F R
=3 <2 ,h.> Efh, (4
5 <2,hp> Elh, ()]
d
= 2. [% 2 (t)h (£)dt E[h, (I
IR PENCLNOLRIERO)
- [4 2", t) =, E(h.(8)}h, (t)dt
R B Bl Rt
From uniqueness proven in I.1 it follows that g(+) = Zj E{hj(O)]hj(-) . J/

The value of the quasidensity in studying pattern probabilities derives

from the following obvious but very useful fact:

I.3:  If (h.)]

I1f 51520 is a basis for the CS and the quasidensit- *

distribution of § satisfies

g(*) = g "jhj(')

then

J
*
Prob(u =u ) =% n.<h,, 2> .
v o J 3V
Thus, each pattern probability can also be represented as an inner product

of a known vector depending only on the pattern and a vector tl.at must be

estimated.




Section I.3: Approximations and Bases

For applications, the size of J 1is important. For the Rasch model

(Pi(t) = [1+e-(t-bi)]-l) J cannot be larger than the number of items, n

(Levine, 1989, Section 2). On the other hand for the three parameter

"33 (b))
logistic model (Pi(t) =c, + (1-ci)[1+e ] 7Y, J may be as large

as 2. Fortunately by careful choice of the functions hj , approximations
can be obtained that have very few terms but are still accurate in one sense
or another. Two examples follow.

For a first example suppose it is desirable to keep the total squared

error
* R * .2
§ {Prob(u = uv) - approximated Prob(u = uy)]

small. A basis can be obtained by analyzing the function of two variables

n
H(s,t) = 'H (Pi(s)Pi(t) + [l-Pi(s)][l-Pi(t)])
i=1
defined for c<s, t<d . By solving the functional equation

fg H(s,t)h(s)ds = Ah(t)

one obtains a maximal set of orthonormal functions hj in the CS and

positive constants AOZAlz...AJ> 0 such that

J

H(s,t) =j§0 Ajhj(s)hj(t)

These functions can be shown to form an orthonormal basis for the CS

(Levine 1989). From this fact and the identity

o0
% ¥
H(s,t) = 2 2(u ,s)f(u ,t)
14 v
v=]
it follows that the total squared error with a K<J term aj imation

satisfies



2

*
% (Prob(u =u) - = w.<2y,h.>]2 - = A.<gh,>
, \ jer. 3V jk 3

< X J": gz(t)dt
when ”j = <g,hj> .

This relation is important because for all tests we have analyzed, the
Aj very rapidly decrease to zero. Typically, K=15 provides very accurate
least squares pattern probability approximation.

To introduce a second and final example concerning the choice of a GS
basis, suppose it is important to control the maximum absolute error. In
addition suppose an approximation of the distribution function G is
available. Then it is often possible to select an orthonormal basis hj
such that E[hj(a)] will be small for large j . Of co;rse, small
E[hj(o)] guarantees that the finite sum .§K|E[hj(0))] is also small.
This is important because for "j - <g,hj>J: E[hj(ﬂ)] the K term

approximation satisfies

[Prob(u - v) - £ m.<f ,h,>| =5 [|m.<f ,h.>]|
iy AR

Y5« j2K
<{ o DY 2 I, 1 < b >Ht?
j2k 3 j2K J
sz Y% wax n M s o< npty M2
j=K j=K j=K J
< (2 |n 1Y% Maxym 20 g8 2(eyar)t/?
j=K j=K
< Max|n. |2 (= 7. NY? (a-0)Y/? Max 2,(t)
j2K jzk 3 cstsd

This paper is concerned with using maximum likelihood estimation of the
"j! from sampled patterns to obtain approximations of pattern probabilities.
It will be shown that the maximum likelihood estimate for the vector =« is
strongly consistent and asymptotically efficient. In addition some results

about the set of vectors =« corresponding to distributions are proven.
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Section Two

Uniqueness and Consistency of the Maximum Likelihood Estimate

In the remainder of this paper F is used to denote the unknown
distribution of the ability random variable 6 , (hj’;=0 is a fixed
orthonormal basis for the CS, and = is the vector of expectations with jth
coordinate nj— E[hj(ﬁ)] . Thus the pattern probability for u* can be

written

* *
P(u)=2Z <42 ,*),h.> x,
”( ) (u ,°) 5 "J

or with the abbreviation ﬁj(u*) - <£(u*,o),hj> : P"(u*) - By . If G
is the distribution of # or any other distribution on [c,d} and g",(-) -
E«jhj(-) is its quasidensity then the pattern probabilities obtained by

using G in place of F are given by

P,y = f9 20", t) dc(e)
x c
- By en.

This section begins the task of estimating F's quasidensity, or

*
equivalently the vector x , from a sample of patterns u

Section II.1l: Distributions Viewed as Points in a Convex, Compact Subset
of Euclidean Space

Procedures for recovering the unknown "j from samples of observed
patterns have been developed. Each requires the maximization cf some
continuous function defined over a set A of vectors corresponding to

quasidensities
A= {x' in E +L : 2 xjhj(-) is the quasidensity of at least one

distribution on [c¢,d] )}

The set A has three properties that greatly simplify maximization:

i. Convexity: the line segment connecting any two points in
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A 1is also in A .

ii., Boundedness: There is a constant & such that for all =’

1/2

inA |n'-m] = <n'-mw, 7' -7> <k .
iii. Closure: Every continuous, bounded functisn defined on A
has a maximizer in A .
The proof requires a simple result that is repeatedly used elsewhere.

n
*
I1.1: The vectors {ﬂ(uy))3=1 span a J+1 dimensional vector space.

Equivalently, for any choice of positive constants v, the matrix

2N

£ BBy’

v=]

is positive definite.

Proof: Let £ ,Z% R ) be likelihood functions forming a basis for
14 174 v
1 "2 J+1
%*

the 8§, Since £ () =2, B.(u ) h,(¢) , linear independence of the 2

Yi 33y i
e . . . * % on
implies linear independence of the ﬂ(uv ) . Thus the cset lﬂ(uu))y=1 of

i

J+1 vectors contains J+1 linearly independent vectors. //

11.2: The set A of coordinates of distributions on [c,d] is convex,

closed and bounded.

Proof: (i) Convexity: For =! and #n?2 in A and 0 =<e¢ <1 let G1 and

G2 be distributions on ([c,d] with quasidensities &yl and g2

respectively. Since for any positive ¢ , G3 = eGl + (1-e)G2 is also a

distribution on [c,d] and since for any h in the CS
d . d .
jc h(t) d[eG,(£)+(1-€)G,y(E)] = ¢ fgh(u)dGl(t) + (l-¢) fc h(t)dG,(t) , it

follows from I.1l that 8, is the quasidensity of G, . Thus a

a4 (l-¢)m? 3

convex combination of points in A is in A .
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(ii) Boundedness: Let #«' be any vector in A other than wx . Let, «’
be the intersection of the unit sphere about =« and the ray from =
passing through x' . Thus Ii' - wl =1 and n' = [x' - w)/k+ 7, (or

equivalently, ' = =n + k(x* - n) ) for k=|m-7'|>0 .  Since x'-ﬁ(u“) =

Pw,(u*) and ﬂ'ﬂ(u*) = Pw(u*) are probabilities,
0= P",(u*) -+ k(- M]B) <1
and
‘1= - (w) s kG - M) 12w =1
After squaring and summing over all 2" patterns we obtain

0=k - o 5, ppE)HT Gro-m = 2”
1

* *
But in II.1, 2* B(u )B(u )T was shown to be positive definite. Since
u
Ii' - wl = 1 , the expression multiplying k2 must be at least as large as

the smallest eigenvalue of this matrix. Thus for

n2 - 2n/[smallest eigenvalue], I%' - wl <k , and A 1is bounded.
(iii) Closure: Let (rn) be a Cauchy sequence in A . Since A is
bounded, the sequence converges to some «’ in EJ+l . To show =x' 1is in

A, let (Gn) be any sequence of distributions on [c,d] such that g n

is the quasidensity of Gn . By Helly’s theorem, (Gn) _contains a

subsequence {G } such that G converges to some distribution G
m(n) m(n)

on {ec,d] at every point of continuity of G . Since each hj is

continuous, JO ho(€) 4o (e) =+ s hi(€) dG(t) . Thus. by 1.2 ﬂ?(n) .
fg hj(t) dG(t) . Since (ﬂm(n)) is a subsequence of {wn) , nW(“) -

f: hj(t) dG(t) = wj , and 8 is the quasidensity of G . //

Note that since the CS is also a metric space with distance (g,h) =
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<g-h,g-h>1/2 and since «' - & is an isometry, it follows that the
subset of the CS corresponding to quasidensities of distributions on [c¢,d]
is also convex and compact.
Section II.2: Uniqueness of the Maximum Likelihood Estimate
Consider now drawing a random sample of N patterns
* % % *

U, Uy, ..U, ..U

and attempting to recover the quasidensity &y by maximizing the sample

N
- %
likelihood function I Pw'(ua) defined for vectors =#' in A or its
a=1
logarithm
N %*
LN(n') =3 log w'oﬂ(ua)
a=1

It will be shown that if the sample is large enough that LN almost surely

has a unique maximum ﬁN .

I1.3: With probability one LN(o) eventually has a unique maximizer in

A .
% . % %
Proof: For each pattern u and vector ' in A, P ,(u) =a'+(u)
—_— .
is positive. Therefore, LN(-) is defined and continuous on A . Since A
is compact, LN(-) has at least one maximizer in A . Suppose ='’#r" both
maximize A . Since the line segment connecting two points of A is

entirely in A , a function of one variable is defined by

p(e) = Lyln' + e(x’-n")]

for 0=<e<l . From the formula for LN and the fact the #’' and #" are

maximizers, p has 2 continuous derivatives, and p(0) = p(l) . Since the
second derivative of p 1is the negative of a sum of squares
N

* 2
p"(e) = -Z wa(e)[(w'-w") . ﬂ(ua)]
a=1
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% * * . -2 N

for w_(e) = (P ,(u)) + (P (u)-P ,(u)}} =~ >0 and max(p(e)) = p(0)
p(l) , p must be constant. Thus, the second derivative of p evaluated
at, say, €=.5 must be zero. However,

N T ., * * T,

0="-2 w (.5) (x'-x")"B(u )p(u) (x'-n")
a=1
*

implies that the N vectors ﬂ(ua) span a subspace of dimension less than
J+1 . Since each of the 2" response patterns has positive probability of
being sampled and since by II.1 the full set spans a space of dimension

J+1 , with probability one eventually a linearly independent set of J+1

patterns will be sampled, and the maximizer will henceforth be unique. //

Section II.3: Strong Consistency of the Maximum Likelihood Estimate

In order to study the asymptotic behavior of *N , the maximum
likelihood estimate, it is convenient to have an open set containing A on
which any LN can be extended to ¢ differentiable function. To this end we
choose a positive number d such that if a vector x is within distance d

%

*
of at least one point of A , then x+<B(u ) 2 0 for all patterns u

*
II.4: Let d = inf UNION (|x-x'| : #' is in A and x+8(u )=0} and
%
u
At - {(x : for some ' in A , |x-7’|<d)

+ . . . .
Then A is an open set containing A on which the formula

N %
2 log xoﬂ(ua)
a=1

extends LN to a differentiable function defined on A+ .

Proof: It remains only to show d is positive. Since A 1is compact, for
% *
each u the set (Ix-w’l : xeB(u ) =0 and «’' is in A} has a positive

minimum. Thus d is the minimum of 2" positive numbers. //
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If there is some =x’ in A such that Pw'(.) assigns exactly the same
probabilities to patterns as Pﬂ(o) then it will not be possible to prove
*N converges to w . Thus the following intrinsically important result is

needed.

%
IT1.5: If «n'=x" and both are in A , then for at least one pattern u ,

P ,(u") %P, (u"
w,(u ) # ﬂ"(u )
Proof: If P_,(+) =P () , then for all u
*
0 = B(u )e(n'-n")

*
Since from II.1 the pB(u ) span a J+l1 dimensional space, the J+1 vector

n' must equal x" . //

Finally, strong consistency for the maximum likelihood estimate can be
proven by an argument Wald used to prove the consistency in a different

context (Wald, 1949).

IT1.6: (Strong consistency of the mle) With probability 1 , *N converges_to

T .

Proof: Using the inequality log x < x-1 for x#1l and II.5 it follows that
for n'#xr , E log Pﬂ,(u) < E log Pﬂ(u) . For if the set

D = { u* : P",(u*)wPﬁ(u*)) is not empty then
E [log P",(u)] - Eflog Pw(u)]

= E log[P ,(u) / P _(w)]

=%, B log [P, (u)/E (u)]
u in D

<, B (e,whH/e @1
u in D

¥ *
=ZP ,(w)-TP ()
D D
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* *
=S ) - [1-3, P_(u))
D u not in D

=0

%
To obtain a finite open covering of some subsets of A , note that =x¢B(u )

* s
is positive for x in A+ . For nx'sw let s(u ,n’,p) = sup {a"+B(u ): «"
. . . . +
is in A" and |7t -x*| < p} . Since for x* in A, 7" in A" and
|x’-x"| < p

e Ba’) =[x+ (avemt)]ep(u’)
=B, + |en ][]
<P+ plB]
log s(u",n',p) < log Pw,(u*) + p|B(™)] /P",(u*). Consequently
E log s(u,n',p) < E log B, (u) + pE[|B(w)]| /P_,(w)} ,
~ E log P_ (u)
- [Elog ®_(w - E log P, (u) ]
+ pE[|B(w) | /P, (w)]

and for each #n'»r in A , a positive p(n’') 1less than d can be selected

so that

E log s(u,n’,p(x') ) < E log Pw(u) .

Let B be a closed subset of A not containing = . To show that with

probability one

N
% *
sup n P ,(u)/P (u)
a" in B a=l a Toa

tends to zero as N tends to infinity, consider the open covering of A

formed by the sets

B(n') = {#«" in A+ : Iﬂ"-w'l < p(n'))
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Since B is also compact wi, . S n& can be selected such that B(wi),
B(ﬂé), ...B(n&) covers B . By the strong law of large numbers,

L %o W ICT log P_(u'))

N2 {log S(ua,fri.p(wi)) - log P (u,

almost surely tends to E log s(u,wi,p(ri)) - E log Pw(u) <0 .

Consequently with probability one,

N 1 * , R *
2 og S(ua’ﬂ.i’p(ﬂi)) /Pw(ua) o -®
a=1
N * *
and 1lim sup I r"-ﬂ(ua)/P“(ua) = 0 . Since

N n" in B a=l
1

N %*
0 < sup nn P"“(ua)
" in B a=1l
m N *
<z sup I ﬂ"’ﬂ(ua) )

i=1 x" in Bi a=1

with probability one

N %« N %
lim sup n P "(ua)/ It Pﬁ(ua) =0,
N a"inB a=l " a=1

Finally, to show %N converges almost surely to =« , it is shown that for

any positive € , with probability one, |%N-w| is eventually less than

€ .

Let B be the closed set excluding = ,

B = {x' in A : Iﬂ'-wl = ¢ )
With probability one
g x« N %
sup P u) /TP (u)
' in B a=1 a=1
is less than one for sufficiently large N . Thus with probability one %N
is eventually in the complement of B , i.e., I%N-w| is eventually less

than ¢ . //




/%

Section III
A Dichotomy for Ability Distributions
A common starting point for studying the asymptotic distribution of

maximum likelihood estimates is the family of likelihood equations
0= (7)) j=0,1 J
31erNN

It turns out that these equations are false for our current formulation of
the estimation problem.

The equations are valid if #, is the maximum of LN over an open

N
J+1 dimensional subset of A ., But A has no J+1 dimensional subsets
because, as shown below, it is a J dimensional subset of a J+1
dimensional space.

In this section A 1is reparameterized as a J dimensional set, i.e.,
the points of A are expressed as functions of J numbers. The
reparameterization suggests a dichotomy of the distributions on [c,d] . We
distinguish "regular" distributions that correspond to points in the
interior of the new set of parameters for A and "irregular" distributions
that correspond to boundary points. The distinction is important because in
this paper the asymptotic distribution of the mle is worked out in detail
only for regular distributions.

In the process of attempting to show that the irregular distributions
were pathological and safe to ignore a surprising result was obtained. It
was found that for the most popular item response models, every distribution

is equivalent to some discrete probability distribution on at most J+1

points.
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Section III.l: Reparameterization

% *
Since 1 ? = " PK,(u Yy = @'l " B(u ') every vector «' in A

u u

- - *
satisfies the equation #'¢f =1 for =23, f(u) . Thus A is

u
contained in a J dimensional subset of EJ+1 and no point of A has an
open neighborhood contained in A .
To reparameterize A let (B/lﬁ[,zl,zz, P zJ} be an oxrthonormal

basis for EJ+1 and 2 be the (J+1)xJ matrix

Z = [zl,zz, e zJ]

Thus x = ZTx maps the set of vectors orthogonal to B one-to-one onto

EJ . Since x =~ ZTx is also linear, it follows that for any fixed #° in

A
T - ZT(n’-wo)

J
maps A one-to-one, onto some convex, compact subset of E  and that each

'

n in A can be expressed as

n' = % + Zs

for exactly one J vector s in a convex, compact subset of EJ
Let B = (ZT(W'-WO) : n'e¢eA ) be the set of possible J vectors
s . It will be shown that B is J dimensionzl so that distributions on

[c,d] can be classified into two non-empt_ .ets: regular distributions
with s in the interior of B and irregular distributions corresponding to
vectors on the boundary of B . Before resuming the study of the

distribution of the maximum likelihood estima.e some facts about regular and

irregular distributions will be proven.
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Section III.2: Regular and Irregular Distributions

A distribution on [c,d] , its quasidensity Bt and its coordinate
vector =w’ will be called regular if for some p>0 the J-dimensional open
ball centered at =’

{n" in EJ+1 : ﬂ"'B = 1 and |n"- n’|<p}

is a subset of A . 1If a distribution is not regular, then it (and its
quasidensity and coordinate vector) will be called irregular. Equivalently,
a distribution with quasidensity B is regular if and only if ZT(w'-w°)
is an interior point of B .

The uniform distribution and most distributions expected in
applications are regular. However, if the pattern likelihood function

*
£(u ,t) 1is unimodal with maximum at t. in [c,d] , then the unit step

0
function at to is an irregular distribution on [c,d} . The first result
shows that some distributions are regular, i.e., that B is J

dimensional.

IIT.1 If G 4is a distribution on [c,d] with a positive quasidensity and

if for c<t<d the quasidensity of G evaluated at t equals the

derivative of G at t then G is regular. In particular, the

uniform distribution is regular.

J
. d_ = ' - H
Proof: If ac G(t) g "j hj(t) g“,(c) >0 for c<t<d , and g, 1is
also positive at ¢ and d , then min gﬂ,(t) >0 . If Iw"-w’|m= max Iﬂg-
t j
1;3'.| is sufficiently small, then |[g_, _,(t)| = 1/2 min 8 (E)
noTa t ]

Consequently for sufficiently small |7r"-1r’|co

g () = g, (6) + g, ,(t)

z min g, (¢t) - max|g_, _.(t)]
¢ t
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>0 .

Since | |2 and | |°° determine the same topology on EJ+1 , for some
"t z : .
p0>0 N E Y |2 < rg implies g”"(t)>0 for t in [c,d]
To show |w"-w'|<po and #"+B=1 imply =" 1is in A it suffices to show

that these assumptions imply that the function G

0 if c <x
Gx) ={ [} 5. (t)dt ifc=x=<d
1 ifd<x

is a distribution on [c,d] and Bpn is its quasidensity. The only
nontrivial step in verifying that G is a distribution on [e¢,d] is

- % -
showing G(d)=1 . Since for all t , I * L(u ,t) =1, G(d) = fg g”"(t)dt =
u

* * - -
f: z * 2(u ,t)g“"(t)dt =3 <z * 2(u ,-),hj>w§ = fBen" = 1 . Consequently, G
u j u
is a distribution on [¢,d] , By is the restriction of its probability

density to ([c,d] , g is its quasidensity (by the uniqueness of
quasidensities in I.1), and #x" 1is in A . In particular, since

* -
l1=23 * £(u ,t) 1is in the CS, the uniform density g(t) = [d-c] 1 is in

u
the CS, and the uniform distribution is regular. //

The next result gives examples of regular distributions that do not
have continuous densities. It shows how to approximate any distribution on

{e,d] with a regular distribution.

[ A | are
J+

I11.2 I1f ¢t <t <t. are in {c,d] and the vectors = [hj(ti)) are
linearly independent then for any vector a 4in E 1 if

a. >0 j=0, ...J
J
.a, =1
JJ
then the discrete distribution function

G(t) = z a
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is regular. More generally if GO’ Gl’ N Gi e GJ are

PTR X - .o i
distributions on {c,d] with quasidensities g i and the =~ are
n

linearly independent, then o>0 and X ai=1 imply that ZiaiGi is a

regular distribution on ([c,d] .

Proof: Clearly each for vector o>0 such that Z ai=1 the convex
combination Eiai Gi(-) of distributions Gi on {c,d} 1is a distribution
on [c,d] . Let a%0 be the vector of coefficients of any such
combination. A value of p will be computed to show Ei ag ﬂi is regular.
For any «

T

|Z. a® -2, a, x |2- 2 («f - a,) ntnd (% - «a.)
i~i i1 AP 1 i j j
1]
= (a® - @) Qa® - @)
for positive definite or poritive semidefinite Q . Since the x* are

linearly independent, Q 1is definite. Consequently

i i s .
IEi ag - B e ﬂll 2 |a® - x|el/2 , where >0 1is the smallest eigenvalue

of Q . Since the J+1 linearly independent x*  form a basis for EJ+1,
and for any #’ in EJ+1, there is a unique a' in EJ+1 such that =’ =
T alnt If
i
|E. o 7% - w'l < 1 51/2 min{a?®)
i1 2 . i
i
then
|a° - a’l < 1 min{a%)
2 i’’’
max[ao - af! < i min{a?)
i i 2 i
and
0 < ai for 1i=0,1, ... J .

Furthermore, if «’+8 = 1 , then




1= (S a! 7°)p
i 1

= 2 a!(x'+B)
i i

-3 al .
i

1/2

N

Thus for p = = ¢ min(ag) ,

2 al xi -x'| <pand x'ef =1
i

imply Byt is the quasidensity of some distribution on [c,d] , i.e. «' |is

in A and 32 ag Gi is regular. //

The following result helps to visualize irregular distributionms.

"II1.3 If x' is regular and x" is in A then for sufficiently small

positive € , x" + (l+e)(x'-x") is also in A .

Thus to obtain an irregular point one starts with any two points of A , «°
and x'#x® . Since A 1is convex, closed and bounded one can move through
A along the ray from =% through =x' to a point #x° + k(x'-x%) in A
such that x% + k'(x’-x%) is not in A for any k’>k . Thus

7% + k(x'-x%) can not be regular.

Proof: Be[x" + (l+e)(x'-n")] = 1 + (l+e)(1-1) = 1 and, for sufficiently

small positjve ¢ , In' - (x"+(1+e)(x'-x"))| - e|x'-r"| <p ./

Irregular distributions can be obtained from the many upimodal

functions (e.g. most likeljihood functions) in the CS too.

IIT.4 If f is_a functign in the CS with a unique maximizer o i.e., if
£(t) = £(t

O) implies t = t for all t in [e,d) , then the unit

step_ function at to is irregular.

Proof: Since f 1is a linear combination of likelihood functions for any

distribution function on [e¢,d] , fg f(t) dG(t) = <f,g> where g 1is the
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quasidensity of G . In particular for gn(t y = the quasidensity of the
0

unit step at to , <f,gﬂ(to)> = f(to) . Note that if G 1is the

.

distribution of a random variable w then <f,g> = E(f(w)] . Thus for every
quasidensity «' in A , <f,gﬂ,> < max f(t) = f(to) In particular for

t
g"(tl) the quasidensity of the unit step at €%t

<f’gw(él>> = B(e)) < £(tp) = <f’gﬁ(to)> ‘
Consequently for any &>0 , for m{e) = m(t;) + (L+e)[m(ty)-m(t;)] !

<f,gﬂ(€)> - <f,gﬂ(t > + €[<f'gw(to)>-<f’gw(tl)>]

0’

=£(ty) + e[£(tg)-£(c))] > £(t)

Thus g“(e) cannot be the quasidensity of any distribution on [c¢,d] and

from III.3, the unit step at t, is not regular. //

0

In fact‘a ;tronger result can be proven. It can be shown “hat the unit
step at a maximizer corresponds to a point =’ in A situated like a
verte; of a polyhedron or a boundary point of an ellipsoid: If >0 and
a" 1s also in A , then #n’' + (l+¢)(na"-n’) 4is not in A . In other.words,

#' 1s not an interior point of the intersection of A and any line through

7\"

ITI.5 If £ 4is a function in the CS with unique maximizer then

to,

w(to) is not an interior point of the intersection of A and any

line through =’

Proof: Let G be any distribution on [c,d] other than the unit step at

to . Let [c¢’,d'] be any closed subinterval of [c,dj not containing to

such that f:, dG(t) > 0 . Then for g, equal to the quasidensity of G ,

<t,g..> = f:: £(t) d6(c) + [ £(t) dG(t)

t not in [c’,d’]

I
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g’ d
< max f£(r) [, dG(t) + £(t,) [ 1- jc dG(t)]
c'<t=<d' ¢

< £z [ do(e) + £ty [ 1 - 9 as(o) ]

=f(t0) = <f’gw(to)> .

From the argument in III.4 applied to m(e) = n' + (1+e)[w(to)-w'] it

follows that for all x' = =n(t inA for e0 , n(e¢) is not in A . //

o)

Not every irregular distribution is mapped to one of these points that
"stick out" from A 1like a vertex or a point of positive Gaussian curvature
on a boundary. By taking linear combinations of unimodal functions in the
CS one can construct bimodal and multimodal functions with modes of equal

height. The reasoning used in III.4 and III.5 can then be used to show

that A has edges and faces too.

I11.6 Let f be a function in the CS unaving modes of equal height at

tO < tl < ... tm so that f(t0)=f(t1)= een f(tm) ana for t in

[e,d]\(ty, €, ... £ ), £(t) < £(t)) . Let Gy, G, ... G denote

the unit step functions at Y t], cee Then for any positive
m

numbers o, such that Z a. = 1 , the distribution % o.G, is

= i o I — e ii

irregular.

Procof: Let gw(s) be the quasidensity of the unit step function at s in
m
[c,d]\(to,tl, . tm) . Then <f,gﬂ(s)> = f(s) < f(to) = g oif(ti) . Thus
for gﬂ(t ) equal to the quasidensity of the unit step at t, and
i

w(e) = n(s) + (L+e)(Z aiﬂ(ti) - w(s))

>0 implies <f,g"(€)> = f(tO) + e[f(to}-f(s)] > f(to) . Thus 2 aiGi is

irregular. //

The following corollary reconciles the apparent contradiction between
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III.2 and III.6 .

I11.7 1f for f 4in the CS there are more than J numbers t satisfying

f(t)=f(s) for all s in [c,d] then the quasidensities of the unit

step distributions at these numbers are linearly dependent.

Two ability distributions are called equivalent if the probability
distribution of any function of the item scores does not depend on which of
the two ability distributions is used to compute the distribution. Thus, if
F and G are equivalent, then data cannot be used to determine which of
the two distributions is correct. A necessary and sufficient condition for
two distributions on [c,d] to be equivalent is that they have the same
quasidensity (Levine, 1989). We will show that for logistic models all
distributions are equivalent to discrete distributions. The result is valid
for models with item response functions Pi such that for each t there is
a power series for Pi that converges absolutely in some neighborhood of

t .

I1I.8 If the constant functions are the only functions in the CS that are
constant on some_nonempty open subset of {c¢,d] , then every
distribution on [e¢,d] is equivalent to a distribution with at most

J+1 points of increase.

Proof: It is sufficient to prove that there are finitely many points of
increase because A has been shown to be J dimensional. It is sufficient
to limit attention to irregular distributions because if =#’ 1is not on the

boundary 8A of A then compactness of A implies that for any «! in

dA we can choose t>1 such that #2=rl+t(nl-n’) 4is also on 8A . The
equation
t-1 1
fom = g =2
T c " "




]
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shows that =’ corresponds to a probability mixture of distributions mapped
to the boundary of A .

Let G be a distribution on [c,d] with quasidensity By for =n' on

3A . Let H={x in EJ+1 : nex=c} be a hyperplane in EJ+1 containing

n' and no points of the interior of A . Without loss of generality it can
be assumed that x in A implies nex<c because nex=c implies

(-n)ex=-c . It follows that among distributions on ([c,d] G is a
maximizer of  [O Bynjh, () dG(E) = nen’ . Either g (+) = Znjhi(+) is
constant on some subinterval of [c¢,d] (and therefore constant) or there

are only finitely many numbers t such that (t)zg (s) for all s in
En En

fc,d] . g, cannot be constant for otherwise nen" = fg gn(t)‘g""(t) dt = ¢

would be independent of #" and A would have no interior points. Thus
for finitely many numbers cs<t.< ... t,<d g (t,) = max g (t) . Thus a

1 K n' k (c,d] n
distribution G (such as G ) maximizes fg gn(t) dG(t) if and only if it

is equivalent to

K
Z o F ()
k=1 k k

where Fk is the unit step at ty for some positive numbers o such that

Soa=l . //




Section Four

Asymptotic Normality for Regular Distributions

In this section it will be shown that if the ability distribution is
regular then %N , the maximum likelihood estimate of = , is asymptotically
normal. A formula is derived for the asymptotic dispersion matrix.

Throughout this section the distribution for 6 1is assumed to be
regular. Throughout this section let p be a fixed positi.e number chosen
so that the intersection of the open ball with radius p centered at =«

{n' in EJ+1 : |1r'-1r| < p)

and the hyperplane

(' in B Lo = 1)
. . . 1 2 J
is a subset of A . As in Section III.1, let z~, z°, ... 2z~ be any
orthonormal basis for the annihilator of B and let Z = (zl, zz, . zJ]

be the (J+1)xJ matrix formed from the z's so that =' - Zsz’ is the
orthogonal projection onto the annihilator of § .
To describe the asymptotic behavior of %N we will need the

information matrix, i.e. the matrix I of expected second derivatives with

typical entry Ii'

J
a2
tij " B Garanr T8 B (9]
i w' =1
4 2 ¢
= -3, P () log n'<f(u )
* o dnldn! ,
u i™7j ' =1
¥ ¥
B.(u)B, (u)
5 Wy ——
= P (u —_—
W [nep(u))?

Thus I can be written in the form S " w(u“) ﬂ(uw)/}(uw)T and IT1.1 can be
u
used to show it is non-singular. Since the columns of 2 are independent,

II.1 also implies that for any positive weights w, = w(u;) the matrix
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21’1

* *
= v, ZTﬂ(uu) ﬂT(uU)Z is non-singular. In particular, ZTIZ is non-
y=1

singular.

Since #,, almost surely converges to = , with probability one #

N N

will eventually be within p of =« . For §g = ZT(%N - w) the mle can

be written

A A
"N -+ ZsN .

Since |7, - x| = |§ almost surely |§N| < p for sufficiently large

N| !
on open { s in EJ : Is] <p} by MN(s) - LN[w + Zs]

N

N . Defining MN

it follows that §N maximizes MN and consequently must satisfy the

O tltq(s) .] 1l2! LR J .
aS.

In fact, §N almost surely eventually is the only solution of the equations

with length less than p because with probability one, for sufficiently
large N J+1 patterns with linearly independent g's will be sampled,

and this implies that the Hessian matrix evaluated at |s| < p
N
8% My(s) = -2'[ =

*
(u) ]2
a=1 a

* T % -2
ﬁ(ua)ﬂ (ua) Pn + Zs

is definite .

The asymptotic distribution of #,_, is obtained with Taylor’'s formula

N
applied to the gradient of M

N -
IV.2 (Asymptotic distribution of the maximum likelihood estimate). Let
zl, e zJ be any orthonormal basis for Nul(B8) and 2Z =
[zl, cen zJ] . If the ability distribution is regular then *N

converges in_distribution to

1/2

n + N Zn
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where n is multinormal with zero mean and covariance matrix

z'12) "}
Proof: Since §N = ZT(%N - x) 1implies that Z§N = %N - « , the theorem can
be proven by showing that N1/2§N converges in distribution to multinormal
n . This will be done by showing that for any non-zero J-vector t , the
172

random variable N t~§N is asymptotically normal with mean zero and

variance tT(ZTIZ)'lt
Each component of the gradient of MN

N
) * .-1 * k
8sk MN(s) _afllP"+Zs(u )] B(ua)-z k=1, ... J

a

is defined and has continuous partial derivatives of order two for |[s]| < p.

Thus when |sN| is less than p there will be some N,k 0<6N’k<1 '

such that for each k<J

1 82 3

0 - 5o s, N (® 25 as MN(O) Nit2 Y [§ 35,05, 35 N My Cen, 18y, 515, 1

% 1 53

3 1 A on aa
" 3s, WO 2 35,95, MO * 3 2 555535, Mlon W%, 5 ons
i ik j ik

In matrix notation

2 1 A
0= aMN(O) + [8 MN(O) + 2 CN]sN
and
1,2 11,., _1
[- N a MN(O) "N 2 CN] sN N aMN (0)

The right hand side of the last equation, being a mean of independent,
identically distributed random vectors with zero expectation and covariance
. T . . . . .
matrix Z2°IZ , is asymptotically normal with expectation 0 and covariance

-1/2,

matrix ZTIZ/N . Thus N MN (0) 1is asymptotically normal with mean

. . T . .
zero and covariance matrix 2°IZ . Since the summands in
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N

1.2 1 * -2 T , % * T
-5 9 MN(O) =N (aEI[P”(ua)] Z B(ua)ﬂ(ua) Z)
1

are independent and identically distributed, - X 82MN(0) converges almost

surely to the non-singular matrix of expected values

21’1

B2 () 2 a0 2] = = (e ()] 2 sz
V-

- ZTIZ .

The kth row and ith column of CN is
a3
2 353595, Wl Sn,j
J LTIk
N

= 3 [P
a=l

-3

> * k * i % A
RO I (TOWIES | PR | IOWICEN
N,k™°N

Since §N converges almost surely to zero and the probabilities are bounded

away from zero, the matrix N-lc converges almost surely to a matrix of

N

zeros, Consequently the matrix D

N
1.2 11
Dy = -y 9 My(0) -y 3 Oy
converges almost surely to non-singular ZTIZ . Thus with robability one
DN is eventually non-singular and eventually both
A 'l '1
Sy = Dy [N TaM(0)]
and
1/2 Ta T.-1,,.-1/2
NYCeT8y = 7D TN %A (0)]
T.-1 . R .
t'D , if D,, is non-singular
T N N

Let YN =17

0 , otherwise
and Xg = n-1/2 M (0) so that YEXN almost surely eventually equals
Nl/zt-ﬁN . If it can be shown that Yng converges in distribution to
tT(ZTIZ)'lx where X 1is multivariate normal with covariance matrix ZTIZ
then it follows that YEXN and Nl/th§N are asymptotically normal with
variance tT(ZTIZ)-l(ZTIZ)[tT(ZTIZ)-]']T = tT(ZTIZ)-lt , and the proof will

T .T,T T .T,T

12)"Y =P 0T . since

be complete. YN-t ¢ IZ)-1 =§g;=> 0T $0 YN-t ¢/
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X, converges in distribution, [YT- tT(ZTIZ)'l]X >0 and =f=> 0 .

N N
Finally, since t (z'12) ', —S=> ¢'(z'12)"'x ,

T.,T,,T

LTz 12)'1]xN - tT(zTIZ)‘lxN d

YEXN = [Y > tT(zTIZ)'lx . //
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