. - o

D

‘_'ﬂm.4
y 4

AD-A218 464

JSECURITY CLASSIFICATION OF THIS PAGE (WhenDate Entered)

REPORT DOCUMENTATION PAGE

@'-Hﬁ
TPy
READ DNSTRUCTIONS
BEFYORE COMP_ETEING FORV

1. REPORT NUMBER {2. 60VT ACCESSION NO.

3. RECIPIENT'S CATALOG MUmBER

4. TITLE (andSubtitie)

Ada Compiler Vajidatign Supmary ReRors fontrol

CYBER 932 (target), 890901S1.10147

S. TYypt OF REPORT & PERIOD COVERED
1 Sept.89 - 12 Dec 90

6. ".IFORIING_WRG. REPORT WUMBER

7. AUTNOR(s)

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

8. CONTRACT OR GRANT NUMBER(S)
—

9. PERFORMING ORGANIZATION AND ADDRESS

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

10. PROGRAM ELEMENT, PRCJIECT, TASK
AREA & WORK UNIT MUMEERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Ada Joint Program Office

United States Department of Defense
Washington, DC 20301-3081

12. REPORT DATE

FTI.WOMGER UF PAGES

14. MONITORING AGENCY NAME & ADDRESS(if different from Controliing Office)

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

15, SECURITY CLASS (of thisreport)
UNCLASSIFIED

15as. gEEkB&S“EEFICATIOMDOU\GRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

UNCLASSIFIED

17. DISTRIBUTION STATEMENT (of the abstractentered inBiock 20 If o.fferent from Report)

DPTIC_

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue onreverse side if necessary and identify by block number)

~1815A, Ada Joint Program Office, AJPO
; N

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility,

\T{\‘Vi},. LNSE /M1 L-STD-,/

gy

20. ABSTRACT (Continue onreverse side if necessary and dent:fy by block number)

Cortrol Data Corporation, ADA/VE, Ver 1.3, National Institute of Standards and
Technology, CYBER 932 under NOS/VE level 727 (host & target), ACVC 1.10

U
$ Jan 73

DD 1473 EDITION OF 1 WOV 65 1S OBSOLETE

S/N 0102-LF-034-8601

UNCLASSIFIED

SLCURITY CLASSIFICATION OF TNMIS PAGEL (When Dats Entered)

AVF Control Number: NIST89CDC540_1.10
14 December 1989

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890901S1.10147
Control Data Corporation
ADA/VE, Ver 1.3
CYBER 932 Host and CYBER 932 Target

Completion of On-Site Testing:
1 September 1989

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

90 0OF

) N - c"} ?

. " -

A

SRGINN, TR T TP - - A SUA . S

Ada Compiler Validation Summary Report:

Compiler Name: ADA/VE, Ver 1.3

Certificaze Nugmber:

Host: CY3ER 932

CYBER 932

under NOS/VE level

under NOS,/VE leval

890%01S1.10147

727

727

Testing Completed 1 September 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ry

da Validation’ adélity
Dr. David K. Jeffetrsén
Chief, Information Systems
Engineering Division
National Computer Systems
Laboratory (NCSL)
National Institute of
Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

\

Ada Joint Program Office
MR. John Solomond
Director

Department of Defense
Washington DC 20301

. 45 / /T /

Nt) S

Ada Validation Facility

Mr. L. Arnold Jdhnson

Manager, Software-Standards
Validation Group

National Computer Systems
Laboratory (NCSL)

National Institute of
Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

SECZ WRTe ol Shan [%

CHAPTER 1

e
O R

CHAPTER 2
2.1
2.2

CHAPTER 3

WWLWWWwLbWwLwWwww

APPENDIX

o

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

NN NNV SN

w N =

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
USE OF THIS VALIDATION SUMMARY REPORT B N A
REFERENCES . . . B
DEFINITION OF TERMS 1-3
ACVC TEST CLASSES 1-4

CONFIGURATION INFORMATION

CONFIGURATION TESTED . . e e e e e s s 2-1
IMPLEMENTATION CHARACTERISTICS e

TEST INFORMATION

TEST RESULTS 3-1
SUMMARY OF TEST RESULTS BY CLASS . 3-1
SUMMARY OF TEST RESULTS BY CHAPTER . . 3-2
WITHDRAWN TESTS . 3-2
INAPPLICABLE TESTS . . 3-2
TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-7
ADDITIONAL TESTING INFORMATION . 3-7
Prevalidation 3-7
Test Method . 3-8
Test Site . 3-8
CONFORMANCE STATEMENT
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS
WITHDRAWN TESTS Accession Por
NTIS GRAXI ?,a
COMPILER OPTIONS AS SUPPLIED BY ETIC TAB g
Control Data Corporation nannounced O
Justification _ |
By
| Distribution/

Availability Codes
“lAvail and/or
Dist Specisal

el
]

e o AR . AL, . RTINS . S M SOEDEE A o AR . L W GG GRS B SCD O I ERSOATED ARG SIS P SVRPVDC RS .. ‘G ON WIS S@v
.

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent .to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation pr
dependencies--for example, the maximum length of identifiers or the ek
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies.®All the depéndencies observed
during the process of testing thisVcompiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure
conformity of the compiler to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted by
the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.e 4 S LA e A

(P gk e S I £

\ ~Na ~— [

1-1

¢ 2O & -.a . gl ARG AU G . DA . O W B AP QUG G @ APES . SSPs ¢ _AvEar. FICBEEEITECIENS wgir e ne e ems AR @ g oSNy Siuns A
N

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by GEMMA Corp. under the direction
of the AVF according to procedures established by the Ada Joint Program
Office and administered by the Ada Validation Organization (AVO). On-site
testing was completed 1 September 1989 at Control Data Corporation.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

National Computer Systems Laboratory
National Institue of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

* S ohwre.

e .. Coms KW P

- v A IS CE G Gt BP ADREEND ..+ G A SR VTP SO B G APPBE » AV BEEES. . TG BS e om Sun

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,‘
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers’ Guide, SofTech,

Inc.,

December 1986.

4, Ada Compiler Validation Capability User’s Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada

Ada Standard
Applicant

AVF

AVO

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique
identification number having the form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting wvalidation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and

Guidelines.

The Ada Validation 2rganization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

—— |

.

r.-... 5 aeedT

(L. O QDG L SIS A 9 T AN GVMMER™ Vi " Cp TR BN AR - S G D G BB P G BV Y BPID. GO TEPCE AR .. . W o U . P

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler. '

Test A program that checks a compiler’s conformity regarding

a particular feature or a combination of features to the
Ada Standard. 1In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
!dentifies the class to which it belongs. <Class A, C, D, and E tests are
executable, and special program units are used to report their results
during execution. Class B tests are expected to produce compilation
errors. Class L tests are expected to produce errors because of the way
in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified at
run time. There are no explicit program components in a Class A test to
check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the

1-4

v - DI ScAE BA. NP MWD T GNP S D G- SUNANP: . T A S . L @ S .8 s .POS O S CRBBES .. & WG & T CHS LD @ S .. -

program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are nho capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error message
before any declarations in the main program or any units referenced by
the main program are elaborated. In some cases, an implementation may
legitimately detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECK_FILE is used to check the contents of text files written by some of
the Class C tests for Chapter 14 of the Ada Standard. The operation of
REPORT and CHECK_FILE is checked by a set of executable tests. These

1-5

B Pae . _.gn Sa A AN . S GEvews Dok & S e . W S BE B IO O SEGPEE S e A Pe 4 GNP MW TS e © egy -SDEmS END . GEmE

tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A

list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is wvalidated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of this validation are given
in Appendix D.

1-6

v wo . WR CE G GED e P s BB .o WG GBI 1S G PENG S S ¢ A CHP GNP WCh.. g W s ANGRE S8 W O CuP TR SRR W 8T GRS

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: ADA/VE, Ver 1.3
ACVC Version: 1.10
Certificate Number: 89090181.10147

Host Computer:
Machine: CYBER 932
Operating System: NOS/VE level 727

Memory Size: 64 MB

Target Computer:
Machine: CYBER 932
Operating System: NOS/VE level 727

Memory Size: 64 MB

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for

such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

2-1

i R BT W e M AP ERRRYS . - . BN Do . . WA <. S oW
.

- . un. - G . - e ey SWPRVSe OIVB-- wu“.‘-ml

Capacities.

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests conﬁ;ining block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005SE..G (3 tests).)

Predefined types.

(1) This implementation supports the additional predefined type
LONG_FLOAT in the package STANDARD. (See tests B86001T..Z
(7 tests).)

Expression evaluation,

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the language.
While the ACVC tests do not specifically attempt to determine
the order of evaluation of expressions, test results indicate
the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component’s subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C357123.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
€35903A.)

(4) NUMERIC_ERROR is raised when an integer literal operand in
'a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a

fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

2-2

(6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)

Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attenpt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A... (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See tast
C4A014A.)

Array types.

An implementation is allowed to raise NUMERIC_ERRCOR or
CONSTRAINT_ERROR for an array having a ‘LENGTH that exceeds
STANDARD . INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises NUMERIC_ERROR.
(See test C36003A.)

(2) CONSTRAINT_ERROR) 1is raised when 'LENGTH is applied to an
array type with INTEGER'’LAST + 2 components. (See test
C36202A.)

(3) CONSTRAINT_ERROR is raised when 'LENGTH is applied to an
array type with SYSTEM.MAX INT + 2 components. (See test
C36202B.)

(4)° A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises CONSTRAINT_ERROR when the array type 1is
declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT_ERROR when the
array objects are declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERRCR or CONSTRAINT_ERROR
either when declared or assigned. Alternatively, an

2-3

(7>

(8)

implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises CONSTRAINT ERROR when the array type
is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression’s subtype is
compatible with the target’'s subtype. (See test C52013a.,

Discriminated types.

(L

In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINT_ERROR 1is raised when checking whether the
expression’s subtype is compatible with the target's
subtype. (See test C520134A.)

Aggregates.

(L)

(2)

(3

In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONSTRAINT_ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate
does not belong to an index subtype. , (See test E43211B.)

Pragmas.

(L)

The pragma INLINE is supported for functions or procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

Generics.

(L)

Generic specifications and bodies cannot be compiled in
separate compilations. (See tests CAl012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2-4

(2)

(3)

(4)

(3)

(6)

(7)

(8)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011lA.)

Generic subprogram declarations and bodies cannot be
compiled in separate compilations. (See tests CAlOl2A and
CA2009F.)

Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAl0l2A.)

Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

Input and output.

(L)

(2)

(3)

(4)

(3)

(6)

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

The package DIRECT IO cannot be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H,
EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests),
CE2102R, CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for
SEQUENTIAL IO. (See tests CE2102G and CE2102X.)

2-5

(7

(8)

(9)

(10)

(11)

(12)

(13)

RESET and DELETE operations are supported for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

Temporary sequential files are not given names and not
deleted when closed. (See test CE2108A.)

Temporary direct files are not given names and not deleted
when closed. (See test CE2108C.)

Temporary text files are not given names and not deleted
when closed)}. (See test CE3112A.)

Only one internal file can be associated with each external
file for sequential files when writing or reading. (See

. tests CE2107A..E (5 tests), CE2102L, CE2110B, and CE2111D.)

(14)

(15)

Only one internal file can be associated‘with each external
file for direct files when writing or reading. (See tests
CE2107F..H (3 tests), CE2110D and CE2111H.)

Only one internal file can be associated with each external
file for text files when writing or reading. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

2-6

CHAPTER 3
TEST INFORMATION
3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 399 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 19
executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for 102 tests were required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L

Passed 120 1127 1943 17 21 46 3274

Inapplicable 9 11 1372 0 7 0 399

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 3 6 7 8 9 10 _11 _12 _13 _14&4

Passed 195 636 644 242 172 99 158 331 135 36 251 100 275 3274
Inapplicable 17 13 36 6 0 0 8 1 2 0 1.269 46 399
Wdrn 1 1 o o o o O 2 0 O 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E <97116A BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15B (CD2B15C (CD2D11B CD5007B CD50110
CD7105A- CD7203B (CD7204B CD7205C CD7205D CE21071
CE3111C CE3301A CE3411B E28005C ED7004B ED7005C
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A test
that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 399
tests were inapplicable for the reasons indicated:

C24113I..X (16 tests) are not applicable because the length of the
input file exceeds 132 characters.

3-2

The following 19 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113Y (1 test) C35705Y (1 test)
C35706Y (1 test) C35707Y (1 test)
C35708Y (1 test) C35802Y..Z (2 tests)
C45241Y (1 test) C45321Y (1 test)
C45421Y (1 test) C45521Y..2 (2 tests)
C45524Y. .2 (2 tests) C45621Y..2 (2 tests)
C45641Y (1 test) C46012Y..Z (2 tests)

The following 170 tests are not applicable because ’'SIZE
representation clauses are not supported:

A39005B C87B62A CD1009A..1I (9 tests)
CD10090..Q (3 tests) cDhlc03a CD1c04A
CD2A21A. .E (5 tests) CD2A22A..J (10 tests)
CD2A23A..E (5 tests) CD2A24A..J (10 tests)
CD2A31A..D (4 tests) CD2A32A..J (10 tests)
CD2A41A. .E (5 tests) CD2A42A..J (10 tests)
CD2A51A. .E (5 tests) CD2A52A..D (4 tests)
CD2A52G..J (4 tests) CD2AS53A..E (5 tests)
CD2AS54A..D (4 tests) CD2A54G..J (4 tests)
CD2A61A..L (12 tests) CD2A62A..C (3 tests)
CD2A64A..D (4 tests) CD2A65A..D (4 tests)
CD2A71A..D (4 tests) CD2A72A..D (4 tests)
CD2A74A..D (4 testS) CD2A75A..D (4 tests)
CD2A81A. .E (5 tests) CD2AS81F

CD2A83A..C (3 tests) CD2A83E..F (2 tests)
CD2A84B..1I (8 tests) CD2A84K..L (2 tests)
Cch2A87A CD2A91A..E (5 tests)
ED2A26A ED2AS6A ED2A86A

The following 7 tests are not supported because 'SMALL
representation clauses are not supported:

A39005E C87B62C CD10OSL CD1CO3F CDlco4cC CD2D11A
CD2D13A

C355081, €35508J, C35508M, and C35508N are not applicable because
they include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE => 0, TRUE
=> 1). Under the terms of AI-00325, this implementation is not
required to support such representation clauses.

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT_INTEGER:

3-3

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B BS2004E C55B0O7B B55B0O9D B86001V
CD7101E

The following 16 tests are not applicable because this
implementation does not support a predefined type
LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B0O7A B55B09C B86001W
CD7101F

C4A013B is not applicable because the evaluation of an expression
involving 'MACHINE _RADIX applied to the most precise floating-
point type would raise an exception; since the expression must be
static, it is rejected at compile time.

B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

B8600lY is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

The following 76 tests are not applicable because, for this
implementation, type SYSTEM.ADDRESS is a limited private type:

CD5003B..I (8 tests) CD5011A..1I (9 tests)

CDS011K. .M (4 tests) CD5011Q..S (3 tests)

CD5012A..J (10 tests) CD5012L..M (2 tests)

CD5013A..1 (9 tests) CD5013K..0 (5 tests)

CD5013R..S (2 tests) CD5014A..0 (15 tests)
CD5014R..Z (9 tests)

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

CA2009C is not applicable because this implementation does not
permit compilation of generic non-library package bodies as
subunits in separate files from their stubs.

CA2009F is not applicable because this implementation does not

permit compilation of generic non-library subprogram bodies as
subunits in separate files from their stubs.

3-4

BC3204C is not applicable because this implementation does not
permit compilation of generic library package bodies in files apart
from their specifications.

The following 17 tests are not applicable because no representation
clauses may be given for a derived type:

AD1CO4D AD3015C AD3015F AD3015H AD3015K
CD3015A CD3015B CD3015D CD3015E CD3015G
CD3015I CD3015J CD3015L CD4051A..D (4 tests)

AE2101C, EE2201D, and EE2201lE use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types
with discriminants without defaults. These instantiations are
rejected by this compiler.

AE2101H, EE2401D and EE2401G use instantiations of package DIRECT_IO
with unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this
compiler.

CE2102E is inapplicable because this implementation supports CREATE
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F is inapplicable because this implementation supports CREATE
with INOUT_FILE mode for DIRECT_IO.

CE2102J is inapplicable because this implementation supports CREATE
with OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN
with IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports OPEN
with OUT_FILE mode for SEQUENTIAL IO.

CE2102Q is inapplicable because this implementation supports RESET
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102R 1is inapplicable because this implementation supports OPEN
with INOUT_FILE mode for DIRECT_IO. -

CE21025 is inapplicable because this implementation supports RESET
with INOUT_FILE mode for DIRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN
with IN_FILE mode for DIRECT_IO.

3-5

CE2102U is inapplicable because this implementation supports RESET
with IN _FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports OPEN
with OUT_FILE mode for DIRECT_IO.

CE2102W is inapplicable because this implementation supports RESET
with OUT_FILE mode for DIRECT_IO.

CE2105A is inapplicable because CREATE with IN_FILE mode is not
supported by this implementation for SEQUENTIAL_IO.

CE2105B is inapplicable because CREATE with IN_FILE mode is not
supported by this implementation for DIRECT_IO.

CE2107A..H (8 tests), CE2107L, CE2110B, CE2110D, CE211l1D and
CE2111H are not applicable because multiple internal files cannot
be associated with the same external file for sequential files or
direct files. The proper exception is raised when multiple access
is attempted.

CE3102F is inapplicable because text file RESET is supported by
this implementation.

CE3102G is inapplicable because text file DELETE is supported by
this implementation.

CE3102I 1is inapplicable because text file CREATE with OUT_FILE mode
is supported by this implementation.

CE3102J 1is inapplicable because text file OPEN with IN_FILE mode is
supported by this implementation.

CE3102K is inapplicable because text file OPEN with OUT_FILE mode
is not supported by this implementation.

CE3109A is inapplicable because text file CREATE with IN_FILE mode
is not supported by this implementation.

CE3111A..B (2 tests), CE3111D..E (2 tests), CE3114B, and CE31153A
are not applicable because multiple internal files cannot be
assoclated with the same external file for text files. The proper
exception is raised when multiple access is attempted.

3-6

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 102 tests.
A STORAGE_SIZE clause was added to the following tests:

C34007A C34007D C34007G C€34007J C34007M C34007P
C34007S (C87B26B

The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B26001A B26002A B26005A B28001D B28003A
B29001A B2A003A B2A003C B2A003D B33102A B33102B
B33102C B33102D B33102E B33301B B35101A B37106A
B37301B B37302A B38003A B38003B B38009A B38009B
B51001A BS3009A BS54A01C BS54A01H B54A01J B54A01K
B55A01A B55A01C B55A01H B554011 B55A01N B55A010
B56001C BS6001E BS6001F B61001C B61001D B610COl1E
B61001F B61001H B61001I B6100IM B6100CIR B61001W
B66001C B67001H B67001J B67001K B91001A B91001C
B91002A B91002B B91002C B91002D B91002E B91002F
B91002G B91002H B91002I B91002J B91002K B91002L
B95030A B95061A B95061F B95061G B95077A B97101A
B97101E B97101G B97101H B97103E B97104G BAl1l01lB
BC1008A BCl0l6A BC1016B BC1109A BC1l109C BC1109D
BC1202A BC1202B BC1202E BC1202F BC1202G BC2001C
BC2001D BC2001E BC2004A BC3013A

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the ADA/VE compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3-7

3.7.2 Test Method

Testing of the ADA/VE compiler using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration in which
the testing was performed is described by the following designations of
hardware and software components:

Host computer: CYBER 932
Host operating system: NOS/VE level 727
Target computer: CYBER 932
Target operating system: NOS/VE level 727

A tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precision was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized on site. Tests requiring
modifications during the prevalidation testing were included in their
modified form on the tape. :

TEST INFORMATION
The contents of the tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the CYBER 932.

The compiler was tested using command scripts provided by Control Data
Corporation and reviewed by the validation team. The compiler was tested
using all default option settings. See Appendix E for a complete listing
of the compiler options for this implementation.

Tests were compiled, linked, and executed (as appropriate) using one host
computer and one target computer. Test output, compilation listings, and
job logs were captured on tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Control Data Corporation and was completed on 1
September 1989,

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

Control Data Corporation has submitted the following Declaration
of Conformance concerning the ADA/VE compiler.

Appendix A
DECLARATION OF CONFORMANCE (SAMPLE)
Compiler Impiementer: Control Data Corporation

Ada Validation Facility: NIST/NCSL
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: ADA/VE Version: 1.3

Host Architecture - ISA: CYRER 932 OS&VER #: NOS/VE level 727
Target Architecture - ISA: same QOS&VER #: same

Derived Compiler Registration

Derived Compiler Name: Version:
Host Architecture - ISA: OS&VER #:
Target Architecture - ISA: OS&VER #:

Implementer'’'s Declaration

I, the undersigned, representing Control D=ta Corporation
(herein referred to as CDC) have implemented nc deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that CDC is
the owner of record of the Ada language compiler(s) listed above
and, as such, is responsible for maintaining said compiler(s) 1in
conformance to ANSI/MIL-STD-1815A. A1l certificates and
registrations for Ada language compiler(s) listed in this

declaration shaTLé%;fgad Z:;}ﬁin the owner’'s corporate name.
é‘/ z 20T/

Owner's Declaration

I, the undersigned, representing CDC take full
responsibility for implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of
the final validation Summary Report. 1 further agree to continue
to comply with the Ada trademark policy, as defined by the Ada
Joint Program Office. I declare that all of the Ada language
compilers listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A. I
have reviewed the Validation Summary Report for the compiler(s)

and concur with the contents.
aé%fiiéfzaxégy Z03/88

This document is part of the validation Summary Report (VER),.
Appendix A, for initial validations and must be submitted for
each derived compiler registration during or subsequent to
initial validation.

A-1

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the ADA/VE, ver 1.3 ccrriler,
as described in this Appendix, are provided by Control Data Corporation.
Unless specifically noted otherwise, references in this appendix are to
compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F,
are:

package STANDARD is

type INTEGER is range -9223372036854775808 .. 9223372036854775807,;

type FLOAT is digits 13 range -16#7.FFFF_FFFF_FFF8E1023
16#7.FFFF_FFFF_FFFB8E1023;
type LONG_FLOAT is digits 28 range -
-16#7FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023 ..
16#7FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023;

type DURATION is delta 1.E-3 range -8.589934591999E09
8.589934591999E09;

end STANDARD;

B-1

.

Implementation-Dependent Characteristics F

This appendix summarizes the implementation-dependent characteristics of NOS/VE Ada
by listing the following:

e NOS/VE Ada pragmas

e NOS/VE Ada attributes

® Specification of the package SYSTEM

® Restrictions on representation clauses

e Conventions for implementation-generated niames denoting implementation-dependent
components

® Interpretation of expressions appearing in address clauses

® Restrictions on unchecked type conversions

¢ [mplementation-dependent characteristics of input-output packages

® Other implementation characteristics

Shading is not used in this appendix.

Revision A

Implementation-Dependent Characteristics F-1

e e

NOS/VE Ada Pragmas

: F.1 NOS/VE Ada Pragmas

NOS/VE Ada does not support all the pragmas required by the ANSI standard for Ada.
It does not provide any implementation defined pragmas.

NQS/VE Ada supports the following pragmas as described in the
ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming Language,
except as shown below:

e INLINE

This pragma causes inline expansion of a subroutine except as described in Annex
B of this manual. See 10.6 to see how to use INLINE to create faster object code.

e INTERFACE

This pragma is supported for FORTRAN, CYBIL, and the NOS/VE MATH
LIBRARY, as discussed in 13.9.1, 13.9.2, and 13.9.3, respectively.

e PACK
Objects of the given type are packed into the nearest 2**n bits.

e SHARED
This pragma is not allowed for the following types of variables:

- Variables of type LONG_FLOAT

- Variables of subtype of type LONG_FLOAT

= Variables of a type derived from type LONG_FLOAT

- Variables of a subtype derived from type LONG_FLOAT

e SUPPRESS

NOS/VE supports this pragma, but it is not possible to restrict the check
suppression to a specific object or type.

NOS/VE Ada does not support the following pragmas:
¢ CONTROLLED

¢ MEMORY_SIZE

e OPTIMIZE

e STORAGE_UNIT

¢ SYSTEM_NAME

F.2 NOS/VE Ada Attributes

NOS/VE Ada supports all the attributes required by the ANSI/MIL-STD-1815A-1983,
Reference Manual for the Ada Programming Language. It does not provide any
implementation defined attributes. The NOS/VE implementation of the PPADDRESS
attribute returns the prefix P, the 48-bit program virtual address (PVA) right justified
within a 64-bit variable of the predefined type INTEGER.

F-2 Ada for NOS/VE Reference Manual A Revision A

Specification of the Package SYSTEM

F.3 Specification of the Package SYSTEM
package SYSTEM is
type ADDRESS is access INTEGER;
type NAME is (CYBER180);
SYSTEM_NAME : constant NAME := CYBER180;
STORAGE_UNIT : constant := 64; - 64-bit machine
MIN_INT : constant := -9_223_372_036_854_775_808; —(-2**63)
MAX_INT : constant := 9_223_372_036_854_775_807; —(2**63)-1

MAX_DIGITS : constant ;= 28;

MAX_MANTISSA : constant := 63;

FINE_DELTA : constant := 2#1.0#E-63; -- 2**(-63)
TICK : constant := 0.001;

subtype PRIORITY is INTEGER range 0 .. 0,
end SYSTEM;

F.4 Restrictions on Representation Clauses

NOS/VE Ada implements representation clauses as required by the ANSI standard for
Ada. It does not allow representation clauses for a derived type.

NOS/VE Ada supports the type representation 'clauses with some restrictions:
¢ Length clauses

® Enumeration representation clauses

® Record representation clauses

NQOS/VE Ada does not support address clauses or interrupts.

F.4.1 Length Clauses
NOS/VE Ada supports the attributes in the length clauses as follows:

e TSIZE
Not supported

o T'STORAGE_SIZE (collection size)
Supported

® T'STORAGE_SIZE (task activation size)
Supported

Revision A Implementation-Dependent Characteristics F-3

Conventions for Implementation-Generated Names Denoting Implementation-Dependent

e TSMALL

Not supported. The compiler always chooses for SMALL the largest power of 2 not
greater than the delta in the fixed accuracy definition of the first named subtype of
a fixed point type.

For example, NOS/VE Ada uses the declaration:

type ADA_FIXED is delta 0.05 range 1.00 .. 3.00;

to set the ADA_FIXED'SMALL attribute to 0.03125 (275, the largest power of 2 not
greater than delta, 0.05).

F.4.2 Enumeration Clauses

In NOS/VE Ada enumeration representation clauses, the internal codes must be in the
range of the predefined type INTEGER.

F.4.3 Record Representation Clauses

NOS/VE Ada implements record representation clauses as required by the ANSI
language definition. It does not support alignment clauses in record representation
clauses.

The component clause of a record representation clause gives the storage place of a
component of the record, by providing the following pieces of data:

® The name gives the name of the record component.

® The simple expression following the reserved word AT gives the address in storage
units, relative to the beginning of the record, of the storage unit where the
component starts.

® The range in the component clause gives the bit positions, relative to that starting
storage unit, occupied by the record component.

NOS/VE Ada supports the range for only those record components of discrete type:
integer or enumeration. The range must specify 16 bits or fewer. Furthermore, if the
range specifies 8 or more bits, then the range must be a multiple of 8 bits.

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components

NOS/VE Ada does not support implementation-dependent names to be used in record
representation clauses.

F.6 Interpretation of Expressions Appearing in Address
Clauses

NOS/VE Ada does not support address clauses and interrupts.

F.7 Restrictions on Unchecked Type Conversions

NOS/VE Ada allows unchecked conversions when objects of the source and target types
have the same size.

F-4 Ada for NOS/VE Reference Manual Revision A

Input-Output Packages

F.8 Input-Output Packages

The discussion of NOS/VE Ada implementation of input-output packages includes the
following:

¢ External files and file objects
e NOS/VE Ada implemented exceptions for input-output errors

® Low level input-output

F.8.1 External Files and File Objects

NOS/VE Ada can process files created by another language processor as long as the
data types and file structures are compatible.

NOS/VE Ada characterizes an external file as described in the
ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming Language,
except as noted below:

® Name
(see 14.2.1)

e Form

Form strings have no effect on file processing in NOS/VE Ada. The FORM function
returns the string you provided in the CREATE or OPEN procedure call.

NOS/VE Ada supports the following kinds of external files:
® Sequential access files (see 14.1)
® Direct access files (see 14.1)

® Text input-output files (see 14.3)

F.8.2 Exceptions for Input-Output Errors

NOS/VE Ada raises the following language-defined exceptions for error conditions
detected during input-output operations:

¢ DATA_ERROR

e DEVICE_ERROR
e END_ERROR

e NAME_ERROR

& USE_ERROR

Revision A Impiementation-Dependent Charactenistics F-5

Input-Output Packages

The DATA_ERROR is raised when:
® An attempt is made to read a direct file with an index that has not been defined.

® A check reveals that the sizes of the records read from a file do not match the
sizes of the Ada variables. NOS/VE Ada performs this check except in those few
instances where it is too complicated to do so. NOS/VE Ada omits the check in
these cases, as permitted by the ANSI Ada language definition (see 14.2.2).

The END_ERROR is raised when:
An attempt is made to read a file beyond end_of_file.
The NAME_ERROR is raised when: _
The file name used in CREATE or OPEN is not a valid NOS/VE file name.
The USE_ERROR is raised when:
® The TEXT_IO package tries to process a file without the LIST attribute (see 14.3).
® The NAME function tries to operate on a temporary file (see 14.2.1).
® A file overflow condition exists.

® An attempt is made to delete an external direct file with multiple accesses while
more than one instance of open is still active. The file remains open and the
position is unchanged.

® An attempt is made to create a sequential, text, or direct file of mode IN_FILE.
¢ An attempt is made to create a file that currently exists.
® An attempt is made to process a text file that is longer than 511 characters.

® An attempt is made to set the page length to other than unbounded for a non-list
text file.

® An attempt is made to set line length to less than the current line length on an
OUT non-list text file.

® An attempt is made to issue a NEW_PAGE for a non-list text file.

F.8.3 Low Level Input-Output

As permitted by the ANSIUMIL-STD-1815A-1983, Reference Manual for the Ada
Programming Language Manual, NOS/VE Ada does not support the LOW_LEVEL_IO
package.

F48 Ada for NOS/'VE Reference Manual Revision A

—__—i

Other Implementation-Dependent Characteristics

F.9 Other Implementation-Dependent Characteristics

The other implementation-dependent characteristics of NOS/VE Ada are discussed as
follows:

Implementation features
Entity types

Tasking

Interface to other languages
Command interfaces

Values of data attributes

F.9.1 Implementation Features

The NOS/VE Ada implementation features are listed as follows:

Predefined types

Basic types

Compiler

Definition of a main program
TIME type

Machine code insertions

F.9.1.1 Predefined Types

NOS/VE Ada implements all the predefined types required by the
ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming Language,
except:

LONG_INTEGER
SHORT_FLOAT
SHORT_INTEGER

Revision A Implementation-Dependent Characteristics F.7

Other !mpiementation-Dependent Characteristics

F.9.1.2 Basic Types

The sizes of the basic types are as follows:

Type Size (bytes)
ENUMERATION 8
FIXED 8
FLOAT 8
INTEGER 8
LONG_FLOAT 16
TASK 8

In NOS/VE Ada, the enumeration type can be a boolean type or a character type as
well as a user defined enumeration type.

F.9.1.3 Compiler

NOS/VE Ada provides an ANSI standard Ada compiler. The discussion of this compiler
contains two types of information:

® The physical realization of the compiler

® Performance hints

F.9.1.3.1 Physical Realization of the Compiler

The NOS/VE Ada compiler supports the followipg:

® Source code lines up to 132 characters long

e Up to 100 static levels of nesting of blocks and/or subprograms

® External files up to one segment, 2**31-1 bytes, in length

® Compiling a generic package body that is a library unit, if both the body and the
declaration of its generic package are in the same file input to the NOS/VE Ada

compiler

® Compiling as a subunit a generic package body that is a secondary unit, if both the
body and the declaration of its generic package are in the same file input to the
NOS/VE Ada compiler

® Compiling as a subunit a generic subprogram body that is a secondary unit, if both

the body and the declaration of its generic subprogram are in the same file input to
the NOS/VE Ada compiler

F-8 Ada for NOS/VE Reference Manual ‘ Revision A

Other Implementation-Dependent Characteristics

For Better Performance

The compiler throughput improves when you submit multiple compilation units.
However, if the number of compilation units grows over a certain limit, for example 50
small compilation units of about 50 lines each, or if the first compiiation units are
large, the throughput actually degrades.

Using the INLINE pragma, where applicable, results in faster object code by avoiding
the call/return instructions.

F.9.1.4 Definition of a Main Program

NOS/VE Ada requires that the main program be a procedure without parameters. The
name of a compilation unit used as a main program must follow SCL naming
standards. The name can be up to 31 characters in length and must be a valid SCL
name and a valid Ada identifier. Any naming error is detected at link time only. For
more details about naming the main program, see the Ada for NOS/VE Usage manual.

F.9.1.5 TIME Type

NOS/VE Ada defines the type TIME as an integer representing the Julian date in
milliseconds.

F.9.1.6 Machine Code Insertions

As permitted by the ANSI Ada language definition, NOS/VE Ada does not support
machine code insertions.

F.9.2 Entity Types

This discussion contains information on:
® Array types

® Record types

® Access types

F.9.2.1 Array Types
Arrays are stored row wise, that is, the last index changes the fastest.

An array has a type descriptor that NOS/VE Ada uses ~hen the array is one of the
following:

¢ A component of a record with discriminants
® Passed as a parameter

® C(Created by an allocator

Revision A Impiementation-Dependent Characterisucs F-9

_

Other Implementation-Dependent Characteristics

For each index, NOS/VE Ada builds the following triplet:

LOWER BOUND

UPPER BOUND

ELEMENT SIZE

=+ - r—t

+ — 4+ — + — +

For multi-dimension arrays, NOS/VE Ada allocates the triplets consecutively.

Element size is expressed in number of storage units (64-bit words). If the array is
packed, the element size is expressed in number of bits and represented by a negative
value. ’

NOS/VE Ada strings are packed arrays of characters. Each component of the array is
an 8-bit (1-byte) character. Packed arrays of booleans use 1 bit per component and are
left justified. Arrays of integers or enumeration variables can also be packed. Each
component uses n bits. Thus, the integer or enumeration subtype is in the range
-2**n .. (2**n)-1.

Note that all objects start on a storage unit (64-bit word) boundary.

At run-time when M7 .T J/E Ada elaborates an array definition, the amount of available
space remaining eit: .: on the stack or in the heap limits the maximum size of the
array (see 3.6).

F.9.2.2 Pecord Types

At run-time when NOS/VE Ada elaborates a record definition, the amount of available
space remaining either on the stack or in the heap limits the maximum size of the
record (see 3.7).

NOS/VE Ada raises the exception STORAGE_ERROR at run-time when the size of an
elaborated object exceeds the amount of available space.

The rest of this discussion on how records are stored includes:
® Simple record types (without discriminants)

® Record types with discriminants

F.9.2.2.1 Simple Record Types (Without Discriminants)

In the absence of representation clauses, each record component is word aligned.
NOS/VE Ada stores the record components in the order they are declared.

A fixed size array (lower and upper bounds are constants) is stored within the record.
Otherwise, the array is stored elsewhere in the heap, and is replaced by a pointer to
the array value (first element of the array) in the record.

F-10 Ada for NOS/VE Reference Manual Revision A

“

. Other Impiementation-Dependent Characteristics

F.9.2.2.2 Record Types With Discriminants

The discriminants are stored first, followed by all the other components as described
for simple records.

If a record component is an array with index values that depend on the value of the
discriminant(s), the array and its descriptor are both allocated on the heap. They are
replaced by a pair of pointers in the record. One points to the array value and the
other points to the array descriptor.

F.9.2.3 Access Types

Objects of access type are simply 6-byte pointers, left justified within a word, to the
accessed data contained in some allocated area in the heap. If the accessed data is of
type array or packed array, the allocated area also contains the address of the array
descriptor in front of the data.

F.9.3 Tasking

NOS/VE Ada supports tasking by running all Ada tasks as NOS/VE concurrent
procedures. The standard NOS/VE scheduling mechanism schedules the Ada tasks.
NOS/VE Ada can run at least 7 active concurrent tasks. If you wish to run more than
7 active concurrent tasks, ask your site administrator to change your site’s TASK _
LIMIT accordingly. The NOS/VE ANSI standard Ada compiler does not detect task
termination. See the Ada for NOS/VE Usage manual for more description of NOS/VE
Ada tasking.

F.9.4 Interface to Other Languages

NOS/VE Ada supports calls to CYBIL and FORTRAN subprograms and to NOS/VE
MATH_LIBRARY subroutines with the following restrictions:

e CYBIL interface
(See 13.9.1 and the Ada for NOS/VE Usage manual.)

® FORTRAN interface
(See 13.9.2 and the Ada for NOS/VE Usage manual.)

e MATH_LIBRARY interface
(See 13.9.3 and the Ada for NOS/VE Usage manual.)
F.9.5 Command Interfaces
The discussion of the command interfaces implemented by NOS/VE Ada inciudes:
® Program Library Utility commands
® Compiler command
® Linker command
® Execution commands

NOS/VE Ada commands use the syntax and language elements for parameters
described in the SCL Language Definition manual.

Revision A Implementation-Dependent Characteristics F-11

Other Implementation-Dependent Characteristics

F.9.5.1 Program Library Utility Commands

NOS/VE Ada provides a hierarchically structured (tree structure) Program Library to
fuifill the ANSI Ada language definition requirements. A node (sublibrary) in the tree
can reference up to 4096 compilation units or other sublibraries. The Ada for NOS/VE
Usage manual contains a detailed discussion of the NOS/VE Ada implementation of the
Program Library.

F.9.5.2 Compiler Command

The NOS/VE Ada compiler can compile an ANSI standard Ada program on NOS/VE.
See the Ada for NOS/VE Usage manual to learn how to use the NOS/VE Ada compiler
command.

F.9.5.3 Linker Command
NOS/VE Ada provides a linker to link an Ada program.

The Ada for NOS/VE Usage manual tells more about the linker command and its use.

F.9.5.4 Execution Command

NOQS/VE Ada for NOS/VE provides several ways to load and execute an Ada program.
They are described in the following manuals:

® Ada for NOS/VE Usage
® CYBIL System Interface Usage
¢ SCL Object Code Management Usage

F.9.6 Values of Data Attributes

The package STANDARD contains the declaration of the following predefined types and
their attributes:

® Integer (INTEGER)

® Floating point (FLOAT)

® Long floating point (LONG_FLOAT)
® Fixed point (FIXED)

® Duration (DURATION)

F-12 Ada for NOS/VE Reference Manual Revision A

]

F.9.6.1 Values of Integer Attributes

Attribute Value

FIRST -9_.223_372_036_854_775_808
LAST 9.223_372_036_854_775_807
SIZE 64

F.9.6.2 Values of Floating Point Attributes

Other Implementation-Dependent Characteristics

Attribute Value
DIGITS 13
EPSILON 5.6.843_419_061#E-14
FIRST -16#7.FFFF_FFFF_FFF8#E1023
LAST 16#7.FFFF_FFFF_FFF8#E1023
MACHINE _EMAX 4095 |

-4096

MACHINE_EMIN
MACHINE_MANTISSA 48

MACHINE_OVERFLOWS TRUE
MACHINE_RADIX 2
MACHINE_ROUNDS FALSE
SAFE_EMAX 4095
SAFE_LARGE

SAFE_SMALL™ 16#1.0#E-1024

SIZE 64

Revision A

16#7.FFFF_FFFF_FFC#E1023

[mpiementation-Dependent Characteristics F-13

Other Implementation-Dependent Characteristics

F.9.6.3 Values of Long Floating Point Attributes

Attribute Value

DIGITS 28

FIRST -16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023
LAST 16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF8#E1023
MACHINE_EMAX 4095

MACHINE_EMIN -4096

MACHINE _MANTISSA 96
MACHINE_OVERFLOWS TRUE

MACHINE_RADIX 2

MACHINE_ROUNDS FALSE

SAFE_EMAX 4095

SAFE_LARGE 16#7.FFFF_FFFF_FFFF_FFFF_FFFF_FFF#E1023
SAFE_SMALL 16#1.0#E-1024

SIZE 128

F.9.6.4 Values of Fixed Point Attributes

Attribute Value

FIRST -9_223_372_036_854_775_808 (SMALL=1)
LAST 9_223_372_036_854_775_807 (SMALL=1)
MACHINE_ROUNDS FALSE

MACHINE_OVERFLOWS TRUE
SIZE 64

F-14 Ada for NOS/VE Reference Manua) Revision A

Other Impiementation-Dependent Characteristics

F.9.6.5 Values of Duration Attributes

Attribute Value

FIRST -6.279_897_600.0
LAST 6-.279_..897_600.0
DELTA 0.001
MACHINE_ROUNDS FALSE

MACHINE_OVERFLOWS TRUE

SMALL 2#1.0#E-10
SMALL_POWER -10
SIZE 64

Revision A Implementation-Dependent Characteristics F-15

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST in
its file name. Actual values to be substituted are represented by names
that begin with a dollar sign. A value must be substituted for each of

these names before the test is run. The values used for this wvalidation
are given below.

c-1

Annav T nf the Prae-VYalidation Letter

Earamatars

for TST-tests

This annex

the ACVC 1.10 validation suite with the

tests are parameterized to accept certain

dependent values.

The following values have been substituted for the parameters in

tha TST orcgrams:

™1 ->
In2 ->
Ina ->
-5
=>
->
->
->
->
->

A 1A A A
(D (D (D (D
4
HEASEDED)

$8TG_INT_LIT
¢8TG _PEAL_LIT
$31G_STRINGT
$BIG_STRING2
$2LANKS
SCOUNT_LAST
SFIELD_LAST ->
SFTLE_NAME_WITH_BAD_CHARACTERS -5
$CTLE_NAME_WITH_WILD_CARD_CHARACTERS ->

$2RSATER_THAN_DURATICN
€GREATER_THAN_DURATION_BASE_LAST
STLLEGAL_EXTERNAL_FILE_NAME1
$ILLEGAL_EXTERNAL_FILE_NAME2

->
->
->

¢INTEGER_FIRST
€TNTEGER_LAST
$INTEGER_LAST_PLUS_1
$LESS_THAN_DURATION
€LESS_THAN_DURATION_BASE_FIRST
¢MaX_DIGITS

EMAY_IN_LEN

SMAY_INT

$MAX_INT_PLUS_1
$MAX_LEN_INT_BASED_LITERAL
SMAY_|EN_REAL_BASED_LITERAL
emax_STRING_LITERAL

SMIN_INT

ENAME

$NEG_BASED_INT
¢HON_ASCIT_CHAR_TYPE

->
->
-2
->

->
->
->
->
->
->
->
->
->
-
->

describes the changes CCC has made

in the subset cf
type ".TST". The TST-
implementation

<131 X "A">1
<131 X "A">2

(65 X "A">3¢EH5 X "A™>
<B5 X "A">4¢66 X "A">
<129 X "“0"»298

<126 X "0">69.0F1

66 X "A">

{65 X "A">1

<112 X * "™
9223372036854775807
67

BAD_CHARS "#.%!X
This_File_Name_Has_
To_Be_Too_Long_Wild_
Card_rhar_Do_Not_Exist
100000000.0
7000000000.0
BADCHARS"@. ™!
MUCH_TOO_LONG_NAME_
FOR_A_VE_FILE
-9223372036854775808
9223372036854775807
9223372036854775808
-100000000.0
-7000000000.0

28

132
9223372036854775807
9223372036854775808 -
2#¢127 X "0">114#
16#¢125 X "O0">F.E#
"¢130 X “"A™>"

~9223372026854775808
DOES_NOT_EXIST
8#1¢20 X "7">6#
(NON=-NULL)

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement contains
a null statement at the place of a selective wait alternative (line 31).

C97116A

This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implementation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING_OF_THE_GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B

This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality need
not be detected until execution is attempted (line 95).

CD2a62D
This test wrongly requires that an array object’'s size be no greater than
10 although its subtype’s size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]

These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9
ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110
These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is

not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

D-1

CD2B15C & CD7205C

These tests expect that a 'STORAGE_SIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2D11B

This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-Q0099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas;
the AVO withdraws these tests as being inappropriate for validation.

CD7105A

This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the ’'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D

This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task’s activation as though it were like
the specification of storage for a collection.

CE21071

This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA_ERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test objective is not considered valid. (line 90)

CE3111cC
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301Aa

This test contains several calls to END_OF_LINE & END_OF_PAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARD INPUT (lines 103, 107, 118, 132, & 136).

D-2

CE3411B

This test requires that a text file’s column number be set to COUNT'LAST
in order to check that LAYOUT ERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C

This test expects that the string "-- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-3

APPENDIX E
COMPILER OPTIONS AS SUPPLIED BY

Control Data Corporation

Compiler: ADA/VE, Ver 1.3
ACVC Version: 1.10
E-1

19

Arnex VII of the Prevalidation lLetter

Compiler Options Used

This annex describes the compiler options used in compiling the
ACVC 1.10 test suite.

The following parameters were used for compiling the ACVC test

suite:

Name
Name
Name
Name

of the
of the
of the
of the

source text file

program library that must always be specified
source listing file

error file

For all other cptions, the default values were used.

The following parameters were used for linking the ACVC tests:

- Name of the main program
- = Name of the program library that must always been
specified

For all other options, the default values were used.

The ACVC tests were loaded and executed through reference to the
binary file $LOCAL.LGO produced by default by the Linker. This
is a standard CYBER 180 feature.

