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INTRODUCTION

Multimode fibers are used in short-haul, medium bit-rate

applications where their large core diameters and numerical

apertures permit the use of light-emitting diodes as sources to

realize cost-effective optical systems. These fibers can guide

several hundred modes and achieve bandwidth-length products of a

few gigahertz-kilometer (references 1, 2, 3, and 4).

Because fiber-optical systems are not perfectly straight,

uniformly cylindrical waveguides, optical power launched in a

particular propagating mode does not necessarily remain in that

mode. Not only is the optical power scattered into nonpropagating

modes and ultimately lost to the system, but it is scattered

between propagating modes as it flows through the components of

the system. The characterization of this power flow is greatly

complicated by the fact that different modes experience different

group propagation delay and attenuation through each segment of

the system. Consequently, details of the modification of the

distribution of optical power among the propagating modes by a

component are important in determining the optical performance of

any subsequent fiber-optical component in the system. This

dependency is known as the concatenation effect and should be

considered in the specification, design, and maintenance of

multimode-fiber-optical systems.
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In this report, a transfer-matrix formalism for expressing the

effect of a component on the mode-power distribution is discussed.

It is expected that this formalism will serve to both clarify and

extend matrix approaches to the description of this effect that

have been presented by others and will ultimately result in

component loss characterization methods that are independent of

the launch conditions chosen to make the characterizatiui

(references 5, 6, 7, 8, 9, 10, 11, 12, and 13).

BASIC CONCEPTS

The mode-power distribution vector u specifies the power

propagating in each mode and is designated by an azimuthal and

radial mode-number pair. Consequently, a component can be

characterized by a matrix of scattering coefficients sij,kl giving

the scattering of power in each possible mode ukl at the input

into every possible mode u'ij at the output. For simplicity, it

is assumed that all modes propagate in the same direction in the

system, that is, reflected power is considered lost. The effect

of a component on the power flow can then be written as the matrix

product

K L
u'i'j = X X sij,kl ukl (1)

k=l1 1 1

where i = l,...,I and j = l,...,J, in which there are I x J

possible modes at the output and K x L possible modes at the

input.
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Because there are so many possible modes, the scattering

matrix, s, cannot be practically used to characterize a component.

Instead, a reduced-dimension-transfer matrix must be formed from

s. Let T be a transformation from the K x L valued mode-power

distribution, to an M valued reduced-dimension mode-power

distribution. That is, define

K L
Pm = Y X Tmkl ukl (2)

k= L 1 = 1

where m = 1,...,M, and p similarly in terms of T' and u° so that

M
pm = Mnm Pm (3)

m = 1

in which,

I U K L
Mnm = X I X X T n,ij sijkl T+kim (4)

= 1 j = k = 1 1 = 1 ' '

defines the reduced-dimension mode-power-transfer matrix. In this

definition, the transformation T+klm is the inverse of Tmkl in

some best-possible sense, that is, so that p° obtained from

equation 3 approximates T'u' if p is given by equation 2. Here,

the Moore-Penrose generalized inverse (see appendix A) will be

assumed.

Consider, as an example of dimension reduction, the

transformation from the full radial/azimuthal mode description to

the reduced-dimension fundamental-mode-number description in which

the LP modes are grouped according to a fundamental mode number

m = 21-1+k (references 1, 14, and 15). While the actual form of

the transformation needed to accomplish this reduction in

dimension is not necessarily specified, evidently there is very
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little error incurred in its use. Therefore, it must hold, in the

appropriate sense (appendix A), that

I J

j Tnij T'ij,m = 6nm (5)

as well as

M
X T+ij,m Tm,kl = 6 ij 6j1 (6)

M= 1

where 6ij is the Kronecker delta. In what follows, it will be

assumed that the fundamental mode groups of the linearly polarized

modes form the basis for further reduction in dimension. This is

appropriate for loss characterization because while these modes

may not be strongly coupled within a group (references 16 and 17),

they appear to be essentially monotonic with respect to loss, that

is, higher order modes are generally more attenuated than lower

order modes.

MODE-BLOCK REDUCTION

An explicit example of a transformation, T, that combines

fundamental-mode groups into mode blocks is the matrix

1 1...1 0 0...0 0 0...0...0 0...0
0 0...0 1 1 ...1 0 0...0...0 0...0 (7)

0 0...0 0 0...0 u 0...0...i i...i

where there are M rows, one for each block and N columns, one for

each fundamental-mode group, and, if the partition of the mode

groups is Nm in the mth mode block, the number of ones in the

diagonal non-zero partition of the mth row of T will be Nm. Here,
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the modes are all weighted either zero or one. By inspection, the

generalized inverse of this transformation, T+, is

I/N 1  0 ... 0
1/N1  0 ... 0

1/N1  0 ... 0
0 1/N2  ... 0
0 I/N 2  ... 0

0 1I/N 2  ... 0
o 0 ... 0 (8)
0 0 ... 0

0 0 ... 0
0 0 ... I/NM
0 0 ... I/NM

0 0 ... I/NM

where there are N rows and M columns, in which there are Nm

non-zero elements in the diagonal partition mth column.

The product TT + is the M by M identity matrix

1 0 ... 0
0 1 ... 0

(9)
00 .. 1

while the product TT is the N by N matrix

EI/N 1  0 ... 0
0 E 2/N 2  ... 0 (10)

0 0 ... EM/NM

in which Em is the Nm by Nm matrix of all ones

1l1...l1
llI...li (11)

1l1... i

Clearly, T+ satisfies the conditions to be the unique generalized

inverse of T and is, in the Frobinius norm, the matrix that makes

T+T closest to the N by N identity matrix (see appendix A).
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A generalization of mode-block reduction is to choose T so

that

N
n wn Tin Tjn = 6 ij (12)

with i,j=l,...,M. Consequently,

T+kl = wl Tlk (13)

with l,k=l,...,N. In this instance, TT + is again the M by M

identity matrix, and the N by N matrix T+T with elements

M
(T+T)ij = I wm Tmi Tmj (14)

M =1

is in general not the identity matrix unless M = N. This

extension amounts to taking the rows of T to be the first M

polynomials from an N dimensional set of discrete orthogonal

polynomials having a weight function wn°

These examples illustrate the result that when the

reduced-dimension transfer matrix for a concatenation of two

components is expressed in terms of the individual components in

the form

M 1 2 = M2 M 1  
(15)

which, by equation 4, can be rewritten as

M12 = T"s2 T'+ T' sl T+  (16)

it is not identical to the reduced-dimension transfer matrix for

the same system that would be formed directly from the product of

the two scattering matrices s2sl because of the presence of the

product T'+T, which, in general, is not an identity matrix.

Consequently, some error must always be expected if a system is

described in terms of the reduced-dimension transfer matrices of
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its components; however, the error will be minimal in the

Frobinius norm if T+ is taken to be the Moore-Penrose generalized

inverse of T (see appendix A).

CONTINUOUS MODE-POWER DISTRIBUTION

Measurement considerations prohibit the determination of even

the fundamental-mode-number distribution so that further

simplification of the mode distribution must be introduced. If

the propagating field intensity is axially symmetric and the

spectral width of the source 8) satisfies a minimum width

requirement, which for a parabolic index profile is

> 2(17)

A a k ngw

where X is the free-space wavelength, k is the free-space wave

number, A is the relative-refractive-index difference, a is the

core radius, and ngw is the effective-group index of refraction,

there will be many modes excited and they will be spaced more

closely than their spectral width. In this situation, the

mode-power distribution can be taken to be a continuous function

of a continuous mode parameter rather than a discrete function of

a discrete mode index (references 15 and 16). More important

here, there exists a relationship between the continuous

approximation to the mode-power distribution and the measurable

near-field pattern, I(p), on the end face of a fiber (references

16, 18, 19, 20, 21, 22, 23, and 24). This relationship takes
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different forms depending on the choice of mode parameter, so some

consideration of the mode parameter is necessary.

In the continuous approximation, it can be written that the

total power propagating W is

N
W X Pn = N pz(z)dz (18)

where Pn is the optical power in the nth fundamental-mode group, N

is the number of such mode groups, and pz(Z) is the continuous

approximation to the discrete distribution Pn" Here, z is the

continuous extension of the discrete parameter n normalized so

that 0 : z : 1 and chosen so that the modes have a uniform density

distribution N. Other choices for the continuous mode parameter,

for example, x:z=g(x), where g(0) = 0 and g(l) = 1 so that 0 xS

1, yield the generalization

W = ax(x) Px(x) dx (19)
0

where

Px(x) pz[g(x) ] (20)

and

g(x) ax(x)dx (21)

in which

N = J1 a(x)dx (22)
0

We shall call px(x) the ax(x)-density distribution corresponding

to the continuous mode parameter x=g-l(z). These transformed

descriptions of the mode distribution are all equivalent;

furthermore, even though the uniform density distribution seems to
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have a more natural physical interpretation in terms of the

discrete mode distribution, it is not the most useful because the

connection between a continuous mode-power distribution and the

emittance, I(p), on the face of the fiber has not been cast in

terms of the uniform-density distribution.

The relationship between I(p) and Px(X) shall be written here,

neglecting leaky modes, as

I(S) = Px(x)dx , s = p/a (23)

27ra 2 f(s)

where V is the normalized frequency, f(s) is the index of

refraction profile tacitly assumed here to be monotonic, and p is

the radial coordinate at the end face of the fiber. The

normalized frequency can be written

V = a k n(O) ,/ (24)

where n(O) is index of refraction at the center of the fiber core

and the index of refraction profile is defined by

n2 (s) = n2 (0) [1 - 2Af(s)] (25)

and the condition that 0 : f(s) :I.

By differentiating both sides of equation 23, an explicit

expression for px(x) is obtained
V2

I' (s) - PxLf(s)J f' (s) (26)2ra 2

This expression is the one generally used to determine the

mode-power distribution from measurements of the near-field

pattern (references 8, 18, 23, and 24). Because equation 26

involves the ratio of the derivatives of the two quantities I(s)
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and f(s) to determine px(X), the presence of noise or distortion

in the measurements of these quantities can introduce a large

uncertainty into px(X) particularly near extrema in f(s). An

alternative method using equation 23 directly will be presented

later in the section on experimental determination.

Another frequently occurring form for the relationship

between the I(p) and the mode distribution uses the parameter

y=,/- (references 12, 16, and 25). For this change of variable,

equation 23 yields
V2  1i

I(s) = - I y Py(y) dy (27)
ira2

and equation 26 takes the form

V2

I, (s) = Py [,/?fT- ] f(s) (28)
27ra

2

That neither x nor y is the uniform density parameter z can be

seen from the total power flow in the fiber, which can be written

in the case of x, for example, either as

W = 2ra2{ s I(s) ds (29)

or, by introducing equation 23 and changing the order of the s and

x integration, as
V2 11W - [f-l(x)] 2 Px dx (30)

2 0

from which it can be seen that the mode density corresponding to

the parameter x is
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V2

ax(s) - 2 [f-l(x ) ) 2  (31)

A more general example that is useful for computational

purposes is that of the power profile where f(s) = sa and g(y) =

yP. In this case,
I () 2 -1[

I(s) y- py(y) dy (32)

2ra2 Jsa/0

and

Vy(Y) 2 y1(l+2/a)-i (33)

Now it is seen that if P is chosen to have the value a = /(a+2),

then we have the uniform-density choice of the mode parameter,

that is, y = z with the uniform mode density

0V2 cz (34)
z= 2(a+2)

being the number of propagating modes N. The near-field pattern

is then given by

V2 a 1 z- 2 /( + 2 ) pz(Z) dz (35)

2ra2 (a+2)J sa+2

Consequently, we obtain for the uniform-density mode-power

distribution

PZ = 2ra2  z(l-a)/(2+a) I(s) (36)
V2a s = zl/(a+2)

The factor that appears in front of the integral in equation

23 may take different forms depending on the choice of units of

Px(X), which need not be power per mode as we have selected. See

equation 19, where ox(x) has the units of modes per unit
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continuum-mode parameter. For example, choosing units of

radiance, that is, W/cm 2 sr places quite a different physical

interpretation on Px(X), but nevertheless results in a density

function ax(x) having a squared dependence on the inverse profile

function just as in equation 31 (references 1 and 20). As will

become evident later, the essential feature of equation 23 is that

it is a linear relationship between I(s) and px(X).

MATRIX FORMALISM FOR THE CONTINUOUS MODE DISTRIBUTION

Just as in the discrete case, a matrix formalism related to

the measurable near-field patterns can now be introduced by

assuming there exists a linear relationship of the form

P'z(Z) = pz(z')hz(z',z) dz' (37)

where the primed and unprimed p designate, respectively, the

output and input mode-power distributions of the element, and the

kernel h(z',z) is a system response function that gives,

essentially, the fraction of the power propagating in the region

dz' about z' scattered into the region dz about z.

A matrix representation of h(z',z) is obtained by expanding

p'z(Z) and pz(z') in a suitable set of orthogonal functions

(On(Z)), where

J w(z) Oi(z) Oj(z) dz = 6ij (38)

6ij is the Kronecker delta, and w(z) is the weight function of the

set (01m(Z)). Thus,

12



Pz(Z) = X Cm om(Z) (39)
m=l

Pz(Z) I C'm m(Z) . (40)

Substituting equations 39 and 40 into equation 37, multiplying

both sides of the result by w(z) Or(Z), and integrating over z

yields upon application of equation 38

Cr = HrmCm, r = 1,2,... (41)
m~l

where

Hr,m = w(z)Or(z)[ { om(Z)h(z',z)dz' dz (42)
0 0

are the elements of the desired matrix representation of h(z',z).

Practically, the summations in equations 39 and 40 will have to be

truncated at some term N with the results that H will be an N by N

matrix approximation to h(z',z) and C' and c will be N by 1 matrix

(vector) approximations to p'z(Z) and pz(z), respectively. In

matrix notation, equation 41 becomes

H (43)

While the optical source can be represented by the vector c,

the representation of the photodetector requires the additional

assumption that the signal current j can be obtained by a simple

weighting of the mode-power distribution at the input of the

photodetector. Thus,

j = N pz(Z) Rz(Z) dz (44)

where, now
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w(z) 0
Rz(Z) X rm om(Z) (45)

N m=l

yielding upon application of equation 38

= rm cm (46)

m = 1

where the rm are the vector coefficients of the photodetector

response function Rz(z). This expansion must be truncated, so r

becomes a 1 by N matrix (vector) and the scalar photocurrent j can

be approximated as the dot product

j = f . (47)

Using a relationship such as equation 43, equation 47 can be

rewritten as

j = H z (48)

This is the basic system equation in the transfer-matrix formalism

and accounts for the mode-power distribution of the source, c, the

intermode scattering in the optical system, H, and the selective

response of the photodetector, r.

The details of the form chosen for equation 44 are unimportant

for our purposes, and an equation like equation 47 could have been

derived from consideration of the discrete formalism as well.

EXPERIMENTAL DETERMINATION

Neither equation 4 nor 42 is of much use other than to provide

a theoretical background because neither the matrix sij,kl nor the

continuum function h(z',z) appearing in them are likely to be

obtainable. An exception to this might occur in situations where

classes of components, such as lengths of fiber, can be
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parametrized with only a few parameters resulting in significant

simplification in the required measurements (references 26 and

27). Therefore, H must be determined directly from a set of input

and output radiometric measurements from which input and output

distributions Px(x) can be found. In the mode-continuum

approximation, equation 26 provides such a needed relationship

between the mode distribution and measurable near-field patterns.

To avoid the numerical problems involved with evaluating

derivatives of noisy data, as well as possible distortion-induced

singularities, the integral form, equation 23, can be used in a

least-square approach as follows.

Begin by expanding the mode-power distribution in a finite

series

P
Px(x) = X cm Om(x) (49)

where P is small compared to the number of propagating modes, but

must be equal to or larger than N, the dimension of the desired

transfer matrix, and ({m(x)) is a suitable set of orthogonal

functions. Now, in addition to errors produced by noise in the

measured quantities, there will be an error caused by the

truncation of the expansion at N. It is possible that the

truncation error could be reduced if a rational function were

used rather than a series expansion; however, here we are not

interested in merely finding the mode-power distribution px(x),

but in obtaining a vector representation of it (refernce 28).

Therefore, in order to reduce the effects of all errors, the cn
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are chosen to minimize the mean-square error in the power flow

defined by

E2 = 2ra 2  is 2  1cm m(X)dx ds (50)

J 2aa 2 m = 1 f(s)

The normal equations for the cn are obtained from

aE
2

= 0 r = 1, 2, .,p (51)
acr

which can be written in matrix form

A c= (52)

where

Aij = { s fi(s) Vj (s) ds ij = 1, ... ,p (53)

bj = s I(s) Oj(s) ds j = ... 'p (54)

and

n(S) = 2  n(x)dx , n = 1, ... ,p (55)2ra2 f(s)

The cn obtained from the solution of the normal equations can

be used directly to represent the reduced dimension mode-power

distribution simply by truncating the vectors after N components,

or the further reduction in dimension can be obtained by a

subsequent transformation. For example, to obtain the N

components pj for a mode-block representation, the following

transformation could be applied in the case where P is

significantly greater than N

P
Pj = X Tjn cn j = 1, ... , N (56)

n=1

where
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xj
Tjn = Xj_l x(x) On(X)dx, X0 = 0, Xn = 1 (57)

and

mj =xj -ix(X) dx/Jax(x)dx j = 1, ... , N (58)

define (xj) in terms of the mode-block partition (mi so that the

resulting transfer matrices would be independent of the choice of

mode parameter x.

If a set of N measurements of input and output near-field

patterns are made for an element of a system, then the N solutions

to equation 52 for the input and output mode-power-distribution

coefficients, or some transformation of them, can be used in

equation 43 to find H, the transfer matrix for that element.

Introducing the notation for an N by N matrix

V(a) = (VlIV2 I... IN)(a) (59)

where vi are N by 1 column vectors and a = 0, or 1 indicates input

or output, respectively, the formal solution for H can be written

H = [A( 1 )]- 1 (1ll... IN)() (E(ll... lbN) (0)1]- A( 0 ) (60)

which requires, not only that A have an inverse, but that the

matrix made up of the vectors b i obtained by equation 54 from the

N input near-field patterns have an inverse, that is, that these N

vectors be linearly independent. This requirement to have N

independent input conditions places the practical upper limit on N

and, consequently, the accuracy of reduced-dimension transfer

matrix methods.

Similarly, N independent measurements of the response of a

photodetector can be used to form a matrix equation whose formal
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solution for the response vector is

r = _ [(b1I...Ibn) (0)]-l A( 0 ) (61)

where j is the row vector formed from the N photocurrent

measurements.

While these equations represent solutions for H and r, there

are advantages obtained by not using them for numerical

computation. Rather, a more robust technique such as a singular

value decomposition of the input data matrix made up of the

near-field pattern vectors should be used. Thus, rewriting the

data matrix in terms of its singular-value decomposition

D( 0 ) = (Z11.. . IZK)(0) = USVT (62)

where now, K, the number of measurements, may be greater than N,

the dimension of the desired reduced dimension transfer matrix.

Not all K measured vectors need be independent. Now, from the

pseudoreverse VS+UT of USVT, a least-square fit to H can be

found

H = 1 .K)(i) VS+UT (63)

without calculating explicitly [D( 0 ) D(O)T]-l. Furthermore, from

consideration of the singular values contained in the diagonal

matrix S a condition number for D(0 ) can be obtained that can be

used to evaluate the magnitude of computational and random errors

that might occur in H as a result of round off error in the

computation and noise in the input and output data matrices. More

importantly, the condition numbers can be used to ascertain the

degree of independence of at least N of the K measured input data

vectors.
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Similar considerations militate towards the singular value

decomposition of the input data matrix to obtain a least-square

fit to the detector response vector from the output-current vector

I. In both cases, the input data matrices made up of the c vector

columns, should be obtained by some robust technique, such as

Cholesky decomposition of the symmetric A matrix applied to the

primary data vector B, rather than direct inversion of A.

MEASUREMENT CONSIDERATIONS

The general conditions under which the measurements should be

made is that the apparatus remain optically and electronically

stable for a given launch configuration during the time it takes

to measure a pair of input and output near-field patterns for a

component, the output current and input near-field pattern for a

detector, or a sequence of output near-field patterns of a source.

The near-field patterns, I(sa), are the radiant emittance on a

fiber end face and they have the units of power per unit area.

Typically, near-field patterns are determined from a relative

measurement, M(u), of the radiant emittance of an enlarged image

of the fiber end face, an absolute measurement of the total

radiant flux from the fiber end, W, and a measurement of the fiber

core area, ra2 . Thus,

I(as) = M(bs)/G (64)

here the instrument gain, G, is defined to include the image

magnification b/a, where b is the radius of the core image, as

well as the electronic amplification. The gain is given by
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b

ira2  u M(u)du

0 (65)

W u du

Usually, the image coordinate, u, is scaled so as to make b

approximately full scale.

The input radiometric quantity used to characterize optical

detectors can be either flux (power) or irradiance (power per unit

area), depending on the intended use of the detector. If the

detector is to be irradiated with a spot of radiation that does

not fill the detector, flux is generally chosen. If, on the other

hand, the detector is to be overfilled with relatively uniform

radiation, irradiance would be used. For fiber-optic systems, the

detector can be expected to be underfilled, so that flux would be

the expected choice. However, most measurements are related to

the determination of transfer matrices of components, and if

irradiance is chosen to be the quantity characterizing the system,

it is not necessary to have values for either the first factor of

G, equation 65, or the normalized frequency V, equation 24, to

determine transfer matrices. This is because choosing irradiance

rather than flux to characterize the power flow in the system is

equivalent to using V2 p(x)/2ra2 rather than V2p(x)/2 to

characterize the mode-power distribution. In any case, if the

instrument gain were to be changed between the input and output

near-field measurements of a pair, the gain ratio of the two

measurements would have to be determined.
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Of course, whatever the choice of characterizing radiometric

quantity, in order to determine source or detector response

vectors, the gain, G, is needed requiring measurements of both the

core radius, a and the power, W. If an absolute determination of

the mode-power distribution is desired, then, in addition, a value

of the V parameter must be available.

The transfer matrices, as well as the source and detector

response vectors, will be different by scalar factors for

different choices of normalization units. For example, in the

mode-block case, matrices determined with irradiance as the

significant quantity must be multiplied by the ratio of the areas

of the output to the input fiber cores in order to obtain the

matrices corresponding to flux as the significant quantity.

Consequently, for irradiance based transfer matrices, the upper

limits for matrix-element and column-sum size become the ratio of

input to output fiber core areas rather than one as it is for flux

based transfer matrices (see TRANSFER MATRIX INTERPRETATION).

ALTERNATIVE VIEWPOINT

In addition to the mode-block and expansion-coefficient

formalisms, other approaches to generating sets of consistent

transfer matrices are possible. For example, the matrix A defined

in equation 53 can be considered to be a transformation of the

vector c into the vector E defined in equation 54. In such a

representation, the measured transfer matrix becomes
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H = (bll... I(K() [(531... IUK) ( 0 )] (66)

and the measured detector-response vector becomes

r = 3 [(b, 1... bEK)( 0 )]+ (67)

In this representation, neither the matrix A nor its inverse needs

to be calculated.

Even greater simplification results if a transformation T on b

can be found such that

N
qi= j Tij bj (68)

for which

N
Xi(s) Tij Oj(s) (69)

so that from equation 54

qi = JsI(s) i(s) ds (70)

where (Ci(s)) is a set of orthogonal functions on the domain

(0,1) with weighting function s. In this case, the set (qi) is

the expansion coefficients of I(s) for the chosen set of

orthogonal functions, for example, Jacobi polynomials, and are

used in place of the (bi) to calculate transfer matrices. The

transformation T and functions Oi are not explicitly required;

however, their existence must be assumed. It has not yet been

verified either theoretically or experimentally, but it seems

plausible that they do exist from consideration of the

differential form of equation 55 and the idea that sets of

orthogonal functions can be found whose derivatives are also sets

of orthogonal functions.

22



An advantage of this extension is that the index of refraction

function, f(s), does not necessarily enter the calculation unless

the mode-power distribution, p(x), is required, and the core

radius, a, enters only relatively in the definition, s = p/a.

Furthermore, if the ({i(s)) are chosen to be rectangular functions

that are one for 0 = s0 <sl... <Si-l<Ss5i<Si+l... <sN = 1 and zero

otherwise, then the qi are directly measurable as the power within

an annulus in the near-field pattern. An appropriate

choice for the partition (si) might be in this case

s[l-f(s)]ds = - s[l-f(s)]ds (71)
si_1  N J0

reintroducing f(s) into the calculation of q.

EQUIVALENCE OF REPRESENTATIONS

The various representations of the reduced-dimension transfer

matrices can be related to one another through the full matrix of

scattering coefficients, s, and the dimension-reducing

transformations, T, corresponding to each of the reduced-dimension

representations. Let

H = TsT+ (72)

be an M-dimensional representation of s and

i (73)

be an M-dimensional representation of s, then, in a best-possible

sense,

H z T +AT +  (74)
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This relationship is only approximate because, while H and H,

respectively, are defined by equations 72 and 73, it is

generally true that

s0 (75)

because, in general, the information lost in conversion of s into

cannot be fully recovered. Consequently, equation 74 should be

most useful if MsM.

For example, consider the transformation from a mode-block

representation with A = 3 to one which has M = 2, where the

partitions are related by the restriction ml<m1 ml+m2
• In this

instance, equations 7 and 8 yield

1 ri-m 1  0

T + = M2 (76)

0 m2 -m 3  1

m 2

and

ml 0

=T
+  ml-ml M2-m3 (77)mI  m2

m 30

m2
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so that, according to equation 74,

H1 1  + (ij + l) k21) + + (222 + 1 22) (78)

m2  mI m 2  m1

H21 2 (M3 k2 + k3) '1 + (-2fl3 22 + 32) (79)

m 2  mI m 2  m 1

ml-m I  m2-m 3  ml-mi m 3
H1 2  (kl2 + h22) + (h13 + m. 2 3 ) (80)

m2  m 2  m 2  m 2

H2 2  2 m3 2 2 + h32) m 2-m 3 + h + 33) -- (81)
m 2  m 2  m 2  m2

In contrast, the generalized mode-block reduction defined by

equations 2, 12, and 13 provides in the case for which MsM and the

same set of discrete polynomials is used for both representations

that Hij z hij; that is, H is a principal diagonal matrix of i.

This simple relationship is a result of the orthogonality of the

basis functions for the two representations. Furthermore, by

letting M be reduced to one, it follows that, in this case, H11

should be the scalar quantity best characterizing the transmission

of power, or power per unit area as the case may be, through a

component. In the mode-block case, the analogous scalar

transmission for a component is given by the transformation

T2 +  = (1, 1, ... 1) (82)
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r 1 )T (83)T+  = , It, ...

MM M

of the M dimensional matrix H to the one dimensional matrix H1 1 .

This results in

1 M
H1 1  -X Hij . (84)

"' i j = 1M'

In general, the matrix T that transforms s into H will not be

available, so an alternative approximate transformation between

representations is desirable. Suppose that the power-flow vectors

for the two representations can be related by a transformation Q

such that c = Qc. If Z' = HE and c' = c, then

Q+Q c Q+Q H Q+ Qc (85)

or

c" = QH Q+ c (86)

where Q+ is the generalized inverse of Q, defined so that c Q+c

so that Q+Q = I. Hence,

H QH Q+ (87)

that is, Q and Q+ replace TT and respectively. Now if the

mode-power distribution can be approximated either by

M
p(x) = 1 c i Oi(x) (88)

or
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M
p(x) ci i(x) (89)

i^ 1

where ( i) and (0i) are sets of orthogonal functions such that

fi w(x) Oi Oj(x)dx = 6 ij (90)
o

and

Sw(x) i(x) j(x)dx = 6ij (91)

It then follows that

ci w(x) 0i(x)dx z 1 Lw(x)oi(x)oj(x)dx ]i (92)

so that

JOw (x) i (x) Oj (x)dx

Q1j - 1i (93)

J w(x)oi2(x)dx

Similarly,

+ JO w(x),i(x)o j (x)dx ( 4

Qij (4

JO W(X) i2 (X)dx

Transformations within sets of basis functions, that is, where

= (0i), yield immediately the simple result that ij ; Hij,

i,j = 1, ... , M, where M<5A, just as previously obtained.

In the case of a mode-block representation, the (pi} are the

rectangular functions and w(x) is proportional to the mode
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density, a(x). The case of a transformation between two

mode-block representations can be simplified if the

representations have been defined in terms of a fractional number

of modes per block, as in the use of equation 58, so that the mode

density a(x) can be taken to be uniform even though it may not

have been in the original experimental determination, as in the

use of equation 23. In this situation, the Qij represent the

overlap of the (mi) blocks on the (mi) blocks and the reverse for+

Qij, and the use of diagrams such as those shown figures 1 and 2

can aid in evaluating this overlap. For example, consider a

transformation from M = 2 to = 3, where, for simplicity, the

mode-partitions satisfy the restriction ml ml+m 2 . Aided by figure

1, we obtain from equation 93

m3 -m2
I1

m 3

Q =(95)
m2

0 0 ^6

m3

and aided by figure 2 we obtain from equation 94

mI  0
m 1

Q+ m2  0 (96)

m3 -m2  1

Equation 87 could now be applied to obtain the relation between

the matrix elements of the two transfer matrices. Notice that
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I

1,2

1,3

2,1 2,2

2,3

I
m Im 2

Figure 1. Aid for obtaining the matrix elements in equation 95.

m, m 2

1,2

2.1 ,3,1 2 ,2,

2m2

Figure 2. Aid for obtaining the matrix elements in equation 96.
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here as well as in the earlier example, the column sums of the

transformation matrices add to one.

Although we have shown that all representations are

equivalent in the sense that one can be obtained approximately

from another, it must be kept in mind that each transformation

causes some of the information that was contained in the original

measurements of the near-field patterns to be lost. Consequently,

whenever it is possible, original data should be used or augmented

to make new calculations rather than attempting to transform

previously determined matrices.

TRANSFER MATRIX INTERPRETATION

Except in the mode-block approach, the basis functions for the

expansion of the mode-power distribution are oscillating

functions; consequently, there is no simple general physical

interpretation of the vector components or of the transfer-matrix

elements, which can be either positive or negative and of

unpredictable magnitude. Discussion of the mode-block

interpretation is postponed until following the mention of

two special cases in which the lowest order component of a state

vector, E, can be related to the total optical power flow.

The first case is obtained by choosing a representation for

which c is proportional to q, defined by equations 68 to 70, and

noting that i, the lowest order function, is a constant. The

second case arises if the weighting function, w(x), of the (On(X))

30



is chosen to be the mode density, ax(x), defined by equations 19

to 22. In these two cases, respectively, equations 19 and 29 for

the power flow yield

W
ql - 2  (97)

27ra2
where Ci is a constant, and, noting that 01 = 11-,

W
C1  (98)

where N is the number of propagating modes.

In contrast, for the mode-block approach, the physical

interpretation of the vector components and transfer-matrix

elements provides information about the range of possible

transmission coefficients for a component. By definition, the

components of the mode distribution vector u are the amount of

power flowing in a mode, so ui0 for i = 1, ... , N. Since the

elements of the scattering matrix, s, represent the fraction of

power scattered from one mode into another, 0sij:l for i,j = 1,

given by

N
W" = u' i  (99)

can be written in terms of the input mode vector

N
W = T i u i  (100)

i =1

where the column sum

N
Ti= ji (101)

j=1
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thus, Tmin W 5 W, Tmax W, where W is the input power and Tmin

and Tmax are the smallest and largest column sums of s.

Consequently, 0 5 Ti ! 1, i = 1, ..., N. It follows from the

general definition of a reduce-dimension transfer matrix,

equation 4, that the column sums

M
Sj =i jJ ' j 1, ..., M (102)

can be rewritten as

N M + N
,i =1 i(=i S T19 , T1j +  (103)

Thus,

Tmin ! Sj : Tmax  (104)

where the fact that the column sums of the relevant mode-block

transformations T and T+ are all equal to one has been used.

Since 0 : Hij , i, j = 1, ..., M, it follows from equation 104 that

0 S Hij , Sj S1, which is consistent with the interpretation of the

elements of the reduced-dimension mode-block transfer matrix as

being a best approximation to the fraction of input power in a

mode-block scattered into another mode-block on output.

Equation 100 can be rewritten as

W- = T(U)W (105)

where T(u) is the power transmission coefficient of the component

for an input mode distribution U. Thus,

N
X Ti uii = 1

T(u) = (106)
N
i= ui
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Similarly an estimate of this power transmission coefficient is

Mx S i ciil
T(a)= (107)

M
ci

i = 1

where by equation 2 c = TU. Clearly, Tmin 5T(u), T(c) 5Tmax and

Smin 5T(c) :Smax, where Smin and Smax are, respectively, the

smallest and largest column sums of H.

That the range of predicted transmission coefficients can be

seen immediately from the column sums Smin and Smax of the

reduced-dimension transfer matrix in mode-block form is useful,

but this does not provide a reliable estimation of the range of

observable transmission coefficients determined by Tmin and Tmax

unless the partition of the mode distribution has been made into

small enough blocks so that it is unlikely that any mode

distribution can develop with power predominantly in one block,

assuring that the average implied in equation 106 is carried out

over at least a block. This, of course, makes the measurement of

a mode transfer matrix difficult at best.

If the column sums Tmin = Tmax, then also the column sum Si =

S, j = 1, ... , M, and W" = S W and such an element would be an

ideal attenuator. If two ideal attenuators are concatenated, the

resulting composite system will also be an ideal attenuator with

S1 2 = Sl S2 . It would appear that ideal attenuators can be fully

characterized by a scalar transmission coefficient and that

systems made up of such ideal components would not exhibit the
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concatenation effect; however, this would be true if only power

flow were of interest. If the signal response is considered as in

equation 48, it is evident that

rmin Smin W : j rmax Smax W (108)

where rmax and rmin are, respectively, the largest and smallest

photodetector-response-vector components. Therefore, unless the

photodetector is characterized by a uniform vector with rmin

= rmax, the observed photocurrent will show the concatenation

effect even though it may be true that Smin = Smax . In general,

only systems made up of components whose characterizing transfer

matrices commute will not be subject to the concatenation effect.

The benefi of the physical interpretation of components

represented by the mode-block formalism can, in principle, be

extend-d to other representations through a transformation as in

equations 87, 93, and 94, the column sums then being evaluated in

the resulting mode-block representation.

EQUILIBRIUM MODE DISTRIBUTION

The eigenvectors, Vn, and eigenvalues, In, of scattering

matrices play an important role in their physical interpretation.

The eigenvectors of a scattering matrix of a component represent

the mode-power distributions that when launched into a component

appear unchanged at the output except for an attenuation factor 1,

the associated eigenvalue. Consequently, if steady state or

equilibrium mode distributions exist in sequences of repeated

components, they are given by the eigenvector of the scattering
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matrix associated with the largest eigenvalue, that is, greatest

transmission provided it represents a physically realizable

distribution.

The eigenvectors and eigenvalues of a reduced-dimension

transfer matrix should have a similar interpretation to those of

the full scattering matrix. However, it is not clear that enough

information is retained in the reduced dimension to make the

predicted equilibrium distributions useful. That is, after a

number of passes, say k, through a component does the occurrence

of the product T+T k-1 times, see equation 16, diminish the

suitability of the reduced-dimension transfer matrix Hk faster

than the output approaches the equilibrium distribution? The

difficulty here is analogous to those that arise in considerations

of the concept of expressing a transfer matrix in decibels, which

requires that the matrix be written as

H = exp(a)A = An (109)

where 10 log A is the matrix representation of H in decibels

(references 12, 25, and 29). The question being, does the error

in An due to uncertainty in A increase more rapidly with n than

the series converges? Caution should be exercised when using

eigenvectors of reduced-dimension transfer matrices to predict

equilibrium mode distributions.
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COMPUTER PROGRAMS

Three computer programs using the integral form of the

mode-power/near-field relationship for converting

near-field-pattern data into reduced-dimension transfer matrices,

detector response vectors, or source vectors have been written in

FORTRAN and are available on IBM compatible MS-DOS format diskette

from the author. The first of these programs uses the mode-block

reduction. The other two reductions are based on orthogonal

polynomial expansions of the mode-power distribution. One of

these carries out the expansion to a large number of terms, say

10, and then truncates the expansion at the number of terms equal

to the dimension of the reduced-dimension transfer matrix, while

the other carries out the expansion only to the desired dimension

of the reduced matrix from the start. These may differ somewhat

in the final result primarily because the weight function used in

the least-square fit is not necessarily the same as that

characterizing the orthogonal polynomials, but also because the

mode-power distribution appears in an integral in the

least-square-fit error function.

In all three programs, alpha index of refraction profiles and

beta mode densities were assumed (see equations 32 and 33), and

the choice between Chebyshev and Jacobi orthogonal polynomials

with weight functions i/!x(l-x) and x, respectively, over the

domain (0,1) is offered. The mode-block program uses a

mode-fraction partition so, except for computation error, the
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transfer matrices generated by it should be independent of the

choice of beta (beta must not be zero) as well as the selected set

of polynomials. The other two programs should produce results

that depend on these choices. In all three cases, the value used

for alpha should correspond to the actual index of refraction

profile of the fiber. For simplicity the programs assume that

alpha is the same for both the input and output fibers. However,

the core diameter as well as the normalized frequency may be

different for the input and output fibers. Also, source and

detector vectors are referred to power-per-unit area. All three

programs use singular-value decomposition to obtain the

pseudoinverse of the measurement matrix. Consequently, as many

measurement sets as are available can be incorporated into a

least-square determination of a transfer matrix, and the condition

number of the measurement matrix is reported to permit selection

of the largest acceptable dimension for a transfer matrix.

Also available on diskette from the author are two programs to

determine a suitable value for alpha from either near-field

pattern data, presuming a uniform mode distribution, or index of

refraction profile data. In the first case, the data are fitted

by a function of the form

(1 - p/a) a
*C I  ______ + CO  (110)J1 - K (p/a) +

where non-zero K accounts for leaky modes (reference 1), and in

the second case, by a function of the form

c 2 [1 - (p/a)a ] + cl(p/a)a +c O  (iii)
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The coefficients co, cl, and C2 as well as a and K are determined

from data given as a function of p/a.

BANDWIDTH CHARACTERIZATION

The transfer-matrix formalism presented in this report can be

extended to include bandwidth as well as loss characterization.

Even though bandwidth chracterization has not yet been fully

formulated and is outside the scope of this report, a brief

description of a possible approach for doing so would seem in

order (reference 11).

The basic assumption is that equation 1 can be extended to

include a time dependence in the mode-power distribution simply by

changing the form to

NF
u1(t) sij (t-r)uj(r)dr (112
u.(t = 1 12

where now 0 :sij(t) l is to be interpreted as an impulse response

for scattering of power from the jth input mode into the ith

output mode.

For a concatenated system consisting of two elements

characterized by s (l) and s(2)

co [ (2) (1)j(l~T~Tu: (t)=x Sir (t-72 ) Srj (T2 .(113)
1 r,j = 1

00 -00
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By taking Fourier transforms of both sides equation 113, the sums

of convolution integrals in the time domain may be replaced by

matrix products in the frequency domain; thus,

U-(w) = s(2)(w) s(l)(w) i(w) (114)

where the Fourier transform relationship is indicated by replacing

the time argument, t, by the frequency argument, w. The time

dependent quantities u(t) and s(t) are real; however, in general,

the frequency dependent Fourier transforms u(w) and s(w) are

complex except for w = 0, where they are real and correspond to

the case of simple loss characterization treated in the bulk of

this report.

Just as in the case of loss characterization, a frequency

independent transformation T can be introduced to define a

reduced-dimension scattering matrix M(w), where

M(w) = T s(w) T+  (115)

Also, in order to provide a measurable approximation H(w) to M(,),

a frequency dependent continuous mode power distribution px(x,J),

which can be related to the Fourier transform of the time

dependent observed near-field pattern I(s,t), can be introduced.

Thus,V2 1

I(s,W) = 2a 2 J px(x,w)dx (116)

f(s)

furthermore,

Ppx (x,w) = ci (W)Oi(x) (117)

where the complex coefficients ci(w) become the reduced dimension

representation of u(w).
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The determination of the complex vector c(w) can be carried

out by least-square fitting as before from equation 51, where the

matrix A is real and identical to the loss characterization case

and the complex vector b(w) must be found from measurements of the

Fourier transform of I(s,t); thusV2 1
bi(w) - s I(s,w) oi(x)dx ds (118)

27ra 2 J0  if(s)

We see that the near-field pattern measurements now have the

additional complication of requiring phase as well as amplitude to

be determined at each point in the pattern over the expected

modulation bandwidth of the system.

Once the vectorization process, that is, the determination of

b(w) from I(s,w), is complete, then input and output data matrices

(Cl( )...ICp(w)) and (cl°(w)I ... ICp°(w)), respectively, can be

formed and H(w) determined according to equation 63. This

determination is complicated by the complex vectors, c(w),

involved, but the essential question is: out of the p measured

input vectors ci(w), are there at least N, where N5P is the

dimension of H, independent complex vectors? The answer is yes if

an ideal chopped modulation is assumed, that is, it is sufficient

that the input near-field patterns can be written in the separated

form I(s,w) = I(s)F(w), where F(w) is a complex function of unit

amplitude. The M vectors b(w) are simply real vectors

multiplied by a complex scalar, and the resultant ci(u) will be

independent to the same degree as could be achieved in simple loss

characterization.
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Here only component transfer matrices and source vectors have

been mentioned, but the detector response vector r(w) could be

similarly determined and would, in general, be complex as would

the resulting signal current j(w).

Once all of the components of a system have been

characterized, the total system loss and bandwidth, based on

consideration of lj(w)1 2 , can be predicted from the product of

component matrices and the detector-response and source vectors.

It should be noted that even matrices that have only real,

frequency independent elements, as would be expected of small

sized passive components, must be included in the product as they

would influence not only the loss but the bandwidth determined in

this approach as well.

If a mode-block basis is used, an upper limit on frequency

response of a system can be expressed in terms of the column sums

of the absolute values of the constituent component matrices.

Consider, for example, a system characterized by

j (w) = Y (w) * H( 2 ) (w)H(1) (w)c(w) (119)

From the submultiplicative property of the maximum column sum

matrix norm (reference A-2, section 5.6), it follows that
lj(c )l :5 ll r( )1l111H(2)( )) llllIH(1)( )lllll c(w)lll (120)

where, for an M by M matrix A

n
hIAil 1 = max X IAijj (121)

I:j!M i = 1

Evidently the contribution of each component to this upper limit

can be obtained independently; however, because this upper limit
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can be well beyond actual performance, caution must be exercised

in using such limits.

SUMMARY

We have shown that a reduced-dimension transfer matrix can be

defined in terms of a rectangular matrix transformation from the

full-dimension mode space to a reduced-dimension space and its

psuedoinverse. Furthermore, we have shown that the reduced-dimension

space need not be the conventional mode-block partition. Although

the reduced-dimension transfer matrices are in some sense the best

possible approximation to the full transfer matrix, as a

consequence of this definition, the product of reduced dimension

transfer matrices inevitably deviates from the reduced dimension

representation of the product of full dimension matrices.

We have presented a least-square-fit method that, to a large

extent, circumvents errors resulting from having to compute the

derivative of noisy data, as is required in the conventional

method, and permits the natural inclusion of additional data sets

beyond the minimum number of the dimension of the reduced

representation. As a consequence of using singular-value

decomposition in this method, the condition number of the data

matrix is obtained and provides a measure of the independence of

the launch conditions, which is essential to the success of

measurements of transfer matrices.
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We have shown that all reduced-dimension representations are

equivalent in the sense that one can be obtained from another

without knowledge of the full representation, although to do so

results in some unavoidable loss in information. Consequently,

valid reduced-dimension representations should be attainable

directly from vectorization of the near-field patterns without

first developing the mode distribution.

In addition to the consideration of loss characterization by

transfer matrix, we have briefly touched upon the extension of the

transfer matrix approach to bandwidth characterization. This

extension needs both experimental and theoretical development to be

useful for applications.

Computer programs written in FORTRAN-77 for the computation of

various representations of reduced dimension transfer matrices

from near-field patterns are available from the author.
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APPENDIX A. MATHEMATICAL BACKGROUND

GENERALIZED INVERSE (references Al and A2)

The least-square problem to find an x to minimize I lAx-5112,

where A is an m by n matrix, x and E are n and m component

vectors, respectively, and I I1112 is the Euclidean vector norm,

has the unique solution

XLS = (AHA)-lAHb (Al)

where AH is the Hermitian transpose of A, if the rank of A is n,

that is, if the columns of A are linearly independent. Otherwise,

the vector xLS such that j JxJ 2 is minimized among all those x

that produce the minimal I IAX-EI12 may be obtained from

xLS = A~b (A2)

where A+ , an n by m matrix, is typically defined to be the unique

matrix that satisfied the Moore-Penrose conditions

A A+ A = A (A3)

A+ A A+ = A+  (A4)

(A A+)H = A A+  (A5)

(A+ A)H - A+ A (A6)

and is known as the Moore-Penrose generalized or pseudoinverse of

A. A property of particular importance here is that X = A+ is the

unique matrix that minimizes the Frobinius matrix norm IIAX-ImIl F ,

where Im is the m by m unit matrix.
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SINGULAR-VALUE DECOMPOSITION (references A3 and A4)

Any m by n matrix A of rank r can be decomposed into the

factored form

A = U X VH (A7)

where U and V are m by m and n by n unitary matrices respectively

and X is an m by n diagonal matrix with elements ar such that

al a2 ao... ar+ 1 .... = aq = 0 (A8)

in which q is the lesser of m and n. The ar are uniquely

determined by A, being the square root of the eigenvalues of AAH,

and the non-zero or are known as the singular values of A. In

terms of the singular-value decomposition, the generalized inverse

of A can be written

A + = V j+ UH  (A9)

where X+ is a n by m diagonal matrix with elements di such that
1

d i , i = 1, ... , r . (A10)
ai

Thus, the singular-value decomposition provides a means to

determine A+. Stable algorithms for carrying out least-square

solutions by singular-value decomposition without explicit

determination of the eigenvalues of AAH are available and only

require about three times the computational effort as other

least-square approaches (reference A5).

LEAST-SQUARE PERTURBATION (references Al and A5)

Suppose we have solutions xLS and YLS to the least-square

problems I IAx-I12 minimized and I (A+6A)y-(b+6b) 112 minimized,

where both A and its perturbation A+6A are m by n matrices with
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m2n and of full rank n and b and its perturbation Sb are m

dimensional vectors with E o 0. The difference in these two

solutions satisfies to first order in f the relationship

IIYLS-LS 112
K (2 + K sin e)/cos e (All)

I IXL.S112

where we assume that

F116A11 2  116b1I2 1
= max , - (A12)

IIAII 2  1111 K

and that

sine I ALS-bI 2  1 (A13)

I bI12

with K, the condition number of A, equal to IIAI 2 IIA+II 2 = 0l/On

the ratio of the maximum to minimum singular values of A.

Equation All gives an upper bound on the difference between the

solutions of a least-square problem and its perturbation and as

such may be much larger than the actual difference. However, it

would be wise to be cautious when large values of condition number

occur because, in contrast to the linear equation case, where m=n,

differences can be magnified by the square of K for poorly fitting

solutions. Furthermore, the magnification could be even greater

than indicated by equation All for situations where A is not of

full rank.

A-3



REFERENCES

Al. Golub, G. H., and C. F. VanLoan. 1983. Matrix Computations, sec
6.1, The Johns Hopkins University Press.

A2. Horn, R. A., and C. R. Johnson. 1985. MatrixAnalysis, p.
421, Cambridge University Press.

A3. Stewart, G. W. 1973. Introductionto Matrix Computations, sec. 6.6,
Academic Press.

A4. Reid, J. G. 1983. Linear System Fundamentals, appendix E.,
McGraw-Hill Book Company.

A5. Stewart, G. W. 1977. "On the Perturbation of
Pseudo-Inverses, Projections and Linear Least Squares
Problems," SIAM Review, vol. 19, no. 4, pp. 634-662.

A-4



REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public teporting burden for this collection, of information is estimated to aveage I hour per response. Including the time for rvisewing Instructions '-a jhina j a sources gathering and
maintaining the data nieded, and completing and reviewi1ng the collection of Information Send comments regarding this burden stimate, or any or , .v- -vion of information. including
Suggestions for reducing this burden. to Washrington Headquarter Services. Directorate for informaion Operations and Repcift. 1215.1effersoi Davis n~gr-ay. Suite 1204, Arlington VA 22202-4302
and to the office of Management and Budget Paperworkr Reductiorn Protect (0704-0188). Washrington. DC 20503.

1 AGENCY USE ONLY (Lare trav 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

IDecember 1989 Final
4 TITLE AND SUBTITLE 5 FUNOW~ ', k~tWRS

TRANSFER MATRICES FOR MULTIMODE OPTICAL FIBER SYSTEMS PE: 602233N
__________________________________________ RM: 331160, EE97

6 AUTHOR(S) DN: 305061
C. J. Gabriel

7 PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

Naval Ocean Systems Center NOSC TD 1717
San Diego, CA 92152-5000

9 SPONSORiNG/MONITORiNG AGENCY NAME(S) AND AODRESS(ES) 10 SPONSORiNG/MOWiTORiNG
AGENCY REPORT NUMBER

David Taylor Research Center
Bethesda, MD 20084

1SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABiLItY STATEMENT 12b DISTRIBIlON4 CODE

Approved for public release; distribution is unlimited.

13 A' TRACT (Maxinumr 20 words)

This report discusses a transfer-matrix formalism for expressing the effect of a component on the mnode-
power distribution. It is expected this formalism will clarify and extendl matrix approaches to the dlescription
of this effect presented by others and will result in component loss characterization methods that are inde-
p~endent of the launch conditions chosen to make the characterization.

The rep~ort shows that a reduced-dimension transfer matrix can be defined in terms of a rectangular
mnatrix transformation from the full-dimension mode space to a reduced-dimension space andl its piseudlo-
inverse. Further, it shows that the reduced-dimension space need not be a conventional mode-block partition.
The report concludes that valid reduced-dimension representations should be attainable directly from vec-
torization of the near-field patterns without first developing the mode distribution.

I4 SUBJECT TERMS 15 NUMBER C)F PAGES

Transfer matrix Nearifield patterns .CL

Least-square~fit method ISPKf O'

17 SECURITY CLASSIFICATION 18 SECURITYCLASSIFICATION 19 SECURITY CLASSIFICATION 20 LtMTA1iON O ABSTRACT
OF REPORT OF THIS PAGE OF: ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED U NLI MITED

NSN 7640-012-550 StancrcT form 29w


