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ABSTRACT

This thesis describes theoretical and experimental studies of a homoge-

neously broadened ring dye laser. The thesis is particularly concerned with the

two'frequency instability in which a bichromatic field emerges from the laser

above the instability threshold. The interaction of a bichromatic field with an

isolated atomic resonance is examined. The time~averaged inversion and the sat-

urated gain exhibit structure in the form of a series of subharmonic resonances.

The stability of a strong bichromatic laser field to the growth of a subharmonic

probe field is examined. The gain of the subharmonic bichromatic probe field

in the presence of the strong bichromatic laser field is calculated. The strong

bichromatic field is stable to the growth of the subharmonic fields when the

modulation frequency of the strong field coincides with the Rabi frequency of

the lasing transition.

The existence of chaos in a strongly driven nonlinear system is experimen-

tally investigated in a multimode ring dye laser. A dye laser is pumped with a

modulated pump source. The response of the dye laser to commensurate and

incommensurate modulations is reported. We find thif for commensurate mod-

ulations, the dye laser responds in a periodic fashion and the rf spectrum of

the dye laser is composed of a series of harmonics. For incommensurate mod-

iv



ulations, the dye laser responds in a quasiperiodic fashion with a broadband rf

spectrum. I

The two-frequency instability in a multimode cw-pumped ring dye laser

is shown to occur in a number of cavity configurations. The two-frequency

instability is shown to exhibit a sensitive dependence on the cavity detuning.

The recently proposed band model of the laser is examined and theoretical

predictions of the model are experimentally analyzed. Experimental evidence is

presented which illustrates that conventional theories for two-, three-, and four-

level lasers are inadequate to describe the excited state population dynamics

of a cw dye laser. Modulation spectroscopy is used in a new signal-limited

technique to measure an upper bound on the decay time of the lower levels in a

rhodamine-6G dye molecule.
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Chapter I

INTRODUCTION

1. Introduction

Instabilities in lasers have existed since the first demonstration of the laser

by Maiman1 . Maiman's ruby laser exhibited fluctuations and spiking in the

output intensity that, to this day, are not well understood. Initially the spik-

ing and noise were attributed to the pulsed nature of the pumping mechanism.

However, several authors subsequently demonstrated 2- 3 that a ruby laser oper-

ated with a continuous-wave pump still displays fluctuations and spiking in the

output intensity. A simple theory4 containing the inversion of a two-level atomic

system and the field intensity was developed to understand this behavior. That

model has come to be known as the rate equation model. Somewhat later it was

shown 5 - that the rate equation model does not allow time-dependent solutions

in the stationary state; therefore, the model is inadequate for explaining the

behavior of the ruby laser. The possibility that coherent effects were respon-

sible for the experimental features motivated the derivation of a more rigorous

model7 containing the inversion and coherent polarization of a two-level system,



2

and the electric field amplitude, even though these equations had been previ-

ously derived' in maser theory. The set of equations describing this coherent

theory is now known as the Maxwell-Bloch equations. It can be shown that,

in the limit where the atomic polarization relaxation rate is much faster than

any other rate in the system, the Maxwell-Bloch equations reduce to those of

the rate equation model. Instabilities in lasers and laser theory have continued

to change and progress, developing a better understanding of lasers and the

nonlinear dynamics inherent in their behavior.

The theoretical analysis of lasers is greatly simplified if the electric field in

the laser consists of a single cavity mode. Furthermore, the analysis is greatly

simplified if all the atoms are treated identically, as in a homogeneously broad-

ened medium. While the rate equation model predicts that the steady state

operation will always be stable to perturbative fluctuations, the Maxwell-Bloch

equations predict' - 12 that in the bad cavity limit (i.e., where the cavity de-

cay rate exceeds the sum of the polarization and inversion decay rates), the

steady state will become unstable above a definite threshold value of the pump

parameter. Numerical integrations 1 - 1 4 of the equations above this threshold

reveal pulsing behavior which develops into chaotic fluctuations. Weiss and

coworkers' s - Is have observed many of these features experimentally with a

single-mode far-infrared ammonia laser.

Some laser media cannot be treated as homogeneously broadened transi-

tions. The transition frequency of atoms in a gas exhibits a velocity-dependent

shift. Since the gas of atoms contains a distribution of velocities, the medium

contains a distribution of transition frequencies. Similarly, atoms embedded in

the amorphous structure of glass experience different local fields and therefore
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different Stark shifts of their energy levels. These different Stark shifts cause

a distribution of transition frequencies in the laser medium. These and other

aspects require the transition be treated as inhomogeneously broadened. In the

analysis of an inhomogeneously broadened medium, the medium is treated as an

ensemble of homogeneously broadened atoms with a distribution of resonance

frequencies. Inhomogeneous broadening can greatly reduce the threshold for

instability. The complex dispersion profile generated by spectral hole burning"9

allows for the possibility of more than one frequency oscillating in the same

cavity mode. 2 - 21 In addition, the frequency of the cavity mode depends on the

intensity of the field in the mode.2 2 For high-gain lasers it is possible for three

different frequencies to coexist in the same cavity mode without spectral hole

burning. 23- 1 Many of these features have been experimentally verified in He-Xe

lasers by Casperson and coworkers 20 and Abraham and coworkers. 2 1 ,2 6- 2 7

There are many lasers that do not operate in a single mode. The cavity

mode spacing of a one-meter ring laser is 300 MHz, which is much less than

typical laser linewidths. So a laser with a 1 GHz linewidth in a one-meter ring

laser would have about three modes under the gain profile. For dyes, alexan-

drite, titanium-sapphire, semiconductors or similar lasers, with gain bandwidths

on the order of hundreds of angstroms, there are hundreds of modes under the

gain profile for typical cavity lengths. It is normally the case, rather than the

exception, that the cavity mode spacing is much less than the gain bandwidth.

Due to this fact, most lasers operate in a multimode fashion. The multimode

Maxwell-Bloch equations predict - 1 2 that the steady state solution will become

unstable above a threshold value of the pump parameter. Numerical integra-

tions of the equations0 2l° - 2 9 above this threshold reveal mode locked pulsed
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solutions. In Appendix A we discuss the stability analysis of the multimode

rate equations and the multimode Maxwell-Bloch equations. There are at least

two distinct types of solutions above this threshold. Numerical integration of

the equations near the threshold to determine which solution the system will

prefer suffer from numerical roundoff errors. Numerical roundoff in regions of

instability - where the system is extremely sensitive to initial conditions - can

give incorrect answers. Experimental investigation of this point is much more

revealing. However, experimentally no one has convincingly observed this insta-

bility.

In addition to spectral inhomogeneities, there are also spatial inhomo-

geneities that complicate and enrich the dynamics of unstable lasers. Spatial

inhomogeneities can be caused by counterpropagating fields in a laser. The in-

terference of two counter propagating fields produces a standing-wave pattern

with nodes in the field every half wavelength. The atoms of the gain media

at these nodes do not experience the laser field. If the gain medium is thin

compared with the cavity length, it is possible for two modes to form standing-

wave patterns that are 1800 out of phase across the entire gain medium. This

feature has been studied in pulsed"0 and continuous-wave"1 dye lasers and has

been exploited in building stabilized continuous-wave dye lasers." The dynam-

ics and statistics of a two-mode bidirectional laser has been extensively studied

33-38by Mandel and coworkers

Spatial inhomogeneities can also exist in the transverse direction. The study

of transverse mode behavior has only recently begun to receive attention. The

problem is extremely complicated due to the nonuniform character of Gaussian

beams.
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Quite recently, the homogeneously broadened systems whose lower level

consists of a band of levels have drawn considerable attention. 3 - 41 The lower

band of levels provides a large gain bandwidth which is useful for resonant

light studies and short pulse production and amplification. Examples of such

systems include dyes, C0 2, alexandrite, semiconductor, and titanium-sapphire.

The equations and the dynamics of such a system are different from both a

two-level homogeneously broadened system and a two-level inhomogeneously

broadened system. Though the behavior is not well understood, the theoreti-

cal model of such a system predicts3 9 - 42 a series of instabilities with definite

thresholds. Stroud and coworkers 4 3 -" have seen many of the predicted features

experimentally in a continuous-wave dye laser. Two-frequency operation sim-

ilar to that observed in the dye laser has also been observed in an argon-ion

laser and a Nd:glass laser. This is interesting since the dye laser transition is

predominantly homogeneoulsy broadened system, while the argon-ion4 - 4 8 and

Nd:glass 4' laser transitions are inhomogeneously broadened.

Laser instabilities are intrinsically nonlinear. Even the simple case of the

rate equations, where the polarization adiabatically follows the inversion and

field intensity, is nonlinear. Nonlinear systems represented by only a few degrees

of freedom, can display extreme sensitivity to initial conditions. Two initially

closely spaced points in phase space can separate exponentially as a function of

time. This behavior is called chaos. Universal routes mark the transition from

regular to chaotic behavior. Lasers represent an ideal system for examining

such universal behavior. In addition, much that has been learned in other fields

can be used to better understand laser dynamics. For instance, the single-

mode Maxwell-Bloch equations are identical, via a simple transformation of
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variables, 50-5 1 to the equations that model convective flow, which have been

extensively studied numerically by Lorenz.5 2

The Maxwell-Bloch equations derive their name from Maxwell's reduced

wave equation, which describes how a field propagates in space and time and

is driven by a macroscopic polarization density, and the Bloch equations, which

describe how a two-level system interacts with a near-resonant coherent field.

The atomic polarization acts as a source term in the wave equation, producing

a field; the field in turn, drives the atoms and induces a polarization. When the

atomic response induced by the field is the same atomic response that radiates

the field, the solution is termed self consistent. Instabilities in self-consistent

systems result from changing a parameter of the system. Instabilities can also

be investigated in driven systems. For instance, one could analyze the behavior

of atoms in a cavity driven by an external field. We conduct both types of

experiments on the dye laser.

This thesis is a continuation of the work on the two-frequency instability

originally observed by Hillman 4 . The original work demonstrated the insta-

bility had a low instability threshold (about 2 times above threshold), exhib-

ited discontinuous jumps in the ouput intensity and hysteresis at the instability

thresholds, sprectral splitting proportional to the field amplitude, another in-

stability threshold about 4 times above threshold, and unclear behavior above

this second threshold. The aim of the current thesis research was to learn more

about this instability, develop a quantitative understanding of these phenomena

in terms of laser theory, and to explore the connection between this instability

and chaos. We have been successful in some of these quests and others remain

elusive.
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In chapter II we examine the theoretical approach to analyzing driven sys-

tems. In particular we will investigate two- and four-mode fields driving two-

level atoms. These two examples are instructive as they illustrate the solution

of recurrence relations using scalar and matrix continued fractions, respectively.

We also discuss the complications of incommensurate frequencies in the driving

field. Then in chapter III, we discuss the results of an experiment of a nonlin-

car system driven by commensurate and incommensurate driving frequencies.

We also discuss how one characterizes a time series and distinguishes between

chaotic and quasiperiodic behaviors. In chapter IV we present results of an ex-

perimental investigation of a multimode continuous-wave dye laser. In chapter

V we will discuss the theoretical approach taken to analyze lasers and their sta-

bility. Then in chapter VI, we discuss some experiments that were performed to

examine the dye laser using the band model and four-level laser theory.



Chapter 11

EXTERNALLY DRIVEN SYSTEMS

1. Introduction

In this chapter, we discuss the solutions of the equations describing exter-

nally driven systems. We will be particularly concerned with two-level systems

interacting with multifrequency fields. These problems can often be formulated

as infinite-dimensional matrix diagonalization problems. We illustrate how the

solutions to these problems are generated in terms of continued fractions.

A great deal of insight into the physical dynamics of atoms interacting with

light has been gained from considering the interaction of an isolated atomic reso-

nance with an optical field."' A real atom has many optical transitions; however,

when only one allowed-transition frequency is close to the optical frequency of

the light field, the atom can be well-approximated as a two-level atom. This

model has been extensively studied and continues to reveal new and fascinating

dynamics in its interaction with cavities and fields.

Theoretical studies of two-level atoms interacting with coherent fields can

be used to better understand a laser's dynamics. A general solution to the set

8
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of differential equations describing a multimode laser has not been found. Even

if a solution did exist, it would be difficult to obtain physical insight from such

a solution because of the large parameter space. Numerical integrations of the

equations are also hindered by the large parameter space; in addition, digital

computations can give incorrect results in regions of instability where the system

is sensitive to perturbations and noise. An alternative method to examining the

dynamics of a laser is to calculate the gain of a probe field in the presence of a

strong laser field. The gain of the strong laser field clamps to the loss in steady

state. When the gain of the probe field exceeds 01,- -ain of the strong laser field,

it also exceeds the losses and the-efore, the probe field can begin to oscillate.

When the probe field beginF to oscillate, the steady state solution is no longer

stable. With this in mind, we calculate the gain of a strong bichromatic field

and the gain of a probe field in the presence of a strong field.

2. Bloch Equations for a Bichromatic Field

To define a notation, we begin by considering the expression for the optical

field

E(t) = (E'(t) + i"(t)) exp(iwt) + (E'(t) - iC"(t)) exp(-iwi)

= 2E'(t) cos wt - 2E"(t) sin wt. (2.1)

We assume that the time rate of change of the amplitudes of the quadratures

is much slower than the optical frequency (i.e., IJ'j < wjE'l and I&"I < wi"j).

The Bloch equations model the response of a two-level atom coherently driven

by an optical field. In a reference frame rotating at the frequency w, the optical

Bloch equations under the rotating-wave approximation are -5 3 5 4

[d ] [-u = /T2 -A -n() (t)] + K ]J = -I/T 2  W]t) v (2.2)d- 011(t) -f01(t) -l1T, W .. qlT 1
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The slowly varying amplitude of the in-phase (in-quadrature) part of the dipole

moment is u (v); the atomic inversion (i.e., the excited-state population minus

the grouiAd-state population) is w; A = wo - w is the detuning between the

rotating-frame frequency w and the atomic transition frequency Wo; the expo-

nential decay time of the inversion (polarization) is T (T2). Without a coherent

driving field, the inversion relaxes to its equilibrium value, we,. The two Rabi

frequencies, fl'(t) and fl"(t), are related to the slowly-varying amplitudes of the

electric field

W(t) = 2dt'(t)/h, (2.3a)

fl"(t) = 2d£"(t)/h, (2.3b)

where d is the dipole moment matrix element between the two levels and h

is Planck's constant divided by 27r. For sufficiently strong constant-amplitude

fields (i.e., f) > l/T 2 ) the solutions to these equations display oscillations that

decay to constant steady state solutions.

If the amplitude, £'(t) in Eqn. (2.1) is sinusoidally modulated so that we

may write £'(t) = 40 + 26, cos 6wt, then the spectrum of the field E contains

three frequency components. These components are identified by using a simple

trigonometric relationship to write

E(t) = 2E(t) cos wt

= 24 0 cos wt + 46M, cos 6wt cos wt

- 24. cos +t 26+ 1 cos[(w + 6+)tI + 26+ 1 cos[(w - 6w)tJ (2.4)

This equation illustrates that sinusoidal modulation of the amplitude produces

new field components shifted from the carrier frequency w by the modulation
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frequency 6w. If the modulation takes the intensity to zero, then all the energy

goes into the sidebands and the carrier is suppressed. We refer to this two-

frequency field as 100% amplitude modulated (AM).

The problem of a bichromatic field interacting with a two-level atom is

important to instabilities in dye lasers. Hillman et aJ.0, observed a bichro-

matic field in a dye laser above a second instability threshold. The interaction

of a two-frequency field with an isolated atomic resonance is also important to

fundamental questions in quantum electrodynamics. Unlike monochromatic ex-

citation, the stationary state response of the atomic system driven by a bichro-

matic field is not a steady state. The resonance fluorescence spectrum of a

two-level atom driven by a bichromatic field has only recently been experimen-

tally investigated.55 The theoretical expression for the form of the spectrum is

still not completely agreed on."' In addition, as we shall see, the equations of

motion for a 100% AM field within the rotating-wave approximation are iden-

tical to the equations of motion for a monochromatic field without making the

rotating-wave approximation. We assume the bichromatic field can be written

as

E(t) = 2E [cos((w + 6w)t) + cos((w - bw)t)] (2.5)

We assume the amplitude of each component is 2E,. We have made an arbitrary

choice of phase so there is no quadrature component of the field. A simple

trigonometric relationship allows us to write Eqn. (2.5) as

E(t) = 4E4 cos 6wt cos wt. (2.6)

Inserting this field into Eqn. (2.2), we see that W'(t) = 2fl, cos 6wt and fl"(t) 0,

where we have defined the frequency Al = (2d/h)C1 . These expressions allow
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us to rewrite Eqn. (2.2) as o0 Fi [
. = A -l1T2  2n cos w + 0 (2.7)

S0 -2n"l cos 6wt -'IT, w V/]

At this point it is interesting to compare these equations with the equations de-

scribing a two-level atom interacting with a monochromatic field without making

the rotating-wave approximation5 3

- 2 '1'] -+IT[ .cosw + (2.8)
(0 cosWt -1/T, W

The variables s1 and 82 are the rapidly oscillating dipole moment quadratures.

The detuning A in Eqn. (2.7) corresponds to the two-level atom's transition

frequency w0 in Eqn. (2.8) and the modulation frequency 6w in Eqn. (2.7) cor-

responds to the frequency of the driving field w in Eqn. (2.8). The correction

to the rotating-wave approximation on the atomic energy is called the Bloch-

Siegert shift. The correspondence between a two-level atom being driven by

a monochromatic field without making the rotating-wave approximation and

a two-level atom being driven by a bichromatic field under the rotating-wave

approximation allows one to study the Bloch-Siegert shifts in a much simpler

context. This point is discussed by W. Ruytens T.

3. Stationary State Response

The 3x3-matrix in Eqn. (2.7) is periodic in time. Floquet's theorem s5 tells

us that the stationary state solution to such a problem can be expanded as a

Fourier series in terms of the fundamental frequency of the matrix. In other

words the stationary state solution can be written as

[ a V. exp(inbwt). (2.9)
W -n'_00
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Substituting this solution into Eqn. (2.7) and equating terms of equal time de-

pendence we obtain a set of recurrence relations

(1 + in6WT)U. = -AT 2V., (2.10a)

(1 + inwT2 )vn = AT 2u, + fl1 T2 (wn+l + W,-_9), (2.10b)

(1 + ingwT1 )wn = -flIT(Vn+l + vn-2) + 6n,+W -. (2.10c)

These equations give the relationships between the Fourier components of the

atomic variables in the stationary state. To make the analysis more straightfor-

ward, we eliminate the Fourier components describing the polarization to obtain

an equation describing the Fourier components of the inversion alone. We use

Eqn. (2.10a) to eliminate u,. Equation (2.10b) then becomes

((1 + inbwT2 )2 + (AT 2 )2 )vn = flT 2 (1 + in6wT)(w,+I + W,..). (2.11)

We then use Eqn. (2.11) to eliminate vn so that the equation for the harmonic

amplitudes of the inversion becomes

jIjAn-IWn_ 2 + Bnw, + ilJA,+lw,n+2 = U,.q6,,O, (2.12)

where

1 + in6wT2  (2.13a)
(1 + in6wT2 )2 + (AT2 )i (

B, = 1 + in6wT + II(An_1 + An+I), (2.13b)

and

I, =2 2 1T 2 . (2.13c)
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I, is the dimensionless time-averaged intensity in units of the two-level atom's

saturation intensity. Equation (2.12) can be thought of as an infinite-dimensional

tridiagonal matrix equation. The main diagonal is B. and the lower and upper

diagonals are I 1 A, 1. The tridiagonal matrix multiplies the vector whose

elements are wn . The vector on the right hand side of the equation contains all

zeros except for the n = 0 position which is equal to w...

For n 0 0, the recurrence relation for the ratio, r. = wn/wn_ 2 is

rn - -JAn-I I, (.4
Bn + JA3 +1 I1?3+• (2.14)

Using Eqn. (2.14) with n --+ n+2, we can obtain an expression for rn+2 in terms

of rn+4 . We substitute this expression into Eqn. (2.14) and obtain

J= .A3 1  (2.15)B n .- ( '} .4 + 1 [ 2 ) 2

Bn+ + An+3I, I3+4

Applying this procedure repeatedly leads to the limiting expression

r B,- (JA3 1
nS+ Jo (A+ 1) 1)2

2(JAn +5 11)2
Bn+ 4 - Bn+6_.

=C,, (2.16)

where Cn is a continued fraction. This expression can be numerically evaluated

on the computer by truncating the fraction to a finite number of divisions. We

test the expression for convergence by increasing the number of divisions. When

the results are not significantly different, the continued fraction has converged.

Equation (2.16) gives the relationship between wn and wn_ 2 for n 3 0. For
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n = 2 it yields the relation between W2 and wo

(A 3 --Jto'

B2 - (JA5 1 1)2

B4- (-A 7 Ii)2

B-...
= C2 wo. (2.17)

Using Eqn. (2.17) in Eqn. (2.12) with n = 0, we obtain an expression for wo

too[JA-I 1C; + JA I AC2 + B01 = w.,e, (2.18)

or

WO We (2.19)
U 0 = Bo + Re{A 11 C2 }'

where Re{.} represents the real part of the complex argument. We have also

used the fact that to is a real variable and therefore its Fourier transform is

Hermitian (i.e., W, = W_-,, where the asterisk denotes the complex conjugate).

4. Analysis and Results

Some variables of interest are the time-averaged component of the inversion

w0 , the fundamental-harmonic component of the inversion W2 , and the gain of

the bichromatic field. In Fig. (2.1) we plot woo as a function of modulation

frequency 6w for a series of dimensionless field intensities I, for the case of

T, = 1OT2 , which corresponds to a collisionally dephased medium.

We see that as I, --+ 0 the time-averaged inversion displays a Lorentzian

response in modulation frequency of width 1/T 2. As the dimensionless intensity

I, is increased, the Lorentzian-shaped response develops a hole of width , I1/T1 .

The hole is related to the homogeneous hole burning observed in ruby, alexan-

drite, and fluorescein-doped boric-acid glass. For the case of T, = T2/2, which
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Fig. 2.1 Time-averaged inversion of a collisionally broadened medium as a
function of modulation frequency for a series of bichromatic field intensities. The
time-averaged inversion, wo is plotted as a function of modulation frequency
for Il = 0.1,0.5,1,2,10. The atomic medium is collisionally broadened with

Ti = IOT 2 .
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corresponds to a medium whose transition is radiatively broadened, the hole is

not present, as can be seen in Fig. (2.2).

On increasing the intensity further (fl 1T2 ; 1), structure begins to de-

velop within the hole. It has the form of a series of subharmonic resonances.

The time-averaged inversion is plotted as a function of modulation frequency in

Figs. (2.3a-c).

This figure illustrates that the subharmonic structure is independent of the

damping mechanism of the polarization. The peaks of the curves are plotted as

a function of Rabi frequency and modulation frequency in Fig. (2.4).

The positions of the peaks are linearly related to the electric field ampli-

tude. The slopes of the various lines indicate the resonances are nearly the

subharmonics of the main resonance.

The inversion oscillates at a frequency called the Rabi frequency. For a

monochromatic field, this frequency is directly proportional to the field ampli-

tude. For a time-dependent field amplitude, the relationship is more compli-

cated. For the case of 100% AM fields, the Rabi frequency is still proportional

to the field amplitude. The main resonance in the time-averaged inversion occurs

when the Rabi frequency is equal to the modulation frequency. The atom flips

between the excited state and the ground state and back to the excited state in

one modulation period. The first subharmonic resonance occurs when the Rabi

frequency is approximately twice the modulation frequency. That is, the atom

flips between the excited state and the ground state and back to the excited

state twice in one modulation period. The other subharmonic resonances are

similarly interpreted.

Another way to analyze these resonances is to keep the modulation fre-
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Fig. 2.2 Time-averaged inversion of a radiatively broadened medium as a
function of modulation frequency for a series of bichromatic field intensities. The
time-averaged inversion, wo is plotted as a function of modulation frequency
for I, = 0.1,0.5,1,2,10. The atomic medium is radiatively broadened with

I = T 2 .
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quency constant and vary the dimensionless intensity. In Fig. (2.5), we plot the

time-averaged inversion as a function of the amplitude of the 100% AM field

for a fixed modulation frequency. For comparison we also show two additional

plots: the inversion of an atom driven by a monochromatic field with the same

time-averaged intensity on resonance and detuned by the modulation frequency.

We see that the fluorescence induced by the 100% AM field never exceeds that

induced by an on-resonance monochromatic field of equal intensity. For higher

field amplitudes, the fluorescence induced by the 100% AM field is less than that

induced by the detuned monochromatic field of equal intensity. The results of

these numerical cal-', tions have been experimentally verified by Chakmakjian

et al., 5 using a- optically-pumped sodium atomic beam and a stabilized dye

laser.

The gain of the bichromatic field can be written as the time-averaged prod-

uct of the electric field and the time rate of change of the polarization.

EP -4E cos6wtcoswtd [Re I (U + iv) exp(iwt)fl
di 2 J

4E, cos 6wt cos 1t{iW(U+ iv) exp(iwt)}. (2.20)

Here we have neglected the time derivatives of the u and v since they are slowly-

varying amplitudes (i.e., Iis < wtls and Jil < wvi). We expand the expression

for the real part in Eqn. (2.20) to obtain

EP = -2Ew(v cos 6wt cos2 wt + u cos 6wt coswt sin wt). (2.21)

After an optical period, the time average reduces to

EP -Ew(v cos Swt),
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Fig. 2.3 Time-averaged inversion as a function of modulation frequency for
large bichromatic field amplitude. The time-averaged inversion, wo is plotted as
a function of modulation frequency for a strong-field amplitude, fl1 T2 = 45. The
figure demonstrates that the resonance structure of th time-averaged inversion
is independent of the atom's damping mechanism. In (a) T, = OT2 , in (b)
Ti = T2, and in (c) T, = JT2 .
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= -E 1W(VI +

- -EwSRe{V 1 }, (2.22)

where the only term surviving the time average is the first harmonic component

of the polarization v1-

From Eqn. (2.10c) with n = 0, we see there is a relation between the

absorption of the bichromatic field and the time-averaged inversion.

Weq - wo = 2flT 1 Re {vI. (2.23)

Therefore the absorption displays the same subharmonic structure in modulation

frequency as the time-averaged inversion.

The last quantity we examine is W2 , the harmonic component of the inver-

sion oscillating at the beat frequency, 26w, between the two field components.

We use Eqn. (2.17) to calculate W2 as a function of modulation frequency. The

real part of W2 represents the component of the inversion oscillating at 26w

in-phase with the driving field. The imaginary part of W2 represents the com-

ponent of the inversion oscillating at 26w in-quadrature to the driving field.

Figure (2.6a-b) show these two quantities and the magnitude of W2 as a func-

tion of modulation frequency for various values of the time-averaged intensity,

I,. One of the interesting features of this quantity is that the structure of W2

versus modulation frequency or versus intensity survives a Doppler average over

atomic detunings. This is pointed out by W. Ruytens5 and is attributed to

the fact that W2 plotted against Rabi frequency, fl, and modulation frequency

6w has two sets of zero crossings which he calls a doubly branched resonance

structure.
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Fig. 2.4 Peak positions of the time-averaged inversion as a function of mod-
ulation frequency and bichromatic field ampitude. The peak postions of the
time-averaged inversion are plotted as a function of modulation frequency and
biclirornatic field amplitude. The figure demonstrates that the position of the
resonance peaks depends linearly on the field strength of the bichromatic field.
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Fig. 2.5 Time-averaged inversion as a function of bichromatic field amplitude
for a fixed modulation frequency. The time-averaged inversion is plotted as a
function of bichromatic field strength for a fixed modulation frequency, 6wT =
5. The figure also contains the time-averaged inversion produced by an on-
resonance monochromatic field with the same time averaged intensity as the
bichromatic field and the time-averaged inversion produced by a monochromatic
field of the same time-averaged intensity detuned by the modulation frequency.
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Fig. 2.6 Second harmonic component of the inversion as a function of modula.
tion frequency for a series of bichromatic field intensities. The component of theinversion oscillating at twice the modulation frequency is plotted as a function
of modulation frequency. The intensity I, = 0.1,1,10 and T2 = -T. (a) The
real part of w3, (b) the imaginary part of W2, and (c) the magnitude of w2.
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5. Subharmonic Probe Field

Now that we have calculated the gain of the bichromatic field, we will

analyze its stability to the growth of a subharmonic probe field. The period

doubling sequence is especially interesting since it has been observed in many

nonlinear systems enroute to chaos. We will consider the possibility of a period

doubling instability in the two-level atom being driven by a strong bichromatic

field. Period doubling can be thought of as the generation of the j-subharmonic.

We will calculate the gain of a i-subharmonic probe field in the presence of the

strong bichromatic field. For each strong-field modulation frequency there are

two independent subharmonic fields. When the bichromatic field is symmetric

about resonance, the two independent subharmonic fields are in-phase and in-

quadrature to the strong bichromatic field. The spectrum of this on-resonance

field is shown in Fig. (2.7).

We can write this on-resonance field as

E(t) = 4 [E1 cos 6wt + 6E' cos(ibwt + O')] coswt

- 46E" sin( jbwt + 4"') sin wt. (2.24)

The amplitude of the probe field in-phase to the rotating frame is W&(t), 6E"(t)

is in-quadrature. The phases of the modulations, 4' and 49", are with respect

to the modulation of the strong bichromatic field. It is easily shown that the

in-quadrature probe-field gain is independent of the phase of the modulations.

We include the phase in the analysis for completeness. The Bloch equations for

this field are

d [ -] 0 -/T2 /'(t) [1 + , (2.25)
t Wfr"(t) -fA(t) -11T, J 9/I~
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Fig. 2.7 Applied field spectrum for the 4-subharmonic probe field and strong
bichromatic field. The Lorentzian lineshape represents the atomic response. The
frequency components at ±6w represent the two-frequency strong field. The two
frequency components at :i:6w/2 represent the two-fiequency probe field. The
field components are assumed to be symmetrically placed about the atomic
resonance.
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where W(t) = 2(fl, cos 6t+68f cos(J~wt+O')) and fl"(t) = 28W" sin(J6wit+O").

Since the 3x3-matrix in Eqn. (2.25) is periodic in time, we can employ Floquet's

theorem and expand the atomic variables in a Fourier series. The stationary

state solution for the atomic variables is written as

V E] exP(jin6wt). (2.26)
tWt=-00 Wnl

Substituting this expression into Eqn. (2.25) and equating terms of equal time

dependence generates the following recurrence relations

(1 + ',inbwT2 )Un = (8f"ion- + M(iI*W n+1DT 2 , (2.27a)

(1 + 'i&8wT 2 )V, = (fl 1 (W.- 2 + n+ 2 ) + 81i'W.-I + 6fl'+Wn,)T2, (2.27b)

(1 + iibwTI)Wn = Weqb ,0 - [fl(nR_2 + V,+ 2)

+ 6fl"u._1 + 6fl"'u.+1 + fl'V.n- + 8fli'*v+I)T(g.27c)

where

6M' = (2d/h)E' exp(iO'), (2.28a)

=f" = i(2d/h)E" exp(i4"), (2.28b)

and the asterisk denotes the complex conjugate. Again to simplify the analysis,

we eliminate the variables of the polarization to obtain a relationship for the

harmonic components of the inversion alone. Using Eqn. (2.27a), we solve for

the n-th Fourier component of the slowly varying in-phase part of the dipole

moment

.= Ln(6fl"._.I + 6fl"w.+l)T2 , (2.29)
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where L, is the complex Lorentzian function,

1
Ln = 1 (2.30)

1 + inbwT 2

We use Eqn. (2.27b) to obtain an expression for the n-th Fourier component of

the slowly varying in-quadrature part of the dipole moment

Vn = L011 (W.-2 + W, 2 ) + 6i',_ + 6f",*W+ 1 fT2. (2.31)

We now substitute Eqns. (2.29) and (2.31) into Eqn.(2.27c) to obtain a recur-

rence relation for the inversion's harmonic components alone.

a, w, 4 + bnw,, 3 + CnW,,_ + dn-I + ew,1

+ iw,+ 4 + h,,w,,+s + gW,+2 + fnw,+ = b, (2.32)

where the coefficients of the recurrence relation are functions of the field ampli-

tudes, modulation frequency, and relaxation times

a, = L,_ 2 fl TIT 2 , (2.33a)

b, = (L,,_ 2 + L,,_.)fl 1 fl'T1T2 , (2.33b)

c, = L,,_I(6tL' 2 + 8f" 2)flf 2 , (2.33c)

d, = (Ln_2 + Ln+l)niibfl#-TIT, (2.33d)

e= 1 + inbwT1 + (12T 1T2(L 3-2 + L+)

(I6fl'12TT 2 + I?"II2TiT)(LnI + Ln+1 ), (2.33e)

A = (L,, 2 + Ln_.)fl fI'TT 2 , (2.33f)

,= L,+iI[(bfl*) 2 + (bf?") 2 ]TjT 2 , (2.33g)

h, = (L,+ 2 + L,+l)flfl 'TIT 2 , (2.33h)

in= L,,+2 1f 2 T. (2.33i)
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We simplify the analysis by defining the matrices

a4,.-3 b,.- 3  c4.- 3 d4 .- 3

p = 0 a4,-2 b4"-2 C4 "- 2 (2.34)P= 0 0 G4,-1 6,-1
.0 0 0 a4.

Q.= d4 . 2 e4 . 2 fA,- g. 1 - 2  (2.35)
c,,,,-l d,.-I e,.-I A,.-Ib , C4 d,. e In

r4,0.. 0 0
R.= 4 ._ i,._ 0 0 (2.36)

gIn- h4n-2 ~t-

.An .g4  h41, in

. [ 41-31

W11  11 4 n-..2w~- (2.37)

and

D . 0 _ .(2.38)

The rows of each of the matrices are elements of the recurrence relation, Eqn. (2.32),

shifted by four to make them independent of each other. We can now write a

three-term matrix recurrence relation

PW. I + QWn + R.Wn+l = w,, D . . (2.39)

Any n-term recurrence relation can be reduced to a three-term matrix recur-

rence relation such as this one.60 The solution to Eqn.(2.39) depends on the

fact that the larger index variables eventually become insignificant. The larger

harmonic components of w must become less significant if the Fourier series in

Eqn. (2.26) are to converge and if the rotating-wave approximation is to remain

valid. Therefore, we assume that the vectors of harmonic components of the
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inversion W are negligible for n > N. With this assumption, the recurrence

relation, Eqn. (2.39), for n = N can be written as

PNWN_1 + QNWN = 0, (2.40)

since WN+j :- 0. This allows us to solve for WN in terms of WN_1.That is

WN = -QNIPNWN_. (2.41)

For n=N-1, Eqn. (2.39) becomes

PN_.1WN-2 + QNI.WN_1 + RNIWN = 0 (2.42)

Using Eqn. (2.41), this becomes

PN-1WN-2 + (QN-1 - RN-1QNPN)WN - = 0, (2.43)

or

WN-1= -(QN-1 - RN-IQN PN )- IPN - IWN -2 "  (2.44)

We can continue in such a manner, defining the larger index Fourier amplitudes

in terms of the smaller index amplitudes, until we reach the relation for n=1

when we have

= - RIM - R2(.
-- RNIQN'PN)-PN_.)- .) 21P, 1 P1 Wo, (2.45)

or more simply

W, = M+Wo, (2.46)
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where M+ is the matrix continued fraction. We can obtain a similar expression

using the fact that the negative Fourier components will be less significant for

n < -N. For n = -N Eqn. (2.39) can be written as

QNWN + RNWN+1 = 0, (2.47)

since W-N-I ; 0. This allows us to solve for WN in terms of WN+I . That is

-= -Q-kRNWN+ •  (2.48)

We proceed as before until we reach the relation for n = -1 where we obtain

W-1 = -[Q-2 - P-I(Q-2 - P.-2 (. (Q-N+1

- _N IQNRN)-R-N+I) • • .)-R_2]-lRiW 0 , (2.49)

or more simply

W_= = M_ W o. (2.50)

Strictly speaking, the matrices M+ and M_ are functions of N. However, we

choose N sufficiently large so that M+ and M_ become independent of N to the

desired accuracy of the calculation. We now return to Eqn. (2.39) with n = 0

and use Eqns. (2.46) and (2.50) to obtain

[PoM - + Q0 + RoM+]W = w.,D0 . (2.51)

This matrix equation represents a set of four linear equations that can easily be

evaluated on a computer. The results of this calculation are shown in Fig. (2.8).

We have plotted the gain of the i-subharmonic field as a function of the

modulation frequency for various values of the strong-field intensity. In Fig. (2.9),
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Fig. 2.8 Gain of the J-subharmonic probe field as a function of modulation

frequency for a series of strong-field intensities. The gain of the .- subharmonic

probe field is plotted as a function of modulation frequency for a series of strong-

field amplitudes, I, = 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1. The medium is

modelled as collisionally broadened with T1 = 1OT 2 . (a) gain of the in-phase

component of the field (b) gain of the in-quadrature component of the field.
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we plot the in-phase and in-quadrature J-subharmonic probe-field gain along

with the strong-field gain for a strong-field amplitude flIT 2 = 10 and for a

collisionally dephased medium with T1 - 1OT 2 .

The probe field gain exceeds the strong-field gain everywhere except near

the absolute maximum of the strong-field gain. If the strong bichromatic field

is the field in a laser operating at the maximum gain, the 1-subharmonic will

not destabilize the bichromatic field. However, if there is a frequency-dependent

loss that is larger for larger modulation frequencies, the strong bichromatic field

will experience more losses at 6w than the probe fields will experience at .16w.

The point at which the instability occurs will depend on the severity of the

frequency-dependent loss. These conclusions agree with the experiments of Hill-

man et al.," and Stroud et a/.44 - 41 In the experiment of Hillman et a., 43 a

highly dispersive flint glass prism was used as a frequency selection element

and the strong bichromatic field was observed to become unstable when the

two components reached a separation of -80 A. Stroud et al.,"4 "' used a low-

dispersion quartz glass prism and observed that the strong bichromatic field

remained stable up to a separation of over 340 A.

Another subharmonic probe field that is interesting in the stability analysis

of the bichromatic field is the .- subharmonic probe field. The beat notes gener-

ated by adjacent field components of the bichromatic field and its --subharmonic

are degenerate. This fact reduces the recurrence relation of the inversion to a

7-term recurrence relation. The 3-term matrix recurrence relation is then made

up of 3x3 matrices; Koch et al.,6 1 discuss the details of this analysis. The conclu-

sions from the 1-subharmonic analysis are identical to the -subharmonic case.

That is, the strong field is stable to the growth of the subharmonic field except
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when a frequency-dependent loss is present. The severity of the frequency-

dependent loss determines the threshold for instability.

It would be very interesting to compare the gain of a 100% AM probe field

of arbitrary modulation frequency with the gain of the strong bichromatic field.

However, there are technical details that make this analysis difficult to per-

form. Namely, the nonlinear response of a two-level atom produces combination

tones of the driving field components in the polarization and inversion of the

atom; when the frequencies of the driving field are incommensurate, the medium

can exhibit a broadband spectral response. The analytic description of such a

problem becomes extremely difficult. If the frequencies of the driving field are

commensurate, then Floquet's theorem can be employed and one could study

the problem in a manner similar to those described in this chapter; however,

if the ratio of strong-field modulation frequency to the probe-field modulation

frequency is equal to the ratio of two large integers, then the dimension of the

matrices in the analysis will also be large. This is related to the fact that an

increasing number of frequencies must be taken into account as the modulation

frequencies of the probe and the strong fields approach an incommensurate ratio.



Chapter III

MODULATION MIXING IN A DYE LASER

1. Introduction

In this Chapter, we review an experiment investigating the dynamic behav-

ior of a dye laser pumped by a modulated argon-ion laser. The study is relevant

to lasers with time-dependent pump parameter, chaos and turbulence, nonlinear

optics, and chaos in quantum systems.

The motivation for this work came, in part, from a paper by Pomeau et

al. 2, a numerical investigation of the response of a two-level atom driven by

two fields. The authors' interests include the influence of incommensurate driv-

ing fields on quantum systems and the possibility for chaos in a purely quan-

tum mechanical system. The authors find that when the two frequencies are

commensurate (i.e. the ratio of the two frequencies is a rational number), the

system exhibits a periodic response. In contrast, when the two frequencies are

incommensurate (i.e. the ratio of the two frequencies is an irrational num-

ber), the system exhibits a more complicated response; the Fourier transform of

the time evolution of the inversion is broadband and the wave function's time-

36
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dependent autocorrelation function falls off rapidly. These results suggest that

a conservative system driven at two incommensurate frequencies may behave

chaotically. The results are somewhat dissatisfying since numerical calculations

can only approximate true incommensurate ratios. In an attempt to examine

better and better approximations to incommensurate ratios, Eidson and Fox63

approximate incommensurate ratios by ratios of consecutive numbers of the

Fibonacci sequence. The Fibonacci sequence is generated by the recurrence re-

lation X,+2 = X, + ,+ for n > 0 and the initial conditions z0 = z, = 1 (i.e., 1,

1, 2, 3, 5, 8, 13, ... ). The ratios of consecutive numbers of the Fibonacci se-

quence approach the golden mean (v/5-1)/2, the most incommensurate number.

Approximating the incommensurate ratio of frequencies by the ratio of initial

Fibonacci numbers, gives a spectrum of clearly resolved combination tones of

the two frequencies. Approximating the incommensurate ratio of frequencies

by the ratio of larger Fibonacci numbers, gives a more complicated spectrum

where the time necessary to resolve the combination tones increases. In the

limit of a truely incommensurate ratio, the field components can be arbitrarily

close to one another and therefore cannot be resolved in a finite amount of time.

The reason Pomeau et al.6 2 , observed a broadband spectrum could be they sim-

ply did not resolve the spectrum's combination tones. They approximated the

incommensurate ratio of frequencies by the ratio of integers, 1711/28657 and

4637/13313. The large prime denominators make the time necessary to resolve

the combinations tones extremely long. Besides these numerical studies, nu-

merical calculations by Badii and Meier 4 show that a double Poincari section

(recording the points where a four-dimensional trajectory intersects a plane) of

the inversion's time series yields a smooth curve indicating that the motion, al-

though quite complicated, is not chaotic, but quasiperiodic. This suggests that
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a conservative system driven by two incommensurate frequencies is not chaotic.

Additional calculations have been performed by Band et al.s, who analyze a

nonlinear mixing crystal driven by two multimode lasers with different cavity

mode spacings. When the cavity mode spacing frequencies are commensurate,

they find the output of the nonlinear mixer is periodic. When the cavity mode

spacing frequencies is incommensurate, the output of the nonlinear mixer shows

broadband spectral features. They also claim that the output will be chaotic

if the phases of the lasers wander independently. The authors use their results

to suggest a more efficient scheme for frequency mixing. The experimentally

important complication of dissipation in the dynamics of the system has not

been addressed in these analyses. Many systems that do not exhibit chaos in a

conservative framework, become chaotic when damping mechanisms are added

to the dynamics.

In work concerning incommensurate frequencies in dissipative nonlinear sys-

tems, Hopfi considers the propagation of a quasiperiodic field, modulated in

amplitude and phase, through an inhomogeneously broadened amplifier. He

finds that embedding techniques classify the output of the amplifier as noise;

although, arguments are made to suggest that chaos is not necessarily excluded.

However, it is not clear whether the time series analyzed were long enough to

resolve the combination tones generated in the field on propagating through the

amplifier.

The interaction of multiple-frequency fields is also of interest in consider-

ing Landau's proposal 7 for a possible mechanism for the onset of turbulence.

Landau proposed that, as a parameter of the system was varied, the spectrum

of the system would successively develop incommensurate frequencies, along

with combination tones of the existing frequencies, until the system's behavior
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becomes quite complicated or turbulent. In contrast to this route to turbu-

lence, Ruelle and Takens 68 and Newhouse et al.a , predict that multifrequency

quasiperiodic motion is unstable to perturbative changes of the system. These

perturbative changes in the system convert the quasiperiodic motion to chaotic

motion. However, these destabilizing perturbations belong to a small subset of

the possible perturbations of the system. A numerical study of three- and four-

frequency quasiperiodic maps by Grebogi et a.70-72, shows that stable three-

and four-frequency quasiperiodic orbits do exist. Three-frequency quasiperi-

odic orbits have been observed experimentally.71 - 7 4 Unlike the work presented

in this Chapter, these experimental three-frequency quasiperiodic orbits arose

from three Hopf bifurcations in the dynamic response of the system as a pa-

rameter of the system was changed; in this experiment we externally drive the

system at two or more frequencies.

The nonlinear response of a two-level atom to an applied field is responsible

for the broadband spectra that were observed in references 62-66. Nonlinear

behavior exists in almost every real system. The output power of a laser is

a nonlinear function of the pump power near the threshold for lasing. Other

nonlinear effects such as discontinuous intensity jumps, hysteresis, and the effects

of critical slowing down, can be observed in the output power of lasers. The high-

Q multimode ring dye laser used in previous experiments 4 3- 4' has displayed

all these effects. The nonlinear kink at the threshold for lasing, discontinuous

intensity jumps, and hysteresis are seen in Fig. (3.1).

The plot shows the dye laser output power as a function of normalized

pump power, as the pump power is swept sinusoidally at 2 kHz. The abscissa in

Fig. (3.1) is pump power divided by threshold pump power. These nonlinearities

provide the system with a mechanism for mixing the driving frequencies. The
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Fig. 3.1 Dye laser ouput power versus normalized pump power for a high-Q
multimode ring dye laser. The ouput of a high-Q multimode ring dye laser is
measured as the pump laser is modulated at I kHz. The figure illustrates the
nonlinear relationship that exists between the input pump intensity and the
ouput dye laser intensity. The pump intensity is normalized to threshold.
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possibility of generating new frequencies or a chaotic response are also possible.

Lasers are often used as pump sources for other lasers. The different modes

of a multimode pump laser or the single modes of many individual pump lasers

can beat together to form a modulation of the pump source. In this Chapter we

study the effect the modulation has on the output of the laser being pumped.

Specifically, we examine a multimode dye laser pumped by an argon-ion laser

with adjustable modulation frequencies. The results of this experimental work

are relevant not only to the study of nonlinear systems driven by multiple fre-

quencies, but also give information about the behavior of a multimode dye laser

with a time-dependent pump parameter.

2. Experimental Setup

The experimental setup is sketched in Fig. (3.2). A multimode argon-ion

laser (Coherent Innova-20), operating at a single wavelength, 5145 A, pumps a

multimode dye laser. The longitudinal mode spacing of the argon-ion laser is

approximately 80 MHz. The rms amplitude of 80 MHz modulation is 0.2% of the

total intensity. The rms amplitude of the line frequency and its harmonics is less

than 1% of the total intensity. We focus the beam of the argon-ion laser through

a traveling-wave acousto-optic modulator (IntraAction Model:ADM-40). We

recollimate the zeroth-order output of the modulator before focusing it on the

dye jet of the dye laser. We found it necessary to focus and recollimate the argon-

ion laser to preserve the TEM00 beam, and to maximize the bandwidth from

the modulator. The bandwidth of this modulation was approximately 4 MHz.

The acousto-optic modulator is driven by a 40 MHz radio-frequency source. The

sum of a series of oscillators (Wavetek Model:188) modulates the amplitude of

the 40 MHz signal. The oscillators operate from 1 kHz to 400 kHz. The contrast

ratio [ (maximum - minimum)/(maximum + minimum) ] of the total intensity of



42

a L mlyn

lasr. e smulanousy dgitzehemoduate pupinenit ndthiutu

oh yon-ife

Fig. 3.2 Experimental setup to observe modulation mixing in a high-Q multi-
mode ring dye laser. An acousto-optic modulator (AOM) is driven by a series of
oscillators. The AOM modulates the intensity of a multimode single-wavelength
argon-ion laser. The modulated argon-ion laser pumps a multimode ring dye
laser. We simultaneously digitize the modulated pump intensity and the output
of the dye laser.
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the pump laser varies between 0.90 and 0.50 in the experiments. These contrast

ratios are sufficient to bring the dye laser below threshold and 5-6 times above

threshold. The dye laser is similar to the lasers used in previous experiments.

All the mirrors are broadband high reflectors (Virgo Optics BBHR). A Brewster-

angle quartz prism is used for frequency selection. The time-averaged linewidth

of the dye laser is approximately IA. A photodiode (Hewlett Packard PIN 4997)

monitors the zeroth-order output of the acousto-optic modulator from a beam

splitter. The output of the dye laser is also monitored using a photodiode. The

photodiodes are biased at 15 Volts. A current-to-voltage converter with a gain

of 2 pV/mA converts the current from the photodiode to a voltage monitored

by the computer. The current-to-voltage converter is fabricated using an opera-

tional amplifier (Model:356). The response of the photodiodes drops to one half

of the low-frequency response at 8 MHz. We record the signals from the photo-

diodes using a 10-bit transient digitizer (Sony-Tektronix Model:RTD-710). The

transient digitizer simultaneously samples the two photodiodes every 200 nsec.

Series of 215 points are transferred to a computer for analysis.

3. Experimental Analysis

We use a method developed by Grassberger and Procaccia"S to analyze our

data for the presence of deterministic noise and the generation of new frequency

components. The method takes a one-dimensional time series z(ti) and forws

vectors in an embedding space of dimension n. The vectors have elements :

x(ti),(ti, + T),z(ti + 2T),...,x(t, + (n - 1)-r). We choose r by calculating

the first maxima in the area covered by a plot of x(ti) versus z(ti + 7).76T- 7 7

The delay plot of x(ti) is a diagonal line for small r. As r is increased, the

correlation between points vanishes and the plot spreads over the plane. As T

is increased further, some correlation between the points returns and the plot
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collapses, approaching a diagonal line. The maximum amount of information is

extracted from the delay plot when the area of the plot is maximized. The next

maxima are less relevant as fluctuations and noise begin to affect the data.

The number of n-dimensional vector pairs whose ends are within a distance

C, C,,(e), is determined as a function of c and n. In the limit that e approaches

zero and n approaches infinity, C,,(e) scales as

lir C ,(e) Cc C' exp(-nK2 'r), (3.1)
4-00

where D 2 is the correlation dimension of the attractor and K 2 is the order-2

Renyi entropy. The order-2 Renyi entropy is a lower bound of the Kolmogorov

entropy of the system. It has been shown"5 that K 2 is zero for a periodic

system, infinite for a stochastic system, and finite but nonzero for a chaotic

system. Taking the logarithm of both sides of Eqn. (3.1) gives

lim In [C,(E)] = D 2 ln(E) - rK 2T + c, (3.2)
S -00I

where c is an arbitrary constant. In practice one plots In [C,(c)] as a function of

In(c) for a series of embedding dimensions, n. So, in the limit of large n and small

e, the curves approach straight lines with slope D 2. The distance between the

straight lines of successive embedding dimensions gives K 2,'. We calculate C,(c)

for embedding dimensions of 1 to 20. The magnitude of our data ranges from 0

to 1023. Since the data are strictly integers, there is no information below e = 1.

If c is large enough to contain all the ends of the vectors, we gain no information

by making e any larger. Therefore, we choose the parameter e to run from 1 to

1500. We calculate C,,(c) for 400 equally spaced values of In(c). We then use

a 13-point linear regression analysis to calculate the slopes of the curves as a

function of ln(c). The 13-point linear regression calculates the slope of a best fit
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straight line for each group of 13 consecutive points along the In(e)-axis. Then

we plot the calculated slopes as a function of In(c). The slopes of the curves

converge to D2 , the correlation dimension of the system, for large embedding

dimension. We use the region of e where the slopes converge to calculate K2(n).

We plot D 2(n) and K 2 (n) as a function of embedding dimension to extrapolate

their large embedding dimension values.

Some simple examples of well-characterized time series were used to test the

numerical algorithm of the Grassberger-Procaccia method. The time series of

one of the dimensions of the Hinon map78 with parameters a = 1.4 and b = 0.3

gives a correlation dimension of 1.19 and a K2 of 0.42 bits/iteration agree with

values in the literature."' Since the Henon map is a discrete map, we choose r to

be one iteration. If larger values of r are chosen, the points loose all correlation

and the resulting time series is completely random. A single-frequency sine wave

of 10 kHz, sampled every 1.6 usec with a 10-bit accuracy, has a correlation dimen-

sion of 1.0 and a K2 of less than 0.1 bits/period. Since there is one frequency in

the system, the results for the correlation dimension agree with what we expect.

The somewhat large value of K2 is a result of random noise in the digitization of

the sine wave and in practice the Grassberger-Procaccia method does not give

a K2 of zero for periodic signals. The sum of two sine waves of incommensurate

frequencies, (27r/w, = 10 kHz and w2 = w, (1 + V'5)/2 ), has a correlation dimen-

sion of 2.1 and a K2 of less than 0.2 bits/period. The correlation dimension has

increased with the number of incommensurate frequencies. We then analyzed

the square of the sum of two sine waves of incommensurate frequencies, w, and

w2 . The square of the sum generates four frequencies: 2w,, 2w 2 , W1 + w2 , and

WI - w2. Each pair of frequencies is incommensurate, which might lead one to

conclude that there are four incommensurate frequencies; however, the correla-
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tion dimension for this time series is equal to 2.0. Therefore, we conclude that

the correlation dimension scales with the number of linearly-independent fre-

quencies. This definition has been used in previous studies with multifrequency

fields. The value of K 2 for this time series approaches 0.2 bits/period. Con-

sequently, this method of data analysis allows us to distinguish a spectrum of

combination tones from a spectrum where new independent frequency compo-

nents have been created. If the correlation dimension increases, we know new

linearly-independent frequency components have been created. Since a change

in the value of K2 signifies a change in the system's information, we also ex-

pect a corresponding change in the value of D 2 for the time series with new

linearly-independent frequencies. If the correlation dimension and the order-

2 Renyi entropy decrease or remain the same, then we conclude that no new

linearly-independent frequency components have been created.

4. Experimental Results

We have carried out experiments where the pump modulation consists of

one, two, three, or four modulation frequencies."0 When a single frequency mod-

ulates the pump beam, the dye laser responds at the harmonics of the modulation

frequency. The results obtained for two- and three-frequency modulations of the

pump beam show the dye laser responds at the harmonics and combination tones

of the applied modulation frequencies.

In Fig. (3.3a) we plot In [C,,(c)] as a function of ln(e) for the time series of

the pump modulated at three commensurate frequencies. In Fig. (3.3b) we plot

In [C,,(e)j as a function of In(e) for the time series of the dye laser output.

Figures (3.4a) and (3.4b) show the results of a 13-point l-near regression

analysis on the curves in Figs. (3.3a) and (3.3b), respectively.

In both cases the slopes of the lines converge in the limit of large embed-
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Fig. 3.3 Logarithm of the correlation sum Cc as a function of the logarithm
of the hypersphere radius. (a) For the time series of the pump laser modulated
at three commensurate frequencies. (b) For the time series of the dye laser
driven by the pump laser modulated at three commensurate frequencies. The
slopes of the curves converge to a common value over a region of e.
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cling dimension. We obtain the value for D 2(n) by averaging the results of the

13-point linear regression over the region of e where the slopes converge. In

Fig. (3.5a) we plot the correlation dimension D2(n) as a function of embed-

ding dimension for the modulated-pump time series (squares) and the dye-laser-

output time series (triangles). Figure (3.5b) is a plot of K 2(n) as a function

of embedding dimension for the modulated-pump time series (squares) and the

dye-laser-output time series (triangles). We obtain the value for K 2(n) in the

same region of c as the correlation dimension in Fig. (3.5a). The Fourier trans-

forms of the modulated-pump time series and the dye-laser-output time series,

Fp,,&p and Fdye, are plotted in Figs. (3.6a) and (3.6b), respectively.

Since both signals are made up of well resolved harmonics, the signals are

expected to be periodic. We know that the modulated-pump time series is

strictly periodic and therefore K2 approaches zero for the analysis. We can

interpret any deviation from zero as an indication of stochastic noise in the

detection or an anomaly of the technique we are using to analyze the data. In

Fig. (3.5b), any deviation in K 2 for the two time series indicates the dye laser

output is not periodic and has developed chaotic or stochastic noise in excess

of that on the modulated pump. Figure (3.5b) indicates that for commensurate

modulation frequencies the dye laser is still periodic since K2 is identical for the

two time series.

In Figure (3.7a), we plot In [C(e)] as a function of ln(c) for the time series

of the pump modulated at three incommensurate frequencies.

The choice of incommensurate frequencies was made while monitoring the

spectrum of the dye laser using an rf-spectrum analyzer. One oscillator remained

fixed in frequency, while we vary the frequencies of the other oscillators until a

broadband spectrum is observed. Figure (3.7b) is a plot of In [C,,()] as a function
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Fig. 3.4 (a) The slopes of the curves in Fig. (3.3a) derived from a 13-point
linear regression analysis. We perform a 13-point linear regression analysis to
calculate the slopes of the curves in Fig. (3.3a) as a function of log(c)). The
slopes of the curves converge for a region of e. (b) The slopes of the curves in
Fig. (3.3b) derived from a 13-point linear regression analysis. We perform a 13-
point linear regression analysis to calculate the slopes of the curves in Fig. (3.3b)
as a function of log(e)). The slopes of the curves converge for a region of e.
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Fig. 3.5 (a) Correlation dimension, D2{n), as a function of the embedding 
dimension for the case of three commensurate frequencies. (b) Order-2 Renyi 
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Fig. 3.6 (a) Fourier transform of the time series for the pump laser modulated
at three commensurate frequencies. The Figure demonstrates that the pump
laser is made up of three well-defined frequencies. (b) Fourier transform of
the time series for the dye laser driven by the pump laser modulated at three
commensurate frequencies. The Figure illustrates that the dye laser is made up
of harmonics of the fundamental frequency of the argon laser.
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of In(c) for the time series of the dye laser output. The results of a 13-point

linear regression on the curves in Figs. (3.7a) and (3.7b) are shown in Figs. (3.8a)

and (3.8b), respectively. Again in both cases the slopes converge in the limit of

large embedding dimension. In Fig. (3.9a) we plot the correlation dimension,

D 2(n), as a function of embedding dimension for the modulated-pump time

series (squares) and the dye-laser-output time series (triangles). We obtain the

values for D 2(n) in a manner similar to those in Fig. (3.5a). Figure (3.9b)

is a plot of K 2 (n) as a function of embedding dimension for the modulated-

pump time series (squares) and the dye-laser-output time series (triangles). The

Fourier transforms of the modulated-pump time series and the dye-laser-output

time series, FPUP and Fdv., are plotted in Figs. (3.10a) and (3.10b), respectively.

While the spectrum in Fig. (3.10a) is a finite series of discrete components, the

spectrum of Fig. (3.10b) is a broadband spectrum. However, from Figs. (3.9a)

and (3.9b) we see the values of D2 (n) and K2 (n) that the dye-laser-output time

series converges to are identical to those of the modulated-pump time series. We

can conclude that since the correlation dimension, D 2 , is identical for both time

series that no new independent frequency components have been created and

the spectrum of the dye laser output is composed purely of combination tones of

the modulated-pump spectrum. This indicates that even though the dye laser

output is quite complicated, it is merely quasiperiodic.

Similar experiments were carried out for two-, three- and four-frequency

modulations. The frequencies varied over the range of 1 kHz to 400 kHz. The

results of these other experiments are similar to the results of the three-frequency

modulation discussed above. In all these cases no chaos was detected in the

output of the dye laser.
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Fig. 3.7 Logarithm of the correlation sum C,(c) as a function of the logarithm
of the bypersphere radius. (a) For the time series of the pump laser modulated
at three incommensurate frequencies. (b) For the time series of the dye laser

driven by the pump laser modulated at three incommensurate frequencies. The
slopes of the curves converge to a common value over a region of e.
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Fig. 3.8 (a) The slopes of the curves in Fig. (3.7a) derived from a 13-point
linear regression analysis. We perform a 13-point linear regression analysis to
calculate the slopes of the curves in Fig. (3.3a) as a function of log(c)). (b)
The slopes of the curves in Fig. (3.7b) derived from a 13-point linear regression
analysis. We perform a 13-point linear regression analysis to calculate the slopes
of the curves in Fig. (3.3a) as a function of log(e)). The slopes of the curves
converge for a region of e.
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Fig. 3.9 (a) Correlation dimension, D2(n), as a function of the embedding
dimension for the case of three incommensurate frequencies. (b) Order-2 Renyi
entropy, K2(n), as a function of the embedding dimension for the case of three
incommensurate frequencies. The region of e overwhich the slopes converge
is used to calculate the distance between the curves of successive embedding
dimension. The squares (triangles) represents the results for the modulated
pump (dye laser).
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Fig. 3.10 (a) Fourier transform of the time series for the pump laser modulated
at three incommensurate frequencies. The figure illustrates that the pump laser
is composed predominantly of three frequencies. The harmonics and combina-
tion tones appear due to the nonlinear detection scheme of the photodiode. (b)
Fourier transform of the time series for the dye laser driven by the pump laser
modulated at three incommensurate frequencies. The figure demonstrates that
the dye laser is composed of a broad band of frequencies.
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5. Conclusions

We find that the correlation dimension of a system scales with the number

of linearly-independent frequencies. This fact allows us to separate broadband

spectra which are truly broadband from broadband spectra which are dense

spectra of combination tones. These conclusions were facilitated by careful use

of an embedding-space technique developed by Grassberger and Procaccia. 75 It

should also be noted that if shorter time series were used in the analysis, the

slopes of the curves, In [C,(e)] versus In(e), do not converge. The embedding-

space technique classifies such time series as noise. It is interesting to note that

a Fourier transform of the truncated time series would not resolve the combi-

nation tones in the dye laser spectrum. The embedding technique, however, is

mucL. more convenient than a Fourier transform for distinguishing truly broad-

baiid spectra from complicated spectra of combination tones. We show that

the output of a multimode dye laser, driven by a modulated pump, exhibits

brocadband spectral features which are simply combination tones of the pump-

sou. ce modulation frequencies. This indicates the mechanism responsible for

the broadband spectrum generates new frequencies from combination tones of

the existing frequencies. Phase-matched four-wave mixing is a simple example

of ' ow these new frequencies might be generated. The large depth of pump

mocoulation makes it possible for higher-order mixings to become of comparable

significance as well.

We also show that the high-Q multimode ring dye laser has stable multifre-

quency quasiperiodic attractors for two, three, and four incommensurate driving

frequencies. These results are similar to the results of Grebogi et a.? -  The

absence of chaos in this system is somewhat surprising given the extreme non-

linearities of the system which are illustrated in Fig. (3.1). A partial answer
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to this puzzle is that the hysteresis loops observed in Fig. (3.1) do not remain

stable for multifrequency pumping. The transition points of the hysteresis loop

do not remain fixed. This is related to critical slowing down that takes place at

this second instability threshold. Clearly, further study of this phenomenon will

be very important in completely understanding the results of this experiment.



Chapter IV

DYE LASER EXPERIMENTS

1. Introduction

In this Chapter we discuss a series of experiments examining the two-

frequency instability in a continuous-wave (cw) dye laser. A homogeneously

broadened cw ring dye laser is a simple laser system. The theoretical descrip-

tion of such a laser is useful in understanding the self-consistent dynamic in-

teraction of a coherent field with an atomic system. In 1984, HiUman et al.4s ,

experimentally demonstrated an instability in a cw rhodamine-6G ring dye laser

that, although appealingly simple in its characteristics, resisted quantitative

understanding until only recently. In this experiment, the power of the argon-

ion pump laser is gradually increased; the dye laser operates in a single mode

when the pump power is sufficient to bring the laser above threshold. As the

pump power is increased to 1.4 times above the first threshold, the laser passes

through a second threshold, at which point the spectrum of the laser discon-

tinuously splits into two components separated by approximately 7 A. At this

same point the output of the laser also changes discontinuously, increasing by
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a factor of two. As the pump power is increased even further, the two spectral

components spread apart until they reach a separation of -80 A. The splitting of

the two components scales proportionally to the square root of the output laser

intensity or directly proportionally to the Rabi frequency of the laser transition.

At a pump power of approximately 2.5 times above the first laser threshold,

a third threshold of instability is encountered. The spectrum of the laser col-

lapses to a two-frequency state whose separation is approximately 10 A. At this

third threshold, the dye laser output power discontinuously jumps again by a

factor of approximately two. As the pump power was increased above this third

instability threshold, the spectral components again show a power dependent

separation. At both the second and third instability thresholds, the output

power demonstrates hysteresis as the pump power was adjusted up and down

through the threshold.

This Chapter addresses the question of whether or not the two-frequency

instability is intrinsic to the laser atom interaction or due to some other features

of the experiment. We have examined the effects of the pump laser spectrum,

cavity dispersion, cavity Q, cavity detuning, unidirectional operation, and age

of the dye solution on the two-frequency instabilty.

2. Robustness of the Two-Frequency Instability

The initial experiments were performed with an argon-ion laser operating

in a multi-wavelength configuration. The absorption band of the rhodamine-6G

dye molecule peaks in the region of 5145 A, the strongest line of the argon-ion

laser. However, there is still considerable cross section for the absorption of the

other wavelengths of the argon-ion laser. The energy difference between the

pump photons and the subsequentally emitted dye laser photons is converted
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to thermal energy in the dye molecule. This means that wavelengths shorter

than 5145 A will cause the dye molecule and its solution to heat up more than

if the dye laser were pumped solely with the 5145 A wavelength. We performed

experiments with the dye laser pumped by a single wavelength (5145 A) laser

to investigate the effects of the absence of excess heating on the two-frequency

instability.

The initial experiments employed a strongly dispersive flint-glass Brewster-

angled prism for wavelength selection of the dye laser. The prism provides wave-

length discrimination in the large (-250 A) gain-bandwidth of the dye molecule.

Predictions were made, concerning the behavior of the spectral components of

the two-frequency state above the instability threshold, that involved the disper-

sion of the cavity. Using a weakly dispersive quartz-glass Brewster-angled prism

we conducted experiments to investigate the effects of the prism's dispersion on

the two-frequency instability in the dye laser.

Since the frequency separation of the field components depends on the am-

plitude of the laser field, the instability has been associated with Rabi oscilla-

tions. In order to maximize the field strength of the laser, the initial experi-

ments were performed in a high-Q laser. All the mirrors in the laser cavity were

broadband high reflectors. To investigate the effects of cavity Q, we performed

experiments on a dye laser with a 5 % output coupler. The increase in the

threshold for oscillation was compensated by providing higher pump powers.

The initial experiments were conducted in a bidirectional ring laser. Coun-

terpropagating waves in nonlinear media are known to produce instabilities and

chaos.6 ' We employ two techniques to force the ring dye laser to operate in a

single direction of oscillation and then observe the effects this has on the two-
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frequency instability. The first technique for producing unidirectional operation

involves retroreflecting one of the directions of oscillation back into the cav-

ity. We monitor the two Fresnel reflections coming from the prism in the laser

cavity. One reflection results from one of the laser's directions of propagation;

the other reflection results from the other direction of propagation. When the

retroreflection of one of the directions is properly aligned, the Fresnel reflec-

tion from this direction of oscillation is observed to vanish. The field does not

completely extinguish itself, but a ratio of intensities of approximately 80:1 was

obtained between the two directions of propagation. The technique is not very

effective if the beam to be retroreflected exits the cavity from a mirror with a

high reflectivity. The beam is weak and the amount of light that makes it back

into the cavity is insufficient to force the laser into unidirectional operation. We

retroreflect the output from the 5%-transmission mirror. The intensity in this

case is sufficient for the effect to occur.

Figure (4.1) shows the experimental setup to observe the dye laser spectrum

as a function of pump intensity. The mirror external to the laser cavity is used

to force the laser into unidirectional operation. Its retroreflection can be blocked

to allow the ring dye laser to operate bidirectionally. We use a single-wavelength

argon-ion laser to pump the dye laser. The current supplied to the argon tube is

controlled by a digital-to-analog interface in the computer. The spectrum of the

laser is measured using a quarter-meter Jarrell-Ash spectrometer. The image

plane of the spectrometer contains an intensified CCD array of 700 exposed el-

ements. An optical multichannel analyzer (OMA) controls the CCD array. The

spectrometer and CCD array combination has a resolution of approximately 2A.

The computer adjusts the intensity of the pump laser. It waits a set amount of
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Fig. 4.1 Schematic diagram of a cw pumped multimode ring dye laser. All the
mirrors in the cavity are broadband high reflectors. The computer controls the
argon laser power and signals the optical multichannel analyser (OMA) when
the spectra should be taken. The OMA reads ,-700 pixels from a diode array in
the image plane of a quarter-meter spectrum analyser. A retroreflecting mirror
is used to force the laser into unidirectional behavior, or is blocked so the dye
laser can oscillate bidirectionally.
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time and then sends a trigger pulse to the OMA. On receiving the trigger pulse,

the OMA samples the spectrum of the dye laser and stores it in memory. The

OMA then sends a trigger pulse to the computer. On receiving the trigger pulse

from the OMA, the computer readjusts the pump intensity and the process re-

peats until the maximum pump laser intensity is reached. Figure (1.2) and (4.3)

show the dye laser spectrum as a function of pump power for both unidirectional

and bidirectional operation. We can see from the Figures that the instability

is still present in the unidirectional case, though some slight modifications take

place in the region of the spectrum's bifurcation. The spectral components are

seen to split out to approximately 240A. This is three times the splitting ob-

served in the original experiments by Hillman et al."3 While this method of

producing unidirectional operation is succesful, it modifies the rf-spectrum of

the oscillating direction. It was found that the cavity-mode beat notes could

be enhanced or diminished depending on the distance of the retroreflecting mir-

ror from the output coupler. This complication, as well as the fact that the

counterpropagating direction of oscillation is not completely extinguished, left a

certain amount of skepticism8 2 as to whether or not a counterpropagating field

is necessary for the two-frequency instability. We then attempted to force the

laser to oscillate unidirectionally using another method.

The second method of achieving unidirectional operation involved employ-

ing a Faraday rotator and a quartz-crystal compensation plate. The Faraday

rotator is a samarium-cobalt permanent magnet mounted around a piece of

SF-56 flint glass with a large Verdet constant. The polarization of the light is

rotated in a clockwise or counter clockwise sense, depending on the direction

of propagation with respect to the magnetic field of the permanent magnets.
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Fig. 4.2 Optical spectrum of a bidirectional ring dye laser as a function of
pump power. The Figure clearly shows the dye laser spectrum bifurcating above
a threshold value. The unequal intensities of the two spectral components were
caused by a misalignment of the detector array.
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The quartz-crystal compensation plate rotates the polarization of the light in-

dependent of the direction of propagation. Therefore, with proper adjustment

of the quartz-crystal plate, the polarization of one of the directions of prop-

agation will suffer no net rotation on a round trip in the cavity. The other

direction of propagation will suffer some net rotation, creating a component of

s-polarization. The s-polarization component experiences additional losses at

the Brewster-angled surfaces in the cavity. This additional loss is sufficient to

force the laser into unidirectional operation with a ratio of intensities of ap-

proximately 200:1 between the two directions of propagation. The amount of

loss introduced to both directions, however is quite large; the additional losses

suffered at the Brewster-angled surfaces of the Faraday rod and the scattering

in the Faraday rod increase threshold for oscillation and make it more difficult

to achieve the necessary intracavity power for the instability to occur. The ex-

perimental setup is shown in Fig. (4.4). The Faraday rotator is constructed in

such a way that it is easy to remove the samarium-cobalt magnets from around

the rod. When there is no magnetic field present, the Faraday rod does not ro-

tate the polarization, and therefore does not function as a unidirectional device.

This enables us to conveniently compare the unidirectional operation of the laser

with the bidirectional operation. In Figs. (4.5) and (4.6), we show the dye laser

spectrum as a function of pump power for both modes of operation. The mode

structure of the spectrum is due to the quartz-crystal compensation plate which

acts like an etalon. The structure on the spectrum is the free-spectral range of

the compensator plate. The conclusions we reach from the Figures are that the

two-frequency instability is not an artifact of the bidirectional ring laser.
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Fig. 4.3 Optical spectrum of a unidirectional ring dye laser as a function of
pump power. This figure demonstrates that even when the dye laser runs uni-
directionally, the spectrum still bifurcates. The spectral behavior is somewhat

altered near the instability threshold. The unequal intensities of the two spectral
components were caused by a misalignment of the detector array.
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Fig. 4.5 Optical spectrum of a bidirectional ring dye laser as a function of pump
power. The magnet was removed from the Faraday rotator and the quartz-
crystal compensation plate was removed from the laser cavity. The dye laser
operates bidirectionally.
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Fig. 4.60Optical spectrum of a unidirectional ring dye laser as a function of

pump power. The magnet and compensator plate are in place and the dye laser
operates unidirectionally.
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3. Effects of Detuning

The instability was also investigated as a function of dye laser detuning.4 5

In previous experiments the prism was adjusted so that the laser operated at low

pump power at the center of the gain curve. The splitting then is approximately

symmetric about the initial lasing frequency. Figure (4.7) shows the results of

a series of experiments in which the prism is adjusted to produce operation at

various detunings on each side of the center of the gain curve. The detuning from

the center of the gain curve is indicated in the upper right corner of each figure.

The curves show the spectrum of the output of the dye laser for a series of pump

powers from lasing threshold at 1.3 Watts to 6.8 Watts. In each case, the laser

operates in a single mode with very little frequency pulling from threshold up

to a second threshold in the vicinity of 6 Watts of pump power. The behavior of

the laser at the second threshold depends sensitively on the detuning from the

center of the gain curve. For the case of A. = 0, the spectral component at the

original lasing frequency vanishes and two symmetrically detuned components

appear separated by approximately 75 A. These two components then separate

symmetrically to -175 A as the pump power is increased. When the prism is

tuned so that the laser begins lasing ,-10 A off of the gain center (A, = 10A),

the behavior is somewhat different. At the second threshold there is no longer

a symmetric splitting, instead a component on the other side of the center of

the gain curve splits off discontinuously, while the component on the other side

is generated continuously from the original component. In other words, a new

spectral component appears discontinuously and the original central component

is repelled by it. This behavior is even more dramatically demonstrated in the

case where the prism is adjusted so that the laser initially operates ,-25A off
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of the center of the gain curve (AA = 25A). In this case, the spectrum of the

dye laser above the instability threshold is clearly marked by the appearance

of a new spectral component on the other side of the gain curve, followed by

a repelling of the two spectral components. The result is that the dye laser

spectrum splits assymetrically at high powers. Also included in Fig. (4.7) are

the spectra from two examples where the prism is adjusted so that at low powers

the laser operates at frequencies detuned from the center of the gain curve by

-10A and -25A (AA = -10A and AA = -25A), symmetrically opposite the

cases previously discussed. The results are the mirror images of those discussed

previously.

The spectral splittings at high power in the various spectra of Fig. (4.7)

are as large as 200A. A field made up of two equal-amplitude frequency com-

ponents stparated by 200A corresponds to a wave train of ferntosecond pulses.

Fork and Valdmanis' 3 have observed that in order to produce extremely short

femtosecond dye laser pulses - which require a very large bandwidth - it is

necessary to use fresh dye solution. Aged dye solution contains optically dam-

aged molecules that absorb in the red end of the spectrum. This degrades the

dye molecules performance as an amplifier and a laser active medium. The cri-

teria for producing large splittings would seem to be very similar to producing

short pulses. To investigate this point, we prepared a fresh dye solution and re-

peated the experiments. The results are shown in Fig. (4.8). The results change

appreciably when a new dye solution is used. The center of the gain curve has

shifted to 5940k and splittings as large as 340k are observed, nearly twice the

size of the splittings previously observed. The similarities between the condi-

tions needed for ultrashort pulse production and those needed for large spectral



73

&A* 21A

14L i*S

Elm it I I
U .

POO moo OO amc mu NOc 6Oc

&A GA6

IA-

Fig. 4.7 The effects of cavity detuning on the two-frequency instability. This
Figure shows how the spectrum of the dye laser is affected by the detuning of
the dye laser.
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splitting, suggest a close connection between the two-frequency instability and

mode locking dye lasers.
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Fig. 4.8 Giant mode splitting in a ring dye laser. A 340A splitting and a shift

in the dye laser spectrum were observed when the dye solution was replaced

with freshly mixed dye solution.



Chapter V

THE BAND MODEL FOR DYE LASERS

1. Introduction

The experiments of Stroud and coworkers43- 45 demonstrated that a con-

tinuous-wave dye laser exhibits an instability close to the first laser threshold.

The instability is characterized by three main signatures: (1) the threshold

for instability of the single frequency solution is much lower than nine times

above threshold as predicted by the simple two-level analysis, (2) the output

intensity displays discontinuous intensity jumps and associated hysteresis loops

around the instability thresholds, and (3) the spectrum of the laser above the

second instability threshold is made up of two frequency components whose

separation increases as the square root of the laser power. Many attempts

were made to explain this behavior theoretically. Some progress has been made

in reproducing some of the features of the experiment; however, none of the

attempts satisfactorily explained all three of the experimental signatures.

Hilman and Koch 2 introduced a method of integrating the multimode

Maxwell-Bloch equations (MMMBE) using a Fourier transform technique. The

76
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method uses Fourier transforms to evaluate the spatial derivative in the field

equation. The technique takes advantage of the fact that the Fourier transform

of a function's derivative is related to the Fourier transform of the original

function. For example, if fe(z) has as its Fourier transform F(u)

F(u) = If(z)exp(2riuz)dz,

then the Fourier transform of df(z)/dz is 27riuF(u)

27riuF(u) = df- exp(27riuz)dz.

At each integration step the spatial distribution of the electric field is Fourier

transformed and each spatial-frequency component is multiplied by 27ri times

its frequency; the resulting function is inverse-Fourier transformed to generate

the spatial derivative of the electric field. Using the fast Fourier transform al-

gorithm makes the technique especially efficient. For 2M spatial points of the

electric field, there are M+1 spatial modes of the electric field. At each spatial

point there are five variables (the two quadratures of the electric field and po-

larization and the inversion). Therefore, a laser with M+1 modes is represented

by 10M variables. Using this technique Hillman and Koch2" discovered that the

multimode Maxwell-Bloch equations have two classes of solution. In one class

of solutions, the atomic polarization and electric field are either always positive

or always negative. In the second class of solutions, the polarization and electric

field oscillate both positive and negative. In this class, the central component of

the field spectrum is suppressed, and the field spectrum is predominantly made

up of two frequency components. The solution however, does not seem to be

stable below nine times above threshold. Numerical calculations by Lugiato et

A1. 2 9 , also discovered the two classes of solutions. The authors point out that,
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in numerical simulations, the single-mode solution destabilizes into the solution

where the polarization and electric field are either always positive or always neg-

ative. They found that the class of solutions where the polarization and electric

field oscillate both positive and negative could be reached only when large per-

turbations were added to the sys.em. They too could not theoretically reproduce

the discontinuous intensity jumps nor the low threshold observed in experiments.

Both groups did produce solutions whose spectra were nearly two-frequency and

whose frequency separation increased linearly with increasing field strength.

Since the frequency separation of the field components in the experiment

and the two-level theory both indicate that the instability is associated with

Rabi oscillations, one might not expect a theory that accounts for the structure

of the lower level of the dye molecule to predict the instability. For instance,

consider a single excited state that decays to a band of lower levels with an

energy decay rate l/T 1. Quantum electrodynamics tells us that
1 4 ZI ft

4W 31I g 12  w here I'.o12  = E IJU, 1 I
-3hc 3

n

pu is the dipole moment matrix element between the excited state and the n"

level in the band, and w is the transition frequency. The sum over n contains all

the levels that are optically connected to the excited state. The second equation

illustrates that the effective dipole moment, IpofI for a transition to a single level

is larger than the individual dipole moments of the transitions into the band,

IJiI. The dipole moment between the excited state and an effective lower level

cannot be larger than Ipo I.

We have measured 100 Watts of optical power circulating in the dye laser

cavity. The radius of the focal spot at the active region of the dye laser is 10 pm.
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This produces intensities on the order of 50 MWatts/cm2 . This corresponds to

a Rabi frequency of approximately 1018 sec- 1 . The corresponding wavelength

separation for this Rabi frequency is approximately 20 A. Therefore the mea-

sured spectral splittings of 340 A cannot be attributed to the Rabi frequency.

However, since the splitting is proportional to the square root of the intensity,

the Rabi frequency appears to be a subharmonic of the spectral splitting. Fu

and Haken 3 - 41 and Mashkevich 42 have shown that many of the experimental

signatures can be reproduced theoretically by a band model of the dye molecule.

The physical mechanism responsible for the instability remains to be discovered,

it does not appear to be Rabi oscillations as in the conventional two-level atom.

2. The Band Model

Dye molecules have an energy level structure that consists of a ground elec-

tronic state and a series of excited electronic states. The excited electronic

states are separated into two different parities: singlet states and triplet states.

In the singlet states, the excited electron's spin is antialigned with the spin of

the vacancy in the ground electronic state. In the triplet state, the excited elec-

tron's spin is aligned with the spin of the vacancy, and is therefore forbidden

to make an electronic dipole transition. Since the dye molecule is not a rigid

structure, it has the ability to vibrate and oscillate in its attempt to come to

equilibrium with its environment and itself. This vibrational motion produces

a mi-aifold of vibrational and rotational energy levels on each of the electronic

states." To a first order of approximation these energy levels can be thought

of as simple harmonic oscillator energy levels. There are, however, a number

of different modes that the dye molecule can vibrate, and therefore there are

a number of harmonic oscillator energy levels superimposed on each other. A
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simple example of different vibrational modes of a molecule are the three dif-

ferent modes of a C02 molecule: symmetric stretch, asymmetric stretch, and

bend modes.8 5 It is not difficult to see that a dye molecule, which is much more

complicated than a C02 molecule, has many different modes and is not merely

a simple harmonic oscillator. The dye molecules relaxation dynamics in these

vibrational manifolds is a topic of current research interest. There are three

basic types of relaxation mechanisms in these manifolds. The first mechanism

involves the redistribution of the energy throughout the the manifold of lev-

els. Statistical mechanics tells us the distribution of energy in the levels should

approach a Boltzmann distribution in the steady state. The second relaxation

mechanism involves the loss of energy to the solvent molecules that host the dye

molecules. One theory86 models the collision of the dye molecule with the sol-

vent molecule as a short-lived molecule made of a solvent and solute molecule;

the energy in the solvent-solute molecule attempts to reach equilibrium, typ-

ically this involves vibrational energy in the dye molecule transported to the

solvent molecule. When the solvent-solute molecule breaks apart, the solvent

molecule retains some of the dye molecule's vibrational energy. The third relax-

ation mechanism of the dye molecule is associated with the solvent molecules

rearranging themselves around the dye molecule when the dye molecule makes

an electronic transition. The electronic transitions take place much faster than

any other rate in the system. So, as far as the solvent molecules are concerned,

during an electronic transition the electronic wave function associated with the

ground state changes immediately to the electronic wave function of the excited

state. The solvent molecules readjust themselves around the dye molecule in a

process called solvation." This process decreases the energy of the molecule.

These relaxation times are much larger than the time an optical transition
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takes place. However, they are much smaller than many of the other character-

istic times in the system. With these thoughts in mind, we now begin discussion

of the band model. A diagram of the energy level structure is illustrated in

Fig. (5.1). The model assumes a single upper atomic state is connected to a

band of 2N + 1 lower levels. The upper state is the metastable level of the

vibrational manifold of the excited electronic state. The band of lower levels

represents the levels of the vibrational manifold of the ground electronic state.

Another level, g, is assumed to be the lowest of the ground electronic state's

vibrational manifold. We assume that the optical dipole moment between this

absolute ground state and the metastable excited state is zero. In reality it is

not zero though small due to the fact that the absorption and emission bands of

rhodamine-6G do not significantly overlap. We can use Heisenberg's equation of

motion to calculate the equations of motion for this system. The Hamiltonian of

the system, A * is given by the sum of the atomic energies plus the interaction

Hamiltonian

N

H - t4&ee + E ,. , - AE, (5.1)

where a.. is the projection operator for the excited state population, &,. is the

projection operator for the nth lower-state population, hwe (hw,,) is the energy

of the excited (nh lower) state, E = E exp(iwt) + £* exp(-iwt) is the amplitude

of the laser field, and # is the dipole moment operator of the atom. The dipole

moment operator can be written in terms of the projection operators, cjj

= m Etrs ad
3 k

• Quantum mechanical operators are designated by a carat.
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Fig. 5.1 Energy level diagram for the band model atom. The population is

incoherently pumped at a rate A from the ground level g to the excited level

d. The population d spontaneously decays to the band at a rate I/TI. The

population a, in the band decays to the ground level at a rate l/TI.
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N

- (IAtI'e+An &se) (5.2)

where the sums over j and k contain all atomic levels and An =< nlfse > is the

expectation value of the dipole operator between the excited state and the n'

level of the band. The Hamiltonian of the band level atom becomes

N N

H = twe& + 1 A ,,n- 1 (iA ,w + An& ,) E. (5.3)
n=-N nL=-N

The equation of motion for an arbitrary quantum mechanical operator, 6 is

0= (5.4)

We generate a closed set of differential equations to describe the band-level atom

N

-ee = (14&ne - t&en) E, (5.5a)
hn= -N

Ot.. = (i4&me - An~en) E, (5.5b)

Oen = i(We - Wn&e + -~*(e 6' 1n)E - L j frE, (5.5c)
.... i ,o. i

tt~
. - -

One = (.., (5.5d)

fmn = i(Wim - Wn)&mRn W(/Am&evi - An&&me)E, (5,5e)

where t denotes the Hermitian conjugate.

The operators representing the populations, &nn and Oee are slowly varying

quantities; in the absence of an applied field, the operators representing the

dipole moments, , and &en, oscillate at the optical transition frequency (we -

Wn). We use this information to define a slowly varying operator

in - &.n exp(-iwt) (5.6)
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Using this definition and applying the rotating-wave approximation we obtain

N

ac -j - (5.7a)
n=-N

ffn(n"t -s 1~ 1  ) (5.7b)

N
Lu=iiS+ be- r (5.7c)

ffn= i(Wm - j(,)&.. E) (5.7d)

These equations represent the coherent interaction of the single upper level and

a band of lower levels with a semiclassical electric field.

We are now interested in using the operator equations, Eqns. (5.7) to gen-

erate equations of motion for the average values of a homogeneous sample of

atoms. The first step in the averaging process involves taking the quantum me-

chanical average of the operators. After this point we deal strictly with complex

numbers (c-numbers) representing the atomic variables of the system

pn =-- < in >i (5.8a)
l#o

an =< &n >, v(5.8b)

C,. - Aol= < &,.n >, (5.8c)

d =< &ce >, (5.8d)

A = i,4E/h. (5.8e)

where IsnI2 = fnIA012 and fn is the oscillator strength of the transition between

the excited state and the n h level of the lower band. In addition to the quan-

tum mechanical average, we also wish to account for the incoherent processes

such as spontaneous emission, dipole dephasing collisions, and incoherent pump

processes. We account for these processes by phenomenologically adding rates
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to the differential equations describing the c-number quantities. Figure (5.1)

shows the incoherent transition rates as wavy lines. These give us the set of

differential equations

, iA + p, + J,(d - ,) - N (5.9a)
T2 s- N

, = -i,,/T, + fd/T 1 + (p*fl + pfl*), (5.9b)

4y- = - m(,m - c,,)1 + (fmPn, * + fP,,fl), (5.9c)

N + N
E- (pnf) + pnf) - d/T+ 1+ -d- E ,a , (5.9d)
n=-N n=-N /

where T2 is the decay time of the polarization, T, is the decay time of the

elements Ci,, T is the energy decay time of the excited state population, T. is

the energy decay time of the levels of the band (assumed to be the same over

the entire band), A is the rate population is pumped from the ground level to

the excited state, and fn is the oscillator strength for the transition from the

excited state to the n"' level of the band. The decay rate from the excited state

into the nt' level of the band is proportional to the oscillator strength f,,. The

oscillator strengths are subject to the normalization condition

N

E f,,=1. (5.10)

This model does not account for the fact that the lower levels of the rhodamine-

6G molecule will be coupled to one another and that they may decay at different

rates. The assumption that they decay directly to the ground level at the same

rate and are not coupled to one another is a first-order approximation. More

detailed analysis of the rhodamine-6G dye molecule structure can be found in

reference 84.
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The dye molecule is a complicated organic molecule whose molecular weight

is between 480 and 560, depending on the salt attached to it. This large molecule

has an enormous density of states available for its intra-atomic relaxation. As

a consequence of this large density of states, the decay rate of the lower-state

variables can be much faster than any other rate in the system. We assume the

elements cm, decay sufficiently faster than any other rate in the system, so that

we can set c,,, to zero. This assumption leaves us with the atomic equations of

motion for the band model

-- = - (iA+-)p,, +fn(d- an)A, (5.11a)

iin = -an/T. + f.dT 1 + (p*af + pnfl), (5.11b)
N N

E;- (P~ + P.O') - d/T, + A 1 - d - E an , (5.11c)
n=-N n--N

The field equation is similar to the field equation of the MMMBE. The

macroscopic polarization, P that drives the wave equation is
N

P = Kf <f >=A f [0opnexp(iwt) +.;p;nexp(-iwt)],

which gives us the field equation

N - -c f, (5.12)

41rNn=- I~ '

where g = 4 0 and Af is the atomic number density of the gain

medium.

3. Single-Frequency Steady State Solutions

We define the steady state solutions to band model equations as

. 1 riPn(O) 1
lim an an(O)
t-.#00Id j- d(0) I

L n n.f(0) .
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The polarization equation, Eqn. (5.11a) tells us the steady state polarization

is proportional to the steady state field strength and the inversion between the

excited state and the nth lower level

f, [d(O) - a.n(O)] fl(O)T (5.13)
P(O) = 1 + iAT 2 (

We use this in the equation for the lower-state population, Eqn. (5.11b) to obtain

a, (0) = fn'a [d(O) +2 [d(O) an ( o )] Hfj(O)I 2T 2TI]T, I + (AnT2)2

or solving for an(O) explicitly

an(O) = r-fn 1 + (AT 2)2 + 1(0) d(O), (5.14)
1 + (AT 2 )2 + rt/fn(0)

where we introduce the dimensionless intensity, (similar to the two-level atom

dimensionless intensity), 1(0) = 21fl(0)12 T1 T2 and the ratio r. = T./T 1 . Using

this we can write the steady state inversion between the excited state and the

n"' lower level as

d(0) - aa(0) - [1 - r./f, [1 + (nT 2) ] d(0). (5.15)
1 + (AnT 2 )2 + rfI(O)

Using this expression for the inversion, Eqn. (5.15), we can rewrite the steady

state polarization, Eqn. (5.13), as

n.(1 - r.f,)(I - iAT) d(O'nlO)T(pI(o) = -1+ (A-T 2 )2 + 7-f r(0) (5.16)

The field equation, Eqn. (5.12), tells us the that the steady state field amplitude

is directly proportional to the sum of the steady state polarizations

N

t)(0)- g pn (0) (5.17)
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Using the expression for the steady state polarization, Eqn. (5.16), in the ex-

pression for the steady state field strength, Eqn. (5.17), we obtain

-f _1. (5.18)N nI- .Jf,,)T2(1 - iAT)
d(0) E 1 + (AT 2 )2 + r.fj(0)

nr=-N

Equating the real parts of this expression gives us

,=- 1 + (AT 2) 2 + r.fj(o)

This equation gives the relationship between the steady state excited state pop-

ulation and the steady state intensity. If we sum the steady state equation for

the lower level population and use Eqn. (5.17) for the sum of the polarizations,

we obtain the total population in the lower band

a, =r, d(O) + gT2  (5.20)

We can see from Eqn. (5.19) and Eqn. (5.20), that neither the inversion between

the excited state and the nth lower level nor the inversion between the excited

state and the total population of the lower band is a constant of the motion, as

is the case in the simple two-level laser theory. That is, inversion clamping is not

predicted by the band model theory. This prediction is tested in an experiment

discussed later in Chapter VI. Finally, using the equation for the excited state

population, Eqn. (5.11c) in steady state we obtain

AT, [d(o) + i][1 -d(o) - an(0)] (5.21)

The pump parameter, A, is the independent variable of the system. It controls

all the other variables. Normally, one chooses A and determines the remaining

variables of the system. However, attempting to solve for the steady state so-

lutions of the band model in this way, results in transcendental equations for
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the system variables. To obtain the steady state solutions of the band model it

is much more convenient to choose a field strength, then using Eqn. (5.19), de-

termine the corresponding excited state population. Finally, using these values

for the excited state population and the field strength, determine the necessary

pump parameter using Eqn. (5.20). Using this method, we can determine the

steady state system response for a number of pump intensities.

4. Continuum Limit

Since the fluorescence and gain of the dye molecule show no structure due

to the lower state of the dye molecule, we will treat the band as a continuum.

This is accomplished by letting N, the number of levels in the analysis, approach

infinity. We assume the levels are equally spaced in the band. In the discrete

case the detuning takes the form

An = n- where -N<n<N,
N

and 2C is the width of the band. In the continuum limit, the discrete sums are

converted to integrals

N

n=-N

where p(z) is the density of states in the band, which we will take to be uniformly

distributed over the band (i.e., p(z) = -). The detuning in the continuum limit

becomes

Jim A n - Z,
N--oao

and the oscillator strength becomes a function of z

N-.oo
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We consider two forms for the oscillator strength: a Lorentzian distribution,

f(M) = A and a flat oscillator strength f,, - 1. The width of the
I +(zT 1 )2

Lorentzian profile of the oscillator strength is given by 1/Tf. We determine

the parameter A using the normalization condition for the oscillator strength,

Eqn. (5.10)

Sf()dz = l +T d z = 1,

A T! (5.22)A-tan-(( T!)

Equation (5.19), which relates the steady state excited state population to the

steady state field strength, becomes

d(0) = [(9 Ic f (z)[- fz)fT l (5.23)2(- 1 + (zT,)2 + l',.,(Z)I(0)

and the pump parameter, Eqn. (5.20) becomes

AT1 = [d(o)+!.(2] 1-d(o)- ja(z)dz (5.24)

5. Lorentzian and Flat Oscillator Strength

For the flat oscillator strength we can evaluate Eqn. (5.23)

d(0) = I r. tan- I 2  ] (5.26)
LC V r(0) I VIT+ 7.(0)

Since d(0) represents the population in the excited state, it must be a non-

negative number. From Eqn. (55), we can see this implies that r. _< 1 for a

valid steady state solution to exist in the continuum limit with a flat oscillator

strength. That is, the population decay time of the band must be shorter than

the population decay time of the excited state, T. _< TI. This relation also
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emerges from a simple four-level analysis of a laser. We plot d(O) and 0l(0) as

a function of the pump parameter A for various values of the ratio r. and for

CT2 = 1, and gT2 = 10. We also plot the total inversion as a function the

pump parameter to demonstrate that the inversion does not damp in a band

model laser. Figure (5.2) shows the excited state population of the band model

as a function of the pump parameter, A. Figure (5.3) shows the nearly linear

dependence of the dimensionless intensity of the dye laser as a function of the

pump parameter. Figure (5.4) shows the total inversion of the band molecule,

d(O) - E N a.,,(O) as a function of the pump paramter. This figure illustrates

the fact that the inversion in the band model does not clamp at threshold as is

predicted in two- and three-level laser theory.

For the case of the Lorentzian profile of the oscillator strength, we find thet

the inverse of the excited state population in the continuum limit is

(O-1 C_ (z_- z+ r6 A (1 ' tan-1 k/ /

[ 1 r.A(1-r z+) ][ 1  (T,

-(O -(z+ - z_.)tan-1 (Tr,), (5.26)

where r' = r

1 +rA /(1 -rf)2 -+4rr A (_)
z- 2i (5.27)

and

V, = (z+ - z+z -+ i..) -+ ( - +) -- (5.28)

rfV3 "
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6. Two-Frequency Stationary State Solution

We know from the experiments that two-frequency solutions to the laser

equations exist for a dye laser. We attempt to verify their existence theoretically

by writing a multi-frequency solution to the band-level equations. We assume

the self-consistent solution can be written in a form

P,, = E p,(2k + 1)exp[i(2k + 1)6w(t- z/c)], (5.29a)
h=-0

an = > a,(2k)exp[i2k6w(t- z/c)], (5.29b)

d-= E d(2c)exp[i2k&w(t- z/c)], (5.29c)
k=-00

E - fl(2k + 1)exp[i(2k + 1)bw(t- z/c).] (5.29d)

In the experiments, the frequency separation of the field components, bw .

1014 sec- 1 . We therefore neglect terms proportional to EwT. and 6wT 1 . This al-

lows us to find a self-consistent solution while truncating the series in Eqns. (5.29)

P, = p,(l) exp [i6w(t - z/c)] + p,(-l) exp [-i6w(i - z/c)], (5.30a)

an = a,,(0), (5.30b)

d = (), (5.30c)

l = 1(1) exp [i6w(t - z/c)] + fl(-1) exp f-i6w(t - z/c)]. (5.30d)

Substituting Eqns. (5.30) into Eqns. (5.11) and Eqn. (5.12) we can obtain a

closed set of equations for the amplitudes pn(±l), a,(O), d(0), and f((±l), and

the frequency 6w. From the polarization equation, Eqn. (5.11a) we obtain

p,(-l-) = f, [d(O) - an(0)] fl(-1)T (5.31)

1 + i(6,, ± 6W)T 2
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Fig. 5.3 Dimensionless laser intensity as a function of pump parameter in the
continuum limit of the band model for the flat-oscillator-strength approximation.
r, = 10-2, 0.1, 0.5, and 0.9.
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From the lower-level-population equation, Eqn. (5.12b), we obtain

I-I- IM1 I(-1)

a, (0) = rj, 1 + (A' + w)'T2 + 1 + (A, - 6w)2T d(O), (5.32)1 j (1) + j (-1)
+ (~.1 +A, + 6W)2T2 2 ~~ A, -6)T
1 1 (,- WTT

where I(±1) = 21fl(±1)12T1 T. This expression for a, , (O) allows us to write the

inversion between the excited state and the n" lower level as

d(O) -a,(O) = 1 1 , I(-() ()(5.33)
1+ n + (A,+6W)T 2  1+(A,-6w) , 2

The field equation, Eqn. (5.12) gives us

N

fl(-1) = g Z p,(±l). (5.34)

Finally, the equation for the excited-state population, Eqn. (5.11c) gives

AT, d-o)+ g l1-- d(O) - N, (0) . (5.35)

Since the equations for the field components, I(±1) are symmetric, (due to the

symmetry of the problem as we have constructed it), the two field components

can be shown to be equal, I(1) = I(-1). Using the expression for the inver-

sion, Eqn. (5.33), in the polarization equation, Eqn. (5.31), we can rewrite the

polarization as

P,(±l) fn(1 - 1,d(O)n(±1)T 2  (5.36)

I (1+(A +6)2T22 1+(A,-6),,')] [1 + i(A. =1 6)T 2 "

We use this expression in Eqn. (61) and obtain two equations by equating the

real and imaginary parts of the resulting expression

A ,(1-rf.],)[]+(8wT 2 )2 -26wT 2 AT 2+(A T2)' ] d(o)=i, (5.37a)
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Fig. 5.4 Total inversion as a function of pump parameter in the continuum limit
of the band model for the flat-oscillator-strength approximation. This Figure
illustrates that the total inversion in the band model does not clamp. the total
inversion is defined as the difference between the excited state population d and
the total population of the band Ja(z)dz. r. = 10- 2 , 0.1, 0.5, and 0.9.
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and

N f.0(1-r.f.)[(A.T3 )3 _(,&. T )2( 6.T2)+A.T3(1-(6wT2) )+6wT2( .(6-T = (5.37b)E (,,T2)4.+2(A2.T2)(1..1f (1)_(6-T2)2).F11+(6wT2)2][1+.Ff.i(1)+(SWT2,I . 53b

n=-N

These equations are solved by a method similar to the single frequency steady

state solutions. We choose the frequency separation, bw, and then solve the

transendental equation, Eqn. (5.37b), for the intensity of the laser I(1). The

value of the excited state population is then determined using Eqn. (5.37a).

Finally, the value of the pump parameter is determined from Eqn. (5.35).

7. Lorentzian and Flat Oscillator Strength

In the case where the oscillator strength is constant over the band, and we

consider the equations in the continuum limit, we can evaluate the expressions

for the excited state population

I0{c (' 2)[ + ( wt)) - tan 2 (] )
_L_ ,]_1__ (5.38)

where

y± = 1 + r.I(1) - (6wT 2 ) 2 -V/'rI(1)2 - 4(wT2 )
2(l + r.I(1)).

and the total population in the band

y- Ia(z)dz = r. (d(O)+'-j';). (5.39)

The expression that gives the relationship between the frequency separation of

the field components and the intensity of the field can also be evaluated to obtain

+(_wT_)_ + y+ I ( CT 2  1 + (1wT 2 ) 2 + y_ - ( T0. (
tan- _ .. -a__ 0 (5.40)
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The expressions for the excited state population and the field strength for

the case of a Lorentzian-shaped oscillator strength are complicated. It is easier

to evaluate the expressions in integral form on the computer.

Fu and Haken 3 9- 41 have carried out calculations similar to those presented

here. However, the theory of Pu and Haken s3 - 41 does not account for the satu-

ration of the ground-state population. In the experiments discussed earlier, the

pump intensity can be many times the saturation intensity of the dye molecule.

The differences between neglecting or including ground-state saturation in the

dynamics is similar to the differences between two-level and four-level laser the-

ory. When ground-state saturation is included, the threshold for instability

occurs for higher pump powers than when ground-state saturation is neglected.

In addition, the theory of u and Haken s3 - 41 assumes that the excited-state

population does not decay into the band, but instead assumes that the excited

state decays out of the atomic system. Considering that the quantum efficien-

cies of most dye molecules used in lasers are of the order of unity, this is not

a very realistic assumption. However, the theory has reproduced a number of

unexplained experimental signatures. So, while the model does not seem to rep-

resent a dye molecule in some aspects, it has been very successful at modeling

other aspects of the dye molecule.

One of the predictions that the theory of u and Haken 4° makes, involves

the fact that discontinuous intensity jumps and hysteresis loops were observed

at the thresholds of the dye laser instability. Their theory does not predict dis-

continuous jumps unless the energy decay time of the lower band is slower than

the energy decay time of the excited state. Since the energy decay time of the

excited state is known to be 5 nsec, the theory of Fu and Haken 40 predicts there

may be long-lived states in the lower band of the rhodamine 6G dye molecule.
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We test this hypothesis experimentally using modulation spectroscopy. Mod-

ulation spectroscopy can measure "hidden" decay rates (i.e., nonradiative decay

rates) since it measures the total population cycling rate of a system. Mod-

ulation spectroscopy has been used to measure decay rates in ruby, alexan-

drite, and fluorescein-doped boric-acid glass. In those studies, the absorption

or amplification of modulation sidebands was measured as a function of the

modulation frequency. In the limit of large modulation frequency, the sideband

absorption/amplification approaches the absorption/amplification of the carrier.

Therefore the disadvantage of this technique is that it is not a signal-limited de-

tection scheme. An alternative method would be to measure the fluorescence at

the modulation frequency. In the limit of large modulation frequency, the fluo-

rescence at the modulation frequency goes to zero. This signal-limited detection

scheme is used to investigate the existence of long-lived states in the lower band

of the rhodamine 6G dye molecule. These experiments are discussed in the next

Chapter.



Chapter VI

BAND MODEL EXPERIMENTS

1. Introduction

In this chapter we discuss two experiments that we performed to investigate

the predictions of the band model, 3-41 discussed in the previous Chapter. The

first experiment examines the population inversion of the dye molecules in the

dye laser. We measure the fluorescence from the dye molecules as a function

of the pump power. We then compare the results of the experiment with the

predictions of simple three-level laser theory and the predictions of the band

model. The second experiment examines the lower-level energy-decay time of

the dye molecule. We use modulation spectroscopy, in a new signal-limited

fashion, to infer an upper bound of the lower-level energy-decay time. The

results of this experiment have direct implications to conclusions of the band

model.

The phenomenon of inversion clamping occurs in two-, three-, and four-

level laser systems; the inversion of the atomic system remains at a constant

value once the laser reaches threshold. Any additional pump energy beyond

100
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the threshold pump energy does not increase the inversion of the system. The

inversion is proportional to the gain in the steady state. If the gain of the laser

increases, the laser field will grow until the gain saturates to the loss. If the gain

of the laser decreases, the intensity of the field decreases until the gain reaches

the loss. Therefore, the gain of the laser clamps to the loss. In the steady state

the gain of the laser is proportional to the inversion, therefore the inversion of

the laser also damps. Inversion damping has been observed experimentally in

GaAs injection diode lasers"7 . The band model differs drastically from two-,

three-, and four-level laser theory in that it does not predict inversion clamping.

This is due to the fact that the gain is not directly proportional to the inversion

of the laser transition. We monitor the excited state population by measuring

the fluorescence from the active region of a dye laser as a function of pump

power.

The experimental setup is sketched in Fig. (6.1). We pass an argon-ion

laser beam (Coherent Innova-20) through an acousto-optic modulator (AOM)

(IntraAction Model ADM40) to conveniently modulate the pump power deliv-

ered to the dye laser. The rf amplitude delivered to the AOM is modulated

by a triangle wave at frequencies between 1 Hz and 1 kHz. This modulates

the intensity transmitted through the AOM. The pump intensity is monitored

using a beam splitter and photodiode. The fluorescence from the active region

of the dye jet is collected with a 10 mm focal length lens. To insure that we

are looking at the center of the pump focus, the image of the active region is

spatially filtered with a pinhole. The filtered image is monitored by a second

photodiode. A third photodiode measures the intensity of the dye laser output.

The signals from the photodiodes are simultaneously digitized by two transient

digitizers (Sony/Tektronix RTD-710), triggered by the same source. Triggering
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AOM~

.! unsient digit,:o Vnsient digitiz=

Fig. 6.1 Experimental setup to observe the absence of inversion damping
in a cw pumped multimode dye laser. Two transient digitizers simultaneously
collect the signals from the photodiodes measuring the intensity of the dye laser,
the fluorescent intensity, and the pump intensity. The acousto-optic modulator
(AOM) modulates the power of the pump laser delivered to the dye laser.
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the two digitizers with the same source allows us to acquire all three samples

simultaneously. The data is then transferred to a computer for further analysis.

We observe that the fluorescence from the active region of the dye laser con-

tinues to increase above threshold. To insure that we are monitoring molecules

interacting with both the dye laser and the pump, we scan the image of the

active region over the pinhole spatial filter. We observe no significant change

in the slope of the curve above the laser threshold as the image of the active

region is scanned across the spatial filter. We spectrally filter the fluorescence

with a resolution of approximately 10 A and find that the slope of the fluores-

cence versus pump power is independent of the wavelength of the fluorescence.

The slope of the fluorescence is also independent of polarization. Since the dye

molecules spend approximately I psec in the active region and the dye molecules

are reorienting themselves in a few nanoseconds, this result is not unexpected.

The slope of the fluorescence as a function of pump power does change as the

dye laser is tuned in wavelength.

2. Analysis and Results of Inversion Clamping

For the simple three-level system illustrated in Fig. (6.2) the equations of

motion for a laser operating on resonance with the atomic system are

i= -V/T 2 + w, (6.1a)
-T + 1T6  +A, (6.1b)

1= 4- (A+)

2T' 2T , I

1 =ac 1 0 8 c n (6.1d)

where v is the in-quadrature part of the dipole moment, w is the inversion be-

tween the lasing levels, that is wo = d- a, where d is the excited state population
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d

a l/T1

Fig. 6.2 Energy level diagram for a three-level laser medium. The population
in the rround level g is incoherently pumped at a rate A to the excited level.
The population in the excited level d spontaneously decays to the lower level.
The population in the lower level a decays to the ground level at a rate I1T..
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and a is the lower state population. The total population in the laser active

levels is n = d + a. All the other variables are as defined in previous Chapters.

We define the steady state variablesVi VO
lim L Wo (6.2)

.0. flo.

We find the steady state solutions

VO = flOT 2wO, (6.3a)

W0 = (acre) - ', (6.3b)
2r AT1 + w0 (6.3c)

= 2rPATI + 1'

= + 00) rAlT, + (1 + rAT)wo (6.3d)
2 2A 1  +1 (6.3d)

ao = (n0w) -wo T r.ATi (6.3e)

!2TT -AT,[(acC, - 1)- .(avcT + 1)] - 1
201 2 = 2r.AT +1 (6.3f)

The threshold pump power can be determined by setting the intensity to zero

in Eqn. (6.3f). The threshold pump power is

AmhTl = [(aetr. - 1) - r.(acre + 1)]-1. (6.4)

The threshold pump power must be a positive quantity, this puts a constraint

on the size of the ratio of decay times

< acT " (6.5)

The right-hand side of Eqn. (6.5) is obviously less than one, therefore we must

have r. < 1; the lowest upper bound of r. is given by Eqn. (6.5). The quantity
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ac'r, is much greater than one for typical dye lasers, therefore the lowest upper

bound is very close to unity. The threshold excited state population is

d 1h = 1(nth - wo) = 1- (6.6)

We see from this equation that when r. <tZ 1 (i.e., T. t TI), the excited state

population is equal to the inversion. Therefore, if the dye laser can be well-

approximated by a three-level atom whose lower level decays much faster than

the excited state, the excited state population will clamp at threshold. Since

the fluorescence is proportional to the excited state population, the fluorescence

will also clamp at threshold.

We compare the fluorescence versus pump power from the experiment with

the theoretical predictions of this simple three-level analysis. The fluorescence is

normalized by the fluorescence at threshold and the pump power is normalized

to the pump power at threshold. Since the fluorescence is directly proportional

to the excited state population, the fluorescence normalized by the threshold

fluorescence will be equal to the normalized excited state population (the excited

state population divided by the threshold excited state population). After a bit

of algebra we find the normalized fluorescence, d d(O)/ldh as a function of the

normalized pump power, A = A/Ath,

r),(, - 1)(Wo + 1) - WO + 1 (6.7)= ( - '.)2,r.w,k - ".(wo + 1) - too + I"

We use a simulated-annealing technique to minimize the square of the difference

between the theory and data. The technique attempts to minimize the quantity

2
2 r (a)? ,i- 1)(wo+ 1)-woo+1 (6.8)X2 =  r,,1- "2r.wo.i -_r.(o+l1)_-wo+l (68

by choosing the parameters w0 and r. from a selected range of values. The sum

over i represents a sum over the experimental points, A, and di. In Figs. (6.3)
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Fig. 6.3 X2 for the experimental data versus the parameter w0 for the best fits
to U'o and r. to three-level laser theory. This Figure illustrates that there is a
well-defined w0 value to minimize X'.
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Fig. 6.4 X2 for the experimental data versus the parameter r. for the best fits

to wo and r. to three-level laser theory. This Figure illustrates that there is a

well-defined r. value to minimize X2.
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Fig. 6.5 Best fits of w0 versus r. for the experimental data fit to three-level
laser theory. This Figure illustrates that r. lies between 0.3 and 0.7.
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and (6.4) the value of X2 is plotted against w0 and r. for a series of the best-

fit parameters. Both plots have a well-defined minimum; this tells us that the

data is a sensitive measure of the parameters of the theoretical fit. Figure (6.5)

shows a plot of the best-fit parameters, w0 versus r.. The best fits indicate r.

lies between 0.2 and 0.5; since the excited state decay time is known to be 5 nsec,

three-level theory predicts the lower-level decay time is between 1 and 2.5 nsec.

The best fit inversion, w0 for the three-level theory is between 0 and 0.15.

We generate the theoretical fit for the band model using Eqn. (5.26) divided

by the threshold value of the excited state population, d - d(O)/dth

__/1+ -.I(0) tan' ((T2) (6.9)

tan- Cr T2yJ

The data is fit using two parameters: CT2 , and the product of r. and the scaling

factor between the intensity measured with the photodiode and the theoretical

dimensionless intensity, 1(0), a. It should be noted that the ratio of decay times,

r, and the scaling factor between the intensity measured with the photodiode

and the dimensionless intensity, 1(0), a appear as a product in the formula,

Eqn. (6.9). Since we could arbitrarily increase r. and correspondingly decrease

the intensity scaling factor by the same amount, we see that there are only

two independent parameters in Eqn. (6.9). Unfortunately, neither of these two

parameters gives us r,.

In order to obtain information about r, we attempt to fit Eqn. (5.24) from

Chapter VI. If we normalize the pump power by the threshold pump power and

the the fluorescence to the threshold fluorescence we obtain

= (d1+ 3)(1/da,-r. - 1) (6.10)
lfdtk + (r. + 1)d - (6.10
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where 0 is the scaling factor (between the measured dye laser intensity and

the dimensionless intensity) divided by gTdt,. When we fit the data to this

expression, we find that the fit is extremely insensitive to the value of the ratio,

r.. Figure (6.6) shows a plot of r. versus dh for some of the best fits of the

data. The best-fit values of r. cover the entire physical range of the parameter;

this indicates that these experimental results are not a good measure of r. in

this limit of the band model. In order to determine r. for the band model and

to examine the lower-level lifetime predicted from the simple three-level theory

we conduct another experiment.

3. Modulation Spectroscopy of Lower Levels

We now discuss a second experiment that examines the lower-level decay

time using modulation spectroscopy in a signal-limited fashion. Modulation

spectroscopy has previously been used to measure the decay constants and dy-

nanics in ruby, alexandrite, and fluorescein-doped boric-acid glass. In those

experiments, a laser is weakly modulated to produce AM sidebands. The ab-

sorption or amplification of the sidebands is measured as a function of intensity

and modulation frequency. In the limit of large modulation frequency, the ab-

sorption or amplification of the sidebands approaches that of the carrier. Mod-

ulation spectroscopy measures the population cycling rate of the system; that is

the rate that population cycles around the energy levels of the system. This al-

lows us to measure non-radiative decay rates in a system. Since the signal from

the probe field rides on a DC bias, a large background has to be subtracted

to obtain the actual signal. If we measure the fluorescence oscillating at the

modulation frequency, the signal does not ride on a DC bias. This makes the

measurement process signal-limited.

We use modulation spectroscopy in this new signal-limited fashion to mea-



112

1.2

rol.1

1.0

1.0 1.3 1.6

A

Fig. 6.6 Fluorescence versus pump power from a cw pumped multimode dye
laser. The straight line represents the theoretical expression in Eqn. (6.7) with
r, = 0.44 and wo = 0.15. The jagged line is the data taken in the experiment.
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sure the lower-level decay rate of the rhodamine-6G dye molecule. The fluores-

cent intensity oscillating at the modulation frequency is measured as a function

of intensity and modulation frequency. In the limit of large modulation fre-

quency, the fluorescent intensity oscillating at the modulation frequency goes to

zero. This feature makes this method of modulation spectroscopy signal-limited.

The experimental setup is sketched in Fig. (6.7). We weakly modulate a

single-mode argon-ion laser (Coherent Innova 20 with single-mode etalon) with

a Pockels cell (Inrad Model 212-090), A/4-waveplate, and linear polarizer. We

adjust the orientation of the fast axis of the A/4-plate to maximize the inten-

sity of the carrier frequency while still maintaining detectable sidebands. The

Pockels cell is driven by the amplified signal from a voltage-controlled oscillator

(Wavetek Model 1062). The rf-amplifier (Mini-Circuits Model ZHL-1-2W) driv-

ing the Pockels cell has a bandwidth of 500 MHz. The Pockels cell and amplifier

radiate a large signal at the modulation frequency. We compensate for this by

shielding the Pockels cell and amplifier in a 0.25 inch wire mesh cage. The cage

allows us to easily get the laser through the modulator and also supplies the

necessary air circulation for the amplifier to cool. The fluorescence is collected

from the dye jet with a 10 mm focal length lens. The fluorescence is spatially

filtered, to insure we are only looking at the center of the argon-ion-laser spot,

and therefore a uniform intensity. We use a fast photodiode (EG&G FND-100

biased at 90 Volts DC) whose signal is amplified by a low noise 30 dB-gain

amplifier (Trontech W500EF). The photodiode has a bandwidth in excess of

400 MHz. The amplifier has a flat response out to 500 MHz. The amplification

of three orders of magnitude turns the photodiode and the cables connected to

it into a reasonably good antenna. That is, radio stations and other electromag-

netic sources are picked up by the photodiode and its cables and amplified by
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Fig. 6.7 Best fits of r, verus d11 for the experimental data fit to band model
laser theory. This Figure illustrates that the experimental measurements are
not a good measure of the parameter r.
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the 30 dB-gain amplifier to a significant level. In order to avoid this unwanted

noise, the photodiode is also enclosed in a wire mesh cage. The amplified sig-

nal from the photodiode is sent to an rif-spectrum analyzer (Hewlett-Packard

Model 8590A). The spectrum analyzer and the voltage-controlled oscillator are

connected to a computer with analog-to-digital and digital-to-analog capabili-

ties. The computer sweeps the frequency of the oscillator and then retrieves the

spectrum from the rif-spectrum analyzer. We measure the system response by

measuring the amplitude of the sidebands on the argon-ion laser as a function

of modulation frequency using the photodiode and spectrum analyzer. All the

data collected are normalized by the system response.

4. Analysis and Results

In the absence of a coherent driving field the band model equations reduce

to the equations describing a simple three-level system. The population of the

lower band only appears as a sum over the entire band. We define the variable
N

A = a. We use this simple three-level model to fit the data of the

"= -Nfluorescence from the atoms driven my the modulated pump. Figure (6.2) shows

the level structure and the associated decay times. The equations of the three-

level system are

d
d- + A(t)[1 - d - A], (6.11a)

A d AA=---' (6.11b)
T, T'

where A(t) = A0 + 28A cos(6wt). We can use Floquet's theorem and expand the

variables in Fourier series of the modulation frequency. Since 6A < A0 we can

truncate the Fourier series to first order in the modulation amplitude 6A. This is

equivalent to truncating the Fourier series to the first harmonic component. The

ri-spectrum analyzer measures the amplitude of the signal at the modulation
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frequency. The amplitude of the fluorescence at the modulation frequency is

directly proportional to the magnitude of the first harmonic component of the

excited state population, Id, I

Idil = ATI[1 - do(1 - .)](6.12)

V[1 + AoTI(1 + L,)]2 + (6wT2) 2[1 - AoTirL.12'

where do = AO/[1 + AoT 1 (1 + r)] is the time-averaged value of the excited state

population and the Lorentzian function L. = + ( It is interesting to
1 + (b5WT.)2

consider some simple limits of Eqn. (6.12). In the limit that the time-averaged

component of the pump intensity goes to zero, Id, I becomes
lim d11- 6ATI

im d= (6.13)Ao-o V/1 + -(6WTI)2

In this limit Id I is a square root of a Lorentzian (SRL) and is independent of the

.,wer level decay time. The characteristic width of the curve is 1/2T. Another

limit of interest is the limit where the lower level decays extremely fast

im Id I= EAT ( d ) (6.14)T,.0- V/(1 + AoT1)2 + (bWT1)!*

In this limit Id, is just a SRL whose width increases linearly with the time-

averaged value of the pump intensity. In cases where these limits are not valid

we get more intuition from analyzing the plots of IdI as a function of modulation

frequency, 6w. If Fig. (6.8) we plot Id1 I for AoT, = 5 and three different values

of the ratio, r.. We see from the plots that the spectra do not resemble SRLs.

Therefore, for r. 0, we expect the spectra we measure to resemble SRLs at low

pump intensity then deviate from this form as the pump intensity is increased.

The point at which the spectra distinguish themselves from SRLs depends on

the size of r.. If r. > 1 (i.e., T. > TI), the spectra will deviate from SRLs for

low pump intensity, while if r. < 1 (i.e., T. < T1), the spectra will not deviate

from SRLs until AoT 1 > 1.



117

The data are fit to a SRL. The amplitudes of the curves are fit by minimizing

the square of the difference between the theoretical curve and the experimental

data, that is we minimize

2 A •a (6.15)

where the sum over i contains all the experimental points, vi are the measured

frequencies (in Hertz), f t are the measured fluorescent intensities, and a is de-

termined from

a y2, ] y, + (1rvi)2 (6.16)"= /., + (2,,v,)2 , +(,,) "

The results of the best-fit-theoretical plots are shown in Fig. (6.9). The data

are well-described by SRLs. For the range of intensities used in the experiment,

we calculate the largest value of r. that still fits the data. The theoretical

predictions begin to deviate from a SRL when r. is on the order of 0.02 for 5

saturation intensities in the pump. This indicates that the decay time, T. could

be no larger than 100 ps. This decay time is insufficient to explain the increase

in slope observed and is insufficient to account for the discontinuous jumps and

hysteresis as explained by the theory of Fu and Haken.

5. Conclusions

In this Chapter we have described two experiments and their results. The

first measured the fluorescence from a laser active medium. The experiment

showed that the fluorescence, from a continuous-wave dye-jet laser, continues

to increase above the laser threshold. Three-level laser theory predicts that the

lower-level decay time must be between 0.3 and 0.7 times the decay time of the

excited state for the observed rate of increase. This experiment was not a good

measure of the parameters of the band model. We found the data could be fit
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Fig. 6.8 Fluorescence versus pump power from a cw pumped multimode dye
laser. This Figure demonstartes that the band model theory can fit the data
quite well. We use Eqns. (6.9) and (6.10) for the theory with the listed param-
eters.
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Fig. 6.9 Experimental setup for fluorescence modulation spectroscopy exper-
iment. A computer controls the oscillator driving the electro-optic modulator.
The 2nodulator modulates th,- argon-ion laser. The fluorescence from the dye
jet is collected with a lens and the detected with a fast photodiode. The signal
from the photodiode is amplified and sent to a spectrum analyzer. The spectrum
analyzer then transfers the spectrum to the computer.
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Fig. 6.10 Magnitude of the first harmonic component of the excited state
population driven by a weakly modulated pump for series of r,-values. The
expression in Eqn. (6.12) is plotted for a series of r. = 0, 0.1, 1, and 5.
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Fig. 6.11 Magnitude of the first harmonic component of the fluorescence from
dye molecules driven by a weakly modulated single-mode argon-ion laser. The
fluorescence at the modulation frequency is plotted as a function of modulation
frequency. The solid line is a best-fit square root of a Lorentzian function. The
jagged line is the data for pump intensities equal to 0.7, 0.9, 1.75 and 2.75 Watts.
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for the entire physical range of the parameter r.. The second experiment used

modulation spectroscopy in a new signal-limited fashion to measure an upper

bound for the lower-level decay time. We found in this experiment that the

lower-level decay time could be no longer than 100 psec. This is in direct con-

tradiction to the three-level theoretical predictions of the first experiment. The

resolution of the contradiction is that the dye laser cannot be accurately de-

scribed using simple three-level laser theory. The results of the two experiments

are in agreement with the predictions of the band model laser theory.



SUMMARY

This thesis has described theoretical and experimental studies that deal

with the two-frequency instability in a multimode cw ring rhodamine-6G-dye

laser. The response of a two-level atom to a two-frequency field was calculated.

The atom exhibits resonances when the field modulation frequency is equal to

the Rabi frequency or one of its subharmonics. The maximum gain occurs when

the modulation frequency is equal to the Rabi frequency. This result would

explain why the separation of the two-frequency field in the dye laser increases

quadratically with increasing laser power, if the Rabi frequency was responsible

for the instability.

The gain of a subharmonic probe field in the presence of a strong 100%

AM field was calculated. The calculations show that the strong two-frequency

field is stable to the growth of a subharmonic probe field, except in the case of a

frequency-dependent loss. The frequency-dependent loss allows the subharmonic

probe field to destabilize the strong field. This thesis presents experiments where

the frequency-dependent loss was changed to illustrate this point.

Chapter IV of this thesis extensively examines the two-frequency instability

in the dye laser. The two-frequency instability is shown to exist in dye lasers

with high cavity-Q and dye lasers with output couplers. The effects of heating
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due to pumping with a multiline argon laser are shown to be insignificant as far

as the two-frequency instability is concerned. The instability is also shown to

occur in both bidirectional and unidirectional ring lasers.

The nonlinearity of the two-frequency instability was used to examine chaos

in a nonlinear system, a subject of current research interest. The experiment

demonstrated that when the dye laser is driven with commensurate modulation

frequencies, the response is periodic; when the dye laser is driven by incom-

mensurate modulation frequencies, the response is quasiperiodic. No chaos was

detected in the dye laser response. The absence of chaos in such a nonlinear

system is intriguing and suggests that new insights to the dynamics of the two-

frequency instability can be found by analyzing the time-dependent behavior of

the two-frequency state.

In Chapter V, the thesis examined the band model of a dye laser. The

model successfully predicts a number of the experimental signatures of the

two-frequency instability, most notably the low threshold for instability, a self-

consistent two-frequency field, and quadratic dependence of the frequency sep-

aration of the two field components with increasing power. The theory also

predicts three-, four-, five-, ... and n-frequency operation. The theory has not

shown that these fields are stable to perturbations, only that they are self-

consistent solutions to the equations. Future research in this area may explain

why only two- and four-frequency operation were observed in the dye laser.

Finally, in Chapter VI, the thesis examines predictions of the band model to

see if it is a feasible model for a dye molecule. The experiments demonstrate that

a simple three-level atomic model of the dye molecule is inadequate to explain

the experimental results. While the band model of the molecule is capable



125

of explaining the experimental results, the parameters of the model are not

simply determined. Raman scattering from the ground state and photon echo

experiments of rhodamine 6G will be useful in determining these parameters.

The two-frequency instability observed in the dye laser is not the instabil-

ity predicted by Risken and Nummedale -'1 and Graham and Haken11 , which

is associated with the sideband gain due to Rabi oscillations. The quadratic

increase of the field separation of the two-frequency field in the dye laser does

indicate that the Rabi frequency plays some part in the instability. The mea-

sured intensities and spectral splittings however, indicate that it is not a direct

relationship, but that the spectral splitting is a harmonic of the Rabi frequency.



Appendix A

In this Appendix we perform a linear stablity anatysis for the single-mode

solution to the multimode rate equations and the multimode Maxwell-Bloch

equations (MMMBE). The MMMBE describe the self-consistent interaction of

a coherent field with a collection of homogeneously broadened two-level atoms.

The gain and losses of the cavity are assumed to be uniformly distributed

throughout the cavity. Since in a real laser, the gain and losses are typically

localized at an active region, Brewster-angled surfaces, output couplers, etc.,

this approximation is valid for such lasers only if the amount of gain or loss in

one round trip is small. Small in the sense that the intracavity intensity does

not change significantly in one round trip, (i.e., it takes many round trips for

the cavity to decay). If this is the case, then the gain and losses can be well-

approximated as being uniformly distributed in the cavity. The slowly varying

envelope and rotating-wave approximations are also made. These imply the

field amplitude varies much slower than an optical period and that the Rabi fre-

quency associated with the field amplitude is much smaller than the transition

frequency of the atom. We also assume the field that drives the two-level atom

is a semiclassical field. Dye molecules are typically modeled as ideal four-level
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systems, however, the coherent interaction takes place between only two of the

levels. The MMMBE for a field E = E exp(iwt) + E* exp(-iwt) are

Ib = -W/T1 - (1/2)[pfl + pflX] + weq/Ti, (A.lb)

a=-c an + a p-1 (A.1c)
Oz 2T2  - 2r,'

Where p = v - iu is the complex polarization of the atom and u and v are

defined in Chapter 2, w is the inversion, il = 2dC/h is the normalized complex

field amplitude, T (T2 ) is the inversion (polarization) relaxation time, r, is

the cavity decay time for the intensity, A is the detuning between the laser

carrier frequency, w and the atomic transition frequency w0 , A = w - wO, weq

is the value the inversion decays to in the absence of a coherent driving field

ai.a represents the pump parameter of the laser, and a. = 4rJAfd2wT 2/hc is

the inverse Beer's absorption length, where AT is the atomic number density,

d is the dipole moment between the two levels, h is Planck's constant divided

by 27r, and c is the speed of light. The variables fl and p in Eqns. (A.1) are

complex variables. The real (imaginary) part represents the component of the

complex variable in-phase (in-quadrature) to the rotating frame. The polar form

of these equations, derived later in this appendix, illustrates that the equations

are independent of the phase angle between the rotating frame and the complex

variables.

An atom radiating in free space has a definite relationship between T, and

T2 (T2 = 2T1 ). However, often times atoms are subjected to phase disrupting

collisions that do not effect the atomic population. These phase disruptions

cause the average polarization of the atoms to decay more rapidly than an atom
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in free space. When the collisions are sufficiently frequent, the relaxation rate of

the polarization can be the fastest rate in the system. If the relaxation rate of the

polarization is much faster than any other rate in the system, the dynamics of

the polarization are well-described by its steady state solution written in terms

of the inversion and the electric field. That is, the polarization adiabatically

follows the inversion and electric field. We can see this more clearly by formally

integrating Eqn. (A.1a)

p(t) - p(O) exp[(iA - 1/T 2)t] + lw exp(iA - 1/T 2 )(t - te)Idt '

flT, w (-ep(A-1 )]

p(t) = p(O) exp[(iA - I/T 2)t] - 1 - (1 - eXP[(iA - 1/T 2 )t)
1-iAT2

+ I f(T W)exp[(iA - 1/T 2 )(t -t')dt'
1 - iAT

In the limit where T2 is the shortest time scale in the system (i.e., I /NI < 1/T2,

Itb/wl < l/T2 ), the integrand in the equation is small compared to the other

terms. Therefore, for times long compared to T2 (i.e., t 2 T2), the polarization

is given by

) flT2 w
p(t) l- iAT 2

This procedure is known as adiabatic elimination or the slaving principle. This

limit is especially applicable to the dye laser where T2 is on the order of fem-

toseconds and T, is on the order of nanoseconds, six orders of magnitude longer

than T2 . This Appendix demonstrates that the MMMBE become unstable far

above threshold in the limit where T2 < T 1. The rate equations, however, fail

to predict the instability.
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2. Multimode Rate Equation Stability Analysis

The equations for the inversion and electric field that result from the elim-

ination of the polarization are the rate equations

1
= - [(1 + I)w - ,.,], (A.2a)

=- 3) I- c- -I, (A.2b)

where I = IflI2T1 T2I[1 + (AT) 2]. The steady state values of these equations

have two regions of solution. The first solution we analyze is the off-solution

Wof f = Wq, (A.3a)

Io! = 0. (A.3b)

We assume w = W.f'! + 6w and I = Iof + 61. If we linearize the rate equations

about the steady state solution, we obtain a set of equations describing the

dynamics of small perturbations about the steady state

[1w] =[-/T, in., ]6jw - . (A.4)
S1 +(0T+ ) - 61 - Z

The solution for the intensity perturbation, 61 is of the form

6(t) = I exp(iCz/c + pt) + 61, exp(-iCz/c + /*t). (A.5)

Plugging this solution into Eqn. (A.4) gives us two equations involving the real

and imaginary parts of 8 = ' + if", where 6' and 8" are both purely real

quantities

p" + C = 0, (A.6a)

aC'wq + 1

1 + (AT 2 )2 +- . (A.6b)
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The equation for 6', Eqn. (A.6b) describes the stability of the off-solution.

When f' is negative, the perturbation will exponentially decay to zero; when

0' is positive, the perturbation will exponentially grow. Therefore, when weq <

1 + (AT2)2  1+(AT 2
a 0 c7*c , the off-solution will be stable. However, when w., > a Cr2

the off-solution becomes unstable. Therefore, the rate equations predict a laser

threshold when the pump parameter exceeds a definite value, weq(threshold) -
1 + (A T)

aoCT.22 . The corresponding solution for the inversion also becomes unstable

for the same pump parameter.

We now examine the second region of solution for the rate equations, the

on-solution

= + (AT2 )2  (A.7a)

wtre a ocr, ](.b

Ion = (ieq - 1) =1 + (]T)2 (A.7b)

where t7eq = Weq/Woi. The first equation says the inversion is a constant for

the on-solution. This phenomena is known as inversion clamping. The laser-

atom interaction holds the population inversion to a constant value and all the

additional pump energy is converted to laser energy. The second equation tells

1 + (AT 2 )
us that the on-solution is unphysical for w.q < 1 -- A2) 2 (i.e., the on-solution

is unphysical where the off-solution is stable). If we linearize the rate equations

about this steady state solution, we obtain the following equations that describe

the dynamics of small perturbations about the on-solution

=] 1 ; 1 o I-c- 01 +(AT) 2  i j .9 8]
The solution to this equation has the form[w(t) - 6W, exp(icz/c + ot) + - I exp(-iCz/c + P*), (A.9)

bi(t)] [= Ij 8 IIb1
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where 6 =13' +ip" and fl' and B" are both real numbers. Plugging this solution

into Eqn. (A.8) we reduce the problem to two linear equations and two unknowns

'C -13] ]=[]. A.10)11 + (AT')T ['W1 I = [0J

If the solution to this equation is to be something other than the trivial solution,

the determinant of the matrix in Eqn. (A.10) must vanish. Using this we obtain

an equation for/3

162 + IV' + +i' + IO/(TgrC) = 0. (.1

The boundary between stability and instability occurs when the real part

of P goes to zero. We can determine this boundary in terms of Io, C, P" and

the parameters of the laser, by setting P = ift". When we insert this for P in

Eqn. (A.11) we obtain two equations from the real and imaginary parts of the

expression

13" + 1 = , (A.12)

16112 + 10"C - Io/(T1c) = 0. (A.13)

Together these equations imply that the boundary of instability occurs when

Io/(Tl T) = 0. (A.14)

For I0 # 0, there is no instability boundary. Since for C = 0 we can solve for

explicitly

= -i-V+ 1/ , "- (A.15)
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we see that '(C = 0) < 0. Therefore since 6' is negative for C - 0 and l' never

goes through zero, 6' < 0 is for all values of C and Io, and the on-solution is

I + (AT 2 ?stable for w > a0crC2 . So, the single-mode on-solution of the multimode

rate equations is always stable above threshold!

3. Multimode Maxwell-Bloch Equations Stability Analysis

We now examine the stability of the MMMBE's steady state solutions. The

off-solution predicts the same laser threshold that the multimode rate equations

predict. The stability of the on-solution for the MMMBE however is different

from that predicted by the rate equations. A convenient way to approach the

problem is to normalize the equations of motion by the steady state values of the

problem. The steady state values of the normalized equations are then simply

unity. The steady state values of the MMMBE are

pO = NZoT~wO, (A.16a)

W0 = 1 (A.16b)
GOCTc

exp(i O)
o -- - woC- 1, (A.16c)

where 0& is an arbitrary phase that, without loss of generality, we will take to be

zero. We then define the normalized variables

P = P/Po, (A.1 7a)

tb = W/Wo, (A.17b)

1B.9 = Weq/Wo (A.17c)

fl=n/no (A.17d)
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The equations of motion for these normalized variables are then

p= T (A.18a)

Wo T= 1Z [ Z.9 ~ + (Deq, - 1)(P. A + Pf)] ~ (A.18b)

re - 0- (A.18c)

It is now convenient to convert the complex quantities (I and to polar coordi-

nates

= I I exp(iO), (A.19a)

= ICl exp(i4'). (A.19b)

The equations of motion for these real variables then become

1 (IPI - mIDl cos(4' - 0)), (A.20a)
Ip-1 = T2

-= ' (i - 17e, + (be - 1) I 1I cos(' - 0)), (A.20b)
If = ( csO ) cO; ,  (A.20c)-1

I /P)if )sin(O - 9), (A.20d)

-- L(cI/ lf1)sin(4 - 0) - . A.20e)

Since the polar form of the MMMBE depends only on the difference of the two

phases, the equations are independent of the phase angle between the rotating

frame and the complex variables, p and fl. We now linearize these equations

about the on-solution's steady state values, IP1 = 1 +bp, B = 1+6w, If l = 1 +6A,

9 = 00 + , and ' = 4 o + 6b .For convenience we set 0o = 40 = 0, without loss

of generality. The equations describing the dynamics of the perturbations are

= --- (6p - U(1 - 6w), (A.21a)
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6b = [6W +(b, - 1)( 60 + 6p)], (A.21b)
2- = I(6p - 611) - c zz al ,  (A.21c)

6i = -(60-60), (A.21d)

T2

-- L(60 - 69)- c-6 0 . (A.21e)
27- Oz

The solution to these equations has the form

[p 1 F 6P~
69 6W 6W*
60 60 exp(iCz/c + pt) + 16* exp(-i~z/c + 8*t). (A.22)
be be 6q 60 *J

We plug this solution into Eqns. (A.21) and obtain a set of five linear equations

and five unknowns

~(iBq 1) -L' + (1-9 -1) 0 0 b~1 _..0 0C i+ ~
ic+--+ 0 0R (A.23)

0 o 0 be10
o 0 0 _.L ic + -I- +,8

As before, for solutions other than the trivial solution to exist, the determinant

of the matrix in Eqn. (A.23) must vanish. This implies

s~ T + +.2 1 1.r+i TI T2 +  -Tr +  T12 T  T2

+ Iq - 1 i W, =o , (A.24a)
T 1 T27. TI T2

and

#32+p.+'+i) + ic,- = 0. (A.24b)

In a manner similar to the solution of the rate equations' stability, we set = if'

and solve for the boundary between stability and instability, that is we set



135

=1 = 0. Equation (A.24b) gives the dispersion relation for the phases of the

electric field and polarization. Equation (A.24a) gives the dispersion relation of

the inversion and the amplitudes of the polarization and electric field strength.

The dispersion relation for the phases predicts no boundary of instability for the

phases. However, the phases are marginally unstable, that is fl' = 0, for = 0.

Noise in the amplitude of the field or polarization, at the same frequency as the

steady state laser field, may change the phase angle between the field and the

polarization. This is not an instability unless noise is present.

The dispersion relation for the amplitudes of the variables reduces to two

equations when we substitute 6 i "

P2 (. 1 + 2.T) 1" + 1 + '7"T 1 0, (A.25a)

T(1 2_ 2_r TTZT7

#IC C)6112 +3" - + -- + e - 0. (A.25b)
\2)T T 1 2 + CTTL 0

We solve for P"C in Eqn. (A.25a)

i, q (e - 1)/(TT 2 ,) -_ ",62 [I1T + 1/T2 + 1/(2r)](
1/T 1 + 1/T 2  (A.26)

We then multiply Eqn. (A.25b) by P", so that all the occurrences of C also contain

P". We substitute Eqn. (A.26) for these occurrences and obtain a quadratic

equation in 112

114 + TT2 1 ie 9 1) + 21Zq teq ' 0. (A.27)
212T

The solution to this quadratic equation is

,2 = __ [3( - 1) _ 1

± //(iq - 1)(1b,9 - 9)/T2 - 6(i-v, - 1)/(TIT 2 ) + 1/T2]. (A.28)
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Since P" is real, #112 must be real and positive. The quantity P12 will be real if

the square root in Eqn. (A.28) is positive. This condition puts a constraint on

the pump parameter

teq > 5 + 3T2/T + 2/4 + 6T21TI + 2T2/T,2. (A.29)

The condition that "f12 is positive adds no further constraints, so the instability

boundary is determined by Eqn. (A.29).

The frequency of the unstable mode at the boundary of the instability is

given by Eqn. (A.28); in addition to this relation, the value of the frequency

of the unstable mode must satisfy the cavity boundary conditions. This could

cause the instability to appear at a higher threshold than the minimum threshold

predicted by Eqn. (A.29).

It is interesting to note that the lowest threshold for instability occurs for

T, >T2, (i.e., iie,(T > T2) = 9). This is the limit where the rate equations

are valid. If the frequency of the unstable mode or the Rabi frequency necessary

for the instability is greater than 11T2 , then we should not expect the rate

equations to make this prediction. The frequency of the unstable mode in the

limit T1 > T2 is

lim if"T2 = lim 2V3-v-/1T =0. (A.30)

T2 T 1  T2 CT

This indicates that in the limit that T1 > T the unstable mode frequency is less

than I/T2. Therefore, the frequency of the unstable mode does not violate the

adiabatic elimination assumptions. The spatial variation of the perturbation is

given by the variable C. From Eqn. (A.26) we find

CT2  (Weg - 1)T2 1 + T22/TI + T2/(2Tr,)
j Tr (1+ T2 /T) -T2 1+ Ti , (A.31)
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which in the limit that T, and r, > T2 becomes

im CT2= lira W"m-1T2-2V T] =0. (A.32)
T2 < T1, r. T 2 'C1,ve I 2V3. T,

Therefore the temporal and spatial oscillation frequencies of the unstable per-

turbation both go to zero in the limit that T > T2. This indicates that the

rate equation approximation is not violated by the unstable mode. The field

amplitude of the laser at the boundary of the instability is given by

IfI12lTIT2 (,t,,9 _ 1) = 8,

(InIT 2)2 = 8T2/T,

InIT2 =M2V/T7T

and

ir IlIT2= 0. (A.32)
T2 CT,

Therefore the Rabi frequency associated with the field amplitude is also less

than 1/T2, for T, > T2. So the instability predicted by the MMMBE is within

the approximations of the rate equations, even though the rate equations do

not predict the instability. Therefore the adiabatic elimination procedure can

be invalid in the region of instability. (I say "can" here since the rate equations

and the MMMBE predict the same threshold for lasing). This emphasizes that

the polarization of the medium plays a dynamic role in the instability predicted

by the MMMBE.

It should also be noted that Graham and Haken carried out a similar cal-

culation including the effects of quantum noise and found the same results as
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this semiclassical treatment. This indicates that the instability is not associ-

ated with quantum mechanical fluctuations, but is a semiclassical effect of the

nonlinearities of the MMMBE. Physically, the instability occurs when the gain

that sidemodes experience in the presence of a strong field becomes sufficient to

overcome the losses of the cavity and the sidemodes begin to oscillate.

The MMMBE predict that the steady state solution will go unstable as low

as 9 times above the threshold for lasing. Experiments with dye lasers, discussed

in the Chapter IV, have demonstrated that a homogeneously broadened laser

can go unstable as low as 1.5 times above the threshold for lasing.
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