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ABSTRACT

-This thesis presents a theoretical study of the interaction of atomic

hydrogen with coherent laser pulses in the 5 femtosecond to 10 picosecond

range, in the weak-field limit, and in intense fields. We approach the

problem in the weak-field limit by studying the relationship between the

Fourier relation of the laser pulse (A&-V) and the AEAt relation of the

atomic Rydberg wave packet generated by the laser pulse. A derivation of

the wave packet based on the WKB approximation is given, permitting the

quantity At to be derived for the quantum state, with the conclusion that

under certain circumstances a transform-limited laser pulse (satisfying

-Aa4t=1/2) can generate a transform-limited electron (satisfying

- AEdAt?= 1/2).

The interaction of hydrogen with femtosecond pulses is studied at

field intensities as high as 2.2-10 14W/cm 2. The full three-dimensional

Schr6dinger equation is numerically integrated at intensities of this order

as a guide to the development of theory. In terms of the Fermi golden rule

(FGR) formulation of ionization, the results may be summarized as follows:

just about every approximation employed in the derivation of FGR breaks

down at 10 1 4W/cm 2 . Nevertheless, it was possible to provide

straightforward non-perturbative methods to replace the approximations

and perturbative methods employed in FGR.

-A population-trapping effect is found numerically and modeled

theoretically. Despite the high field intensities, population representing

the excited electron is recaptured from the ionization continuum by bound

states during the excitation. Population returns to the atom .

iv



-with just the right phase to strongly inhibit ionization. A theory is

presented that models this effect for a variety of laser pulse shapes, with

and without the rotating-wave approximation.

The numerical integration reveals that a certain amount of above-

threshold ionization (ATI) occurs. A theory similar to the Keldysh-type

theories of ATI is developed. The theory differs from the Keldysh theories

in that, like Schr6dinger's equation, it is invariant under certain gauge

transformations. The proposed theory gives far superior agreement with

the numerical integration than Keldysh theory.

Classical ionization at 2.2.1014W/cm 2 is studied by numerically

integrating Newton's equation on a Monte Carlo ensemble constructed to

correspond to the above examples.

v



TABLE OF CONTENTS

Curriculum Vitae ii

Acknowledgements iii

Abstract iv

Table of Contents vi

List of Figures ix

Publications xii

Chapter I. Introduction 1

Chapter II. Short Pulse Excitation of Rydberg Wave Packets 11

2.1 Introduction 11

2.2 Generation of Rydberg Wave Packets: Numerical Results 14

2.3 Analysis of the Equations of Motion 23

2.4 WKB Analysis of the Wave Packet 30

2.5 Uncertainty Products 39

2.6 Conclusion 40

Chapter III. Numerical Integration of Schr6dinger's Equation 42

In Three-dimensions

3.1 Introduction 42

3.2 Taylor's Series Method of Numerical Integration 43

3.3 Basis Set for the Numerical Integration of 45

Schrdinger's Equation

vi



3.4 Numerical Results: Above-threshold Ionization 49

3.5 Numerical Results: The Failure of Fermi's Golden Rule 52

3.6 Wave Packets Representing an Electron Undergoing ATI 54

3.7 Conclusion 61

Chapter IV. Population Trapping In Short Pulse Laser Ionization 63

4.1 Introduction 63

4.2 Schrodinger's Equation and Numerical Solutions 68

4.3 Theory in the Rotating-wave Approximation 73

4.4 Population Trapping 77

4.5 Non-degenerate States 78

4.6 Theory Without the RWA 80

4.7 Conclusion 85

Chapter V. Generalization of the Keldysh Theory of Above-threshold 88

Ionization

5.1 Introduction 88

5.2 Review of Previous Results 90

5.3 Keldysh Theory From Time-Dependent Quantum Mechanics 92

5.4 The Slowly-varying Population Approximation 98

5.5 Comparison with KFR Theory 102

5.6 Conclusion 104

vii



Chapter VI. A Numerical Comparison of Classical and 109

Quantum Mechanical ATI

6.1 Introduction 109

6.2 Classical Model 111

6.3 Numerical Results 118

6.4 Conclusion 123

Chapter VII. Concluding Remarks 126

References in Alphabetical Order 130

viii



LIST OF FIGURES

Figure Caption Page

Fig. 2.1 Energy level diagram for short pulse laser excitation 15

of Rydberg wave packets.

Fig. 2.2 A Rydberg wave packet during its first orbit of the 18

atom.

Fig. 2.3 The uncertainty product ArApr of an orbiting Rydberg 20

wave packet. The packet is as described in

Fig. 2.2.

Fig. 2.4 Rydberg wave packets generated by laser pulses 22

of various lengths.

Fig. 2.5 The ArApr uncertainty product of Rydberg wave 24

packets at the end of laser pulses of various lengths.

Fig. 2.6 The uncertainty in energy AE/A of Rydberg wave 29

packets generated by laser pulses of various length.

ix



Figure Caption Page

Fig. 2.7 Comparison of three Rydberg wave packets generated 35

by numerically integrating Schr6dinger's equation

(solid line) with the WKB predictions of Eq. (2.27),

(dotted line).

Fig. 2.8 Comparison of three Rydberg wave packets generated 38

by numerically integrating Schr6dinger's equation

(solid line) with the WKB predictions of Eq. (2.29),

(dotted line).

Fig. 3.1 Energy level diagram for the numerical integration 48

of Schrodinger's equation.

Fig. 3.2 Electron energy at the end of the excitation pulse. 51

Fig. 3.3 (a) Laser pulse electric field. (b) Population in the initial 53

(n =3, =2, m=2) state during the laser pulse.

Fig. 3.4 Electron wave packets near the end of the laser pulse. 55

Fig. 3.5 Electron wave packet near the end of the laser pulse. 56

Fig. 3.6 Electron wave packet near the end of the laser pulse. 57

x



Figure Caption Page

Fig. 3.7 Electron wave packet near the end of the laser pulse. 58

Fig. 3.8 Electron wave packet near the end of the laser pulse. 59

Fig. 4.1 Energy level diagram of ionization model. 64

Fig. 4.2 Population in initial state Igo> during the laser pulse. 71

Fig. 4.3 Population in the initial state Igo> during the laser pulse. 72

Fig. 4.4 Population in the initial state Igo> during the laser pulse. 75

Fig. 4.5 Population in the initial state Igo > during the laser pulse. 76

Fig. 4.6 Population in the initial state Igo > during the laser pulse, 83

under conditions identical to those of Fig. 4.4.

Fig. 4.7 Population in the initial state Igo> during the laser pulse, 84

under conditions identical to those of Fig. 4.4.

Fig. 5.1 Electron energy at the end of the laser pulse. 97

Fig. 5.2 Electron energy at the end of the laser pulse. 101

xi



Figure Caption Page

Fig. 5.3 Electron energy at the end of the laser pulse. 105

Fig. 6.1 Spatial electron distribution of the initial classical 117

ensemble.

Fig. 6.2 Electron energy at the end of the excitation pulse. 119

Fig. 6.3 Electron energy at the end of the excitation pulse. 120

Fig. 6.4 Electron energy at the end of the excitation pulse. 121

xii



PUBLICATIONS

1. J. Parker and C. R. Stroud Jr., "Coherence and decay of Rydberg

wavepackets," Phys. Rev. Lett. 56, pp.7 16-7 19 (1986).

2. J. Parker and C. R. Stroud Jr., "Transient theory of cavity modified
spontaneous emission," Phys. Rev. A 35, pp. 4226-4237 (1987).

3. J. Parker and C. R. Stroud Jr., "Rydberg wave packets and the classical
limit," Physica Scripta T12, pp. 70-75 (1986).

4. M. Mallalieu, J. Parker, and C. R. Stroud Jr., "Transient absorption by a
Rydberg atom in a resonant cavity", Phys. Rev. A 37, pp. 4765-4768 (1988).

5. J. Parker and C. R. Stroud Jr., "Generalization of the Keldysh theory of
above-threshold ionization for the case of femtosecond pulses," Phys. Rev.
A 40, 5651-5658 (1989).

6. J. A. Yeazell, Mark Mallalieu, J. Parker, and C. R. Stroud, Jr.,

"Observation of classical motion of atomic wave packets", Phys. Rev. A 40,

pp. 5040-5042 (1989).

7. J. Parker, and C. R. Stroud Jr., "Population trapping in short pulse
ionization", To appear in Phys. Rev. A.

Txiii



CHAPTER I

INTRODUCTION

The theoretical study of quasi-classical atomic states is as old as

quantum mechanics. Lorentz and Schrodinger corresponded' on the

subject of atomic wave packets and their relation to the classical

correspondence as early as 1925. Schrodinger2 discovered the minimum

uncertainty wave packets of the harmonic oscillator in his search for the

classical correspondence of his wave theory of electrons. However, only

recently have methods been proposed to use short laser pulses to generate

quasi-classical atomic states, and only recently has a connection been

drawn between the coherence of laser pulses, and the coherence of the

atomic wave packets generated by a laser pulse3 7 . In the last two years

there have been several successful experiments 8 9 in which mode-locked

picosecond lasers have been used to generate atomic wave packets in one-

electron atoms, and to probe their quasi-classical motion.

The development of mode-locked picosecond and femtosecond lasers

has coincided with the advent of ultra-intense lasers capable of intensities

in the 1013 to 1017 W/cm 2 range. The interaction of atoms with ultra-

intense fields has produced a wealth of new experimental phenomena,

some of it quite surprising. Of particular importance has been the

discovery of above-threshold ionization (ATI) of xenon'0 , in which an

ionizing electron absorbs more than the minimum number of photons

necessary to ionize. The energy spectrum of above-threshold ionized xenon

" " t t l t I l l l l l [ 1
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shows not just a single ionization peak, but sometimes as many as 20 or 30

ionization peaks separated by a photon in energy, Aw, where w is the laser

frequency. Above-threshold ionization has turned out to be a complex

physical process that is dfficult to model accuately.

This thesis presents a study of the interaction of atomic hydrogen

with pico- and femtosecond laser pulses, at laser intensities as high as

2.2.1014 W/cm 2.

One of the goals of this research has been to demonstrate whenever

feasible a wave packet interpretation of the physics of atom-laser

interactions. Wave packets are solutions of the time-dependent

Schr6dinger equation that resemble in certain respects the motion of a

particle in the classical trajectories of the corresponding classical systems.

The ordinary differential equations of classical mechanics are easy to solve

numerically, and once the solutions have been generated, the physics is

easy to comprehend. This ease of understanding is lost in the transition to

wave mechanics. Not only are partial differential equations difficult to

solve and analyze, but Schr6dinger's equation (in its coordinate form) is a

boundary value problem; the nature of the boundary at some distance from

the atom plays an essential role in the mathematical solution of the

boundary value problem, and this complicates analysis of the physical

processes that take place at the atom independently of the boundary. The

solutions of time-dependent boundary value problems and Schr6dinger's

equation in particular are often conveniently written in terms of the

stationary (time-independent) bound states of the cavity whose boundary

gives rise to the boundary conditions. But in the ultra-fast laser-atom
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interactions that are the subject of this thesis, the individual stationary

states are by themselves poor representations of the state of the atom

during and after the interaction. Instead, the state of the atom is

represented by certain coherent superpositions of stationary states that in

configuration space turn out to be a well-defined wave packet. Not only

are wave packets the physical states of the atom, but they return to the

problem some of the physical clarity that was lost in the transition from

classical mechanics to wave mechanics.

In chapter II we begin analysis of the Schr6dinger equation describing

the interaction of atomic hydrogen with pico- and femtosecond laser pulses.

A major goal is to demonstrate the wave packet character of the solutions

and some of the classical and quantum mechanical characteristics of the

wave packets. The solutions will also clarify the relationship between the

wave packets and the set of stationary states used to solve the boundary

value problem.

The theme of chapter HT is motivated by the question: Are there any

circumstances under which a transform limited laser pulse (satisfying

AAt-- 1/2) may generate a minimum uncertainty wave packet? Chapter

I presents numerical results demonstrating a wide range of circumstances

under which near-minimum uncertainty radial wave packets are

generated. The wave packets are localized in the radial variable r= Irl, but

not in the angular variables 0 and 4. The quantity minimized is the

uncertainty product: ArApr = A/2. Analytically, a formula for the radial

wave packet is derived using the WKB approximation, but a direct

relationship between the laser pulse's Fourier relation AwAt = 1/2 and the
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wave packet's uncertainty product ArApr is not found. Instead, we are able

to define a time-energy relation AEAt for the atomic wave packet (or more

precisely, for the WKB wave packet), and it is this quantity that has a

direct relationship with the time-frequency product of the laser pulse.

In chapter m and in succeeding chapters we focus on the problem of

the hydrogen atom interacting with femtosecond laser pulses at intensities

of 2.101 W/cm 2 .

Chapter I is a general discussion of methods used to numerically

integrate the three-dimensional Schr6dinger's equation describing atomic

hydrogen in intense coherent laser fields. A major goal of this research

was to numerically integrate the three-dimensional Schr6dinger's

equation as a guide to the physics, and as a test of the theory. Such a

program has a disadvantage in that numerical tests can only be applied to

a limited number of examples and cases. Numerical algorithms for the

solution of three-dimensional partial differential equations are laborious

to develop and debug, and the computer programs can require days or

weeks of computer time, even on the fastest computers. For that reason, in

this thesis all theory and numerical examples have been restricted to the

case in which a single photon of the field is sufficient in energy to ionize (or

nearly ionize) the atom. However, the advantages of numerically

integrating the three-dimensional Schr6dinger's equation are many. In

particular:

1. It is a means of testing the utility of basic techniques and

approximations used in atomic physics, e.g. the rotating-wave
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approximation, essential-states approximation, zeroth-order Born

approximation.

2. It is a powerful means finding and explaining unexpected physical

phenomena.

3. It proves to be a useful guide to developing theory by quickly revealing

which approximations are good and which are bad. This is particularly

important in the study of complicated phenomena like ATI, where there is

some controversy and confusion.

4. It is a means of improving the likelihood that the numerical results and

the accompanying theory, if successful, have some applicability in real-

world experiments.

In chapter M we also discuss some of the results of the numerical

integration. The specific example chosen assumed a laser pulse of

intensity 2.2-10 14 W/cm 2, and duration 7.5 femtoseconds. The initial state

was chosen to be the (n-=3, ?=2, m=2) state, and the laser was tuned so

that a single photon was sufficient to ionize the atom. Two particularly

interesting phenomena were apparent in the numerical example studied.

The first effect was the above-threshold ionization of the atom. Instead of

absorbing a single photon during ionization, the electron could in some

cases absorb two, three or four photons. Instead of a single ionization peak

in the ionization spectrum, four ionization peaks were present, separated

in energy by about the energy of one photon. The second effect may be

described as a population-trapping effect. Population remains trapped in

the initial state throughout the laser interaction despite the fact that a

Fermi golden rule (FGR) calculation predicts that laser fields an order of
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magnitude less intense should be sufficient to ionize the atom. Both the

Anl and the population trapping effects may be regarded as fundamental

ways in which FGR fails in the intense field limit.

The origin of the population trapping is easily determined by

removing basis states from the basis set during the numerical integration.

This technique reveals that bound states with the same angular

momentum as the initial state have a profound influence on the physics of

the laser atom interaction. In the numerical example studied in chapter

I, the initial state is the (n = 3, f = 2, m = 2) state. It is found that if the

(n=4, ?=2, m=2) state is removed from the basis set during the

integration, then the atom is ionized nearly as predicted by Fermi's golden

rule. The numerical integration seems to indicate the surprising result

that recapture of population from the set off =3 states by the (n=4, ?=2,

m = 2) state can somehow inhibit ionization of the (n = 3, f = 2, m = 2) state.

In chapters IV and V, general theories of ATn and population trapping are

developed and tested numerically.

The numerical integration of Schrodinger's equation described in

chapter III reveals that recapture of population from the ionization

continuum by bound states of the same parity as the initial state has the

effect of inhibiting ionization of population from the initial state. The

numerical integration of course cannot reveal how general the effect is,

whether it is due to some special or accidental choice of initial conditions,

atomic structures, and laser pulse shapes. The goal of chapter V is to

develop a theory that can explain the effect as simply as possible, but with

sufficient generality to determine what role laser pulse shapes and various
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atomic structures may have in the physics of the population trapping. The

method employed is a generalization of the Fermi's golden rule theory

developed in chapter IH and as a result reduces to the FGR result in the

proper limit, and handles non-rectangular laser pulse shapes. In chapter

IV the theory is applied to a simple model atom rather than the full

hydrogen atom investigated in chapter MII. The theory proves capable of

modeling the phenomenon for a variety of laser pulse shapes, and atomic

structures. The simpler version of the theory employs the rotating-wave

approximation (RWA), and admits analytic solutions in several special

cases. The predictions of the theory in the RWA agree qualitatively with a

numerical integration of the full equations of motion, but do not give

complete quantitative agreement. We are able to show that the source of

the failure is the RWA by developing a more sophisticated version of the

theory that does not employ the RWA. The more sophisticated version

gives superior agreement with the numerical integration of the full

equations of motion.

In chapter V we turn to the problem of the above-threshold

ionization (ATI) of atomic hydrogen. Above-threshold ionization has

proved to be a challenge to atomic theorists. A number of standard

techniques of atomic physics that have proved so useful in the past are

poorly justified in the ATI limit. When atoms interact with ultra-intense

laser fields, perturbative expansions converge slowly (if at all), and as we

have mentioned, out-of-resonant atomic states at unexpected energies and

angular momenta can profoundly influence the physics of atomic energy

absorption. The fact that we found it necessary to use 1600 atomic states



8

in our numerical integration of hydrogen undergoing ATI attests to the

complexity of the ATI process. A certain class of theories has met with

some popularity in the search for theoretical models of ATI. These are the

theories of the type first proposed by Keldysh"1' 12 in 1965. Theories of the

Keldysh type may be derived from scattering theory in the limit in which

the Coulomb potential of the atom is treated as a perturbation to the ultra-

intense laser field.

In chapter V we develop a theory of the Keldysh type appropriate for

treating the femtosecond excitation of atomic hydrogen 13. The theory is

actually much more general than the various published Keldysh-like

theories. It is derived in a few lines directly from the time-dependent

Schr6dinger equation and we describe the further approximations required

to put the general theory in a time-independent form similar to the

Keldysh-type scattering theories. This derivation proves extremely useful

in correcting a serious defect associated with the theories of the Keldysh

type. The Keldysh theories are not invariant under the gauge

transformation in which T'(r,t) is replaced by W(r,t)eiA t), whereas the

Schrbdinger equation is invariant under transformations of this sort. We

show low to preserve the Schrodinger equation's invariance in the

Keldysh-like theory presented in chapter V. The consequences of this

approach are non-trivial; the equations derived in chapter V give

predictions that differ by orders of magnitude from the predictions of the

published Keldysh theories. In chapter V numerical evidence is given

supporting the gauge-invariant theory.
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The classical correspondence of one electron atoms in the absence of

external fields is a problem that has been well understood since the early

days of quantum mechanics. However, the problem of the classical

correspondence of atoms interacting with external fields is far more

difficult. The three-dimensional classical hydrogen atom in an external

field is described by a non-linear system of second order differential

equations that is analytically intractible. However, the problem can be

adequately handled numerically with Monte Carlo techniques. In the

chapters previous to chapter VI a number of interesting ionization effects

were revealed in a numerical integration of the three-dimensional

Schr6dinger equation, among them ATI, and population trapping. In

chapter VI some numerical experiments on the corresponding three-

dimensional classical problem, using a Monte Carlo method, are described.

To a surprising degree, many of the ionization phenomena apparent in the

quantum mechanical integration seem to be present in the classical model

as well.
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CHAPTER II

SHORT PULSE EXCITATION OF RYDBERG WAVE

PACKETS

Section 2.1 Introduction.

In this chapter we begin our study of the interaction of one-electron

atoms with short coherent laser pulses. We approach the problem from a

novel point of view by studying the relationship between the ArAp

uncertainty product of the excited electron and the AoAt Fourier relation

of the laser pulse that excites the electron. It will be shown numerically

that in a certain limit a transform-limited laser pulse (satisfying

AwAt= 1/2) may generate a nearly minimum uncertainty electron state

(satisfying ArAp = A/2).

There is a well known theorem in quantum mechanics that the

minimum uncertainty state is uniquely a Gaussian wave packet. As might

be expected from the remarks above, the results of this chapter may viewed

from another perspective: we will be studying a case in which Gaussian

shaped laser pulses generate (nearly) Gaussian shaped electron wave

packets.

Throughout this chapter it will be assumed that the laser pulses have

a special property, namely that they are transform-limited. Additionally,

it will be assumed that they are linearly polarized. A transform-limited

Gaussian laser pulse satisfies the relation

A At- 1/2, (2.1)

11
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where Aca is the dispersion in the power spectrum, and c At is the width of

the pulse in space in the direction of propagation. Near the atom, the

corresponding linearly polarized electric field may be written

E(x,t) = Eo f(t - x 1c) sin(ca(t - x/0) + 4P). (2.2)

In Eq. (2.2), f(t) is the shape of the envelope of the electric field, x is the

direction of propagation, and EO is a vector giving the direction and

magnitude of the electric field at the peak of the pulse. If the frequency (a

is time dependent, or if it is time dependent (e.g., there are sudden phase

jumps in the field), then the relation (2.1, wit not be satisfied. But in all

cases, the Fourier relation

AwAf -a 1/2. (2.3)

is satisfied. Henceforth, we will assume that the field is coherent, and

define Asa to be the width of the square modulus of the Fourier transform of

the pulse shape fAt), and similarly At to be the width of f(t).

The time-frequency Fourier relations of electrodynamics have a

special importance in laser physics. If a Gaussian pulse fails to satisfy

Eq. (2.1), then this is an indication of incoherence in the field. Another

immediate consequence of Eq. (2.1), and more generally Eq. (2.3), is that

an attempt to make a laser pulse shorter in time (and equivalently

narrower in space) requires making the bandwidth broader according to

A&a >-- 1/(2At). The equality Ar = c At yields the equivalent relation,

AAu/c h/(2Ar). Comparison with the quantum mechanical uncertainty

relation Ap-A/(2Ar) suggests a physical similarity. In fact, it is well

known that the two relations have a similar interpretation: an attempt to

make the wave packet of an electron narrower in space requires making
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the momentum spectrum of the electron (and equivalently the energy

spectrum) broader according to Ap 2 A / (2Ar).

In the quantum mechanics of atoms, a time-energy uncertainty

relation AEAt ' A/2 cannot be rigorously formulated in constrast to the

ArAp :- A/2 uncertainty relation. In quantum mechanics, probability

distributions for the space and momentum variables (r and p) are defined

by the wave function '(r,t), but no probability distribution is defined for

time. Time is not an observable in the sense that r and p are observables.

For example, a dispersion Ap for momentum can be defined which predicts

the results of measurements of the observable p,

Ap = I f I* (p - <p> )Wd3r , (2.4)

but At does not have a similarly well defined physical interpretation.

Nevertheless, At and the AwAt -- 1/2 Fourier relation have precise

meanings and important applications in classical electrodynamics and in

laser physics. In this chapter a limit will be studied in which At does have

a precise meaning in the quantum mechanics of Rydberg wave packets,

and it will be shown that the At of the atomic state is related to the At of

the laser pulse that generates the wave packet.

The physical system to be studied is the hydrogen atom interacting

with laser pulses of duration 5 femtoseconds to 10 picoseconds. The atom is

initially in a low lying bound state, and the laser is tuned so that the

electron is excited to the Rydberg states - typically states of principal

quantum number 20 or higher. Under these conditions the laser pulse

generates an excited state with some of the special properties alluded to
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above: near minimum uncertainty in r and p, quasi-classical orbital

motion, and a well localized wave packet structure.

In section 2.2 Schrodinger's equation will be solved numerically under

the conditions described above, and some numerical results will be

discussed.

In section 2.3 we begin development of the theory in an effort to

explain the numerical results as simply as possible. The emphasis will be

on calculating the state of the atom at the end of the laser pulse rather

than the subsequent evolution of the atom. A generalized Fermi's golden

rule will be developed to describe the atom-laser interaction in the wave

packet limit.

In section 2.4 we turn to a study of the spatial properties of the wave

packet TP(r,t). Using the WKB approximation and the methods of section

2.3, an approximate formula for T(r,t) will be derived and compared with

the numerically generated l(r,t).

In section 2.5 uncertainty products will be discussed. The formulas of

section 2.4 will be used to establish the connection between the AAt

relation of the laser pulse, and the corresponding quantity of the wave

packet generated by the pulse.

Section 2.2 Generation of Rydberg Wave Packets: Numerical Results

In this section the Schr6dinger equation will be written down for the set

of states shown in Fig. 2.1 and some numerical solutions will be described.

As Fig. 2.1 shows, the hydrogen atom initially is in the bound state labeled
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IE>

Ig>
n=3, -e=2, m=2

Fig. 2.1. Energy level diagram for short pulse laser excitation of Rydberg

wave packets. A linearly polarized laser pulse, represented by the solid

arrow, interacts with an atom initially in state Ig> with quantum number

n=3, 1=2, m=2. The pulse is short enough, and its bandwidth broad

enough to excite a coherent superposition of f = 3 Rydberg states labeled

IE >. The states are not drawn to scale. Altogether, 150 states are used.
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Ig> with quantum numbers (n=3, e=2, m=2). In the dipole

approximation, the electron cannot make the transition to states of

quantum number ?=1, because the pulse is linearly polarized, so that

quantum number m must remain constant. Figure 2.1 represents the

resonant one photon transition from the initial state Ig> to the f = 3, m = 2

Rydberg states labeled IE >.

Two examples will be discussed. In the first example the laser will be

tuned to the n = 85 state. The pulse will be short enough (10 picoseconds)

and its bandwidth broad enough that the n = 84 and n = 86 states will also

receive substantial population during the laser excitation. It will be seen

that under these conditions the state of the atom at the end of the pulse is a

well localized wave packet that is narrow in comparison to the 14,400 Bohr

radii extent of the n = 85 eigenstate. The subsequent evolution of the wave

packet in the absence of the laser pulse has a quasi-classical character.

Although the packet spreads, its orbital period is the same orbital period as

that of a classical electron with the same energy as the n = 85 state.

In the second example the laser will be tuned to the n = 25 state. The

goal in this example will be to study the atomic state at the end of laser

pulses of varying duration, from 5 femtoseconds to 300 femtoseconds. Of

particular interest in this example is the ArAp uncertainty product of the

atomic state at the end of the pulse.

Schrdinger's equation, in the dipole approximation, restricted to the set

of states of Fig. 2.1 is,
•daE(t)
.dt -= 2V a(t)exp(- io t)exp sin(t) f (2.5a)

•~ I =' ,P)i III I l ll
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•da (t)

£ d- ---- 2VEg aE(t) expui gt)exp(-iwjEt)sin(wt)f(t) (2.5b)dt E

In Eq. (2.5), the electric field is given by Eq. (2.2) and 2 AVEgsin(wt)f(t) is

the matrix element of the interaction Hamiltonian (<E I d-E(t) I g>)

connecting the states IE> and ig>. The energy of the state IE> is AeE,

the energy of the state Ig > is fa~g, and Aca is the photon energy. Here the

pulse envelope function, f(t), is normalized to unity at its maximum. The

variables a(t) are the probability amplitudes of the states in the interaction

picture.

Equation 2.5 is solved numerically, and then the wave function 1F(r,t)

is calculated from
tqf(r,t) -- aE(t) exp(-iwEt0uE~r) .(2.6)

E

where the sum is over all of the Rydberg states IE > used in the numerical

integration of Eq. (2.5). The eigenfunctions uE(r) are in the radial variable

r = Irl, and are calculated for each principal quantum number n by

numerically integrating the time-independent Schr6dinger equation with

the energy eigenvalue set to E = - ACOR/n 2. Here AOR is the Rydberg

energy, 13.6 eV. The method of numerical integration will be described in

the next chapter.

Let us return to the first numerical example. The coherent laser pulse

excites principally the n = 84, 85, and 86 states. The state of the atom at

the end of the pulse is a localized wave packet, shown in Fig. 2.2, labeled

15. The quantity plotted is r2T*W and the label is the number of

picoseconds that have elapsed from the time at which the center of the

laser pulse
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3;
3

(a)
"C 25

25
a- 20

15

0.0 1.0
r (units of classical turning point)

40

(b)
C

50

so

0.0 1.0

r (units of classical turning point)
Fig. 2.2. A Rydberg wave packet at various times after creation. Each

curve is labeled by the time that has elapsed, in picoseconds, from the time

that the center of the laser pulse reached the atom. A 10 picosecond"

(FWHM) laser pulse was used to excite Rydberg states in the vicinity of

n = 85. The wave packet travels to the classical turning point, is reflected,

and returns to the core of the atom in about 93 picoseconds, which is the

orbital of period a classical electron corresponding to the n = 85 state.
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reached the atom. The subsequent evolution of the wave packet during its

first orbit of the atom is also shown in Fig. 2.2. The wave packet travels

away from the core, out to about 14,400 Bohr radii, the outer turning point

of the n=85 state. This is also the outer turning point of a classical

electron with energy equal to that of the n-=85 state. The wave packet

begins its return to the core of the atom at about 50 picoseconds. The wave

packet reaches its closest approach to the core of the atom at 93

picoseconds, which is just the orbital period of a classical electron with

energy equal to that of the n = 85 state. The subsequent evolution of the

state is not shown, but the orbital cycle repeats itself three times, with an

orbital period of 93 picoseconds, before the spreading of the wave packet

obscures the quasi-classical orbital motion evident in Fig. 2.2.

Figure 2.3 shows the ArApr uncertainty product of the atomic state

shown in Fig. 2.2. Here r is again the radial variable r= Ir 1. It should be

noted that the wave packet is localized only in r. Its angular distribution is

given by the spherical harmonic Ylm(O,) where e=3, and m= 2. The

variable Pr is the radial momentum defined (in the absence of external

fields) by m(dr/dt), where m is the mass of the electron. The two variables

satisfy [r, Pr] = ifi. The Heisenberg uncertainty principle states then that

under certain special circumstances ArApr may equal h/2, but it may never

be less than A/2. In Fig. 2.3 the minimum of ArApr is .5002A, which occurs

at about 25 picoseconds, suggesting that the Gaussian laser pulse

generated a (nearly) Gaussian electron wave packet. The rapid spreading

of the wave packet in r is evidently the reason ArApr never again

approaches A/2.
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60.0

0

0.0

0.0 1.0 2.0 3.0 4.0

time (units of classical orbital period)

Fig. 2.3. The uncertainty product ArApr of an orbiting Rydberg wave

packet. The packet is as described in Fig. 2.2. It has an orbital period of 93

picoseconds, and an energy equal to that of the n = 85 Rydberg state. The

minimum uncertainty of .5002A ocurrs at about 25 picoseconds. As the

packet spreads in r and returns to core of the atom, the uncertainty product

increases by over two orders of magnitude. As the packet returns to the

outer turning point (apogee), and narrows up, the uncertainty product falls

to about 44, but does not return to its minumum value.
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From the structure of the recurrences in Fig. 2.3 and from the

discussion of Fig. 2.2, it appears that the wave packet corresponds to a

classical electron that was at perigee (closest approach to the nucleus) at

t =0, where t is such that the laser pulse peaks in intensity at t = 0. One of

the reasons we make this point is that it provides a physical explanation

for the observation that a sufficiently short laser pulse generates a

localized wave packet. The laser pulse used in the example described above

was about 1/9th of the 93 picosecond orbital period of the classical electron

associated with the n = 85 state. Consequently the electron did not have

time to travel to the outer turning point (apogee) of the orbit during the 10

picosecond pulse. The condition for a wave packet, then, is that the length

of the laser pulse x should be short in comparison to the orbital period of the

excited state: t < < nn3 /w0 . This inequality can be rewritten 2n/- > >

2&o / n3 . This is also the condition that the laser pulse has sufficiently

broad bandwidth to excite not just the resonant state (in this case n = 85)

but also neighboring eigenstates. The reason for this is that 2c%/n 3 is just

the frequency separation of adjacent Rydberg states, and the bandwidth of

the laser pulse goes as 2n/.

Now we begin discussion of the second example. In this example the

laser is tuned to excite the n = 25 state, and the pulse length is varied from

300 femtoseconds, down to 5 femtoseconds. The classical orbital period

corresponding to n = 25 is 2.37 picoseconds.

In this example we are interested in the state of the atom at the end of

the pulse rather than its subsequent motion. In Fig. 2.4 is shown the wave

packet r2 *T(r) as it appears immediately after the the end of the pulse
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r (units of classical turning point)

Fig. 2.4. Rydberg wavepackets generated by laser pulses of various

lengths. Here the packets are labeled by the pulse lengths (FWHM

intensity) in femtoseconds. The laser excites Rydberg states in the vicinity

of n=25. The packets are as they appear when the pulse has fallen to 0.4%

of its peak amplitude.



23

for various pulse durations. The wave packets are labeled by the length

of the laser pulse (in femtoseconds) that generated the wave packet. The

amplitude of the field is adjusted so that the total pulse energy of the field

is the same in each case. The pulse intensity is in each case the intensity

required to pump 10% of the population into the Rydberg states. The

spatial axis in Fig. 2.4 is labeled in units of the classical turning point of an

electron with energy equal to that of the state n = 25, and with angular

momentum A. This turning point, or apogee, is given by approximately

2n 2ao, where ao is the Bohr radius.

Figure 2.5 shows the ArApr uncertainty product of Rydberg wave

packets of the sort shown in Fig. 2.4. The pulse length varies from 5 to 300

femtoseconds. The wave packets are near minimum uncertainty, although

not within three significant figures of 0.5ft as in the n = 85 case described

above.

Section 2.3 Analysis of the Equations of Motion

The numerical examples and simple physical arguments of the

previous section provided a definite range of parameters for which well

localized Rydberg wave packets are formed. The actual working out in

detail of the shape and evolution of the wave packet is made difficult,

however, by the infinite sum over Rydberg states which occurs in Eq. (2.5).

In this section and the next we will work out analytic approximation

techniques which greatly simplify this problem.
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1.0-1
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"c 0.5-

0.0, I

0.0 300.0
laser pulse width (femtoseconds)

Fig. 2.5. The ArApr uncertainty product of Rydberg wave packets at the

end of laser pulses of various lengths. The laser pulses vary in length from

5 femtoseconds to 300 femtoseconds, and the laser is tuned to the n = 25

Rydberg state, as in Fig. 2.4. The uncertainty product is calculated when

the pulse has fallen to 0.4% of its peak amplitude. The uncertainty

products (labeled by boxes in the figure) vary from 0.53A to 0.60A.
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In the previous section the numerical examples suggested that the

limit in which wave packets are generated is the limit in which the

bandwidth of the laser pulse is broad enough to excite more than one

Rydberg state. This is also the limit in which a Fermi golden rule analysis

is the appropriate description of the excitation. The main result of this

section will be a straightforward derivation of a generalized Fermi's golden

rule (FGR). We will also compare the frequency dispersion of the laser

pulse Ao with the frequency dispersion of the wave packets generated by

the pulses AH/A. Here H is the atomic Hamiltonian, which at the end of

the laser pulse is the energy of the atomic state. As will be seen, the

energy uncertainty AH/A of the Rydberg wave packets closely matches the

Aa of the laser pulse that generated it.

We are interested in the state of the atom just at the end of the

pulse, as in Fig. 2.4. Although the equations below generalize without

difficulty to arbitrary times, assume below that the field has died away at

time t. To begin, the rotating-wave approximation is made on Eq. (2.5) by

expanding the sine function in complex exponentials, and discarding the

rapidly varying terms. With this simplification Eq. (2.5) becomes

da E (t
daEtEg ag(t) f(t)exp i[&)- (&E- E() t (2.7a)

da (t)
i dt = VE a E ) f(t)exp - [ C- (CE (ad] t (2.7b)

E
Equation (2.7) can now be formally integrated in time to yield the

amplitude of the excited Rydberg state of energy E at the end of the pulse:

aE(t) =-iVEg F(AE) + aE(--) (2.8)
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where AE is the detuning (A)E - () g -(. and F(AE) is the Fourier transform of

f(t)ag(t):

F(A) = Jct (epA at)a(t) f(t) (2.9)

The upper limit of the integral of Eq. (2.9) is more precisely the time t of

Eq. (2.7), but it is assumed that at time t the laser pulse has died away

sufficiently that Eq. (2.9) is a good approximation. We turn now to a

discussion of Fermi's golden rule by calculating the population in the

excited state at the end of the pulse. The population in the excited state is

just the sum over Rydberg states of the absolute values of the amplitudes of

the states of energy E:

I Ea(t) 12 IV E& 12 IF(AE)1 2. (2.10)
E E

This sum over Rydberg states IE > can be formally rewritten as an integral

over dE p(E):

l EaE(t) 12 = f dE R(E)I F(wE - &) - )12 /(2nli) (2.11)
Ewhere R(E) is the FGR transition rate from the state Ig> to the Rydberg

states centered about state IE >,

R(E) = 2n AIVEg 12 p(E) (2.12)

and the density of states p(E) is just the inverse of the energy separation of

the Rydberg states adjacent IE >. Thus p(E) 8E is the number of Rydberg

states in the energy interval 8E.

The rate R(E) is the standard text book formula for the FGR rate. To

show the connection between Eq. (2.11) and the usual FGR prediction of

the population in the excited states at the end of the pulse, two more

approximations are necessary. First it is assumed that the Fourier
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transform IF(wE - (ag - (a )2 is a function that is sharply peaked at the

energy of the resonant Rydberg state E = (co + (), and consequently

behaves like a 8-function. In these equations w is the laser frequency and

E is the atomic state energy divided by h: E/h. Second, it is assumed that

the population in the initial state is constant during the pulse: ag(t) = 1.

These are the standard approximations in FGR calculations. With these

assumptions, Eq. (2.11) becomes:

dE
fdE R(E) I F( E -c -- co) 12 / (2ni) = MAW + V) f L I F((OE - w9

= R((o+w ))fdt If(t)1 2  (2.13)

The last equality required Parseval's Theorem. In the next chapter we will

show how to calculate the time evolution of ag(t) and will present a more

thorough discussion of the equations of motion. In this section, the goal

has been to introduce equations that are useful in studying the

relationship between Aco of the laser pulse and A-/h of the atomic state at

the end of the pulse.

With this preparation, the relationship between Aca and AH/h of the

atomic state at the end of the pulse can be discussed. The frequency

dispersion of the laser pulse is

ACO = 1'dc IG(c.)I 2  ' (2.14)

where G(c,) is the Fourier transform of the laser pulse fAt)exp(-iOt).

The dispersion in energy of the atomic state is

AH fd 3'drP(H-<H>)2 laV5

fdr I ' (2.15)

where ' is the Rydberg state vector, which can be rewritten
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- la E(t) 12 (E _ < E>)2  in

AH E aE(t)I (2.16)

E

In the limit in which the FGR formulation of Eq. (2.11) is valid, this may be

rewritten as an integral

[ fdE (E- <E>)2 R(E)IF(&)E- a)12 21 7

f .dE R(E) I FwE.- W (2.17)

In order to make the comparison between Eq. (2.14) and Eq. (2.17) notice

first that the functions F and G are identical (in width) in the limit in

which the ground state amplitude ag(t) remains near one, (the weak field

limit). In all of the numerical examples discussed in this chapter, the field

is chosen sufficiently weak that ag(t) remains within 10% of one.

Assuming the weak field limit, comparison of the Aoj of Eq. (2.14) with the

AH/A of Eq. (2.17) shows that the two are identical in the limit in which

R(E) is constant in E (so that it can be moved outside the integral), or in

the limit in which the spectrum IF12 of the pulse is well localized in E (for

the same reason). In the examples discussed here, the latter condition is

true to good approximation, and was in fact the same condition used to

derive the FGR formulation of Eq. (2.13). Thus Aw and AM-/A should be

equal in the limit in which the FGR formulation of Eq. (2.13) is valid.

Let us test how well the AH/A of the atomic state agrees with the Aw of

the laser pulse by calculating Al-/A for the example of Fig. 2.4. Figure 2.6

shows the results of such a comparison. The quantity plotted is Al-/h,

multiplied in each case by At of the laser pulse. In the plot, AH is labelled

AE to emphasize that the Hamiltonian gives the energy of the atomic
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Fig. 2.6. The uncertainty in energy AEI/A of Rydberg wave packets

generated by laser pulses of various length. The example is the same as

described in Fig. 2.5. The AE of each Rydberg wave packet is multiplied by

the At of the laser pulse that generated the packet in order to make the

data easier to read. Gaussian laser pulses were used so that AwAt of the

laser pulse is 0.5 in each case shown above. Figure 2.6 shows, then, that

AE/A of the wave packet agrees with Ac of the laser pulse to two

significant figures.
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states at the end of the pulse. In all but one case, AE/, multiplied by the

laser pulse's At, is within three significant figures of the laser pulse's ACAt

(which equals .5), confirming in this example that the approximations that

lead to Eq. (2.13) and Eq. (2.17) are justified.

Section 2.4 WKB Analysis of the Wave Packet

In this section approximate analytic expressions for the shape of the

wave packet at the end of the laser pulse will be developed. Here we will

see that the methods of the previous section greatly simplify the sum over

the rapidly oscillating radial wave functions, provided the WKB

approximation is used to represent the radial wave functions. The wave

function to be calculated is:

T(r,t) = aE(t) uE(r) exp(-iE t/). (2.18)
E

The WKB method gives a good approximation of the wave function

except near the turning points. In fact a numerical comparison of the

n=25 WKB wave function with the exact Laguerre polynomial radial

wave function reveals agreement between the two functions to three or

more significant figures except near the classical turning points. We

would expect then the WKB wave functions to describe the states shown in

Fig. 2.1, except in the limit in which the wave packet nears the classical

turning points of the n = 25 state.

The WKB eigenfunction' is

ru E(r) k E L2 (r) 2 1 os. Ir kE W)dr' - n/4 (2.19)

E.RP) , a I
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where

kE(r) = -M (E - V(r)) 01. 20)

is 1/ times the classical momentum of the electron, and V(r) is the

effective potential. The quantity a0 is the Bohr radius, p(E) is the density

of Rydberg states, ER is the Rydberg energy, and ro is the inner turning

point of the orbit (perigee).

The WKB wave functions can be used in Eq. (2.18) provided the sum

over states IE > is approximated by an integral just as was done in the

previous section. Also, kE(r) will be approximated by its value at the

resonant energy Eo = h(cO + W g). The new function will be called ko(r). From

now on the resonant energy h(wa + cag) will be written E0. Next, in order to

sum Eq. (2.18), an expression for aE(t) is needed. It will be useful to write

aE(t) in terms of R(E) and p(E). Equation (2.12) and Eq. (2.8) yield

1 2 (E)

The next step is to rewrite the sum over discrete states in Eq. (2.18) as an

integral over dEp(E), exactly as was done in the derivation of FGR in the

previous section. Surprisingly, the density of states function p(E)

completely drops out of the problem. The time-dependent wave function,

then, is

rW(r,t) = (na2) koW(r)J I dE.AexpRiJ r

(2.22)

In deriving this expression an unimportant time-dependent phase

factor has been dropped. The sine of the WKB wave function has been
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broken into two exp functions, and only the term that results in a physical

wave packet has been kept.

The rest of this section will be devoted to finding an approximate

method of summing Eq. (2.22). The algebra is greatly simplified in a more

natural system of units. Henceforth, the r will stand for r/a0 . Similarly E

will stand for E/ER, and to will stand for A/ER. The units for k(r) will be

1/a0, and the units of time /ER. In this system of units, kE(r) is written

very simply: (E-V(r))'".

One more approximation is required to integrate Eq. (2.22). The

exponent in Eq. (2.22) will be expanded to second order in a Taylor's series

about the energy of the resonant Rydberg state E0 .

d r
= a dr' kE(r) I E=E 0  (2.23a)

1 l~) - r EffiE

4P2(W = 1 d dr' kE W) (2.23b)@2r-2! dE2 Ir° 01E=E0

r dr' kE(r') = r0dr' kE (r') + VI (r)(E-E 0 ) + 0 2(r) (E-E 0 )2 (2.23c)

The quantity 41 (r) has an important physical interpretation. It is the time

required for a classical particle of energy E0 propagating freely in the

Coulomb potential to travel from ro to r. For small (E-Eo), the quantity

4 2(r)(E-Eo)2 is the difference in time that it takes two classical particles (of

energy E and E0 respectively) to travel from ro to r. As one might guess

from the classical interpretation of 0 2 (r), 0 2(r) governs spreading of the

wave packet; if 0 2(r) and all higher order terms of the Taylor's series is are
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set to zero then the WKB wave packet will not spread as it propagates. If

just the zeroth order and first order terms of the Taylor's series (2.23c) are

kept then the wave function (2.22) can be summed for arbitrary laser pulse

shape. If all three terms of Eq. (2.23c) are retained, then the wave function

(2.22) can be summed for Gaussian pulse shapes under certain conditions.

In what follows, the third term of Eq. (2.23c) will be discarded, and the

WKB results will be compared with the numerically generated wave

packets. Subsequently, the third term of Eq. (2.23c) will be kept in order to

study spreading of the wave packet, and then the comparison will be

repeated.

It is of historical interest that Van Vleck 2 in 1928 first noticed that the

term 41 (r) in the Taylor's expansion Eq. (2.23) may be used to give a

classical interpretation to the stationary WKB eigenstates.

With these assumptions, neglecting for the moment 0Z 2(r) of

Eq. (2.23c), I is just the Fourier transform of a product of functions.

Applying the convolution theorem, and neglecting an unimportant phase

factor yields:

r T(r,t)= (8n 2k- 0
2 S(t - )* f(t- ) (t- 0) J , (2.24)

where the * denotes convolution, and S is propotional to the Fourier

transform of R"'

S(t) = 2n dE R(E) exp (- Et) (2.25)

This formula is consistent with the generalized Fermi golden rule

formula of Eq. (2.11). It is straightforward to show that an integration

over r of IrT1 2 yields exactly Eq. (2.11) for the population in the wave

packet at the end of the pulse. Equation (2.23) implies that k0(r)-ldr = 2d?,
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so that integrating Eq. (2.24) yields,:

drlrW(rt)12= 1- - dIS(t - 0)*[f(t- V a (t- )112 . (2.26)4n2

Now an application of Parseval's theorem yields Eq. (2.11). The

assumption is made that the wave functions are well localized wave

packets as in Fig. 2.4, so that the integrations in Eq. (2.26) are over the

extent of the packets and therefore avoid the turning points of the

potential.

Now that it has been verified that the WKB method predicts the

correct population in the wave packet at the end of the pulse, the

discussion can be simplified by leaving out normalization constants. The

next step will be to simplify Eq. (2.26) by applying the same approximation

that led the FGR of the previous section.

In the previous section it was shown that the standard FGR formula

results from the more general fromula Eq. (2.11) if it assumed that the rate

R(E) is effectively constant in E wherever F(AE) is significant, and if then

R(E) is taken out of the integral. The numerical results presented in the

previous section helped to support this approximation. In Eq. (2.24) the

approximation that leads to the standard FGR, the assumption that R(E) is

effectively constant, implies that S is a 8-function, leading to a very simple

formula for the wave packet. An equivalent and simpler derivation is to

assume R(E) is constant, and take it out of the integral of Eq. (2.22),

yielding:

r W(r,t) a f(t- 4) a (t- 01) ko i 2  (2.27)

Eq. (2.27) is the principal result of this chapter. It predicts that the peak of

the wave packet travels in the radial variable rjust as a classical particle
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Fig. 2.7. Comparison of three Rydberg wavepackets generated by

numerically integrating Schrdinger's equation (solid line) with the WKB

predictions of Eq. (2.27), (dotted line). The laser is tuned to the n= 25

Rydberg state, and the packets are labeled by the FWHM laser pulse width

(in femtoseconds).
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of energy E. travels. To see why this should be true, recall 0,)(r) is the time

it takes a classical particle of energy Eo to travel from ro to r. Figure 2.7

compares the numerically generated wave packets with predictions of

Eq. (2.27). The formula Eq. (2.27) agrees qualitatively with numerically

generated results, but the numerically generated wave packets are

broader in width, and hence have peak heights less than that of the WKB

wave packets.

A long series of approximation was employed in the derivation

Eq. (2.27). In order to learn if there is any limit in which Eq. (2.27) is valid,

is important to know which of the approximations are the cause of the

discrepency between the predictions of Eq. (2.27) and the numerically

generated wave packets. We will show next that most of the discrepency

between the theory and the numerical results is due to the neglect of the

spreading term 0l2(r). Furthermore, it will be found that if the laser is

tuned to n = 85 instead of n = 25, then spreading is negligible, and the

neglect of 0 2(r) is a good approximation.

The third term of the Taylor's series, Eq. (2.23c), can be retained

provided the laser pulse shape fAt) is Gaussian in shape, and provided that

most of the population remains in the initial state during the pulse so that

ag(t) remains approximately equal to one. In all of the numerical examples

of this chapter, the laser pulse shape f(t) is the Gaussian exp(-t 2/w).

Assuming, as we have throughout this chapter that the field is sufficiently

weak that a(t)=1, the Fourier transform of f(t), neglecting some

normalization constants, is F(AE) = exp(-wAE2/4). With this choice of F,

and with the full second order Taylor's series of Eq. (2.23c), Eq.(2.22) for
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the wave packet becomes

rW(r,t) or ko M (r) I dNE exp I i(c11(r - OMA I ex4 -(w/4 - i 012(r))&E 2 J (2.28)

In Eq. (2.28) normalization constants have been neglected, as well as an

unimportant overall phase factor. Also, the system of units is the system

described above, so that dE = dw = dAE = d(E - E0). The integral

Eq. (2.28) can be looked up in textbooks3. The result is

1 1/2 (t9- (r))2

Figure 2.8 compares the predictions of the new WKB wave packet formula

with the numerically generated wave packet for a variety of pulse lengths.

The agreement is still not quantitative. For example the wave packets

have a slightly different skew. However, most of the discrepency between

the theory and the numerically generated results apparent in Fig. 2.7 is

now gone.

There is a limit in which spreading is negligible and Eq. (2.27) is valid

at the end of the pulse. Brown 4 has shown that the rate of spreading of

Rydberg wave packets goes as 1/n4 where n is the principal quantum

number of the resonant Rydberg state. Consequently, one expects the

limit of high n to be the regime in which Eq. (2.27) is valid. This is

supported by a study of Rydberg wave packets generated by a laser tuned

to n = 85. At n = 85, a comparison of the predictions of Eq. (2.27) for the

WKB wave packet without spreading and the predictions of Eq. (2.29) for

the WKB wave packet with spreading shows that the two wave packets are

virtually identical.
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Fig. 2.8. Comparison of three Rydberg wavepackets generated by

numerically integrating Schrbdinger's equation (solid line) with the WKB

predictions of Eq. (2.29), (dotted line). The laser is tuned to the n=25

Rydberg state, and the packets are labeled by the FWHM laser pulse width

(in femtoseconds).
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The agreement between the numerically generated wave packets, and the 

WKB predictions is about the same as shown in Fig. 2.8. 

Section 2.5 Uncertainty Products 

The principal result of this chapter is Eq. (2.27), a formula for the WKB 

wave packet in terms of the envelope f(t) of the laser pulse that generated 

the wave packet. In the previous section we described the limit in which 

Eq. (2.27) gives semi-quantitative agreement with a numerical integration 

of Schrödinger's equation, and we described some of the limits in which 

Eq. (2.27) fails. In the limit in which Eq. (2.27) is valid, and in the limit in 

which ag(t) is nearly constant, (the weak-field limit), a calculation of the 

standard deviation in the time variable At of the WKB \rW\2 (of Eq. (2.27)) 

yields just the At of the laser pulse that generated the wave packet. In 

Section 2.3 it was argued and verified numerically, that the AH/A of the 

wave packet and the Aco should agree closely in the limit in which short 

pulses generate wave packets. Consequently the derivation implies that, 

in the weak field limit for sufficiently high n, the At AH/A product of the 

WKB wave packet should closely agree with the At Aco product of the laser 

pulse. 

The derivation does not imply that ArApr of the wave packet equals 

AtAH of the wave packet. There is an argument given in elementary 

textbooks that there should be a rough agreement between the ArApr of 

the wave packet and AtAH, but the argument assumes that the wave 

packet is free space.   Numerically, though, there was found a fair 
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agreement between the ArApr of the wave packet and the AtAha of the laser

pulse. In fact in the high Rydberg limit (n=85) ArApr was A/2 to three

significant figures. In the example in which the laser was tuned to n = 25,

the ArApr uncertainty was typically between 0.53A and 0.60hf.

Section 2.6 Conclusion

In this chapter a number of numerical experiments were conducted in

which short laser pulses excited localized wave packets among Rydberg

states. The wave packets exhibited quasi-classical behavior, and for a brief

period near the end of the laser pulse had a ArApr /A in rough agreement

with the AtAa of the laser pulse that generated the wave packet. The

agreement between ArApr /A and AtAoa was not exact, but the agreement

was striking enough to suggest that it would be worthwhile to study the

theory of atom-laser interactions in terms of laser-pulse Fourier relations,

and atomic uncertainty products.

A derivation of the wave packet using the WKB approximation

implied that it was the quantity AtAH/h of the wave packet that in certain

limits closely agrees with the AtAco of the laser pulse. The derivation was

useful in revealing some of the many ways in which a coherent Gaussian

laser pulse may fail to generate a wave packet satisfying AtAHI/A = 1/2. Let

us review this chapter by discussing some of the ways in which a coherent

Gaussian laser pulse may fail to generate a wave packet satisfying

AtAH/A = 1/2.



41

First, it is important to notice that the shape of the Rydberg wave packet

is strongly governed not by the laser pulse envelope f(t) but by ft)ag(t),

where ag(t) is the amplitude of the initially populated state. Similarly, AH

is calculated from the Fourier transform of f(t)ag(t), not f(t). If ag(t) is

rapidly varying, then it will strongly modify the value of AH, and AH/h

will not equal Ac. Throughout this chapter, the laser field was chosen to

be weak enough that most of the population remained in the initial state,

and ag(t) remained within 10% of 1.

Second, the theory and the numerical examples discussed in section

2.3 suggest that the laser pulse must be short enough and its bandwidth

broad enough to resonantly excite several Rydberg states in order that the

A-/A of the atomic state approximate the Aw of the laser pulse. This is

precisely the limit in which a well localized wave packet is generated.
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CHAPTER III

NUMERICAL INTEGRATION OF SCHRODINGER'S

EQUATION IN THREE-DIMENSIONS

Section 3.1 Introduction

The purpose of this chapter is to review the numerical methods

employed in a numerical integration of the three-dimensional Schr6dinger

equation. The integration will be used principally in the succeeding

chapters as a guide to study of atomic hydrogen interacting with coherent

fields of exceptional intensity (1014 W/cm 2 ). Some of the numerical results

of the integration will be discussed in this chapter also.

The methods to be discussed in this chapter were developed to solve

problems of the type that arose in the previous chapter, in which coherent

laser pulses as short as five femtoseconds were used to excite an electron

from a hydrogenic bound state to the Rydberg series. Exceptionally high

laser intensities are required to substantially ionize an atom with such a

short pulse. The major difficulty that arises is that the energy level

diagram shown in Fig. 2.1 neglects too many states to accurately describe

the atom interacting with such intense fields.

In this chapter a specific example will be studied numerically. The

initial state of the hydrogen atom will be the (n=3, -2, m-2) state. The

laser pulse will be 7.5 femtoseconds (FWHM) in duration, Gaussian in

shape, and will be 1/8 of a Rydberg in frequency. The pulse will be linearly

polarized and the dipole approximation will be made. The peak field

42



43

intensity will be 2.2.1014 W/cm2. We will see that in such intense fields it

will be necessary to include in the atomic energy level structure not just

the f=3 states, as shown in Fig. 2.1, but also ?=4, 5, and 6 states.

Section 3.2 Taylor's Series Method of Numerical Integration

The Taylor's series method was the method used to numerically

integrate differential equations in all of the numerical examples discussed

in this thesis. In this section we will review the method with specific

attention to the integration of Schridinger's equation,
d'V(t) -i H(t)W(t). 

(3.1)dt

In Eq. (3.1) WV is a column vector, and the Hamiltonian H is a matrix whose

time dependence is a result of the electric field of the laser pulse.

In the Taylor's series method, the value of T' at some time to + 8t is

calculated from

N

(+6t) - (to)+ S T I"l/(t 0 ) (8t)n/n!, (3.2)
n=1

In Eq. (3.2) the nth derivative of IP evaluated at to has been written

TP(n)(to). The higher order derivatives of Tp are calculated in terms of the

"initial condition" 'I(t o) by taking higher order time derivatives of the

original differential equation, Eq. (3.1). For example, the time derivative

of Eq. (3.1) yields

M(-t o ) = -i H"D(t ) W(t 0) - i H(to)qJVl)(to) (3.3)

or,

V2)(t 0 ) = -i H(l)(t ) (t ) + i H(to i H(t)(t. (3.4)

. ,i . II I II li I0



44

The time variation of H is entirely due to the sinusoidal and Gaussian

electric field, so that it is straightforward to calculate a general formula for

the nth derivative of W.

Let us make some general remarks on how well the Taylor's series

method performed.

1. In improving the accuracy of the numerical integration it was observed

that increasing the order N of the Taylor's series, Eq. (3.2), was far

superior to decreasing the integration step size St. For example, in

numerically integrating Eq. (3.1), it was found that reducing 8t by a factor

of two improved normalization of the wavefuction from six significant

figures to seven significant figures, and doubled the integration time. By

contrast, raising the order of the Taylor's series from order N =5 to order

N = 9 also doubled the integration time, but improved the normalization of

the wavefunction from 6 to 15 significant figures.

2. When the numerical integration failed catastrophically, as when the

normalization of the wavefunction went to infinity, then increasing the

order of the Taylor's series did not solve the problem. It was necessary to

make the step size smaller. Once the step size was small enough that the

numerical integration no longer failed catastrophically, then the most

efficient way to improve accuracy was to in-:rease the order of the

integration.

3. It was straightforward to work out analytical formulas for the Taylor's

series, Eq. (3.2), to arbitrary order N. The ability to choose an arbitrary
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order proved to be useful over and over again in ensuring accuracy, not just

in the integration of Schrddinger's equation, but in all other numerical

integrations attempted in this research. For example, for a particular

integration step size, the numerical integration of Schr6dinger's equation

gave what turned out to be poor answers at order 5, but gave consistent

answers at orders 7, 8 and 9. Another case in which this technique turned

out to be useful was in the integration of the time-independent

Schrodinger's equation for the radial bound states and unbound states of

the Coulomb potential. The accuracy of the bound states could be checked,

because analytical formulas are available' and easily calculated for the

unbound states. The order of the Taylor's series could then be turned up

arbitrarily to get desired accuracy. This method set the order of the

Taylor's series for numerically integrating the unbound states.

Section 3.3 Basis Set for the Numerical Integration of Schr6dinger's

Equation

Schr6dinger's equation in matrix form, Eq. (3.1), is a first order

differential equation that is straightforward to numerically integrate via a

Taylor's series Eq. (3.2). But in configuration space, Schr6dinger's

equation is a second order partial differential equation, which is difficult to

integrate numerically. In order to write Schr6dinger's equation in matrix

form, a complete set of states is needed as a basis set.

The natural choice of basis sets is the set of eigenstates of the atomic

Hamiltonian, Hatom. The electron is in an eigenstate of Hatom before the
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laser pulse arrives, and is in a coherent superposition of eigenstates of

Hatom after the laser pulse has departed. During the pulse, the set of

eigenstates of Hatom simply serves as complete set on which to solve the

equation.

In order to make the basis set finite, it is assumed that at some large

radius r = R there is a spherical boundary of infinite potential energy

surrounding the atom centered at r=0. The effect of the boundary is to

discretize the continuum of unbound states. The set of eigenstates that

results is complete for solutions of Schr6dinger's equation that satisfy the

boundary conditions: W(0) = 0, and 'P(R) = 0. To justify the use of such

an eigenbasis, we must verify that the wave packet representing the

excited electron does not travel from the nucleus at r = 0 to the boundary at

r = R during the laser excitation. In the numerical examples discussed in

this thesis, R is set at 1400 Bohr radii, and the wave packet representing

the ionized electron travels only 1/4 of the distance to the boundary during

the 22.5 femtoseconds of the numerical integration. In the next section

figures showing the wave packet at the end of the pulse will be presented.

Let us next turn to some of the numerical problems encountered in the

construction of the basis set. The eigenenergies were found by the well

known 2 point and shoot method. First an approximate value El for the

eigenenergy was determined using the WKB method, and then El and a

slightly larger El +BE were used to construct two candidate eigenstates.

Using interpolation, and the degree by which the two candidate

eigenstates failed to satisfy the boundary conditions, it was possible to

predict an improved eigenenergy E2. Thus, by iteration the eigenenergy E
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could be calculated. The process converged surprisingly quickly. At most

three iterations were required to get an energy E such that the

wavefunction was zero to 14 significant figures at the outer boundary.

The energy level diagram of the basis set is drawn in Fig. 3.1. For each

azimuthal quantum number f, the true basis set has an infinite number of

states. Each element of the basis set has the form Ye.m(0,4)uEe(r),

whereYe.M(0,4 ) is the spherical harmonic, m is always 2, e varies from 2 to

6, and the energy eigenvalues E are fixed at discrete energies by the

boundary conditions. The function uze(r) is the eigenstate of the radial

Schr6dinger equation, with effective potential -e2/r + fi2et(e+ 1)/(2mr 2). To

make the energy level diagram Fig. 3.1 more legible every fifth positive

energy state is plotted. The continuum states (unbound states) are not

evenly spaced in energy, but are (nearly) evenly spaced in momentum.

This spacing, sometimes called the momentum scale, results from the

choice of boundary conditions. The eigenstates of the well-known infinite

square well have a similar property. In each of the continua (2 to 5)

there are 270 unbound states. At f = 6, 370 unbound states are used. In

each case, the number of bound states is about 30.

In Fig. 3.1, the arrows correspond to possible resonant transitions. As

shown in the figure, the initial state is (n=3, f=2, m=2). This choice of

initial state and linear field polarization simplify the excitation in an

important way. Because the dipole approximation is made throughout, the

dipole selection rules for linearly polarized light forbid transitions from the

( = 2, m = 2) initial states to the e =1 states.
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Fig. 3.1. Energy level diagram for the numerical integration of

Schrodinger's equation. The thick arrows represent the most probable

paths taken by population during the excitation. The population also

follows the thin lines, although these paths are of less importance because

of the smaller dipole moments. One in five of the unbound states are

plotted. Altogether over 1600 states were used.
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This prevents, for example, a Rabi oscillation between the (n = 3, e 2) and

the (n = 2, ? = 1) states that would greatly complicate the problem. In Fig.

3.1 the thick arrows represent the absorption of ftc in energy and are

drawn to represent the most probable path that population takes during

the excitation. Cross sections are largest for transitions in which both

energy and angular momentum increase. Some population also follows the

thin lines, but these excitation paths do not contribute significantly to the

final spectrum.

One of the advantages of integrating the equation on a complete set of

discrete, physical states is that particular bound states may be removed

from the set during the time integration to see what effect they have on the

ATI energy spectrum. This tells us unambiguously the origin of effects

such as the inhibition of ionization. Using a physical basis set, and

knowing which bound states are of importance during the excitation

allows us also to generalize results to other one-electron atoms. It is easily

seen from the energy level diagrams of lithium and sodium that the results

would differ little in the m = 2 case if the atom were lithium or sodium. In

recent years, another numerical method, the Sturmian method has become

increasingly popular in problems of the sort discussed here. It should be

noted that the Sturmian basis states are not equivalent to the hydrogenic

basis states drawn in Fig. 3.1. A recent review of the advantages and

disadvantages of the two methods is given by Susskind and Jensen .

Section 3.4 Numerical Results: Above-threshold Ionization
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In this section we will discuss some of the results revealed by the

numerical integration. To produce the results to be discussed in this

section, the step size of the time-integration was made sufficiently small

that the wave function IF remained normalized to ten significant figures

throughout the integration. We then repeated the numerical integrations

with a smaller step size and higher order Taylor's series, so that the wave

function remained normalized to 15 significant figures. The results

remained unchanged.

As remarked above, about 1600 states (C = 2,3,4,5 and 6) were used in

the integration. The fact that we cannot use the full infinite set of basis

states in the integration meant that another approximation was necessary,

namely the essential states approximation, in which states that receive

virtually no population during the excitation are discarded from the basis

set. This approximation was relatively easy to make reliably. It was

however necessary to inspect the population of the states during the

numerical integration. Many more states than were necessary for the

integration were kept in the basis. In particular we kept states of high

energy and high angular momentum that received negligible population

and that could only receive population through many-photon transitions.

In Fig. 3.2 is plotted the final energy distribution of the electron as

predicted by the numerical integration of Schr6dinger's equation. The

solid curve represents the energy distribution of the electron at the end of

the pulse. The curve is constructed by dividing each photon energy

interval (of energy 1/8th Rydberg) into ten bins. The amount of population

in each bin is plotted in Fig. 3.2. The bound states are drawn as rectangles;
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Fig. 3.2. Electron energy at the end of the excitation pulse. The separation

of the x-axis hash marks is one photon in energy: 1/8th Rydberg. The

curves are constructed by dividing each energy interval of 1/8th Rydberg

into ten bins. Population in each bin is plotted with a rectangle for the

bound states n = 3 and n = 4, and with a solid line otherwise. Here the

initial state is n = 3, f = 2, m = 2 and the peak intensity of the laser pulse is

2.2.1014 Watts/cm 2.
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the population in unbound states (the ionization spectrum) is plotted with

a smooth curve rather than a histogram to make comparison with the

other theories easier. There are four ionization peaks, although the fourth,

with .09% of the population, is not visible in the figure. The figure

demonstrates that the atom is undergoing a certain amount of above-

threshold ionization, in which more photons are absorbed than are

necessary to ionize the atom.

It is instructive to compare the example of Al presented in this

chapter with some of the experimental parameters of the well-known ATI

experiments. All experiments to date have been done in the low frequency

limit, in which a many photon transition is required to ionize the atom.

An analysis of the Stark shifts of the bound states in this limit yields a

simple formula which is widely quoted in the AT[ literature and which can

be extremely useful in providing simple explanations to very complicated

multi-photon phenomena. For example, the frequency shift of the initial

state is given by second-order perturbation theory4:

AE = -U -. 5iE2  (3.5)P

where a is the ground state polarizability given by the dc stark effect. The

quantity Up equals e2E2/(4M(02), where E is amplitude of the electric field.

The quantity Up is called the ponderomotive potential because it also

shows up in an analysis of ponderomotive effects. (However, effects due to

ponderomotive forces are not directly related to the Stark-shift theory

discussed here.) In the numerical example described in this chapter, Up is

.16 multiplied by the Rydberg energy at the peak intensity of the pulse, or

slightly greater than the peak energy of the field photon, Aw. Both of the
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terms in Eq. (3.5) are negative, so the formula predicts extemely large

frequency shifts. The derivation of Eq. (3.5) (given in ref. 4) requires that

the frequency difference between the initial state and all neighboring

states be very much greater than the field frequency ca. This is typically

the case when a many-photon transition is required to ionize the atom. A

calculation of the frequency shifts of threshold (Rydberg) states5 yields a

similarly large value: Up.

In light of this theory, let us return to the example of ATI presented in

this chapter. In the numerical results, we clearly do not see frequency

shifts of the order Up. This is puzzling at first. Since the frequency shifts

are intensity dependent, and since a high percentage of the population in

the first ionization peak gets there during the turn-on of the pulse when

the pulse varies in intensity greatly, large intensity-dependent frequency

shifts would shift the peaks a variable amount during the pulse, and have

the effect of broadening the ionization peaks. There is no evidence of shifts

or broadening of peaks of the order Up. The failure of Eq. (3.5) to apply to

the numerical results presented in this chapter is easy to explain.

Equation (3.5) is derived under the assumption that many photons are

required ionize the atom, and that the frequency of the laser is very much

less than the frequency difference between the initial state and all

intermediate states. In the numerical examples studied here, these

conditions do not hold.

However, calculation of the frequency shifts of the threshold states also

yields the large value Up. Why such a shift is not apparent in the
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Fig. 3.3. (a) Laser pulse electric field. The pulse has a Gaussian envelope,

and the optical frequency w is 13.6eV/(8h). The pulse has a FWHM of 3T,).

T,) is the period of the optical field. (b) Population in the initial (n =3,

f=2, m=2) state during the laser pulse. The solid lines shows the initial

state population predicted by the numerical integration of Schr6dinger's

equation. The dashed line shows the initial state population predicted by

Fermi's golden rule.
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numerical results is more troubling. One possibility is that the

discrepency between theory and numerical experiment is due to the failure

of second order time-independent perturbation theory at high intensities.

They successfully describe the frequency shifts of ionization peaks in high-

resolution spectroscopy, in which laser fields are CW and orders of

magnitude weaker than in this work. But the justification of these

techniques at high field intensities is non-trivial, and does not fall within

the scope of this thesis.

Section 3.5 Numerical Results: The Failure of Fermi's Golden Rule

In Fig. 3.3(b) is plotted (solid line) the population of the initial state

(n =3, t=2, m=2) during the pulse. The pulse peaks in intensity at t=0

and has a FWHM of 3T., where T, is the period of the electric field. From

Fig. 3.3(b) it is evident that when the pulse is the most intense

(t= 0 ± 1.5T. ) almost no net population leaves the initial state.

For comparison, Fig. 3.3(a) shows the electric field of the laser pulse.

The rapid oscillations in the population of the initial state (solid line of Fig.

3.3(b)) have a frequency of twice the optical frequency of the electric field.

These are counter-rotating oscillations, that are normally discarded in the

rotating-wave approximation. This inhibition of ionization may be

characterized as an intense-field modification of Fermi's golden rule

(FGR). For comparison, the FGR prediction is also plotted in Fig 3.3b

(dashed line). The FGR rate of exponential decay is calculated by assuming
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Fig. 3.4. Electron wave packets near the end of the laser pulse. The figure

shows only the radial distribution of the (C = 6, m = 2) wave packets. The

dotted line shows the wave packet as it appears 9.0 femtoseconds after the

laser pulse peaked in intensity. The solid line shows the wave packet 11.25

femtoseconds after the laser peaked in intensity. In both cases the laser

pulse has fallen to less than .5% the peak intensity, so the motion of the

electron is not strongly perturbed by the laser.
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Fig. 3.5. Electron wave packet near the end of the laser pulse. The figure

shows the radial distribution of the ( = 5, m = 2) wave packet. The solid

line shows the wave packet when the numerical integration finishes, 11.25

femtoseconds after the laser peaked in intensity.
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Fig. 3.6. Electron wave packet near the end of the laser pulse. The figure

shows the radial distribution of the V = 4, m =2) wave packet. The solid

line shows the wave packet when the numerical integration finishes, 11.25

femtoseconds after the laser peaked in intensity.
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distance from nucleus (Bohr radii)

I I

Fig. 3.7. Electron wave packet near the end of the laser pulse. The figure

shows the radial distribution of the (V=3, m=2) wave packet. The solid

line shows the wave packet when the numerical integration finishes, 11.25

femtoseconds after the laser peaked in intensity.
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Fig. 3.8. Electron wave packet near the end of the laser pulse. The figure

3hows the radial distribution of the (V=2, m=2) wave packet. The solid

line shows the wave packet when the numerical integration finishes, 11.25

femtoseconds after the laser peaked in intensity.
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a single f = 2 bound state and a single f = 3 continuum of unbound states.

A simple FGR calculation predicts complete ionization at intensities an

order of magnitude lower than the 2.2X1014 W/cm 2 peak intensity

actually used.

The origin of the inhibited ionization may be easily demonstrated by

removing basis states from the basis set during the integration. If the

states (n=4, ?=2, m=2) and (n=5, ?=2, m=2) are removed from

thebasis set, then the initial state decays nearly as predicted by FGR.

Absorption of population by the n = 4 and 5 states (via the f = 3 continuum

of unbound states) then in effect inhibits ionization.

These results cannot be modelled by the methods of chapter I. In

chapter I FGR worked well and the laser fields were weak in the sense

that at least 90% of the population remained in the initial state during the

laser pulse. This trapping of population in intense fields will be studied

analytically in the next chapter.

Section 3.6 Wave Packets Representing an Electron Undergoing ATI

Finally we show in Figures 3.4 through 3.8 the spatial (radial)

distribution of the wave function at the end of the numerical integration.

The figures do not show the true lP*W(r,t). The true wave function

Vq'*(r,t) is calculated from the square modulus of Ete(r)Ye.2(8,4) where

the sum is over the angular momentum C. Instead the figures show

r21qj,(r)j2 for = 2 to 6 where r is the radial variable r = Irl. The true wave
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function W*W(r,t) probably has complicated interference phenomena from

cross-terms in the square modulus of EW1(r)Y1 2(0,4). This interference

does not show up in the figures. However, the principal purpose of Figs.

3.4-3.8 is to show that the wave packet representing the above-threshold

ionized electron has not reached the artificial infinite-potential boundary

at r= 1400 Bohr radii. The success of the numerical method relies heavily

on this fact, so it was especially important to verify.

Figure 3.4 shows the wavefunction of the sixth continuum r2 .W6(r)12

at the end of the laser pulse, t= 11.25 femtoseconds (solid line), and well as

the wave packet at a somewhat earlier time, 9.0 femtoseconds (dotted line).

The figure was drawn to give an idea of the velocity of wave packet relative

to the well.

The wave packets shown in Figs. 3.4-3.8 were valuable in another

respect. They proved to be sensitive tests for certain numerical errors. For

example, in an early attempt to numerically integrate Eq. (3.1), the wave

functions did not show the sharp leading-edge cut-off that Figs. 3.4-3.8

show. Instead, the wave packet appeared throughout the cavity, even

early in the integration, as though the electron had traveled at

unphysically high velocities to reach the outer boundary. It was found that

a single element of the basis set had been inadvertantly left out during the

integration. When the missing state was re-introduced into the basis set,

then the wave packets had sharp leading edges, as shown in the figures. In

each of the Figs. 3.4-3.8 the wave packet r2 fl,(r) 2 at values of r beyond

the leading edge of the wave packet is 5 to 6 orders of magnitude smaller

than the peak value of the wave packet.

Section 3.7 Conclusion
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In this chapter we began the study of the interaction of one-electron

atoms with coherent laser pulses of exceptionally high intensity. The

purpose of the chapter was to discuss the methods and some of the results

of a numerical integration of a second-order partial differential equation in

three-dimensions: Schrddinger's equation describing an atom in fields of

2.2.10 14W/cm 2 peak intensity. The numerical integration revealed several

surprising intense-field effects that cannot be explained by the analysis of

chapter II. The first effect was a population trapping effect. Population

remained trapped in the initial state of the atom in striking disagreement

with the Fermi golden rule prediction. The second effect was above-

threshold ionization. The electron absorbed as many as three photons in

energy in excess of that required to ionize it. These phenomena will be

studied analytically in the following chapters.
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CHAPTER IV

POPULATION TRAPPING IN SHORT PULSE LASER

IONIZATION

Section 4.1 Introduction

In the previous chapter we presented a numerical study of above-

threshold ionization of hydrogen by an intense (2.2.1014 W/cm 2), short (7.5

femtosecond) laser pulse. In order to integrate the full three-dimensional

Schr6dinger equation a few specializing assumptions were made. In

particular it was assumed that the atom was prepared in the n = 3,

e=m=2 state, and that the field frequency was oR/8, one-eighth the

Rydberg frequency. One particularly striking result of the numerical

study was the observation that the atom was not completely ionized even

for extremely intense fields. Instead some of the population was trapped in

the initial state.

In this chapter we will study the basic physics of this trapping and see

that it is a quite general occurrence for any process in which a short laser

pulse is used to excite an atom. The only requirement is that there be

other bound levels of the same parity as the initial state, separated from

the initial state by less than the bandwidth of the laser pulse. Although

the original numerical study was carried out for the case of hydrogen, we

will demonstrate the basic physics using a much simpler model atom. The

level structure of this atom is shown in Fig. 4.1. In this model atom we

have three bound states that are of the same parity as the initial state, and

63



64

IE>

Sg2>

1gi>
[go>

Fig. 4.1. Energy level diagram of ionization model. The states Ig> are

bound states of angular momentum 4.* All of the population is initially in

state Igo>. The states IE> represent unbound states of angular

momentum quantum number to + 1. The separation of the states JE > is

small enough that the quasi-continuum of states in the drawing behaves as

a continuum of unbound states.



65

for simplicity are equally spaced in energy. The continuum is modeled by

a quasi-continuum that is made up of equally spaced levels, each with the

same dipole moment coupling to the bound levels. The solid arrow

indicates the transition from the initial state to the continuum produced by

the center frequency of the laser pulse. Because of the finite bandwidth of

the short laser pulse, the second transition indicated by the dashed line

will also be resonantly excited by the laser field, returning population to

the set of initially unpopulated bound states IgI>, g2>, and so on. The

field then produces not only ionization but also stimulated recombination.

As we shall see, the return of population inhibits the ionization from the

initial state Igo>. Without the presence of the states Igj>, Ig2>, and so

on, the ionization would be accurately described by Fermi golden rule

(FGR) exponential decay. The effect we will be describing, then, may be

characterized as one of the ways FGR fails in the intense field ionization of

real atoms and molecules.

As remarked above, the conditions for population trapping (Fig. 4.1)

are likely to be encountered in a variety of laser-molecule interactions due

to the close spacing of the Ig> levels. The same is true in the study of

microwave Rydberg-atom interactions. Several authors have studied the

problem from this point of view 1.2 and have reported on coherent effects

that trap population or modify Fermi's golden rule. Inhibition of ionization

and population trapping due to coherences among two or more bound states

has been extensively studied both in the theory of two-color ionization3 and

in the theory of one-color ionization4 .
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As pointed out above, the recapture of population by the bound

states Ig> occurs during ionization by very short laser pulses that have

sufficiently broad bandwidth to drive both the transition represented by

the solid arrow of Fig. 4.1 and the transition represented by the dashed

arrow of Fig. 4.1. For inhibition of ionization to become apparent, the

pulse must also be sufficiently intense to drive significant population along

this two photon transition. As we shall see, under these conditions a

coherent superposition 'c(t) = E ag(t) Ig> is generated that exhibits a

greatly reduced ionization cross section in comparison to the ionization

cross section of the initial state Wo(t) = ag0(t) Igo >.

It is surprising that population should return from the ionization

continuum IE > with just the right phase to strongly inhibit ionization of

an atom prepared initially in the discrete bound state Igo>. The

numerical integration reveals the phenomenon but can not tell us if it

occurs under more general conditions. Consequently, a major goal of the

chapter is to develop a theory capable of predicting the major features of

the phenomenon for a variety of laser pulse shapes, field intensities,

atomic dipole moments, and atomic energy level spacings. Throughout

this chapter, predictions of the theory will be compared with predictions of

the numerical solution of Schr6dinger's equation on the set of states of Fig.

4.1. The theory will be presented in two versions. The first version will

employ the rotating-wave approximation (RWA). The RWA version of the

theory is useful in demonstrating in an uncomplicated way the general

features of population trapping and inhibited ionization. The RWA
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version of the theory can be solved analytically in several special but

instructive cases.

The RWA version of the theory shows a small but systematic failure in

comparison with the numerical integration of Schrodinger's equation. The

failure is due to the failure of the RWA. To demonstrate this, we have also

developed a more sophisticated theory that does not employ the RWA. The

more sophisticated version gives superior agreement with the numerical

integration of Schrodinger's equation.

In section 4.2 we will write down the appropriate equations of motion

for the system of Fig. 4.1, and describe some numerical solutions that

demonstrate the effects to be studied here. In section 4.3 thE simplest

version of the theory will be presented. The strategy will be to eliminate

the variables associated with the unbound states IE>, leaving equations

involving only the variables of the bound states. The resulting equations

may then be solved numerically, or in special cases, solved analytically. In

sections 4.4 and 4.5, the equations will be solved analytically in two

particularly instructive cases. In section 4.4 it will be assumed that the

bound states Ig> are degenerate in energy. The result will be that

population is permanently trapped in the initial state Igo >. In section 4.5

it will be assumed that the states Ig> are not degenerate in energy but

that the pulse is rectangular in shape. In section 4.6 the theory will be

generalized to take into account terms that are discarded when the RWA is

made.
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Section 4.2 Schrodinger's Equation and Numerical Solutions

In this section we will write down the Schrodinger equation for the set

of states shown in Fig. 4.1 and describe some numerical solutions.

Schrodinger's equation. in the dipole approximation, restricted to the set

of states of Fig. 4.1 is,

da E(t)
Sdt Y 2V a(t) exp(- ig( (4.1a)

dag9(t)dt - Y2V a E(0 exp~gt)exp(-icEt)sin(t)f(t) (4.1b)

dt E E t Eg E

In Eq. (4.1), 2MVEgf(t)sin(cat) is the matrix element of the interaction

Hamiltonian connecting the states IE> and Ig>. The energy of the state

IE> is fcwE , the energy of the state Ig> is fi*wg . and fi€ is the photon

energy. The electric field goes as ft)sin(cat). Here the pulse envelope

function, f(t), is normalized to unity at its maximum. The variables a(t)

are the probability amplitudes of the states in the interaction picture. To

make the notation simpler, ag0(t) will be written ao(t), and ag,(t) will be

ai(t).

Next, we review the method of numerically integrating Eq. (4.1). The

numerical integation of Eq. (4.1) was performed using a set of 150 equally

spaced states (Fig. 4.1) to represent the ionization continuum. The laser

pulse was (in all of the numerical examples shown in the figures) three

optical periods FWHM in duration. The ground states Ig> are equally

spaced in frequency, unlike the hydrogenic states, and are drawn to scale
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in Fig. 4.1. The actual integration was accomplished by the Taylor's series

method. The 150 states span a width in frequency equal to that of the

frequency of the laser pulse. It is well known5 .6 that a quasi-continuum of

discrete states behaves as an ionization continuum provided the states are

sufficiently closely spaced in energy. The discrete nature of the quasi-

continuum begins to become apparent after a time 2n/A, where A is the

frequency separation of the states. In this case A is ca/150 where co is the

laser frequency, so that 2n/A is 150 periods of the laser field. The entire

integration period of the examples shown in the figures is nine field

periods. To understand why the discrete nature of the continuum should

become apparent in the numerical integrations only after a time 2n/A,

notice that pulse lengths of this duration or longer have a sufficiently

narrow spectrum to resolve the level structure, but shorter pulses have too

broad a spectrum.

In the case of the real hydrogen atom the situation is more complex

than for the simple model atom studied here. Our numerical studies of

hydrogen (using the (e =2, n=3) state as the initial 1g0> state of Fig. 4.1)

show that the counter-rotating terms at frequency 2w are more pronounced

than here, and several more atomic levels are coupled into the problem. To

model the hydrogen atom accurately in such intense fields we have found

that it is necessary to introduce the bound states (f = 3, n = 4), (V = 3, n = 5)

and ( =4, n=5), as well as the ionization continua to which these states

are coupled. The effect of these ( = 3) bound states is to increase greatly

the amplitude of the oscillations of frequency 2w that are apparent in the

numerical integrations of Eq. (4.1).
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Figures 4.2 and 4.3 present several numerical solutions of Eq. (4.1) and

demonstrate the profound effect that the states Ig1 > and 1g2 > have on the

ionization rate of the initial state Igo>. All three curves of Fig. 4.2

represent the population of the initial state, Igo >, during the pulse. The

pulse peaks in intensity at t-0. The pulse has 3 optical periods per

FWHM. In Fig. 4.2, the solid curve labeled 1 represents the time evolution

of Igo> in the case in which Ig0> is the only bound state. The evolution of

Igo > in this case most closely resembles FGR exponential decay. The peak

pulse intensity Io was chosen so that FGR predicts that 90% of the

population would be removed from the initial state by the time the pulse

peaks in intensity. The curve labeled 2 represents the evolution of Igo >

with one other bound state Ig, > present. Now the inhibition of ionization

(in comparison to the FGR prediction) is clearly evident. The curve labeled

3 represents the evolution of Ig0> with the two states Ig,> and 1g2 >

present. The inhibition of ionization is greater.

In Fig. 4.3 the intensity of the pulse is varied, rather than the number

of bound states as in Fig. 4.2. In each of the three cases shown in Fig. 4.2

there are three bound states. The solid line shows the evolution of Igo > at

the same intensity Io used in Fig. 4.2. The dotted and dashed lines show

the evolution of Igo> at intensity 2.10 and 10.Io respectively. Increasing

the intensity by a factor of ten increases the population remaining in the

initial state at the end of the pulse.
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Fig. 4.2. Population in initial state Ig, > during the laser pulse. The curves

are generated by numerically integrating Schrodinger's equation on the

basis set of Fig. 4.1. The curves are labeled by the number of bound states

Ig> present in the numerical integration. The intensity of the laser pulse

and all other parameters are constant for the three curves.
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Fig. 4.3. Population in the initial state Igo > during the laser pulse. The

curves were generated by numerically integrating the equations of motion.

The solid curve shows the evolution of Igo> with the same intensity 1

used in Fig. 4.2. The dotted curve shows the evolution of Igo> at intensity

2-I0. The dashed curve shows the evolution of Igo> at intensity 10.Io .
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Section 4.3 Theory in the Rotating-wave Approximation

In this section we will describe an approximate solution of Eq. (4.1) that

employs the rotating-wave approximation (RWA). The method is a

generalization of a method discussed in reference 5. The strategy will be to

eliminate the infinite set of unbound states IE > from the set of equations

leaving a finite number of equations containing only the variables of the

unbound states Ig>. The theoretical predictions will then be compared to

the numerical solutions of Schrodinger's equation.

The major difficulty in simplifying and solving Eq. (4.1) is the

assumption that the laser pulse has an arbitrary shape f(t). It will be

assumed that f(t) is smoothly varying, but no other assumptions are made.

This generality is particularly important in this study. In our numerical

examples, f(t) will always be Gaussian.

Next, let us rewrite Eq. (4.1) in the RWA. To do this the sin(4t) in Eq.

(4.1) is expanded in complex exponentials, and the rapidly oscillating

terms are discarded to yield:

da E Mt

dt = VEg agt) exp(- iwg t )exp(Jt) exp(- iwt)f(t) (4.2a)

J da (t)

dt - -t)Eg a=(t) exp( icot ) exp(- iwzt exp(i c 0 f(t) (4.2b)
E

In Eq. (4.2), the variables are the same as those in Eq. (4.1). In order to

solve Eq. (4.2) two more appproimations will be made. With these two

new assumptions, it will be possible to derive exact solutions to Eq. (4.2) in

several special cases.
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The two further assumptions are the following: it is assumed that the

ionization continuum is flat, i.e. VEg is independent of E, and second it is

assumed that the continuum has no upper or lower bound. As one

consequence, the width in energy of the ionization continuum is infinite,

rather than the finite energy width drawn in Fig. 4.1.

With these two approximations, the next step is to eliminate the

unbound states IE > from Eq. (4.2). Formally integrating Eq. (4.2) for the

amplitudes aE(t), and substituting aE(t) into Eq. (4.2b) yields

da
g

dt

CO_, J dt' { VEg VEe exp[ i( EO_ (0)(tV_ t0 1 exp(ia t )exp(- ic t, )a 9(t,) f(t,) f(t),
E Eg

(4.3)

where /L)o is the energy of the initial state Igo>, and aEO = -E " coo

Now, because of the second assumption above, the expression in the braces

{ } can be summed to yield 2rg 8(t' - t)VEg /VEg , where 2 rg is the Fermi

golden rule rate of ionization of the state Ig> into the ionization

continuum IE >. The equation is simpler in the Schrodinger picture. The

Schrodinger picture variables cg(t) are related to ag(t) by,

C(t) = a (t) exp(- iw t) . (4.4)

With these new variables, and with the delta-function described above,

Eq. (4.3) reduces to a very simple set of coupled equations:

dcg (o ia c (t) = -r f2(t) I V C) (4.5)
dt g9 V Eg

In Figures 4.4 and 4.5 we compare the results of the theory Eq. (4.5)
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Fig. 4.4. Population in the initial state Igo > during the laser pulse. The

solid curve was generated by numerically integrating the equations of

motion. The dashed curve shows the predictions of the theory in the RWA.

The pulse intensity was Io, and 3 bound states were present, Igo >, Ig1 >,

and 1g2>
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Fig. 4.5. Population in the initial state Igo > during the laser pulse. The

solid curves were generated by numerically integrating the equations of

motion. The dashed curves represent the theoretical predictions. The

conditions were identical to those of Fig. 4.4, except that the number of

bound states present was varied from one to three as in Fig. 4.2.
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with the predictions of Schrodinger's equation. The theoretical equations

are numerically integrated with a Gaussian pulse shape for f(t).

Withrectangular pulse shapes it is possible to solve Eq. (4.5) analytically.

For a variety of conditions, the theory qualitatively agrees with the

predictions of Schrodinger's equation.

Section 4.4 Population Trapping

When the bound states Ig> are degenerate in energy, then the Eq. (4.5)

may be solved exactly with arbitrary pulse shape fAt). The calculation

shows, surprisingly, that population is trapped in the initial state Igo> for

laser pulses of arbitrary duration. In other words the trapping is

permanent.

Assume that the states Ig> are degenerate and without loss in

generality set the initial state energy to zero : co0 -Cal= = 0. With

the change of variables D(t) = EVEgcg(t), Eq. (4.5) becomes

dcg(t)- r f2(t) D(t) / V (4.6)
gt9 Eg

and

d
-- ( ( r ,)f2(t) D(t) (4.7)

dt 9g9

The initial condition of D is D(- -) = VEO. This arises from the initial state

Co(t), which satisfies c0(- 1)=i. Solving for D(t) and substituting it into

Eq. (4.6) yields

VE0 t f2(t,)
d - r f2(t)--expg-e _ dt'.(Y rg) (4.8)

VEgwhich may be integrated immediately to get
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rg VEO exp - dt' (Y r.,) -t )  1 . (4.9)t (r r) V(g f_.

The solution is more transparent if we assume that the pulse is

rectangular in shape, and turns on abruptly at t 0. Then the probability

amplitude of the initial state is,

c0(t) = 1 + ) [exp (- (Yr g)t)- 1 (4.10)

Equation (4.10) implies that as long as the FGR ionization rates (2 rg ) for

transitions from Ig> to the ionization continuum are non-zero, then

ro/z(rg) is less than 1 and population will be permanently trapped in the

initial state Igo>.

Section 4.5 Non-degenerate States

Equation (4.5) can also be easily solved analytically for non-

degenerate states Ig>, provided that the laser pulse is rectangular in

shape. In this section we will describe the solution in the simplest case

(two bound states) and assume that the pulse is rectangular and turns on

at t-0. Again the initial state energy fa~o is set to zero and the energy of

1g, > will be denoted 8( = ("1 - 0= .

One important physical point we want to emphasize in this section is

that the ionization exhibits qualitatively different behavior in two limits.

In the weak field limit when the FGR rate 2r o is so small that 8( >2r0 ,

then the initial state Igo> ionization closely follows the FGR exponential

decay law exp(-2 rot) with or without the presence of the state IgI >. In the
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strong field limit, when &, < 2r o, then the ionization rate is strongly

inhibited in comparison to the FGR rate. We are assuming that r o - r, .

The rules are slightly modified when this condition is not met, but unless

r, < < r o , it remains true that in the strong field limit, ionization is

strongly inhibited in comparison to the FGR rate.

The solution of Eq. (4.5) in this limit (two bound states with rectangular

laser pulse) is straightforward. With initial conditions co(0) = 1 and

c1(0) =0, the solution for the probability amplitude of the initial state co(t)

is

c°(t) = A 2 A (A 2 + r 0) exp(Alt) - (A l + ro )exp(A 2 t) , (4.11a)

11

A1.2= -r-i € /2 ± r2 -(&OW2) + i Sw A IJ. (4.11b)

Here r = (r o + r 1 )/2 and A = r, - r o )/2. The solution is particularly

transparent when A =0. In that case, A = - r- i8w/2 ± (Jr2 _ (ca/2) 2 )1/2

and it is immediately apparent why the ionization behavior is so different

in the two limits &c/2 > r o and 8w/2 < r o . Consider for example the

strong field case, &a/2 < r o . Expanding the square root of A to order

((Oa/2)/ r )4 yields for co(t):

A 2 + r° 2 1 0+ r 621
co(t)-exexp(--t) - exp(-2't)exp(--t)i 4.12)

2 1 2

Recall that co(t) is the physical probability amplitude of the initial state.

Thus co(t) has a term with a decay rate that apprcaches zero as r

approaches infinity. Moreover, the amplitude of this term is proportional

to (A? + r )/(A 2 - A,), which approaches a non-zero constant (1/2) as r

approaches infinity. Thus, if Sca/2 < r, then increasing the intensity of the
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pulse (keeping its duration fixed) increases the amount of population 

remaining in the initial state at the end of the pulse. This is true for a 

rectanglar pulse of any duration: the population remaining in Igo > at the 

end of the pulse, lc0l2 , approaches 1/4 in the limit of high field intensity. 

The general behavior is also apparent in the numerical solution of Eq. (4.1) 

with Gaussian pulse shapes, as shown in Fig. 4.3. 

Section 4.6 Theory Without the RWA 

In the previous sections, a theory of ionization was developed in the 

rotating-wave approximation (RWA). The theory had the virtue of 

simplicity, but diverged noticably from the solutions of Schrodinger's 

equation that it was supposed to model. In particular, the theory's 

prediction of the population in the initial state at the end of the pulse was 

consistently wrong by 10%. 

The question arises then, whether the failure was due to the RWA, or 

due to some other assumption made in the derivation of Eq. (4.5). In this 

section it will be shown that the theory may be developed without making 

the RWA. The new theory uses the same assumption in its derivation as 

the simpler theory, with the exception of the RWA. The new theory will 

give correct predictions of the population remaining in the initial state at 

the end of the pulse, suggesting that most of the failure evident in the 

RWA version of the theory was due to the RWA. 

The derivation of the theory will be very similar to derivation of the 

RWA version of section 4.3. The first step, again, is to integrate Eq. (4.1a) 
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formally and substitute it into Eq. (4.1b) in an effort to eliminate the

variables associated with the ionization continuum 1E >. To simplify the

algebra, a change of variables similar Eq. (4.4) is used,

Cg 9 k VEgexp(- iwg t) ag(t). (4.13)

Equation (4.1) becomes:

dcg + - U ®dt' "V2 exp(i( C ) f ) f W

dt g J -0 . Eg G - ) t f
91 E

+ " J dt' V2gep(i( +Eo (a)t')exp(- i(Co )t) f (t) f(t') f(t)

' -E

L..,,ci V 2 3V exp(i(OO (o)t'0 exp(- i(caE +6)) 0 Cg (tW) f W') f M)

(4.14)

The next step is to assume that cg(t) may approximated by a truncated

Fourier series:
2 2

c(t) (t) + p c~ (t)exp(inot) +- c + At)xf(()tf (4.15)

9g E ' ~

n=1i n=1
The new variable Cg((t) will be substituted into Eq. (4.14) and then the

coefficients of exp(inwt) are equated. This is similar to the well-known

approach in which the states are expanded in a full Fourier series.

However, a new approximation is required, one that was not discussed in

section 4.3. The new approximation is the slowly-varying envelope

approximation (SVEA). It will be assumed that cgn(t)f(t) is slowly varying

.... -,,,=,mmw mnnnnB• IIM
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formally and substitute it into Eq. (4.1b) in an effort to eliminate the

variables associated with the ionization continuum IE >. To simplify the

algebra, a change of variables similar Eq. (4.4) is used,
Cg(t) = VEgexp(- ico t) a g(t). (4.13)

Equation (4.1) becomes:

t t
dCg +2 ex p E ) + w,(t') f(t') ft)

_. g,' I _ E9E g 9 1 1
d t dt, g= - d'pi o0+ ),exp(i(E0€o)t)}cg t)~,f(t)

9' E

+ t dt' { E Vgexp(i(- E0--o)t')exp(- i(CE+€)t) }C,(t') f(t) f(t)

91 E

- Jdt' V2 exp(i((EO +a)t') exp(- i(w EO +()t) (t') f(t') f(t).

(4.14)

The next step is to assume that cg(t) may approximated by a truncated

Fourier series:

2 2
Cg(t) -- cgo(t) + W c (t)exp(incat) + I c- (t)exp(-incat). (4.15)

n1 n=1The new variable cgn(t) will be substituted into Eq. (4.14) and then the

coefficients of exp(inwat) are equated. This is similar to the well-known

approach in which the states are expanded in a full Fourier series.

However, a new approximation is required, one that was not discussed in

section 4.3. The new approximation is the slowly-varying envelope

approximation (SVEA). It will be assumed that cgn(t)f(t) is slowly varying
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in the following sense. An integration by parts of certain terms in Eq.

(4.14) goes as follows:

t V2

Eg
jd' E jVg x(~OEO+O)(t'_t) I Cg(t') f~t') = Cg(t)f t)_iCO+C

E E i+EO)

t V 2

+ d' t I 0 ) exp(i(OE0 +)(t' --t) (C(t')ft')) . (4.16)

The SVEA implies that the integral on the right-hand side of Eq. (4.16) is

negligible due to the negligible time derivatives of f(t) and cgn(t). With this

approximation, and with the methods of section 4.3, Eq. (4.14) can be

greatly simplified. Substituting the Fourier series Eq. (4.15) into Eq.

(4.14) yields:

cg +il) (-ifl1a) (r. g'o

d c+ Yt + =(-417-) i)g(t) =(-ic-2) C + f2(t) Ug (iQ ig + iM3g) (0) Cg2 (

g'

In Eq. (4.17), the frequency shifts f arise from terms on the right hand

side of Eq. (4.16):

, v2
1 Eg

Qng E (ng+EO) (4.18)

Figures 4.6 and 4.7 show a comparison of a numerical integration of

Schrodinger's equation with a numerical integration of Eq. (4.17). The

theory is compared to Schrodinger's equation (Eq. (4.1)) for the three cases
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Fig. 4.6. Population in the initial state Ig0> during the laser pulse, under

conditions identical to those of Fig. 4.4. Here the dotted curve represents

the theoretical predictions with three bound states present. The solid

curve was generated by numerically integrating the equations of motion.
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Fig. 4.7. Population in the initial state Igo > during the laser pulse, under

conditions identical to those of Fig. 4.4. The solid curves were generated

by numerically integrating the equations of motion. The dotted curves

represent the theoretical predictions with 1, 2, and 3 bound states present

as in Fig. 4.2.
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of section 4.2, shown in Fig. 4.2. The agreement between theory Eq. (4.17)

and Schr6dinger's equation is superior to the RWA results, although the

agreement is not quantitative.

Section 4.7 Conclusion

It is apparent from the numerical solutions with Gaussian pulses, and

from the solutions Eq. (4.9) and Eq. (4.11), that the inhibition of ionization

is not due to a special choice of pulse shapes, and atomic dipole moments.

Rather, we have seen for a variety of pulse shapes, dipole moments and

energy level spacings, that the ionization may be strongly inhibited in

comparison to what is implied by the FGR ionation rate.

The population trapping and other modifications of FGR were found to

be due to states of the same parity as the initial state ( Ig 1>, Ig 2>, ... )

which recapture population from the ionization continuum during the

excitation. Significant population must actually enter these states for the

inhibition effects to be significant. If no population were recaptured by the

states Ig 1>, Ig 2>, ... , then the states could be discarded from Eq. (4.1)

and analysis of Eq. (1) would yield the usual FGR predictions. I et I(t) >

be the coherent superposition of the bound states E cg(t) Ig>, and consider

Eq. (4.1a) (in the Schr6dinger picture) for the probability amplitude of a

typical unbound state IE >:

dc(t)/dt + ictc E(t)= i<E I (e/mch) p.A IWO(t) >. (4.19)

In the examples of inhibited ionization studied here, population returns to

the bound states with just the right phase so that the right hand side of
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Eq. (4.19) is small in comparision to the matrix element used to calculate

the Fermi golden rule rate: <E I (e/mcft) p-A I cg(t) go>. In other words,

the superposition state 'lc(t)> exhibits a reduced ionization cross section

in comparison to the FGR prediction for the initial state cg(t) I go>. The

non-energy conserving aspect of these transitions is easily expained by the

AEAt arguments of chapter 2, in which apparently out of resonance excited

states received population because the finite At of the laser pulse made AE

non-zero. In terms of Fig. 4.1 this means simply that both the transition

denoted by the solid arrow, and the transition denoted by the dashed arrow

are resonant transitions.

The theory was developed to describe ionization under extreme

conditions, in which the laser pulse intensity was sufficient to ionize the

atom in a few cycles of the field. Such conditions arise, for example, in the

study of the above-threshold ionization of atomic hydrogen. Under these

conditions, much of the ionization takes place during the turn-on of the

laser pulse. For this reason it was important to develop a theory capable of

handling physical (eg. Gaussian) laser pulses. Despite the extreme

conditions, the theory in its simplest (RWA) form qualitatively predicted

the general features of population trapping and inhibited FGR observed in

the numerical integration of Schr6dinger's equation.

In order to understand the remaining discrepency between theory and

numerical integration, a more sophisticated version of the theory was

developed which did not employ the RWA. The more sophisticated theory

gave superior agreement with the numerical integration by correctly

predicting the population in the initial state at the end of the laser pulse.
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As a result we were able to demonstrate in a variety of examples the

partial failure of the RWA.
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CHAPTER V

GENERALIZATION OF THE KELDYSH THEORY OF

ABOVE-THRESHOLD IONIZATION

Section 5.1 Introduction

The first experimental observation of above-threshold ionization (ATI)

a decade ago1 has stimulated a great deal of work to develop the theory of

the process by which an electron absorbs several extra photons beyond the
minimum needed to ionize the atom to which it was initially bound. In

some experiments more than 30 peaks have been seen in the spectrum of

the electrons indicating the absorption of this many excess photons by the

electron. The theory is complicated by the fact that ATI is fundamentally

a high order multiphoton process, by the fact that ATI does not seem to be

well-described by perturbative theories, and by the fact that most ATI

experiments have been carried out in xenon, an element with a rather

complicated energy level structure. Nevertheless, a certain class of

theories has met with some success in modeling ATI ionization cross

sections. The most widely used theory was proposed by L. V. Keldysh2 in

1965, and later modified by several authors3 . The modified theory is now

sometimes called the Keldysh-Faisal-Reiss (KFR) theory.

At present, work is going on to extend ATI experiments into the

femtosecond regime and to atoms other than the noble gases 4. Recently J.

Javanainen and J. H. Eberly 5 have compared several Keldysh models of

the KFR type with the results of a numerical integration of a one-

88
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dimensional hydrogen atom, finding poor agreement between theory and

numerical experiment. In this chapter a variant of the Keldysh theory

appropriate for short pulses is developed and tested by comparing its

predictions with a direct numerical integration of the full three-

dimensional Schrodinger's equation.

As discussed in he previous two chapters, the numerical integration

of Schr6dinger's equation reveals several new intense-field effects. These

effects complicated both the development of the theory, and the effort to

verify the theory numerically. In order to use the numerical integration as

a test of Keldysh theory it is necessary to understand these effects. The

first phenomenon is the inhibition of ionization due to coherent population

trapping, which we discussed in chapter IV. Second, we find that the

slowly varying population approximation (SVPA) fails in this example of

ATI. The failure of the SVPA will be discussed in section 5.4. The SVPA is

used in the derivation of several theories of ATI, and in the derivation of

Fermi's Golden Rule.

In section 5.3 we will present a rigorous derivation of a variation of

Keldysh theory beginning from Schrodinger's time-dependent equation. In

section 5.3 we compare the proposed theory with the results of the

numerical integration of Schrodinger's equation.

Several theories resembling Keldysh's original proposal have been

discussed in the literature3' 6'7 . The best known modification to Keldysh's

original proposal is the KFR theory. These theories are sometimes called

Volkoff final-state theories, for reasons that are explained in section 5.5.

Here we adopt the more common practice5 of calling them "theories of the
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Keldysh type". The theory developed in this paper yields formulas closely

resembling the Keldysh formulas, although the derivation is very

different. In section 5.5 we compare the conventional (KFR) Keldysh

predictions with the results of the numerical integration, and discuss the

relationship between our theory and the conventional Keldysh theory.

Section 5.2 Review of Previous Results

In order to formulate and test numerically theories of the Keldysh type,

we will rely on our experience numerically integrating Schr6dinger's

equation (chapter I) and on the theoretical results of chapter IV. In

chapter IV a population trapping phenomenon was analyzed that may be

characterized as an intense-field modification of Fermi's golden rule

(FGR). In the following sections we will see that the effect will modify the

formulation of Keldysh-type theories just as it modified FGR.

Let us begin by reviewing Fig. 3.3b, which shows (solid line) the

population in the initial state (n=3, C=2, m=2) during the numerical

integration of Schrdinger's equation. A seven femtosecond Gaussian-

shaped laser pulse, peaking at 2.1014W/cm 2 , was used. Despite the

exceptionally high intensity of the laser field, the ionization appeared to be

inhibited. This inhibition of ionization was characterized as an intense-

field modification of Fermi's golden rule (FGR). For comparison, the FGR

prediction was also plotted in Fig. 3.3(b) (dashed line). The FGR rate of

exponential decay was calculated by assuming a single f=2 bound state

and a single ?=3 continuum of unbound states. The simple FGR
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calculation also predicted complete ionization at intensities an order of

magnitude lower than the 2.2 x 1014 W/cm 2 peak intensity actually used.

The origin of the inhibited ionization was easily demonstrated by

removing basis states from the basis set during the integration. When the

states (n=4, ?=2, m--2) and (n-=5, =2, m=2) were removed from the

basis set, then the initial state decayed nearly as predicted by FGR.

Absorption of population by the n 4 and 5 states (via the ? = 3 continuum

of unbound states) then in effect inhibited ionization.

To describe mathematically how population trapping modifies the

excitation, consider the equation of motion of a state In > in the first (C-3)

ionization peak. Let ti be the superposition of the three e = 2 bound states,

of principal quantum number 3, 4, and 5. Then the coupling of the (e = 3)

state In > to the initial (f = 2) coherent state Ti is governed by
dae

iAdt = exp(icnt) [- - Az(t)] <ni P IW.(t)> (5.1)
dt n mc Z

Here an is the probability amplitude of a state In> at the center of the 1st

(=3) ionization peak and Az(t) is the field potential. A numerical

calculation demonstrates that the quantity <ni Pz ITi (t) > falls rapidly to

near zero as the pulse peaks in intensity (t = 0 ± 1.5TO). Population flows

into the n = 4 and 5 bound states (e = 2) in such a way as to effectively turn

off the transition from the f = 2 bound states to the e = 3 unbound states. In

other words, a (V= 2) coherent state t i is generated that exhibits a greatly

reduced ionization cross section in comparison to the FGR prediction.

Numerically it is found, by redoing the numerical integration described in

chapter MI, that the effect seems to occur naturally at intensities both

higher (9 X 1014 W/cm 2) and lower (5 X 1013 W/cm 2) than in the example to
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be discussed in this chapter (2.2 x 1014 W/cm 2). In fact, at 9 X 1014 W/cm 2

more population remained in the n = 3 initial state at the end of the pulse

than at the end of a 5 X 1013 W/cm 2 pulse.

We have reviewed this problem because Keldysh scattering theory

calculations usually assume that population remains in the initial atomic

state during the excitation. Our formulation will use as the initial state

ITi (t) > defined above.

Recently, J. H. Eberly and J. Javanainen I° , and B. Sundaram and L.

Armstrong1 have discussed the role of excited bound states play in

modifying the ATI peak shapes. Inhibition of ionization and population

trgpping due to coherences among two or more bound states has been

extensively studied both in the theory of two-color ionization 12 and in the

theory of one-color ionization' 3 .

Section 5.3 Keldysh Theory From Time-Dependent Quantum Mechanics

A general theory of the Keldysh type can be derived in a few steps from

the time-dependent Schr6dinger's equation. The derivation is aided by

experience with the basis state method described above and in chapter m.
The first step is to break the wave function into two parts, the initial

state TP, defined above, and the final state tf.* By Tpf we mean the

coherent superposition of all positive energy states. This subset of the

complete set of states (shown in truncated form in Fig. 3.1) was chosen

because experience with the numerical integration indicated that

discarded states play little direct role in the excitation. Then
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Schrodinger's equation is

dW~ d

h dtf (H0 +Hint (t) )Wf+ (H0 +H in(t)-iAd ) T i  (5.2)
dt dt

where H0 is the atomic Hamiltonian and Hint(t) is -ep.A/mc +

e 2A.A/2mc2 .

Now writing the final state as Z c(p,t) Ip>, a superposition of plane

wave states, and taking the projection of Eq. (5.2) on < p I yields,

d c(p,t) e e2  d
iA - <p1 HoI'Pf >+(---Ap+- A'Ahcp't)+<p1 H0+H niA- IW(t)>.

dt mc 2mc2  0 mt dt I

(5.3)

The effect of taking the projection of the equation on < p I was to replace

the canonical momentum operator p in the interaction Hamiltonian Hint

with a c-number p. Henceforth p will denote the c-number p. At the end of

the pulse, p is the physical (kinetic) momentum of the ionized electron,

sinse the kinetic momentum is p - (e/c)A(t) and we assume that the vector

potential A(t) goes to zero at the end of the pulse.

The most important approximation in the derivation will be called the

"plane-wave approximation." By the plane-wave approximation we mean

that

<plH0 1tf> = <p1 I-+V(r)IWf > - <p I Wf > (5.4)
2m 2m

The assumption is then that the Coulomb potential perturbs the final

states insignificantly. The plane-wave approximation is closely related to

the zeroth order Born approximation. It is well known 14 that the first order

correction to the zeroth order Born approximation is small in transitions
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from an initial bound state of quantum number f to final unbound states of

quantum number ? + 1.

With this approximation, Eq. (5.3) may be immediately integrated to

give,

1 t lit' p d 2

Ic(p,t)12 = Kjdt' exp J dt"( 2--m"+ Hint(t"))J <pI H0+ Hint -ih'- I 'i(t')>

(5.5)

In the interaction Hamiltonian of Eqs. (5.2 - 5.5) we have kept the A.A

term even though a simple transformation might have removed it from the

dipole-approximation Schr6dinger's equation at the start. In the dipole

approximation, the A.A term has no effect on the ATI spectrum. If T is a

solution of the Schr6dinger equation with the A.A term, and if TpT is a

solution of the Schr6dinger equation without the AA term, then ' and pT

are related by a simple transformation

T T(r,t) = exp _®dt'[ e22 A(V)- A(V) 'I'(r,t). (5.6)

The gauge transformation, Eq. (5.6), is sometimes called a contact

transformation.

The Schrodinger equation for TT and the Schr6dinger equation for Tp

predict (in the absence of approximations beyond the dipole

approximation) the same physical results. Next in this section we will

show that our theory (Eq. (5.5)), with its approximations, predicts the

same physical results whether it is derived from the Schr6dinger equation

for TT or the Schr6dinger equation for '. This corrects a well known' 5. 6

defect in the conventional Keldysh theory, which gives different physical
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predictions depending on whether it is derived from the Schr6dinger

equation for WT or the Schr6dinger equation for Tp.

Let us now transform Eq. (5.5), using Eq. (5.6), to get a formula for

c(p,t) that uses WPTi instead of Wi. Setting TPi = exp[- i (e2 /2mc 2fz) f t A.A]

WT , and using,

2A-Ae 2 A d jt dtte2 d-IqI=
expl dt'- J - - -) p - 1  ---

2mc2  2rnc2  t x 1 dtd' 2.mC2  dt

(5.7a)

yields,
Ic(pt) 2  t Ii I dt" ( -  epA <p H o- ep -A I 2(t)>

p -h exp _ 2m mc mc dt

(5.7b)

Equations (5.5) and (5.7b) are equivalent and must give the same

predictions if properly evaluated. Equation (5.6) may be thought of simply

- as a change of variables to simplify the numerical integration of Eq. (5.5).

Equation (5.7b) is just the formula that would have followed from a

Schr6dinger equation that had no A-A term in the interaction

Hamiltonian. We have shown then that our theory gives the same

physical predictions whether it is derived from the Schr6dinger equation

for ' or the Schr6dinger equation for WT. This is true because we kept the

operator d/dt in the matrix elements of Eq. (5.5) and Eq. (5.7b). If, by

contrast, we were to discard the d/dt term in Eq. (5.5), then such a theory, if

it were derived from the Schr6dinger equation for W1, would give physical

predictions different from those of a theory derived from the Schr6dinger

equation for WT. In the next section we will show how to remedy this

problem in an approximation in which the the d/dt operator is discarded.
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To make a quantitative comparison between the numerical

integration of Schr6dinger's equation and the formulas derived above we

will use the numerically integrated initial state 'i(t) defined in section

5.2. In practice we solve Schr6dinger's equation without the A.A term to

get PTi directly, and then use Eq. (5.7b). To get an energy spectrum we

sum all of the plane wave states Ip> in each energy interval (E,E +dE),

where dE is the bin width of the spectrum of Fig. 5.2. This is a standard

method of calculating a cross section with the Born approximation. A good

textbook discussion of its justification is given by Gottfried 17. The

approximation is good except near the near the E = 0 ionization threshold.

At the E = 0 ionization threshold the density of plane wave states goes to

zero, whereas the true density of states does not go to zero at E = 0.

In Fig. 5.1 we plot (dotted line) the results of our full theory: the

energy spectrum predicted by Eq. (5.7b). The agreement is good enough to

give us confidence in our numerical methods. The third and fourth

Keldysh ionization peaks have the wrong side-lobe structure in comparison

to the numerical integration, but the right cross section and shape for the

central part of the peak.

The theory presented here, Eq. (5.7b) is basically Schr6dinger's

equation in the momentum picture simplified by two approximations. The

first approximation was to discard from the basis set of Fig. 3.1 some

unimportant states. The second approximation is the plane-wave

approximation, Eq. (5.4). Finally, in using Eq. (5.7b) to
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Fig. 5.1. Electron energy at the end of the laser pulse. The solid line is the

prediction of numerically integrating Schrodinger's equation. The dotted

line is the prediction of the Keldysh-type theory proposed here, Eq. (5.7).
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calculate a cross section, the plane-wave density of states is used. This

approximation is good except near the threshold of ionization17 .

Section 5.4 The Slowly-varying Population Approximation

In the previous section we used the numerically integrated initial state

qITi(t) in order to test how well Eq. (5.7b) predicts the ATI spectrum. This

strategy was useful in testing the theory, but the strategy is not of much

use in modeling experiments. In order to make the theory of practical

value in situations where Schr6dinger's equation has not been or cannot be

integrated, it is necessary to use an approximate ITi . In this section we

will review a standard approach to choosing an approximate ITi , which

we will call the slowly-varying population approximation. The results of

this section are also necessary in order to compare our theory with the

standard Keldysh theories, which are formulated in the slowly-varying

population approximation.

By the slowly-varying population approximation we mean the

assumption that the population of the initial state remains constant

during the excitation, or is slowly varying. This approximation is

commonly made in order to use formulas such as Eq. (5.7b) to calculate

transition rates, or equivalently cross sections. To see the effect of this

approximation on Eq. (5.7b), consider the operator HO - ifd/dt in the

matrix element of Eq.(5.7b). This operator, acting on any state yields:

d A da(t)
(Hi-) "I a.(t)exp(-iEtfi)Ii> exp(-iEt/I&)Ii> . (5.8) (8)

dt 1 1 dt
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In Eq. (5.8), Ho is the atomic Hamiltonian, Ei is the energy of the ith state,

and the a(t) are the probabiltity amplitudes of the states. In the slowly-

varying population approximation it is assumed that each amplitude ai(t)

is constant in time or so slowly varying that dai/dt is negligible. By the

slowly-varying population approximation we mean, then, that HO - ihd/dt

disappears from the matrix element of Eq. (5.7b).

In the previous section it was pointed out that conventional Keldysh

theory predicts different physical results, depending on whether it is

derived from the Schrodinger equation for JVT, or from the Schr6dinger

equation for IF. This difficulty is avoided if the slowly-varying population

approximation is correctly applied.

The next step is to apply the slowly-varying population approximation

to Eq. (5.5). Since the interaction Hamiltonian now has the A.A term in it,

we apply the transformation Eq. (5.6) to the wave function of Eq. (5.8).

Consider the operator Ho - ifd/dt + e 2 A.A/2mc 2 acting on that state:

(HO- id't + em2 i a(t) exp - i dt'[ e J22mcl exp(-iEit/A)Ii> -

dt da1(t I A .A 212

A i exp - _ [de'[ 2--- exp(-iEit/Af)Ii> (5.9)
I dt.. 2mc

If the A-A term is in the interaction Hamiltonian, then the slowly-varying

quantity is the amplitude ai(t) of Eq. (5.9) (assuming that ai(t) is the slowly

varying quantity of Eq. (5.8)). Consequently, the slowly-varying

population approximation applied to Eq. (5.5) means that dai(t)/dt is

negligible and Ho - ifid/dt + e2 A-A/2mc 2 is discarded from the matrix

element of Eq. (5.5). As a result, application of the slowly-varying
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population approximation to Eq. (5.5) yields exactly the same formula that

application of the slowly-varying population approximation to Eq. (5.7b)

yielded.

To model actual experiments, or calculate cross sections, a further

approximation is usually made: it is assumed that the population remains

entirely in a single bound state rather that the three that make up the

Pi(t) used in the previous section. This further approximation will not be

investigated here. Instead the numerically integrated Wi(t) will be used in

our test of the theory.

The slowly-varying population approximation and its consequence in

Eq. (5.7b), HO - ifid/dt = 0, are made so commonly in the theory of multi-

photon processes that it is worth while to investigate its validity here. It is

also used in the standard Keldysh approach, the KFR theory, to be

discussed in section 5.5. So, in order to compare our theory, Eq. (5.7b), with

the KFR theory, we must apply the slowly-varying population

approximation to Eq. (5.7b). To do this, we remove H0 - ifid/dt from the

matrix element of Eq. (5.7b) and plot the results.

In Fig. 5.2 is shown (dotted line) the energy spectrum predicted by Eq.

(5.7b) with the Ho - ifid/dt operator discarded. The ionization peaks

predicted by the theory are in the right places, but the cross section of the

first Keldysh peak is wrong by a factor of 2 and the cross section of the

second Keldysh peak is wrong by a factor of 4.

The d/dt operator plays such an important role in Eq. (5.7b) because of

the rapid oscillations in ground state decay, as shown in Fig. 3.3(b). These

rapid oscillations have a frequency of twice the frequency of the electric
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Fig. 5.2. Electron energy at the end of the laser pulse. The solid line is the

prediction of numerically integrating Schrodinger's equation. The dotted

line is the prediction of the Keldysh-type theory proposed here (Eq. (5.7)) in

the slowly-varying population approximation.
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field. They are sometimes called counter-rotating oscillations because

they are due to rapidly oscillating terms in Schr6dinger's equation that are

discarded in the rotating-wave approximation (RWA). In terms of Eq.

(5.8), the rapid oscillations mean that the functions a(t) have parts that go

as sin(2wt) where w is the optical frequency. As a consequence, HO - ihd/dt

gives a large contribution in Eq. (5.7b).

Section 5.5 Comparison With KFR Theory

In this section we will write down one of the better known Keldysh

formulas describing ATI of atoms in intense fields, namely the KFR

theory, of Keldysh, Faisal, and Reiss. The KFR formula will be compared

with the formula derived in the section 5.3 and with the numerical solution

of Schr6dinger's equation. We will show that the two theories predict

different results.

A physically appealing6 derivation of the transition probability IMfi 12

describing an ATI transition in intense fields assumes that a single matrix

element connects the initial atomic bound state Ti to an unbound (dressed)

state TPf. The final state 'f(pr,t) is assumed to be the Volkoff state, an

exact solution of Schr6dinger's equation for an unbound electron in a time-

varying electric field. With these assumptions the probability of scattering

a bound electron into a plane wave Pf(p,r,t) of momentum p is,

I M (pfl2 = Jdt' <Wf(p,r,t') I Hint(t') 1 Wi (r,t')> j ' (5.10)

where Hint is the interaction Hamiltonian. The Volkoff state is
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Tf(p,r,t)= T 0exp(i p-r/A) expIJ dt'( 2 + Hint (')

where To is the inverse of the square root of the quantization volume. The

published Keldysh-type theories share a form similar to Eq. (5.10). Reiss3

derives an equivalent formula from scattering theory. The equation is, in

our notation,

_.pt~2 =dt' exp dt"f( 2p- +  H int (")<pl H int (t') I 1l i (t) >

(5.12)

In Eqs. (5.10), (5.11), and (5.12) the interaction Hamiltonian Hint is

-ep.A/mc + e2A.A/2mc 2. (5.13)

Now it is straightforward to see the relationship between our theory, Eq.

(5.5), and the KFR theory, Eq (5.12). In the KFR theory4, a cross section or

rate is calculated from Eq. (5.12) by choosing the initial state 'i to be a

single bound state of constant population, 'i = exp(-iEit/h)1i >. One can

readily verify that substituting this initial state into Eq. (5.5) yields

Eq. (5.12).

To further clarify the differences between our theory and the KFR

theory, we will show how to use our theory, Eq. (5.5) and Eq. (5.7b), to

calculate an ionization cross section from an initial bound state of constant

population 1i >. It follows from the discussion of sections 5.3 and 5.4 that

the proper initial state of constant population to put into Eq. (5.5) to get an

ionization cross section is 'i = exp[-i (e2 /2mc2h)ft A.A] x exp(-iEit/h)[i>.

The proper initial state of constant population to put into Eq. (5.7b) is

WPTi = exp(-iEit/)li >. To get the KFR equation and the related Keldysh

formulas, we must put Ti = exp(-iEit/h)1i> into Eq. (5.5).
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Still another way to characterize the differences between the theories

is this: our theory uses the dressed initial state; even when it is assumed

that population in the initial state is constant, the initial state is dressed

by the A.A term of the interaction Hamiltonian. The KFR uses the initial

atomic state unperturbed by external fields.

It was shown in section 5.4 that the slowly-varying population

approximation fails in the example of ATI discussed here. The

approximation, however, is successful in a wide class of problems, and in

particular may be useful in modelling other examples of All. For these

reasons, it is worth comparing the predictions of our theory, Eq. (5.7b), (in

the slowly-varying population approximation) with the KFR theory. We

will show that the two theories give different predictions. The prediction of

our theory is given in Fig. 5.2, and described in section 5.4. In Fig. 5.3 is

shown (dotted line) the prediction of Eq. (5.12). The initial state TPi(t),

used in Eq. (5.12) is as defined in section 5.2, the coherent superposition of

three bound states. Comparison of Fig. 5.2 (our theory) and Fig. 5.3, shows

that the theories predict different spectra.

Section 5.6 Conclusion

We have derived directly from Schr6dinger's equation a very

general formula of the Keldysh type. The general formula is valuable in

two respects. First, it is this general formula that makes possible a useful

comparison of Keldysh theory with the results of the numerical integration

of Schr6dinger's equation. The general Keldysh theory agrees in some



105

~) I I

,-

E

-0.25 0.0 0.25 0.50
electron energy (units of 13.6 eV)

Fig. 5.3. Electron energy at the end of the laser pulse. The solid line is the

prediction of the numerically integrated Schr6dinger's equation. The

dotted line is the prediction of KFR theory.
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respects with numerical integration and disagrees in others. The

comparison is in effect a numerical test of the first two major

approximations necessary to derive Keldysh-type theories. The general

formula is valuable in another respect. It allowed us to correct a well-

known 5 .16 defect in the standard KFR Keldysh theory. The standard

theory gives different physical predictions depending on whether it is

derived from the Schr6dinger's equation with the A.A term or alternately

from the Schr6dinger's equation without the A-A term. We have shown

that our theory gives the same physical predictions in either case. We

have further shown how to preserve this invariance in the limit of the

slowly-varying population approximation.

Next we have discussed at length the slowly-varying population

approximation (SVPA). We done this for two reasons. The first reason was

to test the agreement of our Keldysh theory in this limit with the

numerical integration. This is important because so much of the theory of

multi-photon processes is done in the SVPA. The second reason is that the

standard Keldysh theory is in the SVPA, and so the SVPA is the limit in

which our Keldysh may be compared with standard KFR Keldysh theory.

We have shown that ours is not equivalent to the well-known KFR theory

(section 5.5). Perhaps the most important characteristic shared by all the

theories of the Keldysh type is the plane-wave approximation, Eq. (5.4).

By this set of steps that we have shown how to derive theories of the

Keldysh-type directly from Schr6dinger's time-dependent equation, and

have numerically tested the series of approximations necessary to derive

the theories.
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CHAPTER VI

A NUMERICAL COMPARISON OF CLASSICAL AND

QUANTUM MECHANICAL ATI

Section 6.1 Introduction

In this chapter we will describe some numerical experiments we

have conducted on classical above-threshold ionization of atomic hydrogen.

The principal goal of this chapter is to describe a search for a classical

system that exhibits energy absorption in intense fields similar to the

examples of quantum mechanical above-threshold ionization described in

the previous chapters.

The physical parameters of the numerical experiments will be

identical with those of the ATI example studies in the previous chapter.

The field will be taken to be linearly polarized, with frequency 1/8th of the

Rydberg frequency. the pulse envelope will be Gaussian with a duration of

three optical periods (FWHM) or about 7.5 femtoseconds. The peak pulse

intensity will be 2.2.10 14 W/cm 2. The initial state is the (n=3, ?-2, m--2)

state and the dipole approximation is made.

Except for a few remarks on the theory of the classical correspondence,

the discussion in this chapter will be limited to numerical experiments on

the example described above. Numerical experiments are powerful in

some respects and limited in others. They cannot prove theorems, but they

can uncover evidence of unexpected phenomena, and can serve as counter-

examples to widely held beliefs. Numerical experiments permit the study

109
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of complex systems that resist analytical methods. Like laboratory

experiments, numerical experiments can provide experimental guidance

when analytical methods fail.

Arguments based on the correspondence principle played a

fundamental role in the early development of quantum mechanics. As a

result, the classical correspondence of one-electron atoms unperturbed by

external fields has been well understood from the early days of quantum

mechanics. However, quantitative study of the classical correspondence of

one-electron atoms interacting with external electromagnetic fields has

proven to be a far more difficult problem. One of the earliest and still the

most widely applied of all approaches to the problem was formulated by

Wigner' in 1932. Wigner used the quantum mechanical wavefunction of a

particle to construct a distribution function pw(r,p,t) that could be

interpreted under some circumstances as the joint position, momentum

probability distribution of the particle. Wigner showed that under certain

conditions (and in the A- = 0 limit) the quantum mechanical evolution of

pw(r,p,t) is identical to the classical evolution of a statistical ensemble of

classical particles satisfying the same initial distribution in r and p as the

quantum mechanical particle. The function pw(r,t), which is derived from

pw(r,p,t) by integrating over all p, equals the square modulus of the wave

function: W*W(r,t).

The modern experimental methods of quantum optics have brought

quantum optics into the regime in which classical descriptions are of

considerable practical and theoretical importance. Classical dynamics, for

example, yielded the first theoretical agreement 2,3 with the experiments of
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Bayfield, Koch, and Gardner4, in which highly excited hydrogen atoms

were ionized with microwaves in a multi-photon process. The problem still

resists a full quantal analysis, and numerical models have been restricted

to one dimension. The study of the classical correspondence of quantum

optics, in general, has proven to be a rich source of data on "quantum

chaos", because classical dynamical systems driven by external fields

sometimes exhibit chaotic behavior. Another ionization phenomenon has

for twenty years proven too formidable for a complete quantal analysis.

Lu, Tompkins, and Garton6 showed that the absorption spectrum near

ionization threshold of an atom in a strong magnetic field shows sinusoidal

oscillations. Recently a classical analysis 7 successfully yielded

quantitative agreement with experiment. It was shown that the quantum

mechanical spectrum could be explained very simply in terms of the closed

classical orbits of an electron in the combined coulombic and magnetic

fields. Recently, Yeazell and Stroud8 have demonstrated that a Monte

Carlo classical model of the dc ionization of Rydberg electron wave packets

yields good agreement with experiment.

Section 6.2 Classical Model

Our approach to the classical correspondence is a Monte Carlo approach.

The Monte Carlo approach to the classical correspondence may be

motivated by the observation of Wigner (and earlier, Dirac) that in the

A= 0 limit a classical ensemble p(r,p,t) may under some circumstances (a

harmonic oscillator atomic potential) evolve identically as a quantum
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state. (The classical distribution function p(r,p,t) will be distinguished

here from the Wigner distribution pw(r,p,t) by the absence of the subscript

W.) Both the quantum and the classical states should have the same

initial distribution in momentum and space. The initial classical

distribution p(r,p,to) may, for example, be derived from the Wigner

distribution pw(r,p,t). The Husimi distribution9 is another possibility.

What is special about the Wigner distribution is that it makes the equality

between Pw(r,t) and P*W(r,t) exact, but at the expense of making pw(r,p,t)

negative in some cases. Non-negative distributions, such as the Husimi

distribution, may be easily constructed, but at the expense of making the

equality between p(r,t) and 'I*T(r,t) inexact. The density functions

associated with the Monte Carlo distributions to be studied in this chapter

must of course be non-negative functions, unlike the Wigner distribution.

What Dirac and Wigner proved many years ago were mathematical

theorems revealing sufficient conditions for an exact correspondence. In

this chapter we have a much more limited goal of searching for a classical

system that exhibits similar behavior to the quantum mechanical

hydrogen atom undergoing AnI in intense fields. In the search for such a

classical system it becomes apparent that the theorems are at best a guide:

A is not zero, the Coulomb potential is not harmonic or linear, and the

Monte Carlo p must be greater than zero.

The main difficulty here is in choosing the initial classical ensemble.

Once the initial ensemble is chosen, its classical evolution is compared

with the quantum mechanical evolution of the corresponding quantum

state. A precise set of classical steps that yields agreement with the
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quantum mechanical result may then be offered as evidence of a classical

origin to certain ATI phenomena.

Our approach to the classical correspondence will differ in some

respects from the standard methods described in the literature. The

Wigner method with its negative distributions cannot of course serve as a

guide to the construction of the initial classical Monte Carlo ensemble.

The well known Monte Carlo method of Abrines, Percival, and Richards'0

sums together all of the degenerate sub-levels (t,m) of a principal quantum

number n to get a spherically symmetric initial ensemble, the micro-

canonical ensemble. This is the proper approach to model certain

experiments, but it is unsuitable to the problem discussed in this chapter,

in which the initial states are not spherically symmetric.

Let us review in four steps our approach to constructing the initial

classical ensemble, which we will call p(r,p,t0 ).

Step 1: The first characteristic of the initial classical state is that, like

the initial quantum eigenstate, before the laser pulse arrives it should be

time independent, or stationary: p(r,p,t) = p(r,p,to). Let us give an

argument for this requirement by looking at the corresponding time-

evolution series for p and qr.

Any state p(r,p,t) evolving in the absence of external fields under an

atomic Hamiltonian Ha(r,p) = p2/2m + V(r), satisfies:

p&,p,t) =exp[ - H:P(t-td I p(r,p,td, (6. 1la)

where the classical time evolution operator HoPa is E(aHa/api)( a/axi ) -

E(aH8 /axi)(a/api). Similarly T satisfies:

'V(r,t) = exp - 4H.(t- tI (r,to). (6.1b)
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In Eq. (6.1b) Ha is the quantum mechanical atomic Hamiltonian.

Equation (6.1) tells us that a formal perturbation series for the evolution of

p can be constructed that corresponds to the quantum series. When p is

stationary then Eq. (6.1a) reduces to

p(r,p,t) = p(r,p,t 0), (6. 2a)

and quantum mechanically Eq. (6.1b) is,

T(r,t) = expi - nE(t - to) IW(r,t0 ). (6.2b)

The equation that corresponds to Eq. (6.2a) is T*W(r,t) =T*(r,to).

The two time-evolution series of Eq. (6.1) may be easily generalized

to time-dependent Hamiltonians to describe the laser interaction. We

require that the initial classical state be stationary so that such a

generalized time-evolution series will reduce to Eq. (6.2) (via Eq. (6.1)) in

the weak-field limit.

Step 2: A stationary classical initial state may be constructed as.

follows: it is a set of Monte Carlo electrons, (a statistical ensemble of

classical electrons), all in the same orbital ellipse. The distribution along

the orbital path of the electrons is chosen so that, in the limit in which the

number of electrons in the ensemble is infinite, the distribution is time

independent. There is straightforward way of achieving this

approximately in the numerical experiments. If, for example, 1600

electrons are used in the ensemble, then the orbital period associated with

the ellipse is divided by 1600 to get a small interval of time At, and an

electron is released into the orbit at its apogee at intervals of At. As a

result the 1600 electrons will be distributed about the orbit, each a fixed

distance (in time) from its neighbors. Spatially, the electrons are closer
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together at apogee (far from the nucleus) and farther apart at perigee,

(near the nucleus). These classical stationary ellipses (CSE's) are in a sense

the smallest classical stationary states: all classical stationary states are

superpositions of these distributions, and all superpositions of these

distributions are stationary states. The microcanonical ensemble of

Percival and Richards is a superposition of these ellipses (but of many

different angular momenta).

Step 3: The Wigner and Dirac formulations of correspondence theory

demonstrate the importance of establishing equality between the initial

classical statistical ensemble p(r,to ) and the corresponding quantum

distribution P*W(r,t0 ). Let us next turn to this part of the problem.

It is instructive to first review the correspondence argument of

Dirac. 1 Dirac observed the formal equality of certain classical Poisson

brac1 : ats and quantum commutators in the A = 0 limit. For example

[q,p]/(iA) equals {q,p}, but [q2 ,p2 ] /(iA) is identical to {q2 ,p2} only in the A =

0 limit. As a result, the classical expectation value of a particular Poisson

bracket will equal the expectation value of the corresponding quantum

mechanical commutator in the A= 0 limit provided the classical statistical

ensemble represented by p(r,p,t) agrees with the quantum mechanical

distribution in space and in momentum. Let us look at a particularly

instructive example of this, the time derivative of the atomic Hamiltonian

Ha: [Ha,H]/(iA), where H is the atomic Hamiltonian plus the (p-A)

interaction Hamiltonian. The atomic Hamiltonian Ha is a useful quantity

because it gives the energy of the atom at the end of the pulse. Without

approximation:
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d} = [-1J 3 r' A(t).VV(r') I I(r't)12 . (6.3)
-<H > mc
d t a QM

Because of the VV(r) = re 2/r3 term in Eq. (6.3), it is especially important

that p and tP*W agree to good approximation near the nucleus where the

energy is absorbed. By setting L, and L2 equal to the corresponding

quantum values, and by setting the classical energy equal to the quantum

mechanical energy, the CSE's described above satisfy this requirement

naturally: they have the same orbital turning points (in the radial variable

r) as the quantum state.

Figure 6.1 shows the classical orbital ellipse superimposed on a

coordinate system. The z direction was chosen as the polarization

direction of the laser. By setting Lz, L2 and the energy E equal to the

corresponding quantum values, the classical orbit is uniqely determined

except for one remaining parameter, labeled 6 in Fig. 6.1. The variable 6 is

the angle between the electric field (in the z direction) and the major axis of

the orbital ellipse. The CSE's (and any superposition of CSE's) are the

natural solution of the problem in the radial variable r, but the agreement

between *T(r,t) and p(r,t) is nevertheless rough.

Step 4: Now we have the problem of matching p(r',t o ) and W*P(r',t0 )

in 6' (which is related to r' by z' =r'cos(O')). Energy absorption depends of

course on 6': in Eq. (6.3) the term A(t). r' = IA(t)Ir'cos(0') appears. Each

CSE, fixed in 6, is itself a broad distribution in 0', but one can imagine a

superposition of such ellipses that is a better approximation of l*W(rl,t0 )

(but still not a particularly good approximation of W*t(rl,to)).
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z

Fig. 6.1. Spatial electron distribution of the initial classical electron

ensemble. The ellipse represents a classical orbit in the Coulomb

potential. The nucleus of the atom is at the origin of the coordinate system.

The classical orbital ellipse is populated with Monte Carlo electrons in

such a way that the initial state is stationary (iD the limit in which an

infinite number of electrons are used). In practice, 1600 to 3200 electrons

per ellipse are used.
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An attempt to construct such an ensemble would be in the.spirit of the

Wigner appproach or the Percival and Richards approach. One can think

of an infinite number of ways to construct such an ensemble, but there

appears to be no unique or natural way. We cannot follow the Percival and

Richards approach of summing all the degenerate sublevels of n = 3 to get a

spherically symmetric initial state. In the absence of theoretical guidance

we choose to leave this problem open to numerical test by choosing initial

states localized in 6.

Section 6.3 Numerical Results

In Figures 6.2, 6.3 and 6.4 the classical and quantal results are

compared for three different values of 0. The dotted lines represent the

energy distribution of the classical ensemble at the end of the laser pulse,

as predicted by a numerical integration of Newton's equation. The solid

lines represent the prediction of Schr6dinger's equation described in the

previous chapters. The rectangles again represent population in the n = 3

and n = 4 bound states. Three different numerical experiments are shown.

In the three plots Figs. 6.2, 6.3, and 6.4 the initial classical ensemble is a

classical stationary ellipse (CSE) with 0 set to 64.70, 540, and 900

respectively. In the three examples described in the figures, the classical

ensembles were composed of 3200 Monte Carlo electrons. The results are

unchanged if 1600 Monte Carlo electrons are used.
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Fig. 6.2. Electron energy at the end of the excitation pulse. The separation

of the x-axis hash marks is one photon in energy: 1/8th Rydberg. The

curves are constructed by dividing each interval of 1/8th Rydberg into ten

bins. Quantal population in each bin is plotted with a solid line and

classical population in each bin is plotted with a dotted line. The

rectangles represent population in bound states. Here the initial state is

(n=3, ?=2, m=2) and the peak pulse intensity is 2.2.1014 W/cm 2. The

angle 0 between the electric field polarization and the major axis of the

orbital ellipse is in this case 64.7 degrees.
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Fig. 6.3. Electron energy at the end of the excitation pulse. The initial

state is (n =3, ?= 2, m = 1), and the peak pulse intensity is 2.2.1014 W/cm 2.

The quantal population is plotted with a solid line, and the classical

population is plotted with a dotted line. The angle 0 between the electric

field polarization and the major axis of the orbital ellipse is in this case

54.0 degrees.
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Fig. 6.4. Electron energy at the end of the excitation pulse. The initial

state is (n = 3, ?= 2, m = 1), and the peak pulse intensity is 2.2 .1014 W/cm 2.

The quantal population is constructed with a solid line, and the classical

population is plotted with a dotted line. The angle 0 between the electric

field polarization and the major axis of the orbital ellipse is in this case

90.0 degrees.
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All three classical distributions have a high-energy cutoff at about

the third quantum peak. Figure 6.2 shows the classical results with 0

chosen so that the first two classical lobes approximately overlap the first

two quantum peaks. In Fig. 6.2 the agreement in classical and quantum

cross sections is particularly good for the first quantum peak. What is

surprising is the approximate agreement between the shapes of the

classical lobes and the quantum peaks where they overlap. The first

quantum peak has a width and shape similar to the first classical lobe.

The agreement in shape disappears as 0 is varied and the classical lobes

move away from the quantum peaks.

The variation of the classical spectrum with 0 may be explained very

simply in terms of Eq. (6.3). Recall that 0 is the angle between the electric

field polarization and the major axis of the classical ellipse. As 0 decreases,

the electrons in the ellipse are on the average moving more nearly in the

direction of the electric field as they pass near the nucleus and absorb the

one of more photons of energy during ionization. As 0 decreases, the cos(0')

of Eq. (6.3) increases on the average, d<Ha>/dt increases and the

ensemble absorbs more energy on the average from the electric field. The

argument is qualitative because 0 gives us a rough measure of the

distribution of ensemble only initially, before the electric field perturbs the

distribution. Nevertheless, the argument agrees with the numerical

results.
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Section 6.4 Conclusion

Several practical applications of these numerical experiments are

worth mentioning. First of all, the classical trajectories of the electrons

undergoing above-threshold ionization are useful in revealing where in

space and time the ionization energy is absorbed (classically) from the

laser. Examination of the classical trajectories reveals that the ionization

energy is absorbed within a few Bohr radii of the nucleus, and in a time

short compared to both the period of the laser field and the orbital period of

the electron. During the energy absorption, the external electric field is

comparable to the electric field strength of the Coulomb potential. This

suggests that a neither a perturbation theory based on a weak external

field, or a perturbation theory based on a weak Coulomb field would be

valid in this problem. The corresponding quantum mechanical estimate is

difficult because the electron's wave function is smeared out over a large

portion of the Coulomb potential. It is not clear where in space the energy

is absorbed, and consequently reasonable estimates of the ratio of the

Coulomb and external fields during the energy absorption can easily differ

by orders of magnitude.

Another practical application of the classical method is the

calculation of quadrupole and ponderomotive effects. Both of these effects

are due to gradients in the laser's electric field that are neglected in the

dipole approximation. Both of these are effects are difficult to model using

the numerical methods described in chapter III for integrating
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Schrodinger's equation, but are trivial to add to the classical equations.

We have added the quadrupole term to Newton's equation and have re-

done the numerical integration of Newton's equation shown in Fig. 6.2.

The results are unchanged. Quantum mechanically, quadrupole moments

are easily calculated and shown to be small, but the argument used in

justifying the dipole approximation requires that the energy absorption

.process take place in a space that is small in comparison to the wavelength

of the laser field. As explained above, this is a difficult claim to justify

quantum mechanically in such a complex process as AT. The classical

.- results are instructive, but of course we cannot claim that they will

* reliably predict the correct quantum mechanical results.

To summarize, we have presented evidence of a classical

correspondence in an ionization process in which the classical electron is

stripped from an atom in a time short compared to both the optical period

and the classical orbital period. There was found little or no evidence of

chaos in the classical integration: adjusting the initial condition 0 slightly

modified the final spectra slightly. Previous studies of the classical

correspondence of quantum optics have focused on the traditional

correspondence limit: Rydberg initial states (n> > 1) in microwave fields.

In the examples presented here the initial state was very quantum

mechanical (n = 3) and the field optical.
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CHAPTER VII

CONCLUDING REMARKS

The interaction of atoms with short laser pulses and with ultra-

intense fields is a relatively new field in atomic physics. In this thesis we

studied the interaction of hydrogen with coherent laser pulses in the 5

femtosecond to 10 picosecond range, in the weak-field limit, and at field

intensities as high as 2.1014 W/cm 2.

A number of new theoretical results were presented in this thesis. In

chapter II we approached the problem of the interaction of atomic

hydrogen with laser pulses from a novel point of view, by studying the

relationship between the Fourier relation of the laser pulse AcoAt and the

AEAt relation of the Rydberg wave packet generated by the laser pulse. It

was shown that under certain conditions the wave packet's AEAt/A

acquires the laser pulse's AcaAt. In a sense, a transform-limited laser

pulse (satisfying AcoAt = 1/2) can generate a transform-limited electron

(satisfying AEAtA = 1/2). To get this result it was necessary to derive a

formula for the electron wave packet using the WKB approximation, and

to define the electron's At in terms of the WKB wave packet.

It was noted that many of the assumptions made in chapter II were

likely to break down in the intense fields necessary to ionize an atom

substantially with 5 femtosecond pulses. The succeeding chapters were

devoted to studying the interaction of hydrogen with femtosecond pulses of

intensity 2.1014 W/cm2 . Using the FGR formulation of ionization for

comparison, the results of these chapters may be summarized as follows:

126
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just about every approximation used in the derivation of FGR failed. The

rotating-wave approximation, which usually works well in resonance

phenomena, failed. The essential-state approximation usually employed

in FGR (which assumes that all bound states but the initial state may be

discarded) failed completely. Similarly there occurred transitions among

continuum states (above-threshold ionization) that are ordinarily

neglected in FGR calculations.

Considerable effort went into finding an example of ATI in which the

complexities could be minimized and treated separately. For this reason it

was assumed throughout that the initial state of the atom was the (n = 3,

?=2, m=2) state, and the frequency of the laser was such that the

absorption of a single photon was sufficient to ionize the atom. If we had

attempted to model a typical AT experiment, then the appropriate initial

state would have been the ground state, and then a complicated multi-

photon process would have been required to ionize the electron.

It proved possible to isolate the various intense field phenomena, like

ATI and population trapping, and study each of them separately. It was

possible to model the physics of the various effects with relatively simple

model atoms and provide straightforward non-perturbative theoretical

methods to replace standard perturbative methods employed in the

derivation of FGR.

The greatest surprise in this study was the observation, first made

numerically, that even in the intense fields employed in the examples we

studied, population is recaptured from the ionization continuum by bound

states, and returns with just the right phase to strongly suppress
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ionization. A non-pertubative theory was presented that successfully

modeled the phenomenon, though not quantitatively. The theory and the

corresponding numerical integration of the model atom predicted that the

inhibition of ionization occurs for a variety of pulse shapes, and for a

variety of atomic structures and laser intensities. The only condition for

inhibited ionization was that the laser pulse have sufficiently broad

bandwidth to drive both the ionizing transition as well as the transition in

which the electron is recaptured by bound states other than the initial

state. A further calculation showed that the rotating-wave approximation

(RWA) failed in the theory to a small but noticable extent. An improved

theory that did not employ the full RWA was presented. The new theory

gave superior, but still not quantitative predictions. The exercise was

useful in tracking down the major source of the discrepency between theory

and numerical integration, because many other approximations were also

made in the derivation of the theory.

In chapter V we turned to the problem of the above-threshold

ionization (ATI) of hydrogen. The principal result of the chapter was the

derivation of a formula related to the Keldysh-type formulas that are

sometimes employed to model ATI experiments. The theory presented in

chapter V was much more general than the published Keldysh-type

theories, and gave good predictions of the ATI peak cross sections. The

principal difference between the theory described in chapter V and the

published Keldysh-type theories is that our theory, like Schr6dinger's

equation, is invariant under transformations in which 'P(r,t) is replaced by
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T(r,t)e(t). The published Keldysh-type theories are not invariant under

this transformation.

In chapter VI we presented several numerical experiments on

classical above-threshold ionization. Chapter VI outlined a Monte Carlo

approach to the classical correspondence that differs from conventional

theory. We argue at length in chapter VI that this new method is a natural

approach to the problem of the classical correspondence of laser-atom

interactions. The research described in chapter VI was limited to

searching for a classical system that exhibits ionization behavior in

intense fields similar to the quantum mechanical system studied in the

previous chapters. The results were gratifying, and some evidence was

found that there may be a classical origin to certain ATn peak shapes and

cross sections. The evidence was based on a limited number of numerical

experiments, but was surprising enough to suggest that future research in

the classical correspondence of ATI may be fruitful. The widths of

ionization peaks AE in one-photon ionization typically have an origin in

the Fourier relation AEAt>A/2 which is due to the fact that Schr6dinger's

equation is a wave equation. It would be valuable to understand why the

classical diffusion-like equations of classical mechanics succeed in

predicting the correct AE, at least in the special case presented in chapter

VI.
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