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Abstract/ Correlation-based methods for automatic image recognition are implemented

using a position-sensitive, photon-counting detection system. It is demonstrated that

the information provided by a small number of detected photoevents can be used to

accurately estimate the cross correlation between a classical-intensity input scene and a

reference (or filter) function stored in computer memory. A theoretical formalism is

developed that describes the behavior of the quantum-limited correlation signal for

complex filter functions. The theoretical predictions are verified experimentally using a

position-sensitive photon-counting detection system. The speed at which the detection

system operates makes this an effective technique for implementing correlation based

methods for image recognition in real time, even when there is an abundance of input

illumination.
/

First, image correlation at low light levels is investigated. When the reference

function that is stored in computer memory is a digitized version of the classical-

intensity input object, the correlation output corresponds to that of a conventional

matched filter. It is demonstrated that as few as 1000 detected photoevents provide

sufficient information to discriminate accurately among a set of engraved portrait

images.

Rotation-invariant image recognition using a rotation-invariant circular-

harmonic filter is also implemented using photon-counting techniques. In addition, a

new method is demonstrated for normalizing the correlation output in real time using

the positional information from the detected photoevents. This new normalization may

allow rotation-invariant circular-harmonic filters to be utilized in a cluttered

environment.

iv



The estimation of moment invariants for image recognition is also considered.

Experiments are performed that demonstrate that the information provided by a few

thousand detected photoevents is sufficient to estimate moment invariants that remain

unchanged when segmented input images are scaled, change in position, or undergo in-

plane rotations.

Finally, the automatic recognition of images from within a cluttered

environment is considered. The photon-counting detection system is used to implement

a two-stage template matching algorithm to locate objects of interest from within

cluttered scenes. Both two-stage matched filtering, and two-stage rotation-invariant

filtering is considered. / .
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Introduction

1.1. Introduction to Machine Vision

Machine vision is a subject that has received much attention in recent years.

Several books 1,2, journals3 ", and 15,384 journal articless have been written on

various areas of the subject. Some examples of the types of tasks that fall under the

broad heading of machine vision include image or pattern recognition, detection of an

object's motion, the measurement of an object's surface height profile or texture, edge

detection or metrology, and object tracking. Each of the above tasks has found

numerous applications in a wide variety of fields. For example, optical-digital hybrid

techniques for non-contact surface profilometry have been used in applications such as

alignment of parts in automated welding6 and the inspection of printed circuit boards7 .

Image recognition tasks range from the inspection of objects for quality control in an

industrial environment to the automatic recognition and tracking of military targets in

"smart" weapons systems.

In particular, the area of image recognition has received a large amount of

attention in recent years. While much has been written on the subject, a "fool proof'

method to automatically identify an object in real time, independent of the environment

it is placed in, and independent of variations such as rotation, scale, aspect,

illumination, and clutter has not been developed to date. Rather, the work in the area of

image recognition has achieved its greatest success by concentrating on a particular

problem or application, and employing a method or combination of methods that yield

acceptable results for that particular problem.

The approaches to the image recognition problem are often placed into three

broad categories; namely artificial intelligence approachesl, structural approachess and
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statistical approaches 9. The so-called statistical approaches include methods that place

an input object into a finite number of classes. Using training sets consisting of

different variations that may be typical for a class of objects of interest, statistical

techniques are often used to generate correlation filters. The output from the correlation

filters is then used to classify the input objects. The classes can be restricted to include

variations of a single object, in which case the problem is referred to as image

recognition. In other applications, the classes may be taken to be much broader, such

as dogs and cats, or trucks and jeeps. All linear filtering, or correlation-based methods

for image recognition are usually placed under the heading of statistical approaches.

Both opticalI0 -23 and digital24 ' 3 implementations of these correlation-based methods

for image recognition have been reported. The parallelism inherent in the optical

methods yields a distinct advantage in terms of speed of implementation, but certain

characteristics of the optical systems may make them impractical for many applications.

For example, the physical size of the optical systems that implement the recognition

algorithms, or requirements for the input scene illumination may not be acceptable in

many applications. The digital implementations retain the advantage of being much

more flexible than the optical implementations, but are sometimes difficult to perform in

real time. The large number of computations involved in the digital implementations of

the various methods for image recognition are what inhibit their real-time performance.

The limitations of both the optical and digital systems have led researchers to

consider novel optical-digital hybrid systems, and novel architectures that combine the

flexibility of digital systems with the speed of optical systems64-78. In addition, much

work has been performed involving optical correlations using white light' 2 .19 "22 ,

which eliminates the need for a coherent input to the optical system.



3

The artificial intelligence (AI)1.83 and the structural s approaches to image

recognition are perhaps the most sophisticated, as well as the most computationally

intensive techniques. The Al approach uses the description of abstract concepts and the

recognition of instances in the input scenes. Typically, hypotheses and inferences are

implemented as IF-THEN rules, from which recognition decisions regarding the input

scene are deduced83.

In the structural approach, the input scene is considered to be composed of a set

of vision primitives, which are arranged in a natural hierarchy78 ,7 9. The vision

primitives typically consist of allowable shapes that describe the geometrical structure

of the input scene. For example, the geometric structure of the input scene has been

described in a polyhedral representation that describes explicitly the object's faces,

vertices, etc78. Objects that may appear at arbitrary orientations and locations in the

scene are identified by finding transformation parameters that specify changes in

orientation and translation between parts of the scene and object models7s . The

recognition of objects then requires the following three operations. First, one must

build a polyhedral representation of the scene and object models in terms of planes,

edges, and vertices. Next, one must find the orientation of objects with respect to the

object models; and finally, one must find their relative translations with respect to the

appropriately oriented object models781. Clearly, performing the necessary

computations in the implementation of this process is difficult to perform in real time.

Recently, much progress has been made in the computation of low-level image analysis

using parallel computer architectures such as the commercially available Butterfly

Parallel Processor80.

Other novel approaches to the image recognition process have received much

attention recently. The concept of sensor fusion81S-82 in performing image recognition
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tasks has been demonstrated to be useful in various. applications. Sensor fusion 

involves the use of information provided by multiple sensors about an input object. 

Such data may include information about an objects thermal signature or other spectral 

information, or its motion, color, etc. In addition, it has been recently proposed79 that 

ideas connected with animal vision. will play an increasingly important role in shaping 

computer-vision research. Finally. the use of neural networks84 for image 

recognition85,86 bas shown promising results in certain applications. 

In recent years. a large amount of effort has been directed at the development of 

methods for recognizing images independent of variations that may occur when the 

images are input to the recognition system. The variations.in the input are usually 

placed into two categories, namely intrinsic variations and geometric distortions. 

Intrinsic variations include variations within a class of objects, or changes resulting 

from non-unifo~ illumination, or occlusions of the object. Geometrical ·distortions 

include changes in the object's orientation, scale, or position. Structural, AI and 

correlation based approaches have all been applied to this problem with varying degrees 

of success, depending upon the application. 

The approach to image recognition detailed in this thesis involves a novel 

implementation of several of the correlation-based techniques for recognizing images 

independent of geometric distortions70-7s. In these methods, the information that is 

contained in the input scene is statistically sampled by reducing the input illumination to 

very low light levels, and imaging the resultant quantum-limited input scene onto a 

position-sensitive. photon-counting detection system87-88. The probabilistic 

relationship between the spatial coordinates of the detected photoevents and the classical 

intensity of the corresponding location in the input scene89 provides a natural means of 

sampling the infonnation contained in the input scene_ When the photon-limited input 

f 
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scene is cross-correlated with a filter function (derived from one of the statistical

approaches for image recognition), the resulting quantum-limited correlation signal

provides an estimate for the high-light-level correlation signal. In essence, the method

may be regarded as an optical method to implement a Monte Carlo9 scheme to estimate

correlation integrals. Depending upon the application, the number of detected

photoevents required to accurately estimate the high-light-level cross-correlation signal

may range between a few hundred77 to a few thousand73. The detection system

employed can detect photoevents at rates up to 100 kHz., and the correlation signal can

be computed in real-time. As a result, the total computation time can be on the order of

tens of milliseconds for many images. The detection system is intensity based, and the

correlations between the photon-limited input scene and a reference function stored in

computer memory are performed digitally. Hence, this optical-digital hybrid system

retains the advantages of the digital implementations of the correlation-based methods

for image recognition, while providing for relatively short computation times.

In this chapter, some of the most pertinent correlation-based methods for image

recognition are briefly reviewed, and compared. In addition, the reasoning behind the

selection of the particular methods employed in this thesis is explained. Finally, a brief

overview of the work presented in this thesis is given.

1.2 Correlation-Based Methods for Image Recognition

1.2.1 Template Matching and Matched Filtering

Correlation-based methods were one of the first techniques applied to automatic

image recognition52. The most obvious implementation of a correlation-based method

is template matching. In template matching, the input and reference (template) images

are considered to be vectors. One employs some metric (such as a Euclidean norm, or
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normalized cross-correlation) to determine the similarity between the input object and

the template. If the similarity measure exceeds some threshold, the object is determined

to match the template. Conversely, if the similarity measure does not exceed the

threshold, the object is said to be different from the template. The motivation for using

the normalized cross-correlation as the metric is provided by the Schwarz inequality91 .

The Schwarz inequality states the following about the cross correlation between two (in

general complex) functions f(x',y) and g(x',y):

~fJf(X Y,)g *(x',y')dxdyf !

(i' Jf (xI'y')Idx'dy9 f J t(xI~yI'ldx'dyj) (Li)

In Eq.(1.1), * denotes complex conjugation, and the equality holds when f(x',y) is

equal to g(x',y'). As a result, if the cross-correlation of two functions f(x',y') and

g(x',y'), which denoted by the left hand side of Eq.(l.l), is normalized by the quantity

on the right hand side of Eq.(l.1), one is guaranteed to observe a maximum when

f(x',y') = ag(x',y') , (12)

where a is a constant.

Template matching has been used in applications ranging from automatic

character recognition52 to scene matching in satellite images57 (a complete list of

references is given in Chapter 6). Template matching was first implemented digitally,

using both Fast Fourier Transforms (FT's) 9 2 and direct computation. In 1964,

Vander Lugt' 0 demonstrated the first optical implementation of the template matching

technique, using a holographic frequency plane filter. Initially, frequency-plane filters

were constructed using holographic techniques, using standard recording media such as
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photographic plates. More recently, spatial light modulators (for a review see Ref. 94)

have been employed in the frequency plane to provide the capacity for real-time

updating of the filters. The optical implementation of the frequency plane filter has the

advantage of producing the cross-correlation almost instantaneously. The drawbacks

of the optical implementation may include the restriction that the input illumination be

coherent, or that an incoherent to coherent converter be employed. In addition, the

commercially available spatial light modulators have limitations on their resolution, and

the time in which they can be updated. Recently, phase-only filters4951 and binary

phase-only filters5° have been shown to provide good recognition capabilities in certain

applications. The holographic phase-only filter has the advantage of providing almost

100% diffraction efficiency, while the binary phase-only filter is more easily

implemented using spatial light modulators. In addition, much work has been

performed regarding the performance of optical correlations using white light 2. 19.20-

22, both for matched filtering22, and rotation-invariant image recognition 12.

A final limitation of the optical implementation is that the correlation output of

the filter is not normalized by the quantities indicated by the Schwarz inequality. As a

result, it is not guaranteed that one will observe a maximum when the input image and

reference function are equal. It must be explicitly stated, however, that it has been well

established experimentally that one does indeed observe a maximum in many cases

when the input and reference functions are equal.

In practice, the matched filter has been shown to be very sensitive to minute

changes in the input image. It has been reported16 that when a reference object was

rotated by 3.5 degrees, or changed scale by 2% with respect to the input, the output

signal to noise ratio (SNR) of the correlation peak dropped from 30 dB to 3 dB. (The

rate of decrease in SNR increases with the space bandwidth product of the image). As
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a result, much work has been directed at obtaining correlation filters that will allow

objects to be recognized independent of geometric distortions such as rotationlZ 17,18.

34-0, 3, and scale 4"16 .24-33,95. Additionally, a large body of work exists pertaining

to the development of filters that allow objects to be recognized independent of intrinsic

variations 424 8, 51, 74, 96,97.

1.2.2 Geometrical-Distortion Invariant Filters

As mentioned before in Section 1.2.1. the approach to the design of distortion-

invariant correlation filters has taken essentially two paths. The first is the construction

of correlation filters whose correlation output remain unchanged when an input object

undergoes changes in rotation, scale, or position. In addition, the filter should have the

property that the correlation output should attain a maximum when the reference object

is input. These types of filters are usually referred to as invariant filters, and are used

to recognize one particular object at a time. The primary filters that exhibit rotation

invariance are filters based on the circular-harmonic expansion12. 17. 18. 34-40. 73.

These are described in detail in Chapter 4. The most successful filters for scale

invariance are based on the Mellin transform' 6, and filters or methods for extracting

invariant features14.15 .24 -3 3 .9 5 ; these are described in Chapter 5. The most common

method of obtaining both rotation and scale invariance is the use of banks of filters.

The filter banks typically consist of multiple rotation-invariant filters that are computed

for many different scales of the reference object, or vice-versa.

1.2.3 Classification Filters

The second approach to filter synthesis involves the design of correlation filters

that tolerate intrinsic distortions, such as out-of-plane rotations, intra-class variations,

object occlusions, changing illumination, etc. These filters are sometimes referred to as
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classification filters, because their purpose is to designate a particular input object as the

member of a particular class. In some cases, researchers"4s have attempted to design

filters that can tolerate both intrinsic and geometrical distortions, with some limited

success. The most common method of obtaining both rotation-and scale invariance has

been to include many rotated, and scaled versions of the reference objects in the training

sets. When this technique is used for scale changes greater than 10%, only limited

success has been reported4 .

One of the first attempts at the design of a classification filter is the average

filter 96. The average filter is constructed by averaging together a set of images that

consist of the various objects within a certain class. More sophisticated methods

include the use of synthetic discriminant functions (SDFs)43.44.46.49,5 1, composite

filters42.43,47, maximum-likelihood filters74, and convex-hull fiters97. In the first

three methods mentioned, the correlation filters are designed to produce a specific

correlation output when each training-set object is input, with the hope that other

objects in the same class, but not in the training set, will produce a similar correlation

output. The maximum-likelihood technique74 uses statistical decision theory to

construct a filter for classifying images. Convex hull filters are constructed from

training set data, and provide optimum separability for the closest members of two

particular classes.
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1.3 Overview of the Thesis

Each chapter of this Thesis details research involving image recognition using a

position-sensitive, photon-counting detection system to implement correlation-based

methods for image recognition. In Chapter 2, a theoretical formalism is developed that

describes the statistical properties of a cross-correlation signal realized by cross

correlating a quantum-limited input scene with a complex reference function that is

stored in computer memory. This description is performed for both a random, as well

as a fixed number of detected photoevents. Hence, one can predict the behavior of the

quantum-limited correlation signal when any reference function is utilized. The original

work in Chapter 2 involves the extension of the work performed by Morris71 , who

described the behavior of a quantum-limited correlation signal realized with a random

number of detected photoevents, using a real filter function.

In Chapter 3, the case is examined where the photon-limited input scene is

cross-correlated with a classical-intensity image of a reference object. In this case, the

correlation output corresponds to that of a matched filter. The number of detected

photoevents required to discriminate among a set of detailed objects is predicted using

the theory described in Chapter 2, and verified experimentally. In addition, the effect

of additive noise on the recognition performance is examined, and a method for

reducing the effect of additive noise is described.

In Chapter 4, rotation-invariant image recognition using a circular-harmonic

filter is considered. Theoretical predictions are given for the number of detected

photoevents required to identify a reference object, and determine its orientation without

ambiguity; the theoretical predictions are verified experimentally. In addition, rotation-

invariant image recognition in a cluttered environment using circular-harmonic filters is

considered. This is performed successfully using a new method for normalizing the
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output correlation signal. in new-real time. This is the first description of a method that

addresses the problem of properly normalizing the output from a circular-harmonic

filter, which has demonstrated inconsistent performance in recognizing objects from

within a cluttered environment.

In Chapter 5, the real-time estimation of radial moments of circular-harmonic

functions using photon-counting techniques is discussed. This allows many segmented

objects to be identified at any orientation or position, and can tolerate changes in scale

up to about a factor of two. This is the first real-time method for estimating moment-

invariants with sufficient accuracy for pattern recognition applications. Theoretical

predictions are made for the number of detected photoevents required to estimate a

moment invariant to within a given error, these predictions are verified experimentally.

In Chapter 6, the recognition of objects within cluttered scenes is examined

using a two-stage template matching method. The two-stage template matching method

is implemented using photon-counting techniques. Computer simulations that

demonstrate the recognition performance of the photon-counting implementation of this

method for image recognition are performed for several applications. These

applications include: the recognition of segmented images, template matching for

registration of satellite images, and automatic target recognition in a cluttered

environment. The latter is performed for both matched filters, and two-stage filtering

using circular-harmonic filters.

Much of the original work presented in this Thesis has been published, or

submitted for publication. The work in Chapters 2 and 4 also appears in Ref. 73.

Some of the work in Chapter 3 appears in Ref. 76. References 75 and 76 detail some

of the early work presented in Chapter 5; a complete description of the work in Chapter
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5 has also been submitted for publication (Ref. 78). Finally, much of the work in

Chapter 6 appears in Ref. 77.
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Chapter 2.

Correlation with a Deterministic Reference
Function

2.1 Introduction

The approach to pattern recognition using photon-limited images can be

described in terms of a linear filtering formalism. In this chapter, a general treatment is

presented for the statistical properties of a correlation signal realized by cross

correlating a photon-limited input scene with a reference function that is stored in

computer memory. Morris' performed the analysis for the case when the reference

function was real, and the number of detected photoevents was Poisson distributed.

The theoretical predictions were verified using complicated objects in a computer

simulation2. For the work in this thesis, it was necessary to consider the most general

case, where the reference function is taken to be complex, and the number of detected

photoevents can be either Poisson distributed or fixed. In Section 2.2, some statistics

describing the detection of photon-limited images are briefly reviewed. In Section 2.3,

the statistical behavior of the correlation signal is described for the case when the

reference function is complex. Approximate expressions are given for the probability

density functions of the correlation signal when the number of detected photoevents, N,

is Poisson-distributed, as well as for the case when N is fixed. In Section 2.4, the

results are specialized to the case when the reference function is real (these results agree

with those obtained by Morrist ). The theoretical predictions for the probability density

functions and statistical moments are used to determine the accuracy of the image

recognition process for a given input and reference. The formalism for this detection

process is reviewed in Section 2.5. Finally, the effect of additive noise on the statistics
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of the correlation signal is treated in Section 2.6. The theoretical predictions for the

statistical behavior of the photon-limited correlation signal that are presented in this

chapter are experimentally verified in later chapters.

2.2 Detection of Photon-Limited Images

A low-light level input image ft(x',y') can be represented as a collection of

Dirac delta functions,
N

ft(x',y') = 7,8(x- x y'- -j (2.1)
i=1.

where (xi,y1) represent the coordinate location of the A detected photoevent, and N is

the total number of detected photoevents in the reference scene window. In this

subsection, we briefly review some of the photoevent detection statistics required for

the description of the statistical behavior of the photon-limited correlation signal.

From the theory of photodetection3, the probability of emission of an electron in

a small time interval At from a photosurface of differential area AA is found to be

l f(x, y)AtA(.
P(x, y; t)AtAA = h (2.2)

where 11 denotes the quantum efficiency of the detector, f(x,y) is a classical measure of

the instantaneous image intensity, h is Planck's constant, v denotes the mean frequency

of the quasi-monochromatic incident illumination and (x,y) denotes the position of the

area AA.

Given Eq. (2.2) it follows from first principles 3 that the probability distribution

of emission of N photoelectrons in a finite time interval [t,t+r] from a detector of area A

is a Poisson process,



21

[f:df A ddY W.Y; t') fe {f A }o ,(2.3)
P(N) = N! f' dxdy.(xyN! t A'

in which the rate function X(x,y;t) is

rf(x,y;t) (2.4)

Generally, f(x,y;t) is a random process, and one must take an ensemble over the

distribution in Eq. (2.3) to predict the observed counting distribution.

If f(x,y;t) does not fluctuate significantly, as is the case of the illumination

provided by a well stabilized, single mode laser, or for polarized, quasi-monochromatic

thermal radiation where x is much larger than the coherence time of the source, the

counting distribution becomes Poisson distributed3,4,

-N

P(N) = ! (2.5)

where

f f dxdyf (x,y) (2.6)
A

Using Eqs. (2.2) and (2.6), the probability of the photoevent coordinates can be written

as

p(xy) = f(x,y) (2.7)p f,y f f f(x, y)dxdy
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2.3 Correlation with a Complex-Valued Reference Function

2.3.1 Poisson-Distributed Number of Detected Photoevents

The cross-correlation signal

C(x,y) = f f ft(x',y')R(x + x', y + y')dx'dy' (2.8)
A

between a reference image R(x,y) stored in computer memory and the photon-limited

input image ft(x',y') is given by (using Eqs. (2.1) and (2.8))

N
C(,y) = XR(x + xiY + yi) (2.9)

i= I

This process is shown schematically in Fig. 2.1. Hence, the photon-limited correlation

signal is a random function, since the photoevent coordinates are independent random

variables. As mentioned earlier, the number of detected photoevents N may also be

random, depending upon how the experiment is performed.
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Figure 2.1 System diagram for quantum-limited image recognition
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One must be able to theoretically predict the statistical behavior of the photon-

limited correlation signal if this photon-counting method for image recognition is to be

implemented. In particular, it is necessary to obtain expressions for the first and

second moments of the correlation signal, as well as an expression for the probability

density function. The characteristic function of a random variable often provides an

elegant means to obtain closed form solutions to many problems in probability theory,

particularly those associated with sums of random variables. That is the approach

employed here. For convenience, we define the complex photon-limited correlation

signal C(x,y) as

C(x,y) = C'(x,y) + i C"(x,y) , (2.10)

where C'(x,y) and C"(x,y) denote the real and imaginary parts of the correlation signal

respectively. The joint characteristic function c(,o") is defined as5

( ', o") = (exp [i [('C'(x, y) + o" C" (x, y)]) ) , (2.11)

where <...> denotes an ensemble average. When the counting distribution in Eq. (2.5)

is valid, the characteristic function can be derived in a manner similar to that for shot

noise 6.

To derive the characteristic function, we start by dividing the reference scene

R(x,y) into small differential areas AAij, where AAij is defined as

AA i.j =[(x i yj) (x i + Ax, yj + Ay)] (2.12)

The lengths Ax and Ay are sufficiently small enough to insure that the value of the

reference function will be constant over the area. Hence, in the intervals defined by

xi!X.xi+AX, yjy< yjy + Ay] (2.13)
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the value of the reference function is approximately constant;

R(x,y) - R(x + xi, Y + yj) (2.14)

The contribution to C'(x,y) and C"(xy) from each area AAij is then

AC'i~j(x, y) = Re [R(x + x V Y + Y ?-AN i j  (2.15)

and
AC? .(x,y) = Im(R(x + xiy + y A (2.16)

respectively. In Eqs. (2.15) and (2.16), Re(..] and Im[..] denote the real and

imaginary parts of the reference function, and ANi j denotes the number of detected

photoevents in the area AAi j in the time interval t. We assume that the areas AAt j do

not overlap, and are small enough such that the number of detected photoevents in each

differential area are statistically independent. Using Eqs. (2.15) and (2.16), C'(x,y)

and C"(x,y) can be written as

C'(xy) = YAC'i,j(x,y) (2.17)
ij

and

C"(xy) = YAC'i,j(xy) (2.18)
I .J

respectively. Substituting Eqs. (2.15)-(2.18) into Eq. (2.11), the joint characteristic

function of C'(x,y) and C"(x,y) is written as
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= (.0 ) 0 < exp[i ]X rwo'Re {R(x + xi, Y + ))
ij (2.19)

+ o"Im [R(x+ xi, Y + y)})ANi 1

If the number of detected photoevents AN~i is Poisson distributed (see Eq. (2.5)) with

rate parameter

"lv f(xi,Yj)AxAY , (2.20)

the characteristic function becomes

= 1 1 CexpiIi (o'Re (R(x + xi, y + y)
N,.,.o (ANi~1)! I

+ co"Im{R(x + x1,y + yj)})AN 1.j] (2.21)

Re-grouping terms in Eq. (2.21), and using the infinite series definition of exp(x), Eq.

(2.21) is re-written as

O, ') = eR exp[jR,. exp[iy (co'RetR(x + xj,y + y )) +
i j

(2.22)

co"Im(R(x + xy + y j))AN.)1

Substituting Eq. (2.20) into Eq. (2.22), the expression for (oa',Co") becomes

0,(,W, co"= exp O X f(x, AXAY[
nv . . (2.23)

exp i(co'ReR(x+xY+Y?)+ o"Im(R(x+xi, Y+y)D)- 1])

In the limit as Ax and Ay approach zero, the sums tend to integrals. In addition,

if one multiplies and divides the argument of the exponential by
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f f f(x',y')dxdy (2.24)
A

the expression for O(co',o") becomes

O,(,) ")exp {IJf p(x',y')[exp i (co'Re R(x + x',y + y')]

A
(2.25)

+ co"Im (R(x + x',y + y')]) - l]}

where p(x',y') is given Eq (2.7).

The joint moments of the correlation signal are computed from the characteristic

function using the relation

< c'm(x, y)C,,n(x,y) > = )m+nm+n ((2'.2"))
= co' m a .,, (2.26)

Using Eqs. (2.25) and (2.26), the mean values of the real and imaginary parts of the

correlation signal, <C'(x,y)> and <C"(x,y)>, are found to be7

< C'(x,y) > = N J p(x',y')Re (R(x + x',y + y')}dx'dy' (2.27)
A

and

< C"(x, y) > = J p(x',y')Im (R(x + x',y + y'))dx'dy (2.28)

A

respectively. The variances, a'2 and a'2 are given by

a' 2= NiJ Jp(x',y')[Re {R(x + x',y + y'))12dx'dy' (2.29)

A



28

and

y"2= RJf Jp(x',y')[Im(R(x + x',y + y'))]2dx'dy' (2.30)

A

respectively. The cotrelation coefficient p, defined as
p=. < CIC"> - < C5> < C11>

o'o" (2.31)

is found to be

NJ Jp(x',y')Im(R(x + x',y + y')) Re(R(x + x',y + y'))dxdy'
p= A . (2.32)

(7' 0"

The correlation between the real and imaginary parts of the correlation signal occurs

because the real and imaginary parts of the reference function may be correlated; the

correlation is not introduced because of any correlation in the detection of the

photoevents. In certain applications, the correlation coeffecient p has been observed to

be quite small, and can be neglected in the calculation of the joint probability density

function [shown later in Appendix A, Eq. (A15)].

It is important to note that the mean value of both the real and imaginary parts of

the photon-limited correlation signal, denoted by <C> and <C"> in Eqs. (2.27) and

(2.28) respectively, are directly proportional to the cross-correlation of the classical

intensity input scene f(x',y') with the reference function R(x',y). This fact enables

one to estimate the high-light-level cross-correlation signal using a small number of

detected photoevents. The variance in the correlation signal is due to the statistical

fluctuations inherent in the low-light-level input scene.

One must now compute the joint probability density function for the real and

imaginary parts of the correlation signal. The joint probability density functon for the
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real and imaginary parts of the correlation signal is obtained by taking the inverse

Fourier transform of the characteristic function. Unfortunately, the Fourier inverse of

Eq. (2.25) is very difficult to obtain in general8 . If the average number of detected

photoevents 9 is large, it is straightforward to derive a limit form for the characteristic

function and hence for the probability density function7.

Note that in Eqs. (2.27)-(2.32), the moments of the correlation signal become

infinite as ! becomes large. This difficulty is easily avoided by making the following

standard change of variables: Let

(x,y) = '(x,y) + i V"(x,y) (2.33)

where

(x, y) = C'(x,y) - < CKx,y) > (2.34)

and

= C"(x,y) - < C"(x,y)> (2.35)

respectively. The joint characteristic function of ('(x,y) and (1"(x,y) is then given by

< C'(x,y) > < C"(x,y) >
SC (COW',) =exp i( a + ,,

exp {N i fp(x, y')[exp i ( Re{R(x + x',y + y')) (2.36)
A

+ -Q: Im (R(x + x', y + y')})-I]
CYOO

To derive a large R limit for Eq. (2.36), we expand the inner exponential in a power

series:
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exp i( Re(R(x+x,y+y'))+-2.ImR(x+x',y+y')) -1

1-1+ i Re {R(x + x',y + y) + Im (R(x + x'9y + y')}

- Re (R(x + x,y + y'))) + (,Im(R(x + x',y + y

(2.37)

+(co'o"Re (R(x + x',y +y')Im{R(x +x',y + y'))

-- Re (R(x +x', y +y)) + m (R (x+ x,y + y))J

If one then integrates the series term by term, and uses Eqs. (2.29) and (2.30), one

sees immediately that the terms proportional to 1/a' and 1/a" cancel with the first

exponential in Eq. (2.36). The next three terms become after integration:

2A [( +Y xI

(2.38)

+(±:"Rm(R(x + x', y + y')2 +(W Re(R(x + x',y + y') Im{R(x + x',y + y'))]

Since both a' and a" are proportional to N2 the terms in the series proportional to

(1/a) 3 and all following terms tend to zero in the limit as 1 approaches infinity. Thus,

for large 9, the characteristic function becomes

0 ,(Co',co") = exp - {L(CO'2+ 2pco'co"+ co" 2 )} (2.39)
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Note that Eq. (2.39) is the equation for the joint characteristic function of two random

variables with a bi-variate normal probability distribution. Hence, when N is large,

the real and imaginary parts of the correlation signal are approximately jointly normal

distributed, with the form 7

1 { -1 (C'- < C5 ) 2

P(C')= x 2(1-2) a,2

27a'a"(1 - p2 ) 2 (2.40)

(C'-< C'> )(C"-< C">) (C"-< C">
- 2 a' if+ off2

where <C'>, <C">, a', ar" are given in Eqs. (2.27)-(2.30). Equation (2.40) serves as

the basis for many of the statistical calculations involving the photon-limited correlation

signal, and is referred to quite frequently in later chapters. In particular, it is often

necessary to determine the probability density function for random variables that are

based on the photon-limited correlation. For example, it is often necessary to determine

the probability density function for the modulus of the complex correlation signal (see

Chapters 4 and 5). Equation (2.40) serves as the basis in the computation of this

density.

2.3.2 N Fixed

In the previous section, it is assumed that the correlation signal is realized by

detecting photoevents for a fixed time interval r. Hence, provided that the assumptions

concerning the illuminating radiation are correct, the number of detected photoevents is

a Poisson distributed random variable. If the correlation signal is realized by detecting

a fixed number of photoevents, one source of the random fluctuations in the value of
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the correlation signal is removed. The effect on the statistics of the observed correlation

signal is found to be a decrease in the variance of the real and imaginary parts of the

correlation signal. This is demonstrated via the following analysis.

If the cross correlation signal of a photon-limited input scene with a reference

function is performed using a fixed number of photoevents N (see Eq. (2.9)), then, by

the central limit theorem I0 , the probability density function of the real and imaginary

parts of the correlation will approach a normal distribution, assuming the number of

detected photoevents is large, since the photoevent coordinates are statistically

independent. The first and second order moments of the correlation signal can be

computed directly. The mean value of the real and imaginary parts of the correlation

signal are given by,N
< C'(x, y) > = Re ( R(x + x j, Y + Yj)) ' (2.41)

and

< cot(xy) > = (Im R(x+ x, y + yj)) , (2.42)

where <...> denotes an ensemble average. Using Eq. (2.7) for the probability density

function of the photoevent coordinates, and performing the ensemble average term by

term, one obtains

<C'(x,y)>=NJJ p(x',y')Re{R(x + x',y + y'))dx'dy' , (2.43)

and

<C"(x,y) >= N^j p(x',y')Im(R(x + x',y + y'))dx'dy' , (2.44)
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respectively. Note that the mean value of the correlation signal is the same as in the

case when N is Poisson distributed, if one replaces R with N. The variance of the real

and imaginary parts, denoted by o'2 and a"2 respectively, is calculated in a similar

manner. By definition, 0'2 is given by

a' 2 = (C '2(x,y)) - (C'(x,y)) 2  (2.45)

Computing <C'2(x,y)> directly, using Eq. (2.7), one finds

(C (x~y)=Nf fr p(x',y')Re{R(x+x',y+y'))2dx'dy'
A

+ (N2 - N f AJf p(x,y')Re R(x + x',y + Y')}] 2  (2.46)

Hence, using Eqs. (2.43), (2.45) and (2.46), one finds

o2 = Nff p(x',y')[Re(R(x + x',y + y')}]2dx'dy
A

(2.47)

-N[fp(x',y')R(x + x.,Y + Y')

Noting that the second term in Eq. (2.47) is (l/N)<C'(x,y)> 2, one obtains

(C(Xy)2 
(2.48)a'2=Nf fP ( X ' y ') [ Re { R (X + X' ' y + y ' )}]2d x 'd y ' - N (248

A

In a similar fashion, one obtains for ay",



34

a"2  N r p(x, Y')[Im {R(x + x"Y + Y')] 2dx'dy'- (, xy))2 (2.49)

A

The correlation coefficient p is found to be

P= IN I p(x',y')Re (R(x + x',y + y'))Im (R(x + x',y + y'))dx'dy'0a A'
(2.50)

< C'(x, y) > < C"(x,y) >

where a 2 and 0"2 are given in Eqs. (2.48) and (2.49). One may also note that the first

terms in Eqs. (2.48) and (2.49) are the variance for the case when N is Poisson

distributed (if N is replaced by N). This demonstrates the reduction in the variance that

is observed when the number of detected photoevents is fixed.

2.4. Correlation with a Real Reference Function

2.4.1 N Poisson Distributed

The statistics for the case when a photon-limited input scene is correlated with a

reference function that is entirely real were first computed by Morris'. Here, we obtain

the same results directly from the expressions given in the previous section by letting

the complex part of the reference function equal zero. The moments of the correlation

signal are obtained by letting the imaginary part of the reference function go to zero in

Eqs. (2.27)-(2.32). Clearly, only the moments for the real part are non-zero; hence the

"prime" notation is eliminated. By inspection, one obtains for the expected value and

variance,

< C(x,y) > =NJJ p(x',y')R(x + x',y + y')dx'dy' , (2.51)
A



35

and
2 = f p(x',y')R2 (x + x',y + y')dx'dy' (2.52)

A

respectively.

If one lets the moments for the complex part of the correlation signal be zero in Eq.

(2.40), one finds that the probability density function for the real correlation signal is a

monovariate normal distribution, given by

P(C(x,y)) = 2C(x, - (C (xY)), (2.53)

In Eq. (2.53), <C(x,y)> and 02 are given by Eqs. (2.51) and (2.52) respectively.

2.4.2 N Fixed

The moments of probability density function for the photon-limited correlation

signal realized by cross-correlating a real reference function with photon-limited input

scenes containing a fixed number of detected photoevents N can also be obtained by

specializing the results from the complex case. In this case, we let the imaginary part of

the reference function be zero in Eqs. (2.42)-(2.44), and in Eqs. (2.45)-(2.48). One

immediately obtains for the expected value and variance

< C(x,y) > = Nf f p(x',y')R(x + x',y + y')dx'dy' (2.54)

A

and

.2 = Nf f p(x',y)R 2(x + x, y + y')dxdy, <C >2
N ' (2.55)

A

respectively.

The probability density function of the correlation signal for the case when N is

fixed and the reference function is real has the same form as Eq. (2.53),
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P(C(x, y))= exp -. . .. } (2.56)

with <C(x,y)> and a 2 given by Eqs. (2.54) and (2.55), respectively.

2.5 Probability of Detection and False Alarm

The exact number of detected photoevents required to discriminate among a set

of given images can be determined using the statistical theory of hypothesis testing11 .

On the basis of the photon-limited cross-correlation C(x,y), one must choose between

two hypotheses: the null hypothesis H0 -- input image f(x,y) is not the same as the

reference image R(x,y) , or the positive hypothesis, H1 -- the input image f(x,y) is the

same as the reference image R(x,y). Under hypothesis H0 , the probability density

function for C(x,y) is denoted by P0 (C(x,y))=P[C(x,y)l f(x,y)=N(x,y)], where N(x,y)

is some noise, or false image. Under hypothesis H1 , the density function of C is

denoted by P1(C(x,y))=P[C(xy)l f(x,y)=R(x,y)], where R(x,y) is the reference image.

As indicated earlier the observer sets a threshold CT for the correlation signal.

If the estimate for C(x,y) > CT, hypothesis H0 is chosen; if C(x,y) < C, hypothesis

H1 is chosen. However, because of the statistical nature of the estimate for C(x,y), the

observer occasionally makes an error, regardless of the value chosen for CT. The

probability of choosing H1 when H0 is true is called the probability of false alarm and

is given by

Pf - P0(C(x,y))dC(x,y) (2.57)

The probability of choosing H, when H1 is true is called the probability of detection,

and is given by

P f P(C(x,y))dC(x,y) (2.58)

The overlap areas associated with Pd and Pfa are shown in Fig. 2.2
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P(C) P0(C) P, (C)

Pd

Pf a

Figure 2.2 Probability density functions under hypotheses Ho and HI.
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To determine the number of detected photoevents N that are required to calculate

the correlation signal within a given error, one must specify the required probabilities of

detection and false alarm for a given application. Next, one calculates the probability

density functions for the photon-limited estimates for C(x,y) for the input and reference

images for a starting number of detected photoevents N; the functional form of this

density function is given in Section 2.3 or 2.4. One then computes Pd and Pf. using the

appropriate density functions, and compares these values with the required ones. If the

calculated values for Pd and Pf& do not meet the desired specifications, one increases the

value for N, and repeats the process until the required probabilities of detection and

false alarm are achieved.

2.6 Summary of Chapter 2

A means for theoretically predicting the statistical behavior of a correlation

signal realized by cross-correlating a photon-limited input scene with a complex

reference function stored in computer memory is presented. This is done for the case

when the number of detected photoevents, N, used to realize the correlation signal

Poisson distributed, as well as for the case when the number of detected photoevents is

fixed. The results for the moments of the correlation signal are given in Eqs. (2.27)-

(2.32) for the case when N is Poisson distributed; when N is fixed, the statistical

moments are given by Eqs. (2.43)-(2.44), and (2.48)-(2.50). The probability density

function for the correlation signal in both cases is bi-variate normal, with the form

given in Eq. (2.40).

When the reference function is entirely real, and the number of detected

photoevents N is Poisson distributed, the expressions for the statistical moments are

given by Eqs. (2.51) and (2.52); the probability density function is given in Eq. (2.53).

These results are in agreement with those first obtained by Morris1. When N is fixed,
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the mean value and variance of the correlation signal are given by Eqs. (2.54) and

(2.55) respectively, with the probability density function shown in Eq. (2.56).
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Chapter 3.

Image Correlation at Low Light Levels

3.1 Introduction

The results of the previous chapter are applicable for general reference functions

and input scenes. In this chapter, we study the case where the photon-limited input

scene is cross correlated with the classical-intensity image of the reference object. In

this case, the correlation output C(x,y) in Eq. (2.9) corresponds to that of a matched

filter. In this chapter, we begin in Section 3.2 by briefly describing the laboratory

system used to acquire the photon-limited images and perform the image correlations.

Next, in Section 3.3 the number of detected photoevents required to discriminate

among a set of detailed images is theoretically predicted for the case in which the

number of detected photoevents N is fixed. The theoretical predictions are verified

experimentally, using the laboratory system described in Section 3.2; excellent

agreement is found between theory and experiment. In Section 3.4, the recognition

performance of the correlation signal realized using a Poisson-distributed number of

detected photoevents is predicted theoretically, and compared to the performance of the

fixed N case. (The theoretical behavior of the correlation signal realized using a

Poisson-distributed number of photoevents has been previously verified via a Monte

Carlo computer simulationI). Finally, the effects of additive noise on the performance

of the recognition system are investigated in Section 3.5. A method for reducing the

effects of additive noise is suggested in Section 3.6.

40
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3.2 Quantum-Limited Imaging Systems

When a quantum-limited image is acquired using a position-sensitive, photon-

counting detection system, the system's output is a list of the spatial coordinates of the

individual detected photoevents. As indicated in Chapter 2, Eq. (2.7), the probability

of detecting a photoevent at a given location is directly proportional to the classical

intensity of the corresponding location in the input image22. This statistical sampling of

the input image provides a natural means of data compression, and provides the basis

upon which this technique for image recognition is founded.

Examples of photon-limited images are shown in Fig. 3.1. The photographs in

Fig. 3.1 were obtained using the position-sensitive, photon-counting detection system

shown schematically in Fig. 3.2. The images in the top row were obtained by detecting

the locations of 20 million photoevents, and histogramming the number of detected

photoevents at each location into 256 bins. The resulting 256 gray level images were

then displayed on a video monitor and photographed. The images realized by detecting

N=4000 and 1000 are binary.

Most photon-counting imaging systems are based on detectors that utilize a

photocathode, a stack of microchannel image intensifiers2, and an anode assembly that

is used to determine the position of detected photoevents. The main difference between

various systems that have been reported is the type of anode assembly that is used.

Anode structures that have been reported include self-scanned CCD arrays 3.4, grey-

coded masks used with a bank of photomultipliers .6, multi-anode arrays7-8, silicon-

intensified-target television cameras* 10, wedge-and-strip anodes 1, crossed-wire-grid

anodes 12, and resistive anodes 13-16. More recently, the use of delay-line readout

methods' 7" 8 have been used in place of an anode assembly, and may prove to be a
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superior method for determining the photoevent locations. Using delay-line readout

methods, spatial resolutions up to 1000xlOOO have been reported, at detection rates up

to one million per second 7.

The choice for the anode assembly that is employed in a given detection system

depends on the requirements of the particular application. For example, detection

systems that detect one photoevent at a time3-6, 11-16 can be used to detect a fixed

number of detected photoevents, and can provide temporal, as well as positional

information about each detected photoevent. The detection systems that utilize a

detector array or a vidicon tube to determine the position coordinates are preferable in

high speed applications that involve moving objects, or pulsed illumination sources.

Detection systems employing these types of anode assemblies can detect multiple

photoevents in a short time period, which are then read out in a raster format.

Temporal (time of arrival) information about the detected photoevents is lost, however,

and the number of detected photoevents in any given photon-limited image is a random

variable [see Eqs. (2.5) and (2.6)]



---- -- -- -------------------------

N:20M 

N:4K 

N:1K 

Figure 3.1 Images of engraved portraits ·
1
obtained using two-dimensional photon-counting detection system: first column, portrait 

of George Washington; second column, Abraham Lincoln; third column, Andrew Jackson. N is the number of detected 

photoevents over the entire image. The spatial coordinates of each photoevent are digitized to 8-bit accuracy. 
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For the experimental work in this thesis, it was desired to have a detection

system that allowed one to realize a quantum-limited image with either a fixed or a

random number of detected photoevents. This requirement, along with the established

commercial availability of the various components of the system, led to the choice of

the detection system shown schematically in Fig. 3.2. The operation of this system is

described as follows; an incident photon ejects an electron from the photocathode. A

potential difference is used to direct the photoelectron onto the stack of microchannel

plates. Each microchannel plate consists of a wafer of glass that is permeated by small

parallel channels; each channel is lined with a semiconducting material. As a result,

each channel acts as a photomultiplier, with the net result being a cascade of electrons

from each plate. The channels are set at an angle to enhance gain, and the plates are

arranged in V- and Z-stack configurations of the channels to reduce ion feedback. The

electron gain provided by the microchannel plate assembly is typically between 106 and

108. The resulting charge pulse from the stack of microchannel plates is directed onto

the resistive anode, using a potential difference.

The resistive layer covering the anode is terminated by electrodes at four

locations around the anode's perimeter. A potential is applied to each electrode, which

allows the charge-sensitive preamplifier and position-computing electronics to

determine the centroid of the charge distribution, and thereby determine the photoevent

location. Using resistive anodes, spatial resolutions as high as 500x500 have been

reported 14 .

The detection rates at which the resistive-anode based detectors can operate are

limited by the speed of the summing amplifiers in the position-computing electronics,

and the resolution required for a given application. Detection rates up to 200,000 per
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second have been reported 14 , with a 128x128 spatial resolution. For eight-bit

resolution, detection rates of 100,000 per second are possible 14 ' 9.

The dark noise characteristics of the various detection systems depends on the

choice of the photocathode. For example, with a bi-alkali (Cs3 Sb) photocathode,

which is primarily blue sensitive, the dark count contribution due to thermionic

emission of electrons from the cathode is typically less than 100 counts per second at

room temperature. It is possible to reduce the dark count rate further by cooling the

photocathode. In contrast, a multi-alkali (Na2KSb:Cs) photocathode (which is red

sensitive) typically produces on the order of 3000 dark counts per second at room

temperature. Depending on the particular application, these dark count rates may or

may not be important. This issue is addressed in Section 3.5.
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3.3 Correlation with a Fixed Number of Detected Photoevents

3.3.1 Theoretical Predictions

As mentioned earlier, when a photon-limited input image is cross-correlated

with a classical intensity reference image stored in computer memory, the correlation

output corresponds to that of a matched filter. Let us first consider the case where the

number of detected photoevents N is fixed. Because the reference function is real, the

probability density function for the correlation signal is Gaussian, as shown in Eq.

(2.56). For fixed N, the mean value and variance are given by Eqs. (2.54) and (2.55)

respectively.

The recognition performance was tested on the engraved portraits of George

Washington, Abraham Lincoln, and Andrew Jackson shown in Fig. 3.1. The

photographs in Fig. (3.1) were obtained using the position-sensitive, photon-counting

detection system shown schematically in Fig. 3.2. Portraits from U.S. currency were

imaged onto a two-dimensional, photon-counting detector 19 [Electro-Optical Products

Div., ITT corporation, Model F4146m]. The detector was connected to position-

computing electronics2 0 to determine the spatial coordinates of the detected

photoevents. The spatial coordinates of the detected photoevents were digitized to a

spatial resolution of eight bits in each dimension, and then sent to a microcomputer for

processing. Illumination was provided by fluorescent room lights, and a neutral

density of 4.0 was inserted between the imaging lens and detector to reduce the

observed count rate to 50,000 Hz. The detection system has a maximum detection rate

of approximately 200 Khz, depending on the spatial resolution desired. The number of

detected photoevents for the images in each row is shown at the left of each row.

One calculates the probability density functions for the photon-limited

correlation signal given in Eq. (2.9) using the classical intensity images in the top row
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of Fig. 3.1. One would expect that a fairly large number of detected photoevents is

required for accurate discrimination among these detailed objects. Hence, the normal

approximation for the PDF of C(x,y) given in Eq. (2.56) should be valid.

Since the reference and input images have the same area A, we will take the

reference window offset to be zero (i.e., the images are registered). For this case of a

real reference function and N fixed, the correlation signal C(x,y) is given by
N

C=C(0,0) = R(x,,y) (3.1)
i=l

Using Eqs. (2.54) and (2.55), the mean value and variance of C are found to be

Nff f(x', y')R(x', y')dx'dy'

<C>= A (3.2)if f(x', y')dx'dy'
A

and

NJJ f(x',y')R 2(x', y' )dx'dy0.= A <C> 2  
,(3)

- f(x',y')dx'dy' N (3.3)

A

respectively, where f(x',y') denotes the classical-intensity input image, and R(x',y') is

the real reference function (in this case the classical-intensity reference object) that is

stored in computer memory. The high-light-level image of George Washington

[N=20x 106] (see Fig. 3.1) is used as the reference function R(x',y'). The number of

pixels in the reference image is Npix=128 x 160 = 20,480. Based on Eqs. (3.2) and

(3.3), Gaussian probability density functions for the correlation signal are calculated;

these results are plotted in Fig. 3.3 for the case in which the number of detected

photoevents in the entire input image is (a) N=250, (b) N=500, (c) N=1000. Curve I
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is the PDF P(C) of the correlation signal C, in Eq. (3.1), when the input image is the

portrait of George Washington. Curve II is the PDF when the input is the portrait of

Abraham Lincoln; and curve IlI is the PDF when Andrew Jackson's portrait is input.

As one might expect, when the input scene matches the reference scene, the

photon-limited correlation signal tends to be higher (see curves I). However, when the

number of detected photoevents is too small [3.3(a)], the statistical spread in the

correlation values realized will be large enough that both noise objects sometimes yield

correlation values greater than some of the correlation values resulting from the

reference object. This is indicated by the overlap in the three probability density

functions in Fig. 3.3(a). As more detected photoevents are used to realize the

correlation signal, one observes a decrease in the variance of the correlation signal,

relative to the expected value of the correlation. This is indicated by the increasing

separation of the three curves in Figs. 3.3(b) and 3.3(c). This increase in the

separation is clearly in agreement with one's intuition, as one would expect the

accuracy of the estimate for the correlation signal to increase when a larger number of

photoevents is used to estimate the correlation.

As described in Section 2.5, one employs the theory of hypothesis testing when

making a recognition decision based on a single realization of the correlation signal.

One chooses some correlation threshold CT; if the observed correlation value exceeds

the threshold, one decides that the reference object is input. If the observed value is

less than CT, the decision is that a noise object was input. Applying the method

described in Section 2.5, the correlation thresholds for each number of detected

photoevents are chosen using the theoretical predictions for the probability density

function of the correlation signals shown in Fig. 3.3. The correlation threshold CT is

chosen such that the probability of detection is maximized and the probability of false
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alarm is minimized. When 250 detected photoevents are used to estimate the correlation

signal [see Fig. 3.3(a)], the optimum correlation threshold yields a probability of

detection of 0.951, with a probability of false alarm of 0.072. When 500 detected

photoevents are used to estimate the correlation signal [Fig. 3.3(b)], the probability of

detection is 0.995, while the probability of false alarm is 0.0011. Finally, when 1000

detected photoevents are used to realize the correlation signal, the probability of

detection is 0.99996, and the probability of false alarm is 0.00003.

This information is illustrated in Fig. 3.4 in the form of receiver-operator-

characteristic (ROC) curves. ROC curves provide a means of graphically displaying

the overall detection performance of a recognition system. In a ROC curve, one plots

the probability of detection versus the probability of false alarm one would achieve with

a given system for increasing values of the correlation threshold CT. In a perfect

system, it would be possible to choose CT such that the probability of detection would

be one, and the probability of false alarm would be zero. Hence, the ROC curve for a

perfect system would be a right angle curve, with the vertex in the upper left comer.

The performance of a given system can be measured by its deviation from that of a

"perfect" system. In Fig 3.4, the probability of detection Pd is plotted versus the

probability of false alarm Pfa when the image of Washington is the reference function,

and the images of Washington and Lincoln are input. Note that as the number of

photoevents used to realize the correlation signal increases, the system performance

moves closer to that of a "perfect" detection system.
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Figure 3.3. Probability density functions of the correlation signal when the input
image f(x',y') is the portrait of (I) George Washington, (H) Abraham
Lincoln, and (IM) Andrew Jackson. The number of detected photoevents
is (a) N=250, (b) N-500, and (c) N=1000. The reference function
R(x',y') in all cases is the portrait of George Washington with N-20

million (see Fig. 3.1).
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portrait of George Washington with N=20 million (see Fig. 3.1).
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3.3.2 Experimental Results

The theoretical predictions for the behavior of the correlation signal were tested

using the experimental configuration shown in Fig. 3.2. One thousand realizations of

the correlation signal were made for each input image. This was performed for the

number of detected photoevents N=1000, 1500, and 2000. (The number of detected

photoevents were chosen to obtain a low error rate). A tabular comparison of the

agreement between theory and experiment is given in Table 3.1 for each number of

detected photoevents. The results for the case in which N=1000 is shown in histogram

form in Fig. 3.5. One thousand realizations of the correlation signal were performed

for each input image; the image of Washington was the reference in all cases. In Fig.

3.5, the solid lines are theoretical predictions for the density function of the correlation

signal when the input object is (I) Washington, (II) Lincoln, and (III) Jackson. In Fig.

3.5, one sees excellent agreement between theoretical predictions (solid curves) and the

laboratory measurements (histograms). It is important to note that no corrections were

made for additive noise effects or dead-time effects. These effects are simply not

important when the input count rate is 50,000 Hz., and N is at least several hundred

detected photoevents. In the experiments, te dark count rate was observed to be

approximately 50 Hz. Hence, at a rate of 50,000 Hz., on average only one detected

photoevent out of a thousand is associated with additive noise. As a result, the

contribution due to additive noise is clearly negligible. For a discussion of the effects

of additive noise on the correlation signal, the reader is directed to Sec. 3.5
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Input: Washington Lincoln Jackson

Mean Sigma Mean Sigma Mean Sigma

N=1000 Theory 1.54E6 1.92E4 1.42E6 1.88E4 1.38E6 1.88E4

Exp 1.54E6 1.95E4 1.42E6 1.93E4 1.38E6 1.95E4

N=1500 Theory 2.31 E6 2.35E4 2.13E6 2.32E4 2.08E6 2.30E4

Exp 2.3 1E6 2.48E4 2.13E6 2.29E4 2.07E6 2.24E4

N=2000 Theory 3.08E6 2.72E4 2.84E6 2.66E4 2.77E6 2.65E4

Exp 3.08E6 2.68E4 2.84E6 2.7 1E4 2.77E6 2.7 1E4

Table 3.1 Comparison of theoretical predictions and experimental results for the

photon-limited correlation signal realized using various numbers of detected

photoevents. In each case, the reference image was the image of Washington (N=20

million) shown in Fig. 3.1.



55

Image Correlation
Ref: Washington

N=1 000

Jackson Lincoln Washington

P"2.0

0

%am* 1.0..

13.0 14.0 15.0 16.0c[xlo 1

Figure 3.5 Histogram of correlation values obtained from laboratory measurements of
the photon-limited correlation signal when the input objects f(x',y') were the portraits
of Washington, Lincoln and Jackson. In each realization the total number of detected
photoevents was N=1000 (see bottom row of Fig. 3.1). The reference function was
the portrait of Washington with N=20 million.
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3.4 N Poisson Distributed

As mentioned earlier, it is possible to perform photon-limited image correlation

in two ways. One way is to detect a fixed number of photoevents, and use that fixed

number of photoevents to compute the quantum-limited correlation signal. This is what

is described in the preceding section. The second way of performing the image

correlation is to detect photoevents for a fixed time; this makes the number of detected

photoevents a random variable. In the second method there is one more source of

randomness in any realization of the correlation signal, which makes the variance in the

estimate of the correlation larger. This was explained theoretically in Section 2.3. In

this section, as a means of comparing the effectiveness of the two methods, theoretical

predictions for the photon-limited correlation signals are plotted for the same input and

reference images that were used in the previous section.

For convenience, we repeat the equations for the mean value and variance of the

photon-limited correlation signal, when N is Poisson-distributed. The probability

density function is again normal, with mean value and variance given by (see Eqs.

(2.54), (2.55) and (2.7))

NJJ f(x',y')R(x', y')dx'dy'

< C >= [Jf(x',y')dx'dy' (3.4)

A

and

NJJ f (x', y')R 2 (x', y' )dx'dy'
2 = A (3.5)

G Aff f(x',y')dx'dy'

A

respectively, where once again f(x',y') denotes the classical-intensity input image, and

R(x',y') is the real reference function. In Fig. 3.6, theoretical predictions for the
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probability density functions of the correlation signal are plotted when the reference

function is the image of Washington, and the input images are again (I) Washington,

(II) Lincoln, and (III) Jackson.

The mean number of detected photoevents R was chosen to roughly achieve the

same relative separations that occurred between the density functions in Fig. 3.3, for

the fixed N case. In Fig. 3.7, ROC curves are plotted for the case when the number of

photoevents is Poisson distributed, and the input images are Washington and Lincoln.

Note that almost three times as many detected photoevents are required to achieve the

same relative probabilities of detection and false alarm that were achieved in the fixed

N case (see Fig. 3.4). This is due to the increased variance observed in the correlation

signal when the number of detected photoevents is random [see Eqs. (2.52) and

(2.55)].

At this point, it is instructive to address the issue of why, given the choice,

would one perform the photon-limited image correlation experiments using a Poisson-

distributed number of detected photoevents, when detecting a fixed number provides

the same results using fewer photoevents. Clearly, given the choice, detecting a fixed

number of photoevents is the superior method. However, there may be cases in which

it is not possible to detect a fixed number of photoevents. One important example of

this is the case in which the input to the photon-counting recognition system is a video

monitor, or some other input device that operates via a raster effect. In this case, one

must detect photons for an integral number of frame times, rather than detect a fixed

number of photoevents. The justification for this is the following. Consider the case in

which one wishes to detect , say, 5000 photoevents, and the detection rate is 50,000

Hz. It will take on average 10 milliseconds to perform one realization of the correlation

signal. Note, however, that this is only one third of the frame time of a standard video
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monitor. As a result, the raster only scanned one third of its entire pattern, so the entire

image on the video monitor was not presented to the photon-counting detection system.

Now, if one detects photoevents for an integral number of frame times, then the raster

pattern will present all areas of the image from the video monitor equally, and no

further synchronization is necessary. Additional applications in which it is necessary to

detect photoevents for a fixed time include any experiments involving the detection of

pulsed light.
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Figure 3.6 Probability density functions of the correlation signal when the input
image f(x',y') is the portrait of (I) George Washington, (H) Abraham
Lincoln, (I) Andrew Jackson. The average number of detected
photoevents is(a) R=1000, (b) R=2000, and (c) jf=3000. The

reference function R(x',y') is the portrait of Washington.
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Figure 3.7 ROC curves for Washington and Lincoln for various values of N.
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3.5 Effects of Additive Noise

3.5.1 Introduction

In two-dimensional, photon-counting detectors, the dominant source of additive

noise is associated with dark counts, due primarily to thermal emission of electrons

from the photocathode. Here, we consider the effects of additive noise on the

correlation signal for the case in which the number of detected photoevents is Poisson-

distributed, and the reference function is real.

The number of dark counts actually observed in an experimental realization of a

photon-limited correlation signal depends on the dark count detection rate, RD, the total

photoevent detection rate, RT, and the number of detected photoevents, N=Nf+ND,

used to realize the correlation signal. Here, Nf denotes the number of detected

photoevents resulting from the input image f(x,y), and ND denotes the number of dark

counts in the particular realization of the correlation signal. For example, if RT >>

RD, and N is large (say a few hundred), then the number of dark counts observed in

any given realization of the correlation signal will be small. This is the case for all of

the image recognition experiments described in the thesis. Typical experimental values

are RT = 50 KHz, RD=50 Hz., and N=1000. Given these values, the number of dark

counts actually observed in any realization of the correlation signal is approximately

one, on average. Obviously, in this case the effect of the dark noise is not significant.

The effect of the dark noise becomes significant when the input illumination is

insufficient to achieve total detection rates such that RT>>RD. In this section, the effect

of additive noise on the recognition performance of the photon-limited correlation signal
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is considered for various amounts of dark noise. To facilitate comparison, theoretical

predictions are made using the engraved portrait images shown in Fig. 3.1.

3.5.2 Effect on Recognition Performance

From Eq. (2.9), the total photon-limited correlation signal can be written as21

N, N,

C(x, y) = XR(x + xi, y + yi) + I R(x + xj,y + yj) (3.6)
i=1 j=l

where Nf is the number of detected photoevents due to the input scene f(x',y'), and ND

is the number of dark counts observed. If photoevents are detected for a fixed time,

then both Nf and ND are Poisson-distributed, and statistically independent 22. By

applying the same analysisthat was performed in Chapter 2, it readily follows that the

probability density function for the photon-limited correlation signal will again be

normal,

__ 1 F(C(x, Y) _ (C(X, Y))) 2 1
P(C(x,y)) = -exp- (3.7)

The mean value of the correlation signal is

< C(x,y) >= Nf ffp[(x',y')jf(x',y')]R(x + x',y + y')dx'dy'
A

(3.8)

+NDffp[(x',y')ID(x',y')]R(x + x',y + y')dx'dy'
A

and the variance is
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a
2 
2 Neff p[(x',y')jf(x',y')]R 2(x + x',y + y')dx'dy'

A

(3.9)

+NDf p[(x',y')D(x',y')]R2(x + x',y + y')dx'dy'
A

In Eqs. (3.8) and (3.9), p[(x',y')If(x',y')] is given by Eq. (2.7). The spatial

distribution of the dark counts will depend on the characteristics of the individual

detection system, and is denoted by D(x',y'). The probability of detecting a dark

count, given the spatial distribution of the dark counts, is given by

p[(x',y')ID(x',y')] D(x',y') (3.10)
ff D(x',y')dx'dy'
A

Note that the presence of additive noise shifts the mean of the observed correlation

signal, and increases the variance.

In Fig. 3.8, the probability density functions for the case in which Washington

is the reference, and (I) Washington, (II) Lincoln and (I1) Jackson are again input,

using R=3000 detected photoevents. Note that this is the number of detected

photoevents that provided a probability of detection of 0.982, with a probability of

false alarm equal to 0.031 ( see Fig. 3.7). In this case, various amounts of additive

noise were taken to be present in the correlation signal. In Fig. 3.8 , top, 10% noise

was present (i.e., 2700 signal photons, and 300 noise photons), in Fig. 3.8, middle,

20%, and in Fig. 3.8, bottom, 30%. In Fig. 3.9, the ROC curves are plotted for

various amounts of additive noise. Once again, the reference is the image of

Washington, and the inputs are Washington and Lincoln. The probability density of

the dark counts P((x',y')ID(x',y')] was determined by operating the photon-counting
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detection system in total dark darkness for 12 hours, during which time 2.1 million

dark counts were detected. It is important to note that the recognition performance

degrades relatively rapidly with increasing amounts of noise. A method for reducing

the effects of the additive noise is given in the next section.



65

6.0 WO- 30

3.0
IL

a.

0.0
3.2 4.2 5.2

C [xl 0 ]

6.0

0.

3.2 4.2 5.2

C [xl0 ]

3.0

0.0 L

3.2 4.2 5.2
C [x10 ]
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3.5.3 Minimizing the Effects of Additive Noise

It is important to note that the effect of the dark noise is independent of the input

image; it depends only upon the individual characteristics of the photon-counting

detector, and the reference function that is chosen for a particular realization of the

correlation signal. Hence, the effects of the dark counts can be reduced. For example,

consider the case in which the additive noise accounts for 50% (on average) of the total

detected photoevents, and it is determined that an average number of 3000 photoevents

is required to accurately recognize the input image in the absence of noise (as is the case

for the images of the presidents used in this chapter, when N is Poisson-distributed).

To reduce the effects of the dark noise, one would do the following. First, one would

recognize that the correlation signal must be realized using N=6000 detected

photoevents, as only 3000 (on average) of those result from the input signal. Next,

one computes the bias that must be subtracted from the experimental measurement of

the photon-limited correlation signal. This bias is given by the second term in Eq.

(3.6). Note that this bias is different for each reference function. Subtraction of the

bias will reduce the effects of the noise on the mean value of the correlation signal, but

it does not reduce the variance. Hence, it is not possible to eliminate the effects of the

dark noise entirely, but the effects can be greatly reduced.

If one is to use this bias sibtraction method in recognition experiments, one

must obtain theoretical expressions for the probability density function, mean value,

and variance of the "corrected" correlation signal. In this case, the corrected correlation

signal C'(x,y) can be written as

NND

C'(x,y) = R(x+ xi,y+ yi) + R(x+ xj,y+yj)- BD(x,y) , ,3.11)
i-I j=1

where the bias that is subtracted, BD(X,.y) , is given by
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BD(x,y) = NDffp[(x', y')ID(x ' , y')]R(x + x',y + y')dx'dy' (3.12)
A

The probability density function is obtained from the "uncorrected" PDF by making the

following change of variables. Let C'(x,y)=C(x,y) -BD. It follows directly that the

PDF for C'(x,y) is given by

1 (C,(XY)- (C'(x, Y))) 2 }

P(C'(x,y)) = exp - {( 2"-x"y) . (3.13)

where the mean value <C'(x,y)> is given by

Nf if f(x', y')R(x', y' )dx' dy'

< _'- A (3.14)
C= f (x', y')dx'dy'
A

and the variance 0,2 is given by Eq. (3.9). Note that the bias subtraction has eliminated

the shift in the mean value, but did not correct the increase in the variance.

In Fig. 3.10, ROC curves are plotted for various amounts of additive noise.

Once again, the reference is the image of Washington, and the inputs are Washington

and Lincoln. Note that the performance does not degrade as rapidly with increasing

amounts of noise, when the bias term BD(X,y) [see Eq. (3.12)] is subtracted.

Comparing Fig. 3.10 with Fig. 3.9, it is important to note that the effect of the bias

subtraction is greatest when the amount of noise is large (e.g. ND=900.) This is

indicated by the fact that the ROC curve in Fig. 3.9 for the case when ND =900 comes

closer to the upper left hand comer of the graph than the corresponding curve in Fig.

3.8. In other words, the probability of detection increases at a faster rate with the bias
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subtracted. Comparing the curves for ND =300 and ND=600 in Figs. 3.8 and 3.9, the

improvement due to the bias subtraction is less pronounced, as one might expect.

In practice, to obtain the best recognition performance in the presence of a

known amount of additive noise, one would subtract the appropriate bias, given in Eq.

(3.12) from experimental realizations of the correlation signal. Theoretical predictions

for the recognition performance can be made using Eqs (3.9), (3.13) and (3.14).
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Figure 3.10 ROC curves for Washington and Lincoln in the presence of various

amounts of additive noise, with the bias subtracted. In all cases, the total
average number of detected photoevents is 9=3000.
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3.6 Summary

In this chapter, the behavior of the correlation signal, realized by cross-

correlating a photon-limited input image with a classical-intensity reference image, is

analyzed for various cases. In Section 3.3.1, theoretical predictions are made for the

behavior and recognition performance of the photon-limited correlation signal realized

using a fixed number of detected photoevents. The images used in the recognition

experiments are shown in Fig. 3.1. The theoretical predictions are verified

experimentally in Section 3.3.2, where excellent agreement is obtained between theory

and experiment (see Fig. 3.5). In Section 3.4 the behavior of the correlation signal

realized using a Poisson-distributed nurber of detected photoevents is analyzed using

the same input images. The recognition performance is compared to the case in which

the number of detected photoevents is fixed; the fixed-N method is found to yield

superior results. Finally, in Section 3.5.1, the effect of additive noise on the

recognition performance of the photon-limited correlation signal is analyzed.

Theoretical predictions are plotted in Figs. 3.8 and 3.9. In Section 3.5.2, a method for

reducing the effects of additive noise is described, with the results plotted in Fig. 3.10.
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Chapter 4

Rotation-Invariant Image Recognition at
Low Light Levels

4.1 Introduction

The earliest attempts at performing rotation-invariant image recognition avolved

the use of a multiplexed frequency plane filter, which was initially suggested by Vander

Lugt1 . The multiplexed filter is produced by recording several matched filters at the

same spatial location in the Fourier transform plane, where each filter is matched to a

different in-plane rotational orientation of the reference object. Clearly, the holographic

implementation of this method becomes cumbersome for complex objects, since many

orientations must be recorded to achieve satisfactory recognition performance. For

example, Casasent and Psaltis2 reported that when a reference object was rotated by 3.5

degrees, or changed scale by 2% with respect to the input, the output signal-to-noise

ratio (SNR) of the correlation peak dropped from 30 dB to 3 dB. (The rate of decrease

in SNR inceases with the space-bandwidth product of the image). These results imply

that as many as 360 orientations must be recorded, as well as a large number of

different sizes. While this technique is difficult to perform holographically, a digital

ir' -mentation may be practical at some point in the future when many megabytes of

memory ar-. cheaply available for standard digital processors.

An elegant solution to the problem of rotation-invariant image recognition is the

method of rotation-invariant filtering. A rotation-invariant filter is a correlation filter

whose correlation output remains unchanged when the input function undergoes an in-

plane rotation. In addition, the correlation output should be a maximum when a

74
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reference function that is to be identified is input. Various types of rotation-invariant

filters have been suggested. These include the complex circular-harmonic filter3-8, the

"lock and tumbler" filter9,10 , synthetic discriminant functions 11-21 and phase-only

filters22-24. More recently, neural networks25 have been employed to perform rotation-

invariant pattern recognition and pattern classification 26.

The theoretical formalism presented in Chap. 2 can describe the behavior of all

of the above filters at low light levels. For this work in rotation-invariant image

recognition at low light levels, a correlation filter was selected that required no pre-

processing of the input scene. The filter that was most suited to this work was the

rotation-invariant circular-harmonic filter. The circular-harmonic filter has been shown

to be effective in gray-level images, and can provide information about the orientation

of the reference object3-8. The lock and tumbler filter 9.10 has primarily been used with

binarized images, and synthetic discriminant functions 11-20 are used primarily for

image classification, as opposed to image recognition. Because this is a digital

implementation of the correlation filtering, there may be no advantage to the use of a

phase-only correlation filter. The phase-only filter's primary advantage is realized in

optical implementations, where the phase-only filter has a much higher diffraction

efficiency than a phase and amplitude filter22. The theoretical formalism presented

here, and in Chapter 2 can, however, predict the behavior of all of the above filters

when implemented at low light levels.

The rotation-invariant circular-harmonic filter is briefly reviewed in Section 4.2.

In Section 4.3, the theory required to analyze the performance of the circular-harmonic

filter at low light levels is presented. Experimental confirmation of the theory detailed

in Section 4.3 is presented in Section 4.4. Rotation-invariant recognition from within a
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cluttered environment is addressed in Section 4.5, and some additional issues are

discussed in Section 4.6

4.2 Rotation-Invariant Filtering using Circular-Harmonic

Functions

Any two-dimensional function f(r,O) can be represented in terms of its circular-

harmonic components as follows:

f(r,0) = F (r,0)exp (im0) , (4.1)

where

Fro(r)= 2t ff(r,)exp( im0)dO (4.2)

In Eq. (4.1), Fm(r,0) is known as the mth circular-harmonic component of the function

f(r,O). Other investigations have shown 3-8 that rotation-invariant filtering can be

achieved by taking the reference function Rm(r,O) to be the complex conjugate of a

single (or multiple) circular-harmonic component(s) of the reference object R(r,0),

e.g.,

R(r,O) = R*(r)exp(-im0) , (4.3)

where Rm(r) is _ .en by Eq. (4.2). The cross-correlation of in input function f(r,0)

with Rm(r,O) is given by

C(r,0) = f JR*(r + r', 0')f(r',0')r'dr'd0' (4.4)
0 0
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Using the expansion in Eq. (4.1) for f(r,O) and substituting for f(r,O) in Eq. (4.4)

yields

C(r,0) = 27i~R*(r + r')F (r')r'dr' (45)

0

which, when properly normalized attains its maximum when Rm(r)=Fm(r). (The

normalization issue is addressed in Sec. 4.5). Note that only the mth circular-harmonic

component of the input contributes to the correlation output; this is the result of the

orthogonality of the theta integration. In addition, the limits of the r integration are

limited to the area of the reference object. If the input function is rotated by an angle cc

with respect to the reference, the correlation signal becomes

C(r,cc) = C(r,O)exp(ima) (4.6)

The effect of rotating the input by an angle ac with respect to the reference is contained

entirely in the phase term exp-(imcc). Therefore, the squared modulus of the

correlation signal is independent of the rotation angle ca; i.e.

IC(r,a)12 = JC(r, 0)12  (4.7)

independent of the orientation angle alpha. If the reference image is input, then

Gm(r)-Fm(r), and the integral in Eq. (4.5) is real-valued. Hence, the orientation of the

reference can be obtained from the phase of the correlation signal. The orientation

angle cc is given by

i it I m{C(r, a))Sl;Jtan[ReC(r))] (4.8)
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which can be easily calculated when the correlation is implemented digitally. The

rotation angle (x is far more difficult to obtain in an optical implementation, because

most detection systems are intensity-based.

The magnitude of the correlation signal in Eq. (4.7) will depend on which order

harmonic is chosen as the reference function. The optimum circular-harmonic reference

function can be determined using the Hotelling trace criterion*. Also, it is evident from

Eq. (4.7) that the magnitude of the correlation signal, though independent of the

orientation, is dependent on the offset position, r.

Moreover, the magnitude of C(r,c) is dependent on the location of the point in

the reference image about which the reference circular harmonic was expanded; this

location is referred to as the expansion center4 . By definition, the optimum (or proper)

center is the expansion center that produces the highest autocorrelation peak when the

reference image is cross-correlated with the reference circular harmonic. To identify the

optimum expansion center, one must perform an exhaustive search of all possible

locations in the reference image. However, one does not need to compute an entire

circular-harmonic component for each possible expansion center. Using Eq. (4.5), one

can see that the output correlation signal is given by the cross-correlation of the radial

parts of the circular harmonics in question. Hence, it is sufficient to use Eq. (4.2) to

compute Rm(r) by expanding about each point on the reference image. The expansion

center that will produce the highest autocorrelation peak is identified by computing the

value of

0R*(r')R (r')r' (4.9)
0
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for each expansion center location. The point where Eq. (4.9) achieves its maximum

value is then the optimum choice for the expansion center of the reference harmonic.

The location of the proper center may be different for each order circular

harmonic. In many cases, when the centroid of the input object is used as the

expansion center, the resulting autocorrelation peak is sufficient to provide accurate

rotation-invariant recognition4,6,27. This is particularly true for applications in which a

single object is identified within an uncluttered scene. However, the goal is to locate an

object from within a cluttered scene, it is imperative that the proper center be used 6. In

addition, it may be necessary to employ proper normalization [such as the Schwarz

inequality , (see Eq. (1.1))] of the correlation signal when operating in a cluttered

environment. Inherent limitations often make this difficult in standard optical and

digital implementations of the cross-correlation; in the low-light-level implementation it

is possible, at least in part, to perform a normalization in real time. This is discussed

further in Sec. 4.5.

4.3 Rotation-Invariant Filtering at Low Light Levels

Rotation-invariant filtering at low light levels is achieved by cross correlating a

photon-limited input scene f(r,O) with the complex conjugate of the mth circular-

harmonic component of a reference image R(r,0). The mean value of the correlation

signal, <C> = <C'> + i<C"> is given in polar coordinates by (see Eqs. (2.43)-(2.44),

with Eqs. (4.3) and(4.6))

27ENexp{ima}J0f} R. (r + r')f,, (r')r'dr' (4.10)< C(r, at) >= 0(.)
f f(r',0')r'dr'dO'

A
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Note that the squared modulus of the numerator in Eq. (4.10) attains its largest value

when the input image is the same as the reference image, just as in Eq. (4.5), when the

correlation signal is properly normalized. Also note that the mean value of the complex

correlation signal is proportional to the high-light-level correlation signal. Because the

rotation angle again appears only as a phase term, the squared modulus of <C(r,C)> is

invariant with respect to the orientation of the input image.

Even though the squared modulus of the mean value of the photon-limited

correlation signal is rotation invariant, it is desirable to obtain a rotation-invariant

estimate for the correlation signal with a single realization of the correlation signal,

rather than perform enough realizations to obtain an accurate estimate for the mean

value. Hence, the probability density function for the squared modulus of the

correlation signal is required to predict probabilities of detection and false alarm for a

given number of detected photoevents N. To find the probability density function for

1C12 , the following change of variables is made in Eq. (2.40): let

C'(x,y) =IC(x,y)lcosy, C"(x,y) =IC(x,y)jsin 'y , (4.11)

where IC12 and y are given by

IC(x, y) 2 = C'2 (x,y)+ C"2 (x,y) , = n-C,(xy)) (4.12)

The marginal density function for the squared modulus of the correlation signal P(IC12) can

then be written as
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p(02) = 1 f2% dy {
47(l1 p2)2 oy"

ex -1 IC2cos2(y)-21CI < C'> cos(y)+ < C'> 2

p!2(1- p2) 0,2

-C12 cos(y)sin(y) - ICI[< C" cos(y)+ < C'> sin(y)]+ < C'>< C">-2p (4.13)

1C2 sin 2(y) - 2 < C" > ICIsin(y)+ < C> 2

Unfortunately, a closed for solution to the integration in Eq. (4.13) does not exist in

general28. However, the integration is readily performed numerically. Equation (4.13)

can be used to generate theoretical predictions for the probability distribut-..Is for the

squared modulus of the correlation signal when the various objects are correlated with a

reference circular harmonic.

If the input image is the same as the reference image, then one can compute the

probability density function for the rotation angle (x by noting that y = mca [see Eqs.

(4.8) and (4.12)]. The marginal density function for the rotation angle of the input is

obtained using Eqs. (4.11), (4.12) and (2.40):
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P(a) = 1 ; fdlC12{
41r(l _ p2)2 o' o"l

_ -1 IC2cos2(m__)- 21CI < C'> cos(ma)+ < C,> 2

fx 2(1- p2) _ G,2

2 ICI2 cos(ma)sin(ma) -ICI [< C"cos(mca)+ < C> sin(mca)]+ < C'>< C"> (414)

+ IC12 sin2(ma)-2 < C"> ICI sin(mc)+ < C">2'

By using Eq. (4.14) it is possible to predict the accuracy in the determination of the

rotation angle ox for a given number of detected photoevents N.
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4.4 Experimental Results

Experiments were performed to test the low-light-level performance of the

complex circular-harmonic filter for both image discrimination and the determination of

the rotation of the reference object. This was performed for the case of recognition of a

single object in a dark background, and for the case of an object in a cluttered

background. The system configuration is repeated in Fig. (4.1). In the first

experiment, 35-mm format input scenes illuminated by an incoherent light source were

imaged onto a two-dimensional, photon-counting detector. A neutral density of 10 was

inserted between the input scene and detector to obtain an acceptable count rate; in this

case the count rate was approximately 30 KHz. A dark count of approximately 50 Hz.

was observed at room temperature.
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Microchannel Aoe

Photocathode Plates

Figure 4.1 Schematic diagram of resistive-anode based photon-counting detection
system.
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Fig. 4.2 Input Objects and associated second-order circular-harmonic components. 
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Figure 4.2 shows the input images and their associated circular-harmonic

components used in the correlation experiments. The vise-grips were taken as the

reference object, with a pliers and crescent wrench as test objects. In all of the

experiments performed, the complex conjugate of the second circular-harmonic of the

vise-grips (computed about the centroid of the object) was chosen as the reference

function (see Eq. (4.1) and Fig. 4.2). The correlation signals were realized by

detecting a fixed number of photoevents, as discussed in Chapter 2. Equation (2.9)

was used to compute the correlation signal and the rotation angle of the input with

respect to the reference was estimated using Eq. (4.8).

To demonstrate the recognition performance of the circular-harmonic filter at

low light levels, the complex correlation signal was computed with the input image

rotated through angles of 0, 90, 180, and 270 degrees with respect to the reference

image. One thousand measurements of the correlation signal were performed for each

input scene (at each orientation) for different values of N (N=500, 1000, 2000 and

3000 detected photoevents).

The mean values and standard deviations of the probability density function for

the squared modulus of the correlation signal obtained by using each input scene for

N=3000 detected photoevents are shown in Table 4.1. Note that the mean value of the

squared modulus of the correlation signal is the same for each orientation of the vise-

grips.
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Input Image Theory Experiment

f(x',y') <1C12> a <i1 2> U

Vise Grips: a=O°  1.60E9 7.85E7 1.51E9 7.47E7

Vise Grips: a=90°  1.60E9 7.85E7 1.58E9 7.67E7

Vise Grips: a=1800 1.60E9 7.85E7 1.58E9 7.68E7

Vise Grips: a=2700 1.60E9 7.85E7 1.58E9 7.55E7

Wrench: a=00 9.71E8 6.07E7 9.69E8 6.39E7

Pliers: a=00  7.06E8 5.36E7 7.03E8 4.55E7

Table 4.1. Comparison of theoretical predictions and experimental results for the

expected values and standard deviations of the squared modulus of the correlation

signal. The number of detected photoevents is N=3000.

A histogram of the correlation values obtained using 3000 detected photoevents

is shown in Fig. 4.3. In the figure, I indicates the range of correlation values observed

with the vise-grips input rotated by 90 degrees with respect to the reference, II shows

the range of correlation values with the wrench input, and III shows the range of

correlation values obtained with the pliers input. The solid curves represent theoretical

predictions for the probability density function for the squared modulus of the

correlation signal IC12 = IC(0,0)12. These curves are obtained by performing the

integration in Eq. (4.13) numerically, using expressions for the mean values and

variances given in Eqs. (2.41)-(2.42) and (2.48)-(2.50).
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Figure 4.4 shows a histogram of values of the orientation angle a obtained

from 1000 measurements of the complex correlation signal realized by using 3000

detected photoevents with the vise-grips rotated by 90 degrees with respect to the

reference. The rotation angle ax is obtained from the correlation signal using Eq. (4.8).

The solid curve is the theoretical prediction of the probability density function for the

rotation angle a. The solid curve is obtained using Eq. (4.14) , with Eqs (2.41)-

(2.42), and (2.48)-(2.50). In the experiment, the mean of P(a) was 89.6 degrees, and

the standard deviation was 0.705 degrees.

In Fig. 4.5, the probability of false alarm and the probability of detection (ROC

curves) are plotted for the vise grips (input rotated by 90 degrees) and for the crescent

wrench for different values of N. Note that as the number of detected photoevents used

to realize the correlation signal is increased, the recognition performance increases. For

N = 3000, it is possible to set a decision threshold such that the probability of making

an incorrect decision is less than 1 x 10-5.

With a fixed number of detected photo, vents, the standard deviation of the real

and imaginary parts of the correlation signal (see Eqs (2.48)-(2.49)) is less than for the

case when N is Poisson-distributed. This characteristic is true for the modulus of the

correlation signal as well. This is demonstrated in Fig. 4.6. The two density functions

in Fig. 4.6 are theoretical predictions for the squared modulus of the correlation when

the vise grips are input at an angle of 90 degrees with respect to the reference. The

smaller standard deviation in the modulus of the correlation signal results in a larger

separation of the density functions using smaller numbers of detected photoevents.

Hence, if one has the choice of realizing the correlation signal using either a fixed

number of detected photoevents or a Poisson-distributed number of photoevents, one

would usually choose to have N fixed.
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Figure 4.3 J:Iistogram of experimental values of the squared modulus of the 

correlation signal when the input image is I, vise grips, rotated by 90 de g. 

with respect to the reference; II crescent wrench; and lll, pliers. The 

reference function is the second circular-harmonic of the vise grips 

(see Fig. 4 .2), and the number of detected photoevents is N=3000. 
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1.0

N = 1000

-N=-500
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0.1 P 02 0.3

Figure 4.5 ROC curves for the vise grips and crescent wrench. The vise grips are
rotated by 90 degrees with respect to the input.
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Figure 4.6 Comparison of theoretical probability density funcitons for the squared

modulus of the correlation signal when the number of detected

photoevents is fixed (N=3000) and when the number of detected
photoevents is Poisson distributed (9=3000). The input image is the vise

grips rotated by 90 degrees with respect to the input.
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4.5. Rotation-Invariant Recognition in a Cluttered

Environment

4.5.1 Introduction

Past work 6, 10 using circular-harmonic filters in a cluttered environment has

been largely unsuccessful. The primary reason for this fact is that in conventional

implementations of the cross correlation, it is difficult to perform the proper

normalization of the correlation signal. The proper normalization of the cross-

correlation function between an input scene and the circular-harmonic filter is given by

the Schwarz inequality. The Schwarz inequality 29 , describes the normalization

required for the cross-correlation between two functions A(r,0) and B(r,0) to attain a

maximum at the origin; i.e.

2x~

SjA(r + r',0 + 0')B * (r',0')r'dr'd0 <
000

jla(r',0' )12 r'a'd0' f jIB(r',0t)12 r'dr'd0) (4. 15)
0 0 )(0 0

Note that relation (4.15) attains a maximum when A is equal to PB, where P is a

constant. Examining Eq. (4.5), one sees immediately that the proper normalization for

the squared modulus of the correlation function is given by

ma 2

el F. (r + r')Rm (r')r'dr'

IC(ra)12 -R m ax (4.16)

f IF. (r' A 2dr' f JIR,, (r')I2dr '

where Fm(r') is the radial part of the m th circular-harmonic of the input scene,

computed about each location in the input scene. Rm(r') is the radial part of the
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circular-harmonic reference function, and is obviously the same for all points in the

correlation function. In Eq. (4.16), the limits of integration have been truncated to a

value Rmax, which is typically determined by the location of the proper expansion

center of the reference object, and by the size of the reference object. Note that a

different normalization is required for each point in the correlation function. For

example, if the input scene is 512x512 pixels, and the reference circular-harmonic

function is 64x64 pix-ls, then Gm(r') must be computed [See Eq. (4.2)], and integrated

at 28,672 points. Clearly, this is very difficult to perform in real-time with most digital

processors, and is also difficult to perform optically.

In the low-light-level implementation, the mean value of the correlation signal

was proportional to the numerator of Eq. (4.16), but was divided by the integrated

intensity of the input scene that fell within the reference function window [see Eq.

(4.10)]. This 'energy normalization' occurs naturally as a result of the photon

statistics. While this is not the type of normalization that will guarantee that the

correlation function will attain a maximum, it will prevent very bright areas of the input

scene from causing the correlation signal to exceed a predetermined threshold and cause

a false alarm. This energy normalization was sufficient to allow excellent recognition

performance in the examples discussed in Section 4.4. However, this normalization is

often insufficient to achieve accurate detection of objects from within a cluttered scene,

such as that shown if Fig. 4.7. For example, in this case the modulus of the mean

value of the correlation signal (Eq. (4.10) did not allow the trucks to be recognized

from within the clutter present in the scene. Using photon-counting techniques, it is

possible to obtain a real-time normalization that will improve the recognition of the

performance of the circular-harmonic filter when operating in cluttered environments,

such as Fig. 4.7.
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4.5.2 Normalization using Photon-Counting Techniques

Using photon-counting techniques, it is possible to compute a normaliztion for

the output correlation signal that is superior to the "energy" normalization that occurs

naturally as a result of the photon statistics. However, a method of computing the

normalization suggested by the Schwarz inequality in real time has not been obtained.

In this section, the method for computing this improved normalization is described.

As indicated in Section 4.5.1, normalization by the quantity suggested by the

Schwarz inequality requires that the circular-harmonic of the input be computed at

every point in the input scene. By choosing the proper reference function, it is

possible to compute an approximation for the Schwarz inequality normalization.

If a photon-counting detection system is used to recognize multiple objects from

within a cluttered environment, it is necessary to utilize a reference scene window.

This is due to the fact that the correlation filtering is performed in an image plane; as a

result, a search of the input scene must be performed by moving the reference window

throughout the input scene. An effective means of performing this search is discussed

in Chapter 6; for now, let us assume that the reference window is moved sequentially

over every possible point in the input, and it desired to compute the normalization factor

at each point.

Consider the case in which one chooses, in parallel, two different reference

functions RI(r,O) and R2(r,O). Let R, be a circular-harmonic component of the

reference function, computed about its proper center. In addition, let R2(r,0) be given

by

R2(r,O)=exp-(imO) , (4.17)
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where the origin of the polar coordinate system is taken to be the location in the input

scene for which the normalization factor is being calculated. When the photon-limited

correlation signal is calculated at a given offset, a fixed number of detected photoevents

N are detected in Cartesian coordinates, and then converted to polar coordinates relative

to the location of the reference window within the input scene. The correlation signals

Cj(0,0) andC 2(0,0) are calculated using Eq. (2.9), with the reference functions given

in Eqs. (4.3) and (4.16), respectively. The mean value of C1 is once again given by

Eq. (4.10). The mean value of C2 is given by [using Eqs. (2.43) and (2.44)]

Rmax 2x

JJ f(r',6')e-'-ArtdrtdO'
_ 0<C 2 (0,0) > =  Rmax 2 (4.18)

fJ ff(r',0')r'dr'dO'
0 0

Using Eq. (4.2), Eq. (4.18) can be re-written as

R max

f F. (r')r'dr'
< C2(0, 0 ) >= R.. (4.19)

f f f(r',O')r'dr'dO'
0 0

Hence, dividing the squared modulus of <C1> by the squared modulus of <C2>, and

aividing by the integral of the squared modulus of Rm(r), one obtains

1< C, > 2 1 fF,(r')Rm(r')r'dr(

j< C2 >12 - s j 2 IRr )12  (4.20)
f F.m (')'d I Rn r rr

0 0

Comparing Eq. (4.20) with Eq. (4.16), one sees immediately that the normalization

obtained using the photon-counting technique is slightly different than that required by
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the Schwarz inequality. In the photon-limited case, the normalization factor in the

denominator is

Rmax /

J F.,(r')r'dr , (4.21)
o 1

while the Schwarz inequality requires that

R max

f IF. (r')I2r'dr' (4.22)
0

be present in the denominator. Because the Schwarz inequality is not satisfied with the

photon-limited normalization, it is not guaranteed that the peak value(s) of the

correlation function for an entire input scene will be the result of the cross-correlation

with the reference object(s). However, in the case of the cluttered input scene shown in

Fig. 4.7, encouraging results were obtained using this normalization; with the original

energy normalization, accurate identification of the trucks in Fig. 4.7 was not possible.

As a result, the effectiveness of this normalization must be tested on a case-by-case

basis.

Just as in Section 4.4, it is desirable to obtain an estimate for the normalized

correlation signal using a single realization of the correlation signal, rather than perform

a large number of realizations and obtain the mean values indicated in Eq. (4.20). At a

given position in the input scene, the estimate for the normalized correlation signal will

be obtained by detecting a fixed number of photoevents, and computing correlations

C1(0,0) (22(0,0) using Eq. (2.9), with the reference functions given in Eqs. (4.3) and

(4.16), respectively One then computes the ratio IC1(0,0)12 / lC2(0,0)12 to determine

the estimate for the normalized correlation signal. Hence, it is necessary to obtain an

expression for the probability density function for the ratio of the moduli of the two
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correlation signals, if one is to predict the recognition performance for a given reference

function and input scene.

We define the new variable Z such that

c 2,  IC212. (4.23)
11

If different photoevents are used to realize each correlation signal, then the random

variables 4 and 1 will be statistically independent. Hence, the density function for P(Z)

will be given by30

P(Z) = fr/P,2(Z77) P7,(1) d7 , (4.24)
0

where P4(Zril) is obtained by substituting Zil for IC12 in Eq. (4.13). The expressions

for the mean values and variances are obtained using Eqs. (2.43), (2.44), (2.48),

(2.49) and (2.50), with the reference function given in Eq. (4.3). Similarly, the

probability density function P.,(TI) is obtained by substituting T1 for 1C12 in Eq. (4.13).

In this case, the mean values and variances are obtained using the reference function

given in Eq. (4.17). Clearly, the integrations in Eq. (4.24) cannot be performed

analytically, however it is straightforward to perform them numerically. It is important

to note that these calculations are performed in advance of any recognition experiments,

and is not a limitation to this method for image recognition.

A typical environment that was tested is illustrated in Fig. 4.8. The input scene

(lower left) (512x512 pixels) is a portion of the aerial photograph shown in Fig. (4.7).

The reference object (64x32 pixels) (top left) was chosen to be the top truck in the

center of the input scene. The reference function used was the 2nd circular-harmonic of

the truck, computed about its proper center. The proper center was chosen using the
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technique described in Section 4.2. Theoretical predictions for the squared modulus of

the mean value of the normalized output correlation signal divided by the number of

detected photoevents is shown in the lower right of Figure 4.7. This is analogous to

the high-light-level correlation output. The mean values at each point in the correlation

function were obtained using Eq. (4.24). Note that, properly thresholded, the output

correlation signal can be used to identify four of the six trucks in the input scene. Only

the "double truck" located in the center of the input scene is not identified.
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64 x 28 (magnified) 
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Filter [64 x 64 (magnified)] 
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Figure 4.7 Rotation-invariant filtering in a cluttered environment. Top left. reference object; top right, second circular­

harmonic of reference object; bottom left, input scene; bottom right, output correlation function. 
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4.6. Discussion

The experimental results obtained show that rotation-invariant image recognition

can be achieved with quantum-limited images. Excellent experimental agreement was

observed between the theoretical predictions for both the probability density functions

of the output correlation signal and orientation angle ac.

One advantage in the use of circular-harmonic components of a reference image

for rotation-invariant image recognition is that the rotation angle of the reference object

can be obtained from the phase of the correlation signal. However, depending on the

order of the harmonic used as the reference, there are certain ambiguities in the rotation

angles that are determined from the correlation signal. For example, let m=2 in Eq.

(4.6), and assume that the reference object is input, which makes C(r,0) real. Equation

(4.6) can then be rewritten as

C(r,c) = C(r,0)[cos(2cc) + i sin (2cc)] (4.25)

Note that the phase of the correlation signal will have the same value if c'=cC+ir.

Hence, the orientation of the reference is not uniquely determined. (This result can also

be obtained by observing the 180 degree symmetry in the real and imaginary parts of

the second harmonic components in Fig. 4.1.) When the correlations are performed at

low light levels, this problem is easily solved. One simply rotates the coordinates of a

few detected photoevents by i/4 radians, and observes the change (if any) in the sign

of the phase of the correlation signal. Using this sign information the rotation angle can

be uniquely determined. It should be stressed that only a few tens of detected

photoevents need be rotated, and that the angle through which they are rotated depends

on the order of the harmonic that is used as the reference.
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4.7 Summary

The recognition performance of the circular-harmonic filter is investigated at

low light levels. Theoretical expressions are given in Section 4.3 for the probability

density function of the correlation signal realized by cross-correlating a photon-limited

input image with a circular-harmonic of a reference image. The theoretical predictions

are verified experimentally in Section 4.4 (see Figs. 4.3 and 4.4), with excellent

agreement between theory and experiment. In Section 4.5, the circular-harmonic filter

is employed in an application to recognition within a cluttered environment, with

encouraging results (see Fig. 4.8).
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Chapter 5

Monte Carlo Estimation of Moment Invariants for
Pattern Recognition

5.1 Introduction

Moment invariants have been used for invariant pattern recognition for many

years. Since introduced by Hu1, moment techniques for pattern recognition have been

applied to image recognition problems ranging from scene matching in satellite images2

to character and ship recognition 3-6 , with varying degrees of success. Recent

derivations of complex moment invariants7,8 have yielded improved results and have

renewed interest in this method for image recognition.

One major drawback to the use of moment invariants for pattern recognition is

the massive amount of numerical computations necessary to determine the invariant

moments for a given image; this computational complexity makes it difficult to

compute moment invariants in real time2. Several authors have demonstrated novel

optical-digital hybrid methods for computing invariant moments10 -15. These methods

often employ the use of coherent scene illumination, which may be impractical in some

applications. In this chapter, a real-time Monte Carlo method for estimation of

moment invariants that works with incoherent input scene illumination is presented. It

is demonstrated that estimates for moments of circular harmonic functions 16-18 can be

determined in real time using a position-sensitive photon-counting detection system 19

in which the locations of individual detected photoevents serve as the source of

random numbers for the Monte Carlo algorithm 20-21. The detection system is

intensity based, which eliminates the need for coherent illumination; virtually any

105
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incoherent source is sufficient. This method for moment computation has the added

advantage that the moment invariants are computed without digitizing the input scene.

Herein, we demonstrate that the information provided by the spatial coordinates

of a few thousand detected photoevents can yield an accurate estimate for complex

moment invariants of a given input image. The detection system employed here can

detect photoevents at rates up to 100 kHz., which makes it possible to compute

estimates for complex moment invariants in a few tens of milliseconds. It is the speed

of the photon-counting detection system coupled with the fact that only a small number

of detected photoevents are necessary to get an accurate estimate for the moment

invariants that makes this photon-counting technique advantageous. Theoretical

predictions for the accuracy to which moment invariants can be determined for a given

number of detected photoevents are described, and tested experimentally.

The basic technique of moment invariants for pattern recognition is briefly

reviewed in Section 5.2. In Section 5.3, we present the results of the theory for

computing estimates for moment invariants using photon-counting techniques; the

details of the relevant statistics are provided in Appendices A and B. Experimental

confirmation of the theory is given in Section 5.4.
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5.2 Moment Invariants for Pattern Recognition

5.2.1 Basic Definitions

The use of invariant moments for pattern recognition was first introduced by

Hu1. The invariant moments are based on the geometrical moments mq of an image,

mpq =f ff(xy)xPyqdxdy , (5.1)

where f(x,y) is the input image in question and p and q are non-negative integers. Hu

defines a set of moment invariants that are a nonlinear combination of the geometrical

moments; these moment invariants are theoretically invariant with respect to shift, scale

and rotation. The major limitations of Hu's moments are the large dynamic range of the

various orders2 , the accuracy to which the moments must be computed to produce

adequate recognition capabilities 15 and their poor performance under less than optimum

(i.e. noisy) conditions2 . It has been demonstrated that accurate computation of Hu's

moment invariants requires values for the geometrical moments to be accurate within

1%2,9.15. This accuracy requirement makes the computation of the geometrical

moments particularly susceptible to quantization errors in digital computations 2.9, and

is the limiting factor in the design of optical-digital hybrid systems for computing Hu's

moment invariants.

Several variations on Hu's moments have been suggested. Reddi24 suggested a

change to polar coordinates, which allows radial and angular moments to be computed.

This type of moment is less susceptible to quantization errors24. More recently, Abu-

Nlastafa and Psaltis 7,8 proposed the use of complex geometrical moments Cpq, defined

as
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Cpq=f Jf(xy)(x+iy) p (x-iy) q dxdy (5.2)

They showed that these complex moments could be used to define a set of moment

invariants, and related the complex moments to certain circular-harmonic components 16

of the image.

5.2.2 Radial Moments of Circular-Harmonic Functions (CHF's)

Sheng and Arsenault 17 and Sheng and Duvernoy 18 showed that a particular

case of a general descriptor, namely a Fourier-Mellin descriptor, produced a more

general complex moment invariant; i.e., they defined a moment invariant by using

radial moments of the circular-harmonic components of an image. This moment

invariant combines many of the desirable prope,'tie- of the radial and angular moments

described by Reddi24 , and the complex moments defined by Abu-Mostafa and

Psaltis7,8 .

The Fourier-Mellin descriptors m are defined as

Ms,m= 2 frs-lf(r,O)exp(-ime)dr d0 , (5.3)
00

where m is an integer, and s is, in general, complex. Note that this is actually a radial

Mellin transform of the mli circular harmonic component of the input scene f(r,O).

However, in the special case in which s is an integer, Msm becomes a radial moment of

the circular-harmonic components of the image. The descriptors Ms,m are used to

define moment invariants (Zs,m as follows:

s,m - IMs,mI (5.4)

NS,01
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The moments ()sm are invariant with respect to rotation and scale, and are invariant

with respect to position when the Msm are computed about the centroid of the input

image. Taking the modulus of Msm provides rotation invariance, while the

normalization by the t order radial moment provides scale invariance. For example,

consider the case in which the input image f(r,0) is scaled by a factor cX, rotated

through an angle 13, and multiplied by a contrast factoi ic. The moment of the modified

image M', m becomes

M= - J o r-fz r,0+P)exp-inA)dr8 (55)

If one multiplies and divides Eq. (5) by [a-s+lexp(im)], one obtains
k

M'm = -exp(im3)a-'f

•~ 22x

J:Jo (ar)'- f(ar,0+ 13)exp[-im(0 + J3)]d(ar)d(0 +3D) } (5.6).

If one makes the following change of variables in Eq. (5.6): r'=ar, 0'=0+13, and

compares the result with Eq. (5.3) one obtains

M's. m = a-Sexp (ir 13)M sm (5.7)

In a similar manner, one obtains for the 0th order radial moment M's,0

M'.0 =- a KM,.0 (5.8)

Hence, using Eqs. (5.4), (5.7) and (5.8), one sees immediately that O'sa= Zs.m and is

therefore invariant with respect to the above geometric distortions.

The moment invariants are taken as features of the image to be recognized, and

a recognition decision is based on the distance in feature space between the features of

an input image and a reference image. This distance D2 is defined as
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D2 e iPut _ ref. ]2
D [2.m- 2.m , (5.9)

m

where 4Dinp u t and (Dref denote the features for the input and reference images,

respectively. A recognition decision is made by setting some threshold distance DT in

feature space. If the observed value for D2 is greater than Dr, the input image is said to

be different than the reference image; if D2 is less than D, the observed image is said to

be the same as the reference image.

As mentioned earlier, when the variable s is taken to be an integer, the Fourier

Mellin descriptors are really complex moment invariants, in which one computes radial

moments of circular-harmonic components of the input image. The performance of this

particular type of moment invariant is superior to the performance of complex moment

invariants for the following reason: classical moment invariantsi -6 and complex

moments7 8, , which are defined in Cartesian coordinates, can be shown17 to be special

cases of radial moments of CHF's. For example, the complex moments defined in

Ref. 7 are equal to Msm with s=lml+2, Im1+4, Iml+6.... In this case, s and m are

constrained to have particular values, which may limit their performance.

Low-order radial moments have been shown to be superior 17 to higher order

moments for pattern recognition, particularly in realistic scenes where noise may be

present. For a given set of objects, Sheng and Arsenault1 7 reported a 30%

misclassification rate using moments with s=3; no mistakes were made when moments

with s equal to 1 or 2 were used. In addition, because the radial moments do not form

an orthogonal set, radial moments of different order contain much of the same

information about the input image. Because of this information redundancy, many

times one does not gain new information about the object in question by using higher-

order radial moments. Hence, the best strategy is often to choose the low-order radial
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moments and choose multiple circular-harmonic orders 17. Using these low-order radial

moments, it is often possible to achieve better over-all recognition performance than is

possible with complex moments that are defined in Cartesian coordinates1 7. For this

reason, we will only consider radial moments of CHF's in this paper.

The difficulty in real-time digital computation of moment invariants has led a

number of researchers to investigate the possibility of using an opto-electronic hybrid

system to compute moment-invariants in real time. Casasent and PsaltisI0 described a

hybrid processor in which the input scene was coherently illuminated and spatially

convolved with a single fixed mask. This allowed the moments to be computed in

parallel. Teaguet 3 described a system that used coherent optical preprocessing to

compute moments of the input scene. Wagner and Psaltis 12 suggested a system using

acousto-optics to compute image moments, and Kumar and Rahenkampl 1

demonstrated a system that computed geometric moments using Fourier-plane

intensities. Finally, Duvernoy and Sheng1 5 proposed an incoherent optical processor

for computing geometrical moments, and demonstrated its use in handwriting

recognition, however, the accuracy of this system was not sufficient to accurately

compute Hu's moment invariants for most other pattern recognition applications1 5.

Many of the hybrid systems described above require coherent input, or the use

of a spatial light modulator. This requirement may be too restrictive in some

applications. While digital systems provide the flexibility needed in practical

applications, the large amount of "number crunching" involved in digital calculations of

moment invariants makes real-time digital computation difficult.

An alternative approach is to reduce the amount of information, contained in an

input image, that must be processed to determine the value of a moment invariant within

the required accuracy. Morris25 has shown that a photon-limited input image can be
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used to generate an estimate of the cross correlation between an input image and a

reference (or filter) function stored in computer memory. The probabilistic relationship

between the spatial coordinates of the detected photoevents and the corresponding

location in the input scene provides a natural means of sampling the input. In the next

section, we discuss this photon-counting approach, and demonstrate its use in the

computation of accurate estimates for radial moments of CHF's.

5.3 Estimation of Radial Moments of CHF's using Photon-

Counting Techniques.

In this section we present the theoretical basis for an optical implementation of a

Monte Carlo algorithm for the computation of moment invariants which uses a position-

sensitive photon-counting detection system. The results depend on a number of

probabilistic calculations; these calculations are straightforward, but are somewhat

lengthy. Hence, only the results are presented here. The details of the calculations are

provided in Appendices A and B. A slightly different definition of the photon-limited

signal is required for the estimation of moment invariants. Hence, some of the photon

statistics presented earlier are repeated, to provide a clear description of the statistical

behavior of this modified correlation signal.

5.3.1 Photon-Counting Methods for Image Recognition

In polar coordinates, a photon-limited input image ft(r,O) can be represented as

a two-dimensional collection of Dirac delta functions, i.e.,

N
ft (,0)L r-ri0-0 ) ,(5.10)
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in which (rj,0 i) denotes the spatial coordinates of the ib detected photoevent and N is

the total number of detected photoevents. In Eq. (5.10), the spatial coordinates (ri,Oi)

of the ih detected photoevent are random variables. The number of detected

photoevents N may or may not be a random variable, depending on how the experiment

is performed. In this treatment, we will take N to be fixed, not random. For this

application, the cross-correlation between a photon-limited input scene f1 (r,O) and a

reference function R(r,O) is defined in the following manner:

C(r,6) = -f f ft(r',6')R(r +r',0 + 0')r'dr'dO'N (5.11)

Using Eqs. (5.10) and (5.11), one obtains

C(r)=- R(r+ri,O+O i) (5.12)
N i-i

Note that, in previous chapters, the photon-limited correlation signal was realized by

sampling the reference function R(r,e) at the locations indicated by the detected

photoevent coordinates [see Eq. (2.9)]. In this case, the correlation is obtained in a

similar fashion, but is divided by the number of detected photoevents N. The reason

for this definition of the correlation signal will become evident in Section 5.3.3. Once

again, the photon-limited correlation signal is a random function, since the event

coordinates (rj,Oi ) are independent random variables with probability density function 26

P(r-,) = 2 f(i,O ) (5.13)
f f f(r,O)rdrd0
0 0

The mean value of the photon-limited correlation signal is25
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J J f(r',O')R(r+r',O+O')r'dr'dO'
< C(r,) >= 0 0 2x - (5.14)

f j f (r',0')r'dr'dO'
0 0

where f(r',O') is the classical intensity associated with the input image. In Eq. (5.14)

note that the mean value of the correlation signal is again directly proportional to the

cross correlation between the classical-intensity input image f(r,e) and the reference

function stored in computer memory. In this case, note that the mean value of the

correlation signal given in Eq. (5.14) is independent of the number of detected

photoevents N.

To calculate C(r,0) in practice, one uses the spatial coordinates of a detected

photoevent as an address. The offset coordinate (r,0) defines the location of the

reference function window within the input scene. The procedure is to look up the

value of the reference function stored at the address indicated by (r+ri,O+0i), and place

the result into an accumulator; this process is repeated for all N detected photoevents.

The resulting value in the accumulator is the estimate for the cross correlation between

the input scene and the reference function in computer memory.

Since the coordinates of the detected photoevents are independent random

variables with the probability density given in Eq. (5.13), the photon-limited correlation

signal can be viewed as a Monte Carlo estimate for the cross-correlation integral

between the input f(r,O) and the reference R(r,e). The position-sensitive photon-

counting detection system serves as a real-time source of random variates for the Monte

Carlo algorithm 20 .

5.3.2 Estimation of the Input Centroid

Radial moments of CHF's are position-invariant when they are computed about

the centroid of the input image. Hence, the first step in computing an estimate for the
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moment invariants is to determine the centroid of the input; this is done in the following

manner. The Cartesian coordinates of the centroid are computed by summing the x and

y coordinates of each detected photoevent into an accumulator, and dividing by the

number of detected photoevents N. An alternative way to compute this centroid

calculation is to apply, in parallel, the reference functions

R.(x,y) =x (5.15)

Ry(x,y) = y (5.16)

Using Eq. (5.14) (in Cartesian cocrdinates) the photon-limited correlation signals

realized using these reference functions are seen to be an estimate for the x and y

coordinates of centroid of the input image. The mean values of the correlation signals

obtained using the reference functions in Eqs. (5.15) and (5.16) are given by

if xf(x, y)dxdy

< C" >= f , (5.17)ff f (x, y)dxdy

A

and

If yf(x, y)dxdy
< C Y >= A (5.18)

Y i f(xy)dxdy

A

where A is the area of the input image. Note that Eqs. (5.15) and (5.16) are the exact

definitions of the energy centroid of the input scene f(x,y).

By using a sufficient number of detected photoevents, one can compute an

estimate for the coordinates of the centroid of the input to within a specified error with a

single realization of the correlation signal. The error in the estimate of the centroid that
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can be tolerated will depend upon the application in question. The number of detected

photoevents required to achieve this error is image-dependent, and can be determined

using Eqs. (A3 1)-(A32) in Appendix A. Once the Cartesian coordinates of the centroid

have been determined, that location is chosen as the origin of the polar coordinate

system, and all (r,O) values for subsequently detected photoevents are computed with

respect to the centroid.

5.3.3 Estimation of Moment Invariants

Photon-counting methods can be used to provide a Monte Carlo estimate for the

moment integral in Eq. (5.3). In this case one takes the reference function stored in

computer memory to be

R(r,e) = r'-2 exp(-im0) (5.19)

where the coordinates (r,e) are computed with respect to the centroid of the input

image. Using Eqs. (5.14) and (5.19), one finds that the mean value of the subsequent

photon-limited correlation signal is

f jf(r,0)r' - exp(-im0)drd6

<C >= 2x - , (5.20)
f J f(r,O)rdrdO
0 0

where the offset within the reference window is taken to be the image centroid. (The

image centroid can be used as the origin if the input object is the only object present in

the input scene, or if the input object has been segmented from the background.)

Notice that <Cs,m> is directly proportional to the classical intensity moment Msm

defined in Eq. (5.3). In addition, if different photons are used to compute <Cs,m> and
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<C,0>, the two quantities are statistically independent, and an estimate for Is.M can be

obtained from the ratio

1< C... A M,,, DSgM (5.21)1< C40 >1 IM.-01
Equation (5.21) demonstrates how the moment invariants CDr,m can be

expressed in terms of the mean values of the photon-limited correlation signals.

Because of the way in which the photon-limited correlation signal was defined here, the

number of detected photoevents is not present in Eq. (5.20), which is advantageous.

Clearly, it is desirable to obtain an estimate for DsDm from a single realization of the

appropriate correlation signals, rather than perform enough realizations to determine the

expected value. Unfortunately, for arbitrary m and s this is not possible. As detailed in

Appendix B, only the large, or dominant moments of a given image can be accurately

estimated using a single realization of the photon-limited correlation signal. However,

the strong moments are typically the useful ones for pattern recognition applications.

Using the theory presented in Appendices A and B, one can predict in advance whether

a given moment can be accurately estimated using photon-counting techniques. As

indicated in Section 5.2.2, the low-order moments are the most important ones for

pattern recognition. As demonstrated later in Section 5.4.1, in Tables 5.1-5.3, the

strong moments in the set Os,m (s=1 to 3, m=l to 9) are estimated accurately using

photon-counting techniques.

5.3.3.1 Estimation of (D2,.

The moment invariant (D2,m is particularly suited to estimation using photon-

counting techniques, and is the radial-order moment that is most often used in the

literature for pattern recognition purposes. If we let s=2 in Eq. (5.19), then using Eq.

(5.14), the modulus of the mean value of the photon-limited correlation is
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2zE

J J f(r, O) exp(-imO)rdrdO

j< C2.. >2 =0 0 0 2.m (5.22)
fj Jf(r, O)rdd
0 0

In Eq. (5.22), an important feature to note is that the normalization by the OLh -

order angular moment IM2,01 occurs naturally, as a result of the statistics of the detected

photoevents. In this case, it was not necessary to compute IM2,mI and IM2,01 separately

by determining <IC2,mI> and <lC 2,01>. Hence, with a single reference function, one

can determine an estimate value for ,2m, whereas with the digital computation of D2,m

both IM2,ml and IM2,01 must be computed individually.

It is desihaoe to obtain an accurate estimate for (b2,m using a single realization

of the modulus of the correlation signal IC2,mI. A necessary condition is that the mean

value of the estimate be approximately equal to the moment in question; i.e.

< IC2 .ml >-- (2,. (5.23)

Fortunately, as shown in Appendix B, and in Section 5.4 (Tables 5.1-5.3), Eq. (5.23)

is approximately correct for the strong moments of real input images. In addition, it is

possible in many cases to obtain an estimate for D2,m even when the moment that is

being estimated is not strong. This can be obtained by using

(C.12 i:2 (5. 23a)

as the estimate for D2,, (the rationale for this is given in Appendix B).

Hence, the procedure for determining an estimate for D2,M is as follows:

1.) Compute photon-limited correlation signals C,, and CY

using the reference functions in Eqs. (5.15) and (5.16) to
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determine estimates for the Cartesian coordinates of the centroid

of the input to within the necessary error. (The number of

photons required to achieve this accuracy can be predicted

using Eqs. (A25)-(A26) for a typical input image.)

2.) Use the centroid coordinates as the origin for the polar

coordinate system, and compute (ri,0) values for the next N

detected photoevents. (The procedure for determining N for a

given application is discussed in Section 5.3.4.)

3.) The photon-limited estimate for 02,m is obtained by

computing the modulus of C 2 ,m using Eqs. (5.12) and (5.19),

where s=2, and the offset is taken to be zero. The estimate is

then determined using relation (5.23a)

5.3.3.2 Estimation of D i'm

To estimate 01,m, one must compute estimates for IMi,mI and IM101. If one

chooses the reference functions

R 1,m = r-1exp{- ira01 (5.24)

and

R' 0 = r-  , ,(5.25)

one can obtain an estimate for 01.m by computing Cl.m and C1,0 using Eq. (5.12).

The estimate for ( .m is obtained by taking the ratio of the moduli of the two

correlation signals.

5.3.4 Determining the Required Number of Detected Photoevents N

The number of detected photoevents N required to produce an accurate estimate

for a desired moment invariant can be specified in one of two ways. The most obvious
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way is to require that a given moment invariant be determined to within a specified

error. One measure of this error is the ratio of the standard deviation to the mean of the

estimate be less than a given value. One might require that

(D <E , (5.26)

where c'S~n is the photon-limited estimate for the moment invariant s,m , (Ys,m. is the

standard deviation of the estimate, and E is the error that can be tolerated in the estimate

for 's,m.

As an example, we outline the procedure for determining the number of detected

photoevents that will produce an estimate for 02,m to within given accuracy for a given

input. First, one determines mean values and standard deviations for the -eal and

imaginary parts of the photon-limited correlation signal obtained using the reference

function in Eq. (5.19) with s=2, for an initial number of detected photoevents N. The

mean values, standard deviations and correlation coefficients are obtained using Eqs.

(A6)-(AlO) in Appendix A. Next, these values are substituted into Eq. (A15) to obtain

an expression for the probability density function for the estimate of 02,m. The mean

values and standard deviations for the estimate of 02,m are obtained (see Appendix A)

using the density function for the estimate of 02,m, from which the accuracy of the

estimate is determined using Eq. (5.26). If the accuracy is not sufficient, the above

process is repeated for increasing numbers of photoevents until the desired accuracy is

achieved.

An alternative way to specify the number of detected photoevents is to require

that only enough photoevents be detected for the estimates for the moments to allow

one to distinguish among a given set of images. The accuracy required for the estimate

of a given set of moment invariants depends on the images that are to be discriminated
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among. The recognition decision criterion is the distance in feature space D2 [defined

in Eq. (5.9)] between the moment invariants for the input and reference images. The

more similar the moment invariants are for a given set of images, the smaller the

distance in feature space D2 will be. The probabilistic nature of the photon-counting

technique for estimation of moment invariants results in a statistical spread in the

estimates for D2. Equations (A8) and (A9) of Appendix A show that the variance of the

photon-limited correlation signal decreases as 1/N, where N is the number of detected

photoevents. Hence, the variance in the estimates for the moment invariants and the

distance D2 will also decrease with increasing N.

The exact number of detected photoevents required to discriminate among a set

of given images can once again be determined using the statistical theory of hypothesis

testing27. On the basis of the photon-limited Monte Carlo estimate for D2, one must

choose between two hypotheses: the null hypothesis H0 -- input image f(r,0) is not the

same as the reference image R(r,e) , or the positive hypothesis, H1 -- the input image

f(r,0) is the same as the reference image R(r,0). Under hypothesis H0 , the probability

density function for D2 is denoted by Po(D2)=P[D21 f(r,0)=N(r,e)], where N(r,6) is

some noise, or false image. Under Hypothesis H1 , the density function of D2 is

denoted by PI(D2)=P[D2 f(r,0)=R(r,0)], where R(r,0) is the reference image.

As indicated in Section. 5.2.2, the observer sets a threshold DT for the distance

in feature space. If the estimate for the distance D2 > DT, hypothesis H0 is chosen; if

D2 < DT, hypothesis H1 is chosen. However, because of the statistical nature of the

estimate for D2 , the observer occasionally makes an error, regardless of the value

chosen for DT . The probability of choosing H1 when H0 is true is called the probability

of false alarm and is given by
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P. - P°(D2)d(D 2) (5.27)
D,

The probability of choosing H, when H, is true is called the probability of detection,

and is given by

Pd = fd(D2) P 1(D2) (5.28)
Dr

To determine the number of detected photoevents N that are required to calculate

each moment invariant within a given accuracy, one must specify the required

probabilities of detection and false alarm for a given application. Next, one calculates

the probability density functions for the photon-limited estimates for D2 for the input

and reference images for a starting number of detected photoevents N; the functional

form of this density function is given in Eq. (A26). One then computes Pd and Pfa

using Eqs (5.27) and (5.28), and compares these values with the required ones. If the

calculated values for Pd and Pfa to not meet the desired specifications, one increases the

value for N, and repeats the process until the required probabilities of detection and

false alarm are achieved.

One should note several points regarding the above process. First, all of the

computations of the various density functions can be done off-line, before the

recognition system is actually employed. Hence, the time required to perform these

computations is not critical. Second, it is not necessary to determine the required

number of detected photoevents exactly. If a few hundred more photoevents than

necessary are used to compute the estimates for D2, only a few tens of milliseconds are

added to the time required to compute an estimate (assuming the detection system is

operating at - 100 kHz). Finally, in practice it is probably easier to determine an
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approximate value for the necessary number of photoevents through a brief trial-and-

error process. That is, once the moments for the reference image have been computed,

the mean value and standard deviation for the distance in feature space can be easily

approximated experimentally by performing one hundred realizations of the photon-

limited estimates for the distance in feature space for each input image (100 realizations

takes about five seconds). This can be done for two or three different photon levels,

which is usually sufficient for determining the number of photons necessary to achieve

the error given in Eq. (5.26). However, if one has specified the acceptable error in

terms of Pd and Pfa, one must still calculate the density function given in Eqs. (A25)

and (A26) for each input image.

5.4 Experimental Results

Two different sets of experiments were performed to test the theoretical

predictions given in Section 5.3. In the first set, experiments were performed that

compared the theoretical predictions with the experimental values for 0lm, 4D2,m and

(D3,n, for m=1 to 9. This was done using the classical-intensity input objects shown in

Fig. 5.1. The second set, in which the goal was to discriminate among the objects in

Fig. 5.1, tested the recognition capabilities of the moment invariants.



Figure 5.1 Engraved portrait objects used in image recognition experiments. 
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5.4.1 Estimation of Moment Invariants

The experimental system is shown schematically in Fig. 5.3. The input objects

(in this case images of presidents on U. S. currency) were illuminated with incoherent

light, and imaged onto a two-dimensional, photon-counting detector28 . Position-

computing electronics 29 calculate (in real time) the (x,y) coordinates of the detected

photoevents with eight-bit resolution; these coordinates are then sent to a digital

computer for processing. Sufficient neutral density is inserted between the input and

the detector to achieve the necessary low-light-level conditions at the detector. In these

experiments, the illumination was provided by fluorescent room lights, and a neutral

density of four was used to achieve a detection rate of 50 kHz. (The maximum count

rate for the detector is 100 kHz.)

The procedure outlined in Section 5.2 was used to compute estimates for 01.,

D2,m and (I3,m for the classical-intensity input objects shown in Fig. 5.1, where the

values of m ranged from one to nine. For each input object, 5000 photoevents were

detected to determine the x and y coordinates of the centroid using the reference

functions given by Eqs. (5.15) and (5.16). This resulted in a standard deviation in the

estimate for the centroid coordinates of 0.25 pixels in each spatial dimension. Next,

5000 more detected photoevents were used to evaluate the photon-limited correlation

signals Cs,m using Eq. (5.12), using the appropriate values for m and s in the reference

function given in Eq. (5.19). The estimates for DI.. and (13,m were obtained by

forming the ratios iC1.m1/C1,01 and IC3.mI/IC 3.01 respectively. The estimates for

were obtained using IC2,ml [see Eqs. (5.22) and (5.23)].

One thousand realizations for each moment were computed to verify the

predicted statistical behavior of the estimates for the moment invariants. The objects
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were input at various orientations ranging between 0 and 360 degrees, with relative

scales ranging from 1.0-2.0 (see Fig. 5.1).

Representative results for the case when Lincoln was input are shown in tabular

form in Tables 5.1-5.3. The high-light-level moments are computed using Eqs. (5.3)

and (5.4). The theoretical mean values for the estimates of IZ2 and D2,4 are computed

numerically using the probability density function given in Eq. (A 15). The theoretical

values for the estimates of (D2,m, m#2 or 4, are computed using Eq. (B15). The

theoretical values of (D.m and (1D3,m are computed using the probability density function

given in Eq. (A 19).

The estimate for the moment invariant is said to be accurate if the following two

conditions are satisfied. First, the mean value of the estimate must be approximately

equal to the value of the moment computed from the high-light-level image using Eqs.

(5.3) and (5.4). Second, the ratio of the standard deviation of the estimate to the

expected value of the estimate must be small [see Eq. (5.26)]. Examination of Tables

5.1 and 5.3 clearly shows that for s=1 or 3, only the stronger moments can be

estimated accurately using photon-counting techniques. In Table 5. 1, only the moment

01.2 is estimated with any reliability using 5000 detected photoevents. Because the

mean value of the photon-limited estimate for the other moments is not approximately

equal to the value of the high-light-level moments, the other order moments cannot be

accurately estimated using photon-counting techniques. In Table 5.3, the moments

Os.,' s=3; m=2, 3, 4 and 6 are the most accurately estimated. Note that the two

strongest moments, (D3, 2 and (D3,4, are estimated with the least amount of error and the

greatest reliability. Table 5.2 demonstrates that cD2.m are estimated with the least error

and best reliability.
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Fortunately, one can predict in advance which moments can be estimated using

photon-counting techniques by computing numerically the mean values of the photon-

limited estimates. The reason for the difficulty in estimating weak moments is

described in Appendix B. However, the useful moments for pattern recognition

purposes are typically the strong moments; hence this inability to compute the weak

moments accurately is not a significant limitation in pattern recognition applications.

One thousand realizations of each moment were performed to test the theoretical

predictions for the PDF's of the estimates. As an example, histograms of the estimates

for the moments (D2,2 and D2.4 of Lincoln, Washington and Jackson are shown in

Figs. 5.3, 5.4 and 5.5, respectively The solid lines indicate the theoretical predictions

for the density functions made using Eq. (A15). In each case, the engraved portraits

were input at unit magnification.
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Fig. 5.2 Histogram of experimental values obtained for 02, and 02,4 when the

input image is Lincoln. The solid lines indicate theoretical

predictions for the probability density function.
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Fig. 5.3 Histogram of experimental values obtained for C1 Z2 and (D2.4 when the

input image is Washington. The solid lines indicate theoretical

predictions for the probability density function.
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input image is Jackson. The solid lines indicate theoretical

predictions for the probability density function.
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5.4.2 Pattern Recognition Performance

In this set of experiments, we test the pattern recognition performance of the

photon-limited estimates of the moment invariants. After examining the relative

strengths of the various moments for the the high-light-level objects shown in Fig. 5.2,

it was determined that the use of moment invariants (2, 2 and 02,4 would provide a

separation in feature space [see Eq. (5.9)] large enough to allow the portrait of Lincoln

to be distinguished from the portraits of Washington and Jackson. Using the method

of hypothesis testing outlined in Section 5.3.4, it was determined that 5000 detected

photoevents would provide accurate estimates for the moment invariants such that the

probability of making an incorrect decision was less than lx10-3. This probability of

error was achieved using a distance threshold of .02 in feature space This threshold

was determined by plotting the probability density functions for the distance in feature

space between the reference object and the input objects using Eqs. (A29) and (A20).

The PDF's were plotted using an increasing number of detected photoevents until the

above probability of error was obtained.

Photon-limited estimates for the moment invariants (D2,2 and (D2,4 were

computed for each input object. The distances in feature space between the reference

moments for Lincoln that are stored in computer memory and the moments for the input

images were then computed, and compared with the decision threshold. If the distance

was less than the threshold, the input object was identified as Lincoln. To test the

theoretical predictions for the probability density function for the distance in feature

space [see Eq. (A19)], 1000 determinations of the distance in feature space were

performed for each input object. As in Section 5.4.1, the input objects were input at

various orientations, and at relative scales ranging from 1.0 to 2.0. The results are

shown in histogram form in Figs. 5.5 and 5.6 in which the solid lines indicate the
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theoretical predictions for the PDF's of the photon-limited estimates of the di,.'-ie in

feature space obtained using Eqs. (A19) and (A20). The theoretical predictions were

based on images input at a relative scale of 1.5. There is a 7 percent change in the

theoretical values of the moment invariants for images with a relative scale of 1.0,

versus images with a scale of 2.0. This is due to an inherent quantization error and is

one of the limiting characteristics of this method for image recognition. When the range

of scales is known, the reference moments are usually chosen for a reference object

whose size is in the middle of the range, as was done here. This accounts for the

majority of the error between thoery and experiment shown in Figs. 5.5 and 5.6. Note

that even in the presence of this quantization eiTor, it is still possible to set a

discrimination threshold such that the reference images can still be recognized with a

probability of making an incorrect decision on the order of lxl0 -3.
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space D2 between the portraits of Lincoln and the portraits of Washington,
using the features 02, and (D2,4. The solid lines indicate theoretical

predictions for the probability density functions of the distance in feature

space.
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predictions for the probability density functions of the distance in feature
space.
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5.5 Summary

In this chapter, the estimation of radial moments of circular-harmonic functions

using photon-counting techniques is investigated. In Section 5.2, the basic method of

moment invariants for pattern recognition is briefly reviewed. In Section 5.3, a method

for the real-time estimation of the moment invariants uisng the position-sensitive

photon-counting detection system is presented. The statistical description of the

estimates is presented in Appendix A. In Section 5.4, experimental confirmation of the

theory is presented. A comparison of theory and experiment for the moment estimates

is given in Tables 5.1-5.3, and in Figs. 5.2-5.4. In addition, a pattern recognition

application is considered in which engraved portrait images are input at all orientations,

and at relatives scales that vary up to a factor of two. The results are given in Figs. 5.5

and 5.6. Finally, some issues regarding the computation of weak image moments are

discussed in Appendix B.
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Chapter 6

Two-Stage Template Matching using Quantum-
Limited Images

6.1 Introduction

Template matching is a classical approach to the problem of locating and

identifying a particular object from within an input scene 1- 12 . In this technique for

image recognition, a large input scene is searched for a particular reference object(s) by

applying a small template (or reference function) at each offset location in the input

scene. Some measure of the similarity between the template and the input scene at each

location is calculated. Based on the similarity measure, it is determined whether the

reference object is present at a given location. Obviously, computing the similarity

criterion at every possible offset in the input scene can be a very time consuming

process, even when a small template is used. This has been a major limitation to this

method for image recognition.

To reduce the amount of computation involved, several algorithms have been

developed 2 -5,7. One particular algorithm is a two-stage method of template

matching4 ,5.7. In the first stage, only a small number of points in the input scene that

fall within the reference window are randomly sampled and used to compute an

estimate for the similarity criterion at each reference window offset. In the second

stage, locations that satisfy the similarity criterion in the first stage are examined using

all of the points in the input scene that lie within the reference window at those

141
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locations. In essence, the first stage amounts to a coarse search of the input scene to

determine likely locations for the reference object. This is is equivalent to the 'first

look' frequently referred to in the target recognition literature 13. The number of

locations searched in the second stage will depend on the threshold set for the similarity

criterion in the first stage. The goal is to minimize the amount of computation involved

in the implementation of the two-stage process.

In this chapter, we demonstrate how this two-stage template matching process

can be implemented in a highly-efficient manner using the photon-counting detection

system described in earlier chapters. A high-light-level input scene is searched using a

small window function that is moved to various offsets within the input scene. The

cross-correlation between the reference function and the input scene at a given offset is

estimated by sampling the input scene using a small number of detected photoevents.

The photon-limited correlation signal is used as a similarity criterion for comparing the

input with the reference object. In the first stage, a smail number of detected

photoevents is used to find probable locations for the reference object. In the second

stage, likely locations are examined using a sufficient number of detected photoevents

to provide a recognition decision within specified probabilities of detection and false

alarm.

In Section 6.2, the two-stage template matching process is reviewed. In

Section 6.3, the theoretical formalism is presented for the implementation of the two-

stage template matching technique at low light levels. In Section 6.4, computer

simulations are presented that demonstrate the performance of the two-stage template

matching process using a photon-counting detection system. Results are presented for

a simple inspection problem, for scene matching in a satellite image, and for automatic
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target recognition in a cluttered environment. Finally, in Section 6.5, the rotation-

invariant circular-harmonic filter described in Chapter 4 is also employed using this

two-stage filtering technique.

6.2 Two-Stage Template Matching

Template matching has been used as a method for locating a particular sub-

image from within a larger input scene (see Fig.6.1) for almost 30 years1 . The reason

for locating the sub-image may be for the purpose of pattern recognition, where one

desires to identify and locate a particular object within an input scene. Alternative

applications for template matching are in the registration of digital images, (particularly

satellite images), and as a pre-screen method for photo-interpreters. The template

matching technique can be employed to identify locations of interest in an aerial

photograph or satellite image, and the final recognition decision is made by a human

photo-interpreter. In most cases, a large input scene is searched by comparing various

locations within the scene to a small reference function. One defines a measure of the

similarity between the reference function and input scene at a given offset; when the

similarity criterion exceeds some pre-determined threshold, the input and reference are

said to be the same. Hence, depending on the application, the object of interest has

been detected, or the input scene is said to be registered.
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Figure 6. 1. Quantum-limited input scene showing reference function window at offset
location (x,y).

Similarity criteria include normalized cross-correlation, 5 the sum of absolute

differences between the pixels4 , and other methods 2. Obviously, it is a very

computationally intensive process to compute the similarity measure at each location,

even if the reference function that is employed is small. Several algorithms have been

developed2-5,7 that offer the potential to substantially reduce the amount of computation

involved in the template matching process. An algorithm that has proven to be quite

successful is the two-stage method of template matching4.5.7.

As mentioned earlier, the two-stage template matching algorithm involves

moving a reference window to each offset location in the input scene. At each location,

a small number of points are sampled, and are used to estimate the similarity criterion
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between the input and reference at that offset. If the similarity criterion exceeds the

threshold, that location is examined fully in the second stage. In the past4 , the order in

which the points were sampled were chosen at random, using a random number

generator. The goal of the first stage is to identify locations that are likely to contain the

reference object(s) of interest. The threshold for the similarity criterion must be chosen

such that all of the target locations will exceed the threshold, with as few false alarms as

possible.

In some cases, it possible to reduce the number of locations that must be

examined in the second stage by pre-processing the input scene before beginning the

first stage. Such pre-processing techniques include segmenting objects of interest from

the background (e.g. using Hough transform techniques1"), or reducing the number of

gray levels in the input. Whether it is advantageous, or possible to implement a pre-

processing step must be considered on a case-by-case basis. In either event, the goal is

to minimize the amount of computation involved in the implementation of the two-stage

template matching process.

To determine the threshold for the similarity criterion for each stage, it is useful

to define a cost function, K, for the entire template matching process, where K is given

by

K=(m-k)2 NI+ NN 2  (6.1)

In Eq. (6.1), m is the dimension of the input scene, k is the dimension of the template

(see Figure 6. 1), N, is the number of points that are sampled at each location in the first

stage, NE is the number of locations that exceeded the threshold in the first stage, and

N2 is the number of points that are sampled at each location in the second stage. The
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parameters available for use in minimizing the cost function K are: the number of points

sampled in each stage, the order in which the points are Sampled (referred to as

"ordering"), and the similarity criterion that is employed (e.g. normalized cross-

correlation), and the similarity threshold for each stage. The threshold for the first

stage is chosen to achieve the required probability of detection, while keeping the false

alarms to a minimum. The threshold in the second stage is chosen to achieve the

required probabilities of detection and false alarm for the entire process.

The measure of similarity between the input and reference that is chosen

depends on the application in question. In digital image registration, the mean square

error between the input scene points and template points is often used4. In pattern

recognition applications, where the input scene may contain clutter, cross-correlation is

often used as a similarity measure. In the following section we demonstrate how a

photon-limited correlation signal is used to provide an estimate for the cross-correlation

similarity measure.

6.4 Two-Stage Template Matching using Quantum-Limited

Images

Photon-counting techniques are applied to two-stage template matching in the

following manner. In the first stage, a reference function, or template is moved to each

offset within the input scene. At each offset, the input is sampled using a small number

of detected photoevents, Nl,p. The photon-limited cross-correlation C(x,y) at each

offset (x,y) is given by

C(x,y) = _.R(x+xj,y+yj) , (6.2)
i-I
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where (xj,yj) denote the coordinates of the detected photoevents. Equation (6.2)

provides a measure of the similarity between the input and reference. The cross-

correlation is compared with some pre-determined threshold CTj; if C(x,y) > CTr, that

offset location is examined in the second stage using a sufficient number of detected

photoevents to achieve the required probabilities of detection and false alarm for the

particular application being considered. This process is repeated at each location in the

input scene. It is important to note that nature provides the sampling statistics for the

input scene. As mentioned earlier, the probability of detecting a photoevent at a given

location is directly proportional to the classical intensity at the corresponding location in

the input scene [see Eq. (2.7)]. This eliminates the need for the generation of random

numbers, as is required in the standard digital implementation of the two-stage template

matching technique. In the next subsection, the cost function for the photon-limited

implementation of the two-stage template matching process is derived, which will allow

optimum values for the the number of detected photoevents and correlation thresholds

to be chosen for each stage of the search.

6.4.1 Derivation of the Quantum-Limited Cost Function

To optimize the photon-limited implementation of the two-stage template-

matching algorithm, it is necessary to define a cost function similar to the one defined

for the digital implementation. For the case of photon-counting, the cost function,

denoted by Kc, becomes

Kc = NIPM + N2.pX , (6.3)

where N 1,p denotes the number of photon detected in the first stage at each offset, M

denotes the the number of locations in the first stage, N2,P denotes the number of
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detected photoevents in the second stage, and X denotes the number of locations that

exceeded the correlation threshold for the first stage, and must be examined in the

second stage. In other words, the cost of the two stage process is defined in terms of

the average number of photoevents detected. Typically, the number of locations that

must be examined in the first stage, M, will be determined by the geometric dimensions

of the input scene and reference function. For example, if input scene has dimension m

x m, and the reference function has dimension k x k, then M will be given by (m-k)2.

The number of locations that exceed the correlation threshold in the first stage,

X, will be some random function of the photon-limited correlation signals realized at

each offset in the first stage. As a result, it is necessary to choose values for N1,P and

N2.p, as well as the values for the correlation thresholds used in the first and second

stages, (denoted by CT,j and CT,2 respectively), that will minimize the expected value

of the cost function r,. In addition, the number of detected photoevents and correlation

thresholds must be chosen such that the required probabilities of detection and false

alarm are satisfied.

The expected value of the cost function ic, denoted by <ic>, is given by

< ic > = N.PM + N2, p < > . (6.4)

The expected value of the number of offsets that will exceed the correlation threshold in

the first stage is given by 14

M
>= P(Ci, 1 > CT.) (6.5)
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where P(Ci,1>CT,l) denotes the probability that the value of the photon-limited 

correlation signal realized in the first stage, at the ith location Ci, will exceed the 

threshold ~.1 . The probability P(Ci,1>CT,1) is given by 

-
P(C;,l > CT,t) = f P(C;,l )dC;,t (6.6) 

CT,1 

where P(Cu), denotes the probability density function for the photon-limited 

correlation signal in the frrst stage, at the i!h location in the input scene. If the reference 

function is real, and the number of detected photoevents is fixed, then P(Ci,l) is 

monovariate normal, as shown in Eq. (2.56). Using Eqs. (2.56) and (6.6), and 

substituting Eq. (6.5) into Eq. (6.4), it is possible to obtain an expression for the 

expected value of the cost function, <K>. The expected value of the cost function <K> 

is given by 

- L~ 1 J-- {(C-1(x. , y.)-<C. 1(x.,y.)>)2
} < K: >= N M + N exp- 1, 1 1 1 , 1 1 

l, p 2,p "F 2 2 
i=l 'V L.1t()i 1 c () 1i 

' T ,l • 

(6.7) 

In Eq. (6.7) the mean 'values and standard deviations of the the photon-limited 

correlation signal that is realized in the first stage, at the i!h location in the input scene, 

are denoted by <Ci,l> and cri,l respectively, and can be obtained using Eqs. (2.54) and 

(2.55). Equation (6.7) is the expression that one must minimize using the variables 

CT,l• CT,2, N1,p and N2,p subject to the restriction that the required probability of 

detection and false alarm be satisfied. Obtaining a solution for the values of the 

variables that will minimize the cost function K: would involve the simultaneous solution 

of a number of coupled integral equations, equal to the number of locations in the input 

scene; for general reference and input objects, this is analytically impossible. 
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Additionally, it is impractical to arrive at the answer by numerically solving the coupled

integral equations. Alternatively, a more practical, iterative method is outlined in the

following section.

6.4.2 Determination of Correlation Thresholds and Numbers of

Detected Photoevents

The number of detected photoevents and correlation thresholds in each stage

must be chosen to minimize the expected value of the cost function given in Eq. (6.7),

and must provide the specified probabilities of detection and false alarm for the entire

process. If it is desired to identify a particular object from within a given scene, the

number of detected photoevents required to identify the object within specified

probabilities of detection and false alarm can only be determined exactly by applying

the method of hypothesis testing [described in Section 2.5] at every location in the

input scene. This is due to the fact that the hypothesis testing technique requires

knowledge of all of the objects from which the reference image must be chosen.

Clearly, in an application such as the location of a reference image from within some

unknown cluttered scene, it is not possible to satisfy this requirement. In this section,

the approach that is taken is to place the reference object within a "typical" scene, or a

scene that is most likely to be encountered in a given application. The number of

detected photoevents required to identify the object from within that scene is then

determined. It is important to note that if the object is placed in a different scene, the

number of detected photoevents as determined from the "typical" scene may or may not

be optimum; this must be tested on a case-by-case basis.
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6.4.2.1 Stage Two

The number of detected photoevents that are utilized in the second stage of the

two-stage template matching process, N2,p, and the correlation threshold in the second

stage, C2,T, must be chosen to satisfy the requirements for the probability of detection

and false alarm for the entire process. The over all probability of false alarm, denoted

by PFis given by

M

PF = XP(Ci,l > CTI)P(Ci.2 > CT.2 ) , (6.8)
i=1

where P(Ci,I>CT, 1) denotes the probability that the value of the photon-limited

correlation signals realized in the first stage , at the ilh location Ci,1 , will exceed the

threshold CT,1. In Eq. (6.4), the index i is summed over all locations in the input that

do not correspond to the reference object. Similarly, P(Ci,2>CT,2) denotes the

probability that the value of the photon-limited correlation signals realized in the second

stage, at the ith location Ci, 2, will exceed the threshold CT,2 . The probability

P(CiL>CT,1) is given by Eq. (6.6). Similarly, the probability P(Ci,2>CT,2) is given by

P(Ci.2 > CT.2 ) f fP(Ci, 2 )dCi 2 , (6.9)
C'. 2

where P(Ci,2), denotes the probability density function for the photon-limited

correlation signal in the second stage, at the ith location in the input scene. If the

reference function is real, and the number of detected photoevents is fixed, then

P(Ci 1), and P(Ci,2 ) are obtained using Eq. (2.56). Hence,

P(Ci'J(x'y)) I [ 2()-j ( ) (6.10)
72=T. (y2
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The mean value and variance in Eq. (6.7) are obtained using Eqs. (2.54) and (2.55)

respectively, i.e.,

< Ci.(x,y) >= Nfpi.j (x',y')R(x + x',y + y')dx'dy' , (6.11)
A

and

2 = NJ Pij (x',y')R 2(x + x',y + y')dx'dy - <i>(AN ' (6.12)
A

where the number of detected photoevents N is given by N1,p or N2,p as appropriate.

In Eqs. (6.10)-(6.12), the subscript 'i" refers to the offset location in the input scene,

and the subscript "j" refers to the stage in the search (e.g. 1 or 2).

Equation (6.8) shows that the over-all probability of false alarm will depend on

the correlation thresholds and the number of detected photoevents in both stages. As a

result, it is not straight forward to apply the hypothesis testing approach to determine

CT,2 and N2,p. However, an approach that is effective is to choose CT,2 and N2,p as if

all of the locations examined in the first stage must be examined in the second stage.

In this case, the overall probability of false alarm is considered to be given by

M

PF = XP(Ci.2 > CT.2) , (6.13)
i-i

where once again, the summation is performed over all locations in the input that do

not correspond to the reference object. Here, the first estimates for the correlation

threshold and number of detected photoevents in the second stage are chosen

independent of CTI and N2,1, by applying the hypothesis testing technique described

in Section 2.5. Initial estimates are chosen for N2,p, and CT2 such that the probability

of detection is satisfied when the input and reference objects are the same (i.e. the

template matches the input). The overall probability of false alarm, PF, is computed for

L
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a typical input scene using Eq. (6.13). If the requirement for PF is not satisfied, the

number of detected photoevents N2.p is increased, and the above process repeated until

the requirement for PF is satisfied. When this process is complete, one has obtained the

first estimate for N2. p, and CT2 ,and can then proceed to obtain estimates for N1.p, and

C,, as outlined in the next section.

6.4.2.2 Stage One

The number of detected photoevents and correlation threshold in the first stage,

denoted by N 1.p and CT,1 respectively, must be chosen such that the required

probability of detection is maintained, while minimizing the expected value of the cost

function given in Eq. (6.7). The method for determining N1,p and Cr.1 that the author

has found to be most effective is an iterative one. The cost function in Eq. (6.7) is

plotted over a small range of detected photoevents; it has been the author's experience

that a typical starting value for NI,, can be obtained by using N2,p/15, where N2.p is

the estimate obtained for the number of detected photoevents in the second stage. In

addition, the range of detected photoevents over which the cost function must be plotted

is typically around 50 photoevents. One must examine the resulting cost function, and

determine whether a minimum lies in the selected range of detected photoevents, and

make adjustments if necessary. The correlation threshold C 1 must be determined for

each value of NI p . The correlation threshold Or,, is selected such that probability of

detection for the overall process is satisfied when the input and reference objects are the

same. This probability of detection is computed using Eq. (6.6). The probability

density function P(Ci,I) is given by Eq. (6.10), using the mean value and standard

deviation given in Eqs. (6.11) and (6.12), respectively, when the input and reference

objects are the same. One can then examine the plot of Eq. (6.7), and obtain the value

for NIpfor the given choice of N2,p. One can then repeat the process for obtaining
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the estimate for N2,p, using Eq. (6.8) to compute the probability of false alarm. If

necessary, the entire process can be repeated several times, but it has been the author's

experience that repeating this process only decreases the cost function by a few percent.

A summary of the method for determining the correlation threshold and number of

detected photoevents is given on the following page.
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Determination of NI, p, N2,p, CT,1, and CT,2: Summary

Stage Two

1.) Make initial estimate for N2,p; choose CT,2 as large as
possible, while satisfying the requirement for the probability
of detection for the given reference object (template). This is
performed using Eqs. (6.9), along with Eqs. (6.10)-(6.12).

2.) Compute the overall probability of false alarm PF for the
reference object in a given scene using Eq. (6.13).

3.) If the specified probability of detection is satisfied,
decrease the value for N2,p and repeat steps (1) and (2).

4.) If the specified probability of detection is not satisfied,
increase the value for N2,p and repeat steps (1) and (2).

5.) A high-low search is then performed for the value of
N2  that most nearly satisfies the requirements for the
probability of detection and false alarm.

Stage One

6.) Use N2,p/15 as a the start of the range of values for N1 .
over which the cost function is to be plotted. A range of
approximately 50 is usually sufficient.

7.) For each N1,, choose a corresponding value for CT.2
that is as large as possible, while satisfying the requirement
for the probability of detection for the given reference object.
This is done using Eq. (6.6), along with Eqs. (6.10)-(6.12).

8.) Plot the cost function in Eq. (6.7) over the given range
of detected photoevents.

9.) If a minimum is observed, use the corresponding value
for N1.p in steps (1)-(3) to update the value for N2,p.

10). If a minimum is not observed, a high-low search can
be performed for the range of values of N 1,p that contain the
minimum of the cost function. Once this range is obtained,
steps (7)-(9) are then repeated.
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6.5 Computer Simulations

The following computer simulations demonstrate the theoretical predictions for

the performance of two-stage template matching using quantum-limited images in

several different environments. Figure 6.2 demonstrates a controlled, uncluttered

environment, or an environment in which the objects in question have been segmented

from the background via some pre-processing. In Fig 6.2, it was desired to locate and

identify the tape dispenser, shown in the upper left. The input scene was digitized to a

resolution of 128x128 pixels, and the template was 32x32 pixels. The upper right

denotes the expected value of the photon-limited correlation signal divided by the

number of detected photoevents N. This is analogous to the classical-intensity cross-

correlation function. The procedure outlined in subsection 6.4 was used to choose the

numh-er of detected photoevents and correlation thresholds in each stage. The lower left

and lower right of Fig. 6.2 denotes the probability that the correlation threshold will be

excec led at each offset for the number of detected photoevents indicated. Each picture

has been normalized such that a probability of 1 was mapped into a grey level of 255,

and a probability of 0 was mapped into 0.
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In the first stage, the correlation threshold CT.1 was chosen such that a

probability of detection of 0.999 was achieved; the average number of points that

exceeded the threshold was 80. In the second stage, Cr,2 was chosen such that Pd

remained 0.999, and the probability of false alarm was reduced to 0.001. The number

of offsets examined in the first stage is (128-32)2--9216. In the second stage, 80

points on average need to be examined. Presently available, position-sensitive, photon-

counting detection systems operate at rates up to 100 KHz; hence the entire two-stage

,-arch process will take approximately 1.4 seconds.

In the example shown in Fig. 6.3, a template matching application involving

satellite images was investigated. The 32x32 reference image shown in Fig. 6.3 was

arbitrarily chosen from the 128x128 input scene. In Fig. 6.4, the cost function in Eq.

(6.7) is plotted using the given input and reference functions, for N2.p=1000. Figure

6.4 was used to select the given value of NI. p. Note that while the exact minimum in

the cost function occurred with a value of 96 for NI p, this may not be exactly the

optimum number when a slightly different scene is used; hence for convenience, 100

detected photoevents were used in the computer simulation. In the lower left of Fig.

6.3, the probability that C(x,y) will exceed the value chosen for CT. is plotted at each

offset location. Again, a probability of one was mapped into a gray level of 255. One

hundred detected photoevents were used in the first stage, with CT., chosen such that

Pd was 0.95. On average, 3700 points need to be examined during the second stage.

In the second stage, offset locations exceeding the threshold were examined using 1000

detected photoevents. The probability that each offset location will exceed the value

chosen for CT,2 is shown in the lower right. The threshold CT,2 was chosen such that

Pd in the second stage remained 0.95, with a Pfa of 0.001. Hence, the entire search
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process would take approximately 45 seconds, based on detection rates of 100 KHz.

Recent work1 5't 6 suggests that detection rates on the order of 1 MHz. may be possible,

in which case the detection times above could be reduced by an order of magnitude.
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Figure 6.4 Cost function for the input and reference functions shown in Fig. 6.3.
The number of detected photoevents used in the second stage was 1000.
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Figure 6.5 demonstrates an attempt at two-stage template matching using a

reference function with insufficient resolution (20x40 pixels) to accurately detect the

reference objects from the cluttered 512x512 input scene. In this case, it is not possible

to eliminate the false alarms, no matter how many detected photoevents are used in

stage two.

In Figure 6.6, the resolution of the reference image was increased to 32x50

pixels. In the first stage of the search, 50 photoevents are collected at each coordinate

of the 512x512 pixel input scene, and the correlation threshold is set to give a

probability of detection equal to 0.99. There are 4000 locations identified as likely

locations for the targets (most of the locations are located on the targets). In stage two,

300 detected photoevents were collected at each of the positions indentified by stage

one. The probability that the correlation output will exceed the threshold at each

location in stage two is shown in the lower right of Fig. 6.6. Note that all trucks were

identified, with one false alarm. The number of detected photoevents utilized in the

first stage of the search were chosen using the cost function shown in Fig. 6.7. The

total number of detected photoevents employed in the two-stage search is 1.4x 107.

In Fig. 6.7, the minimum of the cost function occurred at a value of Nlp=32;

as before, because that particular value of N1 p may not be optimum when the target

object is placed in a different scene, the value of 50 was chosen for convenience. It is

important to note that the cost function only varies by about 10% over the range of

values of N 1 p between 25 and 50. This makes it possible to quickly estimate a

reasonable value of N1,p without plotting the entire function.
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Figure 6.7 Cost function for the input and reference functions shown in Fig. 6.6.
The number of detected photoevents used in the second stage was 300.
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6.6 Two-Stage Invariant Filtering using Circular-Harmonic

Functions

The same approach that is described in Section 6.5 for real reference functions

can be used for complex filter functions, such as the circular-harmonic filter described

in Chapter 4. Equation (4.24), is used as the probability density function for the

normalized correlation signal from which the necessary probabilities of detection and

false alarm are calculated. Figure 6.8 demonstrates the performance of the rotation-

invariant circular-harmonic filter described in Chapter 4, with the correlation signal

normalized at each offset using the method described in Section 4.5.2. In Fig. 6.8, the

input scene (top left, 512x512 pixels) is the same input scene used in Fig. 4.8. The

reference object was once again the top truck in the center of the input scene, from

which the circular-harmonic filter (top right) was computed, about its proper center.

Theoretical predictions for the probability that the correlation signal realized using the

indicated number of detected photoevents at each location will exceed the correlation

threshold are shown in the bottom of Fig. 6.8. The over all probability of detection for

the four single trucks that was achieved was 0.999, while there was one continuous

area that produced false alarms. The "double truck" was not identified.

6.7 Difcussion

For input images such as those in Figs. 6.6 and 6.8, searching each offset

location using different detected photoevents can require the detection of up to l.4x 107

photoevents (see Fig.6.7). Clearly, even operating at detection rates of 1 MHz., this

method may not be practical. Fortunately, by examining the properties of the output

correlation fdnction, the total search time can be further decreased. Note that in the
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output from stage one in Figs. 6.6, and 6.8, the output correlation functions are rather

wide. This is due to the relatively low space-bandwidth product of the target images.

As a result, it is possible to search every third or fourth location in stage one, rather

than performing an exhaustive search. If one were to search every fourth pixel, and

employed a detection system that operated at 1 MHz., the entire two-stage search of the

input scene in Fig. 6.6 would take approximately 0.8 seconds if 32 detected

photoevents were used in the first stage. Clearly, this is a more encouraging

performance. It is important to note that the same objective might sometimes be

obtained by reducing the resolution of the input scene in the'first stage3; however, the

results shown in Fig. 6.5 indicate that approach may not always be as effective. (Note

that in Fig. 6.5, a large number of locations exceeded the threshold in the first stage.)
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6.8 Summary

In this Chapter, we have investigated two-stage template matching using

quantum-limited images. In Section 6.2, a brief review of the two-stage template

matching method for image recognition is given. The theoretical basis for template

matching using quantum-limited images is given in Section 6.3. A summary of the

procedure for choosing the number of detected photoevents and correlation thresholds

in each stage is provided in Section 6.4.2.2. In Section 6.5, theoretical predictions are

given for the perfcrmance of two-stage template matching using quantum-limited

images in: a segmented scene, template matching in a satellite image, and automatic

target recognition (see Figs. 6.2-6.7). Finally, two-stage template matching using

circular-harmonic filters is considered, with encouraging results (see Fig. 6.8).
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Chapter 7 Concluding Remarks

In this Thesis, it is demonstrated that correlation-based methods for image

recognition can be effectively implemented using a position-sensitive, photon-counting

detection system. In Chapter 2, a theoretical formalism is developed that describes the

behavior of a correlation signal realized by cross correlating a quantum-limited input

scene with a reference function stored in computer memory. The theory describes the

behavior when thereference function is in general complex, and the correlation signal is

realized using either a fixed, or random number of detected photoevents. The method

of hypothesis testing is described as it applies to the selection of the number of detected

photoevents required to recognize a given image based on the photon-limited correlation

signal. It is important to note that the theoretical formalism presented in this Thesis can

be used to predict the effectiveness of any reference function, and not just the ones

utilized in this Thesis.

In Chapter 3, image correlation at low light levels is investigated. Quantum-

limited input images are cross-correlated with a digitized version of a classical-intensity

reference image that is stored in computer memory; the resulting correlation signal

corresponds to that of a conventional matched filter. The theory presented in Chapter 2

for the case of a real reference function and a fixed number of detected photoevents is

verified experimentally, where excellent agreement between theory and experiment was

observed.

It was theoretically predicted, and experimentally verified that as few as 1000

detected photoevents provide enough information to estimate the cross-correlation

signal with enough accuracy to discriminate among a set of engraved portrait images.

The experimental system employed can detect photoevents at rates up to 100 kHz. As a

172
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result, the time to detect, process, and make a recognition decision regarding the input

can be as little as 10 milliseconds.

In the experiments performed in Chapter 3, dark noise in the detection system

was measured experimentally, and shown to be insignificant. However, a theoretical

formalism was presented that allows one to predict the effect of additive noise on the

recognition performance of the system. In addition, a method for reducing the effect of

the additive noise was suggested, and computer simulations were performed that

demonstrated the effectiveness of this method.

In Chapter 4, the performance of the rotation-invariant circular-harmonic filter

was investigated under quantum-limited conditions. It was theoretically predicted, and

experimentally observed, that as few as 3000 detected photoevents are all that are

needed to accurately recognize a segmented object, and determine its orientation.

Excellent agreement was observed between theory and experiment.

Circular-harmonic filters have been known to perform pooriy in applications

that require detection of objects within a cluttered environment. This is due to the fact

that is computationally impractical to normalize the output correlation signal properly

using conventional methods. In Chapter 4, a new normalization is suggested that,

while not optimum, may provide improved performance when the circular-harmonic

filter is used in a cluttered environment. This new normalization method can be

performed in real time using photon-counting techniques. This new method of

normalization is employed in an application to automatic target recognition in an aerial

photograph, with encouraging results. In the future, extensive testing needs to be

performed to fully determine the usefulness of this method for normalization.

In Chapter 5, the estimation of moment invariants for pattern recognition is

investigated. It is demonstrated that the strong, or largest moments of input images
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can be accurately estimated using photon-counting techniques. Fortunately, these are

the moments that are typically useful for pattern recognition applications. The number

of detected photoevents required to estimate the moments of segmented input objects

are theoretically predicted, and experimentally verified. Using 5000 detected

photoevents, it is possible to estimate moment invariants that can be used to

discriminate among a set of engraved-portrait images that are input at any orientation,

and at scales that vary up to a factor of two. This was the first real-time method

reported for computing moment-invariants with sufficient accuracy for pattern

recognition applications with complex objects. Unfortunately, moment-invariants are

not useful for recognizing objects that are not segmented from the background, and are

not usually utilized in cluttered environments.

Finally, in Chapter 6, the implementation of a two-stage template matching

algorithm using photon-counting techniques is considered. In this photon-counting

method for image recognition, the correlations are implemented in an image plane; as a

result, one does not enjoy the position-invariance that exists when the correlations are

implemented optically, or digitally using fast Fourier transforms (FFT's). As a result,

if one desires to recognize objects from within a cluttered environment, one must search

the input scene by moving a reference window to different locations within the input

scene, and realize a photon-limited correlation signal at each location. This technique is

known as template matching, and has a long history in the pattern recognition literature.

Here, a two-stage template matching technique is investigated. In the first

stage, the input scene is quickly searched by detecting a few photoevents at each

location in the input, and comparing the resulting photon-limited correlation signal to

some pre-determined threshold. If the correlation signal at a particular location exceeds

the threshold, that location is determined to be a likely location for the target, and is
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examined fully in the second stage of the search.

In Chapter 6, this two-stage template matching approach is applied to: an input

scene consisting of segmented objects, scene matching in a satellite image, and

automatic target recognition in a cluttered environment. In realistic scenes, it is

demonstrated that only a few tens of detected photoevents may be required in the first

stage, and only a few hundred photoevents may be required in the second stage.

However, if a 512x512 scene is searched at every possible location, it may be

necessary to detect as many as 1.4x 107 photoevents. Using the detection system

employed in this Thesis, which can detect photoevents at rates up to lx l05 per second,

this method may prove impractical in some applications.

Recently, position-sensitive photon-counting detectors have been reported to

operate at rates up to 1 MHz. In addition, in the images that were considered here, the

output correlation functions were relatively broad; as a result, it may be possible to

sample every third or fourth pixel in the first stage of the search. The new technology,

combined with searching every third or fourth pixel would decrease the search time

dramatically. It is important to note two things regarding this approach. First, at

detection rates approaching 1 MHz., it is important to take into consideration the effects

of dead time on the output correlation signal1 . Secondly, searching every third or

fourth pixel in the first stage is not the same as reducing the resolution in the first stage

of the search (i.e., by digitizing the photoevent coordinates to 7 bits instead of 8). This

was demonstrated in Chapter 6, where a reference object digitized to a resolution of

20x40 pixels could not be accurately identified from a cluttered scene, but could be

identified when it was digitized to a resolution of 32x50. In the future, the use of

classification filters should employed in this two-stage template matching process,

which may allow the target images to be recognized under more cluttered conditions.
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lDoo-Jin Cho, Dead time effects in photon-counting, Ph. D. Thesis, University of 

Rochester, (1989) Chap. 4. 



Appendix A: Statistics of the photon-limited correlation signal

This appendix is divided into two sections. In Section A.1, theoretical

expressions for the statistical quantities involving the photon-limited correlation signal

are given. Many of the equations presented in this appendix are similar to those

presented in Chapter 2, but vary slightly because of the way the photon-limited

correlation signal is defined here [compare Eqs. (2.9) and (A3)] for the particular

application of moment estimation. Section A.2 provides a description of the statistics

for the photon-limited estimate of the distance in feature space between an input image

and a reference image. Finally, Section A.3 contains a description of the method used

to determine the number of detected photoevents required to specify the centroid of the

input to within a given error.
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A.1 Statistics of the modulus of the correlation signal

A photon-limited input image ft(r,O) can be represented as a two-dimensional

collection of Dirac delta functions, i -.

N

ft (r,0)=X 5(r-ri,0-) (Al)
i=1

in which (ri,0i) denotes the spatial coordinates of the ith detected photoevent and N is

the total number of detected photoevents. Here, we consider the case where the

number of detected photoevents N is fixed, which makes the coordinates of the detected

photoevents (r,0i) the only random variables. The probability density function for the

detected photoevent coordinates is directly proportional to the classical intensity of the

corresponding location in the input scene l 2 , i.e.,

P(ri,0i) = , - f(ri'0i) (A2)
f f f(r,O)rdrdO

0 0

The cross correlation C(r,e) between a photon-limited input image ft(r,0) and a

complex reference function R(r,0) is given by (c.f. Eq.(1 1))

1 N

C(r,0)=-- R(r+r,0+0i) (A3)
N j-1

In general, the reference function is complex, making the correlation signal C(r,O)

complex. For convenience, let

C(r,0) = C'(r,0) + iC"(r,0) (A4)
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where C' and C" represent the real and imaginary parts of the correlation signal,

respectively. For sufficiently large N, the joint probability density function for C' and

C" is approximately a bivariate normal density, given by

P(C',C") 1 exP -1 [(C'- <C'>)2

2x t' " (1 - p2) 2  2(1 2 [ 2

(A5)

(C'- < C'>)(C"- < C">) (C"- < C">)2 1 ]
+' " ' 2  Jj

where the mean value of the real and imaginary parts of the correlation signal, <C'>

and <C'> are

2ic

f ff(r',0')Re{R(r + r',0 + ')}r'dr'dO'
0 C(r,) >= 2- I (A6)

f f(r',0')r'dr'dO'
0 0

and

2x!

f Jf(r',O')Im{R(r+r',0+6')}r'dr'dO'

< C"(r,e) >= 0 - (A7)
2 Jf(r',O')r'dr'dO'
0 0

respectively. Note that the expression for the expected values are independent of the

number of detected photoevents N, in contrast with the expressions for the expected

values given in Eqs.(2.43) and (2.44).

The variances of C' and C" are denoted by '2 and a'2, respectively. Using

the same method that was described in Section 2.3.2, one finds
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2z

Sf f(r',0')[Re{R(r+r',0+0'9)}12r'dr'dO' <C,>2
(y2.0 0 2<C-(A8

2z - N (8)
f Jf(r',e')r'dr'dO'
0 0

and

2x -

J Jf(r',e')[Im{R(r + r',6 + O')}]'r'dr'dO'
o,2_ 0 20-< C">2 (9

f Jf(r',O')r'dr'dO' N
0 0

respectively. The correlation coefficient r defined as

< C'C" - < C'>< C">p = (A10)

is given by

f f(r',O')Re{R(r + r', + 0')}[Im{R(r + r',O + 0')} ] r'dr'dO'
P -- 2zt -

f ff(r',0')r'dr'd0'
0 0

(All)

-<C'>< C"> I
In Eqs (A6)-(A 11), Re{...) and Ira{...) denote the real and imaginary parts of the

reference function, respectively.

In the computation of the moment invariants, we require the marginal density

function for the modulus of the correlation signal IC(r,0). To find the marginal

density, we make the following change of variables:
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C'= ICicosy (A12.a)

C"= ICisiny (A12.b)

jC[ = (C'2 +C 2 )2 (A.12.c)

Using the appropriate Jacobian for the transformation, substituting Eqs (Al2a-c) into

Eq.(A5), and integrating over y, we obtain the following expression for the marginal

density function P(ICI):

4P(1 - J' dy
4clp2) 2 a'aC"

__ _I _ C__ cos
2(y ) - 21CI < C'> cos(y)+ < C'> 2

IC12 cos(y)sin(y) - ICI[< C"cos(y)+ < C'> sin(y)]+ < C'>< C"> (A.13)

+ 1C12 sin2(y)- 2 < C"> ICIsin(y)+ < C"> ] }

For the general form of P(ICI) in Eq.(A 13), we have been unable to obtain an analytic

solution for the integral. However, in the particular case of the moment invariant

computation, Eq.(A13) simplifies considerably. Consider the case when the

normalized correlation coefficient p is small, and a'2 = 0"2 = a 2 (These are

experimental observations that we have observed to be true without exception, to date).

Hence, is possible to neglect the middle term with respect to the other terms in the

argument of the exponential in Eq.(A13). Making these approximations, and

rearranging terms, we have
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P(UI~ IC exp-~ IcI+ < C,>2< C,>2

2n(1-p
2)1 02 2(1-p 2 ) 2

(A14)
2z ,, I CIJXfdyexpp { 1 +.[<C'> cosy+ < C"> siny]}

The integral in Eq.(A14) can be evaluated using Ref.3. Evaluating the integral in Eq.

(A 14) gives

POCU ) --- I exp- I + < C,>2< C">2 1 IcI(< c'>2 + < c">2 ) 2 (A15)
2n(ip 2 ) C12  2(1p 2 )a2  I 2 (1-p 2) j

where Io[...) is the 01h - order modified Bessel function4. Hence, when the reference

function in Eq.(13) is used, and s=2, then P(ICI) represents the density function for the

estimate of the invariant moment D2,m" Equation (A15) can be used to compute the

mean value and variance for the estimate of (D2,m when Eq.(5.17) is used as the

reference function, with s=2.

The description of the statistics of the estimate for (Dlm and D3,m requires the

computation of an additional PDF. As described in Section 5.3.2, the estimate for

0D1m is obtained by taking the ratio of the modulus of two correlation signals. [The

correlation signals are obtained using the reference functions in Eqs. (5.24) and

(5.25)]. Hence, we require the PDF for the random variable defined by

IC- I (A16)
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where IC11 and 'C21 are the moduli of the correlation signals obtained using the

reference functions given in Eqs. (5.24) and (5.25). The procedure to determine the

PDF for the ratio of two photon-limited correlation signals is given in Section 4.5.2,

and can be applied here.

As before, we define the variables

z= -I , -Il (A17)

1=

If different photoevents are used to realize the two correlation signals, then they will be

statistically independent. The individual density functions P( ) and P(ri) are given by

Eq.(A15), with the appropriate statistical moments used for each variable. The

probability density function of the ratio of the two independent random variables is

expressed in terms of their individual density functions via the following equation5 :

P(Z) = TIl P,(Zrl) P,(r1) dil (A18)
0

In Eq. (A 18), P;(Z7l) is obtained by substituting Zil for in the expression for P( ):

ZT1 exp_ (ZTl) 2+ < ,>2< ">2 Zi(< >2 + <(A19
2;( T (1-)) =_ , [ep 2(1-_ p2)G2 1 (1 - p 2)c;2(A9

In Eq.(A19), rj' and r1' denote Re(C 1 } and Im(C 1 ) respectively. The statistical

moments are obtained using Eqs.(A6)-(All). In addition, P,(TI) denotes the

probability density function for il, and is given by
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PTIn (+l <- TI >xp . . . I > I (<, 2+ < j,> )
-, exp 2;' I (A20)

2n(1- )202 1 2(1-P1)a j (-Pn)a

Substituting Eqs.(A19) and (A20) into (A18), it is possible to obtain an analytic

solution to the integration, using Ref. 6..The result of the integration is

Z2(< '>2 + < 4">2)

_____1___ +______ i(-1)m1(m +2)1 (a~' 4~ 2

Z( -p4) 2 + Z(1- pT)20y2 i. m!F( +I) 4Z 2  4
Z(-P) 2 2 Z(1- p,) 2 G2

Z2(< T1'>2 + < Tl">2)

SF -m,-m,1, - + (A.21)

(a(1- P)2

In Eq. (A.21), F0 denotes the Gamma7 , or factorial function, and F0 denotes the

hypergeometric function 8. It was the author's experience that the integration was more

conveniently performed numerically, rather than evaluate the infinite series of

hypergeometric functions. Once the PDF for the ratio of the correlation signals has

been computed (numerically), the mean value and variance can also be computed

numerically.

A.2. Statistics of the distance in feature space, D2

The density function for the distance in feature space is needed to predict exactly

the number of detected photoevents necessary to discriminate among a given set of

images. Here, we present the procedure to determine the statistics of the distance in
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feature space when O2m are used as reference features. A similar procedure is used

when (D,,m are the reference features.

The distance in feature space D2, given by (c.f. Eq.(7))

D2 = inPut -ref 2 (A22)[D 2.m 2,m
m

is computed using the photon-limited estimate for r1inPut (recall that the estimate for

(dinPut is given by IC2,mI when Eq.(5.13) is used as the reference function with s=2).

If different photoevents are used to estimate the different order moments, each estimate

is statistically independent. Hence, the density function P(D 2) is given by the

convolution of the m density functions3 2 P((IC 2 ,m- 4Dref.)2). The density function

P((IC 2 ,ml- (Dref')2) can be obtained using Eq. (A15) and the following change of

variables. Let

(Drel .2 (A23)9.2 m = ('C2,ml -q2,m)

or

IC2.. I = 2 (A24)

Making this substitution into Eq.(A15) and applying the Jacobian for the

transformation, one finds the following result for the density function P(t2,m):
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g2 + (m+fd+< C'>2 + <C>2
2(14m+c-,)exp-2a(-)= 212(l _ p2)

P(P 2.,. ) 0 4I 2 ,

2(;2~ ~ ~ (1 ri92

(g .( +'Dd)(< C'> 2 + < C">2)2

(-g ..~~~ +oDrexp - "+ + < C,>2 + < C ",>2
9 2 2 (1 - f2)

+ 2 C(4 1( l + ) 9 ,m{

I2., +,,. < c'>2 + < C 1>2 1
X I0 1 2 (1 -P 2 ) (A25)

Hence, when different photoevents are used to estimate each moment, the

density function for P(D2) is given by

P(D 2) = P(92.m) @ P(9 2 ,m2 ) @ P(t2.m3) ..... (A26)

where @ represents convolution and mi represent only the orders of the angular

moments that are used to compute the distance vector (in practice, the total number of
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moments required is usually < 3). If the same photoevents are used to compute each

order moment, then the random variables g2,m are not statistically independent. The

approximation that 92,m are independent may still be useful, but this must be

determined either experimentally or numerically on a case-by-case basis.

A.3 Statistics of the photon-limited estimate for the input centroid.

The photon-limited estimates for moment invariants are shift invariant only

when the moments are computed about the centroid of the input image. In addition, the

centroid of the input must be known within a given error to produce accurate values for

the moments invariants; the error that can be tolerated will depend on the particular

application in question. (For the experiments performed here, the centroid was

required within 0.5 pixels using 256x256 input images.) In this appendix, we present

the method for determining the number of detected photoevents required to determine

the centroid of the input image within a given error.

The Cartesian coordinates of centroid of the input image can be determined by

realizing the correlation signals Cx and C.y using the reference functions

R(x,y) =x , (A27)

R,(x,y) = y (A28)

Upon consecutive substitutions of Eqs. (A27) and (A28) into (A6), one finds

JJ xf(x, y)dxdy
< C1 >= A (A29)

ff f(x,y)dxdy
A
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ff yf(x, y)dxdy

< Cy >= A, (A30)Jf f(x, y)dxdy
A

where A represents the area of the input image. The variance in the estimate for the x

and y coordinates of the centroid is obtained by consecutively substituting Eqs. (A27)

and (A28) into Eq. (A8). Hence,

ffx2f (x, y)dxdy1

N ff(x,y)dxdy , (A31)

[I'f y2f(X, y)dxdy 2

N f(x,y)dxdy < , (A32)

.A

Different applications will require that the centroid be computed with different errors;

one definition for an error is given in Eq.(5.24). The amount of error that can be

tolerated in the computation of the centroid must be established on a case by case basis,

and Eqs. (A3 1) and (A32) can be used to determine the number of detected photoevents

needed to achieve the desired error.
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Appendix B. Issues in the computation of weak moments

As mentioned in Section 5.5.3, it is not practical to compute weak radial

moments using photon-counting techniques. The advantage in using photon-counting

techniques is that one can often estimate radial moments of CHF's using a sirgle

realization of the photon-limited correlation signal, when the proper reference function

is used. For this estimate to be accurate, the mean value of the estimate must be

approximately equal to the actual value of the radial moment, and the standard deviation

of the estimate must be small relative to the mean value of the estimate. Here, we show

that this is indeed true for strong (or large) radial moments, but is not true for weak (or

small) radial moments.

From Eq.(5.21), we see that the invariant moment (Ism is given exactly by

taking the ratio I<Csm>/k<CsO>I. An estimate for c1s,m can be obtained by taking the

ratio ICs,mI/ICs,01, where Csm and Cs.0 are obtained using Eq.(5.12), with the

reference function given in Eq.(5.19) (using appropriate values for s and m). If

different photoevents are used to compute ICs.mI and ICs,01, then

1C.'0 / -sm 9(BI)

where Ots.. is the photon-limited estimate for the invariant moment Osin. Comparing

Eq. (B 1) with Eq.(5.21), we see that Ots. n will be approximately equal to 'Is.m if

<Ic..I >- 1< C,,. >1 , (B2)

and
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<ItC, 01 >- 1< C., >1 (B3)

The mean value of ICsmin and ICs,oI can be obtained numerically using the PDF given in

Eq.(A15). If this is performed for radial moments of arbitrary strength, we see that

Eq.(B2) is not consistently true (see Tables 5.1-5.3).

We can see this effect analytically by examining whether

< Ic.,I = >=- 1< c"., >1' (B4)

and

< Ic'01 2 >=1< c,0O >12 (B5)

We examine Eqs. (B4) and (B5) because they illustrate the point more readily than the

more complex analytical expressions for <lCs,m1>; in addition, 2s,m is also a valid

definition of a moment invariant. Using Eq.(5.12), the mean value of ICs.m12 is given

by

sm >= E R(r,0)R*(r 0j)[Cs'T > -i=1 j=1 (B6)

where the centroid of the input image is defined to be the origin, and * denotes complex

conjugation. Rearranging terms in the summations, one finds

2  1 K R R* + RkR<[Cs"m[ >-- IE ,*+ 2 k

i* j k=1 (B7)

where Ri,R j and Rk denote R(ri,Oi), R(rj,Bj) and R(rk,Ok) respectively.

Computing the ensemble average term by term, one obtains
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2x: 2x:

2 ff(r',O')R(r',O')r'dr'dO'f ff(r',O')R(r',O')r'dr'dO'
< ...12 >= (N - 0 0 0

If(r,0')r'dr'dO'

(B8)
2x-

f ff(r',8I)IR(r',O )12 r'dr'dO

2x-N f ff(r',0')r'd,'d'

0 0

In Eqs. (B6)-(B8), the reference functions are given by Eq.(5.19), using the

appropriate values of s and m. For N large and f(r,O) real, the first term in Eq.(B8) is

approximately IMsmI2/IM 2 ,o2, [cf. Eq.(5.3)]; this is the term that we hope is

dominant. If the moment invariant IMs,m12/1M2,012 in question is a sufficiently strong

moment for the image in question, the second term in Eq.(B8) can be neglected with

respect to the first term. As a result, Eq. (B4) will hold. The same is then true for

Eq.(B5). In the particular case of IC2,m2 , Eq.(B8) becomes

2x - 2x -

2, f/ f(r',O')exp(-imO} r'dr'dO'f ff(r',O')exp(+imO} r'dr'dO'
2. __ 0 0 0 0 2 -

(B9)
1

N

Hence, for N large,

<C 1 2> (D BO2,m2m ' (B)
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and the mean value of the estimate for 02Z, is approximately equal to (022,m. While it

does not directly follow that this is true for (D.m, one can make a similar argument by

computing <IC 2,mI> numerically using the PDF in Eq.(A15). The results of this

computation are given in Tables 5.1-5.3.

The variance for the estimate of 2, is given by

2,m 2,m 2,m (Bi1)

Using Eqs. (B9)-(B 11), we see that the variance in the estimate for 0 2,. is of the order

1/N, which is typically small compared to (b2.mif the moment in question is large (see

sigma in Table 5.2, m = 2 or 4).

For the case when 1/N is not small compared to the first term of Eq. (B9), the

effect of this bias can be reduced by using

1 2

as the estimate for the moment invariant. The PDF for this estimate of 02,m can be

obtained using Eq.(A15), and making the following change of variables. Let

1(C2..1_ N) (B13)

or

jC2 ,.l p I2 + - 2 (B14)
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Substituting Eq. (B14) into Eq.(A15), and applying the appropriate Jacobian of the

transformation, one finds for the PDF P(P)

1

p2 + <C,>2 + <C>22 1

P(3) = P3exp- { +x <C 2 C>2  I ot (_2)2 (<C'>2+<C">2) " } (B15)
2(1-p 2 )02 (1-p2)a 2

Eq.(B 15) can be used in place of Eq.(A15) in all calculations regarding the statistical

behavior of the photon-limited estimate of 02,m when Eq.(B 13) is used to provide the

estimate.


