
NUSC Technical Report 8611 DTIC FILE COPY

1 October 1989

AD-A218 423

Optimum Memoryless Nonlinear
Transformation for Weak
Narrowband Signals in Noise

Albert H. Nuttall r:
Surface ASW Directorate

DTIC
S ELECTE M

FEB 2#1 1990

Naval Underwater Systems Center

Newport, Rhode Island / New London, Connecticut

Approved for public release; distribution Is unlimited.

90 02 23 166-



Preface

This research was conducted under NUSC Project No. A75215, Subproject No.
ROONOOO, "Determination of Concentrated Energy Distribution Functions in the
Time-Frequency Plane", Principal Investigator Dr. Albert H. Nuttall (Code 304). This
technical report was prepared with funds provided by the NUSC In-House Independent
Research and Independent Exploratory Development Program, sponsored by the Office
of Chief of Naval Research. Also, this research was conducted under Project No.
B59009, Principal Investigator Raymond F. Ingram (Code 3411), sponsored by Program
Manager W. Lawson, SPAWAR 153-3.

The technical reviewer for this report was James A. Nuttall (Code 3411).

Reviewed and Approved: 1 October 1989

Daniel M. Viccione
Associate Technical Director

Research and Technology



Form ApprOved

REPORT DOCUMENTATION PAGE OMB No. 0704-o0I

Pbic reportig burden fr the collecton of information i$ estimated to average I hOur pe, rESponSe. thcuding tie time for reviewing ,itrlCtns, search.ag evistIng data fource,
gathering and maintaining the data neeed. and co leting and reviewing the colleton Of information Send comments re7oardin tis bat n estimate or an other aO ect of this
collection of ifonrmation. indudeng suggesdOnS if re duig this burden, to Washington Headquarters Services. Directorate fOr information Operatons and Repor. 1215 Jefferson
Oavi Highwa". su 1204. Arlington. V 22202.4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-018). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
7 1 OCT 1989 _

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

OPTIMUM MEMORYLESS NONLINEAR TRANSFORMATION PR A75215
FOR WEAK NARROWBAND SIGNALS IN NOISE B59009

4L AUTHOR(S)

Albert H. Nuttall

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Naval Underwater Systems Center
New London Laboratory TR 8611
New London, CT 06320

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of.the Chief of Naval Research
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

* The optimum memoryless nonlinear transformation for weak narrowband signals
in narrowband noise is derived in terms of the joint probability density function
of the noise amplitude and phase modulations. The optimization is in terms of
maximizing the magnitude of the deflection of the complex envelope at the
nonlinearity output, for small signal inputs of arbitrary characteristics.
The optimum nonlinearity is complex, in general, meaning that a phase modulation
is superposed, in addition to that present at the input to the nonlinearity.
A problem with the behavior of the optimum nonlinearity is traced back to a
shortcoming in the approximate analysis, and a method for circumventing the
problem is presented. Two methods of treating the spurious weak signal component
at the nonlinearity output are considered and compared quantitatively. Finally,
the optimum nonlinearity for processing phase differences is derived for a
particular model of noise statistics and shown to be closely related to an
earlier processor. f4o,,

14. SUBJECT TERMS IS. NUMBER OF PAGES
-' onlinearity Weak Signals 74
Memoryless ; Amplitude Modulation, 16. PRICE CODE
Transformation Phase Modulation ' , I

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-891

Prefcr.b4d by ANSI %td 095.18



UNCLASS IF ED
~wtmy ctLA4IincA~t@w OP 1NU PA44

14. SUBJECT TER~MS (CONT'D.)

Deflection
Complex Envelope
Maximum Deflection
Phase Differences
Spurious Signal
Narrowbaid

#:CIOtFor -

by

Av, ;:~ -dc'

UNCLASSIFIED
SECUIR IV CLAIOPICA ?1@w OF ?140S PAQ9



TR 8611

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS ii

LIST OF SYMBOLS ii

INTRODUCTION 1

LOWPASS REAL WAVEFORM 3
Mean Outputs 3
Output Deflection 5
Maximum Deflection 6
Example 7
Physical Interpretation 9

NARROWBAND WAVEFORM 15
Mean Outputs 16
Small Input Signal-to-Noise Ratio 18
Difference in Mean Outputs 21
Variance of Output 24
Output Deflection 25
Maximum Deflection 25
Physical Interpretation 28
Examples 30
Discussion of Imaginary Term 32
Size of Neglected Term 33

OPTIMUM NONLINEARITY FOR PHASE CHANGES 35
Nonlinear Processing 35
Input Noise Statistics 36
Mean Output 37
Small Input Signal-to-Noise Ratio 38
Variance of Output 41
Optimum Nonlinearity 42
Example 44

SUMMARY 45

APPENDIX A. JACOBIAN OF TRANSFORMATION 47

APPENDIX B. INDEPENDENCE OF ADDITIVE CONSTANT 49

APPENDIX C. BEHAVIOR OF OPTIMUM NONLINEARITY 51

APPENDIX D. ALTERNATIVE FORMS IN RECTANGULAR COORDINATES 59

APPENDIX E. CONSTRAINED MAXIMIZATION OF DEFLECTION 63

REFERENCES 73



TR 8611

LIST OF ILLUSTRATIONS

Figure Page

1. Outputs from General Nonlinearity g 10

2. Outputs from Optimum Nonlinearity gm 10

3. Outputs from Modified Optimum Nonlinearity m 10

4. Outputs from General Nonlinearity g 29

5. Outputs from Optimum Nonlinearity gm 29

6. Outputs from Modified Optimum Nonlinearity gm 29

LIST OF SYMBOLS

t time

x(t) input waveform, (1),(14)

s(t) input signal waveform, (1)

n(t) input noise waveform, (1)

gfxJ nonlinearity characteristic, (2),(15)

y(t) nonlinearity output, (2),(15)

yl(t) signal-plus-noise output, (2),(16)

YO(t) noise-only output, (2)

overbar mean value, averaged over noise statistics, (3)

p(u) probability density function of input noise, (3)

var variance, (8A),(40),(42)

d 2  deflection, (9),(10),(43),(44)

gm(x) optimum nonlinearity, (11),(45)

d 2  maximum deflection, (12),(46)
m

ii



TR 8611

§m{X} modified nonlinearity

A X(t) input amplitude modulation, (13)

+x(t) input phase modulation, (13)

h{A,#) nonlinear transformation, (15),(22)

arg argument of complex number, (15)

A S(t) signal amplitude modulation, (16)

*s(t) signal phase modulation, (16)

A n(t) noise amplitude modulation, (16)

*n(t) noise phase modulation, (16)

p(A,+) noise joint probability density function, (18)

Pl(A,+) partial derivative of p, (25)

P2 (A,#) partial derivative of p, (25)

ql' q2  auxiliary functions, (31),(47)

za,  Zb complex numbers, (33),(35),(36),(57),(58)

time between samples, (62)

h(A,#,A, } nonlinear transformation, (63)-(65)

iii/iv
Reverse Blank



TR 8611

OPTIMUM MEMORYLESS NONLINEAR TRANSFORMATION

FOR WEAK NARROWBAND SIGNALS IN NOISE

INTRODUCTION

For strong additive noise that is not Gaussian, a nonlinear

transformation that suppresses the noise, but passes the signal,

is useful in aiding in the detection of weak signals. Here, we

will first review the standard memoryless nonlinear transforma-

tion of a lowpass real waveform composed of signal-plus-noise or

noise-alone and maximize the deflection. A problem arises for

the "optimum" nonlinearity, which indicates the possibility of

infinite deflection; this behavior is traced to a shortcoming of

the approximate analysis, and a method for circumventing it is

presented.

Then, we extend these ideas to a narrowband waveform contain-

ing both amplitude and phase modulation on the signal as well as

the noise. In both cases, a deflection measure, for small input

signals with arbitrary characteristics, will be maximized by

choice of the arbitrary memoryless nonlinearity characteristic.

The presence of a spurious weak signal component at the non-

linearity output will be fully discussed and treated in two

different ways. Also, the apparent infinity of the "optimum"

nonlinearity and its corresponding deflection will be thoroughly

investigated, and a method will be presented for ameliorating the

shortcomings of the approximate analysis.
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Some of the results of this investigation confirm those in

(1,21. However, we give a full derivation of the method and elab-

orate at length on how to handle the spurious signal component

and anomalous behavior. Additionally, the loss of detectability,

caused by the desire to completely suppress the spurious signal

component, is evaluated quantitatively.

A complete derivation of the optimum nonlinearity operating

in the presence of noise with phase dependence of a particular

kind is also presented. The corresponding maximum deflection is

derived in terms of the amplitude and phase difference probabil-

ity density functions. The anomaly for small noise amplitudes is

discussed and illustrated by examples.

2
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LOWPASS REAL WAVEFORM

Received real waveform x(t) is composed of signal-plus-noise

or noise-alone, where the additive noise n(t) is considerably

stronger than the signal and can be non-Gaussian. That is, input

s(t) + n(t)

x(t) - or (1)

n(t)

where s(t) is the signal waveform with arbitrary characteristics.

This waveform is passed through arbitrary memoryless nonlinearity

g giving output

gst)+n(t)) ryj(t)
y(t) - gfx(t)} = or or . (2)

g~n(t)} Yo(t)

Transformation g need not be analytic.

MEAN OUTPUTS

For a given signal amplitude s(t) at time t, the mean output

of the nonlinearity is given by averaging over the noise
*

statistics:

Yl(t) - g{s(t) + n(t)) - f du p(u) gfs(t) + ul , (3)

Integrals without limits are over the range of nonzero inte-
grand.

3
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where p is the known probability density function of noise n(t)

at time t. (We have suppressed any t dependence of p, but this

analysis allows for nonstationary additive noise, if need be.)

Now let the change of variable, x - s(t) + u, be made in (3) to

get

Yl(t) - f dx p(x - s(t)) gfx} - (4)

dx fp(x) - s(t) p'(x)I g{xj , (5)

where we expanded the noise probability density function p about

the point x, through linear terms in (weak) signal amplitude

s(t).

A note of caution is in order regarding expansion (5). Since

x can range over (--,+m), we are presuming that probability

density function p(x) has a local tangent for all x; that is,

p(x) has no discontinuities in slope. If we attempt to employ

the following results on a density p(x) that violates this

condition, the conclusions may be incorrect and a closer

investigation is warranted.

For noise-alone, we set s(t) - 0 in (4) to get mean output

Yo(t)'- f dx p(x) g~xl . (6)

The difference in mean outputs, that is, signal-present versus

signal absent, follows from (5) and (6) as the approximation

yj(t) - Yo(t) = - s(t) f dx p'(x) g{x) (7)

4
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OUTPUT DEFLECTION

At the same time, the variance of the output of the non-

linearity for noise-alone is

2 2
var(yo(t)) - Yo(t) - y (t) , (8A)

where mean-square value

yo(t) - g 2n(t)} - dx p(x) g2 {x) (8)

Combining (6)-(8), we define an output deflection from the

nonlinearity g as

2

2 [ yl(t) - Yo(t)
d - var(yo(t))

2 [J dx p'(x) g{x}] 2

f dx p(x) g2 (x) - If dx p(x) g(x(92

This is an approximation to the deflection since it utilizes

(5). Therefore, the following results based on (9) are also

approximations.

5
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MAXIMUM DEFLECTION

We would like to maximize this small-signal deflection at the

nonlinearity output by choice of the nonlinearity characteristic

g. However, two observations should be made. First, the abso-

lute scale of g is immaterial to the deflection; that is, a g{x)

obviously gives the same deflection d2 as does gfx}. Second, an

additive constant to g does not affect the deflection; that is,

gfx) + b gives the same value of d2 as does g{x}. This is easily

verified by direct substitution of g(x} + b for g{x} in (9),

whereupon b is seen to cancel out everywhere. More generally,

nonlinearity a g(x) + b gives the same deflection as g{x}.

what this means is that, without loss of generality, we can

set the nonlinearity mean output for noise-alone, y0 (t), equal to

zero, and not detract from the attainable values of deflection

criterion (9). So, setting (6) to zero, (9) becomes

[2 dx p(x) gfx}] 2

2 s(t) p(). (10)

f dx p(x) g 2{x)

But now, by Schwartz's inequality, this ratio is maximized by the

optimum memoryless nonlinearity

{ x) - - - ln p(x) . (11)

Here, we have taken advantage of the scaling independence in

order to supply the factor -1 for convenience. The resulting

maximum deflection is

6
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d2  s2(t) r dx 2'2(x) (12)m j p(x)

Substitution of optimum nonlinearity (11) into noise-alone

mean output (6) immediately yields zero, consistent with the

assumption utilized in reducing (9) to (10). We should also

notice that signal value s(t) appears as a multiplicative term in

general deflections (9) and (10); thus, the optimum nonlinearity

gm can be selected, as in (11), without regard to the particular

signal amplitude. It also allows s(t) to be deterministic or

random, as the case may be. These approximations are all

predicated on the small-signal assumption utilized in (5).

EXAMPLE

As an example of (11) and (12), consider Gaussian noise for

which

p(x) - 1 exp - ] for all x
I 2n cr n 1 2 cn

As noted under (5), this probability density function has no

discontinuities in slope. Substitution in (11) and (12) gives

gm{x ]  2 n for all x

n

and

2d2  s (t)
m 2 "

n

7
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Thus the (approximate) optimum nonlinearity is, in fact, linear,

and the maximum deflection is the instantaneous signal-to-noise

power ratio at the input to the nonlinearity.

By the arguments given in the sequel to (9), we could equally

well use nonlinearity

m Mx) - x

and realize the same maximum deflection d2. This latter nonlin-

earity, §M' would have a nonzero noise-only mean output, namely

/n; however, this is not a problem since it is known and could be

subtracted from the output of §m' if desired.

In the general case, we can always use (modified) optimum

nonlinearity

m (x} - a gm[x} + bm

instead of (11) and still get maximum deflection dm in (12),

where a and b can be chosen for convenience. The major differ-

ence is that the noise-only mean output is then b, not zero;

however, since b is known, this constitutes no limitation or

problem.

8
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PHYSICAL INTERPRETATION

The general situation is depicted in the series of plots in

figures 1 - 3. The noise-only output y0 (t) is given on the left

side of each plot, while the signal-plus-noise output y,(t) is

given on the right side. The mean of each waveform is indicated

by a horizontal dashed line. Figure 1 represents the starting

point of the analysis, namely (2). Figure 2 indicates the output

waveforms for the case of the optimum nonlinearity gm in (11),

that is, y0 (t) now has zero mean. The nonlinearity gm maximizes

the ratio of the mean of yl(t) to the standard deviation a. of

YO(t). Finally, figure 3 biases both y0 (t) and yl(t) by constant

b and scales both by factor a; it represents the outputs of non-
linearity "

Another note of caution is in order relative to approxima-

tions (11) and (12). If p(x) is zero at any value of x, the

optimum nonlinearity gm approaches infinity at that point, and

the maximum deflection d2 may become infinite as well. This ism

physically unrealistic and indicates that certain forms of the

noise probability density function p are disallowed or that the

approximations have gone awry. For example, if p approaches zero

at an isolated point, it must do so faster than linearly in order

that integral (12) remain finite from the contribution in the

neighborhood of that point. However, integral (12) is itself an

approximation and must also be investigated more closely.

9
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Y°(t) Yl (t)

t t

Figure 1. Outputs from General Nonlinearity g

YOt) y )(t)

crv
/A, Am A.A /o.

V -vVV "V 1

Figure 2. Outputs from Optimum Nonlinearity gm

Y(t) yj(t)-

t 
t

Figure 3. Outputs from Modified Optimum Nonlinearity m
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This possibility of infinite deflection is not entirely due

to inadequacy of the approximation utilized in (5) et seq. In

general, if we use (4), (6), (8), and the upper line of (9), we

have, for any g, exact deflection

a2 [f dx [p(x-s) - p(x)] g~x]2

j dx p(x) g 2x}

where we have replaced s(t) by s for notational brevity. Now

suppose that we consider signal value s known and that non-

linearity g can be chosen with this knowledge. The optimum

nonlinearity is then (with no approximations)

e{x;S} . p(x-s) - p(x) . p(x-s) 1

[ p(x) p(x)

Although it is physically unrealistic to presume signal value s

known, this approach is informative in that it pinpoints the

source and rate of approach of the infinities. It is immediately

seen that if p(x) approaches zero somewhere, then g ex;s}

approaches infinity at that x value (unless s - 0). The

corresponding maximum deflection for nonlinearity ge (x;S} is

2
-2ls - [d x - dsP(-s)

J p(x)dx p(x) dx p (x-s)

and will remain finite only if p approaches zero less fast than

linearly. Thus, the condition on the rate of approach of p to

zero, in order to maintain finite deflection, is reversed from

the conclusion above based on approximation (5). This reversal

11
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is very important to know about, but the possibility of infinite

deflection still remains.

If we now make the small-signal assumptions on the exact

results above, we find

Sx;s} - - (x) . s g 1xj

e p(x) m

d2(s) - s2 dx p'(x) m

consistent with (11) and (12), respectively. (The multiplicative

factor of s in gefx;s) is merely an irrelevant scale factor, as

far as the deflection is concerned.) No nonlinearity can outper-

form a2 (s) for any signal value s, since the latter result allowse 2.
for use of knowledge of p(x) as well as value s. So if dm in

(12) gives a result larger than d2(s), it means that the approxi-e

mation giving rise to (12) was faulty. In that case, we should

revert to exact deflection d2 (s) and substitute the particular

nonlinearity g being employed. For example, if approximate

optimum nonlinearity gm in (11) is utilized, the corresponding

deflection is found to be

d2 [ dx p(x-s) p'(x)/p(x)] 2
m(S " dx p'2 (x)/p(x)

of course, 2(s) < g2(s) in all cases.

Some examples are useful at this point. For Gaussian noise,

we have

12
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p(x) - (2n)-4 exp(-x 2/2) for all x

gm{X(x) - x
gp (XI p(x) "

2 dx (x) s2
m - p(x) '

-2 2dm (S) - s

9 xs - exp sx _ .S 2) 1 -sx - s 9 [x)

d2(s) - exp(s 2  - 2 . d2

-2 2

The quantity de(S) is larger than d2 for all s (except s - 0).

All of these results are self consistent.

For exponential noise,

1p(x) - I exp(-Ixl) for all x

gx) - - P'(x) - sgn(x)

rp x)

m " p(x)

ds)- [ - exp(-Is)] 2 ~ s - Is! 3

ge x;s) - exp(-Ix-sl + lx) - 1,

a2(s) - I exp(Isl) + .1 exp(-21sl) _ 1 - 2  1 is153 .
2 2+1-

Now, je(s) is less than d for 0 < Is! < 2.07; thus the approxi-

mation d 2 is somewhat optimistic and j(5) should be used in-

stead. A sketch of nonlinearity g ex;s) reveals that it resembles

13
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s sgn(x), especially for small s. This example is consistent

except for d 2 despite the fact that p'(x) is discontinuous at

the one point x - 0.

For a noise probability density function with a zero (at the

origin for convenience), we have, for example,

p(x) - a lxjV exp(-IxlM ) , V > 0, p > 0,

g~x}- P(x) v as x 0m p(x) x

2dm -2 s dx (x) < * if v > 1,

d m(S) - 0 if V < 1

ge{x;s} . P(x-s) - P(-s) as x 4 0

e p(x) a jxjv

a2(s) < - if v < 1

As anticipated, the condition for finite deflection is reversed

in the exact result (v < 1) versus the approximation (v > 1). In

addition, the rate of growth of the optimum nonlinearity near

x - 0 is milder for the exact result and of a very different

character. The reason that 22(s) is zero for v < 1 is that

p'(x)/p(x) - 1/x, whereas p' 2(x)/p(x) - x" -2 as x -+ 0+; thus, the

integrand of the denominator of U2(s) has a higher-order sing-m

ularity at x - 0 and approaches infinity at a faster rate than

the numerator. This example exemplifies the need for close

scrutiny of a noise probability density function which has a zero

value anywhere in its range.

14
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NARROWBAND WAVEFORM

The available input waveform of interest in this section has

the form

A x(t) cos[2nf 0t + x(t)] , (13)

where f0 is the known center frequency, and Ax (t) and +x(t) are

the lowpass amplitude and phase modulations, respectively. The

complex envelope of this waveform, which can be easily extracted

from (13), is

x(t) - Ax (t) exp[i+x(t)] . (14)

We will allow an arbitrary complex memoryless nonlinear

transformation h of Ax (t) and +x (t); that is, the output is

modified complex envelope

y(t) - hA x(t),* (t)) - h(Ix(t)I, arg(x(t))} n gfx(t)) , (15)

where g is an arbitrary complex function of complex argument

x(t). Transformation g need not be analytic.

The input x(t) to nonlinearity g is composed of signal-plus-

noise (or noise-alone); thus, we can express the signal-plus-

noise output as

Yl(t) - g(As(t) exp[i s(t)] + A n(t) exp[iOn(t)] }  , (16)

where As(t) and +s(t) are the arbitrary input signal amplitude

and phase modulations, while An(t) and #n (t) are the input noise

amplitude and phase modulations, respectively. We presume a low

15
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input signal-to-noise ratio; that is,

22
A2(t) << A2(t) (17)

However, there are no limitations on the sizes of phase modula-

tions #s(t) and #n (t), nor on the signal characteristics. The

joint probability density function of the noise amplitude and,

phase modulations is presumed known; that is, P(An,*n) is given.

(Again, although we suppress any t dependence of p, the following

analysis allows for nonstationary noise simply by reinstating any

t dependence in p.)

MEAN OUTPUTS

For given signal amplitude and phase modulations A s(t) and

#s(t), the complex mean output from the nonlinearity g is, from

(16),

Yl(t) - ff dAn d#n g(As(t)exp(i*s(t)]+Anexp[i*n]) p(An,*n). (18)

We now make the change of variables

A exp[i#J - A s(t) exp[is (t)] + An exp[i n ]  (19)

in (18). The Jacobian of this two-dimensional transformation is

derived in appendix A; it is

(A n'n) A A

a(A,*) A n - iA exp(i ] - As(t) exp(i 5s(t)] I  (20)

16
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At this point, for notational convenience, we will suppress

the t dependence of As and +s ; this time dependence will be

reestablished after all the following mathematical manipulations

have been completed. The use of (19) and (20) converts (18) into

the following exact result for the complex mean output

Yj(t) - dA d+ JA exp(i+) - A exp(i*s)H gfA exp(i+)} x

x p(IA exp(i+) - As exp(i*s)l, arg(A exp(iO) - As exp(is)).(21)

This expression could be written in an entirely equivalent form

by replacing g(A exp(i+)) with h[A,*}; that is, from (14) and

(15),

h[A,*} - g(A exp(if)j for all A,# (22)

This latter form, in terms of h, more clearly accents that a

completely arbitrary transformation of A and + is allowed;

however, since g is arbitrary, the same is true of the form

gfA exp(i*)), which is used henceforth.

17
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SMALL INPUT SIGNAL-TO-NOISE RATIO

We now make use of the low input signal-to-noise ratio

assumption, (17), by expanding (21) through first-order terms in

the signal amplitude modulation As. Since

11 - - i - (1 -) 2 +6 - 1- ,

and

arg(l - e - i&) ~ - 6

through linear terms in real variables e and 6, then

IA exp(i+) - As exp(i*s)I ~ A - As cos(# - ) for As << A

(23)
A

arg(A exp(i+) - A exp(i+s)} -A sin(+ - *) for A << A

Substitution in (21) yields

Y1 (t) - dA d+ A - A A g(A exp(i*)} x
jjA cos( 5 -

A
SPA - As cos(+ - ), - sin( s  (24)

Define

Pl(A,+) - r- p(A,+) , P2 (A,*) - 7 p(A,#) , (25)

where it is presumed that these derivatives of p exist. Then the

term in (24) involving joint probability density function p can

be expanded as

18
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A
p(A,+) - A cos( s - *) - X A sin(# - P2 (A,#) (26)

to linear terms in A . Coupled with

SA As
~~ 1 + - cos(* s - *) for A «< A , (27)

A -A S cos(* s  A ) s

(24) develops into

A

yl(t) - J dA d+ [1 + -A cos(* s - *)] g{A exp(i*)} x

Ap(A,#) - A s cos(f s - ) s

r A
if dA d+ gJA exp(i+)} (A+ + A~ Cos(+ p(A,$)-A

cos(+ - *) Pl(A,+) - ?- sin( s - *) 2(A,) (28)

through linear terms in As. There is no presumption about the

form of nonlinearity g in these expressions.

There is a fundamental flaw in the use of approximations

(23) and (27) in integral (21). The approximations specifically

require that A > As, yet they are used in end result (28) all the

way down to A - 0. The results in (23) should be augmented with

IA exp(i) - As exp(is)I - A o

~for A << A

arg{A exp(i*) - A exp(i s)) ~ s + n
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This would not only eliminate the troublesome 1/A dependencies

for small A in (23)-(28), but in fact convert the Jacobian to a

linear A dependence for small A, a very marked change.

The reason we do not incorporate this behavior is that it

would greatly complicate (28), and the intermediate range,

A = As, would still not be covered. What this means is that we

can anticipate some problems with approximation (28) and further

results based on (28), for small A; in fact, we must be willing

to modify or discard the 1/A dependency in some cases and ranges,

since it is based upon an invalid approximation. We will return

to this point later and elaborate in more detail.

The mean output from complex nonlinearity g, for noise-only,

is available directly from exact result (21) by setting As = 0:

YO(t) - Jj dA d g(A exp(i*)1 p(A,*) (29)
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DIFFERENCE IN MEAN OUTPUTS

The difference in complex mean outputs from nonlinearity g,

for signal-present versus signal-absent, is then available from

(28) and (29) as

Yl(t) - Yo(t) - - A dA d+ g(A exp(i+)) x

x [cos(+ s - +) ql(A,+) + sin( s -) q2 (A,.)] , (30)

where, using (25), the real quantities

ql(A,*) - A - A ' q2 
(A, * A (31)

The approximate result in (30) is similar to that in (7) for

the lowpass real case in that signal amplitude As appears

multiplicatively as a linear factor. However, (30) is still

complicated by the appearance of signal phase *s inside the

integrals. If we expand the cos and sin terms in (30), we find

Yl(t) - Yo(t) - - s (cos+ s za + sin+ s zb) , (32)

where complex numbers (due to the allowed complexity of g)

Za ' ff dA d+ g{A exp(i )j [cos. q,(A,#) - sin q2 (A,*)]

zb - ff dA d* g[A exp(i )} [sin. ql(A,*) + cost q 2 (A,)] . (33)
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An alternative form of (32) is more useful; specifically, the

difference of mean outputs can be expressed as

11
yl(t) - Yo(t) 1 exp(i+ ) (z -iz 1 abexp(-i ) (za+iZ

0 - - a Ab 2 a bs a Abx(

(34)
1 1+zb

M _ As(t) exp[i+ (t)] (Za-iZb) - As(t) exp[-i0s(t)] (z+iz

where we have reestablished the time dependence of the signal

amplitude and phase modulations As(t) and #s(t), respectively.

The two complex numbers in (34) can be written as

Za- iZb - JJ dA d g(A exp(i )j exp(-i*) [q1 (A,*) - iq2 (A,+)],(35)

za +iz b - J' dA do g(A exp(i*)) exp(+i ) [ql(A, ) + iq2 (A,0)].(36)

The leading term in (34) contains a replica of the input

signal to the nonlinearity g, namely,

As(t) exp~i*s(t)] , (37)

and will be called the desired signal component in the difference

of mean outputs. The remaining signal-dependent term in (34),

namely,

As(t) exp[-i*s(t)J , (38)

is of no interest since it has a distorted phase modulation.

That is, (38) will not correlate with the local reference, since

the latter has exactly the same form (38). Henceforth, we simply
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ignore the extra term (38) in difference (34). Thus, for the

desired signal component, we have

y(t) dsr As(t) exp[i# (t)] (z iz (39)

where the complex number za - i zb is given by (35).

The simplest example of this behavior is furnished by the

nonanalytic nonlinearity

g{z} - IzI 2

for which the output is

2
Yl(t) - As (t) exp[i 5s(t)] + An(t) exp[i+n(t)]l -

SA2 (t) + A (t) exp[-i+ (t)] A (t) exp[io (t)] +
n n n s s

+ An (t) exp[in (t)] A (t) exp[-i* (t)] + A2(t)

Both types of signal terms, (37) and (38), are exhibited here.
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VARIANCE OF OUTPUT

At the same time, the variance of the output of the

nonlinearity, for noise-alone, is

var(yo(t)) - IYolt) - yo(t) 2

2 _2 T
I ~Yo(t)I -y 0(t)12, (40)

where y0(t) is available from (16) by setting A5 (t) - 0:

YO (t) - g{A n(t) expfli* n(t)]} (41)

There follows immediately the exact result

var(y 0 (t)) - j(A n(t) expii n(t)J)t 12 _ I(A n(t) exp(i* n(t)llI
2r 2

- dA d+ Jg(A exp(i*)l 2 p(A,+) -

-If dA d# g(A exp(i#)j p(A,f)1 , (42)

where p(A,O) is again the joint probability density function of

the noise amplitude and phase modulations.

24



TR 8611

OUTPUT DEFLECTION

We are now prepared to define an output deflection from

nonlinearity g (analogous to (9)) as

d2 - (Y1 t - 70o(t))desrdvar(y
0 (t))

12A5 t f dA d+ g(A exp(i+)1 exp(-i+) [q1(A,+) -iq 2 (A,*]2

T s dA d+ Ig{ 12 p(A,+) - If dA d+ g[ p(A,)12

(43)

where we used (39), (35), and (42). Since (30)-(39) are based on

approximation (28), deflection (43) is likewise approximate.

MAXIMUM DEFLECTION

We would like to maximize this small-signal deflection (43)

at the nonlinearity output, by choice of the nonlinearity charac-

teristic g. However, as in the sequel to (9), two important

observations must be made. First, the absolute scale of g is

obviously immaterial to the value of d2. Second, an additive

complex constant to g does not affect d2 ; this last property is

derived in appendix B. Thus, nonlinearity a g{A exp(i*)} + b

gives the same deflection as g(A exp(i*)), where a and b are

arbitrary complex constants.

what this means is that, without loss of generality, we can

set the complex nonlinearity mean output for noise-alone, yo(t),
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equal to zero, and not detract from the attainable values of

deflection criterion (43). So, setting (29) to zero, (43)

becomes

d2 . (t) Iff dA d gA exp(i#)j exp(-i#) [q(A,#) -

4 if dA do ]g[A exp(if)}12 p(A,+)

(44)

But now, since g is completely arbitrary, by Schwartz's

inequality, this ratio is maximized by the (approximate) optimum

memoryless nonlinearity

S(A exp(i#)) - h (A,#) -exp(i#) (q(A,*) + iq 2 (A,#))

m m p(A,+)

. -exp(i#) [A _I(p(A,) 4 i _I (p(A,)) ]
p(A,) ) A A a+ A

- [ exp(io)[! ln(A,t)) + i a lntp(A,+) , (45)- ~ 8 -x( ) i A K r--

where we used (22) and (31). Here, we also have taken advantage

of the scaling independence in order to supply the factor -1 for

convenience. This result agrees with r1; (9)).

The resulting maximum deflection is

2f 12 q l (A '*) + iq2(A,)2
d2 1A2(t dA d*
m T f dp(A,+)

q1 (A,*) + q2 (A,*)1, A2(t)M dA do (46)
4 s ff p(A,*)

26



TR 8611

where ql and q2 are available from (31) as

ql(A,+) - A - p(A)J q2
(A (A (47)

Whether the phase term, q2 (A,+)/p(A,+), in optimum nonlinearity

(45) is important or not can be ascertained from (46) by

evaluating it with and without the q2/p term present. Some

limitations of approximations (45) and (46) concerning the 1/A

dependencies are given in appendix C, as well as an alternative

approach.

Substitution of optimum nonlinearity (45) into noise-alone

mean output (29) immediately yields the conjugate of the integral

in (B-l), which is shown to be identically zero in (B-4). This

is consistent with the nonrestrictive assumption utilized in

reducing (43) to (44). It should also be noted that signal

amplitude As(t) appears as a multiplicative term in general

deflections (43) and (44); thus, the optimum nonlinearity gm can

be selected, as in (45), without regard to the particular signal

amplitude. It also allows As(t) exp[i s(t)] to be deterministic

or random, as the case may be. This is all predicated on the

small signal assumption utilized in (22)-(28). The actual output

time waveform from the optimum nonlinearity gm in (45) is

obtained by replacing argument A exp(i#) with

A s(t) expfi#s (t)J + A n(t) exp[i#n (t)J; see (16).
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PHYSICAL INTERPRETATION

A physical interpretation of what is taking place in this

complex envelope case is given in figures 4 - 6. The noise-only

output y0 (t) is plotted on the left side of each figure as a

complex point in the plane, which moves as time progresses. The

noise-only mean output for arbitrary nonlinearity g is indicated

by a dashed arrow in figure 4 to the complex point y0 (t) given by

(29). For any nonlinearity g selected, this is a known point

since joint probability density function p(A,+) is known.

When signal is also present, the situation for output yl(t)

is depicted on the right side of each figure. The mean output

for arbitrary nonlinearity g is indicated by a dashed arrow in

figure 4 to the complex point y,(t) given by (21) or (28). This,

too, is a known point for specified g, As, s"

When we choose the class of nonlinearities g that have zero-

mean noise-only output y0 (t), as done in (43)-(44), we are taking

advantage of knowledge of these locations and the situation is

as shown in figure 5. The mean location of complex waveform

Yo(t) is now at the origin of coordinates and its standard

deviation from the origin is indicated by ao" Then the plot of

y1 (t) appears on the right side of figure 5, where the dashed

arrow is drawn to the point yl(t). When we maximize the

deflection criterion d2 in (44), we are maximizing the ratio of

the length of the arrow on the right side to the standard

deviation a on the left side. Physically, we are trying to make
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Yoi(t) Yli(t)

or Yo(t) " .~ t

Figure 4. Outputs from General Nonlinearity g

Y (t )  Yli (t )

L Yor (t) L Ylr (t)

Figure 5. Outputs from Optimum Nonlinearity gm

YoiMYi(t) '

Y(t) MYlr (t)

Figure 6. Outputs from Modified Optimum Nonlinearity §m
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the signal-present average distance from the origin as large as

possible relative to the signal-absent deviations from the

origin.

Finally, figure 6 represents the outputs when the optimum

nonlinearity is scaled and biased by an arbitrary factor and

additive constant. Both yo(t) and yl(t) are similarly scaled and

shifted, but the maximum deflection is unchanged.

EXAMPLES

As an example of (45) and (46), suppose the narrowband noise

is zero-mean Gaussian; then

plA,2) A exp -A for A > 0, I11 < n, (48)

nn

giving

gm(A exp(i )} 2 A exp(i+) (49)

n

and
A 2(t)/2d2  s(

m As (2 (50)
m 2

n

Thus, the optimum nonlinearity in (49) is linear and the maximum

deflection is the signal-to-noise power ratio at the input to the

nonlinearity. A more thorough analysis of this example is given

in appendix C.
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By the arguments given in the sequel to (43), we could

equally well use nonlinearity

9m A exp(if)} - A exp(if)

and realize the same maximum deflection d2 in (50). In the
m

general case, we can always use (modified) optimum nonlinearity

M (A exp(if)) - a gm{A exp(if)J + b

instead of (45), and still realize maximum deflection d2 in (46),m

where complex constants a and b can be chosen for convenience.

The major difference is that the noise-only mean output is then

b, not zero; however, since b is known, this constitutes no

limitation or problem. This case is depicted in figure 6.

As a second (more general) example, if the noise amplitude

and phase modulations are statistically independent, then

p(A,f) - Pa(A) pb(f) (51)

and (45) reduces to

g (A exp(i+)) - hm{A ,} - - exp(i )[d - n . . + A (o

(52)

This result agrees with [1; (10) and (16)]. The maximum

deflection, (46), is
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2  A1 - Pa(A)/A]2

m A s(t) Pa(A) +

C pa(A) T p 2 (. (53

+ j dA A2 d pb(# )  (5

The relative importance of the p;(W) term can be easily

ascertained from here. The 1/A dependencies are thoroughly

discussed in appendix C.

DISCUSSION OF IMAGINARY TERM

In general, for the optimum nonlinearity in (45), the exp(i)

factor indicates a replication of the phase-modulation at its

input; that is, from (16),

arg(A s(t) exp[i*s(t)] + An(t) exp[i*n(t)]l (54)

is reproduced at the output of gm. And if the imaginary term

inside the bracket of (45) were zero, that is, q2 - 0, this would

be the totality of phase modulation at the output of the optimum

nonlinearity. Since q2 - 0 corresponds to p(A,+) being indepen-

dent of +, the modification of the amplitude modulation at the

nonlinearity input would then be according to

- in 55)aAA

and the maximum deflection is
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m ~A5() plA) - pa(A)/A]2

m T A s~t )  dA Pa(A) (56)

However, the presence of the extra imaginary term in (45)

means that additional amplitude and phase modulations to those

given in (55) and (54), respectively, are superposed on the

output. Whether this is significant, in practice, will depend on

a quantitative investigation of the relative sizes of q2 
and q2

in maximum deflection (46).

SIZE OF NEGLECTED TERM

When we expressed the difference of mean outputs from nonlin-

earity g in the form (34), we discarded the second term as being

of an undesirable form. To see how this neglected term compares

with the retained term, in terms of magnitude, we need to compare

Iza - izbl with Iza + izbl. For the optimum nonlinearity gm in

(45), we have, from (35) and (36),

Z a - iz b m - i dA do p(A,O) 2 (57)

2

z + iz dA do exp(i2) + + 2(A,0)
a b~m im jj p(,*)

q 2(A,#) -q 2 (A,o) + i2 ql(A,O) q (A,O)
dA do exp(i20) p(A,o) .(58)

Thus, the exp(i2*) term chops up the 0 integral, since 20 ranges
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over 4n, leading to a small value for (58). In addition, the q,

2
and g terms cancel each other in (58), whereas they add in (57).

It can also be observed that (57) is identical with the maximum
2

deflection (46), except for factor A (t)/4. Some alternative

forms to (57) and (58) in rectangular coordinates are given in

appendix D.

Of course, in all cases,

Iza + iz bl m  dA df lexp(i2f)l p(A, )

M - iz b~ ; (59)

however, it is expected that we will have

Iz+ iz b) << Iza- iz bJ (60)

in most practical cases. As an example, the Gaussian noise

considered in (48)-(50) yields

- 1i 
2Za -zb m 2

n

+W K A3 exp[2A 2  21

Iz + iZ IdAf d exp(i2,) / n) 0 (61)ia bl.~ '2 6
0 - n

Thus, neglecting the second term in (34) is justified, both in

terms of physical interpretation and in terms of magnitude of

contribution.
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OPTIMUM NONLINEARITY FOR PHASE CHANGES

It is hard to conceive of an independent physical narrowband

noise process for which the phase tn (t) would not be uniformly

distributed over a 2n interval. In that case, (51) is relevant,

-1with pb(t) constant of value (2n) . Then the second term in

optimum nonlinearity (52) is absent, as is the additive term in

(53); see also (55) and (56).

NONLINEAR PROCESSING

In this situation, it may be advantageous to resort to

additional processing of the phase changes between adjacent time

samples of input x(t); regular phase changes would occur for a

frequency-shifted narrowband process, such as encountered in FSK

communication. In particular, we consider nonlinear processing

of adjacent time samples of the received waveform, namely,

A X(t), * (t), A x(t-d), * (t-A), (62)

where a is the time between samples; see also (13) and (14).

Thus, the output of the nonlinearity is generalized from (15) to

y(t) - h{A X(t), ox (t), Ax (t-A), x (t-a)j , (63)

where h is an arbitrary complex nonlinear transformation of four

real variables.
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INPUT NOISE STATISTICS

The required statistical information about the input noise

process is now the joint probability density function of noise

quantities

A n(t), n (t), An(t-A), +n(t-A) . (64)

We denote these random variables by

A n' n, An' n' (65)

respectively, and presume that their joint probability density

function has the form

Pa(An) Pb(in ) Pa(An) pc(#n - -n) . (66)

That is, all the random variables (65) are statistically

independent except that +n = *n(t) depends on -n = +n(t-6); thus,

probability density function pc can be expected to peak at a

point(s) related to the frequency shift(s) of the noise carrier.
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MEAN OUTPUT

The mean output from the general nonlinearity, for signal

present, is

Yl(t) - hxAxt) *x(t), Ax(t-A), fx(t-4))

- fff dAn d n dn d n Pa(An ) PbT n) Pa (An) Pc(fn-Tn ) X

x h{IA n exp(i*n) + As exp(i*s )1, arg[A n exp(i#n) + As exp(i s)},

IAn exp(i#n) + AS exp(i*s )1, arg{An exp(i n) + As exp(i s)}}'(67)

where we suppressed the time dependence of the signal terms (for

now) by using the notation

As A S(t), s -s (t), As A s(t-), Ts = *S (t-A) (68)

Now make the changes of variables (using appendix A)

A exp(io) - An exp(i n ) + A s exp(if S ) I

A exp(iT) - An exp(i+n) + As exp(i*S) ' (69)

to obtain mean output

yl(t) - fJ'J'j dA d+ dK -A A K -ap Pb(9

x p a( ) pc(e-i) h[A,+,AT 3 (70)
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where

- p(A,*) - IA exp(i+) - As exp(i*s)I ,

- p(A,*) - IT exp(i+) - As exp(is )I ,

e - e(A,*) - arg{A exp(i+) - A s exp(is)} )

- e(A,*) arg{A exp(iT) - As exp(i*s)} . (71)

This result, (70), is exact.

SMALL INPUT SIGNAL-TO-NOISE RATIO

For small signal-to-noise ratios, we can now expand the

quantities in (71) in power series in As and As through linear

terms. Reference to (23) yields

~ A - A cos(+ - +)5 5

p- A - A cos(; s - *) for As « A

A 
(72)

e - - - sin(+ s - +) and A << A

- - - sin(+ -

Therefore
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A
A A - 1 + _2 cos(# s  *)
p A - A s Cos( - ) A s

- 1 + - Cos(+ - , (73)
#i K

where we used (72) and (27). Substitution in (70) gives

approximation

As )][1 + 5 i As
yl(t) - jJJJdA d* dA dT [1 + A- cos(+ s - *)j1 + s- cos( s - T) x

X pa (- Ks cos(*s - *)) Pb -- sin(#s - ) PaA - As cos(*s-

) Pc# - T - A sin( s - *) + sin(+ s - T) h{A,*,AT). (74)

Again, however, as noted below (28), the 1/A and 1/A dependencies

are incorrect for small A or A; we must be prepared to modify or

discard the 1/A dependency in some cases where infinities in

behavior arise. The discussion in appendix C is again very

relevant.

Now we could expand mean output (74) through linear terms in

As and As However, since we have only one nonlinearity h( ) to

choose, we will not be able to simultaneously maximize the

coefficients of both As and A s Instead, we concentrate solely

on As - A s(t) and maximize its coefficient; this is consistent

with the observation that the output of nonlinearity (63) at time

t-6 will already have maximized the coefficient of As A s(t-6)
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when it was the current output. Then, to linear terms in A8 ,

(74) becomes

yl(t) - fff dA d dA di {Pa (K) Pb ( ) Pa(A) pc(- ) +

A
+ _A cOs(+ - 0 Pa (A) Pb() Pa(A) pc(# - T) -

- As COS(# s - 4) Pa(A) Pb(j) p (A) pc( - -

A -

- A sin(# s - ) Pa(A) pb() Pa(A) p (# - *)I hA,,K) . (75)

The leading term in (75) is y (t), the noise-only mean

output. The remaining terms contain A linearly and a

combination of exp(i# s ) and exp(-i# s ) terms. As explained in

(34) et seq., the desired signal term is that containing just

exp(i#s). It is, from (75),

-A exp(i J)JJ dA d# dA d* h[A,*,A, exp(-i#) Pa(A) Pb() x

x -a p(* - *) - p;(A) pc( - T) + i a p(* -*) . (76)
cc A c
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VARIANCE OF OUTPUT

At the same time, the variance of the nonlinearity output

(63) for noise-only is exactly

var(Yo ) dAdAd - IhA,,A,} p2 P p(*) (A) pc(*-T)

(77)

where we have set y0 (t) - 0 as usual. The deflection is equal

to the magnitude-squared value of (76) divided by (77). This

deflection is maximized by the optimum nonlinearity

h m(A,,A,+) exp(i#) I[ _ Pa (A )  A p(-) 1 ]

- - exp(i#) - (! in a + A p_ )  (78)

where we have canceled out common terms involving p a(A) and

pb(#). We must again take note that (78) is only an

approximation and is not accurate for small A.
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OPTIMUM NONLINEARITY

Nonlinearity (78) is identical to (52) except for the

replacement of pb(#) by pc(#-T); this agrees with the comment in

[1; second paragraph under (10)]. Thus, the optimum nonlinearity

hm is independent of amplitude variable K and depends only on

difference, +-T, of phase variables, except for leading factor

exp(i+), which reproduces the phase of the input; see the second

argument *x(t) in (63). In order to employ (78), the probability

density function pa of noise amplitude, and the probability

density function pc of noise phase changes between samples, must

be determined.

If we define auxiliary functions

a din -A-

d

h a(A) - - in I A

h (e) - - -q In pc(e) ,(79)
c d

then (78) can be expressed as

hm(A,#,A,} - exp(i+) ha{A} + i h hc{-*}, (80)

and the optimum nonlinearity output is, by use of (63),

explicitly

y(t) - exp(i# (t)I haAx(t)} + i c Ax(t) (81)

All of these results are predicated on the particular model of
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noise statistics as given by (66). Another model for the noise

joint probability density function would lead to a different

optimum nonlinearity.

When the optimum nonlinearity, (80), is substituted into the

deflection, which is the magnitude-squared value of (76) divided

by variance (77), the maximum deflection is found to be

dm .1 A2(t) dPa(A) h(A} +

r Pa(A)r h2{](2

+ j dA 2J de pc(9) hc 2 ]. (82)

This quantity depends only on the probability density functions

Pa and pc; see (64)-(66) and (79). The presence of the pa(A)/A2

term has been discussed earlier and is not valid for small A; see

also appendix C.
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EXAMPLE

Suppose that probability density functions

p (A)= -A exp -o for A >,

Pc(e) -(2nc exp for all 9 (83)

Then (79) yields

ha(A} -2 for A > 0 , hc e2 (84)
CC

a c

and optimum nonlinearity (80) becomes

hmIA,+,A,O } - exp(i.) + i 2 (85)

a c

The maximum deflection follows from (82) as

2 2 2
d 2  A s(t)/2 + A s(t) +'AA exp - (86)
m 2 42 A A22 2a

a c 0 a a

However, the last integral on A does not converge at A - 0; this

is an example where the inadequacies of the small-signal

approximations in (72) and (73) cannot be ignored, and (86) is

useless. The 1/A dependency in (85) and the 1/A 2 term in (86)

are incorrect for small A and must be eliminated in that range.
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SUMMARY

The transformation of coordinates in (19) et seq. was

performed so that the series expansion of y1 (t) could be done in

terms of derivatives of noise joint probability density function

p, rather than derivatives of nonlinearity g. This allows g to

be discontinuous, but presumes that probability density function

p is differentiable. An alternative approach based upon an

analytic transformation g is given in (E-20) et seq.

The deflection criterion has been based upon a difference of

complex mean outputs for arbitrary signal waveform, as given by

(30). This philosophy has been explained in figure 5; it takes

full advantage of the fact that noise-only mean output y0 (t) is a

known complex quantity and can be subtracted out. Equivalently,

restricting the nonlinear transformation to the class with zero-

mean noise-only outputs does not detract from the attainable

deflection values.

Even for small input signal amplitudes, the difference in

mean outputs, (34), contains a spurious term in addition to the

desirable term, for a general nonlinearity g. We have chosen to

ignore the undesired term and to concentrate on maximization of

the desired one. After pursuing this approach, we returned to a

quantitative measure of the size of the undesired term and found

that it was generally quite small; see (57)-(61). Thus, our

approach was confirmed to be a consistent one. An alternative

viewpoint is given in appendix E, where it is shown that
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deliberate suppression of this spurious term causes a degradation

in the maximum deflection attainable.

In equations (45), (52), (78), and (80), there is a 1/A term

in the imaginary part of the "optimum" nonlinearity. This would

appear to indicate that the imaginary component is very important

for small inputs; see (81) for example. However, we have then

violated the assumptions under which these results were derived,

such as in (23), (26), (27), (72), (73), and (75). For example,

(23) presumes that A is much larger than A . What this means is

that the true optimum nonlinearity does not really have a 1/A

dependence for small A; however, we do not know what the exact

dependence is for small A, because our presumptions preclude

investigation in that region. In practice, this means that, for

small inputs, we must somehow limit the size of the imaginary

part of the nonlinearity output, but the exact transition value

and behavior is unknown. A discussion of this problem is pre-

sented in appendix C, along with an example of its application

and illustration of the basic principles.
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APPENDIX A. JACOBIAN OF TRANSFORMATION

Suppose we want to make the two-dimensional transformation

between polar coordinates r,e and p,+, according to

r exp(ie) - p exp(i ) + a exp(ib) , (A-1)

where a and b are arbitrary real constants. The Jacobian of this

transformation is

ar 2 r

a(re) - (A-2)
a(.¢)ae ae

From (A-l), there follows directly

exp(ie) + r i exp(ie) exp(i+)
ap

exp(ie) + r i exp(ie) - p i exp(i*) (A-3)

Equating real and imaginary parts of these two equations, we have

-r "cos(#-e) , r L - sin(-O)
ap aO

a- p sin(+-a) r p cos( -e) . (A-4)

Substituting in (A-2), there follows the desired result
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a(re) P - p
8(p,f) r lp exp(if) + a exp(ib)l

(P P (A-5)

S(+2 a 2 + 2ap cos(-b)) '

where we used (A-i).

If there were a need to solve for the individual terms in

(A-2), they can be obtained from (A-4), by using the real and

imaginary parts of (A-i) to eliminate cose and sinG, with the end

results

(,b]= 1 p + a cos(*-b)
p rl

ar . -ap sin(O-b)
af r

a . a sin(f-b)
ap r 2r

a- =  P + a cos(0-b) , (A-6)
r

with

r (P 2 + a 2 + 2ap cos(*-b)) (A-7)
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APPENDIX B. INDEPENDENCE OF ADDITIVE CONSTANT

We will show here that the deflection (43) is unchanged if

g{A exp(iO)} is replaced by g(A exp(i#)) + b , where b is a

complex constant. This is a simple exercise for the denominator

of (43), as a direct substitution and expansion immediately

reveals that b cancels out everywhere.

For the numerator of (43), we have an additive term (inside

the magnitude-squared) of value

b JJ dA d+ exp(-i+)[A - f - i (BA)

However, integration by parts yields

dA A -(P('')" - - dA P(A,) (B-2)

as well as

d+ exp(-i+) -IP(A'O) i d+ exp(-iO)p(A,O) (B-3)

Substitution of these two results in (B-i) yields

b[ d+ exp(-io) (-I) f dA p(A'O- i fdA i f d+ exp(-iO) p(A,,)

(B-4)

which is identically zero. Thus, the additive term dependent on

b is zero.

Result (B-2) is true if p(0,0) - 0.

The 2n periodicity of p(A,O) in 0 is utilized in getting (B-3).
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APPENDIX C. BEHAVIOR OF OPTIMUM NONLINEARITY

Some problems with the approximations utilized in (23)-(27),

in order to simplify the mean output y1 (t), were pointed out in

the sequel to (28) and were manifested in the example in (53) by

means of the 1/A dependencies for small A. To circumvent these

limitations, we will adopt the procedure used just after figure 3

for the lowpass case, namely, investigation of the exact

deflection and corresponding optimum nonlinearity with knowledge

of signal amplitude As (t) and phase 0s(t). Again, although

physically unrealistic, this approach is informative and does

furnish an absolute upper bound on performance.

The starting point is the exact result (21) for the non-

linearity mean output,

Yl(t) - dA do A g[A exp(iO)) p(IzJ, arg(z)) , (C-l)

where (dropping explicit signal t dependence)

z - A exp(io) - A s exp(i s). (C-2)

The noise-only mean output is obtained by setting As = 0:

yo(t) - dA do g{A exp(i+)1 p(A,o) .(C-3)

The variance of y0 (t) is given by (42).

We now define exact deflection
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2 (Y 1  (t) - Yo(t) 2
(As) var(y(t)) (C-4)

where the dependence on signal parameters is made explicit.

Since the absolute scale of nonlinearity g and an additive

constant to g do not affect the deflection, we can simplify

(C-4) to

2 - dA do g[A exp(io),[IA p(lzJ,arg(z)) - p(A,f)] 2

Jf dA do Ig{A exp(i+)) I plA,+)

(C-5)

By Schwartz's inequality, the optimum nonlinearity (with no

approximations, but with assumed knowledge of As and *s ) is

(AA A p(tzl, arg(z)) 1 (C-6)

geA';As ) IZI p(A,O)

where z is given by (C-2). The corresponding maximum deflection

follows from (C-5) as

2de(Ass - dA do [ A p(IzI, arg(z))- p(A,+)]2/p(A,O) =

AdA do 2 2 I arg(z)) (C-7)

IZI p(A,O)

From (C-2), since

jzl . [A2 + A2 -2 A As cos(~ s - (C-8
2(C-8)
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it follows that

IzI - As as A 4 0+ (if A s # 0) (C-9)

and, therefore, exact optimum nonlinearity ge in (C-6) has no I/A

dependency for small A (unless probability density function

p(A,*) approaches zero rapidly for small A), but in fact has a

linear dependence on A. That is,

A p(A ss +n)
ge (A,;A s's) A(A,_) A - 1 as A 4 0+ . (C-10)

Similarly, the integrand of maximum deflection de in (C-7) has noe

1/A2 dependence, but in fact, an A2 dependence for small A:

A2  p2(As,*s+n)
p(A,) A2 as A 4 0+ . (C-i)

s

These are marked differences in behavior from the approximate

results of (45)-(47).

It should also be noted that optimum nonlinearity ge in (C-6)

is real. (More precisely, one of the possible optimum non-

linearities is real since complex multiplicative constants can be

dropped.) The reason this disagrees with the complex solution in

(45) is that As and s are presumed known in (C-6). when +s is

unknown, then even if (C-6) is developed in a power series in A

it is not possible to extract a nonlinearity that is independent

of 0s; this information is too deeply embedded in optimum form

(C-6). Thus, (C-6) should only be regarded as a guide to good
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processing, especially for small. A, but otherwise it is not

overly useful. The corresponding maximum deflection in (C-7) is

probably more useful since it furnishes an absolute upper bound

on performance for any nonlinearity. If an approximate result,

like (46) or (50) or (53), outperforms (C-7), it is in error and

must be modified or discarded. The apparent infinity in (53) at

A - 0, for example, is conspicuously wrong; reference to (C-lI)

indicates that the true near-origin behavior is significantly

different.

The philosophy in this appendix is very different from that

utilized in (34)-(39). There, a desired type of signal term was

identified up front, while the nonlinearity characteristic g was

still arbitrary; then, that particular type of term was maximized

by choice of g. Here, the entire nonlinearity output difference

of means was maximized without any type of term being designated

as desired. Thus, we should expect to be able to realize a

larger deflection in this latter case since no terms have been

suppressed or ignored. The only problem with this approach is

that, after the maximization, it is not generally possible to

extract a meaningful nonlinear device that is independent of the

input signal values of amplitude and phase.

An example to illustrate these points is furnished by

Gaussian narrowband noise as in (48):

A 
A 2p(A,*) - Anj exp- for A > 0, ii < r (C-12)

an n
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Then, (C-6) and (C-8) immediately yield optimum nonlinearity

g(A,O;As,*) - exp s - ) - 1 (C-13)
a n 2ani

For small As, this behaves according to

A A
ge (A,+;A , s) 2- cos(* - *) as A s 4 0 . (C-14)

On

Even though there is a linear term in As, which could be factored

out, the remaining nonlinearity, namely - cos(+ s - 4), depends

Onon s It is now too late to express

A A

--- cos(c s - 4) -

n

- .i. [A exp(-i*) As exp(i* s) + A exp(i*) As exp(i*s)] (C-i5)

and to drop the As exp(-i* s ) term as being undesired since this

component has been an integral part of the maximization of

deflection (C-5). In fact, if we drop that term in (C-15), we

are left with nonlinearity

A
A exp(-io) 2 exp(i*s) (C-16)

2a2 s
n

which can be modified to A exp(-i) since complex multiplicative

factors on the nonlinearity are irrelevant. However, A exp(-i*)
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manifestly has the wrong phase behavior; see (49). Thus, this

series of (late) approximations and replacements can lead to a

nonsense processor and must be avoided.

The maximum deflection for this example is obtained by

substituting (C-12) in (C-7):

a2 2_ 1 2 2ne2 (A S*I) f ciA f d+ A 2 exp[- 2R(A2 + As - 2AA5 sCos(+ 5-+))]-l

0 -n 2 n n

+40 [ 2 A2 1 2AA 2A
2c7 2Io ----- IJ- expj-j -1JC-7- J dA A exp J -1 (C-17)2n 

0 
n n

where we used [3; 6.631 4]. Observe that this quantity is

independent of signal phase #s. For small input signal-to-noise

ratio, this becomes

2-2As A
d(As s) I -+Ai as - 4 0 . (C-18)

n

This latter approximation is twice as large as (50) and is due to

the fact that, here, we have retained all the signal terms at the

nonlinearity output, whereas the method leading to (50) discarded

one of the two possible terms. See the discussion immediately

after (C-11).

For some purposes, it may be more useful to express the above

relations in terms of the joint probability density function of

the in-phase and quadrature components of the narrowband noise

rather than the amplitude and phase. Thus, if we let w(u,v) be
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the joint probability density function of

un + ivn - An exp(i~n) , (C-19)

then the joint probability density function p of amplitude and

phase is given by

p(A,+) - A w(A cos#, A sin+) . (C-20)
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APPENDIX D. ALTERNATIVE FORMS IN RECTANGULAR COORDINATES

In (C-19) and (C-20), the joint probability density function

w(u,v) of the in-phase and quadrature components of the input

noise,

un + ivn - An exp(i*n) , (D-l)

was introduced; it is related to the joint probability density

function p of amplitude and phase by

p(A,+) - A w(A cos , A sin+) (D-2)

When we employ this result in (31), there follows

ql(A,+) - A[ cos+ W1 (A cos+, A sin*) + sin* w2 (A cos , A sin)],

(D-3)

q2 (A,+) - A[-sin+ w1 (A cos*, A sin ) + cos* w2 (A cos+, A sin)],

and therefore

qI(A,*) + iq 2 (A,+) - A exp(-i+) W(A cos+, A sin ) ,

ql(A,#) - iq 2 (A,+) - A exp(i ) W (A cos*, A sin ) , (D-4)

where

W(u,v) a w (uv) + iw2 (uv) - + ijI w(uv) (D-5)

When (D-4) is employed in (35) and (36), there follows
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Z a -i Zb - J'j dA d+ A g(A exp(i+)) W*(A cost, A sin#)-

- jj du dv gfu + iv) W (u,v) (D-6)

and

za + izb - JJ dA d* A g(A exp(i+)) W(A cost, A sint) -

- Jf du dv g(u + iv) W(u,v) (D-7)

When the optimum nonlinearity, (45), is expressed in the

notation of (D-2)-(D-5), we have

(A exp(i )) W(A cost, A sin) (D-8)
m w(A cost, A sin+)

or

g (u - -w(u~v)

gmfU + iv) W(u-v) (D-9)m w(u'v)

When this is utilized in (D-6) and (D-7), the following

alternatives to (57)-(59) result:

Iuv) 2  2(uv +2 uv" - wu)du dv - du dv w w(uv)
a-zb). ii w(u'v) ii w( uv)

2 (u v) jwI [(u'v) + iw (u'v)]2
(Z+iZb) " - f du dv w(u,v) - i du dv [ w(u,v)

w2(UV) - w2 (u,v) + i2 wl(uv) w2 (u,v)

- - du dv 1 u2)w(uv) 1 (D-10)
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As an example of these results, suppose that joint

probability density function

w(u,v) - f(u2 + v2); that is, p(A,*) - A f(A2 ) . (D-11)

The noise joint probability density function is independent of

angle. Then

wl(u,v) - 2 u f'(u 2 + v2 )

w2 (u,v) - 2 v f'(u 2 + v2 ) , (D-12)

and (D-10) yields

-4 2 2 f'2(u2 + v2)
(Z izb) f du dv (u + vv 2 )

+2

- - 8n dA A3 f'2(A2 (D-13)
0 f(A2

(Z+ izb m  -4 f du dv (u + iv)
2 f'2(u2 + 2) =

f(u2 + v2 )

r+= A3 f,2 (A2

d exp(i2f) IdA 2 0 2 (D-14)

-F 0 f(A

Example (D-11) is a generalization of Gaussian probability

density function (48) and (D-14) generalizes (61).
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APPENDIX E. CONSTRAINED MAXIMIZATION OF DEFLECTION

When the difference of mean outputs was expanded through

linear terms in signal amplitude As (t), the end result for

arbitrary nonlinearity g was (34):

1yl(t) - Yo(t) - _ As(t) exp[i s(t)] (za - izb)

- As(t) exp(-i+ (t)] (z + iZb) (E-)

At that time, we ignored the second term as being of no interest

and maximized the first (desired) term; see (39) and (43). Then,

we later returned to investigate the relative sizes of these

terms in (57)-(61) and appendix D.

Here, we adopt a different viewpoint: we force the second

term in (E-l) to be zero and then we maximize the magnitude of

the first term by choice of nonlinearity g. More precisely, we

maximize deflection (43), subject to integral constraint

if du dv g[u + iv} W(u,v) - 0 ; (E-2)

this last equation comes from (D-7) and (D-5).

The first point to observe is that the absolute scale of g

does not affect (43) or (E-2). The second is that the same

independence is true for an additive complex constant, b, to g.

This was proven in appendix B for (43) and follows for (E-2)

since
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Jj du dv b W(u,v) - b Jf du dv (- + i )w(u,v) -

b f dv f du -w(u,v) + ib f du f dv - (u,v) - 0 , (E-3)

where we used (D-5) and the facts that

_ du -w(u,v) - [w(urv) + c1(V)j - 0

dv 8w(u,v) - w(u'v) + c2 (u) ] 0 (E-4)

What this means is that, without loss of generality, we can

set the complex nonlinearity mean output for noise-alone, yo(t),

equal to zero. This results in deflection (44), which can be

expressed in the form

2 1 2 Iff du dv g{u + iv} W (u,v) 
2

d 'A A2(t) 2 , (E-5)
d - S( I du dv Igfu + iv} 2 w(u,v)

where we used (D-4), (D-l), and (D-2). The problem of interest

here is to maximize (E-5), subject to constraint (E-2), by choice

of nonlinearity g.

Since (E-2) is really two constraints on the real and

imaginary parts, we need two real Lagrange multipliers; letting I

denote the integral in (E-2), we must add to (E-5) the two real

terms
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X I +X.iI -X. + . I + I*X , (E-6)
×r Ir 1 1 r 2 1 i2* *

where X is a complex Lagrange multiplier. Then, the essential

quantity we must maximize is

I * - g* W* 

J'fgi2 w xifgxjf

where we have dropped irrelevant scale factors and adopted an

extremely abbreviated notation for the time being.

If we replace

g{u + iv} by gmfu + iv) + S nfu + iv} , (E-8)

where gm f ) is the optimum nonlinearity, { ) is any perturba-

tion, and £ is an arbitrary complex constant, the new value of Q

is

+(gm + ) W f(gm + en) W

{f(gm + en) (gm + ol) w

fl fl* *
- x (g m + en) W - X jf'(gm + ef) W . (E-9)

Let constants

N - g W , D - Igm1 2 w ; (E-10)

N is complex, while D is real. If we set the partial derivative

of Qm + SQ with respect to c (for fixed ) equal to zero, and

then set e - 0, £ - 0, we find that we must satisfy
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D N if 1* W - IN1 2  gm * w X Yr * *

D2 W - 0 (E-l)

for all perturbations n - nru + iv). That is,

r1*[a W - N2 w gm- X W*] - 0 for all n . (E-12)

The solution for the optimum nonlinearity is therefore (dropping

irrelevant scale factors)

W DX W
- (E-13)

w

In order to solve for the unknown constants, we must

substitute (E-13) into the constraint (E-2). But, first, we

define the two additional quantities

J I 2 ' -W-2 (E-14)

M is real, while C is complex. Then the substitution yields

0 - if gm W - - D-X M (E-15)Ji N

Equation (E-15) can be solved for

DX - C (E-16)N M"

Use of this result in (E-13) gives the optimum constrained

nonlinearity
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C *

W(uv) - W* (u,v)
g {u + iv) - - w(u,v) (E-17)

where constants M and C are given by (E-14). By comparison, the

unconstrained optimum nonlinearity did not have the W term; see

(D-9).

The corresponding maximum deflection is obtained by the use

of (E-17) and (E-14) in (E-5):

d2  1 A 2(t) M 1 - . (E-19)

The factor

I2 du dv W2 (u,v)/w(u,v) 2

M2  "fdu dv IW(u,v) 2/w(u,v)

is the amount by which the constraint (E-2) degrades the

attainable deflection; see (46) and (D-4).
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ALTERNATIVE APPROACH

If we return to exact mean output yl(t) in (18) and presume

now that nonlinearity g is analytic, then a series expansion in

A s(t) yields directly

Yj(t) - y0 (t)

- A (t) exp~i+ (t)J J dA~ d+n p(Ain gl(A~ exp~i+n1). (E-20)

The subscript a on g denotes that nonlinearity g is now required

to be analytic. We immediately see that the second term in (34),

of the form A (t) exp[-i# s(t)], is absent. Now use (D-2) and

(D-1) to obtain

Yj(t) - y (t.) - A (t) exp~i+ (t)1 Jf du dv w(u,v) a~ui)(-1

The double integral in (E-21), denoted by I, can be put in

two different forms: first, since

.2(~u~) g(u +. iv)' - w(u'v) g (u + iv) + w(u'v) g'(u + iv)
3(Wu ,V g a a

(E-22)

then

du w(u,v) g'(u +iv)

-Fdu -1 rw v) )g(u + -v) f du w (u'v) g fu + iv) .(E-23)

The first term is
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Iw(u,v) ga{u + iv) + c(v) - 0 (E-24)

since we presume that probability density function w(u,v) goes to

zero fast enough at u - ±r. Therefore, integrating (E-23) on v,

I i F[ du dv w(u,v) g'{u+iv)-- FF du dv w (u'v) g (u+iv).(E-25)
fj a if a

A similar approach to (E-22), but involving a/8v instead, yields

the alternative expression

I - i Jf du dv w2 (u,v) ga u + iv) . (E-26)

Since (E-25) and (E-26) are equal, we obtain

ff du dv W(u,v) g fu + iv] - 0 ,(E-27)

where we used (D-5):

W(u,v) - wl(uv) + iw2(u,v) - + i!)w(u,v) . (E-28)

But (E-27) is identical to the constraint (E-2) that we adopted

earlier in this appendix. Thus, the assumption of analyticity of

nonlinearity ga automatically realizes the constraint that

eliminates the second (undesired) term in (E-l). This is also

obvious directly from expansion (E-20).

Since I is given by both (E-25) and (E-26), it is also given

by the linear combination
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I--pf du dv wl(U,V) ga{(U+iV}+(l-p)i if du dv w2(~)gaj~v- A Adu dvW 2 (UrV) ga{U+iv} -

- - if du dv g au+iv} [p w1 (U,V) - i(1-p) w2 (u,v)] , (E-29)

where p is any complex constant. Notice that an additive

constant to ga does not affect I, since

a L11111~ + c~v) 1U-+40 (-0
du wl(uv) - du - w(u,v) -w(uv) + C(V) 0 (E-30)f 1f au ]UM-

and similarly,

f dv w2(u,v) - 0 .(E-31)

Then, by reference to (42) and the upper line of (43), the

deflection can be expressed as

2 t) du dv ga(U+iv)[P w1 (u,v) -i(1-p) 
w2 (uv)] 

2

d - s2t . I'2,(E-32)
d A du dv Ig a{(U+iv } I2 w(u,v)

where we used (E-21), (E-29), (D-2), and (D-1). Now if ga were

unrestricted, the optimum nonlinearity is now

P w1 (uv) + i(l-p ) w2 (u,v)

gam(u+iv) - -2 w(u,v) I

_ P (W + W ) + (1-p) (W - W ) -
w

* *

W(u,v) - (1 - 2p ) W (u,v) (E-33)
w(u , v)
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where we used (E-28). But since (E-27) must be satisfied by this

candidate nonlinearity gam' we find that

* C
1 - 2i - , (E-34)

where C and M are given by (E-14), and (E-33) becomes identically

(E-17).

The only thing wrong with this latter alternative approach in

(E-20) et seq. is that there is no guarantee that (E-33) yields

an analytic nonlinearity g for any p. Thus, (E-33) may not be a

valid solution. Furthermore, it is unnecessarily restrictive to

limit g to being analytic, and the identical optimum nonlineari-

ty, obtained earlier in (E-17), was not restricted to being

analytic. In summary, (E-17) is the optimum constrained

nonlinearity which eliminates the As(t) exp[-i*s(t)] term, while

(D-9) is the optimum nonlinearity which ignores this latter term.
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BBN, New London, Ct. (Dr. P. Cable) 1
BELL COMMUNICATIONS RESEARCH, Morristown, NJ (J. Kaiser and

D. Sunday (Library) 2
BENDAT, Julius Dr., Los Angeles, CA 1
BLEINSTEIN, Norman Dr., Denver, CO 1
BROWN UNIV, Providence, RI (Documents Library) 1
CANBERRA COLLEGE OF ADV. EDUC, BELCONNEN, A.C.T.

Australia (P. Morgan) 1
COAST GUARD ACADEMY, New London, CT (Prof. J. Wolcin) 1
COAST GUARD R & D, Groton, CT (Library) 1
COGENT SYSTEMS, INC, (J. Costas) 1
COHEN, Leon Dr., Bronx, NY 1
CONCORDIA UNIVERSITY H-915-3, Montreal, Quebec Canada

(Prof. Jeffrey Krolik) 1
CNO (NOP-098) 1
CNR-OCNR-O0, 10, 12, 13, 20 5
DALHOUSIE UNIV., Halifax, Nova Scotia, Canada (Dr. B. Ruddick) 1
DAVID W. TAYLOR RESEARCH CNTR, Annapolis, MD

(P. Prendergast, Code 2744) 1
DARPA, Arlington, VA (A. Ellinthorpe) 1
DEFENCE RESEARCH CENTER, Adeliade, Australia (Library 1
DEFENCE RESEARCH ESTAB. ATLANTIC, Dartmouth, Nova Scotia

(Library) 1
DEFENCE RESEARCH ESTAB. PACIFIC, Victoria, Canada

(Dr. D. Thomson) 1
DEFENCE SCIENTIFIC ESTABLISHMENT, MINISTRY OF DEFENCE,

Auckland, New Zealand (Dr. L. Hall) 1
DEFENSE SYSTEMS, INC, Mc Lean, VA (Dr. G. Sebestyen) 1
DIA 1
DIAGNOSTIC/RETRIEVAL SYSTEMS, INC, Tustin, CA.

(J. Williams) 1
DTIC 1
DTRC 1
DREXEL UNIV, (Prof. S. Kesler) I
EDO CORP, College Point, NY (M. Blanchard) I

1



INITIAL DISTRIBUTION LIST (Cont'd.)

Addressee No. of Copies

EG&G, Manassas, VA (0. Frohman) 1
GENERAL ELECTRIC CO, Moorestown, NJ (Dr. Mark Allen

108-102) 1
GENERAL ELECTRIC CO., Philadelphia, PA (T. J. McFall) 1
GENERAL ELECTRIC CO, Pittsfield, MA (R. W. Race) 1
GENERAL ELECTRIC CO, Syracuse, NY ( 3. L. Rogers,

Dr. A. M. Vural and D. Winfield) 3
HAHN, Wm, Wash, OC 1
HARRIS SCIENTIFIC SERVICES, Dobbs Ferry, NY (B. Harris) 1
HARVARD UNIVERSITY, Gordon McKay Library 1
HONEYWELL ENGR SERV CNTR, Poulsbro, WA (C. Schmid) 1
HUGHES AIRCRAFT, Fullerton, CA (S. Autrey) I
HUGHES AIRCRAFT, Buena Park, CA (T. Posch) 1
IBM, Manassas, VA (G. Demuth) 1
INDIAN INSTITUTE OF TECHNOLOGY, Madras, India

(Dr. K. M. M. Prabhu) 1
INTERSTATE ELECTRONICS CORP, Anaheim, CA (R. Nielsen, 8011) 1
JOHNS HOPKINS UNIV, Laurel, MD (J. C. Stapleton) I
KILDARE CORP, New London, CT (Dr. R. Mellen) 1
LINCOM CORP., Northboro, MA (Dr. T. Schonhoff) 1
MAGNAVOX ELEC SYSTEMS CO, Ft. Wayne, IN (R. Kenefic) I
MARINE BIOLOGICAL LAB, Woods Hole, MA 1
MARINE PHYSICAL LABORATORY SCRIPPS 1
MASS. INSTITUTE OF TECHNOLOGY (Prof. A. Baggaroer,

Barker Engineering Library) 2
MBS SYSTEMS, Norwalk, CT (A. Winder) I
MIDDLETON, DAVID, NY, NY 1
NADC (5041, M. Mele) 1
NAIR-03 1
NASH, Harold E., Quaker Hill, CT I
NATIONAL RADIO ASTRONOMY OBSERVATORY, Charlottesville, VA

(F. Schwab) 1
NATIONAL SECURITY AGENCY, FT. Meade, MD

(Dr. James R. Maar, R51) 1
NATO SACLANT ASW RESEARCH CENTRE, APO NY, NY (Library,

R. E. Sullivan and G. Tacconi) 3
NCSC 1
NEPRF 1
NORDA 1
NRL UND SOUND REF DET, Orlando, FL 1
NAVAL INTELLIGENCE COMMAND I
NAVAL INTELLIGENCE SUPPORT CENTER 1
NAVAL OCEAN SYSTEMS CENTER, San Diego, CA

(James M. Alsup, Code 635) 1
NAVAL OCEANOGRAPHY OFFICE 1
NAVAL SYSTEMS DIV., SIMRAD SUBSEA A/S, Norway (E. B. Lunde) 1
NICHOLS RESEARCH CORP., Wakefield, MA (T. Marzetta) 1
NORDA (Dr. B. Adams) 1
NORDA (Code 345) N STL Station, MS (R. Wagstaff) 1
NORTHEASTERN UNIV. Boston, MA (Prof. C. L. Nikias) 1
NORWEGIAN DEFENCE RESEARCH EST, Norway (Dr 3. Glattetre) 1
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NOSC, (James M. Alsup, Code 635, C. Sturdevant; 73,
J. Lockwood, F. Harris, 743, R. Smith; 62, R. Thuleen) 6

NPRDC 1
NPS, Monterey, CA (C. W. Therrien, Code 62 Ti) 2
NRL, Washington, OC (Dr. J. Buccaro, Dr. E. Franchi,

Dr. P. Abraham, Code 5132, A. A. Gerlach, W. Gabriel
(Code 5370), and N. Yen (Code 5130) 6

NRL, Arlington, VA (N. L. Gerr, Code 1111) 1
NSWC 1
NSWC DET Ft. Lauderdale 1
NSWC WHITE OAK LAB 1
NUSC DET TUDOR HILL 1
NUSC DET WEST PALM BEACH (Dr. R. Kennedy Code 3802) 1
NWC 1
ORI CO, INC, New London, CT (G. Assard) 1
ORINCON CORP., Columbia, MD (S. Larry Marple) 1
PAPOUTSANIS, P. 0., Athens, Greece 1
PENN STATE UNIV., State College, PA (F. Symons) 1
PIERSOLL ENGR CO, Woodland Hills, CA (Dr. Allen G. Piersol) 1
POHLER, R., Austin, TX 1
POLETTI, Mark A., Acoustics Research Centre, School of

Architecture, Univ. of Auckland, Auckland, New Zealand 1
PROMETHEUS, INC, Sharon, MA (Dr. J. Byrnes) I
PROMETHEUS INC, Newport, RI (Michael J. Barrett) 1
PRICE, Robert Dr. Lexington, MA I
PURDUE UNIV, West Lafayette, IN (N. Srinivasa) 1
RAISBECK, Dr. Gordon, Portland, ME 1
RAN RESEARCH LAB, Darlinghurst, Australia I
RAYTHEON CO, Portsmouth, RI (J. Bartram, R. Connor)

and S. S. Reese) 3
RICHTER, W., Annandale, VA. 1
ROCKWELL INTERNATIONAL CORP, Anaheim, CA (L. Einstein

and Dr. 0. Elliott) 2
ROYAL MILITARY COLLEGE OF CANADA, (Prof. Y. Chan) I
RUTGERS UNIV., Piscataway, NJ (Prof. S. Orfanidis) 1
RCA CORP, Moorestown, NJ (H. Upkowitz) I
SACLANT UNDERSEA RESEARCH CENTRE, APO NY NY (Dr. John

lanniello, Dr. S. Stergiopolous and Giorgio Tacconi,
Library 4

SAIC, Falls Church, VA (Dr. P. Mikhalevsky) I
SAIC, New London, CT (Dr. F. Dinapoli) 1
SANDIA NATIONAL LABORATORY (J. Claasen) I
SCHULKIN, Dr. Morris, Potomac, MD 1
SEA-0O, 63, 63X 3
SIMON FRASER UNIV, British Columbia, Canada (Dr. Edgar Velez) 1
SONAR SURVEILLANCE GROUP, Darlinghurst, Australia 1
SOUTHEASTERN MASS. UNIV (Prof. C. H. Chen) 1
SPAWARS-O0, 04, 005, PD-80 and PMW-181 5
SPERRY CORP, Great Neck, NY 1
STATE UNIV. OF NY AT STONY BROOK (Prof. M. Barkat) 1
TEL-AVIV UNIV, Tel-Aviv, Israel (Prof. E. Winstein) 1
TOYON RESEARCH CORP, Goleta, CA (M. Van Blaricum) 1
TRACOR, INC, Austin, TX (Dr. T Leih and J. Wilkinson) 2
TRW FEDERAL SYSTEMS GROUP, Fairfax, VA (R. Prager) 1
UNITED ENGINEERING CENTER, Engr. Societies Library, NY, NY 1
UNIV. OF AUCKLAND, New Zealand (Dr. Murray 0. Johns) 1
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UNIV. OF ALBERTA, Edmonton, Alberta, CANADA (K. Yeung) 1
UNIV OF CA, San Diego, CA (Prof. C. Helstrom) 1
UNIV OF COLORADO, Boulder, CO (Prof. L. Scharf) 1
UNIV. OF CT, Storrs, CT. (Library and Prof. C. Knapp) 2
UNIV OF FLA, Gainesville, FL (D. Childers) 1
UNIV OF ILLINOIS, Urbana, IL 61801 (Dr. Douglas L. Jones) 1
UNIV OF MICHIGAN, Ann Arbor, MI (EECS Bldg. North Campus)) I
UNIV. OF MINN, Minneapolis, Mn (Prof. M. Kaveh) 1
UNIV. OF NEWCASTLE, Newcastle, NSW, Canada (Prof. A. Cantoni) 1
UNIV. OF QUEENSLAND, St. Lucia, Queensland 4067, Australia

(Dr. Boualem Boashash) 1
UNIV. OF RI, Kingston, RI (Prof. G. F. Boudreaux-Bartels,

Library, Prof. S. Kay, and Prof. 0. Tufts) 4
UNIV. OF ROCHESTER, Rochester, NY (Prof. E. Titlebaum) 1
UNIV. OF SOUTHERN CA., LA. (Prof. William C. Lindsey, Dr.

Andreas Polydoros, PHE 414) 2
UNIV. OF STRATHCLYDE, ROYAL COLLEGE, Glasgow, Scotland

(Prof. T. Durrani) 1
UNIV. OF TECHNOLOGY, Loughborough, Leicestershire, England

(Prof. J. Griffiths) 1
UNIV. OF WASHINGTON, Seattle (Prof. D. Lytle) 1
URICK, ROBERT, Silver Springs, MD 1
US AIR FORCE, Maxwell AF Base, AL (Library) 1
VAN ASSELT, Henrik, USEA S.P.A., La Spezia, Italy 1
VILLANOVA UNIV, Villanova, PA (Prof. Moeness G. Amin) 1
WEAPONS SYSTEMS RESEARCH LAB, Adelaide, Australia 2
WERBNER, A., Medford, MA l
WESTINGHOUSE ELEC. CORP, OCEANIC DIV, Annapolis, MD

(Dr. H. Newman and Dr. H. L. Price) 2
WESTINGHOUSE ELEC. CORP, Waltham, MA (D. Bennett) 1
WILSON JAMES H., San Clemente, CA 1
WOODS HOLE OCEANOGRAPHIC INSTITUTION (Dr. R. Spindel

and Dr. E. Weinstein, Library) 3
YALE UNIV. (Library, Prof. P. Schultheiss and Prof.

F. Tuteur) 3
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