| DTIC ... Copy
S m{‘f@m@%‘m@u%

N
N
v Final Report » December 1989
X
N INVESTIGATION OF
< SCHOTTKY BARRIERS
! ozo:FE
(@) LR
Mark van Schilfgaarde, Research Physicist i . p
Physical Electronics Laboratory i 8 ]
SRI Project 2439 3., '
Prepared for: % v
Directorate of Electronic and Materials Science z
AFOSR/NE o .
Building 410 = ;
Bolling Air Force Base ' J
Washington, D.C 20332-6448 " -
Attn: Major Gernot Pomrenke @ ,;
-
&

Contract F49620-86-K-0018

\‘0&‘,9 l
q s
-E s R EU
k,e prastl oa e
R

PR
FILECTE %"‘: gish ™

SO 02 20 033




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
REPORT DOCUMENTATION PAGE o e 188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICIIVIE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

20. DECLASSIFICATION / DOWNGRADING SCHEDULE n ’ . .
l! Naal ’ [ o !

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORMNG ORGANIZATION REPORT NUMBER(S)
Final Report—SRI Project 2439 &FOSR-TR. 90-0204
5a. NAME OF PERFORMING ORGANIZATION 50. OFFICE SYMBOL 72 NAME OF MONITORING ORGANZATION
(!t aplicable)
I SRI International AFOSR/NE
‘c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS ACily, State, and ZBP Code)
Building 410
33 Ravenswood Avenue ang *
fenlo Park, California 94025 Bolling Air Force Base
> ’ Washingiom, D.C.  20332-6448
TNAME OF FUNDING 7 SPONSORING 8b, OFFICE SYMBOL |9, PROCUREMEINT INSTRUMENT {DENTIFICATION NUMBER
ORGANIZATION (If applicable)
vir Force Office of Scientific Research AFOSR/NE  |F49620-36-K-0018
.. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMEBSERS
>uilding 410, Bolling Air Force Base PROGHAM = PROJECT WORK URIT
NO. ACCESSION NO.

IWashington, D.C. 20332-6448 ELEMENT NO

Attn: Major Gernot Pomrenke bl [Dar Na&o(& 6\

11. TITLE (include Security Classification)

INVESTIGATION OF SCHOTTKY BARRIERS

12. PERSONAL AUTHOR(S)
Mark van Schilfgaarde

i13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Mansn, Dey) 15. PAGE COUNT
Final Technical From 7-17-89 7o 12-31-89 1989 December 43
116. SUPPLEMENTARY NOTATION
17. COSATICODES 18. SUBJECT TERMS (Continue on reverse i necessary and idesntity by block number)
FIELD GROUP sus-GrouP  —IKEY WORDS: Hot electron transport, Schottky barriers (numerical solution

20 12

N

to), Boltzmann equation, T rt in high fields, Band structure .~
) equation, Transpo gh felds, (JES )./é

N9. ABSTRACT (Continue on reverse if necessary and identily by block number)

This final report summarizes the technical progress made under the anspices of AFOSR Contract F49620-86-K-0018.

Substantial progress was made in two key areas: electronic structure stuadies of the Schottky barrier and transport
studies.

With respect to the electronic structure component, we applied ab initio electronic strocture techniques to ideal
metal-semiconductor interfaces. In a study of a sequence of metal-semiconductor contacts, we are able to address the
problem of Schottky barrier pinning. Another study addresses the eatty stages of formation of Schottky barriers.
With respect to the transport component, we developed some new techmiques for treating high-field transport, in

particular trgasport through a Schottky barrier. We also examined scattering from #onized dopants in the interstitial
region.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 3.
B unciassiFieDunumiTeD  [] same asreT.  [] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Ares Cade) [22c. OFFICE SYMBOL
Moy Gernot” Yomcenye (o) Ue2- 4931 LE
DD Fornf1373, JUN 86 Previous ecions are odselete ~ SECURITY CLASSIFICATION OF THIS PAGE

(SR! on-line version) UNCLAS S IFIED




CONTENTS
SR ST

LIST OF ILLUSTRATIONS ..icic.cciininonincrsnssiscsesassssansesssassasssssssssassessessissssassssnnssssenes iii
I  INTRODUCTION ...ccoiimmrisreecrerussssssessmsssssasessssssssssssssesessssssssssessessssseassss 1
I SUMMARY OF ACCOMPLISHMENTS........ccocveererescarasisnessassaeersesacassones 2
II  PRINCIPAL CONCLUSIONS .....occiinininsnnscsisessnsisssscssssssssnsssssssssesessonsanes S
IV PAPERS SUBMITTED OR IN PREPARATION .....cccceceecnrursarncns 7

APPENDICES
A Origin of Schottky Barrier Pinning in GaAs .......ccecrceveresnisetsssnecncssessssnnns A-1
B  Coverage Dependence of Schottky Barrier FOIMAtion .............ueevecsserensenens B-1
C  Minimal Basis Sets: Practical LMTO Downfolding ........ccccecseereraracsasscnenens C-1
D  Scattering from Ionized Dopants in Schottky Barriers .........couvvcveieiiincninen D-1
E  Variational Principal for Solution to the Boltzmann Equation ..................... E-1




I. INTRODUCTION

) This final report summarizes the technical progress made under the auspices of
AFOSR Contract F49620-86-K-0018. We have accomplished much under the support

- of this project, as we show in this report. Because many of calculations reported
here entail a very large amount of development time and computational effort, some
of our most important results have been obtained only recently. Most of the papers
that will issue out of this research are only now in preparation, and so this report
presents the papers (in their current state of preparation) to be published under the
sponsorship of this contract. The remainder of this report is therefore organized as
follows: we outline the key accomplishments, conclusions obtained, and papers to be
published; there follows in the appendices a reproduction of papers to be published,
approximately in the form that they will be submitted.




II. SUMMARY OF ACCOMPLISHMENTS

Research on this project can be grouped into two largely independent branches:
o studies related to electronic structure.
¢ studies related to transport.

With regard to the electronic structure, we have designed and implemented an
advanced version of a band structure method known as the linear muffin tin orbitals
(LMTO) method. The program we have built is quickly becoming the de facto stan-
dard LMTO program within the electronic structure community. This LMTO pro-
gram was developed in Stuttgart in collaboration with O. K. Andersen, the criginator
of the LMTO and LAPW methods. It is now the standard LMTO program used by
Stuttgart, and distributed by them. It is also used by several groups in the United
States, including among others F. Herman at IBM Almaden (magnetic multilayers),
the group of B. Segall at Case Western Reserve (studies of semiconductor alloys), and
the group of D. de Fontaine at Berkeley (studies of metal alloys).

As our first application of this program, we address the highly controversial is-
sue of the origin of pinning of the Schottky barrier in metal-semiconductor junctions.
The paper reproduced in Appendix A reports the key findings of this computation-
ally intensive study* of a number of metal/GaAs systems. We show that the metal-
semiconductor interface exhibits strong pinning of the Schottky barrier, but that the
“intrinsic” pinning position depends on the metal overlayer, as does the interfacial
density of states (DOS). Consequences to the currently prevailing theories of the ori-
gin of Schottky barrier pinning are discussed. This paper is intended for submission
to Physical Review Letters; another paper showing the influence of defect near the
junctions was submitted to the 1990 PCSI conference.

A related study using the LMTO programs was done in collaboration with John
Klepeis at Stanford University. In this study we attempted to trace the evolution of
pinning the free GaAs surface as small numbers of aluminum atoms are deposited.
By comparing the total energies, we found that the aluminum prefers to sit above the
gallium site, rather than the arsenic, in agreement with tight-binding calculations. We
have found that the interfacial dipole rapidly evolves in the 1/8 to 2 monolayer range,
also in accord with tight-binding calculations. We expect to determine the defect level
of aluminum on GaAs at low metal coverages, though that calculation is incomplete

as of this writing, owing once again to the extremely large amount of computation for

* Approximately 1000 Cray YMP hours were consumed in the course of this calculation.
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he cases of low coverage. A paper was submitted to the 1990 PCSI conference on this
subject; this paper (in its current status) is reproduced in Appendix B. The completed
calculations will be reported at the PCSI conference.

The last work related to the electronic structure component of this project is an
outline of a technical paper on the downfolding within the LMTO method. That
work was indispensible for the above interface studies, because it allowed us to reduce
the number of orbitals in a (Ga,As) pair to 16 with no loss of precision. This paper
(Appendix C) is intended for submission to Phys. Rev. B.

With respect to transport, our ultimate goal was to make realistic calculations of
the electrical current-voltage characteristics in Schottky barriers. Although detailed
calculation proved to be exceedingly difficult, we accomplished a great deal in pursuit
of this goal. First it was necessary to solve the Boltzmann transport equations under
fields that were both very large and spatially varying. Our first attempts, along
traditional lines of solving the equations iteratively, proved intractable for the kinds
of distribution functions emerging from a Schottky barrier. However, an alternative
method to solve the Boltzmann equation was developed, in part under the auspices of
this project. This method, named the “eigenvalue method,” expands the distribution
function in a fixed basis of functions. A normal matrix is constructed from integrals
of the scattering matrix, whose eigenvector—corresponding to the zero eigenvalue—
yields coefficients to the basis functions. A spatially varying distribution function is
easily incorporated by allowing the basis functions to vary both in position and wave
number. This method appears quite accurate and is several orders of magnitude faster
than the best of other methods; in fact it is the only one so far to calculate velocity-
field characteristics accurately in a semiconductor using realistic band structures and
without adjustable parameters. A paper was published in Applied Physics Letters on
this subject; another is in preparation {Appendix D) showing that this approach can
be recast as a variational principle.

A second key hurdle lay in the treatment of the depletion (particularly the tunnel-
ing) region. Tunneling involves quantum processes clearly outside the domain of the
Boltzmann equation. To circumvent this difficulty, we showed in the first year’s report
that the full problem can be divided into quasineutral and depletion regions, treating
the former as a scattering problem and solving the latter with the Boltzmann equation
with effective boundary conditions, determined by scattering in the depletion region.

The last difficulty arises from scattering of clectrons (particularly tunneling elec-

trons) in the depletion region. It had been argued by McGill that scattering from
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the ionized dopants in the depletion region significantly alters the tunneling current in
Schottky barriers, and this severely complicates studies of scattering there. We showed
(last year’s report; also being prepared for submission to Applied Physics Letters) that
in fact the perturbation ionized dopants make to usually assumed quadratic potential
is a small one. In a paper submitted to the 1990 PCSI (Appendix E) we estimate
the scattering from a collection of ionized dopants, and show that the effect should be
small.

To summarize, we believe that we overcome the principal hurdles to a reasonably
precise treatment of transport through a depletion region, though a solution of the full

problem, coupling quasineutral and depletion regions, has yet to be completed.




III. PRINCIPAL CONCLUSIONS

In this section we briefly summarize the principal conclusions arrived at in the

course of this work. With respect to electronic structure studies:

Schottky barriers exhibit strong pinning by the metal overlayer. Barrier heights
are never determined by the “natural” band lineup, as in the classical Schottky
picture.

The “intrinsic” Fermi level tends to pin roughly at midgap in GaAs, but an ex-
ception was found in aluminum.

The semiconductor DOS persists several layers in to the semiconductor and varies
widely among the metal-GaAs systems studied.

The last two points render implausible arguments for the universality of the pinning
position being a property solely of the semiconductor band structure.

The defect state that is ultimately responsible for pinning the Schottky barrier is
the one (with sufficiently high density to shift the fermi level) farthest removed
from the interface.

Only a modest number of defects are required to pin the Schottky barrier. In light
of the last two points, and also of the empirical knowledge that defects are present
near the interface in certain annealing steps, it is likely that at least in some cases
defects are responsible for pinning in Schottky barriers.

The LMTO-ASA energy bands of a free GaAs (110) surface show energy bands
in the forbidden gap that disappear on reconstruction, in agreement with tight-
binding calculations and with experiment.

At small coverages, LMTO-ASA calculations predict that aluminum adatoms on
(110) GaAs prefer to sit over gallium sites rather than arsenic sites, in agreement
with tight-binding calculations.

The interfacial dipole is significant at 1/4 monolayer, but continues to evolve
through approximately 2 ml.

With respect to studies in transport:

The potential from a random distribution of ionized dopants deviates only slightly
from the usually assumed quadratic potentials, with an average deviation less than

0.01 eV.

There is a small correction to the average interstitial potential (and therefore the
barrier height), of approximately 3/5(47N;/3)!/3. This correction is of the same
order of magnitude as image-force lowering corrections, but has a weak spatial
variation.

The classical image-force lowering picture of the Schottky barrier height is incor-
rect. There is no dopant dependence (varying as N}/*) of the image-force lowering
of the Schottky barrier, because the potential maximum is determined by a com-
bination of image-force lowering and interface states.

Scattering from the ionized dopants in the depletion region makes a negligible
correction to the classical current, and a small correction to the tunneling current.

The problem of transport separated into a classical portion that involves the solu-
tion of the Boltzmann equation, and quantum-mechanical tunneling through the
depletion region. The two couple together through effective boundary conditions
to the Boltzmann equation.




e A new technique, named the “eigenvalue method,” was developed to solve the
Boltzmann equation. It is several orders of magnitude faster than existing ap-
proaches and has successfully been used to calculate velocity-field characteristics
in semiconductors. It is readily applied to spatially varying fields, and is suf-
ficiently fast to make tractable a detailed computation of transport through a
depletion region.

¢ This technique can be recast as a variational principle, which ensures that the
error systematically improves as basis functions are added.
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Origin of Schottky Barrier Pinning in GaAs

Mark van Schilfgaarde, SRI International
333 Ravenswood Ave, Menlo Park, CA 94025

Abstract
Schottky barrier heights of five metal-GaAs interfaces are calculated self-

consistently, within the local-density approximation. Pinning is strong, and all
metals studied pin within the energy gap. However, the nature of interface states
and the Schottky barrier height differ significantly in the systems studied. The
impact these findings have on current theories of Schottky barrier formation is
discussed.
Introduction

There are two major theories that purport to explain how the fermi level
pins at approximately the same position in Schottky barriers. The first, due
to Spicer[1}, attributes the pinning to defects that form during the early stages
of metal deposition. The second argues that Fermi-level pinning is an intrinsic
property of the metal-semiconductor interface, and in particular depends only on
the semiconductor band structure. Tejedor [2] observed that the evanescent states
in the forbidden gap—tails of the metal wave functions—continually change from
valence- to conduction- band character; and therefore there exists some Fermi
level in the gap that makes the semiconductor locally neutral. They calculated the
“neutral” point for a model metal-semiconductor junction to estimate the pinning
position. As did Tejedor, Tersoff[3] conjectured that this “neutral” point was an
intrinsic property of semiconductor band structure, and also argued that the
neutral point could be calculated from the zero of a real-space Green’s function.

Subsequently, Harrison and Tersoff [4] explicitly calculated the Schottky bar-
rier (SB) height using a semiempirical tight-binding Hamiltonian. They found
that the SB Fermi level tends to pin at the semiconductor sp® hybrid level E,,
rather than the “natural” Fermi level of the bulk metal F%. In linear response
theory, the semiconductor screens out the difference E} — E,, but can do so only
imperfectly because its ¢=0 dielectric response is finite. Thus, their calculation

predicts a weak metal-dependence of the fermi level of the classical form,
Ep = S(E§ — Ex) + En (1
with S the reciprocal of the dielectric constant, S = 1/e.
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While their calculation is considerably more rigorous than the “neutral” point
arguments, it still assumes the validity of linear response theory (this point is
discussed below), and also the model is sufficiently crude that in effect there are
no other parameters available to alter their conclusions.

Present Calculation

In the present work, we calculate self-consistently the metal pinning position
in a series of five metals on GaAs, within the local-density approximation. We
use the method of linear muffin tin orbitals (LMTQO) in the atomic spheres ap-
proximation (ASA). The five metals we chose, fcc Al, Au, and Ag, and bcc Cr
and Fe, all nearly lattice-match to GaAs (110) (the fcc metals lattice inatch by
rotating them 90° about the (110) axis).

The ASA provides a convenient reference potential, to set a common scale for
“natural” band lineups. Energy bands are calculated with respect to the Hartree
potential on the sphere surfaces. (In a simple metal, this potential is zero.) The
Fermi levels E¢ of bulk Al, Au, Ag, Cr and Fe were found to be -.30, -1.59,
-1.17, +.63 and —.69 eV, respectively, while the valence band edge of GaAs lies at
-1.32 eV. Thus E% - E, is 1.95 eV for Cr/GaAs, so a screening interfacial dipole
in excess of 1 eV is necessary to pin at midgap.

Schottky barriers were calculated in a supercell geometry of n planes of metal
followed by m planes of GaAs, repeating along the (110) direction. In each GaAs
plane lay a (Ga,As), pair, together with two empty spheres to make bee packing.
The fcc metals contained two atoms per plane, the bee four. The usual LMTO
basis set of nine orbitals (spd) per atom was used, with the Ga, As and empty
sphere d orbitals folded down (removed from the basis) using a technique essen-
tially equivalent to the Lowdin procedure [5]. Size convergence was checked by
varying n and m; those reported here had n=9 and m=9 or 13 for the fcc metals,
and n=8, m=10 for the bcc. Self-consistency in the transition metals Cr and Fe
was achieved only with extreme difficulty. Following the usual procedure in the
atomic spheres approximation, Er—-E, was calculated by adding the self-consistent
interfacial dipole to the natural band offset E$ — E,. Er - E, calculated in this way
also agrees with its position in the local gap of the GaAs layer farthest removed
from the interface, as Figs. 1 and 2 show. The interfacial dipole is calculated by
solving the Poisson equation for a self-consistent plane-averaged charge density.

The self-consistently calculated Ef — F, are displayed as a function of Ef - E,

in Fig. 1. It is seen that four out of the five metals studied pin at approximately
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the same position in the gap. The pinning position, 0.3 to 0.4 eV above E,, is
lower than the experimentally observed value, which ranges from 0.5 to 0.75 eV.
Das et al. [6] found a similar discrepancy in the Ni,Si-Si interface; and the error
is arguably attributable to errors in the local-density approximation. (It should
be noted that 0.3 eV is approximately midgap in these calculations, because
the local-density approximation underestimates the gap.) Also, because these
idealized interfaces may differ considerably from the true ones, direct comparison
with experiment may not be warranted. These calculations are, however, well-
suited to address the issue of the universality pinning of tl.e SB height by the
intrinsic nature of the metal-semiconductor interface.

Notably Al does not pin at the same positions as the others, and moreover,
examination of the planar-resolved density of states (Fig. 2) shows that the DOS
near the interface are qualitatively different among the several systems studied.
In Ag and Cr, for example, the Fermi level pins on a localized state that appears
at midgap. The surface-states in the both the semiconducting gap and the gap
separating tlie deep As s state and the rest of the valence band alse appear very
different. Because the “quasineutral” point is purely a property of the these
interface states (as their role in a quasineutral theory is to redistribute the local
DOS so as to make the local “neutral” point at midgap), it is improbable that
there is anything universal about them, i.e., that they are purely a function of
the semiconductor band structure.

Fig. 1 also shows that there is no simple linear relationship between E}. - E,
and Er - E,, as predicted by Eq. 1. However, it is possible to calculate S, merely
by making an interface self-consistent, then shifting the potential on one side by
a constant amount, and observing the tendency to restore to the self-consistent
value. Instead of doing so, we increased the basis set by adding f orbitals and
recalculating the self-consistent Au-GaAs barrier height. This largely preserves
the shape of both the Au and GaAs bands, but depresses the Au and GaAs fermi
levels by 0.48 eV and 0.11 eV, respectively, for a net change in the “natural” band
lineup of ~0.37 eV. The recalculated pinning position changed by approximately
+0.02 eV, demonstrating that the effective S for this system is large. This was
checked in another way by stretching the spacing between Au layers. Stretching
the spacing between layers 5% depressed the Au fermi level by 1 eV, and shifted
Er upward by 0.04 eV.

We next address the question as to what controls Fermi-level pinning when
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both defect states and the “intrinsic” interface states are present. A simple model
of a two-defect system, shown in Fig. 3, models the “intrinsic” interface states as
a localized defect of infinite density, pinning the Fermi energy at Er. As another
plane of defects is introduced, a distance | farther away from the interface, the
Fermi level shifts to Ex. Modeling the new defects by constant density of states n
and a “charge neutrality” point Ep, Ej is easily found to be (in atomic Rydberg

units)
. _ Er + (SWHI/C)ED
Er = 14 (87nlfe) @
Provided nl is sufficiently large, the defect state will control the Fermi-level pin-

ning, as Spicer ef. al [1] proposed. Actually, because of the “intrinsic” dipole
shifts the Fermi-level roughly to midgap, there need not be so many defect states
to pin. A defect density ol of approximately 0.01 states/ A is sufficient to shift
the fermi level 0.14 eV; assuming a modest spacing { of 10 A, a defect density of
10!3/cm? required. Under some annealing steps in GaAs, such a number is easily
obtained.

It is clear that those innermost defect states still numerous enough to pin the
fermi level ultimately control the barrier height, whether “intrinsic” or otherwise.
However, because the “intrinsic” states well removed from the interface differ
so widely among the various metals studied, the “quasineutral” arguments seem
quite implausible.

Finally, we address why our results differ from the tight-binding analysis of
Harrison and Tersoff. Since the effective interfacial dielectric constant is also
large, of order 50 to 200 (depending on the metal), the large screening dipole
casts doubt on the validity of linear response theory. This can be seen as follows.
To apply linear response theory, one begins with a starting potential constructed,
for example, by “joining and pasting” the separate bulk charge densities. This
input potential is known to misalign the Fermi levels by of order 1 eV. The
system responds by “screening” the Fermi level mismatch. If ¢=0 component of
the dielectric response is of order 50, the metal-semiconductor system eftectively
overscreens the 1 eV mismatch by a factor of order 50. Such a perturbation is
too large to be reasonably treated in linear response theory. Moreover, the simple
hamiltonian in Harrison’s calculation has in effect a single metal band structure
(apart from a constant shift in EZ), so that the interfacial states all appear the
same.

Conclusions
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Fig.

Fig.

Fig.

We have shown that the “intrinsic” metal-semiconductor interface exhibits

strong pinning of the Fermi level, in agreement with model calculations. However,
the Schottky barrier heights and the DOS near the interface differ widely among

the metals studied. Thus, we conclude that the “intrinsic” states may sometimes

be responsible for Fermi-level pinning, but that surface chemistry and defects are

likely to play a significant role.
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Figure Captions

. Self-consistently calculated Schottky barrier heights Er — E, for five metal/

GaAs junctions, in eV, plotted against the unscreened barrier height £} - E,,
as discussed in the text.

Densities of states for selected interfaces, in arbitrary units. Fig 2a: DOS for
Au/GaAs; Fig 2b: DOS for Al/GaAs, Fig 2¢c: DOS for Cr/GaAs. Note the
defect state at midgap in the Cr/GaAs junction.

Simple model of “intrinsic” states coexisting with a band of defect states, as
described in the text. The “intrinsic” states pin the Fermi level at Er in the
absence of defect states, but the defect states shift Er to Ej.

References

W. E. Spicer, I. Lindau, P. R. Skeath, C. Y. Su and P. W. Chye, Phys. Rev.
Lett. 44, 420 (19803; W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su and
I. Lindau, J. Vac. Sci. Technol. 16, 1427 (1979).

C. Tejedor, F. Flores and E. Louis, J. Phys. C 10, 2163 (1977).
J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).
W. A. Harrison and J. Tersoff, J. Vac. Sci. Technol. B4, 1068 (1986).

O. K. Andersen, O. Jepsen and D. Glétzel, in F. Bassani et al., editors,
Highlights of Condensed Matter Theory, Amsterdam, 1985. North Holland.

G. P. Das, P. Bléchl and O. K. Andersen, submitted to Phys. Rev. Lett.

A-5




1.0

0.8

z 0.6

w“ 04

0.2

A-6

DAt _
Ag Q CrD
Q Fe 4
Au
\ | 1 W | 1 i
04 (o] 0.4 0.8 1.2 16 20
0 121889-6
E £ EV [eV]
FIGURE 1




DENSITY OF STATES [Arbitrary units)

AW

3 T N
MW&

jL MWM:*
W

L SN N
AN e |

A-7




188 LAR]

TIITT T

TrY

TV Yy

LA R B

LBAR RS

LABRAZEEN]

TYrIrrIrey

DENSITY OF STATES [Arbitrary units]

LB RARSALR]

LARZESE]

A A

LABBASAREREERS LR

o

L
N

-06 04 02  Eg0 0.2
ENERGY [Ryd) 1218898
FIGURE 2

(b) AUGaAs

A-8




T

Cr

T I T TT Y T YT T I I T YT T I Iy YT

Cr

DENSITY OF STATES [Arbitrary units]

T T T T Y T T T Y T T T T T T T I T I T T T I Ty e

ENERGY [Ryd]

FIGURE 2
(c) Cr/GaAs

A9




-

_ (]

T

121688-10

FIGURE 3

A-10




Coverage Dependence of Schottky Barrier Formation

John E. Klepeis, Lawrence Livermore National Laboratory. L-412,
P.O. Box 808, Livermore, California 94550

Mark van Schilfgaarde, SRI International
333 Ravenswood Ave, Menlo Park, CA 94025

Abstract

Self-consistent calculations of the early stages of Schottky barrier formation
of Al on GaAs(110) are reported. The calculations, done within the local-density
and atomic spheres approximations, confirm the tight-binding picture that po-
tential of the first layer of GaAs deepens as Al is deposited. We also predict the
Al atom favors the Ga site over the As site. We are hopeful that this approach
will quantitatively predict donor and acceptor levels, and pinpoint the evolution

of the interfacial dipole and the onset of metallization.

Introduction

In recent years a great deal of attention has been focused on the initial stages
of Schottky barrier formation[1-8]. A number of photoemission experiments per-
formed at liquid nitrogen temperatures on GaAs substrates and with very low
metal coverages have revealed complex band-bending behavior[7,8]. The form of
the band-bending curves as a function of coverage depends critically on the nature
of the adatom as well as the doping of the semiconductor substrate. It is generally
accepted that the observed behavior results from to the presence of either a donor
or acceptor level (but not both) in the energy gap of the semiconductor bands
at the surface. A detailed theory of this behavior based on simple tight-binding
calculations has been presented recently[1]. The purpose of the work described
in this report is to confirm and quantify the qualitative predictions of this the-
ory using the more accurate local-density-approximation (LDA). In addition, the
eventual goal is to calculate the detailed electronic structure predicted by the the-
ory and compare the results directly with experiment. The approximate nature
of a tight-binding treatment prevents such a direct comparison.

We first give a brief summary of the theory as it was presented previously|[1].

It is assumed in all cases that the interaction between the adatom and the sub-
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strate is nonreactive and nondestructive, so that the substrate is relatively un-
changed (although small reconstructions and relaxations are not excluded). At
ultra-low coverages (¢ < 0.01 ML for a doping of 10! cm~2) when the adatoms
are isolated (e.g., at low deposition temperature), there is a difference in the
energy to remove an electron from the surface (donor level) and the energy to
add an electron to the surface (acceptor level). Owing to the electron-electron
repulsion (which is modified by the presence of the dielectric surface), the donor
and acceptor levels are separated by an energy U* which is estimated to be on
the order of 1 eV. For most metals (e.g., aluminum), the donor level typically
comes in the energy gap with the acceptor level in the conduction band. For
highly electronegative adatoms, the two levels are lower in energy relative to the
surface bands, with the acceptor level in the gap and the donor level in the va-
lence band. In either case, the absence of one of these two levels in the energy
gap produces an asymmetry between the band-bending for n-type versus that for
p-type; this asymmetry is observed in the photoemission experiments[7-9]. In the
presence of adatom-clustering (e.g., room-temperature deposition), the value of
U* is reduced so that both the donor and the acceptor level are both in the gap,
producing more symmetric band-bending. A comparison between the experimen-
tally observed variation in the donor levels for different metal adatoms at low
temperatures and the results of a self-consistent tight-binding calculation(1] indi-
cates that the experimental donor levels are probably derived from the substrate,
rather than the adatom itself. However, the substrate-derived level may arise as
a result of the interaction with the adatom and need not be present at the clean
surface.

At higher metal coverages (0.01 ML < ¢ < 1 ML), the uniformly distributed
adatoms are mostly neutral, but form polar bonds with the substrate. For low-
electronegativity metals, these bond dipoles shift the donor and acceptor levels
toward the valence band as the coverage is increased. For high—electronegativity
elements the sign of the bond dipole is reversed and the shifts are toward the
conduction band. We emphasize that these shifts do not arise from the charged
adatoms that produced the initial band-bending, but from the bond dipoles asso-
ciated with neutral adatoms. Depolarization effects eventually cause the levels to
saturate as a function of coverage. The dipole shifts were found to be negligible

when the adatoms are clustered.

At sufficiently high coverages (¢ > 1 ML), the wave functions of adjacent metal
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adatoms overlap and the discrete donor and acceptor levels broaden into bands.
The donor and acceptor bands eventually overlap and the n-type and p-type sub-
strates are then pinned at the same position in the energy gap. The coverage at
which the pinning positions converge is expected to be much higher for the clus-
tered case than for the uniformly distributed case. In a tight-binding treatment
of an ideal metal-semiconductor interface, this common pinning position is the
average hybrid energy of the semiconductor[10], independent of the identity of
the metal.

Tight-binding theory has the advantage of mathematical as well as conceptual
simplicity and is thus ideal for a preliminary investigation that aims more toward
a general understanding of trends and qualitative features rather than highly
accurate numerical results. However, once this preliminary work is completed, it
is desirable to have accurate results that can be compared directly to experiment
and thus provide a more stringent test of the theory. The latter is the eventual
goal of the work described described here.

The local approximation (LDA) to the density functional theory of Hohenberg
and Kohn[11] has proven to be extremely successful in calculating the electronic
structure of semiconductors[12]. However, solutions to the local-density func-
tional are computer-intensive and limited by the constraints of computer time
and memory. The use of a supercell geometry is a commom method to render
tractable computation of the electronic structure of a surface. This supercell ge-
ometry consists of a periodic array of surfaces, separated by a layer of vacuum
that is large enough to prevent any interaction between the two surfaces on either
side. In addition, the layer of substrate must be sufficiently thick that the inner
region of the substrate is bulk-like and that the surfaces on either side of the
substrate interact only very weakly thiough the bulk. For simplicity, we make
these two surfaces identical.

We consider a number of different coverages of aluminum on an ideal gallium
arsenide (110) substrate. Our use of the ideal substrate is an approximation,
which we will wish to relax once the initial stages of the project are completed.
(In a preliminary calculation, we relaxed the a free GaAs surface. We confirmed
tight-binding calculations that show the dangling bond surface states shift out
of the gap.) There are two logical possibilities for the adsorption geometry on
the ideal gallium arsenide (110) surface. This surface consists of zig-zag chains of

gallium and arsenic atoms; each atom in a chain is bonded to two atoms in the
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same chain and to one atom in the layer below. If we construct four sp? hybrids
on each of the surface atoms, then three of these hybrids are oriented towards the
three nearest-neighbors and thus contribute to the bonding levels that give rise
to the valence bands. The fourth hybrid is called a “dangling hybrid” because it
points toward the vacuum at an angle of 54°44’ with respect to the plane of the
surface. The two most likely adsorption sites are for the adatom to be bonded to
either the gallium or the arsenic dangling sp® hybrid. We will refer to these sites
as the gallium site and the arsenic site, respectively. In a previous tight-binding
treatment Klepeis and Harrison[13] found that the gallium site is preferred for
an isolated, neutral adatom. We will confirm this finding below but for a higher

metal coverage.

The self-consistent calculations described below employ the method of lin-
ear muffin-tin orbitals (LMTO) within the atomic-spheres approximation (ASA),
which “deforms” the Wigner Seitz cells into spheres of equal volume, and spheri-
dizes the input potential inside each sphere. Empty spheres were used in the in-
terstices and vacuum to make bcc packing. Our program implements the LMTO
method in the tight-representation [14], with the usual basis set of nine spd or-
bitals per atom. All d orbitals were folded down using a technique essentially

equivalent to Lowdin downfolding.

We define one monolayer of metal to be the coverage at which a metal adatom
occupies each of the gallium and arsenic sites on the (110) surface. For one-fourth
of a monolayer of aluminum, we compared the total energy (within the ASA) for
the case in which the aluminum adatoms occupied half of the gallium sites with
the case where half of the arsenic sites were occupied. The spacing between the
adatom and the substrate was taken to be that in bulk gallium arsenide; this ad
hoc assumption was necessary because it is not possible to determine the spac-
ing using the ASA. We found that, for neutral aluminum adatoms, the gallium
site was favored; this is consistent with the earlier tight-binding treatment|13).
In addition, the total energy difference per primitive cell (each primitive cell
contained one aluminum adatom) was 0.36 eV. The tight-binding energy differ-
ence was 0.30 eV[15]. The agreement between the two results may be fortuitous
because of the uncertainties in the two calculations, but the result is gratifying
nevertheless. In addition, the tight-binding result is for an isolated adatom, while
the LMTO calculation was for one-fourth of a monolayer where the adjacent alu-

minum adatoms probably interact weakly. In view of this confirmation that the
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gallium site is favored at least for certain coverages, we will assume that the
aluminum adatoms favor this site at all coverages. Eventually a more complete
calculation should be carried out in which the surface is allowed to reconstruct
and the adatom is not restricted to only two sites at a fixed distance above the

surface.

Once the adatom geometry has been determined (which we have done within
certain approximations), the next step is to calculate the detailed electronic struc-
ture of the surface for low metal coverages (1/4 and 1/8 ML). A number of com-
putational difficulties arose that had to be solved before this next step could be
completed. We are in the process of working out these difficulties but we can still
examine the qualitative features of the preliminary results and compare them
with the predictions of the earlier tight-binding treatment, as summarized above.

There is a general consensus|1-8] that aluminum deposited on gallium arsenide
(110) produces a donor level in the energy gap of the semiconductor bands at the
surface. Experimentally, on a p-type substrate, this donor level is observed to
move closer to the valence band as the aluminum coverage is increased[7,8]. In
terms of the theory described above, this movement arises from the electrostatic
fields of the bond dipoles associated with adjacent adatoms. As the coverage is
increased, the density of these dipoles increases and produces the observed motion
of the donor level (see Ref. [1] for an expanded discussion). These bond dipoles
are present because the bond between the aluminum adatom and the substrate
gallium is polar with the charge density shifted toward the empty gallium dangling
hybrid. This bond-orbital picture is borne out by the more accurate LMTO
calculation.

In Table I we list the plane-averaged charges (in number of electrons) for the
supercell used in this calculation. These supercells consist of four (110) gallium
arsenide planes and four (110) vacuum planes. Each of these planes contains
two tetrahedral sites (e.g., the gallium and arsenic sites) and two interstitial sites
in every primitive cell. We have performed the calculations for several different
coverages: zero monolayers where the four sites in the vacuum layer next to
the gallium arsenide surface are empty, a half monolayer where only the gallium
site is occupied, one monolayer where both the gallium and the arsenic sites
are occupied, and two monolayers where all four sites adjacent to the gallium
arsenide surface contain aluminum adatoms. From Table I we see that electronic

charge is transferred from the aluminum layer to the gallium arsenide surface
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layer just as in the bond-orbital picture. The charge transfer is not linear in the
density of aluminum adatoms, because the adatoms are interacting strongly at
these coverages. Finally, we note that the nonzero planar charges for the clean
surface represent the dipole contribution to the work function. The fact that the
planar charge for the pure vacuum layer in Table I is so large for 2 ML indicates
that we need to insert an additional vacuum layer in order to obtain accurate
results.

The second qualitative feature of the theory that we can check is the sign of
the energy shifts induced by the bond dipoles. In Table II we list the Madelung
potentials (in Rydbergs) due to the planar charges from Table I. The zero of
the Madelung potential is taken to be at the inner gallium arsenide layer. The
important number to look at is the potential of the vacuum/aluminum layer. As
the density of aluminum atoms increases, the potential at this layer gets deeper
in energy just as the theory predicts. However, the magnitude of the shifts is on
the order of one Rydberg in going from 0 ML to 2 ML which is much too large.
The reason for this large shift is that the potentials in Table II do not include the
intra-atomic coulomb repulsion (see Ref. 1).

In summary, we have presented the results of the preliminary stages of an
LDA calculation of the electronic structure for a number of different coverages
of aluminum on gallium arsenide (110). Thus far, these calculations confirm our
recent tight-binding theory of the early stages of Schottky barrier formation. We
are optimistic that we will realize our goal of calculating in detail the electronic
structure, which can then be compared directly with experiment and thus provide

a more stringent test of the theory.
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TABLE I : Planar averaged charges (in number of electrons). The charges
listed are for a primitive cell which consists of four gallium arsenide (110)
planes and four (110) vacuum planes. Each of these planes contains two tetra-
hedral sites (e.g. the gallium and arsenic sites) and two interstitial sites (empty
spheres). Only four planes are listed because the remaining four are a mirror
image of these.

Layer 0ML 1/2ML 1ML 2ML
gallium arsenide 13 04 -.02 -.13
gallium arsenide -.64 -.07 .20 .80

vacuum/aluminum .51 -.25 -67 -1.67
vacuum .00 .28 49 1.01

TABLE II : Madelung potentials due to the planar charges listed in Table I.
The potential is defined to be zero at the inner gallium arsenide layer. The
magnitude of the shift in the potential of the vacuum/aluminum layer as the
coverage is increased is large because the intra-atomic coulomb repulsion is not
included.

Layer 0OML 1/2ML 1ML 2ML
gallium arsenide .00 .00 00 .00
gallium arsenide  -.15 -.04 .02 .15

vacuum/aluminum .45 -.00 -.18 -.62
vacuum 45 32 39 .55
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Minimal Basis Sets: Practical LMTO Downfolding

A. T. Paxton and Mark van Schilfgaarde, SRI International
333 Ravenswood Ave, Menlo Park, CA 94025

O. K. Andersen, Max-Planck Institut fiir Festkorperforschung
7000 Stuttgart-80

These notes describe the practical considerations involved in incorporating
orbital downfolding into an existing LMTOQO program. The starting point is as-
sumed to be a working code in the tight-binding representation, here denoted
«. However, the development is equally valid for any starting representation, so
that, for example, one could set a = 0 in all that follows.

Downfolding is effected by a basis transformation to an LMTO representation
we will call 8, defined as

B = ay; Bi = 1/P%e,)

where 1, i refer to the lower and intermediate sets respectively and o« are the
conventional tight-binding screening constants. The i-orbitals are those which
will be downfolded so that they do not contribute to the dimension of the secular
problem. 1/P%e,) is the inverse potential function (which may be thought of as
minus the tangent of the KKR phase shift) evaluated at e,.

Lambrecht and Andersen have shown that orbital downfolding amounts to
a linearization of 1/P° about the energy V° for any general representation o,
including ¢ = 0. V° is the energy at which the radial solution ¢’ has logarithmic
derivative equal to ¢.

The choice of g-representation has the main advantage that 1/P? is linearized
about V# = e, which leads to the smallest error in the linear method. Two other
advantages are that the moments of the charge density in the I and i sets are
uncoupled; and that the i-wave eigenvectors, three-center integrals and B; can be
expressed in a representation-independent form (these will be discussed below).

In a self-consistent LMTO-ASA procedure, the downfolded band calculation
comprises the following steps: (1). Transformation of the structure constants to
the g-representation. (This depends on the potential from the previous itera-

tion.) (2). Assembling the overlap and Hamiltonian matrices. (3). Computing
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eigenvalues and eigenvectors. (4). Accumulating the moments of the new charge

density.

Step (1): Transforming the Structure Constants

We begin with the Bloch-transformed, tight-binding structure constants, $°,
and their energy derivatives at 2 = 0, S*>. We need not invert the whole structure
constant matrix as might appear necessary from the usual expressions for the
change of basis, because only the screening constants in the i-set are different
from the tight-binding values. In this case, Andersen has shown (Varenna notes,
p. 103) that if we partition the structure constant matrices into square I-wave
and i-wave blocks (denoted by subscripts i and Il) connected by a rectangular i
block, then defining the vector & = (8; — a;) and Ay = (&7! - S2)™'S2, one has

Sg =S+ (Sﬂ)tAu

and
Sﬁ = f,-_lAa.

Note that in the present case, ! is the vector of inverse potential functions at
ev, of the i-waves, in the tight-binding representation.

To transform $°, we need the vector & = (4 — &), where the choice of ¢ is
arbitrary. We choose €; so as to cause three-center overlap integrals over the

i-waves to vanish as will be discussed below. If 3 = &, Andersen has shown that
S = S+ ALST + (53! Au ~ ALET! = 52 Au
and
Sh=—(&" - S Aa.
where £ = -7 667
Step (2): Overlap and Hamiltonian Matrices

It is convenient to divide O and H into ASA and CC (combined correction)
contributions. Each of these has three terms to third-order wviz., one- two- and
three-center integrals. Here we give explicit expressions for each of the six terms
in the downfolded matrices. Due to our choice of 8 and 8, we may express
all quantities in terms of $# and $°, e,, and the five traditional tight-binding

parameters, d°, ¢®, o® and p® (see Varenna notes). The reason is that it turns
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out that in expressions for i-wave three-center integrals, eigenvectors and §;, the
potential parameters appear only in the combination,
VA VE
C-e c*—¢,’
which is representation-independent, and is equal to the potential parameter I'-%
when in the representation g; (that is, when e, = V#). Thus we have, for the

i-waves only,

V& 1
ca—ey - ‘\/Fp~

Therefore we may conveniently use the tight-binding potential parameters even
for the i-waves, and in what follows we supress the superscript o on these. (This
is consistent with the present development being independent of the original rep-

resentation.) It is convenient to define matrices,
Sq = VdSPVd and $q=VdSPVd

and for the CC-terms, we write the diagonal matrices that appear in eq. 3.87 in
the Kanpur notes as follows.

D(°)=_2_. w 2¢-1
20—-1\s

W (s/w)? 9 (E 20-1
DY +p 8)

“20e+1) P21
1 s\¥ (s/w)? 2 (w %=1
(2) — _ s 2 w -2
b 2(2e+1)2(2e+3)(w) st TP E o s) twta

where s and w are atomic sphere radius and average Wigner-Seitz radius. Note,
they are constructed with & for both the I- and i-sets (this is simply for compu-
tational convenience.) These can be made once the screening constants in the
i-channels have been replaced by the inverse potential functions.

The orbitals that are folded down can only provide ¢-like tails to the basis, so
that in these channels there is only an Q matrix and no Il matrix (see eq. 2.25a
in Ghent notes and eq. 2.26 in Kanpur notes). Therefore once the i-waves have
been folded in to the structure constants during the basis transformation, their
only explicit contributions to O and H come via the three-center integrals Q'pQ
and Q'e,pQ and three-center CC terms. We now choose & so that these terms in
O sum to zero. By setting the terms in brackets in eq. 3.90 of the Kanpur notes
to zero (with V# =¢,) we arrive at the condition

&= —w'D{® — 'I-‘l?,
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in which ¢; depends only on representation through the explicit appearance of g
in D@ and not through the potential parameters.

Three-center integrals over the i-set can also be cast in a representation-
independent form: using eq. 3.91 of the Kanpur notes, we have for the i-wave

hamiltonian entries,

e —
sy (g
%
where Vi, is the muffin-tin zero of energy. Note that the CC term in D{® has
been cancelled by our choice of § which has elliminated all i-wave three-center
terms in O and all but the ASA three-center terms in H.
The remaining contribution to O and H come from the I-waves, and have the

traditional form as follows.

Overlap ASA:

One-center 1+2(c—e,)o+ p(c—e,)?
Two-center Si(o+plc—e,)) + (0 +p(c—e,))Sa
Three-center SapSa

Overlap CC:

One-center w2D©d

Two-center w?(SaDM) + DMSy)
Three-center w2S4(D@/d)S4 — Sa

Hamiltonian ASA:
One-center c+(c—e,)(20e, + (c—e,)(o+ pey))
Two-center Sd(% +o0e, + (c — e,)(0 + pey)) + (% +oe, + (c—e,)(0+ pe,))Sa

Three-center Sa(o+ pe,)Sa

Hamiltonian CC:

One-center Vearaw? DOd
Two-center Vintaw?(Sg DM + DSy)
Three-center Vintz (w2 Sa(D?/d) S — Sa)

Formulating the problem in this way has the advantage that downfolding can
be incorporated into a standard tight-binding LMTO program with a minimal
number of changes. The only difficult part is the scatter/gather and index point-
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ing needed in partitioning the S, O and H matrices and the potential parameter,
screening constant and CC vectors.

Step (3): Computing Eigenvalues and Eigenvectors

Although only the il block of the hamiltonian is diagonalized, one may obtain
an expression for the zero-order eigenvectors in the i-set in terms of the eigen-
vectors of the l-waves. (See, for example, Varrena notes, Eq. 147.) The success
of orbital downfolding is due to the effect of the basis transformation, which is
to make the tails of the ¢-like i-waves mimic as closely as possible the actual ¢
orbitals in the i-set had they remained in the basis. The way to achieve this is to
make o® as large as possible so that, in the transformation ¢f = ¢; + p;0® the last
term dominates. In fact, in the g;-representation in which downfolding is most
effective, the conventional potential parameters d and c—e, are zero, while o and p
are infinite. (This is why we have emphasized the use of these parameters in the
original a-representation.) The first-order hamiltonian, h® = ¢ — ¢, + VdPSPVdP is
therefore zero in the i-set, but o?h? is finite and ¢? can be properly normaliszd if
the LMTO

ix) = ler) + [@i)hu + l@iYhat + |&)

becomes

) = lon) + [0YRE + 1pP) = SO/ + IKP),
N

p
L

where the expansion coefficients of the ¢f are the correct limit of o/ h%; (see Varenna
notes p. 106).
The i-wave eigevectors, z; in terms of the eigenvectors of the Il block of the

hamiltonian, z; are, therefore,
1
zi(k) = —=S55/d; z(k).
Jr?

Note that, again, we need only use the tight-binding potential parameters even
in the i-set.
Step (4): Accumulating the charge density

Having recovered eigenvectors in the i-channels one may proceed to calculate
moments of the spherical ASA charge density. Explicit expressions are given in
Eq. 2.66 and 2.67 in the Kanpur notes. In the g-representation we have chosen,
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there is no coupling of the moments between the i- and i-channels, because matrix
elements of the first order hamiltonian, k? are zero in the i-channels. Therefore,
the moments in the I and i channels may be accumulated independently. Because
the i-eigenvectors are only correct to zeroth order, their first and second moments
are, in fact, not defined in any representation. However, to estimate new loga-
rithmic derivatives (or e,’s) for the next iteration, the first and second moments
are accumulated at each k-point from the eigenvalues of the hamiltonian. Thus

the moments in the i-channels are

mi= Y l|u()?

n k(occ.)

m; = E m)(enk —€)" r=1,2.
n k(occ.)

In this way, charge is properly distributed into the i-waves and the e, correctly

shifted to the centers of the occupied bands during the self-consistency procedure.
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Scattering from Ionized Dopants in Schottky Barriers

Mark van Schilfgaarde, SRI International
333 Ravenswood Ave, Menlo Park, CA 94025

Abstract

Using a model impurity potential from previous work [1], we estimate the

scattering tunneling electrons suffer ionized dopants in the depletion region.

Introduction

A few years ago, McGill [2] calculated the scattering tunneling electrons suffer
from ionized dopants in the depletion region, and determined that the effect
was a large one. More recently, we showed that more careful treatment of the
potential from a random distribution of ionized dopants looks very similar to
a simple quadratic barrier that is usually assumed anyway. Average deviations
from a quadratic potential were shown to be on the order of 0.01 eV, both by a
detailed Ewald calculation with 100 randomly distributed dopants, and also with
a simple model potential. On that ground, it was argued that such a perturbation
would scatter only weakly. In the present work, we use the model potential as a

perturbation and calculate the scattering from it.

Model Potential

In Ref. 1, an approximate perturbation to the true potential was obtained
by coopting the idea of muffin-tin potentials in electronic structure calculations.
Consider a single sphere of radius r, and volume 1/N;, where N, is the dopant
density. The charge density inside the sphere is made out of a point charge at the
center, compensated by uniform background of density N4. The potential from
all dopants is approximated as superposition of these sphere potentials. This
approximation should be an excellent one for an ordered array of dopants, and is
quite sufficient for our purposes. The potential for a single sphere is, in atomic
Rydberg units

9 2_32 3
¢(")=€—r+ P . (1)

for r < r, and zero otherwise. Here « is the dielectric constant. The last (constant)
term was added to make the average perturbation zero, because the average

perturbation can be added into quadratic barrier and has no effect on scattering.
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Scattering Correction

Our full scattering potential is then the usual quadratic Schottky barrier, plus
the small correction Eq. 1. Such a potential is well suited for the distorted wave
Born approximation [3]. In that approximation, one begins with an ezact expres-
sion for the scattering between states o and g in the presence of two potentials

Vi and Vs
(BIVA + Valod = (B1Vila) + [ xi Vaxad (2).

The first term is the exact scattering matrix element from V; alone; the second
is a matrix element of V» between the (inward travelling) scattered wave x7; when
scattered from V, alone and exact wave function x., scattered by both V; and V».
The Born approximation consists in this case of approximating x. with the wave
function x;. scattered by V; alone. For our purposes, the approximation should
be an excellent one since V, is small.

Because the scattering rate is in proportion to |(8|Vi + Vzla) |2, perturbation
V> makes a relative change in the scattering rate of |T2|?/|T: + T2|?, where T} and
T, are the first and second terms on the of Eq. 2, respectively. Let us estimate
the scattering in two limits, (1) a tunneling electron very near the top of the
barrier, and (2) an electron tunneling well below the barrier (electrons well above
the barrier are infrequent and also their scattering is weak; they need not be
considered). In either case, the rate T; from a true quadratic barrier is cannot
be calculated analytically; however analytic solutions can be obtained when V;
is a square well barrier, and we will consider that for the present. In the first
limit, the wave functions have kinetic energy near zero, and the wave functions
change slowly over the range of the impurity potential. In the limit that the
wave functions y; are constant, T; is zero (because the average of V; is zero, and
there is no contribution from V»). Now consider the second limit, where the wave
functions are const x e~#¢, with u? the energy to the top of the barrier. Supposing
that the square well barrier is of length L, it is straightforward to show that

% = T{(zr_a)_zeu(r.—“ (3)
For 10'8 electrons/cm?, r, is about 120 au, or 60 A— considerably less than L;
thus it is clear that in this limit T,/T; is exponentially small.

These limits show that impurities in the center of the depletion region scatter

very little. There it is legitimate to treat the quadratic potential locally as a
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square well, at least to estimate the order of magnitude of the effect. There may
be some effect, however, in fluctuations of the potential near the classical turning
point, i.e., where the electron begins to tunnel within the barrier. To test this,
we numerically solved the one-dimensional Schrédinger equation for a parabolic
potential to obtain the transmission probability |T|?, and then recalculated the
transmission in the presence of a sine-wave perturbation. The results are shown
in Fig. 1. It is seen that the curves have generally the same shape, except that the
latter curve is more shallow and there is a small dip in the center, which merely
reflects an effective narrowing of the barrier in those energy regions. While the
effect is larger than the square-well arguments indicates, the effect here is still not
all that large, since it would manifest itself as a small change in the ideality factor
electrical current measurements. Moreoever, the model perturbation shown here
were chosen to exaggerate the effect; the true perturbation is much smaller than
this, as can be seen by examination of the the barrier in a realistic Schottky
barrier.

There is, however, a correction of probably greater significance, which has to
do with the classical picture of image-force lowering in Schottky barriers. In the
customary picture, the quadratic barrier (whose shape derives from the ionized
dopants in t* . " cpletion region) is modified because of the image potential near
the interfar~ The metal behaves as a mirror and the electron sees as it were, a
mirror image of itself, which lowers the barrier. These two potentials combine
to create a maximum in the potential a few Angstrom from the interface; this
maximum can be shown [4] to vary as N}/*. However, recent electronic structure
calculations [5] have shown in detail how the electrostatic potential varies near
the interface. The essential point is that this variation is much stronger in the few
Angstrom near the interface than the slowly varying quadratic-like potential from
the ionized dopants, and therefore the shape of the potential near the maximum
is governed by the interplay between the image-force potential and the electronic
structure of the interface. Thus, while the image-force lowering effect is a real

one, it should have no dependence on doping.

Conclusions

Scattering electrons suffer from ionized impurities in the depletion region was
estimated and shown to be small, both for electrons near the top of the barrier
and electrons tunneling well below the barrier. A larger effect, concerning a
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correction to the classical picture of image-force lowering the Schottky barrier,

was indicated.
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Figure Caption

Fig. 1. Solid line: transmission probability of a Schottky barrier of height 1 eV,
doped with 10'8 impurities. Image-force corrections was included. Dashed
line: same as above, except a perturbing sine wave potential was added. Sine

wave had amplitude of 0.01 eV, period 30A, and was placed 30A from the
interface.
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Variational Principle for Solution to the Boltzmann Equation
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Abstract

We show that the basis of orthogonal Hermite polynomials can be used in
the recently developed eigenvalue method {1] for solving the Boltzmann equation.
A small number of basis functions is sufficient to well represent the distribution
function. Calculated velocity-field characteristics agree well with experimentally
measured values in GaAs. We also propose an alternative variational principle

that reduces to the eigenvalue approach.

Introduction

Analytical solutions of the Boltzmann equation are limited to a few special
(and unrealistic) cases. Traditionally, the most popular numerical solutions are
the Monte Carlo approach [3,4] and an iterative method due to Rees [2]. Very
recently, one of us [1] showed that the Boltzmann equation can be expanded in
a fixed basis which leads to a highly efficient method for solving the Boltzmann
equation. This approach is several orders of magnitude more efficient than other
methods (e.g., Monte Carlo) approach and is applicable to spatially varying fields.
In the present work, we show that this new approach can be cast as a variational

principle, which ensures that the solution improves as basis functions are added.

Eigenvector Approach
The steady-state Boltzmann equation is

[ IS E R 1E) - SE BrrE) = 3 Ve (B (1)

o

where f(F) is the distribution function and S(E, k') is the scattering rate from F to
E. Let E = Eé¢, and expand f in a basis set ¢;(E), i.e. f(F) =Y, c;6;(E). Then Eq.

1 reduces to
. o v = E -
Z/dk‘[S(k,k‘)qS,-(k’) — S(E', k)¢ (k)) — %‘-¢;(k) =0.
J

Operating on the above equation by [ dk¢:(k), we obtain
Mijcj =0, (2)
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with
Mi; = / dk [qs;(/?)%es;-(/?)— / dE’ [¢.—(E)S(E,E')¢,~(E')—¢,-(E)S(E',E)¢,-(E)]]. (3

The solution is then the eigenvector corresponding to the zero- eigenvalue of Eq.
(2). Eq. (2) was derived in Ref. 1. In practice the basis is not complete, so the
Boltzmann equation is not completely satisfied. One chooses a solution with the

eigenvalue nearest zero.

Numerical Results

In Ref. 1, we used the following basis functions
¢s(E)N,e~* and

¢p(E)NpVere=Per. (4a)

These functions yield excellent velocity-field characteristics up to about 6 kV /-
cm, as Fig. 1 shows. The difficulty is that the error becomes unacceptably large
for energies above 6 kV/cm. We show that similar results can be obtained us-
ing Hermite polynomials as a basis. We choose, then to expand f in the basis
functions

6;(F) = e H,_\(V2a k- 3). (4b)

This choice has the advantage that we can include as many functions as we like,
where the same cannot be said for the choice of Ref. 1.

Fig. 1 shows that again, the calculated drift velocity is in excellent agreement
with experiment for low fields, and is in good agreement up to 6 kV/cm. But now,
as the field increases, so does the number of basis functions required to get an ap-
proximately zero eigenvalue. Approximately eight functions were needed at each
valley in the high-field case. (This is because these functions are not tailored to
the band structure as our original choice was.) When the basis set was made too
large, a zero eigenvalue was not found; this is apparently because of overcomplete-
ness in unimportant regions of the Hilbert space of functions. To circumvent this,
we propose a variational principle that should avoid numerical difficulties of the
eigenvalue method, because the error should monotonically decrease as functions
are added. One alternative is to employ a mixed basis, including both Equations
(4a) and (4b). Another solution is to recast the problem as a variational problem,

as shown below.
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Variational Principle

We present a variational principle in the case the M matrix is positive definite
and show that it reduces to the eigenvalue approach of Krishnamurthy et al in
the limit that the solution is exact.

Operating on Eq. 1 by [dkf(k) we obtain a bilinear form for the ¢;

g=) ciMijc; =0. (5)

ij
When M is positive definite i.e., when it has only positive eigenvalues, Eq.
(5) can never be satisfied. However one can minimize the error, which is in a root
mean square sense the deviation of approximate solution from its exact one, by
minimizing Eq. (5). One must impose a constraint (to avoid a trivial solution
¢j = 0), that [dEf(k)=1. Minimization of Eq. (5) subject to this constraint, we

obtain a set of simultaneous equations
ZMijCj = g/dE¢,-(E), (6)
j

with ¢ given as in Eq. (§). These equations reduce to the eigenvalue approach of
Krishnamurthy et al in the limit of an exact solution (g — 0).

The simultaneous equations of Eq. (6) are nonlinear. However, they can
be solved by obtaining an initial guess an eigenvector from Eq. 2 (choosing the
eigenvector for A near zero), and then iteratively solving the simultaneous Eqgs.

(6), using the previous iteration’s ¢; to estimate the right-hand side.

Conclusions

We have shown that it is possible to use Hermite polynomials as an alternative
basis set. While they are not so well tailored to the solution of the Boltzmann
equation as are the original choice of Ref. 1 they they can be readily expanded
until convergence is achieved. Some numerical difficulties with the eigenvalue
approach was encountered when larger numbers of functions were used, and we
present an alternative approach that uses a variational principle to guarantee

convergence as basis functions are added.
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Figure Caption

Fig 1. Calculated velocity-field characteristics as a function of applied field in GaAs.
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