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A Theory of Bayesian Data Analysis

Bruce M. Hill
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Revised Octobe" 10, 1989

1 Introduction

Bayesian data analysis is concerned/with the type of data manipulations, trans-
formations, and just plain playing with the data, that any serious scientist
engages in during the statistical for other) analysis of his data. It is largely a
post-data procedure, rather than a pre-data procedure, since even when it is de-
sirable to think through such mtters quite carefully prior to obtaining the data,
in many real world experiments time and other constraints would provide limits
on such activities. Compare/lacking t967l),or the discussion in Hodges (4987, -
p--29+)concerning how mtch is enough. Bayesian data analysis goes beyond
the mere data manipulatiois, however, and attempts to integrate the theory of
subjective probability wiyh such data analysis. In this respect it differs from
other data-analytic approaches, which appear, more or less, to abandon proba-
bility. In this article i-4ail attemp, further to elucidate the theory of Bayesian
data analysis begun in Hili,( 1985-86, 1987a, 1987b, 1988b). See also Hill (1970a,
1975a) for earlier thoughts the subject with regard to tests of significance,
and Smith.(1986). The Baesi theory of tests of significance that originated
with H. Jeffreys (1961). and wvas eveloped by Jimmie Savage in Savage (1962),
and in the beautiful article "Bayes n statistical inference for psychological re-
search," by Edwards, Lindman and'$avage (1963), was the starting point for
my own attempts to integrate the Bay sian theory with data analysis. Such an
integration could be viewed as a synthes of the empiricism-pragmatism of John
Locke, David Hume, Charles Peirce, and\\William James, with the rationalistic
tradition of Plato, Descartes, Leibniz. Kanit, and others.

The purpose of this article is to address 'some of the basic philosophical and
practical issues that arise in attempting to integrate the Bayesian theory with
data analysis. Failure to address these issues may have, in the past. led to serious

*This work was supported b. the U S. Air Force ubder grant AFOSR.87-0192. The US
government is authorized to repr,,duce and distribute reprints for G.,vernnrental purposes
notwithstanding any copyrignt notation thereon.
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deficiencies in both of these approaches. It will be argued that both conventional
data analysis and conventional pre-data Bayesian theory can benefit from one
another.

2 Inadequacy of Pre-Data Theories

Perhaps the greatest single source of confusion in modern statistics is due to the
failure to distinguish pre-data considerations, such as arise in the design of exper-
iments, from post-data considerations, such as arise in actual decision-making
in the light of the data. Sequential analysis provides an excellent example. See
Anscombe (1963, p. 381) for a very forceful and convincing analysis of such
confusion, and discussion of the waste of time and effort spent on sequential
analysis, which he calls a "hoax." 1

Consider, for example, a sequential stopping rule, N, that depends only upon
the observations, as almost all such rules studied do. Suppose that the data of
the experiment consists of the fact that one stopped at time N = n, and that
the actual observations were X, = xl,... ,X, = ,. If a parametric model is
employed, say with parameter 0, then we have

Pr{data 10} = PrN = n I X = X,.. ,Xn = z, 0}

xPr{X, = zl,... ,X, = ,6,0}.

Since the stopping rule depends only upon the observations, and since we
did in fact stop at time n, and not before, the first factor on the right-hand side
must be identically unity, and thus does not depend upon 6. For example, if the
stopping rule were to stop at the first time that the sample mean, X, exceeded a
specified constant, c, then given the actual observations X 1 = z1 ,..., X, = O,,
and 6, it would be absolutely certain that we must stop precisely at time n,
irrespective of the value of 0. The second factor on the right-hand side is simply
the likelihood function for 0, based on a fixed sample size n. This means that
on a post-data basis, i. e., given the data, the information obtained from a
sequential experiment that actually stopped at time n, is logically equivalent to
the information contained in a fized sample size experiment with n observations,
together with a logically certain event. Somehow or other, sequential analysts
purport to extract information out of this logically certain event, over and above
the information contained in the fixed sample size experiment. This appears to
have some connection with arguments for perpetual motion, and is perhaps one
of the reasons why Anscombe calls the subject a hoax. Savage (1961, 3.23),
Savage (1962, p. 18-20), and Edwards, Lindman, and Savage (1963, Section 8)
provide further discussion of such matters. Also see Barnard (1947), who appar-
ently first understood the true nature of 'sequential analysis,' and Berger and

1 It is not the procedure of sequentially obs-rving the data that is being condemned, but

rather interpretation of the data according to a body of non-Bayesian statistical technique
known as sequentia azuuysis.
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Wolpert (1988, 4.2) and Berger (1985, 7.7) for more recent discussions. (To the
best of my knowledge, no sequential analyst has yet attempted to answer these
25 year old logical objections to their subject. In medical trials the subject has,
unfortunately, been used extensively. In practice, often real-world constraints,
such as time, patience, and funding, change the true stopping rule, so that it
becomes completely unknown. In this case the theory underlying sequential
analysis is not even germane to the analysis of the data.)

That the stopping rule is irrelevant for inference and decision-making follows
trivially from the likelihood principle, or from the restricted likelihood princi-
ple of Hill (1987a, 1988a). However, the analysis that I have given here has
some new aspects. It does not depend upon the likelihood principle, but rather
upon the willingness of the reader to acknowledge that a logically certain event
cannot provide information, in any meaningfl sense, with respect to empirical
questions. See also Hill (1989) for discussion of the concept of an 'analytic'
argument in philosophy. All probability based methods of inference, including
those violating the restricted likelihood principle, focus attention upon the prob-
ability of the data, given the parameter. My argument is that no matter how
sequential analysts purport to utilize such distributions, it is necessary for them
to pretend to obtain information from a logically certain event, over and above
that stemming from the corresponding fixed sample size experiment. Note that
on a pre-data basis, the event in question is only conditionally logically certain.
Indeed, one might not stop at all. However, given the actual observations, it
follows necessarily that one must stop at precisely time n, so that the event in
question is logically certain. This highlights the critical nature of the distinction
between pre-data and post-data considerations.

I have used this example to illustrate the difference between a pre-data
approach, such as sequential analysis, and a post-data approach, such as the
likelihood or Bayesian approach. It shows how a pre-data consideration, such
as choice of t stopping rule, can become misleading and/or irrelevant on a post-
data basis. Of course, the choice of a stopping rule can be important in the
design of a study, and relates to the question 'how much is enough.' It may also
be remarked, however, that sequential design, which in principle should have
been a serious subject, does not seem to have contributed as much as it might
have to real-world problems either, perhaps because of the same underlying
confusion. Anscombe (1963, p. 382) says: "In fact, sequential experiments are
a most stimulating and provoking topic for the statistical theorist to meditate
on. Too little attention of the right sort has been paid to them."

Although sequential analysis is a particularly blatant example, there are iSion or
many other situations where the pre-data considerations are quite different from
the post-data considerations. Some examples arising in econometrics are dis- GRA&I

cussed in Hill (1985-86, p. 218). More generally, it can be argued that the TAB 0
, ulced 0J

conventional classical theory of statistical inference is almost entirely a pre-data toation

theory. For example, the confidence approach of Neyman and others is based

upon a pre-data evaluation of the probability of coverage. Does it have any
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relevance on a post-data basis? If so, how does it allow for situations where,
on a post-data basis, it is obvious that no reasonable person could have much
confidence in the quoted confidence coefficient? Such a lack of confidence can
arise either for logical reasons, such as in the Fieller-Creasy problem, or simply
because of common-sense.

The fiducial argument of Sir Ronald Fisher, which appears to have histor-
ically preceded the confidence argument, was an important first step towards
a genuine post-data approach. Here Fisher formulated the idea that after see-
ing the data one might wish to retain certain probability statements as still
valid. Initially he believed that fiducial probability involved a new concept of
probability, but he later acknowledged, in a footnote, Fisher (1959, p.51), that
"Probability statements derived by arguments of the fiducial type have often
been called statements of 'fiducial probability'. This usage is a convenient one
so long as it is recognized that the concept of probability involved is entirely
identical with the classical probability of the early writers, such as Bayes. It is
only the mode of derivation which was unknown to them." See Zabell (1988) for
a fascinating account of the comedy of errors, tragic for statistics in the twen-
tieth century, that took place between the discovery of the innovat've fiducial
argument by Fisher, and his eventual understanding of its connection with the
Bayesian approach, as in the quotation. In Hill (1988b) the role of the fiducial
argument in Bayesian nonparametric inference is discussed.

The Bayesian approach provides a framework in which the meaning and
validity of an intuitively brilliant argument, such as the fiducial argument, can
be critically examined. Some pre-data probability evaluations will remain valid,
in the sense that they are also Bayesian post-data evaluations, and some will
not. As will be argued in Section 3, there is no objective way to state, on a
pre-data basis, which will be retained and which will be dropped. This, in fact,
is precisely where data analysis enters the picture.

In the pre-data design situation one may usefully employ a statistical model
to get a rough idea of the type of experiment or quantity of data needed to
provide a serious answer to a real-world question. In the post-data situation
it is necessary to check, in some way or other, the approximate validity of
the model, using appropriate diagnostic procedures, if necessary to abandon
the original model, and perhaps to replace it with a new one. Such a post-
data model might then be used to obtain inferential and decision procedures,
given the data. The pre-data considerations, such as initial models and/or prior
distributions, may or may not be deemed relevant after exploring the data.

It was argued in Hill (1985-86, Section 2) that conventional pre-data theories
of statistical inference, such as the Neyman-Pearson approach, break down com-
pletely when considered in the context of real-world data analysis. For in order
that confidence coefficients, p-values, etc., have any meaning at all, these would
have to be evaluated conditional upon all the diagnostics actually used, includ-
ing their order, and even upon the thoughts that cross one's mind during the
analysis of the data. Plainly such conditional probabilities are both unknown
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and unknowable. Hence even if the conventional theories were not rejected for
the many other reasons that Bayesians have put forth, such as incoherency,
inadmissibility, the failure to incorporate realistic prior knowledge, etc., they
would have to be rejected as being totally inapplicable in the real-world, except
in those rare cases where someone is rash enough to give total certainty to the
pre-data model that he has selected.

The Bayesian approach also faces some serious challenges in the context of
post-data analysis of the data. As argued in Hill (1985-86, p. 223), the saving
grace for the Bayesian approach is that the likelihood function, even when it
has been formulated through the process of data analysis, remains precisely the
same as if it had been specified a priori. The 'prior' distribution is, of course, no
longer a prior distribution, since the parameters may not have been even thought
of prior to the data. However, in this situation the Bayesian can do a post-data
robustness and sensitivity analysis, as in Hill (1980b). See also the related
ideas in Berger (1984, 1987). In other words, having perhaps formulated a new
model, with new parameters, one can examine the sensitivity of the conclusions
to variations in the 'prior' distribution for the parameters of the new model.
It may be the case that for decision-making purposes the conclusions are quite
clear. If not, it means that reasonable people with different 'priors' would come
to quite different conclusions, given the available data, and this is important to
know. Compare the discussion in Hill (1985-86, p. 241), and comments by the
four discussants.

3 Extreme Data

Suppose that a vector of observation Y, in an n-dimensional Euclidean space,
is thought of as being the sum of a parameter vector 6, and a vector of errors
c. The use of capital Y indicates here the pre-data status of the observations, i.
e., Y has not yet been observed, although it may have already been determined.
The data of the experiment is {Y = y}, so y consists of the observed value of
Y. Suppose that a Bayesian regards 6 as marginally independent of e. (Here I
do not have in mind the conventional assumption of conditional independence,
given some other parameters, such as scale parameters, but rather the definition
of independence, i. e., the joint distribution factors appropriately.) Let f(0) and
g(e) be the marginal prior densities for 6 and e, respectively. This means, for
example, that if there were an unknown scale parameter, say a, in connection
with the distribution of c, then it would already have been integrated out to
obtain g(e) as the marginal density, as discussed in Hill (1969a).

Clearly the posterior density for 6, given the data {Y = y}, is

f"(0) x f(0) x g(y - 0).

Similarly, the posterior density for c is
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W g (0 X f(Y -

This model for the realized errors was put forth in Hill (1969a). Hill (1969b)
obtained the limiting posterior distributions for extreme data, and was eventu-
ally published in Hill (1974a). Note that so far we have only given the ordinary
Bayesian posterior distributions in terms of f and g, which are pre-data specifi-
cations of the marginal prior distributions for the parameter and error vectors,
respectively. The first post-data consideration that arises is that as soon as y is
realized (but not necessarily observed), there is complete symmetry with regard
to the logical status of 9 and e. Thus on a post-data basis, e consists of the actual
realized errors in the experiment. These errors are unknown, but simply form a
vector of n numbers, just like 9,, at least in the case where the parameters have
a physical meaning.

In conventional non-Bayesian statistical theory it is sometimes argued that
after a coin has been flipped, but with the result unknown, that probability is no
longer relevant. The result is said to be either heads or tails, and that is supposed
to be all there is to say. From a Bayesian point of view, of course, probability
remains relevant, since it is used to describe the uncertainty of an individual, and
in this example (without further information) the state of uncertainty remains
the same. Compare de Finetti (1974, Ch. 2). In the same way, even though the
'errors' have now been realized, for a subjective Bayesian the pre-data density,
g, would be just as relevant after y has been realized as before, at least in the
absence of further information or thought. Of course such information is often
available, in the form of covariates, but we do not consider this case here. It
may be noted that there are actually three conceptual stages involved. The first
stage is the pre-data stage, before the errors and/or parameters are realized,
and Y is determined. The second stage is after both are realized and Y = y
is determined, but before y is observed, as in the coin flipping example, after
the coin is flipped but before one knows the outcome. The third stage is the
post-data stage, after y is observed and the data analysis has taken place.

A simple concrete example may be helpful. One walks in a northern city in
December, and although it appears quite balmy, say about 60 degrees Fahren-
heit, a bank thermometer reads 25 degrees. Let us suppose that it is known
from experience that this particular thermometer is usually accurate to within
a few degrees. The data is .v 25, and we ignore other information, such as
the dress of people on the street. Which does one believe? Although the bank
thermometer is usually accurate, it may have gone haywire. Also, perhaps one
is having a fever or some other form of delusion. The problem is to separate out
the component of y due to the true temperature, 8, from the component due to
error, e. There is compiete symmetry between the status of 9 and c, given the
data, {Y = y}, and it is ,,nv the character of the distributions determined by f
and g that allows one to dc-ierentiate the 'errors' from the parameters.

In Hill (1969b, 1974a. Section 4), a basic theorem is proved relating to this
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situation, in the n-dimensional case. The question that is addressed concerns
what happens to the posterior distributions for 6 and for e when y is extreme
in some sense. My theorem relates to the case in which the Euclidean norm of
y is large. The theorem states that only three possible limiting situations can
occur, no matter what the densities f and g may be. The first possibility is that
when 1I yl goes to oo, the posterior density of 0 - y = -e converges to the prior
density for -e, i. e., g(-e). The second possibility is that as Ilyfl goes to oo the
posterior density of e - y converges to the prior density for -0, i. e., to f(-9).

By the symmetry between parameters and realized errors alluded to earlier, the
second possibility follows automatically from the first. The third possibility is
that no limit exists.

A little thought shows that the first case corresponds to both classical non-
Bayesian inference, and also to the Bayesian situation when stable or precise
estimation in the sense of L. J. Savage occurs, as discussed in Savage (1962,
Section 4). In the Bayesian case, the likelihood function for 8 is then extremely
sharp relative to the prior density for 0, so that one more or less believes the
data, and regards y as being approximately equal to 0, with an error whose
magnitude is determined by g. This occurs, for example, with normal data and
a Cauchy or t prior distribution for 0. A key point to understand, however, is
that there is nothing in the logic of the situation that requires this to occur.
Indeed, just the opposite can occur, as in the second possibility, in which case
one instead regards the error, e, as about equal to y. This second possibility
actually corresponds to the intuitive interpretation of e as being an 'outlier.'
In the first possibility it is 6 - y that has a limiting distribution, while in the
second possibility it is c - y that has a limiting distribution. Both have reasonable
subjectivistic interpretations.

Remarks 1 through 8 of Hill (1974a, p. 570-573) attempt mathematically
and philosophically to characterize these two possibilities in terms of the relative
sharpness of f and g. Thus basically what underlies possibility 1 is the view
that errors are in some appropriate sense believed to be 'small' relative to the
parameters. This may or may not be the case. In the bank thermometer
example, I think most of us will ordinaxily tend to rely upon our prior judgment.
In other examples, where great caution is taken with respect to potential sources
of bias, such as in the celebrated Michelson-Morley experiment of physics, we
will tend to believe the data. See Hill (1988a) for a discussion of the Michelson-
Morley experiment in this context. Of course the Michelson-Morley experiment
was exceptional, and in most experiments the possibility of a serious bias must be
taken more seriously. Such bias can then be viewed as giving rise to a relatively
diffuse distribution for the errors, as perhaps occurs in the bank thermometer
example.

The main point that I am making is that it is only careful consideration of
one's marginal prior densities, f and g, with respect to their relative sharpness,
that can allow one to make a reasoned decision as to which of the two possible
limiting distributions one wishes to accept. (It should be emphasized, as in
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Remark 5, that a third alternative is that no limiting posterior distribution for
0 exists, as occurs when both f and g are of the normal form. I personally
regard this case, although possible, and sometimes appropriate, as ordinarily of
lesser interest. The assumption that a limiting posterior distribution exists can
be viewed as representing a form of stability in one's outlook.) As mentioned
earlier classical non-Bayesian inference implicitly concerns only possibility 1,
and also some Bayesians have emphasized this case in order to achieve bounded
risk.

In the post-data situation, the situation becomes even more complicated.
After playing with the data, one may find that either f or g or both have to
be regarded as mixtures. For example, it may become apparent that g should
include an extremely fat-tailed component, representing an even more diffuse
'outlier' than previously anticipated, even if this was not explicitly thought of
prior to obtaining the data. In the bank thermometer example, this component
might be used to represent some special form of breakdown in the mechanism.
Such a phenomenon will be discussed further in Section 4 to illustrate the process
of Bayesian data analysis. Remark 9 of Hill (1974a, p. 572) shows that even
when both f and g are represented as mixtures, the basic theorem still holds,
but one must compare the fattest-tailed component of f with the fattest-tailed
component of g. The one of these that is sharpest wins, in the sense that if the
fattest component of g is sharp relative to the fattest component of f, then it is
0 - y that has a limiting distribution. Otherwise, it is E - y that has a limiting
distribution. Although the 'what if' method, or "device of imaginary results" of
Good (1965, p. 19), can be of value, it seems clear that it would not ordinarily
be possible, before examining the data, to know which limiting distribution
will eventually be thought to be appropriate. This is partly due to the labor
involved in trying to assess all the components of f and g a priori, and partly
due to the fact that the specific methods of data analysis used may trigger off
a chain of thought that leads to some previously unsuspected understanding of
the data. Eventually, one must make some decision, and this implicitly involves
a post-data assessment of the various components of f and g.

For some related articles, see Dawid (1973), which deals with the limiting
posterior expectation when n=l, and Umbach (1978).

4 Methodology for Model Selection

Let us now attempt to characterize Bayesian data analysis as distinct from
more conventional forms of data analysis. This will be done for the important
problem of model selection. It will be argued that all the ingenious techniques
to analyse and display data that have been developed by scientists and others
for centuries, automatically become part of Bayesian data analysis. One may
perform such searches and displays in any way whatsoever, giving free rein to
scientific creativity. The part that is uniquely Bayesian only occurs after, as a
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result of such techniques, one has reformulated old models, or formulated new
models for the data- Such models may have been thought of a priori, or may
have arisen partly or entirely through the process of data analysis. Sometimes,
in relatively simple examples, such data-instigated models can actually be con-
vincingly obtained through use of Bayes's theorem. However, in realistically
complicated examples, the computations would be prohibitive. Furthermore,
as I argued earlier, the process of analysing the realized data may trigger off a
chain of thought that was not foreseen beforehand. From this point of view the
use of data-analytic techniques might be viewed as a computationally efficient
way to arrive at new models. Whether or not such models could also have been
achieved through use of Bayes's theorem seems to be a moot point.

After the conventional forms of data analysis have been completed, suppose
one arrives at one or more models that command some degree of credibility. If
one wishes to make a statement with operational content, other than a purely
descriptive one about the particular data set that has been analysed, then one
must deal in some fashion or other with uncertainty about either models or
parameters or both. The work of de Finetti, Savage, and others, makes it
abundantly clear that there is no way to do so without bringing in subjective
probability explicitly; and of course once this is done, one presumably wishes
to avoid so far as possible, Dutch-books and other forms of incoherence and
irrationality. There is often no need to make more than a small number of post-
data probability assessments, i. e., those that are sufficient for the purpose at
hand. This purpose might be to choose amongst a few available decisions, or
to specify, approximately, a predictive distribution for future observations, or
to make inferences about conventional parameters. De Finetti's fundamental
theorem of probability (1974, p. 111) shows that any coherent collection of
probability specifications can always be extended coherently, but in practice it
is rare for there to be a need to make more than a few such specifications.

It is the attempt to integrate the data-analytic search procedures of conven-
tional data analysis with the subjectivistic theory of probability and decision-
making that is unique to Bayesian data analysis. Conventional data analysis
appears simply to ignore the problem of coherent judgment, and apart from tech-
nological advances in the display of the data, returns to the pre-probabilistic
frame of mind with regard to +he fundamental questions of induction and infer-
ence. Such data analysis was, of course, very welcome in the statistical climate
of the past quarter certury, which had degenerated into a sterile and largely
meaningless form of mathematical exercise that was stifling to scientists in many
fields. See the art;cle by Salsburg (1985) for an example in the medical area.
But it is difficult to see how real progress in the problems of inference and
decision-making can be made without some operationally meaningful concept
of probability, and at present the subjective Bayesian concept appears to be the
only viable one.

How then can the Bayesian approach achieve the integration about which
I am speaking? The primary jewel in this crown is the principle of stable
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estimation of Jimmie Savage, as in Savage (1961, 1962), and its extension to
the comparison of hypotheses, as in Edwards, Lindman and Savage (1963). At
present these constitute the chief way in which consensus can be achieved other
than by fiat. We begin by discussing the role of the likelihood principle in
Bayesian data analysis.

Suppose that as a result of data analysis one finds a new model for the
data, or modifies a previous one. Suppose this new model is denoted by M, and
that it contains a parameter vector 0. It is assumed that, conditional upon M
and 0, the probability for the realized data is completely specified. This will
indeed be taken as our definition of a model. In other words, in order for M to
represent a model in our sense, it must be such that conditional upon M and its
parameters, the probability for the data is completely specified. The likelihood
function for 0, conditional on the model M, is then Pr(data Al, 0). Note
that this likelihood function is precisely the same, whether M has been arrived
at through a data-search procedure, or whether M had been specified a priori.
This follows immediately from our definition of a model, since given M and 0 the
probability of the data is uniquely specified by M. The 'data' for this evaluation
of the likelihood function can be taken as any subset and/or transformation of
the original data, no matter how arrived at.

If only one model appears viable after data analysis, then a question that
arises is whether it is worthwhile to use this model for various purposes, such as
prediction, inference, or decision-making. This is a fairly subtle question that
implicitly involves considerations as to whether the departures from this model
are so large as to make its use unwise, even though no alternative model has as
yet been formulated. However, one can usefully consider inference and decision-
making, conditional upon the truth of N1, even when one considers it unlikely
that M is true. Similarly, if after data analysis two or more models emerge as
being thought worthy of consideration, then the above analysis can be extended
to yield posterior odds for each, conditional on the truth of at least one of
these models. Suppose, for example, that M, and ,12 are two such models, and
that the associated parameters are 01 and 02. These models may be nested or
unnested. Let L,(0,) = Pr(data I M,, 8) be the associated likelihood functions,
for i = 1,2. Finally, let ir,(O,) = P(0, M,) be candidate 'prior' densities for 0j,
say relative to Lebesgue measure, for i = 1, 2. As argued above, such likelihood
functions do not in any way depend upon the fact that the models may have
been developed through data analysis. Note that unlike the case in which there
is only a single model under consideration, one must here include all constants
of proportionality in the definition of the likelihood function.

The Bayes factor is then Pr(data IM)/Pr(data ;M 2), where Pr(data
Al,) = fL(8j) x r,(0,)d0,, for i = 1, 2. The posterior odds for M1 versus
,1 are obtained by multiplying the Bayes factor by the 'prior odds,' i. e., by
Pr(M1)/Pr(012). A great deal is known about the behavior of the Bayes factor
in cases where the models have been specified in advance. Edwards, Lindman,
and Savage (1963) give a number of approximations and bounds for this factor.
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Thus once the problem is reduced to this form, we have available a variety
of ways to deal with the purely mathematical or computational aspects of the
problem. What I would like to discuss here, however, is the question as to the
validity of such an analysis, when one or both models have been derived through
data analysis. This in fact is the key question that faces one in applying the
Bayesian theory in practice.

There are two separate issues. The first concerns the validity of the likeli-
hood principle in this context. In Hill (1987a, 1988a) I have argued that the
formulation of the likelihood principle by Birnbaum was incorrect in an essential
way, namely in trying to give an abstract objective definition of 'the evidence,'
which as the example in these articles shows, cannot be done without greatly
delimiting Lhe concept of evidence. Furthermore, even with respect to the lim-
ited concept of evidence formulated in my restricted likelihood principle, the
evidence is always only relative to a specific model or models. However, the real
power of the (reformulated) likelihood principle is best seen in connection with
the data-instigated models that I have discussed above. For, as I have argued
above, once a model has been formulated, whether pre or post-data, the like-
lihood function for the parameters of that model, conditional upon the truth of
that model, does not in any way depend upon the circumstances under which that

model was discovered. This simple logical fact constitutes, I believe, the only
truly 'objective' feature of statistical practice. The second issue concerns how,
within the subjectivistic theory, one can live with this fact. Clearly, one must
somehow discount some of the adhoc models discovered through data analysis.
The subjective Bayesian approach can only do this through the choice of the
Pr(Mi), and the 7r,(O,). It is the logical status, and practical aspects of such
evaluations that must now be discussed.

With regard to the Pr(M,), I believe that when one or both of the models
have been formulated through data analysis, then it is ordinarily appropriate to
assess or reassess these probabilities after the process of data analysis that gave
rise to them. For example, if only Mf1 had been thought of prior to the data
analysis, this would suggest that A!2 must have been given negligible a priori
probability. However, I think this is largely irrelevant. The results of the data
analysis have suggested that one was in error in neglecting M2 , and it would
now be appropriate to give it a non-negligible probability, prior to evaluating
the post-data odds. In other words, one should interpret the Pr(M,) as the
probabilities that one would give to the two models, conditional upon the truth
of at least one, after the data analysis that gave rise to 12, but prior to the
use of the Bayes factor to update the corresponding odds to become the overall
post-data posterior odds.

This violates the classical version of Bayes's theorem, but I think it is the
sensible way to proceed. What has been suggested may be viewed in the follow-
ing light. Most of the time in life we do not use Bayes's theorem in updating
our opinions. Even if it were thought wise in principle to do so. as for example
in the theories ;S a Finetti and Savage, it would ordinarily be computationally
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prohibitive. In certain special situations, for example in the narrow but rela-
tively precise problems of science, we attempt so far as possible to follow the
Bayesian approach. This is done largely because it is the only approach that
even attempts to deal seriously with the problem of rational updating of belief,
and rational discourse. But it does not follow that it is sensible always to use
Bayes's theorem in the updating of opinions. For this reason, I have separated
the data-analytic process of discovering or reformulating models, from the for-
mal Bayesian analysis after such models have been formulated. Having done
so, I am now in a position to take advantage of the rational and persuasive
aspects of the Bayesian approach in updating my odds for the two hypotheses,
given the 'data' that is now being explicitly considered. Although the overall
data includes experiences with, and results of, the data analysis, it is useful to
separate this into two parts, only one of which is dealt with through Bayes's
theorem. This may appear to be only an attempt to get the best of both worlds,
the empiricist world of the data-analytic school, and the rationalist world of the
Bayesian school, but it is difficult to see what alternative there is to such a
procedure, other than total subjectivism and adhockery. It should be observed
in this context that the Bayesian approach has always had an arbitrary element
in it as to the time point at which one proceeds to make a formal Bayesian
analysis. I am suggesting that often the appropriate time point is following the
process of data analysis.

If one adopts this point of view, then some of the more troublesome aspects
of the Bayesian approach can be largely bypassed. The Bayesian no longer needs
to justify how the pre-data value for Pr(M 2 ), which must have been negligible,
has suddenly become enormously larger. This could happen purely through
Bayes's theorem, as discussed in Hill (1970a), but it need not. It could also
occur through the informal updating involved in the data analysis. For scientific
purposes, as opposed to explicit decision-making purposes, it might now be
appropriate to evaluate the 'prior' probability for M,, given that at least one of
the two models or hypotheses is true, as 1/2. It should be understood here that
when we speak of a model as being true, ordinarily we mean approximately true.
The earth is neither planar nor spherical, but the spherical approximation is
generally more useful. In the same way presumably neither of the Mi is literally
true, but one or the other may provide a more satisfactory approximation, and
it is important to know which.

Similarly, the prior distribution for 8j, given M,, can only be truly a priori, if
M, has been specified in advance. However, as I see it this need not necessarily
cause any serious problems. For example, as soon as M, has been stated, it
may be abundantly clear that there are things one can say about the value of 9,
based simply on the meaning of Al, and 0,. For example, it might be clear that
there are reasonable grounds for regarding 9, as diffuse relative to the likelihood
function for 0,, thus setting the stage for stable estimation. Although there are
obviously some subtle aspects to such a procedure of speaking about opinions
concerning 9,, given M,, acting as though one had not already observed and
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analysed the data, it appears to be the only thing that can usefully be done.
Furthermore, the difficulties are primarily psychological, and arise from the
fact that having seen the data one must nevertheless attempt to erase it from
one's mind. The degree of success that can be achieved will depend upon the
circumstances. In the thermometer example, which will be returned to in the
next section, I think this can be done quite adequately. It should be noted that
the basic difficulty arises not only through data analysis, but to a lesser extent in
any Bayesian application. The reader of an article making a Bayesian analysis
of data will not ordinarily have considered his a priori distributions, although
he may have some definite opinions. Thus in any case the force of a Bayesian
analysis of data must depend upon an agreement among scientists that specific
prior distributions and likelihood functions are pertinent to the problem, and can
be considered on their own merits, even after the data has been observed. See
also Leamer (1978, Ch. 9) and my review of his book in Hill (1980c) for further
discussion.

When, for example, it can be agreed that a particular model, M, is relevant
for inference about 0, and also that it is reasonable to take the prior distribution
for 0, given M, as being diffuse relative to the likelihood function specified by
M, then Savage's principle of stable estimation applies, given M, and leads to
useful approximations to the post-data distribution for 6. This appears to be
the primary method by which consensus can be obtained as to empirical mat-
ters, whether for decision-making, inference, or prediction. (It would perhaps
be better in this context not to speak of the prior and posterior distributions,
but rather of weighting the realized likelihood function by some function w(O),
as in Barnard, Jenkins and Winston (1962).) From my point of view, the out-
put of a Bayesian analysis of data should include the likelihood function (or,
in high dimensions, characteristics thereof), together with a formal Bayesian
analysis of the data using one or more prior distributions for the parameters.
Through a sensitivity analysis obtained by varying the prior distribution, one
can attempt to see what aspects, if any, of the conclusions are robust to the
specific form of prior knowledge assumed. See Hill (1980b). The justification
would rest in a consensus that on the one hand the Bayesian method for reval-
uation of probabilities is rational, or at any rate the best we now have, and
on the other hand that the specific prior distributions and likelihood functions
being employed are plausible and worthy of consideration. Obviously there is no
possibility of proving that particular distributions are valid for everyone, so the
force of the argument must stem from some agreement that the distributions
being employed are reasonable for the problem at hand. Conventional classical
inference, as interpreted from a Bayesian viewpoint, demands that the prior
distribution be taken as diffuse or improper, even when it is ridiculous to do so.
This is consensus by fiat, and is a high price to pay for such consensus.

If we agree that none of our models is likely to be true, then the question
of real importance is whether, given the data, one thinks the departures from
the best model or models one has are so large as to make them not worthy of
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use. This question cannot be answered without explicit consideration of the
purposes for which the model is to be used, and the utility of using the model
for such purposes, as opposed to not doing anything. See Dickey and Kadane
(1980). One might believe that a model one has is not true, but that it will
still get you to the moon. On the other hand, one might regard it as highly
improbable that use of the model will be worthwhile. If we don't think that
any of the models we now have are adequate to achieve our purposes, then
one presumably starts to think hard about formulating new models. It is here,
of course, that data analysis and various diagnostic techniques can be of the
greatest value. It is my thesis that except in extremely simple situations this
process is not usefully viewed as merely an application of Bayes's theorem. But
when and if such new models are found, I believe it is entirely appropriate and
useful to resume the conventional Bayesian mode of analysis, making use of the
knowledge gained through data analysis just as though it were the usual type
of background or a priori knowledge. The justification for such a procedure
would lie in yet another aspect of the Bayesian paradigm, namely the attempt
to maximize post-data expected utility. In my opinion, this aspect is the more
fundamental and overrides even use of Bayes's theorem. Of course, in many
situations use of Bayes's theorem follows from such maximization. See Hacking
(1967) for a discussion of some related issues.

Some will of course dislike the subjectivity involved in all such considerations.
However, I know of no way to avoid it, other than to sweep it under the carpet,
SUTC, as Jack Good says. The distinguished philosopher and psychologist,
William James (1896, p. 97), puts it quite well:

Objective evidence and certitude are doubtless very fine ideals to
play with, but where on this moonlit and dream-visited planet are
they to be found? I am, therefore, myself a complete empiricist so
far as my theory of human knowledge goes. I live, to be sure, by the
practical faith that we must go on experiencing and thinking over
our experience, for only thus can our opinions grow more true; but
to hold any one of them-I absolutely do not care which-as if it never
could be reinterpretable or corrigible, I believe to be a tremendously
mistaken attitude, and I think that the whole history of philosophy
will bear me out.

Despite such subjectivity, I believe that Bayesian analyses can have every
bit as much impact in obtaining a post-data consensus of opinion as if the model
had been specified a priori. Indeed, an N1 that has been found and confirmed in
some sense on the basis of the data, is in many ways a much sounder basis for
inference than a speculative a priori NI that has not been so founded. When only
one such model has been formulated, then all our inferences must be conditional
on the truth of that model. One can, of course, add an M, etc, if the data
support such additions. In this case all inference is conditional upon the truth
of one from amongst this finite set of models. One might describe scientific
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progress as consisting of the refinement of an undifferentiated model, such as
the complement of some initial M into specific alternatives such as M 1, M 2,
etc. Such alternatives are typically found through the process of creative data
analysis and hard thought. The Bayesian approach can then, at any point in
time, be used for decisions, inference and predictions, using the models currently
taken seriously. In this way the subjective Bayesian approach, as integrated with
data analysis, can provide a relatively objective and reasoned form of argument
with regard to model selection. By contrast, the conventional form of data
analysis either does not deal at all with the question of model selection, or else
relies upon total subjectivism, since it cannot hope to show that there might be
a consensus as to the evaluation of probabilities when it does not even have an
operationally meaningful concept of probability to work with.

5 Examples of Bayesian Data Analysis

Let us return to the bank-thermometer example to illustrate the procedure of
Bayesian data analysis. Suppose that five hours later, during which time it
appears to have cooled down noticably, one returns and finds the thermometer
still reading 25. At this point, whether one had consciously thought about it
a priori or not, the thought suggests itself that perhaps the thermometer is
simply frozen stuck at 25. Suppose in fact that one had not consciously thought
of this hypothesis beforehand. One can nonetheless reason as follows. Let M
denote the original model of Section 3, and let Al'I denote the model that states
that the thermometer is frozen. Upon reflection, one decides that it would have
been reasonable to have attached a non-negligible prior probability, say around
.03, to the hypothesis that the bank thermometer would be frozen at some
unspecified value. Before seeing the number 25, of course one would not have
much information as to what the number would be, but taking a range of say 100
degrees Fahrenheit, one might take the 'a priori' probability of the thermometer
being frozen at 25 to have been about .0003. From a post-data point of view,
the question of interest is whether or not the thermometer is frozen stuck. If so,
then it can only be at 25, and it is not the .0003, but simply the .03 that is the
relevant 'prior' probability or weight for the hypothesis under consideration.
The datum y = 25 would then be used to revise this 'a priori' probability
in accord with Bayes's theorem. This illustrates how careful one must be in
dealing with post-data hypotheses or models in the Bayesian framework. Note
that in this example, even though the hypothesis Al 1 was only thought of after
seeing the data, the probability of .03, which would be based on experience and
judgment, seems just as compelling as though the evaluation had been made
beforehand. It is my opinion that the psychological effect of seeing the data can
vary greatly in problems of post-data Bayesian evaluations of probability, and
that it will have little effect in problems such as this, where once the model has
been formulated, one can easily refer the question to related experience.
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Now I think that most people will have a clear post-data preference for M 1

in this case, even without doing the formal Bayesian analysis. Of course, if one
returned still again late in the evening when it was even more noticably cooler,
and discovered that the thermometer was still at 25, one would then become
nearly certain of the truth of M 1 . This illustrates the wisdom, sometimes, of the
cldssical statistician's recommendation to take more data. On the other hand,
the weakness of this point of view. and the strength of the Bayesian approach,
is seen in circumstances where one must act without the possibility of taking
more data. The classical statistician who eschews the use of prior knowledge
obviously has no basis for even being suspicious of the thermometer, since the
value 25 is certainly a possible temperature. Yet even without the confirmatory
data of later observations, which would make M1 almost certain, a Bayesian
might see M 1 as highly probable, and be prepared to act accordingly.

The formal Bayesian analysis of the problem sheds some light on how such
a conclusion can be arrived at, and how it can be justified to others. Plainly
this depends upon the precise specification of f and g in model %I, the original
model. In accord with my definition of a model, M implies a specific choice of
the distribution of errors, represented by g. Because of the symmetry between

errors and parameters in the present example, it would be well here to include
the specification off as part of the model as well. Once these have been specified
one would simply calcu'ate the posterior odds in favor of M versus M as in the
Jeffreys-Savage theory of hypothesis testing. In the case at hand the model M
largely discredits itself because of the fact that one's initial opinions about 0
and e are such as to make the observed value 25 highly improbable. In other
words, for temperatures around 60 or so. which are regarded as highly probable

a priori, it would take an improbably low f to yield the result 25. Since M may be
interpreted as the hypothesis that the thermometer is functioning normally, in
which case the distribution of e is reasonably well known from past experience,

it follows that an effective evaluation of the posterior odds can be made. A
sensitivity analysis would reveal whether the conclusions are in fact reasonably
robust to the precise choice of f and g, and to the probabilities selected for M
and MI.

The model M is a degenerate type of model that explains the data perfectly.
The reason that a Bayesian is not necessarily led to adopt such a 'perfect' model
is because he may discount such a model due to its low a priori probability. It is
one of the great advantages of the Bayesian approach that such discounting can
occur, which can prevent one from simply using maximum-likelihood estimates
in their most adhoc form. See Hill (1975b) for a striking example. The conven-
tional non-Bayesian theory does not appear to have an adequate way to deal
with such things, since it foregoes the use of subjective judgments and a priori
probabilities. For example. in the problem of polynomial regression it remains
an unsolved problem, within the conventional framework, as to why one does
not fit an n th degree polvynomial to n-I data points, thus obtaining a perfect
fit. The Bayesian perspective offers a simple answer. Such a fit would require

16



the errors to be identically 0, i.e e to be the 0 vector. This may be viewed as
highly improbable a priori. For example, as suggested in Hill (1969a) one might
use a spherically symmetrical 'volcanic' prior distribution with density g for e.
This is a distribution having a crater centered at the origin, minimum inside
the crater at the origin, and with mode along a ridge at some specified positive
distance from the origin. For such a prior distribution the most probable value
of e is far removed from the origin, and this tends to prevent one from choosing
a model for which c is 0. Thus this constitutes another example of how the
Bayesian approach can provide a discounting for 'perfect fit' models.

In the thermometer example it might be argued, of course, that the conclu-
sion is self-evident, and the problem hardly worth the effort to make a careful
Bayesian post-data analysis. However, with only minor changes, this example
would apply equally well to nuclear disasters such as occurred at Three-Mile-
Island and Chernobyl, or to the space-shuttle crash. All of these disasters are
examples of where there is a conflict between the data and a priori judgements,
and where some thought could have averted the disasters. Often engineers cite
remarkably low a priori estimates of probabilities for such accidents. These do
not appear to be based on experience or sensible forms of data analysis. Con-
fusion as to the meaning of probability versus conditional probability, and pre-
data versus post-data considerations, presumably also plays a role. Although
careful data analysis requires substantial expertise, the failure on the part of
administrators and others to comprehend even the most basic facts about data
analysis and decision-making appears to be partly responsible for many easily
preventable foulups.

One of the criticisms that can be made of the conventional Bayesian approach
is that it focuses too much attention on the a priori aspects, and not enough on
such strategies as 'take more data.' There is a sense in which this is a highly
appropriate criticism. Plainly it is foolish to devote an overly large time to the
evaluation of a prior distribution. This could never be done perfectly in any case,
and there is an important practical question as to when to cease such activity,
and simply explore the data, which will often suggest entirely new avenues and
hypotheses. Unfortunately there are no hard and fast answers here. In the
above examples it is clear that not enough a priori thought had been given so
that a quick response could have been made. Decision-makers are sometimes
lulled into wishful thinking that certain probabilities are very tiny, when in fact
simple Bayesian calculations would reveal otherwise. Similarly, it might pay to
consider utilities more carefully than is customary.

Here are some concrete examples of Bayesian data analysis. Hill (1963) em-
ployed the three-parameter log normal distribution to model incubation periods
for small pox. Although there was some previous theory suggesting the appro-
priateness of the log normal model, this obviously could not be taken for granted,
and had to be checked for the data at hand. I employed stable estimation, and
plotted both the marginal likelihood function for the thresh-hold parameter -y,
and what is now called the profile likelihood function. These turned out to
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be nearly proportional. A table of observed and expected values was also pre-
sented, showing some discrepancies, but relatively minor in view of the large
sample size (310). The chi-square goodness of fit statistic was obviously going
to be misleading because of the large sample size, and was not presented. (There
would have been no harm in giving it, other than that it is customarily misin-
terpreted and used to reject possibly useful models.) I believe that the stable
estimation argument is entirely valid in this case. I would describe the thought
process as follows. Based upon both other data on incubation periods, and on
the observable characteristics of the data set, I made the decision that the log
normal model would serve a useful purpose in describing the data set, in mak-
ing inference about the parameters, and for predictive purposes. This aspect
of my inferential procedure was not based on Bayes's theorem per se. Rather
it was a result of a fairly complex procedure of data analysis. I did not believe
that the log normal model was literally true, but rather was implicitly saying
that I regarded the departures as being sufficiently small that this model could
be usefully employed. Once having made the decision to employ the model, I
believed that the inferential procedure was fairly straight-forward, and used the
stable estimation argument. It goes without saying that others would be free
to substitute their own 'prior' distribution or weighting function.

Another example of Bayesian data analysis occurs in the variance compo-
nents problem, as in Hill (1967, 1970a). Here I broadened the conventional
one-way model to allow for correlated residuals. This was an attempt to ex-
plain the familiar fact that the conventional unbiased estimator for the between
variance component is often negative. In this example I evaluated the poste-
rior odds in the Jeffreys-Savage sense, in favor of the original model versus the
broadened model. Thus this example is one in which a new model, the one with
correlated errors, is formulated on the basis of the data, and is then compared
with the original model for the data. This is a fairly subtle comparison. See
Chaloner (1987) for a review of some aspects of the components of variance
problem.

More complex examples of Bayesian data analysis occur in the Mosteller
and Wallace (1964) analysis of the Federalist papers, in the analysis of inference
about the tails of distributions in Hill (1975a), in work on Zipf's Law in Hill
(1970b, 1974b, 1980a), in Hill and Woodroofe (1975) and in Chen (1980), and
in the Bayesian survival analysis of Chen et al (1983). An important example in

which the data analysis forms an integral part of the inferential theory occurs
with mixtures of distributions, as in Hill (1987b). In all these examples the
data are quite complex, and model specification procedures require substantial
creative efforts.

There has not been room here to do more than suggest the nature of Bayesian
data analysis. However, I believe that a primary stumbling block for both
conventional data analysis and for conventional Bayesian statistics in the past
has been the failure of each to address the concerns of the other, and to take
advantage of the achievements of the other. I see no way to avoid either the
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data analysis, or the Bayesian approach, if one is to make any form of progress
in either the practice or the theory of statistics and decision-making. I have
tried to suggest above how each can benefit from the other.

6 Concluding remarks

As the Bayesian approach becomes dominant, which now appears to be only
a matter of a short time, it is important that we learn from the mistakes of
the past. Bayesian thinking emerged from the writings of some of the greatest
thinkers in history, including B. Pascal, D. Bernoulli, T. Bayes, P. Laplace, C.
Gauss, H. Poincire, E. Borel, F. Ramsey, B. de Finetti, H. Jeffreys, and L. J.
Savage. In many cases, it was a confused or perhaps even perverted misunder-
standing of the writings of these distinguished people, that led to the type of
thinking that we Bayesians have been arguing against these many years. At a

certain point in history it might have been the state of the Bayesian art to use
maximum-likelihood estimates, and in the absence of adequate computational
facilities, to derive an asymptotic distribution for the maximum-likelihood esti-
mator. Nowadays we can do much better. In low dimensional cases we simply
plot the realized likelihood function, weight it, and integrate numerically, if need
be. In high dimensional situations we learn concepts and techniques to deal with
the display and understanding of the information, such as in Hill (1975a).

Certainly Fisher's fiducial argument, and to some extent even the Neyman-
Pearson theory, can be seen as approximations to Bayesian procedures. Com-
pare the discussion in Hill (1988b, Section 4). George Barnard has written often
and well on this subject. See Barnard (1985) for references. The present day
Bayesian approach, such as has been solidified in some of the textbooks that have
been written recently, will perhaps in a few years also be seen as only a crude
approximation to more realistic Bayesian procedures. Some of the important
problems that we have still to come to grips with include the questions of time
coherency, randomization, and other alternatives to the conventional Bayesian
approach. See, for example, Diaconis and Zabell (1986), Goldstein (1983), Lane
and Sudderth (1985), and Zellner (1988). In my opinion, the real mistake of the
past was to take some crude approximation to the Bayesian approach, which
may have arisen historically due to a variety of real-world constraints and limi-
tations, to be the final answer. We can do much better.
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