	$\mathcal{A}(0)$			TLE CO		
RITY CLASSIFICATION OF T	HIS PAGE		-	ILE UU	Pγ	(3
	REPOR	OCUNENTATION				I-0188
REPORT SECURITY CLASSIFIE		ECTE		-A21	8 41	2
(U) SECURITY CLASSIFICATION		N 3 0, 1990				
DECLASSIFICATION / DOWN			UISTRIDUL	UII MILLING	••• .	
NA MO D			S. MONITORING O	RGANIZATION RE	PORT NUMBER(S)	· · · · · · · · · · · · · · · · · · ·
Albert Einstein College of Medicine		NA				
NAME OF PERFORMING O		6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	NITORING ORGAN	IZATION	
Albert Einstein of Medicine	correge	ONR.	Office of	Naval Rese	earch	
c. ADDRESS (City, State, and 1300 Morris Park			76. ADDRESS (City 800 N. Du			
Bronx, New York		•	800 N. Quincy Street Arlington, Virginia 22217-5000			
A. NAME OF FUNDING/SPOR	VSORING	Bb. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT ID	ENTIFICATION NU	IMBER
OFGANIZATION Gifice of Naval	Research	(If applicable) ONR	N00014-89-J-1629			
ADDRESS (City, State, and	C. ADDRESS (City, State, and ZiP Code) 80 N. Quincy Street		10 SOURCE OF F	UNDING NUMBER	rs TASK,	WORK UNIT
Arlington, VA 2		•••	ELEMENT NO.	NO. RR04106	NO 441d023	ACCESSION NO.
11. TITLE (include Security C	assification)					
(U) Role of Pro	tein Methyla	tion in <u>Halobac</u>	cterium halol	<u>olum</u> Photot	axis	
12. PERSONAL AUTHOR(S)			· · ·			
Spudich. John L		COVERED	14. DATE OF REM			COUNT
Annual 16. SUPPLEMENTARY NOTA		2/1/89-1/31/90	-19	990 Feb. 1		
Code 1511:RMG		•	•			•
	CODES		(Continue on reve	•		
FIELD GROUP	SUB-GROUP		ria, halobac alent modifi			
19 ABSTRACT (Continue or	n reverse if necessi	l· (over)				adaptacion,
Our studies con	cern the molec	ular basis of sens	ory and energy	transductio	n by archael	acterial
rhodopsins, phototr bacteriorhodopsin (ansducers in I	Halobacterium hal	obium. Two ol	these rhodo	opsin-like pr	nteins,
Differentingeopart (I and II (SR-)	[, λ _{may} 587 nm si	ad SR-II, λ_{max}	, 48 7 nm), r	eguiate the c	ells'
sensory chodopsins	, enabling the	m to migrate into	preserred regi	ons of right	orbing in th	
sensory rhodopsins swimming behavior (phototaxis). Photo	excitation of	SK-1 generates a	long-lived inte	I MCAIRIC RAS	oroma m ur	•
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm) Thi	excitation of species. Sard	a, is also photoche	long-lived inte mically reactive	e and function	IOD2 #2 # tun	a photo-
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Ref is required for SR-	excitation of s species, S37 tinal analog stu- I and SR-II p	3, is also photoche udies show that al hotochemical reac	long-lived intermically reactive 1- <i>trans</i> /13-cise tions and recept	isomerization ptor signaling	n of the chro g in vivo. We	omophore have
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Rel is required for SR- identified the chro	excitation of s species, S373 tinal analog stu- I and SR-II p moproteins of	3, is also photoche udies show that al hotochemical reac SR-I and SR-II,	long-lived inte emically reactiv 1- <i>trans</i> /13-cis stions and rece both hydropho	isomerization ptor signaling bic proteins	n of the chro g in vivo. We of ~25 kD,	and a
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Ref is required for SR-	bexcitation of s species, S37 tinal analog stu- I and SR-II p moproteins of bonent, a 94 kd	3, is also photoche udies show that al hotochemical reac SR-I and SR-II, integral membra	long-lived intermically reactive mically reactive 1-trans/13-cise tions and receiption both hydropho and protein white	ve and function isomerization ptor signaline bic proteins ch undergoes s of this pro-	ons as a thin of the chro g in vivo. We of ~25 kD, i reversible of	and a .
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Rel is required for SR- identified the chro second SR-I compo modification by ca	bexcitation of s species, S377 tinal analog stu- I and SR-II p moproteins of onent, a 94 kd rboxylmethyla ABULTY OF ABSTR	3, is also photoche udies show that al hotochemical reac SR-I and SR-II, integral membra- ition. We are isola	long-lived ipte emically reactive 1-trans/13-cis etions and reception both hydropho and protein which ating fragment 21 ABSTRACT	isomorization ptor signalin bic proteins ch undergoes	ons as a thin a of the chro g in vivo. We of ~25 kD, a reversible of tein, whose s	and a .
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Ret is required for SR- identified the chro second SR-I compo modification by ca 20 DISTRIBUTION/AVAIL QUNCLASSIFIED/UNUX 22a, NAME OF RESPONSI	bexcitation of s species, S377 tinal analog str I and SR-II p moproteins of onent, a 94 kd rboxylmethyla ABILITY OF ABSTRUM MITED SAME	3, is also photoche udies show that al hotochemical reac SR-I and SR-II, integral membra- ition. We are isola	long-lived ipte emically reactive 1-trans/13-cis etions and recent both hydropho ating fragment 21 ABSTRACT ERS 22b TELEPHO	ve and function isomerization ptor signaling bic proteins ch undergoes s of this pro- (over) SECURITY CLASS 1) NE (Inclust Area	ions as a thin in of the chro g in vivo. We of ~25 kD, i reversible of tein, whose s iFKATION	E SYMBOL
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Ref is required for SR- identified the chro second SR-I compo modification by ca 20 DISTRIBUTION FAVAIL QUNCLASSIFIED UNIT 22a NAME OF RESPONSE M. Marron	bexcitation of s species, S377 tinal analog str I and SR-II p moproteins of onent, a 94 kd rboxylmethyla ABILITY OF ABSTRU MITED SAME BLE INDIVIDUAL	3, is also photoche udies show that al hotochemical reac SR-I and SR-II, integral membra- ition. We are isola	long-lived ipte emically reactive 1-trans/13-cis etions and reception both hydropho ne protein white ating fragment 21 ABSTRACT (1 22b TELEPHO (202) 65	Ve and function isomerization ptor signaling bic proteins ch undergoes a of this pro- (over) SECURITY CLASS)) NE (Include Area of 36-475.0	ions as a thin in of the chro g in vivo. We of ~25 kD, i reversible of tein, whose s iFKATION	E SYMBOL
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Ref is required for SR- identified the chro second SR-I compo modification by ca 20 DISTRIBUTION FAVAIL UNCLASSIFIED UNIN 222 NAME OF RESPONSE M. Marron DD Form 1473, JUN 1	bexcitation of s species, S377 tinal analog stu- I and SR-II p moproteins of onent, a 94 kd rboxylmethyla ABILITY OF ABSTR MITED SAME BLE INDIVIDUAL B6	3, is also photoche udies show that al hotochemical reac SR-I and SR-II, integral membra- ntion. We are isola	long-lived ipte emically reactive 1-trans/13-cis etions and reception both hydropho ne protein white ating fragment 21 ABSTRACT (1 22b TELEPHO (202) 65	Ve and function isomerization ptor signaling bic proteins ch undergoes a of this pro- (over) SECURITY CLASS)) NE (Include Area of 36-475.0	ions as a thin in of the chro g in vivo. We of ~25 kD, i reversible of tein, whose s iFKATION	E SYMBOL
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Ret is required for SR- identified the chro second SR-I compo modification by ca 20 DISTRIBUTION/AVAIL QUNCLASSIFIED/UNUX 222 NAME OF RESPONSI M. Marron DD Form 1473, JUN 12 STREUTION STATES	bexcitation of s species, S37 tinal analog sti -I and SR-II p moproteins of onent, a 94 kd rboxylmethyla ABILITY OF ABSTRU MITED SAME BLE INDIVIDUAL BE	3, is also photoche udies show that all hotochemical reac SR-I and SR-II, integral membra- ntion. We are isola ACT AS RPT CIDTIC US Premous edition S/N 0102-L	long-lived ipte emically reactive 1-trans/13-cis etions and reception both hydropho he protein which ating fragment 21 ABSTRACT ERS 22b TELEPHO (202) 60 Tare obsolve F-014-6603	Ve and funch isomorization ptor signalin bic proteins ch undergoes s of this pro- (over) SECURITY CLASS 1) NE (Include Area of SECUR	ions as a thin a of the chro g in vivo. We of ~25 kD, I reversible of tein, whose s IFKATION (ode) 222 OFFIC	E SYMBOL NR ON OF THIS PAGE 11
sensory rhodopsins swimming behavior (phototaxis). Photo UV (373 nm). Thi taxis receptor. Ref is required for SR- identified the chro second SR-I compo modification by ca 20 DISTRIBUTION FAVAIL UNCLASSIFIED UNIN 222 NAME OF RESPONSE M. Marron DD Form 1473, JUN 1	bexcitation of s species, S377 tinal analog sti- I and SR-II p moproteins of onent, a 94 kd rboxylmethyla ABILITY OF ABSTRU MITED SAME BLE INDIVIDUAL BE	3, is also photoche udies show that al hotochemical reac SR-I and SR-II, integral membra- ntion. We are isola	long-lived ipte emically reactive 1-trans/13-cis thons and reception which both hydropho he protein which ating fragment 21 ABSTRACT ERS 22b TELEPHO (202) 65 save obsolvere	Ve and function isomerization ptor signaling bic proteins ch undergoes a of this pro- (over) SECURITY CLASS)) NE (Include Area of 36-475.0	ions as a thin in of the chro g in vivo. We of ~25 kD, i reversible of tein, whose s iFKATION	E SYMBOL NR ON OF THIS PAGE 11

.**

, .

•

•

 bacterial motility, photosensory receptors, retinal, color-sensing, photodetection, spectroscopy

19. will be used for preparation of an oligonucleotide probe for cloning. In recent progress, we have demonstrated that photostimuli control the *in vivo* demethylation rate through photoactivation of SR-I in either its attractant or repellent signaling form as well as through the repellent receptor SR-II. Simultaneous photoactivation of the SR-I attractant and SR-II repellent receptors cancel in their effects on demethylation, demonstrating the methylation system is regulated by an integrated signal. Our working model is that the three known phototaxis signaling receptor states are coupled to two distinct transducers whose demethylation is controlled by one integrated signal. We are studying the role of methylation in photosignal transduction by biochemical and spectroscopic analysis of the chromoproteins and methylation system components in photosignaling mutants.

Contractor		
Acce	ssion For	
FTIS	GRAAI	R
DTIC	TAB	Ö.
	besauron	ŏ
Just	fieatien_	
DY		
Dist	ibution/	
Avel	lability	Codes
	Avail and	/08
Dist	Special	
n/i		1
N .	1 1	1
¥ I		1

DATE: 1 February 1990

ANNUAL REPORT ON GRANT N00014-89-J-1629

PRINCIPAL INVESTIGATOR: Dr. John L. Spudich

CONTRACTOR: Albert Einstein College of Medicine Bronx, NY 10461

TITLE: Role of Protein Methylation in Halobacterium halobium Phototaxis

BFSEARCH OBJECTIVES This project is part of an effort to understand the physical chemical basis of sensory and energy transduction by biological membranes using a model system: the bacterial rhodopsins of the archaebacterium *H. halobium*. Our objective is to gain insight into the mechanism of signaling and adaptation to phototaxis stimuli by studying the role of protein methylation in signaling by the phototaxis recuptors sensory rhodopsin I and II (SR-I and SR-II). Methylation of a set of integral membrane proteins is required for taxis adaptation in *H. halobium* and a 94 kd protein has been linked specifically to SR-I. We aim to determine the relationship between this protein and the 25 kd chromophoric polypeptide of SR-I, and the role of methylation in modulation of phototaxis signals.

PROGRESS (Year 1): The support from this grant has enabled us to: (1) implement a new analysis method for the methylation system to test its relationship to signaling by the receptors photoreactions; (2) determine by using a retinal analog "locked" in a 13-trans configuration that all-trans to 13-cis isomerization of retinal is the trigger for phototaxis signaling by sensory rhodopsins I and II (SR-I and SR-II); and (3) characterize the spectral properties of SR-II, for which previously only rough spectra were available. This primitive retinylidene protein has unique properties which became evident in this study (see (3) below).

(1) We have been able to demonstrate <u>directly</u> that phototaxis stimuli control the methylation system *in vivo* through photoactivation of SR-I in either its attractant or repellent signaling form as well as through SR-II. The effects of positive stimuli which suppress swimming reversals (i.e. an increase in attractant or decrease in repellent light)) and negative stimuli which induce swimming reversals (i.e. a decrease in attractant or increase in repellent light) through each photoreceptor were monitored by assaying release of volatile [³H]methyl groups (methanol from methyester hydrolysis). In *H. halobium* positive photostimuli produce a transient increase in the rate of deniethylation followed by a decrease below the unstimulated value, whereas negative photostimuli cause an increase followed by a rate similar to that of the unstimulated value. Simultaneous photoactivation of the SR-I attractant and SR-II repellent receptors cancel in their effects on demethylation, demonstrating the methylation system is regulated by an integrated signal.

Mutant analysis indicates the source for the volatile methyl groups are intrinsic membrane proteins distinct from the chromoproteins which share the membrane. We found the methylaccepting protein (94 kD M_T) previously correlated in amount with the SR-I chromoprotein (25 kD M_T) is missing in a recently isolated SR-I⁻SR-II⁺ mutant (Flx3b), thus confirming the association of this protein with SR-I. Photoactivated SR-II in Flx3b controls demethylation, predicting the existence of a photomodulated methyl-accepting component distinct from the 94 kD M_T protein of SR-I. Based on these results we have developed a model in which the three known phototaxis signaling receptor states (the attractant receptor SR-I587, its repellent form S₃₇₃, and the repellent receptor SR-II490) are coupled to two distinct transducers whose demethylation is controlled by one integrated signal. This work resulted in the publication of a paper in 2NAS (reprint enclosed), and contributed to one submitted to J. Bacteriology (manuscript enclosed). (2) An analog of all-trans retinal in which all-trans/13-cis isomerization is blocked by a carbon bridge from C12 to C14 was incorporated into the apoproteins of SR-I and SR-II in retinaldeficient H. halobium membranes. The "all-trans locked" retinal analog forms SR-I and SR-II analog pigments with similar absorption spectra as the native pigments. Blocking isomerization prevents the formation of the long-lived intermediate of the SR-I photocycle (S373) and those of the SR-II photocycle (S-II360 and S-II630). A computerized cell tracking and motion analysis system capable of detecting 2% of native pigment activity was used for assessing motility behavior. Introduction of the locked analog into SR-I or SR-II apoprotein in vivo did not restore phototactic responses through any of the three known photoconsory systems (SR-I attractant, SR-I repeilent, or SR-II repellent). The results demonstrate that unlike the phototaxis receptor of Chlamydomonas reinhardtii, which has been reported by Foster and coworkers to mediate physiological responses without specific double bond isomerization of its retinal chromophore, all-trans/13-cis isomerization is essential for SR-I and SR-II phototaxis signaling. In this regard, photoactivation of these primitive archaebacterial photoreceptors resembles that of evolutionarily distant visual pigments in higher organisms. This work is in press in the Biophysical Journal (manuscript enclosed).

(3) Using the SLM Aminco DW2000 spectrophotometer provided by ONR funds, we have conducted band shape analysis of SR-II and probed its retinal-binding cleft with chromophore analogs designed to elucidate retinal/apoprotein interactions. We found the SR-II absorption spectrum is defined by vibrational fine structure, which no other retinylidene pigment exhibits (e.g. mammalian rhodopsins with similar absorption maximum and bandwidth as SR-II nevertheless shows unstructured absorption). Analysis with analog chromophores indicates that this unique property is due to two factors: (i) the protein forces the retinal ring to be coplanar with the retinal polyene chain, and (ii) retinal/protein electrostatic interactions which diffuse vibrational modes in visual pigments and other bacterial rhodopsins, are lacking in SR-II. This finding has significance to understanding wavelength tuning as well as the range of chromophore structures possible in retinylidene proteins. We will shortly be submitting a paper describing this work to Biochemistry.

WORK PLAN (Year 2): A major focus will be to characterize the chemical properties of the methylated 94 kd protein, which appears to play a key role in SR-I signaling. Methyl-accepting chemotaxis proteins in *E. coli* are methylated by formation of a carboxylmethylester on glutamate residues at multiple sites on the protein. We will apply high performance liquid chromatography (HPLC), using the system we purchased with the ONR equipment allocation, to isolate fragments of the 94 kD protein to establish the nature and number of methylation sites, and the sequence of the methylated region of the 94 kd to compare with known subacterial methyl-accepting transducers. The 94 kd protein is the first methyl-accepting taxis protein in an archaebacterium. The comparison of sequence is therefore interesting from an evolutionary perspective. In terms of mechanism an important question is whether there is homology in the domain near the subacterial methylation sites implicated in the excitation process.

The isolated 94 kd protein will be fragmented and sequenced and oligonucleotide probes used to clone from an existing *H. halobium* genomic library in <u>pUC</u>12. We have begun the fragment purifications and within 2 months should have material suitable for sequencing after which we can initiate the cloning work.

Also in this period we will begin the characterization of absorption properties of SR-I and SR-II in vivo and in vesicle membranes. Our objective is to characterize the pigments in wild type cells for comparison with cells and membranes in which methylation is altered genetically and by photostimulation. SR-II in particular is difficult to monitor because of its low concentration in the membrane, however as noted above, the SLM DW2000 spectrophotometer is now installed in our laboratory and has greatly extended our capability to analyze the absorption spectra.

INVENTIONS: None.

PUBLICATIONS AND REPORTS (Year 1):

- Spudich, E. N., Takahashi, T. and Spudich, J. L. (1989) Sensory rhodopsins I and II modulate a methylation/demethylation system in *Halobacterium halobium* phototaxis. Proc. Natl. Acad. Sci. USA 20:7746-7750.
- 2. Yan, B., Takahashi, T., Johnson, R., Derguini, F., Nakanishi, K. and Spudich, J. L. Alltrans/13-cis isomerization of retinal is required for phototaxis signaling by sensory rhodopsins in Halobacterium halobium, Biophysical J., in press.
- Sundberg, S. A., Alam, M., Lebert, M., Spudich, J. L., Oesterhelt, D., and Hazelbauer, G.
 L. Characterization of mutants of Halobacterium halobium defective in taxis, in press.
 J. Bact
- 4. Takahashi, T., Yan, B., Mazur, P., Derguini, F., Nakanishi, K., and Spudich, J. L. Colorregulation in the archaebacterial phototaxis receptor phoborhoclopsin (sensory rhodopsin II), in preparation for Biochemistry.

TRAINING ACTIVITIES: Ms. Virginia Yao (graduate student) has been trained on the high performance liquid chromatography (HPLC) system purchased on this grant. Dr. Tetsuo Takahashi (nost-doctoral fellow) and Mr. Bing Yan (graduate student who is doing his thesis on a collaborative project between my laboratory and that of Prof. Koji Nakanishi, Department of Chemistry, Columbia University, New York) have received intensive training in spectroscopy and photochemistry in this period. Dr. Padmaja Deval joined the laboratory in December, 1989, and has begun work on the HPLC fragment analysis.

3

AWARDS AND FELLOWSHIPS: None.