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I RESEARCH OBJECTIVES

The objective of this work is to develop a novel technique for studying transient
separated flowfields, such as those typical for maneuvering aircraft. Transient aircraft
maneuvers may result in augmented aerodynamic forces, yet difficulties in the prediction
and control of these unsteady forces prevent them from being practically utilized. The
ultimate goal of this research is to develop flow control techniques using the boundary
conditions in a Navier-Stokes calculation as a guide.

I In performing a Navier-Stokes calculation, the interior flow is determined by the
boundary conditions specified at the edges of a domain (neglecting uncertainties such as the
turbulence model, artificial dissipation effects, etc.). As only a few parameters can be
specified on the boundaries, the variation of these conditions should allow the computation
of any physical flowfield in the interior. A method of determining the boundary conditions
which are capable of controlling unsteady separated flow is sought. Once numerical
boundary conditions are established, then their physical counterparts may be found.

One objective is to compute the flow around a pitching, rolling wing to use as a
secondary base on which to apply the flow control techniques described below. The
primary base is a two-dimensional computation which is less expensive to use, but which
contains a sufficient degree of flow complexity.

There are two further objectives in this work. The second objective is the development
of a subdomain technique in a computational investigation. A subdomain of a flowfield is
chosen such that it encompasses a flow phenomenon of interest. The boundary conditions
of the subdomain allow a localized study of the effect of a certain flow parameter on the
control of this portion of the flowfield. Also, the small grid associated with a subdomain
(compared with a global solution which extends into the farfield) will lead to faster running
times, which is necessary for time-intensive development work. An important aspect of
research on the use of subdomains involves the determination of appropriate boundary
conditions which will provide a consistent transition between a subdomain and a global
calculation.

The third objective is the development of an intelligent search technique to find
innovative boundary conditions. The purpose of this work is to find which boundary
conditions will control a flowfield. As it is inefficient to randomly test new boundary
conditions in the hope of discovering a useful one, a technique to methodically identify
promising boundary conditions is required. A computerized search method, using artificial
intelligence techniques, will search a field of possible boundary conditions in the most
efficient manner. In addition, this computerized search technique may be standardized to
be used in any flow situation.

STATUS OF RESEARCH EFFORT

Unsteady Flow Computations

I The computation of the flow around a pitching, rolling wing was not achieved. This
was due to two problems; first the construction of the correct boundary conditions for the
subdomains proved much more difficult than expected, and second, there was considerable
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uncertainty as to the availability of the computer resources to achieve this objective to I
adequate accuracy. The study was therefore restricted to the two-dimensional unsteady
flow around an airfoil. I

Subdoinain Technique

The determination of appropriate boundary conditions for a subdomain calculation is
an important aspect of this work. The flowfield at a subdomain boundary is generally two-
or three-dimensional, and large gradients of velocity or thermodynamic quantities may
exist. The widely-used1 boundary condition theory for Navier-Stokes codes was developed I
for one-dimensional inviscid flow, and it is usually adequate for far-field boundary
conditions when the flow is nearly one-dimensional. However, a multi-dimensional
boundary condition theory is needed for a subdomain calculation. In addition, the I
boundary conditions for a subdomain must somehow be coupled with the flowfield within
the subdomain. That is, if an upstream or airfoil surface boundary condition is altered in
order to change the internal flowfield, the downstream boundary condition must also reflect I
the internal changes so as not to be physically inconsistent.

The boundary conditions most commonly used for Navier-Stokes computations are
derived1 from the one-dimensional inviscid gas dynamic equations. These boundary
conditions are:

1. inflow: specify p, U, V and extrapolate p from the interior.
2. outflow: specify p and extrapolate p, U, and V from the interior.

Where U and V are the velocity components, p is the density and p is the pressure. I

An analysis of boundary conditions for the two-dimensional steady Euler and Navier-Stokes equations has been completed.2 This note is attached as Appendix A. The boundary
conditions for the steady two-dimensional Euler equations are for an inflow boundary:

1. pU or pV is specified I
2. p. and p, are specified (p, p. are datum values)
3. entropy is specified

At an outflow boundary, the entropy is extrapolated from the interior, rather than specified
independently; otherwise the outflow boundary conditions are the same as those for inflow.
For one-dimensional flow these boundary conditions reduce to the conditions given by
Yee. 1 In Reference 2 the conditions are given for which one-dimensional boundary
conditions are adequate. All quantities that are not specified are extrapolated from the
interior solution.

The two-dimensional steady Navier-Stokes equations may be written in a form to show
that the appropriate boundary conditions are:

1. pU and pV specified on a boundary
2. either entropy, pressure, or temperature specified on a boundary (allowing the

computation of p), and
3. both po and p. specified as a datullm.

I
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These conditions differ from those given in Reference 1 because the latter are derived from
the one-dimensional inviscid Euler equations.

Having developed the boundary conditions it becomes a more than trivial matter to
numerically implement them. In particular the correct boundary conditions for a
subdomain are difficult to implement because it is almost impossible to specify values of
pU, pV, and p on the subdomain boundary that are consistent with the flow in the adjoining
subdomain. A wide range of existing boundary condition treatments were tested with little
success; these techniques and extensions of these techniques are noted below.

Computations over a subdomain of a global solution field have shown that the interior
flow solution for the subdomain is critically dependent on the outflow boundary conditions.
For example, if the flow over the airfoil is separated, but the outflow boundary condition is
attached flow, the interior flow will reattach before reaching the back boundary. This
contrasts with the global solution, where the flow remains separated. A subdomain
calculation such as the one just described will probably be unstable and will diverge after
some time. All of the calculations that were performed with outflow boundary conditions
that were physically inconsistent with the interior flow were unstable.

It is possible to reproduce a global solution in a subdomain if data from the global
solution is used as the boundary conditions. However, using all of the global data that is
available will overspecify the boundary conditions. If partial data is used for the boundary
conditions instead, such as specifying three variables at an inflow and one at an outflow, the
interior flow will be mostly reproduced, with the exception of the outflow regions. Those
regions will be somewhat different from the global solution. If the boundary is in a region
of high flow gradients, the more freedom that is allowed in specifying the boundary
conditions, the more the boundary conditions will differ from the global data they were
derived from. For instance, if the global data is used to provide boundary conditions in the
form of the Riemann invariants, the resultant flow and boundary conditions will have
enough flexibility to change significantly from the original globa. solution.

Boundary conditions applied in a wake region were investigated for use on a
subdomain boundary. It was thought that formulating the boundary conditions in terms of
the Riemann invariants would produce a reasonable result, since there is more flexibility in
that formulation to allow the flow to adjust to the interior. One problem with this technique
is that the Riemann invariants are derived for one-dimensional flow, and there is no
corresponding formulation for two-dimensional flow. Consequently, there is some quest.om
as to what pseudo-one-dimensional velocity to choose in the formulation of the invariants.
Either the normal velocity to the boundary or the total velocity seems to be the best choice,
although there is no strict justification for either.

The formulation of these boundary conditions that is used in the NASA Ames Navier-
Stokes code ARC2D is

R1 = Qn - 2a/(y - 1) specified at inflow
R2 = Qn + 2a/(y - 1) specificd at outflow
entropy specified at inflow
Qt si-ccified at inflow



where Qn and Qt are the normal and tangential velocity components relative to the
boundary.

This formulation was tried using either Qn ur Qto ta in the equations for the Riemann
invariants. It was found that in a wake, where there are large flow gradients present in the
vicinity of the boundary, the changes in flow quantities between the first and second grid
point were large enough to cause very large errors in the boundary conditions. For
instance, for an inflow, RI is specified at the boundary and R2 is extrapolated from one grid
point away from the boundary. R1 and R2 are combined to solve for the speed of sound, a.
Since the speed of sound is close to one, and the density goes as (a2 )1 / ( Y-1 ), a 2% error in
the speed of sound leads to a 10% error in the density. Adding constraints, such as the
removal of the dependence of the speed of sound on the Riemann invariants, improved the
solution somewhat but still did not give satisfactory results.

From the analysis in Reference 2, certain flow quantities or their derivatives may be
specified as boundary conditions. The boundary conditions can consist, therefore, of either
setting a flow quantity, its first derivative, or its second derivative equal to zero on the
boundary. These boundary conditions represent a case where all information is taken from
the interior flow, regardless of whether there is inflow or outflow across the boundary.
These boundary conditions were generally stable, but did not result in solutions which
resembled the global solution.

An attempt was made to formulate the boundary conditions along a wake in terms of
the vorticity and entropy, as these quantities are conserved along streamlines in two-
dimensional inviscid flow. It was felt that using vorticity as a boundary condition would be
convenient for flow control problems, since vortex generators are commonly used for flow
control. The Riemann invariants were also needed to complete the boundary condition set.
Unfortunately, since the vorticity must be integrated to find the velocities and the Riemann
invariants only provide information on the total velocity, information about the sign of one
of the velocity components is lost. Another problem with this formulation is that it
appeared to be unstable for any slight perturbations in the solution, and it was thus
unusable for a subdomain boundary condition.

Nonreflecting boundary conditions were investigated for use on the outflow boundary.
These boundary conditions suppress reflections from o dtgoing waves and cancel incoming
waves for a domain. Nonreflecting boundary conditions have been derived in the literature
for hyperbolic equations on cartesian grids.3 In this work, the boundary conditions were
derived for use on curvilinear grids and were applied to low speed vortex shedding
problems.4 ,5 Appendices B and C describe the results from this work. Some of these
results were also presented at the Minisymposium on Outflow Boundary Conditions,
Swansea, United Kingdom, July 10, 1989.

The trials with nonreflecting boundary conditions showed that these conditions are
inappropriate for subsonic vortex shedding flows. For a single vortex passing through a
boundary, the convected quantities are computed satisfactorily, but the pressure is highly
inaccurate. For a vortex street, the frequency of the vortex shedding is rapidly changed
from the global solution.
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The primary reason for the failure of the boundary conditions described above is that
they fail to estimate adequately the flow outside the computational subdomain.
Nonreflecting boundary conditions simply allow the perfect transmission of waves through
the boundary but do not consider whether the boundary condition implies a physically
unreasonable solution outside the computational domain. For certain conditions, a
boundary condition that removes this uncertainty was derived during the present work.
The idea is described briefly below; a more complete description is given in Appendix D.

If a particular flow is started from zero, then the flow in the exterior domain is exact
until waves from the disturbance in the interior domain cross the boundary. If true
nonreflecting boundary conditions could be devised, then the outflow boundary condition
would be correct if the computation was started at zero time and is time accurate. An error
in the boundary conditions due to approximations in the formulation can give rise to a
nonphysical flow in the exterior domain and hence, ultimately, the interior domain. A
principal difficulty is in finding an analytic relationship that will give the boundary
conditions for the Navier-Stokes equations. The progress in nonreflecting boundary
conditions shows that finding a true two-dimensional boundary condition is beyond the
present state of the art.

I The new idea is based on the following facts:

(a) If the solution is started from a zero disturbance state, then the outflow boundary
condition is correct until the disturbance waves pass the boundary.

(b) The flow in the exterior domain is determined solely by its inflow boundary
conditions which are compatible with the outflow boundary condition for the
interior domain.

* It is also assumed that the flow in the exterior domain can be constructed by a
superposition of flow with linearized inflow boundary conditions. The range of validity of
this assumption is not clear but the present results are very encouraging.

Based on these assumptions, the flow in the exterior domain is determined at each time
step by the flow parameters on the penultimate grid line in the computational domain. The
only part of the exterior flow that is important is that on the outflow boundary of the
interior solution which is assumed to overlap with the exterior domain. The exterior flow is
computed by relating the time dependent flow to a superposition of the flow due to a step
change on the boundary (the indicial responses). Results for the unsteady transonic small
disturbance equation for a pitching airfoil are given in Appendix D.

* Flow Control and Optimization

Attempts were made to steady the vortex shedding process behind a stalled airfoil, in
order to hold a vortex fixed over the upper surface. If a vortex could be held fixed or
slowed down, the high lift over an airfoil could be controlled. Various combinations of jets
or suction over the upper surface, both normal and tangential, were tried. It was also
attempted to hold the vortex steady by fixing the instantaneous boundary conditions about
a subdomain containing the vortex. None of these attempts worked. It does not seem to be
possible to use steady flow-through boundary conditions for an unsteady flow, even if it is
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i
desired to have the resultant solution be steady. Especially, it is not possible to use an I
instantaneous solution to an unsteady flow and for the boundary conditions to a steady
flow. Since a solution to the unsteady Navier-Stokes equations is not necessarily a solution
to the steady Navier-Stokes equations, then if a steady vortex flow can be found, it will I
probably be a somewhat different flowfield than what was started with. Flexible boundary
conditions are necessary for consistency with the interior solution, and this leads to the
problem of boundary c, ndition specification again.

A study of optimization techniques was made to search for boundary conditions which
have a controlling effect on a flowfield.7 This study was made independently of the I
outflow boundary condition work. Since efficiency is a major concern when faced with the
possibility of many iterations of a CFD solution, it was decided to use artificial intelligence
search techniques rather than a purely mathematical optimizer. i

A basic study with a mathematical optimizer was undertaken initially, in order to show
that optimizing techniques may be used to find desirable sets of boundary conditions. The
test problem was that of blowing over the upper rear surface of an airfoil. The magnitude of
the blowing and the area were allowed to vary, and the objective was to maximize the lift
coefficient and minimize the jet area. Although this was a simple test case, the results
confirmed that mathematical optimizers are inefficient and tend to get stuck on local optima
rather than on the global optimum.

The decision to use an artificial intelligence search technique was made because it could i
be programmed to give information about the various dependencies of the solution on the
input variables, as well as the optimal values of the inputs. The technique that was
developed here acts as a postprocessor on a series of CFD results. Each computation uses a
slightly different input, and various results for each input are documented. The
postprocessing technique then finds the dependencies of the results on each input and how
the combination of inputs changes the solution.

This technique was tested on the flow control of an airfoil with unsteady separation.
The airfoil has pulsed blowing or suction over the upper rear of the airfoil. The inputs that i
were varied with each calculation were the magnitude of the blowing or suction, the
blowing pulse duration, and the interval between pulses. The objective was to increase the
average forces on the airfoil and to decrease the rms forces. This technique found an I
optimum for a low suction magnitude and short duration and interval pulses. It also
identified that the solution was most sensitive to the inputs for long blowing durations,
short intervals between blowing pulses, and high suction values.

A detailed description of this method is found in Appendix E. This technique may be
applied to any complex flow field and is not limited by the number of variables in the
problem. The possibility exists of extending this technique to finding the interrelationships
among several time-varying flow quantities, rather than between the output quantities and
the input. This extension to the technique would find useful applications in areas such as
turbulence modeling.

I
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I Summary

The main goal of the research reported here is to develop a method of flow control for
highly maneuverable aircraft. The method used in the work is based on the idea that all
flow control devices are represented by boundary conditions, and, therefore, only the small
set of boundary conditions need be manipulated to achieve control rather than a large set of
possible physical control devices. In order to determine the effect of a control on an element
of the flow, for example, a vortex, the flow domain was divided into subdomains, each of
which contained one or more flow features of interest. An artificial intelligence optimizer
was developed to determine the best controls to use.

The work performed during the contract did achieve most of the tasks, such as the
development of an intelligence optimizer and some insight into methods of control. The
main stumbling block was the inadequate status of boundary conditions for the
subdomains, a fact that was foreseen at the outset. None of the currently used boundary
conditions in CFD proved to be satisfactory and only towards the end of the contract did a
possible solution (the indicial boundary condition) appear. As an additional point, the use
of this boundary condition could reduce computational time of CFD calculations
considerably because of its capability of reducing the grid size substantially.
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APPENDIX A

Derivation of the Boundary Conditions for the
Two-Dimensional Euler and Navier-Stokes Equations

BOUNDARY CONDITIONS FOR THE EULER EQUATIONS

Introduction

This paper is concerned with deriving the necessary and sufficient boundary
conditions for both the Euler and Navier-Stokes equations. In Part I, the boundary
conditions for the Euler equations are developed for two-dimensional flow and are
compared with the restrictions implied by the usual' outflow boundary conditions that are
based on one-dimensional theory. It is shown that the commonly used characteristic
boundary conditions are not generally relevant to multi-dimensional problems.

In Part II of this paper, the boundary conditions for the compressible, two-dimensional
Navier-Stokes equations are derived.

I Basic Equations

The vorticity equation

can be written in terms of a stream function Vi such that

V. + Vyy = pW + pyU - pxV (1)

where c is the vorticity and

i I/,"v~ --pU - pooUoo v' = -pV (2)

By manipulation of the energy and gas equations, and using Gibbs relation, the density
is given in terms of the entropy, S, and the velocity components U, V by

2 2 1(y-I) M2 [I U2 V2 1

P = P {1 + M (J - - - Y-1 exp (-S/R) (3)
2 2 2

The vorticity is given by Crocco's theorem as

TS P (4)

where R is the gas constant

q= (U2 +12)1/2

A- I
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and

aT

is the derivative in the direction normal to the streamlines. Note that

a _u a V a (5)J - - q- u- - 'a T

Along a streamline the entropy is constant and hence I
U4 -aas vaS (6)

The pressure is given by

(y-1) 2  U 2  V 2  (7)P = + 2 M [1 U2 U2 } exp (-S/R)

U OI

Using Equations (3), (4), (5), and (6), Equation (1) can be written as

p. Q exp(-S/R) as as
xx +  = -2 (U - VI'x yy -- 2 (Uy ax

Rq (8)

P. "y[QYIexp(-S/R)l U- p" [Q 1exp(-S/R)]V

where Q is a function of U and V and is given by

2 u 2  v 2  IQ = [1 + 2yl M2 ( 9

Equation (8) can be written as

xx +  = f(x, y) (10)

where f(x, y) is the right hand side of Equation (8).

Consider the inviscid transonic problm illustrated in Figure 1. The solution is
described by the Euler equations. We assume that the airfoil can be represented by
specifying boundary conditions on the chord line, that is, thin airfoil boundary conditions
are applied. An interesting example of a subdomaiii is as follows. The subdomain is
defined as the region bounded by the lines All, BC, CD, and DA.

A - 2
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Equation (10) can be written as an integral equation using Green's Theorem. Thus, in
the domain D

D Cvt(= + ( - K V/)dt + j (KV K t)Vdq

(11)

+ f (KI K K )dt - f RA (Kq- K 4 )d+D fKfdS
tA n (D t -K f

I where the kernel function K is given by

TK = - ln[(x- t)2 + (y-_ q) 2]11/ 2  (12)

Differentiation of Equation (11) with respect to y gives

I V /y =PU - pCOUCOo - f[ C {A(K y V/)- A(K x Vt)} dt

+ fc (Yy Kxly )dq] + iD [ K fdS

R B X q JD

!q
- D (KYVt + Kx VR)d (13)

I
B C D A

+ KxVI - K XWI - K X I + Kx vlx xx
A B C D

Miwhere

Af = fAB - fCD (14)

If the mass fluxes are known on the boundaries then the line integrals are known. These are
the necessary boundary conditions for the subproblem.

Differentiation of Equation (11) with respect to x gives

I
I
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x -- -pV f - D {A (KV) + A (Ky)}d + f {K xV + KY } dI

- A {KxV + KV 1 d + fD Kxfds (15)
fRD X t y n f

B C D A

+ K Y 1- K Y W - K Y I+ K Y fYA YB YC YD

From Equations (3) and (8) it can be seen that p and f are functions only of U and V
and the entropy S. The entropy is given by Equation (6) and the velocities just ahead of the
shock wave. Thus S is a function only of U and V. Hence, if pV is defined on y = ± 0 as a
boundary condition, Equation (13) and (15) are equations for U and V throughout the flow
field. Because of the complexity of the relations for p, S, and f, it is not easy to determine the
number of possible solutions. However, it is safe to say that if pV or pU is specified on the
boundary, then pU and pV are determined completely in the flow field. pU is also
determined on the boundary. In other words, U and V cannot both be specified on the
boundary.

If a constant pressure boundary condition is used then Crocco's equation gives

PY/P 7

A

P = c exp (AS/Cv) aAS (16)
RM

where R is the gas constant, CV the specific heat at constant volume, and AS is the entropy
due to the shock wave. If a small disturbance approximation is made such that only linear
terms involving v are retained, then a study of the density-velocity relation gives

22

p_ u 2~ uuM 2

S(y-) M 1 + (y-1) M2 U -2PoUo P 3 (i+ 2 oo(i1- -- )}
co Uo

(17)

U - 2 U 2+ - (p/p) {i + 2- M2 (1 _- -

and hence on the boundary, if p is constant

f(qqT) = pw + pTqU = (pU)I (18)

On the boundary, Equation (13) therefore reduces to an equation for pU in terms of pV.

A -4



It is of interest to assume one-dimensional flow for comparison. In this case,
conditions are uniform across DA and the vorticity is zero. Therefore, f is zero and Equation
(13) can have the solution

-puID = p (p, AS)U (p,AS)I D constant. (19)

From Equation (7), the one-dimensional equation gives

y-1 y-1
U_ 2 (2o)1/
u = { 2 1 (p/po)Y exp(S/R) Y  1 /2 (20)

-- -(y-1)M.

and hence, using Equation (3)

P U = P exp(-S/R) Y {1 2 2 - exp(S/R)] 1 )}1/2
P00U p (V-1)M P. (21)

and Equation (19) becomes an equation for the entropy S in terms of the given p. If S is
known, U is found from Equation (20) and p is found from Equation (3). Thus all of the
unknowns at the outflow boundary are found in terms of the specified pressure.

Inflow Boundary Conditions

For the above analysis of boundary conditions to be applicable the properties of the
fluid must be specified. The most obvious place to specify this is at the inflow boundary.
Thus at the i iflow boundary the following must be specified

(a) pU or pV (p00 U0 in the above context)
(b) p (P.0 in the above context)
(c) p (p.0 in the above context)

Outflow Boundary Conditions

At the downstream boundary pV (say) is specified, and if p is a constant, then
Equation (13) is an equation for pU on the boundary. The entropy is given by the internal
solution which then gives p. Thus at the outflow boundary the following must be specified.

* (a) p
(b) pV (or pU)

The other quantities are found from the solution (i.e., extrapolation)

I
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Use of One-Dimensional Boundary Conditions

Equation (13) reduces to the one-dimensional equation if f and V are zero. Hence one-
dimensional boundary conditions may be applicable if

I pVI <<1 (22)

and if

Ifl = Ipco+p 1UI <<1 (23)

Thus the "crossflow" on the boundary must be small and the vorticity must be small.
Extropolation in the x direction cannot be used if af is not small, and from Equation (18)
this implies that

and a (p U)

d and dx

must be small if extrapolation is to be used.

BOUNDARY CONDITIONS FOR THE NAVIER-STOKES EQUATIONS

The 2-D Navier-Stokes equations are

apu.

ax. 0
I

apu u a (+.a) (2)

ax , ax . ax . ij3 3 3

ap (U .h ) p a T
U = + - (k + T .E . (3)

ax, J ax , a ax.

where

Tij = 2prij - (aUk/axk) 6 ij (4)

au. au3 12 ___z ___3
E. 1/2 1 + (5)1 'ax. ax.I 1



I
I

p is the coefficient of viscosity and k is the coefficient of thermal conductivity.

I If the thermal conductivity is neglected (i.e., k = 0), then Equation (3) can be written as

ah - aU p
pU U -- + T. ... 3 (6)

axax 13 13

I Equation (2) can be written as

a_1 ap a
iT I + (T (7)

~j a ax, ax. ij

or

pUau + v U +a
---x ay ax ay 12 ax

(8)

aV aV ap a a
pU + pV ay - +  T2 + T T

Equation (8) can be written asI
a 2/2 au V V2 ap a aP x + pv (u v) + P_ + TT +-T1
axy ax x ax + r12  ax rl

I / / 2 32/2 cp 3 (9)

pu au V)pav (U21) d v '2 _ p a +aT
ay ax a y ay + T '21 ay 22

I Equation (9) can be written in terms of the vorticity, to, as

I a 12 -dp a ap 2 q2) + pV -- + T T + T
p- )+~w ax X 1 ay 12

~(10)

Ia 1 2 - P a a
Sq2) pU -= + T2 + "T 2 2

Using Gibbs relation,

I
,\A -7



Tds =dh - -dp (11)

Equation (10) can be written as

a + Vcj = T as h 1a 1 aax x p -x 11 p ay '12

(12)
a 1 2 as ah ia 1aa q (2j T -+c- T + - TT
- ' y y p y T22 p X 21

In general,

as as aH aH U.a 11 aT122UV- T {U - }-u + v- +- +ax ay ax ay p ax ay

(13)

v aT2 2 + a 2 1

p ay ax

where

H = h + q (14)

since by definition

aH ah a~q
U3 ax. j x. + Uj ax.

then, on using the energy equation, Equation (6) becomes

1 2
1fq 1U. -H = 1 U, p + U, + - T. E .. (16)

Dax P i ax. j ax p (16)3
J J J

Note that the highest derivative of Ui in Equation (16) is a first derivative.

The basic equation for the stream function is

v2 = pcj + pyU - pxV (17)

A - 8
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I and from Equations (13) and (16) it is clear that the highest derivative of the velocity in
Equation ( 7) comes from the term connected with pc, through

I 1 ( 'lj 1 ( r2j

Sax. U ax.

Now from Equations (4) and (5)

au. au, auk

3 =p ax.7T + .axax&
k

and

aTI a 2 u. a 2u. a 2U 61] 1 ) -p
ax. ax.ax. ax.ax. ax ax

and, thus

Ux. a._ (U U - V V + U U - V V ) (18)ax, ax, yy xx xx yy3 3

and hence the highest derivative terms in Equation (17) are given by

yy + xx xx yy

V v u u

I If a stream function v, is defined such that

pU = v, pV =-V( (19)

then Equation (17) can be written as

UV2 (qf,) + VV2 (vf,) = F(Vx, Vfy, p, S, T) (20)

where F contains lower derivatives than the third. Equation (20) can be written as

v2- - = f (21)

where

- + (22)

I ,\ - ()



Equation (21) is a Poisson equation and requires either IF or the partial derivative of !F be
specified, i.e.,

vor v is to be specified

If JW is specified thenI

+

is specified which is a combination of pU and pV. To solve for Vi the differential Equation
(22) must be solved; this requires that er or one of its derivatives be specified. Thus to solve
Equation (21) two of the boundary conditions are that pU and pV be specified.

Now from Equations (1) and (2)

PU.U. .- K + U (23)
i ax. iax. iax.

Thus from Equations (6), (23), and (14)

Uh = U aH + - U dp + T (24)
aUixx. )jx ij ij

or

aU, au. 8T..
dH _ 1 T _ I +_1_1

fh iH axp TTax ] axI'

pU.--p r (x + U.U. I (4

1 1 3

a , -2 1 __ _ _ iI, Tii cx. dx. d x. r..- (5

2ij ax. ax ax,

Using Equation (4)

aU U dU, aU, aU aU. aU.
(dui- ) = I(- +-) - 3 (26)

ij ax. ax, L x. ax, ij dxk  a x .ax

or

A- i()I



T au j au i -au. au. au.j au I1 0(7
j x dx. T dT X . ax.di. dUxl,3x.3, 3. x = (27)

1 3 3 1 1

Hence, on using continuity (Equation (1)), Equation (25) gives

(pU.H) - (TijUi) (28)I]
ax ax ijui

An alternative version is

a (pU.H) (r u) + H ] (29)
T ax. iji O 0x.3 ] 3

* or

pU1(H - H0 )=T ijUi (30)

so that if Ho is the stagnation value of H, Equation (30) is consistent.

Multiplication of Equation (30) by Uj and using Equations (4) and (5) gives

2 aU. aU. aUk

pq (H - H o 0 pI U.U (___i! + ax 6 . axUU (31)i j x, dx. ii x
3 1

or

pq (H- H) = T U q 2 / 2  q2/2 2 k
a x, i ax, axk
]

(32)

= 
U . q2 

q2 Uk

Equation (32) can be manipulated to give

1 2 p I 2 q d2

CpT + pq - CpT 2 = Q  (33)

q I

From Gibbs relation and the gas law

A -II
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(P-) / (P) exp (S/C) (34)
P.o V

then

pT = C p  y (&-- exp (S/C) (35) I
p p R Y-I P v

and Equation (33) gives I

exp (S/C) (-Yl) P. (E-) + p (-) ( 1 q2 - C T )=Q (36)

SC) Y-1 p. p. 2 P0

which is an equation for p in terms of Q, S, p,, and p,. If U (and hence Q) is specified on
the boundary and if S is known, then p, p, and T (and consequently h) can be found from
Equations (34), (36), and the gas equation. In general, S, p, or T must be specified on the
boundary and the other thermodynamic variables are given in terms of this variable and p.
The boundary conditions for the steady Navier-Stokes equations are therefore

(a) pU, pV specified on a boundary
(b) S, p, or T specified on a boundary
(c) p, p. specified as a datum

REFERENCES

1. Yee, H. C.: Numerical Approximation of Boundary Conditions with Applications to
Inviscid Equations of Gas Dynamics. NASA Tech. Mem. 81265, 1981.
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I APPENDIX B

The Application of Nonreflecting Boundary Conditions
to 2-D Unsteady Computations on Curvilinear Grids

I SUMMARY

The ability to apply flow-through boundary conditions in places where the flowfield is
neither steady nor uniform would allow CFD computations over smaller domains, thus
requiring fewer grid points. Recently, nonreflecting boundary conditions have received a
lot of attention as a promising method for specifying outflow boundary conditions on a
shortened domain. 1 - 3 Nonreflecting boundary conditions have been derived by
Thompson1 for the Euler equations in Cartesian and spherical coordinates. This work
extends Thompson's formulation to curvilinear coordinates, so that it may be applied to
practical two-dimensional CFD problems. The theory is valid for hyperbolic, quasi one-
dimensional flows, but loses accuracy and stability for computations of low subsonic flows
with strong two-dimensionality. This loss of accuracy is demonstrated for the problem of

i subsonic vortex shedding through a boundary.

INTRODUCTION

Most computational fluid dynamics (CFD) problems are solved assuming that the
solution domain boundaries are either in a uniform stream or at a solid surface. For
boundaries in a uniform freestream, which is at a known velocity and angle of attack,
boundary conditions derived from one-dimensional characteristic theory can be applied in a
relatively straightforward manner. However, it is of practical importance to be able to
apply boundary conditions in locations where there are flow gradients present, or where the
flow is teady. For example, many flows have a wake structure which persists for a long
distance downstream, and it is too computationally expensive to have a solution domainextend to where uniform flow conditions may be applied.

Nonreflecting boundary conditions have been developed as a promising means of
applying boundary conditions at an outflow. 1 -3 These boundary conditions prevent the
reflections of outgoing waves back into the computational domain and also eliminate
incoming waves, which are unknown since they originate from outside the domain.
However, these boundary conditions are only accurate for a limited subclass of flow fields.
For instance, Thompson I noted that these'boundary conditions will be inaccurate for
problems where the flow should be influenced by incoming waves, and Watson and Myers 2

found that the formulation used for these boundary conditions is unstable for nonplanar
acoustic sources at an inflow. Other errors may occur in viscous subsonic flow
computations, as the boundary conditions are derived from the hyperbolic Euler equations.

Although some errors may be expected, nonreflecting boundary conditions provide
one of the few options currently available for treating the outflow of unsteady nonuniform
flows. Therefore, it is necessary to investigate the suitability of these boundary conditions
for practical flow problems, to determine whether any errors involved are within a tolerable
range. This paper investigates the application of nonreflecting boundary conditions to
subsonic flows with a wake structure that passes through the outflow boundary.I
i I -1



DERIVATION OF CURVILINEAR BOUNDARY CONDITIONS

The vast majority of Euler and Navier-Stokes finite difference computations for
aeronautical applications take place on curvilinear grids, in order to allow for realistic
geometries. The first stage of this work was to extend Thompson's 1 formulation of
nonreflecting boundary conditions to the general curvilinear case. This work was
completed for boundaries in both the curvilinear coordinate directions.

The first step was to write the Euler equations in primitive variable form and then to
group together the spatial derivatives which are normal to the computational boundary.
These derivatives will eventually be rewritten to represent the nonreflecting condition,
while the spatial derivatives tangential to the boundary will be left unaltered.

Let x and y represent the Cartesian coordinate variables and and q represent the
curvilinear coordinate variables. For a problem where the outflow boundary runs along an
rq=constant gridline, the terms in the Euler equations involving rq-derivatives are to be
rewritten. The Euler equations are placed in characteristic form, so that the eigenvalues are
given explicitly. The characteristic terms for the ri-derivatives are given by:

M1 = [V Cx2 + 2 ] [ Pq- PCxu q - pc- y v q

M2 = V p - c 2p

M3 = V [ u - q v q

M4 = [V + c]n 2 + 2 ] q P+Pc q un + Pc q vl

where nX= qxn

q y = q 1U ny

let a = 2 X2 + q 2

u and v are the velocities along x and y, U and V are the contravariant velocities along
and r, and c is the speed of sound. This formulation of the characteristic equations assumed

-
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I quasi one-dimensional flow, that is, the derivatives with respect to and r7 are separable,
and the cross-term3 are neglected.

For a subsonic outflow boundary, MI represents incoming waves, and M2 - M4
represent outgoing waves. In the Euler equations, the r-derivative terms are written in
terms of M1 - M4. Then, at the boundary, M1 is set equal to zero, and M2 - M4 are
computed numerically. The equations are written in conservative form and are solved
together with the interior equations. The final form of the Euler equations at the boundary| is

I + L + + F -TQ 0a T t a-- = t

where Pu E = pu2 ] = [ v]

ve j u(e + p) v(e + p)

Q= 
u

and T is a 4 x 4 matrix made up of the following terms:

T11 =V

T 12 = (V + ca)p x/(2c)

T13 = (V + ca)p-y /(2c)

T14 = -(V - ca)/(2c2 )

T21 = uV

T22 = pV + (V + ca)pul/x/(2c)

I T23 = (V + ca)pu-y/(20

T2 4 = -(V - ca)u/(2c2 ) + q,

T31 = vV

T32 = (V + ca)PVnx/(2c) - (V - ca)pq,/( 2r)

T3 3 = (V + ca)(p/2 + pvq,/(2c))

I I' - 3



T34 = (V + ca)/(2Cy) -(V -ca)/(2c 2 ) - /x 2 /r/y

T41 = V(u 2 + v 2)/2

T42 = (V + ca)(u 2 + v2)pix/(4c) + (V + ca)PCfx /(2y - 2) - (V - ca)pvi1x/(2 y ) + pV

T43 = (V + ca)(u 2 + v2)pi y/(4c) + (V + ca)pv/2 + (V + ca)pc y/( 2 y - 2)

T44 = -(V - ca)(u 2 + v2)/(4c2 ) - (V + ca)v/(2cq-y ) + (V + ca)/(2y - 2) + Urx - Vqx 2 /4 y

The corresponding equations for a boundary along a =constant gridline have also
been derived in this work. Those results will be published in the future.

The solution of the boundary equations was made using the same algorithm as the
interior equations. The numerical algorithm is a block tridiagonal implicit method using
Beam-Warming second-order time differencing.

RESULTS

Several test cases were run to test this formulation. The first test case was a solution
over a Cartesian grid, where the curvilinear coordinate formulation reduces to the boundary
conditions given by Thompson.1 A simple one-dimensional pressure pulse was given as
the initial condition, with a freestream Mach number equal to 0.1 (this insured that there
was outflow only at the downstream boundary), A solution using extrapolation boundary
conditions was obtained over a large domain, and the solution was stopped before the
pressure pulse reached the downstream boundary. Thus, there should not have been any
influence from that boundary condition in the interior. Then, a solution using the
nonreflecting boundary conditions was obtained on a shortened domain, and the solution
was run until the pressure wave passed through the boundary. A comparison of the two
solutions gave an indication of how "transparent" the nonreflecting boundary conditions
were.

The results of this test were quite satisfactory. There was little noticeable difference
between the solution over the truncated domain and the full solution (Figure 1). The test
was repeated with a two-dimensional pressure pulse. In this case, the results were not as
good. Although the pressure wave did pass through the boundary, there was some
distortion near the boundary (Figure 2). It is possible that if the cross-terms in the
characteristic equations were not neglected in the formulation, the differences between the
one-dimensional and two-dimensional problems would be insignificant.

These tests were repeated on a curved grid to test the curvilinear formulation. These
tests gave the same results as those on the Cartesian grid (Figure 3).

The next test case was that of a single vortex passing through a boundary. The initial
condition was that of a vortex velocity distribution, but with a uniform pressure and density
field. The low pressure within the vortex developed shortly after the solution was begun.
Again, both a solution over a long domain was found, with the calculation stopping before
the vortex hit the downstream boundary, and a solution using nonreflecting boundary

B - -4
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I conditions was found over a shortened domain. Solutions over both a Cartesian grid and a
curvilinear grid gave the same results. The solution over the curvilinear grid is shown here.
The freestream has a Mach number of 0.2, and contours of pressure, vorticity, and Mach
number are plotted (Figures 4-6). These results show that the vorticity and the Mach
number propagate through the boundary with reasonable accuracy. However, the pressure
field does not pass through the boundary accurately. Instead, a distinct pressure reflection
is seen, which grows with time. Since the nonreflecting boundary conditions removes the
upstream influence of the part of the vortex which is downstream of the boundary, it could
be expected that the pressure at the boundary would be inaccurate.

The final test case was subsonic vortex shedding behind a circular cylinder. The
freestream was at Mach = 0.2, and the Reynolds number was 100. In this case, a steady
stream of vortices passes through the downstream boundary. The lift coefficient history isoscillatory, as shown in Figure 7. At the beginning of the calculation, the lift on the cylinder
was zero, since a symmetric separation bubble behind the cylinder was formed. It was
necessary to perturb the solution to initiate the asymmetric vortex shedding. Both theglobal and the truncated solutions were run independently of one another but were started

* in identical fashions.

Once the oscillatory lift behavior was established, the two solutions differed in both
frequency and amplitude. The nonreflecting boundary conditions, by removing the
upstream effects of the vortex stream once it passed through the boundary, allowed a lowerfrequency oscillation than the full solution. The amplitude of the lift coefficient in the
nonreflecting case also seemed to level off before the full solution reached a constant
amplitude. In the nonreflecting case, a high pressure wave was generated at the
downstream boundary, which increased the wavelength of the vortex stream. Stream
function contours of the two solutions are shown in Figure 8. The elongated wake structure

* is evident in the truncated solution.

CONCLUSIONS

At present, nonreflecting boundary conditions present one of the few options for
treating outflow boundary conditions. However, as the theory is valid only for hyperbolic
equations, it is necessary to understand the inaccuracies that would result when applying
them to subsonic viscous flows. In this work, it was shown that errors in the pressure at the
boundary are generated, and these errors propagate into the interior solution with time. In3 some cases, such as vortex shedding behind a circular cylinder at low Reynolds number, the
outflow boundary conditions eventually affect the entire wake structure and the pressure
forces acting on the body.I
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I APPENDIX C

Outflow Boundary Conditions for
Vortex Shedding Behind a Circular Cylinder

I The flow about a circular cylinder was computed in order to study the effect of outflow
boundary conditions on the vortex shedding process. Since the wake for this flow persists
for a large distance downstream, it is of interest to see if a boundary condition applied to a
truncated domain can accurately reproduce the global flowfield. If such a boundary
condition can be found, the computational efficiency of these calculations will increase
greatly, as much smaller flowfield domains may be used.

The first step was to compute the global flowfield to use as a comparison to the
truncated solution. The numerical procedure is described here. A two-dimensional finite
difference Navier-Stokes code, ARC2D, was used, and the full viscous terms were included.
The method used was an implicit second-order time-accurate Beam-Warming algorithm.
Second-order central differencing of the spatial derivatives was used with the approximate
factorization method. The calculation was laminar, with a Reynolds number of 100 and a
Mach number of 0 1 The grid for the global solution extended twenty cylinder diameters
downstream.

The boundary conditions for the global calculation were the default airfoil boundary
conditions incorporated into the ARC2D flow code.' These boundary conditions are

I described here.

For the farfield inflow, as well as the top and bottom boundaries of the flow domain,
the following formulation based on the one-dimensional Riemann invariants was used.
Extrapolation was used to determine whether the boundary was at an inflow or an outflow.
For an inflow, three variables were specified (Riemann invariant RI, the tangential velocity,
and the entropy) while one variable was extrapolated from the interior (Riemann invariant
R2). For an outflow, R2 was specified, and the quantities R1, the tangential velocity, and the
entropy were extrapolated.

I The Riemann invariants RI and R2 are given by:

RI = Qn - 2.*a/(y-1.)

and

I R2 = Qn + 2.*a/(y-1.),

with the entropy given by p /p,

where Qn is the velocity normal to the boundary, a is the speed of sound, p is the density,
and p is the pressure. For this problem, the specified velocities were u = 0.1 and v = 0.0
(based on speed of sound). The freestream pressure is given by 1 / y, and the speed of sound
is 1.0.

I
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On the cylinder surface, the velocities were set equal to zero, and the pressure is found
from the normal momentum equation. An adiabatic wall was assumed, and the density was
extrapolated from the interior. For this global calculation, the outflow boundary conditions
were all found from an extrapolation from the interior. These boundary conditions were
applied at x = 20.

The grid used for this calculation was a C-type mesh, with dimensions 245x40. The
grid extended from -5 < x < 20 and -5 < y < 5. The cylinder had unit diameter and was
centered at the origin. The minimum normal spacing for the grid was 0.016.

The truncated solution used the identical grid up to x = 4. For this solution,
nonreflecting boundary conditions were used. 2 As the grid used in this work was
curvilinear, the analysis for Cartesian coordinates given in Reference 2 was rederived in this
work for curvilinear grids. The following results are included here: both the full and
truncated grids, the time history of lift coefficient for both the global and truncated
solutions, and contour plots comparing the full and truncated solutions.

Some comments on the results should be made. It is important to note that both the
global and truncated solutions were computed independently from one another; that is, the
truncated solution was not restarted from the full solution. Both solutions were started
semi-impulsively from zero. The solution assumes a uniform stream as an initial condition,
and the cylinder suddenly appears at time = 0. However, the code allows a slow start-up
time to facilitate the calculation, whereby the velocity on the cylinder surface is gradually
reduced from freestream levels to zero over the first twelve iterations. Thus, the solution is
only "semi-impulsive." In addition, the code was run with a steady-state version of the
algorithm to get the solution started, and then it was switched to time-accurate. It was
necessary to perturb the flow in order to initiate the vortex shedding process (seen clearly in
the CL vs. time curves). Large glitches in the solution may be seen at y = 0, x = 4 in the
truncated results. These are due to a programming error resulting from attempts to
implicitly deal with an explicit wake cut. These errors have been fixed since the time of
these plots.

The following figures were taken from slides presented at the Minisymposium on
Outflow Boundary Conditions held in association with the 6th International Conference on
Numerical Methods in Laminar and Turbulent Flows, Swansea, Wales, U.K., on July 10,
1989.
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APPENDIX D

* Outflow Boundary Conditions Using
Duhamel's Equation

INTRODUCTION

A problem that has existed in computational fluid dynamics (CFD) since its inception is
in selecting the correct boundary conditions for an outflow boundary. An outflow
boundary is one through which the flow exits the computational domain. The errors
introduced by an inadequate boundary condition can range from a progressively inaccurate
but physically realistic solution to a nonphysical solution. The nonphysical solution can
arise because the boundary condition represents the effect of the unknown on flow outside
the computational domain, and if the "exterior" flow is nonphysical, then the "interior" flow
is nonphysical. A simple example of such a situation occurs when a steady state asymptotic
boundary condition is used for an unsteady problem. In this case all unsteadiness in the
interior flow will vanish before the boundary or the frequency of the unsteadiness will
adjust such that the boundary is a node in wave space; either of these situations is
nonphysical. In general, the errors introduced by the outflow boundary condition are
greatest for unsteady flows.

The early attempts at finding suitable outflow boundary conditions concentrated on
using asymptotic solutions of simpler flow models, which could be obtained analytically.
For example, analytic solutions of the Prandtl-Glauert equation were used as boundary
conditions for the transonic small disturbance equation. However, the usefulness of this
idea is limited because of the difficulty in finding analytic solutions that will model the
outflow for the Navier-Stokes or Euler equations.

An alternative to asymptotic solutions is the idea of nonreflecting boundary conditions.
The physical basis of the idea is that outgoing waves cannot be reflected at an (artificial)
computational boundary. A one-dimensional analysis was developed by Enquist and
Majda1 for the unsteady Euler equations, and a version for the unsteady transonic small
disturbance equation was developed by Kwak. 2 The ideas have been extended to two

I dimensions by Thompson, 3 but the theory is really a composite of two one-dimensional
solutions. Rodman 4 has extended this idea to curvilinear coordinates, but again the two-
dimensionality is "decoupled."

If a particular flow is started from zero, then the flow in the exterior domain is exact
until waves from the disturbance in the interior domain cross the boundary. If true
nonreflecting boundary conditions could be devised, then the outflow boundary condition
would be correct if the computation was started at zero time and is time accurate. An error
in the boundary conditions due to approximations in the formulation can give rise to a
nonphysical flow in the exterior domain and hence, ultimately, the interior domain. A
principal difficulty is in finding an analytic relationship that will give the boundary
conditions for the Navier-Stokes equations. The progress in nonreflecting boundary
conditions shows that finding a true two-dimensional boundary condition is beyond the
present state of the art.
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I The domain to the right of AB is the exterior domain, that to the left of CD, the interior
domain. There is an overlap of width one grid cell in the x direction.

I The object is to find the boundary condition on CD based on information on AB. Note
that the flow in the exterior domain is defined solely by the correct data on AB.

I If the flow in the exterior domain can be represented by a time linearized equation with
a boundary condition, U.(t) on AB, where U. is constant over the jth grid cell in the y
direction, then the value o Uk(t) on CD at the ki grid cell is given by Duhamel's equation

N Wc t: )( dE '() dUk(t) Z U jt)Ci(o) + J U (t - T) d ()k J1j k l jk dT

where U( E)(t) is the "indicial response" of U on CD at YkI that is, the transient due to a unit

step change in the boundary conditions on AB at yj, U1(t). Ej(t) is the actual value of Uj(t)
from the interior section. The indicial response is obtained by running the CFD code to be

used in the analysis over a large domain with a step change in U n at time zero and some y

station yj, and

Ui(t)=O ij (2)

I where U i (t) denotes a value at yi The time transient on the grid points on CD, Yk' are

stored and, when divided by the magnitude of the step, becomes the indicial response

U) (t. In principle, this should be computed for all the j stations on AB and constitutes a

formidable mass of information. However, certain simplifications can be made. First, since

there is no origin on the infinite boundary, AB, all that matters is the location of the Yk point

relative to the location of the step change, that is, the difference Yk - yj, and hence the

indicial response for the jth point on AB is the same as for any other cell provided the

difference Yk - y, and the cell width is held constant. The cell used to impose the step

change may be thought of as the base cell. This removes the amount of stored data by a

factor of N, the number of y grid points. If a variable grid is used then the effects of varying

grid size on U E) can be constructed by a sum of the indicial responses of the base cell.

Secondly, the time variation can be approximated by curve fits which work quite well. 5

I This removes the necessity to store every time step; only the coefficients of the

approximating series need be stored. In the examples shown here this second simplification
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I In Figure 1 the lift coefficient variation for the first cycle for the transonic case,

M,, = 0.8, is shown; the boundary is 0.25 chords downstream of the airfoil. The standard

code for the truncated grid diverges at 150 time steps. The reason is indicated in Figure 2

where the pressure distributions are shown. It can be seen that the nonreflecting boundary

conditions are totally inadequate.

I CONCLUDING REMARKS

I A new treatment of outflow boundary conditions is outlined and some preliminary

results are shown. The technique is applicable to a wide range of equations, including the

Navier-Stokes equations.
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I APPENDIX E

A Characterization and Search Technique for
Unsteady Flow Control Problems

I One objective of the proposed work was to use an optimizer to determine the best
boundary conditions for controlling a flow field. Mathematical optimizers were available
for this purpose, but they have several disadvantages which made them ill-suited to this
problem. Consequently, an alternative method was developed which could characterize the
solution that was being optimized, so that information about all aspects of the solution
would be found. For instance, various solution trends could be documented as they were
discovered, providing information that would help in the search for a new optimum if the
problem criteria were changed.

I Mathematical optimizers, such as CONMIN, 1 require the definition of an objective
function which is to be minimized by the code. Then, the inputs upon which the objective
function depends are varied, starting from an initial position, and an optimum combination
of the inputs is found. One usual drawback to these optimizer codes is that only the closest
local minimum of the objective function will be found, therefore requiring several restarts of
the code with different initial inputs if the problem is suspected to have more than one local
minimum. Another disadvantage is that all quantities of interest must be represented by
one function to be optimized, resulting in the loss of information about how they are
affected individually by the inputs. A third drawback to these optimizers is that the answer
alone is given, without significant other information, such as how each individual input
affected the answer, and if there were any regions of unusual or rapid change in the solution

i field.

The current technique was developed to address some of these disadvantages. It is
used as a postprocessor to CFD results. A number of inputs to the problem may be used,
and rather than one objective function, several quantities of interest may be specified
independently. A representative sample of inputs is used with the CFD code, and the
corresponding quantities of interest are generated as outputs. The postprocessor for this
information has programmed into it the heuristic rules that a person would follow if solving
the same problem. The change in the flow solution as a function of one of the variables,
with the other variables remaining fixed, is found for all combinations of the variables. The
effect of one variable on the solution may be found to be independent, mildly dependent, or
strongly dependent upon the other variables. In addition, how fast the solution changes
with a given variable is found. These computed slopes indicate whether a dependence is
linear and/or monotonic. The relationships between the flow solution and the input
variables, along with any regions of high nonlinearity or non-monotonicity, are documented
by the code. These results give insight into the cause-and-effect relationships between the
various flow variables and computed flow field.

The postprocessor may be run iteratively with the CFD solver to find an optimum for
each flow quantity, or it may be used as a characterization code alone if an optimization is
not required. For optimization, two techniques are used to guide the search. First, a basic
hill-climbing technique is used, where the region surrounding the current optimum is3 investigated for incremental improvements. Additionally, any exceptional areas, as
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I shown in the plots to indicate where this happens. In Figure 2, a double bar is shown
between the first and fifth plot, where the function changes from "other" to "convex."

i The code then determines where future data points should be taken, both to search for
an optimum and to investigate potentially interesting regions with more detail. The
suggested values for future iterations are based on three criteria. First, the program looks in
the vicinity of the current optimum. It uses information about the slopes and the cirms
value in that area to indicate how big a jump the next iteration should take. The code checks
to see if the slope in that area is much higher than the median slope throughout the solutionI field. It also checks to see if the optimum value found is much higher than the median value
throughout the solution field. If the local slope or clrms value is not significantly larger than
the median slope or clrms value, then a relatively large increment will be chosen for the nextIiteration. If the local slope and clrms value are high, then a smaller increment will be
chosen, especially if the code determines that the next iteration will fall in uncharted
territory. If the next iteration would be in an area previously investigated, no new move is
indicated.

The second criteria for future iteration is based on unusual slopes in the solution field.
If a particular slope is much higher than the adjacent slopes, or is much higher than the
median slope, a new point is suggested that is in the direction of most improvement. The
third criteria is based on mismatched functions between adjacent regions. If they exist,
points between the two regions are suggested for future iteration. In Figures 2-4,
suggestions for future iterations are plotted on the horizontal axes. A square indicates a
search about the local optimum, a circle indicates a search based on unusual slopes, and a
cross indicates a search based on mismatched functions.

Two iterations were performed after the initial twenty runs, and the results are shown
in Figures 5-7. With this much data, it can be seen that there are regions where clrms is very
sensitive to the input variables and that more resolution is necessary to understand the
results. The code is programmed to flag any regions where it is necessary to increase the
resolution. If a strong dependence on either q2 or q3 within one region shown in Figure 5 is
found, then that region should be subdivided, so that each resulting subdivision is
independent of q2 and q3. In this example, the code found that the region where q1 is high,
q2 is low, and q3 is low needs more resolution. That one region is then subdivided, and the
results are shown in Figures 8-10.

The most favorable combination of inputs for reducing the rms lift coefficient was a
low suction magnitude with short duration and interval pulses. Figure 11 shows the lift
coefficient history for this case. Compared with the no-slip boundary condition case shown
in Figure 1, the rms lift coefficient was decreased by 10%, from 0.178 to 0.159, and the
average lift coefficient was increased by 5%, from 0.977 to 1.022.

This method also investigated the region where the solution was most sensitive to the
inputs, even though that region did not correspond to the optimum values found. The
characterization showed that the rms lift coefficient is most sensitive to long blowing
durations, short intervals between blowing pulses, and high suction values. In that region,
the most interesting result was found where the combinations of inputs gave a maximum
rms lift coefficient. The lift coefficient history is shown in Figure 12. Although the objective

I
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Figure 1.- Lift coefficient history for no-slip boundary conditions.
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Figure 11.- Lift coefficient history for pulsed suction boundary conditions.
Suction = -0.05*Mw.
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Figure 12.- Lift coefficient history for pulsed suction boundary conditions.
Suction = -0.174*Mo.
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