
SECURITY CLASS IF ICATIO OF -THIS PAGEIM -Lik. QP
REPORT DOCUMENTATION PAGE OM o d

la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE

2a 3. DISTRIBUTION /AVAILABILITY OF REPORT
APPROVED FOR PUBLIC RELEASE;. AD-A 8 a2t DISTRIBUTION UNLIMITED.

4 MIJPA O 377' S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/CI/CIA- 89-007

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT Univ of (If applicable) AFIT/CIA

Central Flordia A
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45433-6583

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification) (UNCLASSIFIED)
A Relational Object-Oriented Manage mt System and An Encapsulated Object Procgraimirg
I ystem

12. PERSONAL AUTHOR(S)
Michael L. Nelson

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
TP /DMISSERTATION FROM TO 1988 256
16. SUPPLEMENTARY NOTATION AP-WlU IQR PUBLIC RELEASE IAW AFR 190-1

ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer, Civilian Institution Programs

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

DTIC
S ELECTE

FEB 15 1990So4DD

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
ERNEST A. HAYGOOD, 1st Lt, USAF (513) 255-2259 AFIT/CI

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

AFIT/CI "OVERPRINT"

A RELATIONAL OBJECT-ORIENTED MANAGEMENT SYSTEM
AND

AN ENCAPSULATED OBJECT-ORIENTED PROGRAMMING SYSTEM

by

MICHAEL L. NELSON

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

the Department of Computer Science at
the University of Central Florida

Orlando, Florida

December 1988

Major Professor: Ali Orooji

ACCesior For

NTIS CRA&I
DFJC TAB

By.........

- Codes/

Dist

Copyright 1988

by

Michael L. Nelson

ABSTRACT

The purpose of the Relational Object-Oriented

Management System (ROOMS) is to show that the relational

database scheme is a viable approach for storing object-

oriented data. ROOMS is designed so that it can be

implemented in any object-oriented language with

appropriate I/O commands, or added to any object-

oriented database management system that allows user-

defined collections of data.

Various problems were encountered in developing

ROOMS. While these problems have been solved, the best

solution is to use the Encapsulated Object-Oriented

Programming System (EOOPS). EOOPS is based upon an

inheritance scheme which preserves encapsulation. This

encapsulated approach avoids the problems associated

with the name conflicts that occur with W conventional " --

object-oriented languages. EOOPS also includes a proper

metaclass and allows for generic routines.

ROOMS was then reimplemented in EOOPS to study the

enhancements provided by EOOPS. As expected, the

encapsulated form of inheritance provided in EOOPS was

responsible for most of these enhancements. It led to a

simplified record structure which in turn led to a

simplified implementation of the relational operations.

iii

2

ACKNOWLEDGEMENTS

Special thanks to Dr. Orooji, the chairman of my

Research Committee. I cannot begin to count the number

of times that he went out of his way to lend a helping

hand.

Thanks also to the rest of my Research Committee - Dr.

Moshell (who was the first one to get me interested in

object-oriented programming), Dr. Hughes (who was a

great help in making comparisons to Smalltalk), Dr.

Myler (who gave me the idea for a wonderful example of a

potential user of my database system), and Dr. Cottrell

(who was especially helpful in getting us through all of

the paperwork quirks, but unfortunately could not be

here the semester that I graduated).

I would also like to thank my wife Debbie for putting up

with me and for helping me through all the really tough

times. And little Mikey is the one who helped me to

keep all my priorities straight - one look at that

little guy was all it took to remember what the most

important things really were, and that everything would

work out all right in the end.

iv

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF SYMBOLS AND ABBREVIATIONS viii

INTRODUCTION 1

CHAPTER 1 SURVEY OF THE LITERATURE 5
Object-Oriented Programming Systems (OOPS) 5

Objects, Classes, Messages, and
Metaclasses 7

Inheritance and Delegation 13
Abstract Classes and Standard Protocols . 16
Encapsulation 18
Composite Objects 20

Genericity 23
Database Management Systems 25

Relational Database Systems 26
Object-Oriented Database Systems 31

Analyst 33
GemStone 34
Vbase 36
VISION 37
Other Object-Oriented Database
Systems 39

Summary 41

CHAPTER 2 A RELATIONAL OBJECT-ORIENTED MANAGEMENT
SYSTEM (ROOMS) 42

Why ROOMS? 43
The General Design of ROOMS 46

The Class Database 46
The Class Relation 47
The Class Record 48
User-Defined Classes 49

Problems Encountered in Developing ROOMS . . . 51
"Conventional" Inheritance Problems . . . 51

Variable Name Conflicts 52
Method Name Conflicts 55
Multiple Inheritance 56
Compounding the Problem - Modifying

Class Definitions 58
Database Record Structure 60
Relational Operations 62
Genericity 63

Why These Problems Are not Unique to ROOMS . . 66

v

CHAPTER 3 AN ENCAPSULATED OBJECT-ORIENTED
PROGRAMMING SYSTEM (EOOPS).............68

An Encapsulated Form of Inher.Ltance 69
The Internal and External Interfaces .. 69
Single Inheritance in EQOPS 74
Multiple Inheritance in EQOPS.........78
Multiple Inheritance From a single

Superclass................79
The Metaclass..................81
Genericity....................83
Special Methods..................84
The External-Delete-Method Command.........85
The Send Command.................86
Special Note on Class Variables.........87
The Benefits of EOOPS...............89

CHAPTER 4 THE IMPLEMENTATION OF ROOMS........94
Required Methods.................94
The Class Database................97
The Class Relation................99
The Class Record..................10
User-Defined Record Classes...........102
User-Defined Classes..............104
Conclusions...................105

CHAPTER 5 SUMMARY, CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH.................107

Summary.....................107
conclusions....................10
Suggestions for Future Research.........110

Future ROOMS Research...........110
Future EOOPS Research...........112

Concluding Comments..............113

APPENDICES......................115

A. EOOPS Reference Manual...........115

B. ROOMS in PC Scheme..............139

C. ROOMS in EOOPS................205

BIBLIOGRAPHY.....................247

vi

LIST OF FIGURES

1. Single Inheritance in a Two-level Hierarchy 53

2. Single Inheritance in a Three-level Hierarchy 54

3. Multiple Inheritance in a Two-level Hierarchy 57

4. "Semi-generic" Code 64

5. Multiple Inheritance with an Ancestor
Appearing Twice in the Hierarchy 80

6. Multiple Inheritance from a Single Ancestor . . 82

7. Inheriting Class Variables 88

vii

LIST OF SYMBOLS AND ABBREVIATIONS

ADT - Abstract Data Type

AI - Artificial Intelligence

CAD - Computer-aided Design

CAE - Computer-aided Engineering

CAM - Computer-aided Manufacturing

CASE - Computer-aided Software Engineering

CLOS - Common Lisp Object System

CWA - Closed World Assumption

DBS - Database System

DBMS - Database Management System

EOOPS - Encapsulated Object-Oriented Programming System

EOOPS/ROOMS - EOOPS version of ROOMS

I/O - Input/Output

OOP - Object-Oriented Programming

OOPS - Object-Oriented Programming Systems

OOPSLA - Object-Oriented Programming Systems, Languages,
and Applications

PCS - PC Scheme

PCS/ROOMS - PCS version of ROOMS

ROOMS - Relational Object-Oriented Management System

SQL - SEQUEL, a relational DBMS query language

TI - Texas Instruments

viii

INTRODUCTION

A database has been defined as a collection of

interrelated data stored together with controlled

redundancy to serve one or more applications in an

optimal fashion (Martin 1976). The data is stored

independent of the programs whih use the data, and a

common and controlled approach is used in adding new

data and in modifying and retrieving existing data

(Martin 1976).

Various data models have been used in existing

commercial database systems, with the three most

important being the hierarchical, network, and

relational data models (Ullman 1982). However,

conventional database systems that are based upon these

models have various limitations on the data types and

operations that they support (Andrews 1987; Caruso 1987;

Copeland 1984; Maier 1986; Ong 1984; Osborn 1986), and

do not address the needs of many non-traditional

applications such as cartography and geographic systems

and computer-aided design (Orenstein 1986).

Like many new ideas, object-oriented programming

(OOP) does not yet have a universally accepted

definition. However, the following definition

2

(equation) (Wegner 1987) seems to be what (most of) the

user community agrees on:

object-oriented = objects + classes + inheritance

where a class can be thought of as the definition of an

abstract data type and the operations that can be

performed on it, an object is an instance of a class,

and inheritance is a mechanism that is used for sharing

common features between classes.

The Relational Object-Oriented Management System

(ROOMS), designed and implemented as part of this

research project, shows that it is possible for the user

to treat objects no differently from conventional data.

In other words, ROOMS removes the data type limitations

that exist in conventional database systems, and allows

object-oriented users to store objects in the database

utilizing a relational scheme.

In ROOMS, a database is simply a collection of

objects called relations. Similarly, a relation is a

collection of objects called records. Further, a record

consists of various fields, which are user-defined

objects. No distinction is made between simple objects

(such as conventional data) and more complex objects

(such as pictures or digitized voice).

In designing and implementing ROOMS, several

problems (not necessarily unique to ROOMS) were

encountered due to the way that various OOP features

3

have been implemented in existing languages. Therefore,

an object-oriented language called Encapsulated Object-

Oriented Programming System (EOOPS) was designed to

correct these deficiencies. Note that EOOPS is not

intended to be a complete language. Only those features

unique to an OOP language were included. Thus, EOOPS

might be considered a "bolted-on" OOP package that

could be added to any conventional language, along the

lines of SCOOPS, the object-oriented part of PC Scheme

(Texas Instruments Inc. 1987a,b), or it could serve as

the core of a language in which OOP principles are

"built-in." Rather than a formal language

specification, a language reference manual which

describes the various features of EOOPS was developed.

An actual implementation of EOOPS was considered to be

beyond the scope of this research effort.

ROOMS was then "reimplemented" in EOOPS to show

that the various problems have been solved in ways that

result in a cleaner, easier to understand program.

Since EOOPS itself was not actually implemented, this

"implementation" of ROOMS in EOOPS took the form of a

high-level (pseudocode) program.

Chapter 1 presents a survey of the literature to

provide a context for the research effort. An overview

of object-oriented programming, relational database

systems, and object-oriented database systems provides a

4

common starting point for the development of ROOMS and

EOOPS. ROOMS is described in detail in Chapter 2, along

with a discussion of the problems encountered in

developing that system. Chapter 3 (and Appendix A)

describes EOOPS in detail. The implementations of ROOMS

in PC Scheme and in EOOPS, along with a comparison of

these implementations, are described in Chapter 4 (and

Appendices B and C). Finally, in Chapter 5 the

research effort is summarized, and suggestions for

future research are presented.

CHAPTER 1

SURVEY OF THE LITERATURE

In this chapter, object-oriented programming (OOP)

will be explored and discussed. Since terminology

varies from one OOP language to another, the various

terms and definitions will be presented, and the

terminology as used in this project is outlined.

Genericity, which can be compared with inheritance as

it exists in OOP (Meyer 1986; Touati 1987), will also

be covered. Finally, relational database systems and

object-oriented database systems will be examined, both

in general terms and various specific implementations.

Oblect-Oriented ProQramminQ Systems

As mentioned in the introduction, OOP does not yet

have an exact definition that we can call upon. Some

studies (Rentsch 1982; Snyder 1986b) attempt to clarify

OOP by characterizing its more important aspects rather

than giving a definition. The following quote from

Rentsch (1982, 51) is a wonderful tongue-in-cheek way of

answering the question: 'What is object-oriented

programming?'

5

6

My guess is that object-oriented programming will
be in the 1980's what structured programming was in
the 1970's. Everyone will be in favor of it. Every
manufacturer will promote his products as supporting
it. Every manager will pay lip service to it.
Every programmer will practice it (differently).
And no one will know just what it is.

This quote from Cox (1986, 29) expresses a similar idea:

Object-oriented is well on its way to becoming the
buzzword of the 1980's. Suddenly everybody is using
it, but with such a range of radically different
meanings that no one seems to know exactly what the
other is saying.

And the following quote from Stroustrup (1988, 10)

simply states that object-oriented programming is

"good":

Object-oriented has become a buzzword that implies
"good" programming.

So, how do we define OOP? It has been said that

the OOP concepts of messages/objects replaces the

concepts of operators/operands from conventional

languages (Cox 1984). OOP can also be viewed as an

abstraction mechanism that is a technique for organizing

very large programs (Moon 1986). And OOP can be defined

in terms of its fundamental concepts - types, type

hierarchies, and inheritance (Halbert 1987) (the term

"type" is used in some OOP languages instead of

"class").

OOP has also been defined using the following

equation (Wegner 1986, 177):

object-oriented = data abstractions + abstract data
types + type inheritance

7

This has been modified slightly to (Wegner 1987, 169):

object-oriented = objects + classes + inheritance

This is the definition that we prefer, and it seems to

be the definition accepted by most of the attendees at

the OOPSLA'87 conference that was held in October 1987

in Orlando, Florida.

Smalltalk (Digitalk 1986) is widely recognized as

one of the earliest object-oriented languages. Alan Kay

(one of the developers of Smalltalk) is credited by

Rentsch (1982, 56) as saying that "...the entire thrust

of Smalltalk's design has been to supersede the concept

of data and procedures entirely; to replace these with

the more generally useful notions of activity,

communication, and inheritance."

Since it is difficult if not impossible to come up

with a succinct definition of OOP, let us study the

more common features of OOP - objects, classes,

messages, metaclasses, inheritance, delegation, and

encapsulation. Composite objects, objects which consist

of other objects, will also be discussed.

Objects, Classes, Messages, and Metaclasses

One of the central themes of object-oriented

programming is that every entity is an object (Briot

1987). An object is an instance of a class, and it

8

responds to messages. But just how do we define

objects, classes, and messages?

Objects can be viewed in many ways. An object can

be said to represent entities and concepts from the

application domain being modeled (Fishman 1987). Some

studies (Cox 1984; Stroustrup 1986b) define objects as

private data or regions of storage. Others (Meyer

1987b; Texas Instruments Inc. 1987b) define an object as

an instance of an abstract data type or an abstract

entity. Other papers (Cox 1986; Diederich 1987; Halbert

1987; Schmucker 1987; Stefik 1986; Wegner 1987;

Wiederhold 1986) go a step further and define an object

as having its own data or local memory (called instance

variables) that recognizes a set of procedures (called

methods, which are invoked by sending messages to the

object) for manipulating its local memory.

The TI Scheme Language Reference Manual (Texas

Instruments Inc. 1987b) contains a "circular" definition

of an object - an object is an instance of a class, and

a class contains the description of one or more similar

objects.

As previously mentioned, the terms "type" and

"class" are generally used to mean the same thing. C++

(Stroustrup 1986b), however, is an exception in that it

defines a "type" as a system supplied data type and a

"class" as a user-defined "type." We will take the more

9

commonly held view that the terms have the same meaning.

The term "class" is used in all of the languages (C++,

PC Scheme, and Smalltalk) that we employed for this

research project, and therefore it is the term that will

be used in this dissertation. Actually, we would prefer

the term "type" - somehow it just seems more "natural"

to say that an object is of type X rather than saying

that an object is an instance of class X. Also, the

term "type" helps to convey the idea that it is somehow

an extension of the idea of abstract data types.

"Classification arises from the universal need, in

any domain of discourse, to describe uniformities of

collections of instances" (Wegner 1986, 173). It has

also been said that objects are classified by type, with

objects sharing common properties belonging to the same

type (Fishman 1987). A class can be defined as the

shared portion of similar objects (Schmucker 1987).

Similarly, a class can be thought of as a description of

similar objects, sort of an abstract data type

definition (Meyer 1987a; Stefik 1986; Wegner 1987). A

class can also be thought of as a template or cookie

cutter from which objects can be created (Wegner 1987).

A class declaration typically includes the class

name and definitions for the class variables, instance

variables, and methods (Snyder 1986b; Texas Instruments

Inc. 1987b). The class name is simply the name of the

10

class, a way to refer to it and identify it. Class

variables contain information that is shared by all

instances of the class, i.e., all instances of a class

share the class variables by both name and value.

Instance variables are local to each instance of a class

and contain information specific to that instance. That

is, each instance of a class has its own set of instance

variables. The names of the variables in this set are

identical from one object to another, but the values may

vary.

Methods are operations or procedures which

determine the behavior of instances of a class, i.e.,

the methods represent the only operations that an object

can be told to perform.

A message is sent to an object to request that it

perform one of its operations (Cox 1984; Schmucker 1987;

Seidewitz 1987). These operations are said to be

polymorphic (Cardelli 1985; Meyer 1987a; Stefik 1986;

Stroustrup 1986b) in that different classes can have

operations with the same name. This is similar to

operator overloading, which exists in some languages

(such as Ada and C) (Booch 1987; Cardelli 1985;

Stroustrup 1986a; Touati 1987). The difference is that

in conventional languages, even with overloading, the

environment must tell how each command should be

performed by naming a specific piece of executable code

11

appropriate to the data type at hand, while in a

message/object environment, one tells the object what to

do and the object uses its methods to decide how to do

it (Cox 1984).

We have now discussed objects, classes, and

messages, but one point has not been covered - where do

these objects come from? And, if every entity in an

object-oriented language is supposed to be an object,

how do we explain the existence of a class which does

not appear to be an object?

The concept of a metaclass (Bobrow 1986; Briot

1987; Cointe 1987; Cox 1986; Digitalk Inc. 1986; Stefik

1986) is used in some languages such as CommonLoops

(Bobrow 1986), the Common Lisp Object System or CLOS

(Bobrow 1988), and Smalltalk (Digitalk Inc. 1986).

Classes are simply defined to be objects themselves,

with a class being an instance of a metaclass. A

"create" message can now be sent to the class (which is

an object), so that messages are still sent only to

objects. The metaclass itself is a special object

provided by the programming language which responds to

messages to create new classes.

CLOS (Bobrow 1988) allows multiple metaclasses,

including user-defined metaclasses. The metaclass which

is used determines the representation of instances of

its instances (i.e., the instances of the classes which

12

the metaclass is used to create), the form of

inheritance used by the classes which the metaclass is

used to create, and the particular forms of optimization

which are used. A default metaclass, called standard-

class, is provided which "is appropriate for most

programs" (Bobrow 1988, 1-9).

ObjVlisp (Cointe 1988), a system used to simulate

object-oriented language extensions, also allows

multiple metaclasses and user-defined metaclasses.

However, allowing user-defined metaclasses brings about

the possibility of an "infinite regress ... (where) ...

a metaclass is a class which instantiates a class, a

metametaclass is a class which instantiates a metaclass,

a metametametaclass ..." (Cointe 1988, 160). Therefore,

in ObjVlisp a special class called Class is defined to

create metaclasses, and it is defined as an instance of

itself.

Other languages, such as Objective-C (Cox 1986),

define classes to be concepts rather than objects, and

provide factory objects which are used to create

instances of a class. A factory object is automatically

built by the programming language for each class that

has been defined. Messages are then sent to factory

objects to create new instances of the class (Cox 1986;

Schmucker 1987), so messages are still sent only to

objects.

13

Still other languages, such as C++ (Stroustrup

1986b) and PC Scheme (Texas Instruments Inc. 1987a,b),

"ignore" the problem altogether. C++ simply says that

a class can have "constructor" and "destructor"

functions to create and delete objects. Similarly, PC

Scheme provides a "make-instance" procedure to create

instances of a class.

It is our opinion, however, that all of these

approaches can be considered to be equivalent to the

metaclass concept. All the languages that we have

investigated have some type of a "define-class"

operation and some type of a "create-instance"

operation. The "define-class" operation can simply be

thought of as a message that is sent to the metaclass to

create an object which is a class. The "create-

instance" operation then becomes a message which is sent

to the class object.

Inheritance and Delegation

A class can inherit the properties or

characteristics of another class (Borning 1982; Halbert

1987; Schaffert 1986; Stein 1987; Stroustrup 1986b),

i.e., it inherits the class variables, instance

variables, and methods of the other class (Cox 1986;

Snyder 1986b; Stefik 1986; Texas Instruments Inc. 1987b;

Thomas 1987; Wegner 1987). Inheritance can also be

14

thought of as a form of code sharing (Sandberg 1986;

Thomas 1987) or resource sharing (Wegner 1987). It has

been said that inheritance is the one feature of OOP

languages that really sets them apart from other

languages (Thomas 1987).

The inheritance relationship between classes is

referred to by several different names - superclass/

subclass, supertype/subtype, parent/child, and ancestor/

descendant. A set of classes related by inheritance is

referred to as a class hierarchy or an inheritance

hierarchy (Cox 1986; Sandberg 1986; Stefik 1986;

Stroustrup 1986b). We will use the terms superclass/

subclass to indicate one level up or down the hierarchy,

and the terms ancestor/descendant to indicate one or

more levels.

Some OOP languages allow inheritance from only one

superclass. This is referred to as single inheritance

or simply as inheritance. Other OOP languages allow

inheritance from more than one superclass. This is

called multiple inheritance.

Note that a potential problem exists when

inheritance is allowed - name conflicts. With both

single and multiple inheritance, a newly defined

variable or method may have the same name as an

inherited variable or method (either by choice or by

accident). With multiple inheritance, a class may

15

inherit variables or methods with the same name from

different ancestors - a decision must be made as to

whether we attempt to make some distinction between

them, combine them together, or somehow make a choice

among them. In Chapter 2 we will discuss how different

OOP languages handle these issues, and in Chapter 3 we

will show how we handle them in EOOPS. The set of

classes related by multiple inheritance can still be

referred to as a hierarchy (Hendler 1986), or it may be

referred to as a lattice (Stefik 1986).

Delegation also allows the sharing of both

variables and methods. Inheritance, however, refers to

sharing between classes while delegation is concerned

with sharing between individual objects (Stein 1987).

Inheritance can be thought of as implementing sets

(classes), and delegation can be thought of as

implementing prototypes (Lieberman 1986). Inheritance

and delegation can be considered alternate methods for

incremental definition and sharing (Stein 1987).

Inheritance can be simulated using delegation, but

delegation cannot be fully simulated using inheritance

(Lieberman 1986; Stein 1987).

A delegation-based language can be defined as an

object-based language that supports classless objects

and delegation, i.e., "delegation-based = objects -

classes + delegation" (Wegner 1987, 173). A delegation

16

hierarchy is the set of relationships between various

objects (Stein 1987).

The ancestor object, called a prototype, is both an

object in its own right and a template for its

descendants - it provides default values and operations

to its descendants (Wegner 1987). An object is said to

delegate an attribute (method or variable) to its

ancestor (a prototype) if it does not maintain a value

for that attribute (Stein 1987).

The terms delegation and prototype are often used

only in connection with one another, and in comparison

with inheritance. Delegation, however, can be defined

more simply as a technique for forwarding a message off

to be handled by another object (Stefik 1986). Using

this definition, we believe that inheritance could be

viewed as a specific form of delegation, with messages

being delegated to an object's class.

Abstract Classes and Standard Protocols

An abstract class is a class which has no

instances, and it usually has no variables (Johnson

1988; Pinson 1988). Its purpose is to provide a

standard protocol, sometimes referred to as a common

protocol or simply as a protocol, to its subclasses.

This standard protocol is a set of undefined methods

which must be implemented by the subclasses (i.e., only

17

the name of the method is given in the abstract class)

(Pinson 1988). This can also be thought of as a program

skeleton (Johnson 1988), where the user is responsible

for filling in certain options, and is sometimes

referred to as subclass responsibility.

A class that is not abstract (i.e., a class with

instances) is said to be concrete (Johnson 1988). It

should be noted that the abstract class is a "concept"

and is not implemented as a construct in any of the

object-oriented languages that we have studied. There

is nothing in the definition of an abstract class to

differentiate it from a concrete class, and there is

nothing in its implementation to prevent it from having

instances (and thus becoming a concrete class).

The idea of a protocol is normally associated with

Smalltalk (Digitalk Inc. 1986) systems, although this

concept could be implemented in other object-oriented

languages. C++ (Stroustrup 1986b), for example,

provides for virtual methods (called virtual functions

in C++ terminology) which specify a method name that

must be implemented by its subclasses. Even in a

language which provides no support for this concept,

methods could be written which expect other methods to

be provided by its subclasses.

18

Encapsulation

Encapsulation can be thought of as a form of

information hiding (Diederich 1987), or as the strict

enforcement of information hiding (Micallef 1988). It

has been said to be the foundation of the whole

approach to object-oriented programming (Cox 1986).

Encapsulation is supported in OOP languages by allowing

an object to be manipulated only by the set of

operations defined on it (Snyder 1986b). This set of

operations is called the external interface of the

object. This external interface can be thought of as a

"wall" of code around each piLce of data (i.e., around

each object) which restricts the effects of change (Cox

1986). Encapsulation is said to be enforced since

sending a message to an object is the only way to modify

its variables (Cox 1986; Diederich 1987; Snyder 1986b).

However, inheritance can severely compromise

encapsulation (Snyder 1986b). A module (such as a class

definition) is said to be encapsulated if its clients

(users) can only access it via its defined external

interface (Snyder 1986b). Thus from an end-user's

(i.e., non-developer's) point of view, classes and

objects in an OOP language are encapsulated.

Inheritance, however, introduces another type of client

of a class - a subclass. The subclass has access to all

of its inherited variables by name, and is not

19

restricted to the external interface of its ancestor

class (Snyder 1986b). Thus, encapsulation has been

violated by inheritance.

This anomaly/contradiction is not even mentioned in

most of the OOP literature that we have reviewed. Most

papers simply discuss encapsulation and inheritance with

no mention of the effects that inheritance can have on

encapsulation - it has even been said that encapsulation

and inheritance are two of the most important aspects of

object definition (Cox 1986; Diederich 1987). The most

notable exception is one paper (Snyder 1986b) that is

entirely devoted to the subject. Another exception

(Cox 1986) is the idea that implementors have both

inheritance and encapsulation available to them.

Inheritance is claimed to be an implementation issue,

not a design issue. While it is never stated by Cox

(1986) that inheritance can violate encapsulation, it is

said that declaring the type of an instance variable to

be another class is a form of inheritance and

encapsulation combined. A fairly recent paper (Micallef

1988) also discusses these issues and compares the level

of encapsulation provided by various object-oriented

languages.

20

Composite Objects

A composite object can be defined as an object that

consists of other objects, i.e., the variables of a

composite object are defined as being objects themselves

(called dependent objects) (Kim 1987; Stefik 1986). A

composite object is also referred to as an aggregate

object (Halbert 1987). It is interesting to note that

none of these papers make any mention of using composite

objects as a way of preserving encapsulation, while Cox

(1986), as mentioned above, says that this is a form of

encapsulation without giving the concept a name (and

with only a very brief discussion of the subject).

From a database point of view, composite objects

can be used to define a unit of storage and retrieval to

enhance performance of the system (Kim 1987).

Retrieving (storing) an object implies retrieving

(storing) all of its dependent objects and as such helps

to resolve the problem of what data should be resident

in memory at a given time.

Composite objects can also be viewed as an

alternative to multiple inheritance, choosing one or the

other depending on what the relationship between the

classes should be (Halbert 1987). Multiple inheritance

is said to be appropriate when an object is the sum of

the behavior of its parts; composite objects, on the

21

other hand, are appropriate when an object is more

simply the sum of its parts (Halbert 1987).

For example, a class Airplane could be built using

multiple inheritance from the superclasses Wings,

Fuselage, Engine, and Tail. However, this would be a

conceptual error since an airplane is composed of these

parts - it is not the sum of their behaviors. As such

the class Airplane should be a composite object with

instance variables consisting of these other classes

(Halbert 1987).

As an alternative example, consider a class

Teaching-Assistant, to be constructed using the classes

Teacher and Student. Using multiple inheritance in this

case is appropriate as a Teaching-Assistant should be

the sum of the behaviors of a Teacher and a Student.

Using a composite object consisting of a Teacher and a

Student would be inappropriate as a Teaching-Assistant

does not consist of a Teacher and a Student (Halbert

1987).

We have been using another form of a composite

object which, to our knowledge, has not been discussed

in the literature. Rather than using dependent objects,

we are using subobjects. With a subobject, the value of

an instance variable is a pointer to another object. A

subobject is in no way dependent upon its composite

object; it exists as a separate entity.

22

The comparison of subobjects as we have been using

them with dependent objects as discussed in the

literature is itself an interesting subject. A

dependent object is by definition completely dependent

upon its composite object - it cannot be created,

accessed, or deleted without doing so through the

composite object. And if the composite object is

deleted, all of its dependent objects are also deleted

(if not, there would not be any way to access them). A

subobject, on the other hand, can be created, accessed,

or deleted directly (without even knowing that it is a

subobject), or through its composite object. If a

composite object consisting of subobjects is deleted, a

decision must be made as to whether or not to delete its

subobjects, although a garbage collection system could

delete unused subobjects from memory after the composite

object has been deleted. Another difference is that

dependent objects cannot be shared; subobjects do not

have this restriction.

We are tempted at this point in time to say that

subobjects are "more powerful" than dependent objects.

Subobjects can be restricted in usage to (in effect)

implement dependent objects, but since dependent objects

cannot exist as standalone objects, the reverse is not

true. However, with more "power" comes more (potential)

problems. Being able to modify or delete a subobject

23

without the composite object's knowledge could

definitely lead to various problems such as

inconsistencies and "dangling pointers."

Genericity

Genericity is a mechanism for building reusable

software components (Booch 1987; Touati 1987). A

generic definition does not in itself create any code;

it only defines what might be thought of as a template

for a program unit. The user must instantiate a generic

unit to create an instance of the generic code (Booch

1987). Popular examples of generic routines are a swap

routine to exchange the values of two variables and a

sort routine to order a set of variables by their values

(Booch 1987; Meyer 1986). Rather than defining a swap

(or sort) routine for every data type for which it is

needed, a generic version is written and then

instantiated for each data type.

Most discussions concerning both OOP and

genericity are only concerned with comparing them

(Meyer 1986; Seidewitz 1987; Touati 1987). Both

genericity and inheritance apply some form of

polymorphism (the ability to define program entities

that may take more than one form) (Meyer 1986). It can

be shown (Meyer 1986) that genericity can be simulated

using inheritance, but that inheritance cannot be

24

simulated using genericity. As such, inheritance is

said to be a more powerful mechanism than genericity.

However, the simulation of genericity using inheritance

is very verbose and overly complex (Meyer 1986).

Eiffel (Meyer 1986; Meyer 1987; Meyer 1988) is an

object-oriented language which offers both inheritance

and a limited form of genericity. Classes may have

generic parameters representing types. For example,

ARRAY [T] is a system defined class with a generic

parameter. When instances of the class ARRAY are

instantiated, the parameter T may be set to any other

previously defined class. This provides a convenient

way of defining arrays of integers and arrays of

characters using the same definition for the class

ARRAY.

C++ (Stroustrup 1986b) provides a similar construct

in which a generic collection, such as a list, can be

defined and then instantiated to contain any other class

of objects. CLOS (Bobrow 1988) provides generic

functions, but these are apparently equivalent to

virtual functions in C++, in that they are the way that

CLOS handles operator overloading (i.e., functions or

methods with the same name).

We would like to see some form of genericity

included in all object-oriented languages, preferably

one that is at least as powerful as the idea of generic

25

collections. It would be very helpful in the

development of complex applications such as ROOMS.

Database ManaQement Systems

A database (sometimes written data base) is a

collection of data stored "permanently" in a computer

(Hutt 1978; Martin 1976; Ullman 1982). Objects (data)

to be stored in a database are said to be persistent in

that they survive beyond a single programming session

(Andrews 1987; Buneman 1986; Caruso 1987; Fishman 1987;

Thatte 1987; Wiederhold 1986). A database management

system (DBMS) or database system (DBS) is the software

that allows user(s) to use and maintain the data in the

database (Hutt 1978; Ullman 1982).

The database architecture or data model refers to

how the data is organized in the database and how it

appears to the user (Brackett 1987; Ullman 1982). The

three most important conventional data models (Bic 1986;

Brackett 1987; Ullman 1982) are the relational model,

the network model, and the hierarchical model. It can

be shown that all three models are equivalent in

modeling power (Ullman 1982), with relational databases

being the easiest to design, maintain, and use (Bic

1986; Brackett 1987). The simplicity of the relational

model has made it the most widely used data model.

26

We will now explore the concepts of relational

database management systems in more detail. This will

be followed by a discussion of object-oriented database

systems. We will also discuss why conventional database

systems do not seem to be appropriate for

object-oriented applications.

Relational Database Systems

The relational data model is (essentially) based on

the concept of flat files (or tables or arrays), with

each table called a relation (Bic 1986; Codd 1970;

'allaire 1984; Martin 1976; Ullman 1982). A tuple of a

relation is simply a row in the table. The columns of a

relation are called attributes. The arity of a relation

is the number of columns that it has.

From a database point of view, relations must be

finite. This eliminates operations such as complement,

as -R (the set of all tuples not in R) would denote an

infinite relation (Ullman 1982). This leads to what is

usually called the closed world assumption (CWA), also

called the convention for negative information (Gallaire

1984; Reiter 1978) - if r cannot be proved to be a

member of R, then r is assumed to be in -R. Two other

assumptions (Gallaire 1984) are the unique name

assumption, which states that individuals with different

names are different, and the domain closure assumption,

27

which states that there are no other individuals than

those in the database. These assumptions allow queries

such as "all employees not in the toy department" to be

answered.

Query languages for the relational model can be

divided into two main categories (Ullman 1982): those

based on relational algebra, and those based on

relational (predicate) calculus. The calculus languages

can be further divided into tuple relational calculus

and domain relational calculus. It can be shown

(Ullman 1982) that relational algebra and relational

calculus (both tuple and domain) are equivalent.

Therefore, we will concentrate on relational algebra,

which is more widely used and chosen to be implemented

in ROOMS.

There are five basic operations that define

relational algebra; all other operations can be built

upon these five operations (Ullman 1982). They are as

follows (where R and S are relations):

(1) Union: R U S, is the set of tuples that are in R
or S or both; union is only applied to relations with
the same arity.

(2) Set difference: R - S, is the set of all tuples
in R but not in S; set difference is also only applied
to relations with the same arity.

(3) Cartesian product: R X S, is the set of tuples rs
(i.e., r concatenated with s) for every r in R and
every s in S.

28

(4) Projection: PROJECT (x,y,...,z) R (where
x,y,...,z is a subset of the attributes (columns) of
R), is the set of tuples containing only the
attributes x,y,...,z of the tuples in R.

(5) Selection: SELECT (F) R (where F is a formula
involving (a) operands that are attributes or
constants, (b) the arithmetic comparison operators <,
=, >, -=, >=, and <=, and (c) the logical operators
AND, OR, and NOT), is the set of tuples in R that
satisfy F.

These five basic operations have been implemented in

ROOMS.

Existing commercial (relational) database systems

lack various features that are needed in an object-

oriented dz_)ase (Copeland 1984). Perhaps the biggest

limitatic,, is that they generally offer only a fixed set

of data types (such as integers and character strings),

and do not have the capability to define even simple new

types and operations, much less complex types and an

inheritance scheme (Andrews 1987; Bloom 1987; Caruso

1987; Copeland 1984; Maier 1986; Smith 1987). The

record structuring capabilities are inadequate in that

every record of a given type must be identical in

structure to all other records of that type (Copeland

1984). Null values may be available for missing fields,

but fields that do not fit the "norm" must be somehow

forced to fit the given structure. This leads to a

limitation in modeling power in that much of the real

world data gets over-simplified in the database

(Copeland 1984).

29

It is interesting to note that we actually use

abstract data types in both conventional database

systems and conventional languages without realizing it

(Ong 1984). The only truly non-abstract type is the bit

string. All other types have an internal representation

in the computer, a string of bits, and an external

representation, a string of characters or digits. The

problem is in the limited number of types that are

available in conventional systems and the difficulties

encountered in attempting to add user-defined abstract

data types.

One problem with attempting to store abstract data

types in a conventional database is that the object must

be "flattened out" to fit the existing types. This

usually results in loss of abstractness (and

encapsulation) in that the user can now see the

structure of the object. Two exceptions are INGRES-ADT

(INGRES - Abstract Data Type) (Ong 1984) and RAD (Osborn

1986). In INGRES-ADT, abstract data type facilities

have been added to INGRES, an existing relational

database system. RAD, on the other hand, is an

experimental relational database system which was

designed to support abstract data types.

In order to use an abstract data type in INGRES-ADT

(Ong 1984), the new type and its operations must be

registered with the database manager. This registration

30

must include an internal representation (how the type is

to be stored) and an external representation (how the

type is to be displayed). Conversion routines (from

internal to external form and from external to internal

form) must also be registered. Operations on the type,

along with the precedence of the operators must also be

registered (this facility also allows new operations to

be defined on existing data types). Two areas of

possible future extensions to INGRES-ADT have been

proposed - query optimization within INGRES-ADT and

allowing for an abstract data type inheritance hierarchy

(Ong 1984); as far as we know, neither of these

extensions has been accomplished. However, a new

object-oriented database system called POSTGRES

(Stonebraker 1986) is being developed as a successor to

INGRES - this system will be discussed further in the

section on Object-Oriented Database Systems in this

chapter.

RAD (Osborn 1986) was developed at about the same

time as INGRES-ADT and is similar to INGRES-ADT in that

it allows new data types and their operations to be

added to the database. However, RAD does not allow for

new operations to be added to existing data types.

31

Object-Oriented Database Systems

Object-oriented languages generally lack support

for persistent objects, but conventional database

systems often lack the expressibility of object-oriented

languages (Andrews 1987; Bloom 1987; Caruso 1987;

Copeland 1984; Merrow 1987). An object-oriented

database management system (OODBMS) is able to offer

support for persistent objects by providing a storage

management facility which includes the features and

expressibility of an object-oriented programming

system.

Object-oriented languages are being extended in the

direction of databases, and conventional database

systems are being extended with object-oriented ideas

(Bloom 1987; Thatte 1987). However, there is some

concern that these two approaches are not as compatible

as they may appear on the surface (Bloom 1987). Perhaps

a more integrated approach is necessary, an object-

oriented database programming language (Andrews 1987;

Bloom 1987; Caruso 1987; Copeland 1984). This should

help to simplify the programming process as the

programmer does not have to be aware of two distinct

systems (a database system and a programming language)

(Bloom 1987). An integrated approach should also lead

to improved performance as storage management can be

optimized for a single language (Bloom 1987).

32

Regardless of the approach taken, however, the general

idea is to merge database technology with the object

model (Merrow 1987).

It is also important to provide interfaces to

"conventional" object-oriented languages (Caruso 1987;

Fishman 1987; Maier 1986). This, however, can lead to

an "impedance mismatch" (Copeland 1984). One such

mismatch is conceptual, in which the database language

and the programming language support different

programming paradigms, e.g., one could be a declarative

language while the other is procedural (Copeland 1984).

Another such mismatch is structural, in which the

database language and the programming language do not

support the same data types (Bloom 1987; Copeland 1984).

Conventional (relational) database systems

generally provide "set-at-a-time" access to the data,

i.e., one accesses a relation (set) and then the records

in the relation. Many object-oriented applications

(such as engineering) need "object-at-a-time" access,

for access to individual objects that are not

necessarily a member of any particular set. The

following ideas on the subject are discussed by Thatte

(1987). What we probably need in an object-oriented

database system is both "object-at-a-time" and "set-at-

a-time" access to the data. Historically, people have

tried to use a single database system for all of their

33

applications. Most companies are not interested in

having two incompatible database systems, one for

engineering applications and another one for more

conventional applications. They would prefer to have a

single database system that can handle all of their data

and all of their applications.

We will now discuss several object-oriented

database management systems, including both commercially

available systems and research systems. We will then

briefly summarize the current status of the field.

Analyst. Analyst (Conrad 1987; Xerox 1987; Xerox 1988)

is a product of the Xerox Corporation. It is quite

different from the other systems that will be discussed,

as it is not touted as an object-oriented database

system. Rather, it is called an information analysis

tool (Xerox 1987) or a large scale, multi-media data

storage, retrieval, and manipulation system (Conrad

1987).

The primary goal of the Analyst was to "create a

system readily accessible to the average (non-computer

oriented) user, providing a personal, integrated, and

extensible environment employing a uniform graphical

interface" (Xerox 1987, 2). The Analyst is a single

user system that was developed in Smalltalk-80.

34

The Analyst organizes data into information centers

(likened to a file cabinet) which are further organized

into smaller collections called folders. It uses a

network filing structure (i.e., a navigational approach

where a user "travels" through the system from one

object to the next). It also includes a menu driven

query system.

Document processing is supported, and graphical

tools are provided to handle images, maps, and charts.

These tools include the ability to "zoom in" on specific

parts of a map or image. A spreadsheet is also

included, which is said to be able to handle any

arbitrary object type in a cell.

GemStone. GemStone (Caruso 1987; Copeland 1984; Maier

1986; Penney 1987; Servio Logic Corp. 1988a,b) is a

product of Servio Logic Corporation. It aims at several

application domains that are not served very well (if at

all) by conventional database systems. These

application domains include computer-aided design and

engineering (CAD and CAE), computer-aided software

engineering (CASE), artificial intelligence (AI),

cartography, and electronic publishing.

GemStone was originally designed to use IBM PC

workstations connected to a VAX computer. It now runs

on VAX and Sun computers, and works with IBM PC's, Apple

35

Macintosh II's, Sun, or Tektronix workstations. Servio

Logic Corporation is currently working to add additional

computers to these lists.

OPAL, the database language used in GemStone, was

designed as an enhancement to Smalltalk-80. OPAL allows

for transaction control among multiple users (Smalltalk-

80 is a single-user system), handles both larger

objects and more objects (up to 2 billion) than

Smalltalk-80 does, and includes declarative constructs

for data manipulation (Smalltalk-80 is a strictly

procedural language). It also supports object histories

(i.e., changes to an object over time), allows for

optional variables (with no storage penalty for objects

which do not include the optional variables), and has

the ability to add new variables to existing objects

when a class definition is modified. Interfaces (that

are somewhat more limited than OPAL) have been added for

Smalltalk, C, C++, Objective-C, Fortran, Pascal, and

Ada.

GemStone does not have any relational database

capability built into the system. It does, however,

provide the capability to extract and utilize data from

relational database systems that have an SQL interface.

Objects in GemStone are grouped into collections,

and the system provides several predefined types of

collections. These collections can be ordered or

36

unordered, and various indexes can also be used to

organize them. Objects are then grouped into segments

for access control. Users can access all of the objects

in a particular segment, or they cannot access any of

them. The user can also specify clustering of the

objects on the disk according to access patterns to

minimize the disk access time.

Vbase. Vbase (Andrews 1987; Caruso 1987; Ontologic Inc.

1988; Thatte 1987) is a product of Ontologic Inc. The

stated goals of Vbase are to provide an integrated

language and database system that is general purpose and

easily tailored to suit most any application. It

originally aimed at the CAD and CAE markets, but

currently claims to support any complex application with

complex data.

Vbase currently runs under either the UNIX or VMS

operating systems (with the claim that more are on the

way). COP, the database language used in Vbase, is an

extension of C. Interfaces to COP are also provided for

C and C++.

Object SQL, an extension of the SQL relational

interface, was recently added to Vbase. Unfortunately

though, it is an add-on package and not fully integrated

into the system. A user can either access the data

through the COP interface or through the Object SQL

37

interface. There is no direct way provided to allow the

user to access the data from a relational point of view

and then switch to COP to work with the data retrieved

through Object SQL. It is also not clear (through the

information which we have been able to obtain) whether

there are in effect two separate databases (an object

database and a relational database which allows objects

as abstract data types), or a single database which has

two separate ways of entry.

VISION. VISION (Caruso 1987; Caruso 1988) is a product

of Innovative Systems Techniques, Inc. The basic goal

of the system is to provide a single, extensible

environment for managing persistent data and the

procedures that access and maintain it. This single

environment is said to avoid the problems of separate

database host languages. However (as far as we have

been able to determine), there is no way to interface

outside object-oriented languages to the database

system.

The target application domains of VISION are

investment research, market research, and medical

information systems. This makes VISION different in

that most of the other object-oriented database systems

that we have studied are aimed more at the CAD/CAM and

CASE markets.

38

To support these application domains, VISION is

designed to support large statistical databases. Time

is modeled by keeping a history of an object.

Alternative scenarios are supported by allowing objects

in the database to serve as prototypes for new (possible

future) instances.

Two types of prototypes are supported, new and

specialized. A new instance starts out as a copy of an

existing one (the prototype). Changes to either the new

or existing instance have no effect on the other. A

specialized instance starts out as a pointer to the

existing one. Changes to the existing instance will

affect the specialized instance, but changes to the

specialized instance have no effect on the existing one.

A specialized instance can be thought of as always using

the current object as its prototype, while a new

instance can be thought of as using a specific version

of the current object as its prototype.

Objects in VISION are stored in collections.

Messages can be sent to individual objects or to

collections of objects. A message to a collection

operates on the elements of the collection in parallel.

One final note on VISION. It is claimed that

instances belong to multiple classes. However, this

does not mean that instances may have a form of multiple

inheritance from other classes. What it means is that

39

one can move up the hierarchy and treat an instance of

one class as though it were an instance of an ancestor

of that class.

Other Oblect-Oriented Database Systems. There are a few

other commercial and research systems that we have

discovered with somewhat limited information available.

In this section we present the information that we have

been able to uncover.

Coral3 (Merrow 1987) is a research system being

developed at the System Concepts Laboratory of the Xerox

Palo Alto Research Center (Xerox PARC). It is

essentially an extension of Smalltalk to allow for

shared persistent objects among multiple users.

G-Base (Graphael 1988) is a product of Graphael, a

company with its corporate headquarters in France. The

limited information that we have on this system was

obtained directly from Graphael personnel at the

OOPSLA'88 conference that was held recently in San

Diego, California. G-Base is aimed at CAD/CAM systems,

command and decision support systems, production

information systems, documentation management systems,

simulation systems, training systems, and AI

applications. There are a few production applications

using G-Base in Europe, and Graphael is just now

attempting to move into the U.S. market.

40

Iris (Fishman 1987) is a research prototype

database management system being developed at Hewlett-

Packard Laboratories. It is intended to meet the needs

of CAD/CAM systems, CASE systems, and office information

systems. Three interfaces are being developed for Iris.

The first interface is called C-Iris, an extension of C.

Another interface is OSQL (Object SQL), an object-

oriented extension of the relational database language

SQL. The third interface is called the Inspector. It

is an extension of a Lisp structure browser, and is

intended to eventually become a graphical interface.

These three interfaces are separate and distinct ways of

accessing the data, in much the same way that two

interfaces have been provided for the Vbase system.

ORION (Kim 1987) is a prototype object-oriented

database system being developed by the Microelectronics

and Computer Technology Corporation. It is intended to

support the data management needs of an expert system

development environment.

POSTGRES (Stonebraker 1986), which stands for post

INGRES, is being developed as a successor to INGRES (a

relational database system implemented in 1975-1977 for

research purposes). The goals of POSTGRES are to:

(1) provide better support for complex objects,

(2) provide user extendibility for data types,
operators, and access methods,

41

(3) provide facilities for active databases (i.e.,
alerters and triggers) and inferencing including
forward and backward chaining,

(4) simplify the DBMS code for crash recovery,

(5) produce a design that can take advantage of
optical disks, workstations composed of multiple
tightly-coupled microprocessors, and custom
designed VLSI chips, and

(6) make as few changes as possible (preferably none)
to the relational model.

Summary. All commercially available object-oriented

database systems that we have studied organize objects

into some type of a collection. The importance of this

will be seen in the discussion of our system, the

Relational Object-Oriented Management System (ROOMS),

in Chapter 2. ROOMS is designed in such a way that it

could be added to any existing object-oriented database

system that allows user-specified collections of

objects.

We believe that the following quote from Thatte

(1987, 13) verily sums up the current status of object-

oriented database systems:

Relational database technology took over ten years
before being accepted by the market. Object-
oriented database technology will need five to ten
years to transition from its current status of
"proof of concepts" to the status of "full
commercial systems."

CHAPTER 2

THE RELATIONAL OBJECT-ORIENTED MANAGEMENT SYSTEM
(ROOMS)

As mentioned in Chapter 1, existing object-oriented

database systems deal with collections of objects. In

ROOMS, a relation is treated simply as a specific type

(i.e., a subclass) of collection. As such, ROOMS could

be added to any commercially available object-oriented

database system that allows user-defined collections.

ROOMS could also be implemented in any object-oriented

language which has appropriate I/O commands (such as

some form of random access), in which case ROOMS can be

considered to be a complete database management system

in its own right.

This chapter contains a discussion of the potential

benefits of using ROOMS and an overview of the general

design of ROOMS. This is followed by a detailed

examination of the problems encountered in the

development of ROOMS. It is then shown that these

problems are not unique to ROOMS, that they apply to any

large and complex object-oriented application. A more

detailed description of the implementations of ROOMS (in

PC Scheme and EOOPS) is given in Chapter 4.

42

43

Why ROOMS?

There are several benefits to a system such as

ROOMS. Since the system makes no distinction between

simple objects and more complex objects, both

traditional and nontraditional applications can be

supported with a single database management system.

Different methods can be used for different users.

For instance, user-l might see one display of an object

while user-2 would see a completely different display of

the object. Or, user-l could compare objects in one way

while user-2 compares them in another way. System

security could also be built into the various methods -

a user may see only part of an object or may not be

able to view the object at all; authority to change the

data could be restricted too.

Providing different methods for different users is

a way of implementing views or subschemes of the data.

A view is an abstract model of a part of the data

(Ullman 1982). For example, the manager of a department

may be able to see all of the data stored in the records

of the employees in the department, including their

salaries, while the employees in the department may have

the information about salaries deleted from their view

of the data.

An employee's age is also usually implemented as an

abstraction - the date of birth of the employee is

44

normally stored in a record, not the age. Methods can

then be provided to display either the age or the date

of birth, as appropriate.

It is also a fairly simple matter to extend

conventional applications developed in ROOMS to include

more complex data. For example, a digitized photograph

could be added to an otherwise conventional personnel

record. Similarly, a real estate database could have

the information on houses augmented by blueprints and

maps.

Now, consider the real estate database example in

more detail. Any conventional database system should be

capable of providing the necessary facilities and

constructs to define a simple real estate database.

Basic information about the real estate, such as cost,

lot size, school districts, square footage, number of

bedrooms, and number of bathrooms, could easily be

stored in any database system. A query system could

then select entries based on any number of constraints

on this information.

Non-conventional information, such as pictures or

blueprints of the house, could not be added to the

typical conventional database system. In ROOMS,

however, any object can be added to the database.

Therefore, digitized pictures of the house and drawings

representing its blueprints could simply be added to the

45

record. Views could then be employed :.o tipt when

looking at a list of records, only basic information is

seen, and when looking at an individual record, the

pictures and drawings of the house are also seen.

Adding a map showing how to get to the house is

another problem, even with ROOMS if it has been

implemented in an object-oriented language rather than

added to an object-oriented database system. A simple

map could be added to each record, but it would not be

easy to show the "big picture." However, if ROOMS has

been added to an object-oriented database system, then a

detailed map of the area could be developed outside of

ROOMS. The record in ROOMS could then provide some form

of coordinates that would indicate where in this

detailed map the particular house was located - the

object-oriented database system could then be used to

see the general location of the house, a detailed map of

the immediate neighborhood, or anything in between.

In summary, we believe that the implementation of a

relational database scheme within a more general object-

oriented database system is a very important milestone

for object-oriented programming. It helps to show that

OOP is not just for applications that are not feasible

with conventional languages. Even more traditional

applications can benefit from OOP without sacrificing

existing techniques for manipulating the data.

46

The General Design of ROOMS

Once again, the basics of the system are actually

fairly simple. A relation is an object that is a

collection of records. A record is an object that is a

collection of fields. And a field is an object that is

an instantiation of a user-defined class. The class

definitions for these objects will now be examined in

more detail.

The Class Database

The class database is defined with a single

instance variable, named members. This instance

variable contains a list of all of the relations that

are in the database, e.g., '(R S T) would indicate that

the database has three relations: R, S, and T.

Since database is a class, multiple instances

(databases) may be created. Currently a global variable

called ROOMS is used to indicate which database is in

use, although there is no reason why multiple databases

could not be in use simultaneously.

Various methods are defined for the class database.

Display-yourself simply returns a list of the relations

in the database. Add-member and remove-member add and

remove relations from the database, respectively.

47

The Class Relation

The class relation is defined with two instance

variables: members and record-type. Members contains a

list of all of the records in the relation, e.g., '(el,

e3, e5) would indicate that the records el, e3, and e5

are in the relation. Record-type contains the (user-

defined) class-name of the type of records that can be

members of that particular relation.

Several methods have been defined for the class

relation. Display-yourself displays each record in the

relation. Add-record and remove-record add and remove

records to/from the relation, and get-records displays a

list of all the records in the relation.

The five basic relational operations (union,

difference, selection, projection, and Cartesian

product) are defined as methods of relations. Two

additional operations, intersection and fast-

intersection, are also defined.

The union, difference, and fast-intersect methods

were relatively easy to implement. They use the equal-

to? methods (provided for the class Record and required

for each user-defined class) to determine which records

to select for the result relation. The intersect method

was also relatively easy to implement, as it uses the

"classic" formula of (R - (R - S)) for R intersect S.

48

The select method was more difficult to implement.

At this time, records can only be selected by entire

user-defined objects. That is, if OBJI is the name of

an object that is part of a record, then selections can

only be made based on equality with the value of OBJl;

selection is not allowed on equality with only a part of

the value of OBJI.

The project and Cartesian-product methods both

presented special problems. Since individual record

structures are defined as separate classes, the record

structure for the result of project and Cartesian-

product is different from that of the original

relation(s). This may produce a new record structure

that needs to be defined, or it may produce one

equivalent to a previously defined structure.

Currently, a new record structure is built unless the

user specifies otherwise.

The Class Record

The class record is defined with no class variables

or instance variables. It is intended to provide

methods to user-defined records (using Smalltalk

terminology, it would be implemented as an abstract

class, providing a standard protocol for user-defined

records). Several such methods are provided.

49

The display-yourself method concatenates the result

of display-yourself for every variable and superclass of

the record. The equal-to?, greater-than?, and less-

than? methods make the appropriate comparisons by using

the methods with the same names for every superclass of

the record. The copy-from method makes copies of

records. And the meet-select-criteria? method

determines if a record meets the selection criteria set

forth by the select method of the class relation.

User-Defined Classes

Since ROOMS is a relational system, the objects

must be stored in records. User-defined record classes

must either have the class record as an ancestor or have

all of the methods that would have been provided by the

class record to work properly with the class relation.

The only limits on user-defined classes in ROOMS

are the user's imagination and, of course, any

limitations imposed by the host language and the

hardware that is being used. Once a user-defined class

is specified, objects of that type can be instantiated

and stored in the database.

Various methods are required for the user-defined

classes to work properly with the relation and record

classes. Display-yourself is used by the display-

50

yourself methods of the relation and record classes.

Similarly, a copy-from method is also required.

Equal-to?, greater-than?, and less-than? methods

are also required, although these may simply return

false if it is not appropriate to say that one object is

equal to, greater than, or less than another object.

Note that this has the potential of changing our

"normal" logic in that it is possible for two objects to

be not equal to, not greater than, and not less than;

and that less than or equal to and not greater than may

both be false!

All of these required methods are provided by

ROOMS (in the generic class in the PC Scheme version and

in the default-methods class in the EOOPS version).

These generic or default methods simply operate upon all

of the variables and superclasses that make up a user-

defined class (see the section on Genericity in this

Chapter and also Chapter 4 for implementation details

and a comparison to other approaches). They may not

meet the needs of all user-defined classes, but they do

provide a starting point.

The notion of methods which are required by user-

defined classes is similar to the idea of subclass

responsibility as used in Smalltalk applications (as

discussed in Chapter 1). However, there is no

requirement that the user-defined classes be a subclass

51

of any class supplied by ROOMS, only that these required

methods be provided so that instances of the user-

defined class may be properly manipulated by ROOMS.

Problems Encountered in Developing ROOMS

Several problems were encountered while developing

ROOMS in the object-oriented language PC Scheme. It

will be shown later in this chapter that these problems

are not unique to either ROOMS or PC Scheme. In fact,

most of the problems are presented in a form that is not

dependent upon either ROOMS or PC Scheme.

"Conventional" Inheritance Problems

Most of the problems encountered were due to the

way in which inheritance has been implemented in

"conventional" object-oriented languages. It is easy to

think of a subclass as "everything that its superclass

is, plus some newly defined variables and methods."

However, a subclass is actually "everything that its

superclass is, plus some newly defined variables and

methods, except that some of the inherited variables and

methods have been redefined." If the class designer is

fully cognizant of all the inherited variables and

methods (from all of the ancestors), then there is no

problem. However, by simply reusing an inherited

variable or method name by "accident," it is quite

52

possible to redefine a variable or method without

realizing it - this is the root of most of the problems.

Variable Name Conflicts. Name conflict problems are

illustrated in Figure 1. Let us assume that Object-B is

an instance of Class B. Object-B will have the

variables: Q, R, S, and T. Hopefully, the designer

(and users) of the system will be aware that Object-B's

Q is the Q defined in Class B rather than the Q defined

in Class A.

It could be rightfully argued that this is not a

problem, rather it is what should be expected - the

variable Q has simply been redefined for instances of

Class B. However, this means that the designer of

Class B must know all that there is to know about the

variables inherited from Class A. We cannot simply

define Class B to be everything that Class A is plus

something new without carefully examining the definition

of Class A.

Figure 2 shows how this situation gets even more

involved as we move further down the class hierarchy.

If Object-C is an instance of Class C, it will have five

variables: Q, R, S, T, and U. The S, T, and U are as

defined for Class C, the Q as defined for Class B, and

53

Class A

Superclasses: none

Variables: Q, R, S

Methods: X, Y

Class B

Superclasses: A

Variables: Q, T

Methods: X, Z

Figure 1. Single Inheritance in a Two-level Hierarchy.

54

Class A

Superclasses: none

Variables: Q, R, S

Methods: X, Y

Class B

Superclasses: A

Variables: Q, T

Methods: X, Z

Class C

Superclasses: B

Variables: S, T, U

Methods: W, Z

Figure 2. Single Inheritance in a Three-level Hierarchy.

55

the R as defined for Class A. Once again, the designer

of the system must be aware of all of these definitions.

Method Name Conflicts. In addition to variable name

conflicts, we also have method name conflicts. Again

consider Figure 1. Object-B will have three methods: X,

Y, and Z. The X and Z will be as defined for Class B,

and the Y is as defined for Class A. If Y uses the

variables Q, R, and S, it will get R and S as defined

for Class A and Q as defined for Class B. If Y uses

method X (by sending self the message X), it will now

use the X that has been defined for Class B. It is up

to the designer of Class B to make sure that the

variable Q and method X defined for Class B will work

properly with the method Y inherited from Class A.

This situation also gets more involved as we move

down the class hierarchy. Referring again to Figure 2,

Object-C will have four methods: W, X, Y, and Z - W and

Z as defined locally for Class C, X as defined for Class

B, and Y as defined for Class A. And now if Y uses

variables Q, R, and S, it will get Q as defined for

Class A, and S as defined for Class C.

An additional problem with some object-oriented

languages is an inability to build upon inherited

methods when a locally defined method has the same name.

Referring again to our example from Figure 1, Object-B

56

has three methods: X, Y, and Z. The X is as defined for

Class B, but there is no way to access the method X

defined for Class A, which should have been inherited by

Class B. Even if the new method X (defined for Class B)

is intended to be an extension of Class A's method X, we

cannot simply say to perform Class A's X and then do

something more.

However, a few object-oriented languages, such as

Flavors (Moon 1986) and Trellis (Schaffert 1986), do

allow inherited methods to be called by using the class

name and the method name. As will be seen in Chapter 3,

this is the approach that we have taken with the

Encapsulated Object-Oriented Programming System (EOOPS).

Smalltalk (Borning 1982) and CLOS (Bobrow 1988) also

allow the use of super.method-name, but this is not

sufficient for multiple inheritance, as methods with the

same name may be inherited from different superclasses.

Multiple Inheritance. Multiple Inheritance adds to the

confusion that has been created. Consider Figure 3. If

Object-F is an instance of Class F, it has five

variables: Q, R, S, T, and U. The Q and U are obviously

as defined for Class F, the R as defined for Class D,

and the T as defined for Class E. But what about the S?

There is an S defined for Class D and another S defined

for Class E. Which definition of S is inherited?

57

Class D Class E

Superclasses: none Superclasses: none

Variables: Q, R, S Variables: Q, S, T

Methods: X, Y Methods: X, Z

Class F

Superclasses: D, E

Variables: Q, U

Methods: Y

Figure 3. Multiple Inheritance in a Two-level Hierarchy.

58

Most existing object-oriented languages that

support multiple inheritance resolve situations such as

this by some predetermined formula, usually based on the

order in which the superclasses are presented. Assuming

that we would start with the superclass that is listed

first, the S will be as defined for Class D.

Similarly, Object-F will have three methods: X, Y,

and Z. The Y is as defined for Class F and the Z is as

defined for Class E. Using the same conflict resolution

rules for methods that we used for variables, the X

will be as defined for Class D. Now assume that method

Z (originally defined for Class E) uses the variables Q,

S, and T, and the method X. For Object-F, the variable

Q will be as defined for Class F, S as defined for Class

D, and T as defined for Class E, and the method X will

be as defined for Class D.

It can still be argued that we are simply

redefining both variables and methods, and that it is up

to the designer to ensure that the changes are

compatible with all inherited variables and methods.

Even with all of these problems, has any real harm been

done?

Compounding the Problem - Modifying Class Definitions.

All of these problems get even worse when we consider

the effects of changing class definitions. Adding to

59

the definition of a class presents no real problems for

any of its descendants other than for persistent

objects. Removing or redefining variables or methods,

however, can have a "rippling" effect, requiring that

all of the descendants be checked for compatibility with

the changes of the ancestor.

Once again consider Figure 1. If the definition of

the variable Q or the method X of Class A is changed or

even deleted, there is no effect upon the definition of

Class B. If a variable or method is added to the

definition of Class A, then that variable or method has

in effect also been added to the definition of Class B.

However, if we change the definition of either of the

variables R or S, or the method Y, then the methods X

and Z of Class B must be carefully checked to ensure

that they will still work properly with the modified

variables and methods of Class A.

This process of deciding which descendants must be

modified is not as easy as it might first appear.

Although we talk about superclasses and subclasses, most

object-oriented languages only define superclasses;

there is no way to directly dete ne what subclasses a

class has by simply looking at a program listing (as

only the superclasses are listed). Therefore, we must

generate the class hierarchy to determine what the

descendants of a class are. Note, however, that it is

60

possible to build this feature into an object-oriented

language; the GemStone database system (Penney 1987)

does check the subclasses to determine if a proposed

change to the variables of a class will cause problems

with that class' descendants.

Database Record Structure

There were several design issues in developing

ROOMS, mainly as to when to use subobjects and when to

use dependent objects. We generally prefer subobjects

as they are individually addressable while dependent

objects are not. This allows the user more flexibility

in accessing objects - either the composite object can

be told to send a message to one of its subobjects, or

the message can be sent to the subobject directly. This

probably "opens the door" to potential user abuse, but

it also allows for the potential sharing of subobjects.

In particular, the record structure in ROOMS was a

question mark. We originally treated the fields of the

record as subobjects due to the potential name conflicts

of multiple inheritance. If multiple inheritance

without these problems were available, however, what

form should a record take? It could be a composite

object, consisting of either subobjects or dependent

objects, or all of the fields could be superclasses

under multiple inheritance.

61

As previously mentioned, it has been stated that

multiple inheritance should only be used when the new

class is the sum of the behaviors of the superclasses

(Halbert 1987). Is a record the sum of the parts

(fields)? Or is it the sum of the behaviors of the

fields? It could probably be argued either way, but we

would prefer to use multiple inheritance. For example,

the message

(record change-zip 32951)

seems to be easier to understand and more straight-

forward than the message

((addr of record) change-zip 32951)

especially when one considers that the level of nesting

of subobjects/dependent objects could be very deep, for

example

((a of (b of (c of (d of ...)))) message argument)

We believe that a user of ROOMS should only be

concerned with accessing relations and records. A user

should not have to know about how the record is

constructed in order to gain access to the data that

makes up the record. Therefore, messages should be sent

to the record rather than to its parts, and as such we

should use multiple inheritance.

62

Relational Operations

The union and difference operations were relatively

simple and straight forward to implement, and as such

they were the first operations implemented. The result

of these operations is a relation which is of the same

type (class) as the original relations, so the only

concern was with the operation itself.

The select operation was somewhat more difficult.

The result relation is still of the same type as the

original relation - the problem is in determining what

to allow as selection criteria. At this time,

selection is allowed only on whole objects (i.e.,

subobjects).

The project and Cartesian product operations

presented special problems. Project uses only a part of

each record while Cartesian product combines two record

structures. If the effects of these operations are to

be more than temporary (e.g., the effect of a "display"

is temporary and the effect of an "assignment" is

permanent), then we are faced with building new record

structures. Either the user will have to define these

new structures in advance, or the system will have to

define them as needed. It is preferable to have the

system define the new structures dynamically. This

means that what we really need is a dynamic class

builder, a proper metaclass to which a message can be

63

sent to build the appropriate new record structure

class.

Genericity

Generic code is a potential answer to part of the

name conflict problems of inheritance, but unfortunately

PC Scheme does not support genericity. However, since

PC Scheme is LISP based (which allows the output of a

routine to be another routine), some "simple" generic

routines can be developed. And by applying some

structure to choosing variable names, "semi-generic"

methods can be used.

The use of "semi-generic" code is illustrated in

Figure 4. In this example, the only method that Class

New-Object has is Display-Yourself, which will use the

class variable New-Object-Display-List. The method,

which is inherited from the Class Object, will be using

a class variable that the Class Object does not even

have. Note that in the display list: (1) the instance

variables can appear in any order, (2) instance

variables may appear more than once, and (3) instance

variables may even be left out of the list.

This generic approach, especially the idea of

"semi-generic" code, is comparable to the idea of

subclass responsibility in common protocols in Smalltalk

(Johnson 1988; Pinson 1988) and virtual methods in C++

64

Class Object

Superclasses: none

Class Variables:

Object-Display-List value: null

Instance Variables: none

Methods:

Display-Yourself

For x in

(concatenate (class-of self)

'-Display-List)

display x

Class New-Object

Superclasses: Object

Class Variables:

New-Object-Display-List value: '(Q, R, S)

Instance Variables: Q, R, S

Methods: none

Figure 4. "Semi-generic" Code.

65

(Stroustrup 1986b; Wiener 1988). The general idea of

all three approaches is essentially the same - the

superclass can provide methods that can be used by the

subclass, but these methods may need specific

information from the subclass (or the instance of the

subclass) in order to function properly. The most

commonly used approach in Smalltalk and C++ is to

require that the subclass include specific methods to

provide this information, whereas in ROOMS we have

required that the subclass include specific class

variables to provide this information.

There are three main reasons that we chose to

require specific class variables in the subclass rather

than specific methods. First is that it seems (to us)

to be easier to simply include "extra" class variables

in a class definition rather than to encode "extra"

methods so that the superclass methods will function

properly. Secondly, class variables may be changed at

any time to alter their values (and therefore also alter

the result of the inherited method), while a subclass

method would have to be reimplemented to change the

value that it returns. The third reason is directly

related to our use of PC Scheme as our main test

language - in PC Scheme direct access of a class

variable is much more efficient (and therefore faster)

than executing a method to obtain the same information.

66

Why These Problems Are not Unique to ROOMS

Most of the problems of name conflicts with

inheritance in "conventional" object-oriented languages

were presented in general terms. The design issues of

dependent objects versus subobjects versus multiple

inheritance are applicable to building any system of

class definitions. The project and Cartesian product

operations are specific to relational systems, but the

more general ideas of dynamic class building and

metaclasses are not. The idea of generic methods that

can be instantiated for various classes is also not

unique to ROOMS - any application could benefit from

this.

None of the examples used in describing the

problems discussed in the previous sections are specific

to PC Scheme. Other OOP languages may use a different

set of rules for determining which variable or method to

use in the case of duplicate names, and some do allow an

inherited method to be accessed even if a new method

witi the same name has been defined. Some OOP languages

do not even allow 'multiple inheritance. The design

decision of whether to use dependent objects or

subobjects is also independent of the specific language

used. And PC Scheme is not the only OOP language that

lacks a dynamic class builder.

67

In summary, none of the languages that we have

studied provide easy solutions to all of the problems

that we encountered. This is the main reason that we

designed the Encapsulated Object-Oriented Programming

System (EOOPS), which is discussed in the next chapter.

CHAPTER 3

THE ENCAPSULATED OBJECT-ORIENTED PROGRAMMING SYSTEM
(EOOPS)

The underlying philosophy of EOOPS is that

encapsulation should be fully preserved, even with

inheritance - a subclass should not know about or be

dependent upon the specific definition of class

variables, instance variables, or methods of any of its

ancestors. A subclass is restricted to the external

interface of its superclass(es), with no direct access

of any inherited variables.

It should be noted that we cannot claim to be the

originator of all of these ideas. Our main motivation

for EOOPS came from the article "Encapsulation and

Inheritance in Object-Oriented Programming Languages"

(Snyder 1986), and from our frustration with the way

that inheritance is implemented in PC Scheme (Texas

Instruments Inc. 1987a,b), the main test language used

in developing ROOMS.

It should be remembered that EOOPS is not intended

to be a complete language. As mentioned in the

introduction to this dissertation, only those features

unique to an OOP language were included. Thus, EOOPS

68

69

might be considered a "bolted-on" OOP package that

could be added to any conventional language, along the

lines of SCOOPS, the object-oriented part of PC Scheme,

or it could serve as the core of a language in which OOP

principles are "built-in."

This chapter discusses the potential benefits of

EOOPS, and then presents EOOPS from a design point of

view - what was done and why. The EOOPS Language

Reference Manual is provided in Appendix A.

An Encapsulated Form of Inheritance

In EOOPS, inherited instance and class variables

are only accessible through inherited methods. If

variables with the same name are inherited from

different ancestors, then distinct copies of those

variables are maintained, each accessible only through

the appropriate methods that are inherited with it.

The Internal and External Interfaces

Two interfaces are defined for each class - an

internal interface and an external interface. As

commonly used in other OOP languages, the external

interface is the set of methods available for use by

(users of) the instances of a class. In EOOPS, it

consists of the methods defined locally for the class

and the inherited methods which can be referred to

70

unambiguously by using a "first-come first-served"

resolution scheme.

The internal interface is the set of methods which

are available for use by those methods which are defined

(i.e., not inherited) for a class. It consists of the

methods defined locally for the class and all of the

methods in the external interface of each superclass

(not to be confused with each ancestor of the class).

Method name conflicts in the internal interface are

avoided by concatenating the name of the superclass with

the name of the method (i.e., superclass-name.method-

name).

In the "first-come first-served" resolution scheme

which is used in defining the external interface of

EOOPS, the method that will be chosen in the case where

several methods with the same name are inherited will be

that of the "first" parent (based on the textual order

in which the superclasses are listed) which defines that

operation (Snyder 1986). This resolution scheme is the

one that is used in PC Scheme.

For single inheritance, this resolution scheme

effectively assumes that all inherited methods will

become part of the new class' external interface, unless

the new class defines (redefines) a method with the same

name as an inherited method. In this, case, the

inherited method is no longer a part of the external

71

interface - it has been replaced by the locally defined

method of the same name.

For multiple inheritance, this assumption holds

true only when methods with the same name are not

inherited from different superclasses. There are

several possibilities for determining which inherited

method(s) will be in the external interface in this

case, including choosing the "first" one that is found,

choosing one other than the "first," choosing all of the

inherited methods (either in some particular order or in

parallel), or choosing none of the inherited methods

(i.e., the inherited methods with the same name would be

available in the internal interface only).

In EOOPS, the "first" method that is found will be

chosen for the external interface. If this is not what

is desired, then the method may be redefined by the

inheriting class. Additionally, any of the inherited

methods may be specifically excluded from the external

interface by using the external-delete-method command.

It should be noted that any method, whether

inherited or defined locally, can be specifically

excluded from the external interface by using the

external-delete-method command. Therefore, the designer

of the class has the final decision as to which methods

will be in the external interface (for more information

72

on this command, see the section on External-Delete-

Method Command in this chapter or refer to Appendix A).

When using inherited methods, the class definition

is effectively tied to its superclass(es). That is, if

the class is redefined to change its position in the

hierarchy (by deleting or changing superclasses), then

the methods which were inherited will no longer be

available (unless a new superclass provides appropriate

methods with the same name).

However, this is a problem in any object-oriented

language, not just in EOOPS. It is up to the designer

(or redesigner) of a class to ensure that its external

interface is maintained for maximum compatibility with

its old definition. Inherited methods which were

available in the external interface must now be

provided, either from the modified class itself or from

a new superclass, to accomplish this.

While this would maintain the external interface,

the internal interface is still a problem. If a method

defined by a class calls an inherited method using the

superclass-name.method-name format, then an error will

occur if superclass-name is deleted as a superclass.

However, all of the methods in the external interface

are also in the internal interface, so message calls

using the superclass-name format are only necessary if

that method has been redefined or if more than one

73

method with that name has been inherited. Thus, this

problem can be minimized by using the superclass-name

format only when necessary.

Having an external and an internal interface for a

class is similar to the notions of public and private

provided by C++ (Stroustrup 1986b). If inheritance is

not considered, then the external interface of EOOPS is

equivalent to the set of methods which have been

declared to be public in C++, and the internal interface

of EOOPS is equivalent to the union of the public and

private sets of methods in C++.

With inheritance, however, the two approaches begin

to differ. In EOOPS, all of the locally defined methods

and all of the inherited methods are in the internal

interface. All of the locally defined methods are also

in the external interface, but the only inherited

methods which are included are those which can be

referred to unambiguously. In C++, a class is inherited

(actually, in C++ terminology, we say that a class is

derived from another class rather than that it inherits

from another class) as either public or private, in

which case only the public methods of the superclass

become either public or private in the subclass (the

private methods of the superclass are not directly

accessible to the methods of the subclass in C++).

74

C++ also includes friend functions (methods) and

protected sections of the class definition (Micallef

1988; Stroustrup 1986b; Wiener 1988). These are always

directly accessible to the subclass. Similarly, Trellis

allows subtype-visible operations (Micallef 1988;

Schaffert 1986). These schemes provide a way to make

methods available tc the subclasses but not to the

instances of a class. EOOPS also provides for subtype-

visible definitions with the generic-class concept -

this is discussed further in the Genericity section of

this chapter.

Single Inheritance in EOOPS

Single inheritance in EOOPS can be illustrated by

once again using Figure 1. Now Class B has the

variables Q and T defined locally and a set of

variables {Q, R, S) which it inherits from Class A. The

internal interface of Class B consists of the methods X

and Z defined locally, and the methods A.X and A.Y which

are inherited from Class A (i.e., the external interface

of Class A has become a part of the internal interface

of Class B). The external interface of Class B consists

of the methods X and Z defined locally, and Y which

resolves to A.Y. The method A.X is not a part of the

external interface (due to a name conflict with the X

75

defined locally) and is therefore not available to the

descendants or instances of Class B.

The methods X and Z defined for Class B can only

access the variables Q and T which are also defined

locally. To access any inherited variables requires

that an inherited method be used. And when an inherited

method accesses a variable by name, it will access the

appropriate variable inherited along with it, e.g., if

method Y inherited from Class A ac, sses variable Q, it

will use the variable in the set (Q, R, SI that was also

inherited from Class A.

It should be noted, though, that (the designer of)

a class need only be concerned with the behavior of

inherited classes (i.e., the methods that are inherited)

and not with the variables that are inherited. An

inheriting class only knows that a set of variables

(possibly empty) has been inherited. It does not know

how the inherited methods are implemented or what

variables they access - it only knows in general terms

what the inherited methods do (i.e., their behavior).

If an inherited method calls upon other methods, it

can only use methods that it knew about when it was

defined, e.g., if method A.Y (inherited from Class A)

calls method X, it will use the method X which was also

inherited from Class A; when we call an inherited

method, we change to its internal interface until it is

76

finished executing. If this is not what is desired,

then a new method should be provided, i.e., define a new

method Y for Class B which uses the method X defined for

Class B. However, Class B should only know what methods

are inherited and what these methods accomplish - it

should not know (or even be concerned with) how the

methods are implemented and what methods or variables

they use.

Once again refer to Figure 2 to see how this

encapsulated form of inheritance works as the

inheritance hierarchy is expanded from two levels to

three levels. Object-C now has the variables S, T, and

U defined locally, and a set of variables {Q, T, (Q, R,

S)) inherited from Class B. The internal interface of

Class C consists of the methods W and Z defined locally,

and B.X, B.Y, and B.Z (the external interface of Class

B). The external interface of Class C consists of the

methods W and Z defined locally along with the methods X

and Y which resolve to B.X and B.Y (note that Y was

inherited by Class B from Class A).

A- in the two-level hierarchy example, inherited

variables are only accessible by using tLe methods which

were inherited along with them. In the three-level

hierarchy, however, the inherited set of variables {Q,

T, (Q, R, S)) contains an inherited set of variables (Q,

R, S). The variables in this "internal" set, originally

77

inherited by Class B from Class A, are only accessible

by using those methods inherited from Class B which were

either inherited from Class A or use a method that was

inherited from Class A.

Once again though, as in the two-level hierarchy,

a class need not be concerned with the inherited

variables or which inherited methods access these

variables. We do not even need to know that it is a

three-level hierarchy. The actual inplementation of

the class which we are inheriting from is unimportant to

us. We need only be concerned with its behavior (i.e.,

its external interface).

The methods A.X and A.Y are not available for

direct use by Class C (i.e., they are not in either the

internal interface or the external interface of the

class) as they were not included in the external

interface of Class B. If we allow either an instance of

Class C or a method of Class C to directly use the

method A.X or A.Y inherited from Class A, then we have

again violated encapsulation. All that Class C should

know is that it has variables S, T, and U, methods W and

Z, and a superclass B. It should also know that it has

the methods B.X, B.Y, and B.Z and a set of variables

that it inherited from its known superclass B. If Class

C knows that it has methods A.X, and A.Y, then in some

78

way it knows "too much" about its ancestry - it knows

more than what it was told in its definition.

Multiple Inheritance in EOOPS

Multiple inheritance in EOOPS is illustrated using

Figure 3. Now Class F has the variables Q and U which

are defined locally, a set of variables {Q, R, S)

inherited from Class D, and another set of variables (Q,

S, T) inherited from Class E. The method Y defined in

Class F can only directly access the variables Q and U

defined in Class F - to access any inherited variable

requires that an inherited method be used. Also, if an

inherited method accesses a variable by name, it will

access the appropriate variable inherited from the same

class, e.g., if method Z inherited from Class D

accesses variable Q, it will use the variable in the set

{Q, R, S) that was also inherited from Class D.

If an inherited method calls upon another method,

then it will only use the method that is inherited along

with it, e.g., if method Z inherited from Class D calls

method X, it will use the method X inherited from Class

D, not the method X inherited from Class E or some

method X which could be defined for Class F. If this is

not what is desired, then a new method should be

provided, i.e., define a new method Z for Class F which

uses some other method X. However, the designer (and

79

users) of Class F will only know what methods are

available for use; they need not be concerned with how

these methods are implemented.

If methods with the same name are inherited from

different superclasses, then each is still available.

This is accomplished by concatenating the name of the

superclass with the name of the inherited method, e.g.,

to specifically reference class D's method X, use D.X.

Multiple Inheritance From a Single Superclass

In Figure 5, Class G inherits from Class A twice-

once directly and once indirectly (from Class B). Class

G should only know about the direct inheritance of Class

A. The set of variables and methods from Class A that

is inherited indirectly through Class B should only be

available through the methods inherited from Class B.

If Class G knows that it has inherited more than once

from Class A, then it knows more than what it has been

told in its definition.

Thus, if Object-G is an instance of Class G, it

will have the variables S, T, and U defined locally, a

set of variables (Q, R, S) inherited from Class A, and

a set of variables (Q, T, (Q, R, S)) inherited from

Class B. The internal interface of Class G will contain

the methods W, Z, A.X, A.Y, B.X, B.Y, and B.Z. The

80

Class A

Superclasses: none

Variables: Q, R, S

Methods: X, Y

Class B

Superclasses: A

Variables: Q, T

Methods: X, Z

Class G

Superclasses: A, B

Variables: S, T, U

Methods: W, Z

Figure 5. Multiple Inheritance with an Ancestor
Appearing Twice in the Hierarchy.

81

external interface will contain the methods W, Z, and Y

(which resolves to A.Y).

Figure 6 shows how this idea is expanded to allow

multiple inheritance directly from a single superclass.

Class I will inherit three sets of variables (Q, R, S)

and three sets of methods X and Y. The methods are

referred to as H.I.X, H.2.X, etc. The individual sets

of variables can only be referred to by the appropriate

methods that are inherited along with them. The usage

of a structure such as this may be limited (one example

is a target, made up of several circles of alternating

colors), but when encapsulation is preserved, it is

possible.

The Metaclass

A metaclass has also been included in EOOPS. The

metaclass has a dynamic class building method available

which is similar to the typical "define-class" method

(operation) that exists in most OOP languages. A

message can now be sent to the metaclass giving the

name of a new class and the names of superclasses,

class variables, and instance variables for the new

class. The metaclass then produces a new class with the

appropriate structures. Users can also add methods to

the metaclass in order to meet the various needs of

specific applications.

82

Class H

Superclasses: none

Variables: Q, R, S

Methods: X, Y

Class I

Superclasses: H, H, H

Variables: none

Methods: X

Figure 6. Mu),'ple Inheritance from a Single Ancestor.

83

Genericity

Generic code is also a feature of EOOPS. This is

really nothing new in itself, as various forms of

genericity are available in many non-OOP languages.

However, most discussions of genericity and OOPS are

either comparisons (Meyer 1986) or they are concerned

with showing how inheritance can be simulated using

genericity (Touati 1987). They have not addressed how

genericity itself can be applied to enhance the existing

features of OOPS.

There are two types of generic code in EOOPS -

generic methods and generic classes. A generic method

is simply a method which can be instantiated by user-

defined classes. A list of generic parameters is used

to match up variable names within the generic method

with methods and variables available to the user-defined

class.

Generic class definitions are used to provide class

variables, instance variables, and methods by name to a

regular (i.e., not generic) class. When instantiated

(as part of a user-defined class), a generic class is

treated essentially the same as an inherited class in a

conventional object-oriented language. Generic methods

can be instantiated for generic classes. A generic

class may not have any instances.

84

A generic class can be compared with the idea of

the abstract class (Johnson 1988). The difference is

that EOOPS provides generic classes as a constiuct

rather than as a concept - an abstract class has no

instances, but this is not enforced by the system,

whereas EOOPS does not allow generic classes to have

instances. A "regular" class in EOOPS could also be an

abstract class if it had no instances.

Another function of generic classes is more closely

related to the idea of having public, private, and

subtype-visible partitions in some other object-oriented

languages (Micallef 1988). The external and internal

interfaces of a "regular" class in EOOPS provide the

public and private sets of methods (all variables are

private). The subtype-visible part has been placed into

a separate definition altogether, that of the generic

class.

Special Methods

Several special methods have been incorporated in

EOOPS. These methods give the user information about

classes and objects. Most of these special methods are

similar to functions which are provided in PC Scheme.

Three such methods are get-superclasses, get-class-

variables, and get-instance-variables. Sending one of

these messages to a class will return a list of

85

superclasses, class variables, or instance variables, as

appropriate.

Another special method is class-of-object?. This

method simply returns the class of the object to which

the message is sent. It returns nil if the "object" to

which it is sent is not an object (i.e., it is a

variable or constant).

The External-Delete-Method Command

As previously mentioned, the external-delete-method

command is used to delete methods from the external

interface only (i.e., the methods remain in the internal

interface). There are two main uses for this command.

First, as previously discussed, inherited methods may be

specifically deleted from the external interface.

Secondly, new methods may be defined for a class (which

would normally be a part of both the internal interface

and the external interface) and then deleted from the

external interface.

This command can be used to give the equivalent of

the public and private methods as defined in C++

(Stroustrup 1986b). The main difference is that a

class definition in C++ declares each of the methods of

the class as either public or private, while in EOOPS

methods are not declared at all in the class definition.

This means that new methods may be added to an EOOPS

86

class at any time without modifying the class

definition.

Two different define-method commands could have

been provided in EOOPS (one for methods to be in the

internal interface and one for methods to be in the

external interface), but this would not have allowed for

the deletion of inherited methods from the external

interface. Similarly, the class definition could have

been extended to include a declaration of external and

internal only methods, but this still would not have

allowed for changing the status of inherited methods.

Regardless of the benefits of using a procedural

approach (such as that used in EOOPS) versus the

benefits of using a declarative approach, the end

results are the same. The main advantage of having an

explicit external-delete-method command is that the

status of inherited methods in the external interface

may be handled individually, rather than having to treat

all of the methods inherited from a superclass as either

public (i.e., as part of the external interface) or

private (i.e., as part of the internal interface).

The Send Command

Send is used in the SCOOPS portion of PC Scheme to

indicate that a message is being sent to an object. For

example, (send objl messagel) indicates that messagel is

87

being sent to obji. However, most object-oriented

languages use a format similar to (objl messagel) to

send messagel to obji.

Although it is not specifically stated in the PC

Scheme manuals (Texas Instruments Inc. 1987a,b), we are

fairly sure that the keyword send is simply used as a

"trap" for SCOOPS commands - it indicates to the

compiler that a SCOOPS command is coming.

We have opted to include the keyword send in EOO'0

for two reasons. The first is for purely aesthetic

reasons - it is easier to pick out the messages in a

program listing when the send keyword is present. This

should be fairly obvious when scanning through Appendix

C.

The second reason, however, is more substantial.

Using the keyword send allows users to build their own

trap. A macro can be written using another keyword

(such as dbsend) which may perform some other function

(such as error checking) before sending the message on

to the object.

Special Note on Class Variables

Inherited class variables can be impleranted in two

different ways. Consider Class J in Figure 7. It has

one class variable, Q, which is shared in both name and

88

Class J

Superclasses: none

Class Variables: Q

Instance Variables: none

Methods: none

Class K

Superclasses: J

Class Variables: none

Instance Variables: none

Methods: none

Figure 7. Inheriting Class Variables.

89

value by all instances of Class J. Class K has Class J

as a superclass, so it inherits the class variable Q.

But is this variable Q now shared in both name and

value by all instances of Class J and Class K? That

would mean that if an instance of Class J changed the

value of Q, it would also be changed for instances of

Class K. It would also mean that if an instance of

Class K (or any other descendant of Class J) changed

the value of Q, it would also be changed for instances

of Class J.

The other alternative is that Class K inherits a

copy of the variable Q defined for Class J. Now,

changing the value of Q for either Class J or K has no

affect upon the value of Q for the other class. This

is the approach that was chosen for EOOPS. Allowing an

instance of a descendant class to change the value of an

ancestor's class variable just does not seem to go along

with the "spirit" of the strict encapsulation provided

in EOOPS. Another possibility is to allow both kinds of

class variables - this alternative is discussed in

Chapter 5.

The Benefits of EOOPS

There are several benefits to using a system such

as EOOPS. Encapsulation is strictly enforced, so that

both the instances of a class and the subclasses of a

90

class are presented with the same interface. This

greatly reduces the effects of modifying class

definitions. The internal structure of a class (i.e.,

the variables) may be modified, without affecting

clients (the users, either instances or subclasses) of

the class as long as the external interface still

appears the same (i.e., maintains the same functionality

and message calling format).

For example, a class circle could be defined using

a Cartesian coordinate system. With the strict form of

encapsulation that is used in EOOPS, if the class circle

is modified to use a polar coordinate system instead,

the changes will have virtually no effect on any client

of the class circle. No effect, that is, as long as

appropriate modifications are also made to (the methods

in) circle's external interface so that it appears to be

the same as before.

One problem that still exists, even with EOOPS, is

the effects that changing a class definition has on

persistent objects (i.e., objects which last beyond a

single session). Continuing with the class circle

example, instances of the class circle and the instances

of all of its subclasses which were created before

circle's definition was changed will need to be modified

if they are to be used with the new definition of

circle.

91

Although EOOPS does not solve this problem, it does

help, in so far as the subclasses are concerned. Since

none of the variables of the class circle can be

redefined by any subclass, the changes necessary for

instances of subclasses of the class circle are the same

as for instances of class circle. Furthermore, if the

original external interface is maintained (or only added

to), then the use of these methods within the subclasses

will still be correct.

The "accidental" redefinition of inherited

variables (i.e., redefining an inherited variable by

reusing its name without realizing it) is no longer

possible, so this problem is eliminated. Therefore,

programmers need only be concerned with the external

interface of inherited classes rather than their actual

implementation.

The larger the programming project and the more

programmers involved, the greater these benefits

become. Consider a "fairly large" system being

developed by 10 programmers. With EOOPS, each of the

programmers can independently develop their part of the

system, providing the others with only their particular

external interface. Changes can then be made to the

class definitions in any section of the system, with

minimal effects on the other sections as long as the

external interface is maintained. Only persistent

92

objects of classes which have a modified class as an

ancestor will be affected.

Without an encapsulated form of inheritance, the

effect of changing a class definition will "ripple"

through the class hierarchy. Any descendant of the

modified class that accesses inherited variables by name

must also be modified. This means that no amount of

testing of the modified class alone will guarantee that

the system will still work properly. Now take our

previously mentioned "fairly large" system with 10

programmers and turn it into a "very large" system with

100 (or more) programmers, and this problem gets even

worse.

Unfortunately, this problem is not eliminated

completely by EOOPS. Using generic classes to model

generic concepts gives a class which does not have any

instances, but the variables in the generic class are

accessible by name in classes which instantia~e the

generic class (i.e., the definition of a generic class

is subtype visible). Therefore, changes to a generic

class may directly affect classes which instantiate it.

However, generic classes do allow generic concepts

to be defined as such rather than implemented as an

abstract class that appears the same as a regular (or

concrete) class. It also means that all definitions

which are subtype visible can be readily identified,

93

because only the definitions of generic classes are

subtype visible.

Generic methods allow for functions which may be

needed by several different (possibly unrelated) classes

to share the code which defines the methods. This could

reduce the amount of code in large systems, which would

ease the task of maintaining the system.

Since the metaclass in EOOPS is treated as a

"regular" class, methods may be added to it. This means

that EOOPS could be used to test and implement new ideas

for object-oriented systems by simply adding new methods

to the metaclass.

We have now discussed (in Chapter 2) the basic

design of ROOMS and (in this chapter) the basic design

of EOOPS. In the next chapter we will compare and

contrast the implementations of ROOMS in PC Scheme and

EOOPS.

CHAPTER 4

THE IMPLEMENTATION OF ROOMS

As mentioned in Chapter 2, the basics of ROOMS are

actually fairly simple. A relation is an object that is

a collection of records. A record is an object that is

a collection of fields. And a field is an object that

is an instantiation of a user-defined class.

While Chapter 2 discussed ROOMS from a general

design viewpoint, this chapter presents a comparison of

the actual implementation of ROOMS in PC Scheme and

EOOPS. To help simplify this discussion, the PC Scheme

version of ROOMS will be referred to as PCS/ROOMS and

the EOOPS version will be referred to as EOOPS/ROOMS.

The actual code for these implementations is given in

Appendices B and C.

Required Methods

Several methods are required for virtually all of

the classes defined for ROOMS. "Generic" versions of

these methods are provided in both PCS/ROOMS and

EOOPS/ROOMS. User-defined classes may either use these

generic methods, define their own versions of these

94

95

methods, or use some of the generic methods and define

some of their own.

In PCS/ROOMS, these methods are defined in a class

called generic. These methods are available if this

generic class appears anywhere in the ancestry of a

user-defined class (note that this is a "regular" class

that is named generic, not a generic class as can be

defined in EOOPS).

In EOOPS/ROOMS, these methods are defined as

generic methods, which can then be instantiated as

needed by the various classes. A generic class could

have been used, but a "regular" class could not have

been used because inherited methods would not be able to

access locally defined variables.

The method display-yourself is required for all

classes. It must provide some form of display of the

object. The generic version simply displays the value

of each class variable and instance variable of the

object, along with all of the inherited class variables

and instance variables.

Equal-to?, less-than?, and greater-than? methods

are also required. They must be capable of comparing

two objects, and return true or false. They may,

however, simply return false if it is not appropriate to

say that one object is equal to, greater than, or less

than another object. Note that this has the potential

96

of changing our "normal" logic in that it is possible

for two objects to be not equal to, not greater than,

and not less than one another. The generic versions of

these methods simply compares the values of each

instance variable of the objects and then compares the

values of each of the inherited instance variables.

A copy-from method is also required for each class.

This method allows an object to make itself a copy of

another object. The generic version sets the value of

each instance variable of the first object to that of

the second object, and then sets all of the inherited

instance variables of the first object to those from the

second object.

The PCS/ROOMS versions of these methods require

that certain class variables be present in user-defined

classes (this is similar to the idea of subclass

responsibility in Smalltalk applications - see Chapter 2

for a more detailed discussion of these two approaches).

These class variables are necessary to convey

information about the instance variables to these

methods. Display-list (used by the display-yourself

method) is a list of all instance variables to be

displayed, in the order in which they are to be

displayed. Equality-list (used by the equal-to?, less-

than?, and greater-than? methods) is a list of all

instance variables to be compared, in the order in which

97

they are to be compared. And instvar-list (used by

copy-from) is a list of all the instance variables that

make up the object. Note that inherited instance

variables must be included in these lists if they are to

be displayed, compared, or copied by these methods.

The display-list and equality-list are actually

made up of ordered pairs consisting of the variable name

and the type of variable (variable, subobject, or

dependent object). The instvar-list is made up of

ordered triples consisting of the variable name, the

type of variable, and (in the case of variables) if it

is an atom or a list.

The Class Database

As discussed in Chapter 2, the class database was

designed with a single instance variable, named members.

This instance variable contains a list of all of the

relations that are in the database, e.g., '(R S T) would

indicate that the database has three relations: R, S,

and T.

The database class is one of the two classes (the

other class is the class relation) that do not need all

of the previously discussed required methods. A

display-yourself method is provided, but it is generally

inappropriate to compare two databases. A copy-from

method could be used to make a backup copy of the

98

database, but there are most likely more efficient ways

of performing this function.

In PCS/ROOMS, a class variable (free-list) was also

needed. In PC Scheme, a variable is considered local

unless it is defined through the top-level Read-Eval-

Print (REP) loop. As such, any variable defined within

a method (or procedure) exists only as long as that

method is executing.

The PCS/ROOMS record structure consists mainly of

subobjects, so any relation operation (such as Union)

with a permanent relation as its result needs to make

copies of all of the source records (objects) that will

be in the result. However, any new objects created by a

method will not exist after the method is finished!

Therefore, "enough" new variables (methods are provided

in the class relation to determine how many) must be

created ahead of time. Methods (such as Union) may then

get one of these new variables and instantiate it as an

object, and it will still exist after the method has

finished.

PCS/ROOMS also provides a macro (make-generic-

variables) which makes generic variables and adds them

to the free-list variable (of the class database). This

macro must be run at the top-level REP loop. The number

of variables to be created must be specified, and the

99

macro must be run before any relation operation (such

as Union) can be run.

The Class Relation

The class relation is the other class that does not

need all of the previously discussed required methods.

As discussed in Chapter 2, the class relation was

designed with two instance variables - members and

record-type. Members contains a list of all of the

records in the relation, e.g., '(el, e3, e5) would

indicate that the records el, e3, and e5 are in the

relation. Record-type contains the (user-defined)

class-name of the type of records that can be members of

that particular relation. Both PCS/ROOMS and

EOOPS/ROOMS define the class relation in this way.

Several methods are defined for the class relation.

Display-yourself displays each record in the relation.

Add-record and remove-record add and remove records

to/from the relation, and get-records displays a list of

all the records in the relation. These methods are

essentially the same in both PCS/ROOMS and EOOPS/ROOMS.

The five basic relational operations (union,

difference, selection, projection, and Cartesian

product) are defined as methods of relations. Two

additional operations, intersection and fast-

intersection, are also defined.

100

The union, difference, selection, intersection, and

fast-intersect methods have similar implementations in

both PCS/ROOMS and EOOPS/ROOMS. They use the various

equality methods to determine which records will be in

the resulting relation.

The project and Cartesian-product methods use

similar algorithms in both PCS/ROOMS and EOOPS/ROOMS.

However, the EOOPS/ROOMS methods are shorter and simpler

than those in PCS/ROOMS. This is partly because PC

Scheme requires that new classes be defined at the top-

level REP loop (similar to the way variables must be

defined). Therefore, PCS/ROOMS' project and Cartesian-

product are each split into two separate methods - one

method to create the new class definition and one method

to do the actual relational operation. The user,

however, still need only send a single message to

perform the operation - PCS/ROOMS uses its DBSEND macro

to trap these messages and expand them into the

appropriate new messages. The proper metaclass in EOOPS

(see Chapter 3) avoids this problem.

Using multiple inheritance to build the records in

EOOPS/ROOMS helped to simplify all of the methods which

implement the relational operations. The methods

(including those which are defined for the class record)

simply worked their way through the hierarchy of the

record rather than needing additional information about

101

the record structure to access each subobject (or

dependent object) which makes up the record in

PCS/ROOMS.

The Class Record

As discussed in Chapter 2, the class record was

designed with no class variables or instance variables.

Its only purpose is to provide methods to user-defined

records, and as such can be considered to be an abstract

class.

In PCS/ROOMS, the class record is defined as a

regular class, and then treated as an abstract class.

However, if EOOPS/ROOMS were simply to define a class

record and then use that class as a superclass for user-

defined records, the methods defined for the class

record would not be able to access any of the variables

defined for the user-defined record class.

These methods could have been defined in EOOPS/

ROOMS as generic methods and then instantiated by user-

defined record classes, but that does not convey the

"feeling" that these user-defined records are all of

the same basic type. Therefore, the class record is

defined as a generic class, which is then included

(instantiated) in the user-defined record classes.

All of the previously discussed required methods

are needed by the class record. The display-yourself,

102

equal-to?, greater-than?, less-than?, and copy-from

methods are all instantiations of the generic methods

which are provided in EOOPS/ROOMS, and inherited from

the class named generic in PCS/ROOMS.

A meet-select-criteria? method is also provided.

It determines if a record meets the selection criteria

set forth by the select method of the class relation.

The algorithms used in both PCS/ROOMS and

EOOPS/ROOMS for all of these methods are similar, except

that EOOPS/ROOMS is able to work with inherited methods

(since multiple inheritance is used to build the

records) while PCS/ROOMS must work its way through the

objects which make up the record.

User-Defined Record Classes

Since ROOMS is a relational system, the objects

must be stored in records. In order to work properly

with the class relation, user-defined record classes

must include all of the methods which are provided by

the class record.

The record structure in PCS/ROOMS is designed such

that all the fields in the record are defined as

instance variables. The instance variables can be

simple variables (integers, for example), subobjects, or

dependent objects. These variables may be inherited,

103

but the class designer is then responsible for ensuring

that there are no name conflicts.

EOOPS/ROOMS, on the other hand, defines the record

structure using multiple inheritance - the user simply

defines the record by including each of the fields that

make up the record as a superclass. Since variable name

conflicts are not a problem in EOOPS (see Chapter 3),

the user need only be concerned with the external

interface of each of the inherited fields. This leads

to one of the biggest benefits to a user of EOOPS/ROOMS

over PCS/ROOMS - in order to send a message to one of

the fields that make up the record, the message is

simply sent to the record itself. In PCS/ROOMS, the

message must be directed towards a particular part of

the record (i.e., towards a particular subobject or

dependent object, or towards a particular subobject or

dependent object of a particular subobject or dependent

object, etc.).

The record structure used in EOOPS/ROOMS could be

modified to include simple variables, subobjects, and

dependent objects (as in PCS/ROOMS) in addition to

multiple inheritance. Doing so, however, would cause

the benefits attributed to the simplified record

structure using multiple inheritance to be lost.

104

User-Defined Classes

As previously discussed, the only limits on user-

defined classes in ROOMS are the user's imagination and,

of course, any limitations imposed by the host language

and the hardware that is being used. This is another

area in which the benefits of EOOPS really come into

play as far as users of ROOMS are concerned, as they

need not worry about what variables are inherited and

what methods access them - each class is defined as an

encapsulated unit which only needs to know about the

external interface of its superclasses (see Chapter 3

for a more detailed discussion of this).

Once a user-defined class has been implemented,

objects of that type can be stored in the database, but

only if the user-defined classes include certain methods

that are required by ROOMS. The previously discussed

required methods (display-yourself, equal-to?, greater-

than?, less-than?, and copy-from) are required for all

user-defined classes to work properly within the

database. These generic or default methods simply

operate upon all of the variables and superclasses that

make up a user-defined class. They may not meet the

needs of all user-defined classes, but they do provide a

starting point.

105

Conclusions

The two implementations of ROOMS have some

similarities. This is due in part to the fact that they

are both Lisp-based implementations. However, it is

mainly because ROOMS was designed (as discussed in

Chapter 2) using a fairly simple form of class

definitions, along with their variables and methods, and

every attempt was made to ensure that the basic design

of ROOMS was not in any way language-dependent.

One of the differences between PCS/ROOMS and EOOPS/

ROOMS is due to the way that global variables are needed

for defining instances in PCS/ROOMS. This could become

a problem in EOOPS/ROOMS if the host language for EOOPS

should also have this problem.

The real differences between PCS/ROOMS and EOOPS/

ROOMS, however, are the record structures used and the

relational operations. Using subobjects and dependent

objects in PCS/ROOMS led to a much more complex set of

relational methods and default methods. Using multiple

inheritance in EOOPS/ROOMS greatly simplified these

methods, by simply accessing the appropriate method from

each of the superclasses. Messages to the fields of an

EOOPS/ROOMS record are simpler too, as they are sent to

the record rather than to a specific part of the record.

EOOPS/ROOMS has the added benefit in that it could be

modified to allow the record structure to consist of a

106

combination of multiple inheritance, subobjects, and

dependent objects, if this should be desired by the

user.

More on these differences, along with various other

concerns and suggestions for future research, are

presented in the next chapter.

CHAPTER 5

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE
RESEARCH

The goals of this research effort were two-fold.

First was to design a Relational Object-Oriented

Management System (ROOMS). ROOMS was designed so that

it can be implemented in virtually any object-oriented

programming language or added to any commercially

available object-oriented database management system.

Second was to design an Encapsulated Object-Oriented

Programming System (EOOPS) to greatly simplify the

implementation of any large-scale object-oriented

project, including ROOMS.

In this chapter, we briefly summarize both ROOMS

and EOOPS, present our conclusions, and offer

suggestions for further research.

Summary

A detailed survey of the literature was

accomplished. We investigated object-oriented

programming in general, object-oriented database

systems, genericity in existing languages (both

conventional and object-oriented), and the relational

107

108

data model and object-oriented (or abstract data type)

extensions to it.

ROOMS was designed in a language-independent

manner, using only a general form of class and method

definitions from object-oriented programming. This

allows ROOMS to be implemented in virtually any object-

oriented language, including PC Scheme and EOOPS.

Several problems were encountered in developing

ROOMS, with most of the problems being directly related

to the way that inheritance has been implemented in the

available OOP languages. Various solutions were found

for these problems so that ROOMS could be implemented in

an available OOP language (and it was implemented in PC

Scheme), but we believe that there is a better way - and

that better way is EOOPS.

Not only is EOOPS better for applications such as

ROOMS, the encapsulated inheritance scheme used in EOOPS

should greatly simplify the development and long-term

maintenance of any object-oriented programming project.

EOOPS also includes features to define generic classes,

which allows for properties to be inherited and

redefined (in a very similar manner in which inheritance

has been implemented in existing OOP languages).

Generic methods have also been included to allow for

even more sharing of similar methods between various

classes.

109

Conclusions

We believe that the relational database model is a

viable way to organize objects, but that it is not

necessarily the best way for all applications. If

ROOMS, which is based on the relational model, is

included as part of an object-oriented database system,

then there is no reason why a single database system

cannot serve all of the data needs of a company. And by

including ROOMS as part of an object-oriented database

system, users need not be restricted to only relational

access or non-relational access to the data.

ROOMS could also be implemented in any OOP language

with appropriate I/O capabilities. This means that

ROOMS could serve the needs of users who do not yet have

access to a commercial object-oriented database system.

EOOPS preserves encapsulation, which should

simplify the design and maintenance of any complex

system. It will no longer be necessary to check all of

the ancestor classes to avoid accidental name conflicts

in the design process. It will also not be necessary to

check all of the descendant classes when an existing

class definition is modified (as long as the original

external interface of the class is preserved).

A formal metaclass is included in EOOPS. While

this may not mean much to the typical end-user, it does

110

allow system designers to test and implement future

ideas affecting class definitions and inheritance.

Two forms of genericity were also included in

EOOPS. Generic methods allow for operations such as

display-yourself to be defined once and then

instantiated as needed for various classes. Generic

classes allow variables and methods to be inherited and

redefined in essentially the same way that these

features are handled in existing OOP languages.

Generic classes, however, have not been included to

simply allow a non-encapsulated form of inheritance.

They exist so that the similar portions of various

classes can be made generic and shared between classes

rather than creating possibly unwanted dependencies when

defining one class based upon another.

Suggestions for Future Research

Having completed the design of both ROOMS and

EOOPS, the development of production systems can now

begin. There are, however, a few more questions that

should be addressed first.

Future ROOMS Research. First and foremost, PCS/ROOMS is

unacceptably slow. PC Scheme served well in developing

a "proof of concept" system, but may not be acceptable

in developing a production system. A faster or more

efficient language and/or machine should be used.

In ROOMS, equal-to?, greater-than?, and less-than?

methods are required, but only the equal-to? method has

been provided so far. The greater-than? and less-than?

methods should be fully designed and tested for

inclusion in any future version of ROOMS.

The record structure to be used is still a

questionable area. In PCS/ROOMS, records consist of

variables, subobjects, and dependent objects. In

EOOPS/ROOMS, records are built using multiple

inheritance. Further research and experimentation may

reveal what type of record structure is the best answer,

or whether all of these possibilities should be

included. The answer may partially lie in how objects

are to be used or treated - do we need to be able to

create an object, address it individually, and then

attach it to one or more records? Or do we only need to

be able to define a record and the fields (objects)

which it consists of?

All of the records in a relation in ROOMS must be

of the same type (i.e., instances of the same class).

However, a relation is simply a collection of records,

and it could be worthwhile to define another type of

collection that is similar to a relation, but allow it

to contain records of different types.

If ROOMS is to serve as the core of a new object-

oriented database system rather than be added to an

112

existing system, then a proper data definition language

(DDL) is required. This DDL must be capable of managing

the various class definitions and their associated

methods.

Whether ROOMS is added to an existing object-

oriented database management system or developed as a

standalone system, an external interface may be of

great value to users that are accustomed to conventional

relational database systems. An extension to SQL

(similar to those extensions which have recently been

designed for existing object-oriented systems) could

serve as the basis for such an interface. The various

SQL commands and extended-SQL commands would then send

the appropriate messages to the various relations and

records.

Future EOOPS Research. Since EOOPS has been designed

but not implemented, the implementation of EOOPS is

obviously the next logical step in its development.

While we are very comfortable with the present

definition of EOOPS, there are a few areas which could

benefit from further research.

The keyword "send" has been included as a part of

the message passing format, but most other object-

oriented languages do not use this format. However,

using "send" does seem to make it easier to pick out the

113

messages when scanning a lengthy program listing. It

also allows the user to define other procedures to trap

other commands (such as "dbsend") to perform some

additional commands before or after "sending" the

message. Further research and experimentation may help

reveal whether the "send" should be required (as is),

eliminated, or optional.

We have also discovered two possibilities for

implementing class variables. Should a subclass receive

a copy of an inherited class variable? Or should it

receive a pointer to the class variable defined in the

ancestor's class?

If a copy of an inherited class variable is used,

then changes to the ancestor's variable has no effect on

the subclass' variable, and vice versa. If a pointer to

the ancestor's variable is used, then the appropriate

message to any instance (object) in the hierarchy would

change the value of that class variable for all other

instances in the hierarchy. It would also be possible

to allow both types of class variables.

Concluding Comments

This research effort resulted in the design and

"proof of concept" of the Relational Object-Oriented

Management System and the Encapsulated Object-Oriented

Programming System. Acting on the suggestions for

114

future research should allow both ROOMS and EOOPS to

make the transition from prototype systems to the status

of commercially viable systems.

APPENDIX A

THE EOOPS LANGUAGE REFERENCE MANUAL

116

THE EOOPS LANGUAGE REFERENCE MANUAL

INTRODUCTION

The Encapsulated Object-Oriented Programming System

(EOOPS) is an object-oriented extension for conventional

programming languages, in much the same way that SCOOPS

has been added to PC Scheme [Texas Instruments Inc.

1987b]. Many of the commands are modeled after SCOOPS

commands, although it is not intended that EOOPS could

only be added to PC Scheme. Most of the examples are

given in a PC Scheme (Lisp) type of code, but it is also

not intended that EOOPS could only be implemented in a

Lisp-based language. One should also keep in mind that

EOOPS is not a complete language - it is only an

extension to a conventional language.

OVERVIEW

All of the entities in a typical object-oriented

programming environment are called objects. However,

since EOOPS is designed as an extension to a

conventional language, any data type allowed by the host

language may still be used.

An EOOPS object consists of variables, which

determine the local state (or value) of the object.

117

Methods are defined for the object, and represent the

only operations that the object knows how to perform. A

message is sent to the object to tell it to perform one

of its methods.

CLASSES AND GENERIC CLASSES

A class contains the description of one or more

similar objects. An object is an instance of a class.

The class definition consists of class variables,

instance variables, superclasses, and instantiations of

generic classes.

Class variables are shared in both name and value

by all instances of the class - changing the value of a

class variable for a single object changes the value of

that class variable for all instances of the class. The

instance variables are shared in name only by all

instances of the class - each object has its own private

set of the instance variables which are defined for the

class (see the section on variables for more details on

class and instance variables).

Methods (or procedures) are the only operations

that instances of a class know how to perform (see the

section on methods for more information). A class

inherits the variables and methods of other classes that

are specified as superclasses for the new class. This

is an encapsulated form of inheritance, which is

118

different from the inheritance offered in "conventional"

object-oriented languages (see the section on

inheritance for more details).

A class may also instantiate generic classes. A

generic class is similar to a regular (i.e., not

generic) class, except that objects may not be

instantiated for the generic class. All of the class

variables, instance variables, and methods defined for

the generic class are treated as though they were

defined locally for the class instantiating the generic

class. Instantiating a generic class is essentially the

same as inheriting a class in conventional object-

oriented languages. The format for a generic class

definition is identical to that of a class definition,

except that the definition begins with define-generic-

class rather than define-class.

The format for a class definition is as follows:

(DEFINE-CLASS <class-name>
(INSTANTIATE-GENERIC-CLASS
{ <class-name>)

)]
(CLASS-VARIABLES
((<variable-name> [initial-value]))
[OPTIONS [GETTABLE] [SETTABLE] 3

)]I
(INSTANCE-VARIABLES

{ (<variable-name> [initial-value]))
[OPTIONS [GETTABLE] [SETTABLE] [INITTABLE] 3

)]I
(SUPERCLASSES

{ <class-name>)
)]

119

The options statement will cause certain methods to

be automatically generated by the system for either the

class variables or the instance variables. If gettable

is specified, each variable will have a get-variable

method generated which will return the value of that

variable. If settable is specified, each variable will

have a set-variable method generated which will set the

value of that variable to the value specified in the

message. If inittable (an option for instance

variables only) is specified, then the variables may be

initialized when an object is created.

The following example is the class definition for a

class called widget:

(DEFINE-CLASS widget
(CLASS-VARIABLES

(widget-class-number 103)
)
(INSTANCE-VARIABLES

(id-number 0)
(color)
OPTIONS GETTABLE SETTABLE

)

Each instance of the class widget has a class

variable called widget-class-number, which is

initialized to the value 103. They also have two

instance-variables, one called id-number (which is

initialized to the value 0) and the other called color

(which is not initialized to any value). Since the

gettable and settable options are specified for instance

120

variables, the methods get-id-number, set-id-number,

get-color, and set-color are created for the class

description. The class widget has no superclasses. See

the sections on variables and inheritance for more

specific information on these subjects.

METHODS

Methods are defined for a class by using the

DEFINE-METHOD command. The set of methods available to

the instances of a class is called the external

interface of the class. The set of methods available to

the methods of a class is called the internal interface

of the class. The external interface is a subset of the

internal interface.

The difference between these two interfaces is

mainly because all inherited methods are available to

the methods of a class, but an inherited method is only

available to the instances of the class if there is no

new method with the same name defined for the class as

the inherited method (see the section on inheritance for

more information on this). Methods can also be

specifically excluded from the external interface by

using the external-delete-method command (to be defined

shortly).

Note that the define-method operation is actually a

method provided by EOOPS for each user-defined class,

121

therefore the command is simply a message which is sent

to a class telling it to define a new method. The

format of the define-method command is as follows:

(SEND <class-name> DEFINE-METHOD <method-name>
((parameter))

(command))

A message telling an object to perform one of its

methods is of the following form:

(SEND <object-name> <method-name> (parameter))

Following are two methods defined for the

previously defined class widget:

(send widget define-method set-id-and-color
(new-id new-color)

(set! id-number new-id)
(set! color new-color)

)

(send widget define-method widget-display ()
(let ((return-message nil))
(set! return-message
(append '(widget-number is)

widget-class-number
,(-)
id-number
'(, color is)
color))

return-message

The first method, set-id-and-color, simply sets the

instance variables id-number and color to the

appropriate values specified by the parameters new-id

and new-color. The second method, widget-display, has

no parameters. It returns the value of the class

variable widget-class-number concatenated with the

122

value of the instance variable id-number, along with the

value of the instance variable color.

A message is sent to an instance of the class

widget to tell it to perform one of its methods. If

object w is an instance of widget, then the message:

(send w set-id-and-color 15 'blue)

would cause the instance variable id-number of w to be

set to 15 and the instance variable color to be set to

blue. The message:

(send w widget-display)

would then return the following:

(widget-number is 103-15, color is blue)

The delete-method operation is another method which

is provided for each user-defined class. The message:

(SEND <class-name> DELETE-METHOD <method-name>)

will cause method-name to be deleted from the available

methods (i.e., from both the internal interface and the

external interface) for class-name. Methods may also be

deleted from only the external interface of a class by

using the following message:

(SEND <class-name> EXTERNAL-DELETE-METHOD
<method-name>)

See the section on inheritance for more information on

this subject.

The make-instance method is also provided by the

system for each user-defined class. The make-instance

123

message is sent to a user-defined class to create an

instance of that class (i.e., to create an object that

is a member of that class). The format of the make-

instance message is:

(SEND <class-name> MAKE-INSTANCE <object-name>
{ (<variable-name> value))

)

This make-instance message will create object-name as an

instance of class-name. If inittable has been specified

in the options statement for the instance variables,

then any of the variables along with an initial value

may be included in the make-instance message. To make

w an instance of the class widget, the following message

would be used:

(send widget make-instance w)

SPECIAL METHODS

In addition to methods such as define-class and

make-instance which are provided by EOOPS, other methods

are also provided. These methods give the user

information about various classes and objects.

Three such methods are get-superclasses, get-class-

variables, and get-instance-variables. These methods

return the appropriate information when sent to a (user-

defined) class. The method get-superclasses returns a

list of superclasses, while get-class-variables and get-

instance-variables return a list of variables with their

124

initial values (if any were specified in the class

definition).

For example, the message:

(send widget get-class-variables)

would return ((widget-class-number 103)), and the

message:

(send widget get-instance-variables)

would return ((id-number 0) (color)), and the message:

(send widget get-superclasses)

would return nil, but if the class widget had any

superclasses they would be returned as (superclassl,

superclass2, etc.).

Another special method is class-of-object?. This

method simply returns the class of an object, or nil if

the "object" in question is not an object (for example,

a simple variable would not be an object and this method

would return nil).

GENERIC METHODS

Generic methods are defined by using the define-

generic-method command, and instantiated by using the

instantiate-generic-method command. When a generic

method is defined and then instantiated for a class, it

is treated the same as a regular (i.e., not generic)

method defined for the class. It may be deleted as a

method of the class by using the delete-method command,

125

or deleted from the external interface by using the

external-delete-method command.

The format of the define-generic-method command is

as follows:

(DEFINE-GENERIC-METHOD <method-name> ((parameter))
((generic-parameter))
(command')

)

The format of the instantiate-generic-method command is

then:

(SEND <class-name> INSTANTIATE-GENERIC-METHOD
<method-name> ((parameter))
((generic-parameter))

)

The number of parameters must be the same in both

the definition and the instantiation of the generic

method. They are input parameters to the method, and

are matched up by name in the order they are given

(i.e., if paraml is the first parameter in the define-

generic-method command and pl is the first parameter in

the instantiate-generic-method, then p1 is matched up

with paraml).

Similarly, the number of generic-parameters must

also be the same in both the definition and the

instantiation of the generic method. These parameters

can be constants, variables, and superclass names

(something that is known in the class definition). They

are also matched up by name in the order they are given.

126

Following is a generic method definition, which is

then instantiated for the class widget:

(DEFINE-GENERIC-METHOD display-yourself
(display-style) (display-list)

(let ((return-message nil))
(while (not (null? display-list))

(if (equal? display-style 'titled)
(set! return-message

(append
return-message
(append

(list (car display-list))
'(:)

(list (eval (car display-list)))))))
(if (equal? display-style 'untitled)

(set! return-message
(append
return-message
(list (eval (car display-list))))))

(set! display-list (cdr display-list)))
return-message

(send widget instantiate-generic-method
display-yourself (style) ('(id-number color))

)

The generic method display-yourself simply displays

all of the variables in display-list. If display-style

is the constant 'untitled, then the values of the

variables are displayed. If display-style is the

constant 'titled, then the variable names are also

displayed.

In the instantiation of the generic method for the

class widget, the input parameter style is matched up

with the input parameter display-style in the method

definition. The list '(id-number color) is matched up

with the generic parameter display-list.

127

A display-yourself message can then be sent to an

instance of the class widget. If object w is an

instance of widget, with id-number set to 15 and color

set to blue, then the message:

(send w display-yourself 'titled)

would return:

(id-number:15 color:blue)

and the message:

(send w display-yourself 'untitled)

would return:

(15 blue)

VARIABLES

Objects consist of class variables and instance

variables. Class variables are shared in both name and

value by all instances of the class. For example, the

value of the class variable widget-class-number in the

previously defined class widget is shared by all

instances of that class. That is, if wi and w2 are both

instances of the class widget, then they share the

variable widget-class-number; changing the value of this

variable for one object implies that it has also changed

for the other object.

Instance variables are not shared in value between

different instances of the same class - each instance

has its own set of instance variables. Changing the

128

value of an instance variable for one instance of a

class has no effect on any other instance of that class.

The only way to access or modify the value of any

variable is to send a message to an object telling it to

perform a method which uses that variable. This is the

form of encapsuJation which is supported by other

object-oriented systems. EOOPS takes encapsulation one

step further through its approach to inheritance.

INHERITANCE

Inheritance implements a form of code sharing.

When a superclass is specified, all of the class

variables, instance variables, and methods of the

superclass are inherited (including those which may have

been inherited by the superclass itself).

In "conventional" object-oriented languages, the

definitions of these inherited variables and methods can

be changed (i.e., the variables and methods can be

redefined) by using the same name over again in the new

class definition. This approach makes the assumption

that the designer of the class knows everything about

every ancestor (i.e., a superclass, or an ancestor of a

superclass) of the new class, and will choose new

variable names and method names wisely to avoid

accidentally redefining an inherited variable (or

method). This approach becomes even more confusing when

129

multiple inheritance (allowing a class to have more than

one superclass) is allowed (see the section on multiple

inheritance).

EOOPS takes a more encapsulated approach. A class

is defined to be everything that the superclass(es) is

(are), plus the variables and methods which have been

defined for the class. A set of variables is inherited

from each superclass, along with a set of meihods which

represent the only way that these inherited variables

can be accessed and manipulated.

Using the previously defined widget class, a two-

tone-widget class can be defined with widget as a

superclass as follows:

(DEFINE-CLASS two-tone-widget
(INSTANCE-VARIABLES

(color))
(SUPERCLASSES widget))

The class two-tone-widget can be thought of as

"everything that a widget is, plus a new instance

variable, color." This new instance variable color

should not be confused with the one which is inherited.

The inherited variables cannot be accessed by name,

they can only be accessed by using the methods which

were inherited with them. A set of variables, ((CLASS-

VARIABLES widget-class-number), (INSTANCE-VARIABLES id-

number, color)), has been inherited, along with the

130

methods set-id-number, set-color, get-id-number, get-

color, set-id-and-color, and widget-display to access

these variables. All of these inherited methods are

available to each instance of the class two-tone-

widget. Note that the class variable widget-class-

number is initially set to 103, the same as for the

class widget. However, since a new class has been

defined, changing the value of widget-class-number for

two-tone-widget has no effect on the value of widget-

class-number for instances of the class widget.

New methods can be defined for the class two-tone-

widget which directly access the instance variable

color (the one defined for two-tone-widget, not the

inherited one). These new methods can also use any of

the inherited methods, but they cannot directly access

any inherited variable. Following are two new methods

for the class two-tone-widget:

(send two-tone-widget define-method
set-id-and-color (new-id new-color)

(set! color new-color)
(send self widget.set-id-and-color new-id

(concatenate 'light- new-color))
)

(send two-tone-widget define-method
two-tone-widget-display

(let ((return-message nil))
(set! return-message

(append (self widget.widget-display)
co)color))

131

Note that the keyword self is simply a way of

indicating that the message is to be sent to the same

object that the original message was directed to.

The new method set-id-and-color replaces the set-

id-and-color method which was inherited from the class

widget. However, the old set-id-and-color method is

still available to methods of the class two-tone-widget
e

(as part of the internal interface) as widget.set-id-

and-color. Note that the inherited method set-id-and-

color is no longer available as part of the external

interface for instances of the class two-tone-widget.

The new set-id-and-color method simply sets the

instance variable color to the value specified as the

new color, then sends itself the message:

(send self widget.set-id-and-color new-id
"light-new-color")

which will set the inherited variables to the

appropriate values. For example, if ww is an instance

of the class two-tone-widget, then the message:

(send ww set-id-and-color 86 'blue)

This will set the instance variable color to blue and

then send itself the message:

(send self widget.set-id-and-color 86 'light-blue)

which will set the inherited instance variable id-number

to 86 and the inherited instance variable color to

light-blue.

132

The method two-tone-widget-display will append the

value of the instance variable color to the value

returned by the message:

(send self widget.widget-display)

Note that the first widget in widget.widget-display is

not required as there is no method name conflict

(ambiguity) to resolve. However, it is recommended that

the inherited method name be specified in this manner so

that the routine can not be accidentally changed if a

method widget-display were to be defined for the class

two-tone-method. The message:

(send ww two-tone-widget-display)

would return the value:

(widget-number is 103-86, color is light-blue, blue)

The internal interface consists of the newly

defined methods set-id-and-color and two-tone-widget-

display, and the inherited methods set-id-number, set-

color, get-id-number, get-color, and widget-display (all

of which can also be referred to as widget.method-name),

and the inherited method widget.set-id-and-color (which

cannot be referred to simply as set-id-and-color due to

a name conflict with the newly defined method with the

same name).

The external interface consists of the newly

defined methods set-id-and-color and two-tone-widget-

display, and the inherited methods set-id-number, set-

133

color, get-id-number, get-color, and widget-display.

The inherited method widget.set-id-and-color is not a

part of the external interface and therefore cannot be

directly accessed by any instance of the class two-

tone-widget.

Note that the method widget.set-id-and-color is

included in the internal interface, but not in the

external interface. This is because the method set-id-

and-color is defined (redefined) in the class two-tone-

widget.

However, the designer of the class two-tone-widget

may decide that having the methods set-color, get-color,

and widget-display in the external interface may be

confusing to users of the class. Therefore, these

methods can be deleted from the external interface by

sending the class two-tone-widget the following

messages:

(send two-tone-widget external-delete-method
set-color)

(send two-tone-widget external-delete-method
get-color)

(send two-tone-widget external-delete-method
widget-display)

These methods are still in the internal interface of

two-tone-widget (i.e., they can still be used by other

methods defined for the class), but they are no longer

defined for direct use by instances of the class (such

as ww). Note that this mechanism can be used to give

134

the equivalent of private and public operations which

are available in other languages such as C++ [Stroustrup

1986b].

MULTIPLE INHERITANCE

Multiple inheritance is simply allowing a class to

inherit from two or more superclasses. However, method

name conflicts become more of a problem. With single

inheritance, the only possible method name conflict is

when a method is defined for a class that has the same

name as an inherited method. In this case the new

method is part of both the external interface and the

internal interface, and the inherited method is

available only in the internal interface (as superclass-

name.method-name).

With multiple inheritance, it is possible to

inherit two (or more) methods with the same name. Both

(or all) of these inherited methods are available as

part of the internal interface (as superclass-

name.method-name), but superclass-name's are not

allowed in the external interface. A "first-come first-

served" name conflict resolution scheme (similar to that

used with "conventional" inheritance in languages such

as PC Scheme) is used to determine which of the

inherited methods will be in the external interface.

Consider the following example:

135

(DEFINE-CLASS clock (DEFINE-CLASS radio
(INSTANCE-VARIABLES (INSTANCE-VARIABLES

(color) (color)
(digital TRUE) (fm-capability TRUE)
(alarm TRUE) OPTIONS SETTABLE
OPTIONS SETTABLE)))

)

(DEFINE-CLASS clock-radio
(INSTANCE-VARIABLES

(battery-backup TRUE)
OPTIONS GETTABLE SETTABLE)

(SUPERCLASSES clock radio))

The class clock-radio has a single instance

variable, battery-backup, and two methods, get-battery-

backup and set-battery-backup. It also has two

superclasses, clock and radio. A set of instance

variables has been inherited from each superclass, along

with a set of methods to access those variables. So,

the set of variables ((INSTANCE-VARIABLES color,

digital, alarm)) and the methods set-color, set-digital,

and set-alarm have been inherited from the class clock.

And, the set of variables ((INSTANCE-VARIABLES color,

fm-capability)) along with the methods set-color and

set-fm-capability have been inherited from the class

radio.

Note that two methods named set-color have been

inherited. Both are in the internal interface (as

clock.set-color and radio.set-color), but only one set-

color will be in the external interface, and it will be

136

the clock.set-color method since clock is listed as a

superclass before radio. If this is not what is

desired for the class clock-radio, then the method set-

color can be deleted from the external interface or a

new method set-color can be defined for the class

clock-radio.

Multiple inheritance from a single class is also

available in EOOPS. Consider the following example:

(DEFINE-CLASS circle
(INSTANCE-VARIABLES

(center)
(radius)
(color)
OPTIONS SETTABLE)

)

(DEFINE-CLASS target
(SUPERCLASSES circle circle circle))

The class target inherits from the class circle three

times, so it inherits three sets of variables

((INSTANCE VARIABLES center, radius, color)) and three

sets of methods, set-center, set-radius, and set-color.

To differentiate between the inherited methods, they are

referred to as circle.l.set-center, circle.2.set-center,

etc. The following methods for the class target

demonstrate how these inherited methods might be used:

(send target define-method set-center (center)
(send circle.l.set-center center)
(send circle.2.set-center center)
(send circle.3.set-center center)

)

137

(send target define-method set-radius (rl r2 r3)
(send circle.l.set-radius ri)
(send circle.2.set-radius r2)
(send circle.3.set-radius r3)

)

(send target define-method set-alternating-colors
(cl c2)

(send circle.l.set-color cl)
(send circle.2.set-color c2)
(send circle.3.set-color cl)

)

METACLASS

The metaclass is a special class defined by EOOPS

along with the define-class method. The metaclass is

also considered to be an object. A user-defined class

is a proper object in EOOPS since it is an instance of

the metaclass. Note that the define-class message is

assumed to be directed to the metaclass, so the

following messages:

(send metaclass define-class ...)

(define-class ...)

are equivalent. Similarly, the define-generic-method

message is also assumed to be directed to the metaclass.

User-defined methods can be added to the metaclass

by using the define-method operation. The format of

this method is the same as that used for adding methods

to user-defined classes, i.e., the message:

(send metaclass define-method my-method (parameters)

would cause my-method to be added to the metaclass, and

138

the message:

(send metaclass delete-method my-method)

would cause my-method to be deleted from the metaclass.

APPENDIX B

THE SOURCE CODE FOR
THE IMPLEMENTATION OF
ROOMS IN PC SCHEME

140

; ROOMS-00.PCS - section 00 of ROOMS in PC Scheme
- this section contains the descriptions for

- OBJECT
- GENERIC

OBJECT
- Description

- intended to be the root of every class hierarchy
; - provides a "self" pointer since PCS does not
- Superclasses

- none
- Class Variables

- none
- Instance Variables

- SELF
- Methods

- (send-if-handles x IS-OBJECT?)
- T if x is of type object, #F otherwise

(define-class object
(instvars (self nil))
(options gettable-variables settable-variables

inittable-variables))

; OBJECT IS-OBJECT?

(define-method (object is-object?) () #T)

; OBJECT COMPILE-CLASS OBJECT

(compile-class object)

141

; GENERIC
- Description

- provides "generic" methods for user-defined
; classes
- Superclasses

- none
; - Class Variables

- none
- Instance Variables

- none
- Methods

- (send-if-handles x IS-GENERIC?)
- #T if x is of type generic, #F otherwise

- (send x COUNT-SUBOBJECTS)
- returns a count of subobjects used in the object
- recursive, (i.e., count subobjects of subobjects

- (send x COPY-FROM other)
- makes x a "copy" of other

- (send x DISPLAY-YOURSELF)
- "generic" display routine

- (send x EQUAL-TO? y)
- "generic" equal-to? routine, return #T or #F

; GENERIC class definition

(define-class generic)

; GENERIC IS-GENERIC?

(define-method (generic is-generic?) () #T)

142

GENERIC COPY-FROM
- for each var in instvar-list (defined for each

individual class),
- if var is an instvar,

set var of new object equal to var of other
- if var is a subobject,

- get a new generic variable
- set var of new object to the generic variable
- make the generic variable an instance of the

class of other's var
- (send generic-variable COPY-FROM other's var)

- otherwise, set var of new object to nil

(define-method (generic copy-from) (other)
(let ((temp-instvar-list nil) (next-var nil))
(set! temp-instvar-list instvar-list)
(if (or (equal? (class-of-object (eval self))

(class-of-object other))
(and (send-if-handles (eval self) is-record?)

(send-if-handles other is-record?)))
(while (not (null? temp-instvar-list))

(set! next-var (car temp-instvar-list))
(cond
((equal? (cadr next-var) 'instvar)
(if (not (equal? (car next-var) 'self))

(eval '(send (eval self)
,(concat 'set- (car next-var))

(send ,(eval other)
,(concat 'get- (car next-var)))))))

((equal? (cadr next-var) 'subobject)
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(car next-var) (fluid tvar)))
(eval '(set! , (fluid tvar)

(make-instance ,(caddr next-var))))
(send (eval (fluid tvar)) set-self

(fluid tvar))
(send (eval (fluid tvar)) copy-from

(eval (eval '(send ,other
,(concat 'get-

(car next-var))))))))
(#T
(eval '(set! ,(car next-var) nil))))

(set! temp-instvar-list (cdr temp-instvar-list))
))

(eval self)

143

;GENERIC COUNT-SUBOBJECTS
-for each var in instvar-list (defined for each
individual class),
- if var is a subobject,

- add 1 to count
- add (send var COUNT-SUBOBJECTS) to count

- otherwise, do nothing

(define-method (generic count-subobjects) (
(let ((cnt 0) (subcnt nil) (temp-instvar-list nil)

(next-instvar nil))
(set! temp-instvar-list instvar-list)
(while (not (null? temp-instvar-list))

(set! next-instvar (car teinp-instvar-list))
(cond
((equal? (cadr next-instvar) 'instvar)
nil)
((equal? (cadr next-iristvar) 'subobject)
(set! cnt (+ cnt 1))
(set! subcnt (eval '(send-if-handles

(eval ,(car next-instvar))
count-subobjects)))

(if (not (null? subcnt))
(set! cnt (+ cnt subcnt))))

(#T
nil)

(set! temp-instvar-list (cdr temp-instvar-list))

cnt

144

; GENERIC DISPLAY-YOURSELF
- this version puts parens around subobjects
- for each var in display-list (defined for each

individual class),
- if var is an instvar, append var to msg
- if var is a subobject, append

(send var display-yourself) to msg
- otherwise, append "? to msg

(define-method (generic display-yourself) ()
(let ((msg nil) (temp-display-list nil)

(display-next nil))
(set! temp-display-list display-list)
(while (not (null? temp-display-list))

(set! display-next (car temp-display-list))
(cond
((equal? (cadr display-next) 'instvar)
(set! msg
(append msg

(list (eval (car display-next))))))
((equal? (cadr display-next) 'subobject)
(set! msg
(append msg

(list (eval '(send (eval
,(car display-next))
display-yourself))))))

(#T
(set! msg (append msg '(?-) display-next '(-?))))

)
(set! temp-display-list (cdr temp-display-list))

)msg

145

; GENERIC EQUAL-TO?
- assume they are equal (i.e., set return-value to #T)
- for each var in equality-list (defined for each

individual class),
- if var is an instvar, compare var to other's var
- if var is a subobject,

(send var EQUAL-TO? other's var)
- otherwise, set return-value to #F
- if return-value becomes #F, terminate "for" loop

(define-method (generic equal-to?) (other)
(let ((return-value #T) (temp-equality-list nil)

(check-next nil))
(set! temp-equality-list equality-list)
(if (equal? (class-of-object (eval self))

(class-of-object other))
(while (not (null? temp-equality-list))

(set! check-next (car temp-equality-list))
(cond
((equal? (cadr check-next) 'instvar)
(if (not (equal?

(eval (car check-next))
(eval '(send ,other ,(concat 'get-

(car check-next))))))
(set! return-value #F)))

((equal? (cadr check-next) 'subobject)
(if (not (eval '(send (eval ,(car check-next))

equal-to?
,(eval '(send ,other

,(concat 'get-
(car check-next)))))))

(set! return-value #F)))
(#tT
(set! return-value #F))

)
(if (null? return-value)

(set! temp-equality-list nil))
(set! temp-equality-list (cdr temp-equality-list))

)
(set! return-value #F))

return-value

146

; COMPILE-CLASS GENERIC

(compile-class generic)

147

; MACROS & FUNCTIONS TO CREATE OBJECTS & "NULL" OBJECTS

(macro create-object (lambda (e)
'(make-instance object 'self ',(cadr e))))

(macro create-generic (lambda (e)

'(make-instance generic 'self ',(cadr e))))

(define null-object (create-object null-object))

(define null-generic (create-generic null-generic))

148

; ROOMS-01.PCS - section 01 of ROOMS in PC Scheme
- this section contains the descriptions for all
database "overhead" classes
- DATABASE, RELATION, & RECORD

; DATABASE
- Description

- a collection of relations
- Superclasses

- OBJECT
; - Class Variables

- FREE-LIST
- Instance Variables

- MEMBERS
; - Methods

- (send-if-handles x IS-DATABASE?)
- #T if x is of type database, #F otherwise

- (send x DISPLAY-YOURSELF)
- displays the names of relations in the database

- (send x GET-VAR)
-returns the first variable in FREE-LIST and

sets FREE-LIST to (cdr FREE-LIST)
- (send x ADD-MEMBER member-to-add)

- adds member-to-add to the member list if it is
- of type relation
- (send x REMOVE-MEMBER member-to-remove)

- removes member-to-remove from the member list

(define-class database
(mixins object)
(classvars (free-list nil))
(instvars (members nil))
(options gettable-variables settable-variables

inittable-variables))

; DATABASE IS-DATABASE?

(define-method (database is-database?) () #T)

149

; DATABASE DISPLAY-YOURSELF

(define-method (database display-yourself) ()
members)

; DATABASE GET-VAR
; -return the first generic variable in free-list and
; set free-list to (cdr free-list)

(define-method (database get-var) ()
(let ((var-to-return nil))
(set! var-to-return (car free-list))
(set! free-list (cdr free-list))
var-to-return

; DATABASE ADD-MEMBER
- if member-to-add is of type relation and is not
already in the members list, then add it

I:::DD:I::I:::::I:I:g:DDI:gg::g:iD::i:::iig:::i::g:iiigi

(define-method (database add-member) (member-to-add)
(if (send-if-handles (eval member-to-add)

is-relation?)
(if (not (member member-to-add members))

(set! members (append members
(list member-to-add)))

members)
nil))

150

; DATABASE REMOVE-MEMBER
- delete member-to-remove from members list

(define-method (database remove-member)
(member-to-remove)

(set! members (delete! member-to-remove members)))

; COMPILE-CLASS DATABASE

(compile-class database)

MAKE-GENERIC-VARIABLES
- a macro, (make-generic-variables cnt)

- makes cnt gensym variables which are added to
free-list of the database that is bound to the
global variable ROOMS

(macro make-generic-variables (lambda (e)
'(let ((count nil) (free-list nil))

(set! count ,(cadr e))
(set! free-list (send (eval ROOMS) get-free-list))
(set! count (- count (length free-list)))
(cond
((>? count 0)
(while (>? count 0)

(set! free-list (append (list (gensym))
free-list))

(eval '(define ,(car free-list) nil))
(set! count (- count 1))

)
(send (eval ROOMS) set-free-list free-list))

(#T
free-list)

)

151

RELATION
; - Description

- - a collection of records
- Superclasses

- OBJECT
; - Class Variables

- none
- Instance Variables

- MEMBERS
- a list of all the records in the relation,

ex, '(el e2 e4 e7)
- RECORD-TYPE

- the class name of records that are allowed in
; this relation, ex, 'emp-rec

; -Methods
- (send-if-handles x IS-RELATION?)

- #T if x is of type relation, #F otherwise
- (send x COUNT-SUBOBJECTS)

- returns a count of the total number of
subobjects in the relation

- uses the null object "null-RECORD-TYPE"
- (send x DISPLAY-YOURSELF)

- displays each record in the relation
- (send x ADD-RECORD record-to-add)

- add the record record-to-add to the relation
(i.e., to the member list)

- record-to-add must be a symbol
- i.e., if el is the record to be added,
must use 'el or x where (eval x) = 'el,
el will NOT work

- record-to-add must be of type RECORD-TYPE
- (send x GET-INSTVAR-LIST)

- returns instvar-list of the class RECORD-TYPE
- does (send null-RECORD-TYPE get-instvar-list)

- (send x GET-RECORDS)
- returns members, the list of records

- (send x REMOVE-RECORD record-to-remove)
-removes record-to-remove from the relation

(i.e., from the member list)
- (send x CARTESIAN-PRODUCT-COUNT-SUBOBJECTS other)

(send x DIFFERENCE-COUNT-SUBOBJECTS other)
(send x INTERSECT-COUNT-SUBOBJECTS other)
(send x PROJECT-COUNT-SUBOBJECTS)
(send x SELECT-COUNT-SUBOBJECTS)
(send x UNION-COUNT-SUBOBJECTS other)
- returns the maximum number of subobjects that
will be needed by the corresponding operation

-relational algebra operations
-for all operations

-if result is a relation

152

- for each record that is both x and other,
get a gensym variable, make it an instance
of the appropriate record type, and then
send the gensym variable the message
copy-from the record in the intersection

- return the display of result
-if result is nil
- build a temporary relation consisting of the

records that are in both x and other
(i.e., use shared records)

- return the display of this temporary
relation

- if result is a symbol (such as 'relation-x)
- build a temporary relation consisting of the

records that are in both x and other
(i.e., use shared records)

- set the self pointer of the temporary
relation to the given symbol

- return the temporary relation
- (send x CARTESIAN-PRODUCT other new-rec-class

new-relation)
- returns a sequence of commands which, when

executed,
- performs (make-generic-variables

cartesian-product-count-subobjects)
- defines & compiles the class new-rec-class,

based on the definition of x and other
- defines "new-relation" to be an instance of

relation
- performs (send x cartesian-product2 other

new-relation)
- (send x CARTESIAN-PRODUCT2 other result)

- used by CARTESIAN-PRODUCT
- if the result's fields consist of x's fields

followed by other's fields then get a
generic-variable and call
(send generic-variable copies-from x-record
other-record) for each possible pair of x
records and other records

-(send x DIFFERENCE other result)
-make result the difference of x & other

- (send x FAST-INTERSECT other result)
-make result the intersection of x & other,
using the EQUAL-TO? method to determine which
records to pick

- (send x INTERSECT other result)
-make x the intersection of x & other,
using the "classic" formula
result = (x - (x - other)), implemented as
- temp-relation = (x - other)
- result = (x - temp-relation)

153

- (send x PROJECT (field-list) new-rec-class
new-relation)

- returns a sequence of commands which, when
executed,
- performs (make-generic-variables

project-count-subobjects)
- defines & compiles the class new-rec-class,

based on the definition of the records that
may be added to x

- makes "new-relation" an instance of relation
- performs (send x project2 (field-list)

new-relation)
- (send x PROJECT2 (field-list) result)

- used by project
- if the appropriate fields are the only fields

in records of the type allowed by the result
relation, then
- for each record in other's member list, get

a gensym variable, make it an instance of
the appropriate record type, and then send
the gensym variable the message copy-from

the record in other's member list
- (send x SELECT which op what)
-make result those records of x that meet the

selection criteria of which, op, & what
- (send x UNION other result)

-make result the union of x & other

(define-class relation
(mixins object)
(instvars (members nil) (record-type nil))
(options gettable-variables settable-variables

inittable-variables))

RELATION IS-RELATION

(define-method (relation is-relation?) () #T)

154

; RELATION COUNT-SUBOBJECTS
- count tho number of subobjects in a record of the

relation, and add 1 to it (for the record itself)
- then multiply by number of records in the relation

(define-method (relation count-subobjects) ()
(if (null? members)
0
(* (length members)

(+ 1 (send (eval (concat 'null- record-type))
count-subobjects))))

; RELATION DISPLAY-YOURSELF
- concatenate the results of

; (send record DISPLAY-YOURSELF)
; for each record in the relation

(define-method (relation display-yourself) ()
(let ((member-list members) (msg nil))
(while (not (null? member-list))

(set! msg
(append msg

(list (send (eval (car member-list))
display-yourself))))

(set! member-list (cdr member-list))
)(pprint msg)

155

RELATION ADD-RECORD
- if record-to-add is of the appropriate record type

and is not already a member of the relation, then
add it to the members list

(define-method (relation add-record) (record-to-add)
(if (and (symbol? record-to-add)

(equal?
(class-of-object (eval record-to-add))
record-type))

(if (not (member record-to-add members))
(set! members

(append members
(eval '(list (quote ,record-to-add)))))

members)
nil))

; RELATION GET-INSTVAR-LIST
- returns instvar-list of the records in the relation

(define-method (relation get-instvar-list) ()
(let ((null-rec (concat 'null- record-type)))
(send (eval null-rec) get-instvar-list)

; RELATION GET-RECORDS
; -display the members of the relation

(define-method (relation get-records) ()
members)

156

; RELATION REMOVE-RECORD
- remove record-to-remove from the members list

(define-method (relation remove-record)
(record-to-remove)

(set! members (delete! record-to-remove members)))

; RELATION CARTESIAN-PRODUCT-COUNT-SUBOBJECTS

(define-method (relation
cartesian-product-count-subobjects)
(other)

(let ((my-rec-count (length members))
(other-rec-count (length

(send other get-members)))
(rec-count 0))

(if (< my-rec-count other-rec-count)
(set! rec-count my-rec-count)
(set! rec-count other-rec-count))

(+ (* rec-count (send (eval self) count-subobjects))
(* rec-count (send other count-subobjects)))

; RELATION DIFFERENCE-COUNT-SUBOBJECTS

(define-method (relation difference-count-subobjects)
(other)

(send (eval self) count-subobjects)
)

157

RELATION INTERSECT-COUNT-SUBOBJECTS

(define-method (relation intersect-count-subobjects)
(other)

(let ((my-cnt 0) (other-cnt 0))
(set! my-cnt (send (eval self) count-subobjects))
(set! other-cnt (send (eval other) count-subobjects))
(if (< my-cnt other-cnt)
my-cnt
other-cnt)

;RELATION PROJECT-COUNT-SUBOBJECTS

(define-method (relation project-count-subobjects) (
(send (eval self) count-subobjects)

RELATION SELECT-COUNT-SUBOBJECTS

(define-method (relation select-count--subobjects) (
(send (eval self) count-subobjects)

;RELATION UNION-COUNT-SUBOBJECTS

(define-method (relation union-count-subobjects) (other)
(+ (send (eval self) count-subobjects)

(send (eval other) count-subobjects))

158

RELATION CARTESIAN-PRODUCT
- build the new record class, instantiate the new

relation, and send self the message to
cartesian-product2 (which does the actual
cartesian product operation)
- build gen-var-msg to create the appropriate number

of generic variables
- build define-record-msg to define new-rec-class

- instvar-list is the concatenation of mine and
cdr of other's instvar-list (to eliminate the
"extra" self variable)

- display-list is the concatenation of mine and
other's display-list

- equality-list is the concatenation of mine and
other's equality-list

- instvars are all of the variables from the new
instvar-list

- define-record-method-msg implements the
IS-"NEW-REC-CLASS" method

- compile-record-msg compiles the new record class
- make-null-record-msg makes the object
NULL-"NEW-REC-CLASS"

- make-relation-instance-msg makes new-relation an
instance of new-rec-class

- set-record-type-msg sends the new-relation the
message to set its record-type to new-rec-class

- send-db-add-member-msg sends db the message to add
the new-relation to its list of member relations

- send-cartesian-product2-msg sends the message to
go ahead with the cartesian product

(define-method (relation cartesian-product)
(other new-rec-class new-relation)

(let ((my-instvar-list
(send (eval (car members)) get-instvar-list))

(other-instvar-list
(send (eval (car (send other get-members)))
get-instvar-list))

(new-instvar-list nil)
(working-instvar-list nil)
(new-instvars nil)
(my-display-list

(send (eval (car members)) get-display-list))
(other-display-list

(send (eval (car (send other get-members)))
get-display-list))

(new-display-list nil)
(my-equality-list

(send (eval (car members)) get-equality-list))

159

(other-equality-list
(send (eval (car (send other get-members)))
get-equality-list))

(new-equality-list nil)
(gen-var-msg nil)
(define-record-msg nil)
(define-record-method-msg nil)
(compile-record-msg nil)
(make-null-record-msg nil)
(make-relation-instance-msg nil)
(set-record-type-msg nil)
(send-db-add-member-msg nil)
(send-cartesian-product2-msg nil)
(msg nil))

(set! gen-var-msg (list
(append '(make-generic-variables)

(list (send (eval self)
cartesian-product-count-subobjects

other)))))
(set! new-instvar-list

(append my-instvar-list
(cdr other-instvar-list)))

(set! new-display-list (append my-display-list
other-display-list))

(set! new-equality-list (append my-equality-list
other-equality-list))

(set! working-instvar-list (cdr new-instvar-list))
(while (not (null? working-instvar-list))

(set! new-instvars
(append new-instvars

(list (append
(list (caar working-instvar-list))
(list '(quote

,(concat 'null-
(caddar working-instvar-list))))))))

(set! working-instvar-list
(cdr working-instvar-list)))

(set! define-record-msg
(list

(append
'(define-class)
(list new-rec-class)
'((mixins record))
(list

(append
'(classvars)
(list

(append
'(instvar-list)
(list '(quote ,new-instvar-list))))

(list

160

(append
'(display-list)
(list '(quote ,new-display-list))))

(list
(append

'(equality-list)
(list '(quote ,new-equality-list))))))

(list (append '(instvars) new-instvars))
'((options gettable-variables settable-variables

inittable-variables)))))
(set! define-record-method-msg

(list
(eval '(list 'define-method

'(,new-rec-class
,(concat

(concat 'is- new-rec-class) '?))
'() '#T))))

(set! compile-record-msg (list
(eval '(list 'compile-class ',new-rec-class))))

(set! make-null-record-msg (list
(eval '(list 'define ',(concat 'null- new-rec-class)

'(make-instance ,new-rec-class (quote self)
(quote ,(concat 'null-

new-rec-class)))))))
(set! make-relation-instance-msg (list

(eval '(list 'define ',new-relation
'(make-instance relation (quote self)

(quote ,new-relation))))))
(set! set-record-type-msg (list

(eval '(list 'send ',new-relation 'set-record-type
(quote ',new-rec-class)))))

(set! send-db-add-member-msg (list
(eval '(list 'send rooms 'add-member

(quote ',new-relation)))))
(set! send-cartesian-product2-msg (list

(eval '(list 'send ',self 'cartesian-product2 ,other
',new-relation))))

(set! msg (append
'(begin) gen-var-msg
define-record-msg define-record-method-msg
compile-record-msg make-null-record-msg
make-relation-instance-msg set-record-type-msg
send-db-add-member-msg send-cartesian-product2-msg))

msg

161

CARTESIAN-PRODUCT2
- does minimal error checking (placing result in

legit-cp) to determine if self and other are
appropriate for building result

; - for each record in self and each record in other,
- get a generic variable and make it an instance of

result's record type
- using COPIES-FROM, make this new record a copy of

the combination of self's and other's record

(define-method (relation cartesian-product2)
(other result)

(let ((my-instvar-list
(send (eval self) get-instvar-list))

(others-instvar-list
(send other get-instvar-list))

(results-instvar-list
(send result get-instvar-list))

(legit-cp #T)
(my-members members)
(others-members (send other get-members))
(results-members nil)
(save-my-members nil)
(save-others-members nil)
(results-record-type

(send result get-record-type)))
(if (= (+ (length results-instvar-list) 1)

(+ (length my-instvar-list)
(length others-instvar-list)))

(begin
(while (not (null? my-instvar-list))

(if (not (equal? (car my-instvar-list)
(car results-instvar-list)))

(begin (set! legit-cp #F)
(set! my-instvar-list nil)
(set! results-instvar-list nil)))

(set! my-instvar-list (cdr my-instvar-list))
(set! results-instvar-list
(cdr results-instvar-list)))

(set! others-instvar-list
(cdr others-instvar-list))

(while (not (null? others-instvar-list))
(if (not (equal? (car others-instvar-list)

(car results-instvar-list)))
(begin (set! legit-cp #F)

(set! others-instvar-list nil)
(set! results-instvar-list nil)))

(set! others-instvar-list
(cdr others-instvar-list))

162

(set! results-instvar-list
(cdr results-instvar-list))))

(set! legit-cp #F))
(if legit-cp

(begin
(set! save-others-members others-members)
(while (not (null? my-members))

(while (not (null? others-members))
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(fluid tvar)

(make-instance ,results-record-type)))
(send (eval (fluid tvar)) set-self

(fluid tvar))
(send (eval (fluid tvar)) copies-from

(eval (car my-members))
(eval (car others-members)))

(set! results-members (append
results-members (list (fluid tvar))))

(set! others-members (cdr others-members))))
(set! others-members save-others-members)
(set! my-members (cdr my-members)))

(send result set-members results-members))
(send result display-yourself))

163

; RELATION DIFFERENCE
- build shared-result-members as those records that

are in the difference, using EQUAL-TO?
; - then

- if result is nil
- build & display temp-result, a relation with
shared-result-members

- if result is a symbol
- build & return temp-result, a relation with self

set to the given symbol
- if result is a relation
- copy each of the shared-result-members, placing

the new records in result-members
- send result the list of result-members
- send result the message display-yourself

(define-method (relation difference) (other result)
(let ((my-members members) (other-members nil)

(shared-result-members nil) (result-members nil)
(add-flag #T) (temp-result nil))

(cond
((and (equal? (class-of-object other) 'relation)

(or (null? result)
(symbol? result)
(equal? (class-of-object result)

'relation)))
(set! other-members (send other get-members))
(while (not (null? my-members))
(while (not (null? other-members))

(cond
((send (eval (car my-members)) equal-to?

(eval (car other-members)))
(set! other-members nil)
(set! add-flag nil))

(#T
(set! other-members (cdr other-members)))

(if add-flag
(set! shared-result-members

(append shared-result-members
(list (car my-members))))

(set! add-flag #T))
(set! my-members (cdr my-members))
(set! other-members (send other get-members))

)
(cond
((or (null? result)

(symbol? result))
(set! temp-result (make-instance relation))

164

(send temp-result set-members
shared-result-members)

(if (symbol? result)
(begin
(send temp-result set-self result)
temp-result)
(begin
(send temp-result set-self 'temp-result)
(send temp-result display-yourself))

(#T
(while (not (null? shared-result-members))
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(fluid tvar)

(make-instance ,record-type)))
(send (eval (fluid tvar)) set-self (fluid tvar))
(send (eval (fluid tvar)) copy-from

(eval '(eval ,(car shared-result-members))))
(set! result-members (append
result-members (list (fluid tvar))))

(set! shared-result-members
(cdr shared-result-members))

(send result set-members result-members)
(send result display-yourself))))

(#T
(list 'cannot 'difference 'unlike 'relations))

)

165

; RELATION INTERSECT
- use the "classic" formula for intersection,

formula (self - (self - other))
- no need to worry about what result is as the
difference method will take care of that

(define-method (relation intersect) (other result)
(let ((temp-relation nil))
(cond
((equal? (class-of-object other) 'relation)
(set! temp-relation

(send (eval self) difference other
'temp-relation))

(send (eval self) difference temp-relation result))
(#T
(list 'cannot 'intersect 'unlike 'relations)))

166

; RELATION FAST-INTERSECT
- build shared-result-members as those records that

are in the intersection, using the EQUAL-TO? method
- then

- if result is nil
- build & display temp-result, a relation with
shared-result-members

- if result is a symbol
- build & return temp-result, a relation with self

set to the given symbol
- if result is a relation
- copy each of the shared-result-members, placing

the new records in result-members
- send result the list of result-members
- send result the message display-yourself

(define-method (relation fast-intersect) (other result)
(let ((my-members members) (other-members nil)

(shared-result-members nil) (result-members nil)
(add-flag nil) (temp-result nil))

(cond
((and (equal? (class-of-object other) 'relation)

(or (null? result)
(symbol? result)
(equal? (class-of-object result)

'relation)))
(set! other-members (send other get-members))
(while (not (null? other-members))

(while (not (null? my-members))
(cond
((send (eval (car my-members)) equal-to?

(eval (car other-members)))
(set! my-members nil)
(set! add-flag #T))

(#T
(set! my-members (cdr my-members)))

(cond
(add-flag
(set! shared-result-members
(append shared-result-members

(list (car other-members))))
(set! add-flag nil))

)
(set! my-members members)
(set! other-members (cdr other-members)))

(cond
((or (null? result)

167

(symbol? result))
(set! temp-result (make-instance relation))
(send temp-result set-members

shared-result-members)
(if (symbol? result)
(begin
(send temp-result set-self result)
temp-result)
(begin
(send temp-result set-self 'temp-result)
(send temp-result display-yourself))

()T
(while (not (null? shared-result-members))
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(fluid tvar)

(make-instance ,record-type)))
(send (eval (fluid tvar)) set-self (fluid tvar))
(send (eval (fluid tvar)) copy-from

(eval '(eval
,(car shared-result-members))))

(set! result-members
(append result-members (list (fluid tvar))))

(set! shared-result-members
(cdr shared-result-members))

(send result set-members result-members)
(send result display-yourself))))

(#T
(list 'cannot 'fast-intersect 'unlike 'relations))

)

168

; RELATION PROJECT
- build the new record class, instantiate the new
relation, and send self the message to project2
(which does the actual project operation)
- build gen-var-msg to create the appropriate number

of generic variables
- build define-record-msg to define new-rec-class

- instvar-list are those entries from my
instvar-list which are being projected

- display-list are those entries from my
instvar-list which are being projected

- equality-list are those entries from my
instvar-list which are being projected

- instvars are those variables which are being
projected

- define-record-method-msg implements the
IS-"NEW-REC-CLASS" method

- compile-record-msg compiles the new record class
- make-null-record-msg makes the object
NULL-"NEW-REC-CLASS"

- make-relation-instance-msg makes new-relation an
instance of new-rec-class

- set-record-type-msg sends the new-relation the
message to set its record-type to new-rec-class

- send-db-add-member-msg sends the db the message to
add the new-relation
to its list of member relations

- send-project2-msg sends the message to go ahead
with the project now that the result relation and
its record class have been defined

(define-methud (relation project)
(field-list new-rec-class new-relation)

(let ((working-field-list field-list)
(instvar-list

(send (eval (car members)) get-instvar-list))
(working-instvar-list nil)
(new-instvar-list '((self instvar aatom)))
(display-list

(send (eval (car members)) get-display-list))
(working-display-list nil)
(new-display-list nil)
(equality-list

(send (eval (car members)) get-equality-list))
(working-equality-list nil)
(new-equality-list nil)
(new-instvars nil)
(gen-var-msg nil)
(define-record-msg nil)

169

(define-record-method-msg nil)
(compile-record-msg nil)
(make-null-record-msg nil)
(make-relation-instance-msg nil)
(set-record-type-msg nil)
(send-db-add-member-msg nil)
(send-project2-msg nil)
(msg nil))

(set! working-instvar-list instvar-list)
(set! working-display-list display-list)
(set! working-equality-list equality-list)
(set! gen-var-msg (list (append

'(make-generic-variables)
(list (send (eval self)

project-count-subobjects)))))
(while (not (null? working-field-list))
(while (not (null? working-instvar-list))

(if (equal? (car working-field-list)
(caar working-instvar-list))

(begin
(set! new-instvar-list (append
new-instvar-list
(list (car working-instvar-list))))

(set! new-instvars
(append
new-instvars
(list

(append
(list (car working-field-list))
(list '(quote ,(concat

'null-
(caddar working-instvar-list))))))))

(set! working-instvar-list nil))
(set! working-instvar-list

(cdr working-instvar-list))))
(while (not (null? working-display-list))

(if (equal? (car working-field-list)
(caar working-display-list))

(begin
(set! new-display-list

(append new-display-list
(list (car working-display-list))))

(set! working-display-list nil))
(set! working-display-list

(cdr working-display-list))))
(while (not (null? working-equality-list))

(if (equal? (car working-field-list)
(caar working-equality-list))

(begin
(set! new-equality-list

(append new-equality-list

170

(list (car working-equality-list))))
(set! working-equality-list nil))

(set! working-equality-list
(cdr working-equality-list))))

(set! working-field-list (cdr working-field-list))
(set! working-instvar-list instvar-list)
(set! working-display-list display-list)
(set! working-equality-list equality-list))

(set! define-record-msg (list (append
'(define-c]ass) (list new-rec-class)
'((mixins record))

(list (append
'(classvars)
(list (append '(instvar-list)

(list '(quote ,new-instvar-list))))
(list (append '(display-list)

(list '(quote ,new-display-list))))
(list (append '(equality-list)

(list '(quote ,new-equality-list))))))
(list (append '(instvars) new-instvars))
'((options gettable-variables settable-variables

inittable-variables)))))
(set! define-record-method-msg (list (eval

'(list 'define-method
'(,new-rec-class
,(concat (concat 'is- new-rec-class) '2)) '()
'#T))))

(set! compile-record-msg (list (eval
'(list 'compile-class ',new-rec-class))))

(set! make-null-record-msg (list (eval
'(list 'define ',(concat 'null- new-rec-class)

'(make-instance ,new-rec-class (quote self)
(quote ,(concat 'null- new-rec-class)))))))

(set! make-relation-instance-msg (list (eval
'(list 'define ',new-relation

'(make-instance relation (quote self)
(quote ,new-relation))))))

(set! set-record-type-msg (list (eval
'(list 'send ',new-relation 'set-record-type

(quote ',new-rec-class)))))
(set! send-db-add-member-msg (list (eval

'(list 'send rooms 'add-member
(quote ',new-relation)))))

(set! send-project2-msg (list (eval
'(list 'send ',self 'project2 (quote ',field-list)

',new-relation))))
(set! msg (append

'(begin) gen-var-msg define-record-msa
define-record-method-msg compile-record-msg
make-null-record-msg make-relation-instance-msg
set-record-type-msg send-db-add-member-msg

171

send-proj ect2-insg))
rnsg

172

RELATION PROJECT2
- does minimal error checking (placing result in

legit-project) to determine if self is appropriate
; for building result
- for each record in self,
- get a generic variable and make it an instance of

result's record type
- use COPY-FROM to make this new record a copy of

the appropriate fields from self's record

(define-method (relation project2) (field-list result)
(let ((results-rec-type nil) (results-rec nil)

(results-instvar-list nil) (legit-project #T)
(my-members members) (result-members nil))

(set! results-rec-type (send result get-record-type))
(set! results-rec

(eval '(make-instance ,results-rec-type)))
(set! results-instvar-list

(cdr (send results-rec get-instvar-list)))
(if (= (length field-list)

(length results-instvar-list))
(while (not (null? field-list))

(if (not (equal? (car field-list)
(caar results-instvar-list)))

(begin (set! legit-project #F)
(set! field-list nil)))

(set! results-instvar-list
(cdr results-instvar-list))

(set! field-list (cdr field-list)))
(set! legit-project #F))

(cond
(legit-project
(while (not (null? my-members))
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(fluid tvar)

(make-instance ,results-rec-type)))
(send (eval (fluid tvar)) set-self (fluid tvar))
(send (eval (fluid tvar)) copy-from

(eval '(eval ,(car my-members))))
(set! result-members (append result-members

(list (fluid tvar))))
(set! my-members (cdr my-members))

(send result set-members result-members)
(send result display-yourself))

)

173

; RELATION SELECT
- select records to build shared-result-members
- then

- if result is nil
- build & display temp-result, a relation with

shared-result-members
- if result is a symbol

- build & return temp-result, a relation with self
set to the given symbol

- if result is a relation
- copy each of the shared-result-members, placing
the new records in result-members

- send result the list of result-members
- send result the message display-yourself

(define-method (relation select) (which op what result)
(let ((my-members members) (shared-result-members nil)

(result-members nil) (temp-result nil))
(cond
((or (null? result)

(symbol? result)
(equal? (class-of-object result) 'relation))

(while (not (null? my-members))
(if (send (eval (car my-members))

meet-select-criteria? which op what)
(set! shared-result-members

(append
shared-result-members
(list (car my-members)))))

(set! my-members (cdr my-members)))
(cond
((or (null? result)

(symbol? result))
(set! temp-result (make-instance relation))
(send temp-result set-members

shared-result-members)
(if (symbol? result)
(begin
(send temp-result set-self result)
temp-result)
(begin
(send temp-result set-self 'temp-result)
(send temp-result display-yourself))

(#T
(while (not (null? shared-result-members))
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(fluid tvar)

174

(make-instance ,record-type)))
(send (eval (fluid tvar)) set-self (fluid tvar))
(send (eval (fluid tvar)) copy-from

(eval '(eval
,(car shared-result-members))))

(set! result-members (append
result-members (list (fluid tvar))))

(set! shared-result-members
(cdr shared-result-members))

(send result set-members result-members)
(send result display-yourself))))

(#T
(list ' improper 'result))

)

175

; RELATION UNION
- build shared-result-members as those records that

are in the union
; - then

- if result is nil
- build & display temp-result, a relation with

shared-result-members
- if result is a symbol

- build & return temp-result, a relation with self
set to the given symbol

- if result is a relation
- copy each of the shared-result-members, placing

the new records in result-members
- send result the list of result-members
- send result the message display-yourself

(define-method (relation union) (other result)
(let ((my-members members) (other-members nil)

(shared-result-members members)
(result-members nil) (add-flag WT)
(temp-result nil))

(cond
((and (equal? (class-of-object other) 'relation)

(or (null? result)
(symbol? result)
equal? (class-of-object result)

'relation)))
(set! other-members (send other get-members))
(while (not (null? other-members))

(while (not (null? my-members))
(cond
((send (eval (car my-members)) equal-to?

(eval (car other-members)))
(set! my-members nil)
(set! add-flag nil))

(#T
(set! my-members (cdr my-members)))

(if add-flag
(set! shared-result-members (append
shared-result-members
(list (car other-members))))

(set! add-flag #T))
(set! my-members members)
(set! other-members (cdr other-members)))

(cond
((or (null? result)

(symbol? result))

176

(set! temp-result (make-instance relation))
(send temp-result set-members

shared-result-members)
(if (symbol? result)
(begin
(send temp-result set-self result)
temp-result)
(begin
(send temp-result set-self 'temp-result)
(send temp-result display-yourself))

(#T
(while (not (null? shared-result-members))
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(fluid tvar)

(make-instance ,record-type)))
(send (eval (fluid tvar)) set-self (fluid tvar))
(send (eval (fluid tvar)) copy-from

(eval '(eval
,(car shared-result-members))))

(set! result-members (append
result-members (list (fluid tvar))))

(set! shared-result-members
(cdr shared-result-members))

(send result set-members result-members)
(send result display-yourself))))

(#T
(list 'cannot 'union 'unlike 'relations))

)

COMPILE-CLASS RELATION

(compile-class relation)

177

RECORD
- Description

- intended to be used as an ancestor to every
user-defined record type

- note that records may consist only of subobjects
- Superclasses

- OBJECT, GENERIC
- Class Variables

- none
- Instance Variables

- none
; - Methods

- (send-if-handles x IS-RECORD?)
- #T if x is of type record, #F otherwise

- (send x MEET-SELECT-CRITERIA? which op what)
- used by the SELECT method of RELATION
- which indicates which subobject
- op indicates which operation
- what indicates what to compare the subobject to
- for example, (send x MEET-SELECT-CRITERIA?

subobjecti is-equal-to? y)
- #T if subobjectl of x is-equal-to? y,

otherwise #F
- (send x COPIES-FROM otherl other2)

- similar to the COPY-FROM inherited from GENERIC
- used by CARTESIAN-PRODUCT
- makes x a copy of the fields of otherl & other2

(define-class record
(mixins object generic))

RECORD IS-RECORD?

(define-method (record is-record?) () #T)

178

; RECORD MEET-SELECT-CRITERIA?
- WHICH is which subobject in the record
- OP is which operation (such as EQUAL-TO?)
- WHAT is what value (object) to compare the WHICH to

(define-method (record meet-select-criteria?)
(which op what)

(if (eval '(send ,(eval which) ,op ,what))#T
#F))

; RECORD COPIES-FROM
- similar to the inherited COPY-FROM, except that this

; copies a record from two other records
- used by CARTESIAN-PRODUCT

I,:::D:f:DIFDDDIDDII,,,:,,,I:g,'gDDI:g,,Ig,'I,,I,,,I

(define-method (record copies-from) (recl rec2)
(let ((my-instvar-list (cdr instvar-list))

(recl-instvar-list
(cdr (send recl get-instvar-list)))

(rec2-instvar-list
(cdr (send rec2 get-instvar-list)))

(next-var nil))
(while (not (null? recl-instvar-list))

(set! next-var (car my-instvar-list))
(cond
((equal? (cadr next-var) 'subobject)
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(car next-var) (fluid tvar)))
(eval '(set! ,(fluid tvar)

(make-instance ,(caddr next-var))))
(send (eval (fluid tvar)) set-self (fluid tvar))
(send (eval (fluid tvar)) copy-from

(eval (eval
'(send ,recl ,(concat 'get-

(car next-var))))))))
(#T
(eval '(set! ,(car next-var) nil)))

)
(set! recl-instvar-list (cdr recl-instvar-list))
(set! my-instvar-list (cdr my-instvar-list)))

(while (not (null? rec2-instvar-list))
(set! next-var (car my-instvar-list))
(cond

179

((equal? (cadr next-var) 'subobject)
(fluid-let ((tvar (send (eval rooms) get-var)))
(eval '(set! ,(car next-var) (fluid tvar)))
(eval '(set! ,(fluid tvar)

(make-instance ,(caddr next-var))))
(send (eval (fluid tvar)) set-self (fluid tvar))
(send (eval (fluid tvar)) copy-from (eval (eval

'(send ,rec2 ,(concat
'get- (car next-var))))))))

(#T
(eval '(set! ,(car next-var) nil)))

)
(set! rec2-instvar-list (cdr rec2-instvar-list))(set! my-instvar-list (cdr my-instvar-list)))

; COMPILE-CLASS RECORD

(compile-class record)

; MACROS & FUNCTIONS TO CREATE OBJECTS & "NULL" OBJECTS

(macro create-database (lambda (e)
'(make-instance database 'self ',(cadr e))))

(macro create-relation (lambda (e)
'(make-instance relation 'self ',(cadr e))))

(macro create-record (lambda (e)
'(make-instance record 'self ',(cadr e))))

(define null-database
(create-database null-database))

(define null-relation
(create-relation null-relation))

(define null-record
(create-record null-record))

180

;ROOMS-lO.PCS - section 10 of ROOMS in PC Scheme
This section contains the descriptions for

-database user's records
-EMP-REC

EMP-REC
--Description

- Employee Record's
- Superciasses

- RECORD
--Class Variables

- INSTVAR-LIST, DISPLAY-LIST, EQUALITY-LIST
- Instance Variables

- EMP-NAME, subobject of type person-name
- EMP-ADDR, subobject of type addr
- EMP-WIDGET, subobject of type widget
- EMP-SALARY, subobject of type salary
Methods

-(send-if-handles x IS-EMP-REC?)
-#T if x is of type emp-rec, #F otherwise

(define-class emp-rec
(mixins record)
(classvars

(instvar-list '((self instvar aatom)
(emp-name subobject person-name)
(emp-addr subobject addr)
(emp-widget subobject widget)
(emp-salary subobject salary)))

(display-list '((emp-name subobject)
(emp-addr subobj ect)
(emp-widget subobj ect)
(emp-salary subobject)))

(equality-list '((emp-name subobject)
(emp-salary subobject)
(emp-addr subobj ect)
(emp-widget subobject))))

(instvars (emp-name 'null-person-name)
(emp-addr 'null-addr)
(emp-widget 'null-widget)
(emp-salary 'null-salary))

(options gettable-variables settable-variables
inittable-variables)

181

EMP-REC IS-EMP-REC?

(define-method (emp-rec is-emp-rec?) () #T)

COMPILE-CLASS EMP-REC

(compile-class emp-rec)

; MACROS & FUNCTIONS TO CREATE OBJECTS & "NULL" OBJECTS

(macro create-emp-rec (lambda (e)
'(make-instance emp-rec 'self ',(cadr e))))

(define null-emp-rec
(create-emp-rec null-emp-rec))

182

; ROOMS-20.PCS - section 20 of ROOMS in PC Scheme
; -this section contains the descriptions for

all user-defined fields

NAME
- Description

- contains a single value (atom, string, list, etc)
; which is the "name" of something
- Superclasses

- OBJECT, GENERIC
; - Class Variables

- INSTVAR-LIST
- DISPLAY-LIST
- EQUALITY-LIST

; - Instance Variables
- VALUE

; - Methods
- (send-if-handles x IS-NAME?)
- - #T if x is of type name, #F otherwise
- (send x CHANGE-TO new-name)

- change value to new-name

(define-class name
(mixins object generic)
(classvars (instvar-list '((self instvar aatom)

(value instvar vvar)))
(display-list '((value instvar)))
(equality-list '((value -nstvar))))

(instvars (value nil))
(options gettable-variables settable-variables

inittable-variables))

; NAME IS-NAME?

(define-method (name is-name?) () #T)

183

NAME CHANGE-TO

(define-method (name change-to) (new-name)
(set! value new-name)
new-name)

COMPILE-CLASS NAME

(compile-class name)

184

LAST-NAME
; - Description

- contains a last name
- Superclasses
-NAME

; - Class Variables
- none

- Instance Variables
- none

- Methods
- (send-if-handles x IS-LAST-NAME?)

- #T if x is of type last-name, WF otherwise

(define-class last-name
(mixins name))

; LAST-NAME IS-LAST-NAME?
:::::::::::g:gg:::::::I:::I:IIII:g:::::::::::I::IIII:g::

(define-method (last-name is-last-name?) () #T)

COMPILE-CLASS LAST-NAME

(compile-class last-name)

185

FIRST-NAME
; - Description

- contains a first-name
- Superclasses
-NAME

; - Class Variables
- none

- Instance Variables
- none

; - Methods
- (send-if-handles x IS-FIRST-NAME?)

- #T if x is of type first-name, #F otherwise

(define-class first-name
(mixins name))

; FIRST-NAME IS-FIRST-NAME?

(define-method (first-name is-first-name?) () #T)

; COMPILE-CLASS FIRST-NAME

(compile-class first-name)

186

MIDDLE-INITIAL
; - Description

- contains a middle-initial
- Superclasses
-NAME

; - Class Variables
- none

; - Instance Variables
- none

; - Methods
- (send-if-handles x IS-MIDDLE-INITIAL?)

- T if x is of type middle-initial, #F otherwise

(define-class middle-initial
(mixins name))

; MIDDLE-INITIAL IS-MIDDLE-INITIAL?

(define-method (middle-initial is-middle-initial?) ()
#T)

; COMPILE-CLASS MIDDLE-INITIAL

(compile-class middle-initial)

187

PERSON-NAME
; - Description

- contains a persons name
- (last, first, middle initial)
- Superclasses

- OBJECT, GENERIC
; - Class Variables

- INSTVAR-LIST, DISPLAY-LIST, EQUALITY-LIST
- Instance Variables

- PN-LAST-NAME, a subobject of type last-name
- PN-FIRST-NAME, a subobject of type first-name
- PN-MIDDLE-INITIAL, a subobject of type

- middle-initial
Methods
- (send-if-handles x IS-PERSON-NAME?)

- #T if x is of type person-name, #F otherwise
- (send x CHANGE-LAST-NAME-TO new-last-name)
- calls (send last-name change-to new-last-name)

- (send x CHANGE-FIRST-NAME-TO new-first-name)
- calls (send first-name change-to new-first-name)

- (send x CHANGE-MIDDLE-INITIAL-TO new-mi)
- calls (send middle-initial change-to new-mi)

- (send x CHANGE-TO new-name)
-calls

(send self change-last-name-to (car new-name))
(send self change-first-name-to (cadr new-name))
(send self change-middle-initial-to

(caddr new-name))

(define-class person-name
(mixins object generic)
(classvars

(instvar-list
'((self instvar aatom)
(pn-last-name subobject last-name)
(pn-first-name subobject first-name)
(pn-middle-initial subobject middle-initial)))

(display-list '((pn-last-name subobject)
(pn-first-name subobject)
(pn-middle-initial subobject)))

(equality-list '((pn-last-name subobject)
(pn-first-name subobject)
(pn-middle-initial subobject))))

(instvars (pn-last-name 'null-last-name)
(pn-first-name 'null-first-name)
(pn-middle-initial 'null-middle-initial))

(options gettable-variables settable-variables
inittable-variables))

188

PERSON-NAME IS-PERSON-NAME?

(define-method (person-name is-person-name?) W) T)

;PERSON-NAME CHANGE-LAST-NAME-TO

(define-method (person-name change-last-name-to)
(new-last-name)

(if (not (null? pn-last-name))
(send (eval pn-last-name) change-to new-last-name)
#fF)

;PERSON-NAME CHANGE-FIRST-NAME-TO

(define-method (person-name change-first-name-to)
(new-first-name)

(if (not (null? pn-first-name))
(send (eval pn-first-name) change-to new-first-name)
1fF)

;PERSON-NAME CHANGE-MIDDLE-INITIAL-TO

(define-method (person-name change-miiddle-initial-to)
(new-mi)

(if (not (null? pn-middle-initial))
(send (eval pn-middle-initial) change-to new-mi)
#fF)

189

PERSON-NAME CHANGE-TO

(define-method (person-name change-to) (new-name)
(if (and (equal? '3 (length new-name))

(atom? (car new-name))
(atom? (cadr new-name))
(atom? (caddr new-name)))

(append
(list (send (eval self) change-last-name-to

(car new-name)))
(list (send (eval self) change-first-name-to

(cadr new-name)))
(list (send (eval self) change-middle-initial-to

(caddr new-name))))
nil)

; COMPILE-CLASS PERSON-NAME

(compile-class person-name)

190

ADDR
- Description

- contains an address
- (street, city, state, zip)
- Superclasses

- OBJECT, GENERIC
- Class Variables
- INSTVAR-LIST, DISPLAY-LIST, EQUALITY-LIST

; - Instance Variables
- STREET, a subobject of type name
- CITY, a subobject of type name
- STATE, a subobject of type name
- ZIP, a subobject of type name

; -Methods
- (send-if-handles x IS-ADDR?)

- #T if x is of type addr, #F otherwise
- (send x CHANGE-STREET-TO new-street)

- calls (send street change-to new-street)
- (send x CHANGE-CITY-TO new-city)

- calls (send city change-to new-city)
- (send x CHANGE-STATE-TO new-state)

- calls (send state change-to new-state)
- (send x CHANGE-ZIP-TO new-zip)

- calls (send zip change-to new-zip)
- (send x CHANGE-TO new-addr)

-calls
(send self change-street-to (car new-addr))
(send self change-city-to (cadr new-addr))
(send self change-state-to (caddr new-addr))
(send self change-zip-to (cadddr new-addr))

(define-class addr
(mixins object generic)
(classvars
(instvar-list
'((self instvar aatom) (street subobject name)
(city subobject name) (state subobject name)
(zip subobject name)))

(display-list
'((street subobject) (city subobject)
(state subobject) (zip subobject)))

(equality-list
'((zip subobject) (state subobject)
(city subobject) (street subobject))))

(instvars (street 'null-street) (city 'null-city)
(state 'null-state) (zip 'null-zip))

(options gettable-variables settable-variables
inittable-variables)

191

ADDR IS-ADDR?

(define-method (addr is-addr?) () WT)

ADDR CHANGE-STREET-TO

(define-method (addr change-street-to) (new-street)
(if (not (null? street))

(send (eval street) change-to new-street)
#F))

ADDR CHANGE-CITY-TO

(define-method (addr change-city-to) (new-city)
(if (not (null? city))

(send (eval city) change-to new-city)
#F))

ADDR CHANGE-STATE-TO

(define-method (addr change-state-to) (new-state)
(if (not (null? state))

(send (eval state) change-to new-state)
#F))

192

ADDR CHANGE-ZIP-TO

(define-method (addr change-zip-to) (new-zip)
(if (not (null? zip))

(send (eval zip) change-to new-zip)
#F))

ADDR CHANGE-TO

(define-method (addr change-to) (new-addr)
(if (and (equal? '4 (length new-addr))

(atom? (car new-addr))
(atom? (cadr new-addr))
(atom? (caddr new-addr))
(atom? (cadddr new-addr)))

(append
(list (send (eval self) change-street-to

(car new-addr)))
(list (send (eval self) change-city-to

(cadr new-addr)))
(list (send (eval self) change-state-to

(caddr new-addr)))
(list (send (eval self) change-zip-to

(cadddr new-addr))))
nil))

ADDR DISPLAY-YOURSELF

(define-method (addr display-yourself) ()
(append (send (eval street) display-yourself)

(send (eval city) display-yourself)
(send (eval state) display-yourself)
(send (eval zip) display-yourself))

)

193

COMPILE-CLASS ADDR

(compile-class addr)

194

; WIDGET
- Description
- looks amazingly like a telephone number,

- x-coord == area code
- y-coord == exchange
- z-coord == extension

- note: does not use generic routines (by choice...)
- Superclasses

- OBJECT
; -Class Variables

- none
- Instance Variables

- X-COORD, Y-COORD, & Z-COORD
; -Methods

- (send-if-handles x IS-WIDGET?)
- #T if x is of type widget, #F otherwise

- (send x COPY-FROM other)
- if (other is of type widget)

set instvars of x to the instvars of other
- (send x DISPLAY-YOURSELF)

- displays x-coord, y-coord, & z-coord
- (send x EQUAL-TO? y)

- #T if (y is of type widget) and (the instance
variables of x are equal to the instance
variables of y), otherwise 4F

- (send x SET-WIDGET coords)
- sets x-coord to (car coords),
y-coord to (cadr coords), &
z-coord to (caddr coords)

- (send x CHANGE-TO new-widget)
- calls (send self set-widget new-widget)

- (send x CHANGE-X-TO new-x)
- sets x-coord to new-x

- (send x CHANGE-Y-TO new-y)
- sets y-coord to new-y

- (send x CHANGE-Z-TO new-z)
- sets z-coord to new-z

(define-class widget
(mixins object)
(instvars (x-coord nil) (y-coord nil) (z-coord nil))
(options gettable-variables settable-variables

inittable-variables)
)

195

; WIDGET IS-WIDGET?

(define-method (widget is-widget?) () #T)

; WIDGET COPY-FROM

(define-method (widget copy-from) (other)
(cond
((send-if-handles other is-widget?)
(set! x-coord (send other get-x-coord))
(set! y-coord (send other get-y-coord))
(set! z-coord (send other get-z-coord))
(eval self))

(#T
nil)))

WIDGET DISPLAY-YOURSELF

(define-method (widget display-yourself) ()
(append (list x-coord) (list y-coord) (list z-coord)))

; WIDGET EQUAL-TO?

(define-method (widget equal-to?) (other)
(if (and (send-if-handles other is-widget?)

(equal? x-coord (send other get-x-coord))
(equal? y-coord (send other get-y-coord))
(equal? z-coord (send other get-z-coord)))#T

#F)

196

; WIDGET SET-WIDGET

(define-method (widget set-widget) (coords)
(if (and (equal? (length coords) '3)

(atom? (car coords))
(atom? (cadr coords))
(atom? (caddr coords)))

(append (list (set! x-coord (car coords)))
(list (set! y-coord (cadr coords)))
(list (set! z-coord (caddr coords))))

nil))

; WIDGET CHANGE-TO

(define-method (widget change-to) (coords)
(send (eval self) set-widget coords))

; WIDGET CHANGE-X-TO

(define-method (widget change-x-to) (new-x)
(set! x-coord new-x)
new-x)

; WIDGET CHANGE-Y-TO

(define-method (widget change-y-to) (new-y)
(set! y-coord new-y)
new-y)

197

;WIDGET CHANGE-Z-TO

(define-method (widget change-z-to) (new-z)
(set! z-coord new-z)
new-z

;COMPILE-CLASS WIDGET

(compile-class widget)

198

SALARY
- Description
- integer field
- note: does not use generic routines (by choice...)

- Superclasses
- OBJECT

; - Class Variables
- none

- Instance Variables
- VALUE

; - Methods
- (send-if-handles x IS-SALARY?)

- #T if x is of type salary, #F otherwise
- (send x COPY-FROM other)

-if (other is of type salary)
set value of x to the value of other

- (send x DISPLAY-YOURSELF)
- displays value

- (send x EQUAL-TO? y)
-if (y is of type salary) and

(the instance value of x is equal to the value
of y) #T, otherwise #F

- (send x SET-SALARY new-value)
- sets value to new-value

- (send x CHANGE-TO new-value)
- calls (send self set-salary new-value)

(define-class salary
(mixins object)
(instvars (value 0))
(options gettable-variables settable-variables

inittable-variables))

SALARY IS-SALARY?

(define-method (salary is-salary?) () #T)

199

SALARY COPY-FROM

(define-method (salary copy-from) (other)
(cond
((send-if-handles other is-salary?)
(set! value (send other get-value))
(eval self))

(#T
nil)))

; SALARY DISPLAY-YOURSELF

(define-method (salary display-yourself) ()
(list value)

)

; SALARY EQUAL-TO?

(define-method (salary equal-to?) (other)
(if (and (send-if-handles other is-salary?)

(equal? value (send other get-value)))
#T

#F))

SALARY SET-SALARY

(define-method (salary set-salary) (new-value)
(if (not (number? new-value))
nil
(set! value new-value)))

200

SALARY CHANGE-TO

(define-method (salary change-to) (new-value)
(send (eval self) set-salary new-value))

; COMPILE-CLASS SALARY

(compile-class salary)

201

; MACROS & FUNCTIONS TO CREATE OBJECTS & "NULL" OBJECTS

(macro create-name (lambda (e)
'(make-instance name 'self ',(cadr e))))

(macro create-last-name (lambda (e)
'(make-instance last-name 'self ',(cadr e))))

(macro create-first-name (lambda (e)
'(make-instance first-name 'self ',(cadr e))))

(macro create-middle-initial (lambda (e)
'(make-instance middle-initial 'self ',(cadr e))))

(macro create-person-name (lambda (e)
'(make-instance person-name 'self ',(cadr e))))

(macro create-addr (lambda (e)
'(make-instance addr 'self ',(cadr e))))

(macro create-widget (lambda (e)
'(make-instance widget 'self ',(cadr e))))

(macro create-salary (lambda (e)

'(make-instance salary 'self ',(cadr e))))

(define null-name (create-name null-name))

(define null-last-name
(create-last-name null-last-name))

(define null-first-name
(create-first-name null-first-name))

(define null-middle-initial
(create-middle-initial null-middle-initial))

(define null-person-name
(create-person-name null-person-name))

(define null-addr (create-addr null-addr))

(define null-widget (create-widget null-widget))

(define null-salary (create-salary null-salary))

202

; UTILS.PCS - utilities used by ROOMS
; -this section contains the descriptions for

- (concat x y)
- concatenates x & y together

- (embedded-member? x y)
- determines if x is contained anywhere within y

- (list? x)
- determines if x is a list

- (pprint x)
- prints each member of x on a separate line

- (subset? x y)
- determines if x is a subset of y

- (while condition statements)
- while condition is true, executes statements

(CONCAT x y)
; - concatenates x and y together,

- x and y must be atoms
- ex, (concat 'a 'b) = 'ab

(concat 'ab 'xyz) = 'abxyz
:::g::::g::::::::::gg::::::::::::::::::::::::g:g::g::,,:

(define concat (lambda (x y)
(implode (append (explode x) (explode y)))))

203

; (EMBEDDED-MEMBER? x y)
determines if x appears anywhere in y
- x can be an atom or a list, y must be a list

(define (embedded-member? x y)
(let ((return-value #F)

(finished #F))
(if (list? y)

(while (not finished)
(if (or (member x y)

(and (list? (car y))
(embedded-member? x (car y))))

(begin
(set! return-value #T)
(set! finished #T))

(begin
(set! y (cdr y))
(if (null? y) (set! finished #T))))

return-value

; (LIST? x)
determines if x is a list

(macro list? (lambda (e) '(not (atom? ,(cadr e)))))

;(PPRINT x)
; -display each member of the list x on a separate line

(define (pprint x)
(while (>? (length x) 1)
(print (car x))
(set! x (cdr x)))

(newline)
(car x))

204

; (SUBSET? 11 12)
- #T if 11 is a subset of 12

(define (subset? 11 12)
(cond
((null? 11) #T)

((member (car 11) 12) (subset? (cdr 11) 12))
(t #F)

; (WHILE condition statements)
- while condition is #T, execute statements

(macro while
(lambda (e)

'(do #!null ((not,(cadr e))),@(cddr e))

APPENDIX C

THE SOURCE CODE FOR
THE IMPLEMENTATION OF

ROOMS IN EOOPS

206

; ROOMS-00.EOO - section 00 of ROOMS
; -this section contains the descriptions for

- GENERIC METHODS

; GENERIC METHODS
- Description

- Various "default" methods which can be
instantiated for other classes

- Methods
- (send x COPY-FROM other)

- makes x a "copy" of other by setting all
instance variables of x which are also instance
variables of other to the same value, and calls
(send x SUPERCLASS.COPY-FROM other) for every
superclass of x's class which is also a
superclass of y's class

- (send x DISPLAY-YOURSELF)
- Concatenates the display value of every class
variable, instance variable, and the result of
(send x SUPERCLASS.DISPLAY-YOURSELF) for every
superclass

- (send x EQUAL-TO? other)
-if x & other are of the same class,
- then compare the values of x's and other's

instance variables, and the result of
(send x SUPERCLASS.EQUAL-TO? other) for every
superclass to determine equality

- otherwise false
..::::::::

207

; GENERIC COPY-FROM
- if self & other are not of the same class

- then for every class variable of self that is also
a class variable of other, set self's class

- variable to that of other's
- for every instance variable of self that is also an
instance variable of other, set self's instance
variable to that of other's

- for every superclass of self that is also a
superclass of other, send self the message
superclass.copy-from other

(define-generic-method copy-from (other) ()
(let ((my-class (send self class-of-object?))

(my-class-variables
(send my-class get-class-variables))

(my-instance-variables
(send my-class get-instance-variables))

(my-superclasses
(send my-class get-superclasses))

(other-class (send other class-of-object?))
(other-class-variables

(send other-class get-class-variables))
(other-instance-variables

(send other-class get-instance-variables)))
(if (not (equal? my-class other-class))

(while (not (null? my-class-variables))
(if (embedded-member? (caar my-class-variables)

other-class-variables)
(set! (eval (caar my-class-variables))

(send other (concat
'(get-) (caar my-class-variables)))))

(set! my-class-variables
(cdr my-class-variables))))

(while (not (null? my-instance-variables))
(if (embedded-member? (caar my-instance-variables)

other-instance-variables)
(set! (eval (caar my-instance-variables))

(send other (concat
'(get-) (caar my-instance-variables)))))

(set! my-instance-variables
(cdr my-instance-variables)))

(while (not (null? my-superclasses))
(if (embedded-member? (car my-superclasses)

other-superclasses)
(send self (concat (car my-superclasses)

'(.copy-from))
other)))

208

; GENERIC DISPLAY-YOURSELF
- this version puts parens around subobjects

; - essentially,
- for x in (send self get-class-variables),
display x

- for x in (send self get-instance-variables),
display x

- for x in (send self get-superclasses),
(send self superclass.display-yourself)

(define-generic-method display-yourself () ()
(let ((return-message nil)

(my-class (send self class-of-object?))
(my-class-variables

(send my-class get-class-variables))
(my-instance-variables

(send my-class get-instance-variables))
(my-superclasses

(send my-class get-superclasses)))
(while (not (null? my-class-variables))

(set! return-message
(append return-message

(list (eval (caar my-class-variables)))))
(set! my-class-variables (cdr my-class-variables)))

(while (not (null? my-instance-variables))
(set! return-message
(append return-message

(list (eval
(caar my-instance-variables)))))

(set! my-instance-variables
(cdr my-instance-variables)))

(while (not (null? my-superclasses))
(set! return-message

(append return-message
(list (send self

(concat (car my-superclasses)
'(.display-yourself))))))

(set! my-superclasses (cdr my-superclasses)))
return-message

209

; GENERIC METHODS EQUAL-TO?
- self & other must be of the same class
- assume the objects are equal (i.e., set return-value

to TRUE)
; - essentially,

- for x in (send self get-instance-variables),
compare self's & other's value for x

- for x in (send self get-superclasses),
(send self superclass.equal-to? other)

discontinue if any pair of values are not equal

(define-generic-method equal-to? (other) ()
(let ((return-value #T)

(my-class (send self class-of-object?))
(my-instance-variables

(send my-class get-instance-variables))
(my-superclasses

(send my-class get-superclasses)))
(while (and (not (null? my-instance-variables))

(not (null? return-value)))
(if (not (equal?

(eval (caar my-instance-variables))
(send other (concat

'(get-)
(caar my-instance-variables)))))

(set! return-value #F))
(set! my-class-variables (cdr my-class-variables)))

(while (and (not (null? my-superclasses))
(not (null? return-value)))

(if (not (send self (concat (car my-superclasses)
'(.equal-to?))))

(set! return-value #F)
(set! my-superclasses (cdr my-superclasses)))

return-value

210

; ROOMS-01.EOO - section 01 of ROOMS in EOOPS
- this section contains the descriptions for

- all database "overhead" classes
- DATABASE, RELATION, & RECORD

:::::::III:::I::I::::::::::::::IIII:I:::::::::::::::::::I

; DATABASE
- Description

- consists of a collection of relations
- Superclasses

- none
- Class Variables

- none
- Instance Variables

- MEMBERS
- a list of all the relations that are in the

database; ex, '(R S T)
; - Methods

- (send x DISPLAY-YOURSELF)
- displays the names of the relations that are in
the database

- (send x ADD-MEMBFR member-to-add)
- adds member-to-add to the rer)er list if it is

of type relation
- (send x REMOVE-MEMBER member-to-remove)

- removes member-to-remove from the member list

(define-class database
(instance-variables (members nil)
options gettable settable))

; DATABASE DISPLAY-YOURSELF
- display a list of all the relations in the database

(database define-method display-yourself ()
members

)

211

; DATABASE ADD-MEMBER
- if member-to-add is of type relation and it is not
already in the members list, then add it to the
members list

(database define-method add-member (member-to-add)
(if eq? (gend member-to-add class-of-object?)

'relation)
(if (not (member member-to-add members))

(set! members (append members
(list member-to-add)))

members)
nil))

; DATABASE REMOVE-MEMBER
; -delete member-to-remove from members list

(database define-method remove-member (member-to-remove)
(set! members (delete! member-to-remove members)))

212

RELATION
; - Description

- Intended to be used as an ancestor to every
user-defined relation type

- Relations consist of a collection of records
- Superclasses
- none

; - Class Variables
- none

- Instance Variables
- MEMBERS

- a list of all the records that are in this
relation; ex, '(el e2 e4 e7)

- RECORD-TYPE
- the class name of records that can be in this

; - relation; ex, 'emp-rec
Methods
- (send x DISPLAY-YOURSELF)

- displays each record that is a member of the
relation

- (send x ADD-RECORD record-to-add)
- add the record record-to-add to the relation

(i.e., to the member list)
- record-to-add must be a symbol

- i.e., if el is the record to be added, must
use 'el or x where (eval x) = 'el, el will NOT
work

- record-to-add must be of type RECORD-TYPE
- (send x GET-RECORDS)

- returns members, the list of records
- (send x REMOVE-RECORD record-to-remove)
-removes record-to-remove from the relation

(i.e., from the member list)
- relational algebra operations

-for all operations
- if result is nil
-then build & display a temporary relation

- if result is a symbol
-then build & return a temporary relation

- if result is a relation
- then build & display it

- (send x CARTESIAN-PRODUCT other result
new-rec-class)

- make result the cartesian-product of self &
other

- if new-rec-class is nil
- then a gensym variable name is used as the
name of the new record type

- if new-rec-class is a symbol
- then that symbol is used as the name of the

213

new record type
- if new-rec-class is already a type of record

- then it is used as the record-type of the
result relation

- (send x DIFFERENCE other result)
- make result the difference of self & other

- (send x FAST-INTERSECT other result)
- make result the intersection of self & other,
using the EQUAL-TO? method to determine which
records to pick

- (send x INTERSECT other result)
-make result the intersection of self & other,
using the "classic" formula
result = (self - (self - other)),
implemented as
- temp-relation (self - other)
- result = (self - temp-relation)

- (send x PROJECT (field-list) result
new-rec-class)

- make result the projection of field-lists from
self, where new-rec-class is the name of the
record class of the result records

- if new-rec-class is nil
- then a gensym variable name is used as the

name of the new record type
- if new-rec-class is a symbol

- then that symbol is used as the name of the
; fnew record type
- if new-rec-class is already a type of record

- then it is used as the record-type of the
result relation

- (send x SELECT which op what result)
-make result those records of self that meet

the selection criteria of which, op, & what
- (send x UNION other result)
-make result the union of self & other

(define-class relation
(instance-variables (members nil) (record-type nil)
options gettable settable))

214

; RELATION DISPLAY-YOURSELF
; -concatenate the results of

(send record DISPLAY-YOURSELF)
for each record in the relation

(relation define-method display-yourself ()
(let ((member-list members)

(return-message nil))
(while (not (null? member-list))

(set! return-message
(append return-message

(list (send (eval (car member-list))
display-yourself))))

(set! member-list (cdr member-list)))
(pprint return-message)

; RELATION ADD-RECORD
- if record-to-add is of the appropriate record type

and is not already a member of the relation, then
; add it to the members list

(relation define-method add-record (record-to-add)
(if (and (symbol? record-to-add)

(equal? (send record-to-add class-of-object?)
record-type))

(if (not (member record-to-add members))
(set! members

(append members
(eval '(list (quote ,record-to-add)))))

members)
nil)

215

; RELATION GET-RECORDS
- display the members of the relation

(relation define-method get-records ()
members)

; RELATION REMOVE-RECORD
; -remove record-to-remove from the members list

(relation define-method remove-record (record-to-remove)
(set! members (delete! record-to-remove members))

)

216

RELATION CARTESIAN-PRODUCT
- build the new record class if necessary
- instantiate the result-relation if necessary

; - set the record-type of the result-relation to the
new record class if necessary

(relation define-method cartesian-product
(other result new-rec-class)

(let ((result-relation nil)
(temp-rec nil)
(my-members nil)
(others-members nil))

(if (or (null? new-rec-class) (symbol? new-rec-class))
(begin
(if (null? new-rec-class)

(set! new-rec-class (gensym)))
(let ((my-record-type (send self get-record-type))

(other-record-type
(send other get-record-type))

(new-class-variables nil)
(new-instance-variables nil)
(new-superclasses nil))

(set! new-class-variables (append
(send my-record-type get-class-variables)
(send other-record-type get-class-variables)))

(set! new-instance-variables (append
(send my-record-type get-instance-variables)
(send other-record-type get-instance-variables)))

(set! new-superclasses (append
(send my-record-type get-superclasses)
(send other-record-type get-superclasses)))

(define-class new-rec-class
(append '(class-variables) new-class-variables)
(append '(instance-variables)

new-instance-variables)
(append '(superclasses) new-superclasses)

; new-rec-class has now been created
(cond
((null? result)
(set! result-relation (gensym))
(send relation make-instance result-relation))

((symbol? result)
(send relation make-instance result-relation))

(#T
(set! result-relation result)))

(if (not (equal? (send result-relation
get-record-type)

new-rec-class))

217

(send result-relation set-record-type
new-rec-class))

; result-relation has now been created,
; with its record-type set to the new-rec-class

(set! others-members (send other get-members))
(while (not (null? others-members))
(set! my-members members)
(while (not (null? my-members))
(set! temp-rec (gensym))
(send new-rec-class make-instance (eval temp-rec))
(send (eval temp-rec) copy-from (car my-members)

(car others-members))
(send result-relation add-member temp-rec)
(set! my-members (cdr my-members)))

(set others-members (cdr others-members)))
; result-relation is now the result of the cartesian
; product

(cond
((null? result)
(send result-relation display-yourself))

((symbol? result)
result-relation)
(#T
(set! result result-relation)
(send result display-yourself)

218

::

; RELATION DIFFERENCE
- choose records that are in self but not in other,
using EQUAL-TO? to determine equality

(relation define-method difference (other result)
(let ((my-members members) (other-members nil)

(shared-result-members nil) (result-members nil)
(add-flag #T) (temp-result nil))

(cond
((and (equal? (send other class-of-object?)

'relation)
(or (null? result)

(symbol? result)
(equal? (send result class-of-object?)

'relation)))
(set! other-members (send other get-iaembers))
(while (not (null? my-members))
(while (not (null? other-members))

(cond
((send (eval (car my-members)) equal-to?

(eval (car other-members)))
(set! other-members nil)
(set! add-flag nil))

(#T
(set! other-members (cdr other-members)))

(if add-flag
(set! shared-result-members

(append shared-result-members
(list (car my-members))))

(set! add-flag #T))
(set! my-members (cdr my-members))
(set! other-members (send other get-members))

)
(send relation make-instance temp-result)
(send temp-result set-members shared-result-members)
(cond
((null? result)

(send temp-result display-yourself)
(symbol? result)
temp-result)
(#T
(send result copy-from temp-result)
(send result display-yourself))))

(#T
(list 'cannot 'difference 'unlike 'relations))

)

219

; RELATION INTERSECT
- use the "classic" formula for intersection
; (self - (self -other))
- no need to worry about what result is as the

difference method will take care of that

(relation define-method intersect (other result)
(let ((temp-relation nil))
(cond
((equal? (send other class-of-object?) 'relation)
(send relation make-instance temp-relation)
(self difference other temp-relation)
(self difference temp-relation result)
(#T
(list 'cannot 'intersect 'unlike 'relations)))

220

; RELATION FAST-INTERSECT
- choose every record that is a member of both self &

other, using EQUAL-TO? to determine equality

(relation define-method fast-intersect (other result)
(let ((my-members members)

(other-members (send other get-members))
(shared-result-members nil)
(result-members nil)
(add-flag WF)
(temp-result nil))

(cond
((and (equal? (send other class-of-object?)

'relation)
(or (null? result)

(symbol? result)
(equal? (send result class-of-object?)

'relation)))
(while (n,. null? other-members))

(whilr 'not (null? my-members))
(cona

(send (eval (car my-members)) equal-to?
(eval (car other-members)))

(set! my-members nil)
(set! add-flag #T))
(#T
(set! my-members (cdr my-members)))))

(cond
(add-flag
(set! shared-result-members
(append shared-result-members

(list (car other-members))))
(set! add-flag #F)))

(set! my-members members)
(set! other-members (cdr other-members)))

(send relation make-instance temp-result)
(send temp-result set-members shared-result-members)
(cond
((null? result)

(send temp-result display-yourself))
(symbol? result)
temp-result)
(#T
(send result copy-from temp-result)
(send result display-yourself))))

(#T
(list 'cannot 'fast-intersect 'unlike 'relations)))

221

; RELATION PROJECT
- build the new record class if necessary

; - instantiate the result-relation if necessary
; - set the record-type of the result-relation to the

new record class if necessary

(relation define-method project (field-list result
new-rec-class)

(let ((result-relation nil)
(temp-rec nil)
(my-members nil))

(if (or (null? new-rec-class) (symbol? new-rec-class))
(begin
(if (null? new-rec-class)

(set! new-rec-class (gensym)))
(let ((class-variables (send record-type

get-class-variables))
(new-class-variables nil)
(instance-variables (send record-type

get-instance-variables))
(new-instance-variables nil)
(superclasses

(send record-type get-superclasses))
(new-superclasses nil))

(while (not (null? class-variables))
(if (member (caar class-variables) field-list)
(set! new-class-variables
(append new-class-variables

(car class-variables))))
(set! class-variables (cdr class-variables)))
(while (not (null? instance-variables))
(if (member (caar instance-variables) field-list)
(set! new-instance-variables

(append new-instance-variables
(car instance-variables))))

(set! instance-variables
(cdr instance-variables)))

(while (not (null? superclasses))
(if (member (car superclasses) field-list)
(set! new-superclasses
(append new-superclasses

(car superclasses))))
(set! superclasses (cdr superclasses)))

(define-class new-rec-class
(append '(class-variables) new-class-variables)
(append '(instance-variables)

new-instance-variables)
(append '(superclasses) new-superclasses)

; new-rec-type class has now been created

222

(cond
((null? result)
(set! result-relation (gensym))
(send relation make-instance result-relation))

((symbol? result)
(set! result-relation result)
(send relation make-instance result-relation))
(#T
(set! result-relation result)))

(if (not (equal? (send result-relation
get-record-type)

new-rec-class))
(send result-relation set-record-type new-rec-class))

; result-relation has now been created,
; with its record-type set to the new-rec-class

(set! my-members members)
(while (not (null? my-members))
(set! temp-rec (gensym))
(send new-rec-class make-instance (eval temp-rec))
(send (eval temp-rec) copy-from (car my-members))
(send result-relation add-member temp-rec)
(set! my-members (cdr my-members))

; result relation is now the result of the project
(cond
((null? result)
(send result-relation display-yourself))

((symbol? result)
result-relation)
(#T
(set! result result-relation)
(send result display-yourself)

223

; RELATION SELECT
; -choose records that meet the selection criteria

(relation define-method select (which op what result)
(let ((my-members members)

(result-members nil)
(temp-result nil))

(cond
((or (null? result)

(symbol? result)
(equal? (send result class-of-object?)

'relation))
(while (not (null? my-members))

(if (send (eval (car my-members))
meet-select-criteria? which op what)

(set! result-members
(append result-members

(list (car my-members)))))
(set! my-members (cdr my-members))

(send relation make-instance temp-result)
(send temp-result set-members result-members)
(cond
((null? result)
(send temp-result display-yourself))

((symbol? result)
temp-result)
(#T
(send result copy-from temp-result)
(send result display-yourself)))

(#T
(list 'invalid 'result)))

224

; RELATION UNION
- choose every record that is a member of either self

or other, using EQUAL-TO? to eliminate duplicates

(relation define-method union-(other result)
(let ((add-flag #T) (my-members members)

(other-members (send other get-members))
(shared-result-members members)
(result-members nil)
(temp-result nil))

(cond
((and (equal? (E nd other class-of-object?)

'relation)
(or (null? result)

(symbol? result)
(equal? (send result class-of-object?)

'relation)))
(while (not (null? other-members))
(while (not (null? my-members))

(cond
((send (eval (car my-members)) equal-to?

(eval (car other-members)))
(set! my-members nil)
(set! add-flag nil))
(#T
(set! my-members (cdr my-members)))

(if add-flag
(set! shared-result-members
(append shared-result-members

(list (car other-members))))
(set! add-flag #T))

(set! my-members members)
(set! other-members (cdr other-members))

)
(send relation make-instance temp-result)
(temp-result set-members shared-result-members)
(cond
((null? result)
(send temp-result display-yourself))

((symbol? result)
temp-result)
(#T
(send result copy-from temp-result)
(send result display-yourself))))

(#T
(list 'cannot 'union 'unlike 'relations)))

225

; RECORD
- Description

- A generic-class, intended to be instantiated for
; every user-defined record class
- Superclasses
- none

- Class Variables
- none

- Instance Variables
- none

; - Methods
- generic methods

- COPY-FROM
- DISPLAY-YOURSELF
- EQUAL-TO?

- (send x MEET-SELECT-CRITERIA? which op what)
- used by the SELECT method of RELATION
- which is the instance variable or superclass
- op is the operation
- what is what to compare the which to

(define-generic-class record)

; RECORD INSTANTIATE-GENERIC-METHODS

(record instantiate-generic-method copy-from (other) ()

(record instantiate-generic-method display-yourself

() ())

(record instantiate-generic-method equal-to? (other) ()

226

; RECORD MEET-SELECT-CRITERIA?
; -check truth of (send which op what)

(record define-method meet-select-criteria?
(which op what)

(let ((my-class (send self class-of-object?))
(my-instvars

(send my-class get-instance-variables))
(my-superclasses

(send my-class get-superclasses))
(return-value #F))

(cond
((embedded-member? which my-instvars)
(if (eval '(,op ,which ,what))

(set! return-value #T)))
((embedded-member? which my-superclasses)
(if (eval '(send ,(eval which) ,op ,what))

(set! return-value #T))))
return-value

227

; ROOMS-10.EOO - section 10 of ROOMS in EOOPS
- this section contains the descriptions for the
database user's records
- EMP-REC

EMP-REC
- Description

- Employee Record's
- Superclasses

- RECORD (an instantiation of the generic-class)
- PERSON-NAME
- ADDR
- WIDGET
- SALARY

; - Class Variables
- none

- Instance Variables
- none

; - Methods
- all methods defined for the generic-class record
- none defined locally

(define-class emp-rec
(instantiate-generic-class record)
(superclasses person-name addr widget salary))

228

; ROOMS-20.EOO - section 20 of ROOMS in EOOPS
- this section contains the descriptions for all
user-defined fields

NAME
- Description

- contains a single value (atom, string, list, etc)
; which is the "name" of something
- Superclasses

- none
- Class Variables

; - none
- Instance Variables

- VALUE
; - Methods

- generic methods
- COPY-FROM
- DISPLAY-YOURSELF
- EQUAL-TO?

- (send x CHANGE-TO new-name)
- change value to new-name

(define-class name
(instance-variables (value nil)
options gettable settable))

NAME INSTANTIATE-GENERIC-METHODS

(name instantiate-generic-method copy-from (other) ()

(name instantiate-generic-method display-yourself () ()

)
(name instantiate-generic-method equal-to? (other) ())

229

NAME CHANGE-TO

(name define-method change-to (new-name)
(set! value new-name)
new-name)

230

LAST-NAME
; - Description

- contains a last name
- Superclasses

-NAME
; - Class Variables

- none
- Instance Variables

- none
; - Methods

-none

(define-class last-name
(superclasses name)

)

231

FIRST-NAME
S- Description

- contains a first name
- Superclasses

-NAME
- Class Variables

- none
- Instance Variables

- none
; - Methods

-none

(define-class first-name
(superclasses name))

232

; MIDDLE-INITIAL
; - Description

- contains a middle initial
- Superclasses
-NAME

; - Class Variables
- none

- Instance Variables
- none

; - Methods
-none

(define-class middle-initial
(superclasses name)

)

233

::

PERSON-NAME
; - Description

- contains a persons name
- (last, first, middle initial)
- Superclasses

- LAST-NAME
- FIRST-NAME
- MIDDLE-INITIAL

; - Class Variables
- none

; - Instance Variables
- none

; - Methods
- generic methods

- COPY-FROM
- DISPLAY-YOURSELF
- EQUAL-TO?

- (send x CHANGE-LAST-NAME-TO new-last-name)
- calls (send last-name change-to new-last-name)

- (send x CHANGE-FIRST-NAME-TO new-first-name)
- calls (send first-name change-to new-first-name)

- (send x CHANGE-MIDDLE-INITIAL-TO new-mi)
- calls (send middle-initial change-to new-mi)

- (send x CHANGE-TO new-name)
-calls

(send self change-last-name-to (car new-name))
(send self change-first-name-to (cadr new-name))
(send self change-middle-initial-to

(caddr new-name))

(define-class person-name
(superclasses last-name first-name middle-initial)

)

; PERSON-NAME INSTANTIATE-GENERIC-METHODS

(person-name instantiate-generic-method copy-from
(other) ())

(person-name instantiate-generic-method display-yourself
() ())

(person-name instantiate-generic-method equal-to?
(other) ())

234

::::,:::I,:::::I::I:F::,,::::::::I::I:::::::::::::::::::

; PERSON-NAME CHANGE-LAST-NAME-TO

(person-name define-method change-last-name-to
(new-last-name)

(send self last-name.change-to new-last-name))

; PERSON-NAME CHANGE-FIRST-NAME-TO
::

(person-name define-method change-first-name-to
(new-first-name)

(send self first-name.change-to new-first-name))

; PERSON-NAME CHANGE-MIDDLE-INITIAL-TO

(person-name define-method change-middle-initial-to
(new-mi)

(send self middle-initial.change-to new-mi))

; PERSON-NAME CHANGE-TO

(person-name define-method change-to (new-name)
(if (and (equal? '3 (length new-name))

(atom? (car new-name))
(atom? (cadr new-name))
(atom? (caddr new-name)))

(append
(list (send self change-last-name-to

(car new-name)))
(list (send self change-first-name-to

(cadr new-name)))
(list (send self change-middle-initial-to

(caddr new-name))))
nil)

235

::

ADDR
- Description

- contains an address
(street, city, state, zip)

- Superclasses
- NAME, NAME, NAME, NAME

; - Class Variables
- none

- Instance Variables
- none

; - Methods
- generic methods

- COPY-FROM
- DISPLAY-YOURSELF
- EQUAL-TO?

- (send x CHANGE-STREET-TO new-street)
- calls (send self name.l.change-to new-street)

- (send x CHANGE-CITY-TO new-city)
- calls (send self name.2.change-to new-city)

- (send x CHANGE-STATE-TO new-state)
- calls (send self name.3.change-to new-state)

- (send x CHANGE-ZIP-TO new-zip)
- calls (send self name.4.change-to new-zip)

- (send x CHANGE-TO new-addr)
- calls

(send self change-street-to (car new-addr))
(send self change-city-to (cadr new-addr))
(send self change-state-to (caddr new-addr))
(send self change-zip-to (cadddr new-addr))

(define-class addr
(superclasses name name name name))

ADDR INSTANTIATE-GENERIC-METHODS

(addr instantiate-generic-method copy-from (other) ()

(addr instantiate-generic-method display-yourself () ()
)
(addr instantiate-generic-method equal-to? (other) ())

236

ADDR CHANGE-STREET-TO

(addr define-method change-street-to (new-street)
(send self name.l.change-to new-street)

)

; ADDR CHANGE-CITY-TO

(addr define-method change-city-to (new-city)
(send self name.2.change-to new-city)

)

ADDR CHANGE-STATE-TO

(addr define-method change-state-to (new-state)
(send name.3.change-to new-state)

)

ADDR CHANGE-ZIP-TO

(addr define-method change-zip-to (new-zip)
(send self name.4.change-to new-zip))

237

ADDR CHANGE-TO

(addr define-method change-to (new-addr)
(if (and (equal? '4 (length new-addr))

(atom? (car new-addr))
(atom? (cadr new-addr))
(atom? (caddr new-addr))
(atom? (cadddr new-addr)))

(append
(list (send self change-street-to (car new-addr)))
(list (send self change-city-to (cadr new-addr)))
(list (send self change-state-to

(caddr new-addr)))
(list (send self change-zip-to

(cadddr new-addr))))
nil))

238

WIDGET
; -Description

- looks amazingly like a telephone number,
- x-coord == area code
- y-coord == exchange
- z-coord == extension

- note: does not use generic methods (by choice...)
- Superclasses
- none

; - Class Variables
- none

- Instance Variables
- x-coord, y-coord, & z-coord

; - Methods
- (send x COPY-FROM other)

- if (other is of type widget)
set instvars of x to the instvars of other

- (send x DISPLAY-YOURSELF)
- displays x-coord, y-coord, & z-coord

- (send x EQUAL-TO? y)
- if (y is of type widget) and

(the instance variables of x are equal to the
instance variables of y)

return WT, otherwise return #F
- (send x SET-WIDGET coords)

- sets x-coord to (car coords),
y-coord to (cadr coords), &
z-coord to (caddr coords)

- (send x CHANGE-TO new-widget)
- calls (send self set-widget new-widget)

- (send x CHANGE-X-TO new-x)
- sets x-coord to new-x

- (send x CHANGE-Y-TO new-y)
- sets y-coord to new-y

- (send x CHANGE-Z-TO new-z)
- sets z-coord to new-z

(define-class widget
(instvars (x-coord nil) (y-coord nil) (z-coord nil)
options gettable settable))

239

; WIDGET COPY-FROM
::I

(widget define-method (widget copy-from) (other)
(cond
((equal? (send other class-of-object?) widget)
(set! x-coord (send other get-x-coord))
(set! y-coord (send other get-y-coord))
(set! z-coord (send other get-z-coord))
self)
(#T
nil)))

; WIDGET DISPLAY-YOURSELF

(widget define-method display-yourself ()
(append (list x-coord) (list y-coord) (list z-coord))

)

; WIDGET EQUAL-TO?
::

(widget define-method equal-to? (other)
(if (and (equal? (send other class-of-object?) widget)

(equal? x-coord (send other get-x-coord))
(equal? y-coord (send other get-y-coord))
(equal? z-coord (send other get-z-coord)))

#T
#F)

240

; WIDGET SET-WIDGET

(widget define-method set-widget (coords)
(if (and (equal? (length coords) '3)

(atom? (car coords))
(atom? (cadr coords))
(atom? (caddr coords)))

(append (list (set! x-coord (car coords)))
(list (set! y-coord (cadr coords)))
(list (set! z-coord (caddr coords))))

nil))

::i

; WIDGET CHANGE-TO

(widget define-method change-to (coords)
(send self set-widget coords))

; WIDGET CHANGE-X-TO

(widget define-method change-x-to (new-x)
(set! x-coord new-x)
new-x)

; WIDGET CHANGE-Y-TO

(define-method (widget change-y-to) (new-y)
(set! y-coord new-y)
new-y

)

241

;WIDGET CHANGE-Z-TO

(widget define-method change-z-to (new-z)
(set! z-coord new-z)
new-z

242

,:::::::::gg:::g::::::s:::gggg::ggg::::::::::gI,,:::g::I

SALARY
; - Description

- integer field
- note: does not use generic methods (by choice...)

- Superclasses
- none

; - Class Variables
- none

- Instance Variables
- VALUE

; - Methods
- (send x COPY-FROM other)

- if (other is of type salary)
set value of x to the value of other

- (send x DISPLAY-YOURSELF)
- displays value

- (send x EQUAL-TO? y)
-if (y is of type salary) and

(the value of x is equal to the value of y)
return #T, otherwise return #F

- (send x SET-SALARY new-value)
- sets value to new-value

- (send x CHANGE-TO new-value)
-calls (send self set-salary new-value)

(define-class salary
(instance-variables (value 0)
options gettable settable))

; SALARY COPY-FROM

(salary define-method copy-from (other)
(cond
((equal? (send other class-of-object?) salary)
(set! value (send other get-value))
self)
(#T
nil))

243

SALARY DISPLAY-YOURSELF

(salary define-method display-yourself ()
(list value))

; SALARY EQUAL-TO?

(salary define-method equal-to? (other)
(if (and (equal? (send other class-of-object?) salary)

(equal? value (send other get-value)))
#T
WF))

SALARY SET-SALARY

(salary define-method set-salary (new-value)
(if (not (number? new-value))
nil
(set! value new-value)))

SALARY CHANGE-TO

(salary define-method change-to (new-value)
(send self set-salary new-value)

)

244

; UTILS.EOO - utilities used by ROOMS
; -this section contains the descriptions for

- (concat x y)
- concatenates x & y together

- (embedded-member? x y)
- determines if x is contained anywhere within y

- (list? x)
- determines if x is a list

- (pprint x)
- prints each member of x on a separate line

- (subset? x y)
- determines if x is a subset of y

- (while condition statements)
- while condition is true, executes statements

(CONCAT x y)
; - concatenates x and y together,

- x and y must be atoms
- ex, (concat 'a 'b) = 'ab

(concat 'ab 'xyz) = 'abxyz

(define concat (lambda (x y)
(implode (append (explode x) (explode y)))))

245

; (EMBEDDED-MEMBER? x y)
- determines if x appears anywhere in y

- x can be an atom or a list, y must be a list

(define (embedded-member? x y)
(let ((return-value #F)

(finished #F))
(if (list? y)
(while (not finished)

(if (or (member x y)
(and (list? (car y))

(embedded-member? x (car y))))
(begin
(set! return-value #T)
(set! finished #T))

(begin
(set! y (cdr y))
(if (null? y) (set! finished #T))))

return-value

; (LIST? x)
- determines if x is a list

(macro list? (lambda (e) '(not (atom? ,(cadr e)))))

;(PPRINT x)
- display each member of the list x on a separate line

(define (pprint x)
(while (>? (length x) 1)
(print (car x))
(set! x (cdr x)))

(newline)
(car x)

246

; (SUBSET? 11 12)
- returns #T if 11 is a subset of 12

(define (subset? 11 12)
(cond
((null? 11) #T)
((member (car 11) 12) (subset? (cdr 11) 12))
(t WF)

; (WHILE condition statements)
- while condition is #T, execute statements

(macro while
(lambda (e)

'(do #!null ((not,(cadr e))),@(cddr e))

BIBLIOGRAPHY

Andrews, T., and Harris, C. "Combining Language and
Database Advances in an Object-Oriented Development
Environment." OOPSLA'87 Proceedings, Oct. 1987,
Orlando, FL; Special Issue of SIGPLAN Notices, Vol.
22, No. 12, Dec. 1987, pp. 430-440.

Banerjee, J.; Kim, W.; Kim, H-J., and Korth, H. F.
"Semantics and Implementation of Schema Evolution
in Object-Oriented Databases." Proceedings of ACM
SIGMOD'87 Annual Conference, San Francisco, CA, May
1987; SIGMOD Record, Vol. 16, No. 3, Dec. 1987, pp.
311-322.

Beech, D. "Intensional Concepts in an Object Database
Model." OOPSLA'88 Proceedings, Sept. 1988, San
Diego, CA; Special Issue of SIGPLAN Notices, Vol.
23, No. 11, Nov. 1988, pp. 164-175.

Bic, L., and Gilbert, J. P. "Learning from AI: New
Trends in Database Technology." IEEE Computer,
Vol. 19, No. 3, Mar. 1986, pp. 44-54.

Blaha, M. R.; Premerlani, W. J., and Rumbaugh, J. E.
"Relational Database Design Using an Object-
Oriented Methodology." Communications of the ACM,
Vol. 31, No. 4, Apr. 1988, pp. 414-427.

Bloom, T., and Zdonik, S. B. "Issues in the Design of
Object-Oriented Database Programming Languages."
OOPSLA'87 Proceedings, Oct. 1987, Orlando, FL;
Special Issue of SIGPLAN Notices, Vol. 22, No. 12,
Dec. 1987, pp. 441-451.

Bobrow, D. G.; Kahn, K.; Kiczales, G.; Masinter, L.;
Stefik, M., and Zdybel, F. "CommonLoops: Merging
Lisp and Object-Oriented Programming." OOPSLA'86
Proceedings, Sept.-Oct. 1986, Portland, OR; Special
Issue of SIGPLAN Notices, Vol. 21, No. 11, Nov.
1986, pp. 17-29.

Bobrow, D. G.; DeMichiel, L. G.; Gabriel, R. P.; Keene,
S. E.; Kiczales, G., and Moon, D. A. "Common Lisp
Object System Specification X3J13 Document 88-
002R." Special Issue of SIGPLAN Notices, Vol. 23,
No. 9, Sept. 1988, pp. 1-1 - 2-94.

247

248

Booch, G. "Object-Oriented Development." IEEE
Transactions on Software Enqineering, Vol. SE-12,
No. 2, Feb. 1986, pp. 211-221.

Booch, G. Software Engineering with Ada. Menlo Park,
CA: Benjamin/Cummings Publishing Co., Inc., 1987.

Borning, A. H., and Ingalls, D. H. "Multiple
Inheritance in Smalltalk-80." Proceedings of the
National Conference on Artificial Intelligence
(AAAI-82), Pittsburgh, PA, Aug. 1982, pp. 234-237.

Brackett, M. H. Developing Data Structured Databases.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Briot, J-P., and Cointe, P. "A Uniform Model for
Object-Oriented Languages Using the Class
Abstraction." Proceedings of the Tenth
International Joint Conference on Artificial
Intelligence (IJCAI87), Milan, Italy, Aug. 1987,
pp. 40-43.

Buneman, P., and Atkinson, M. "Inheritance and
Persistence in Database Programming Languages."
Proceedings of AC! SIGMOD '86 International
Conference on ManaQement of Data, Washington, D.C.,
May 1986; SIGMOD Record, Vol. 15, No. 2, June 1986,
pp. 4-15.

Cardelli, L., and Wegner, P. "On Understanding Types,
Data Abstraction, and Polymorphism." Computing
Surveys, Vol. 17, No. 4, Dec. 1985, pp. 471-522.

Cardelli, L.; Donahue, J.; Glassman, L.; Jordan, M.;
Kalsow, B., and Nelson, G. Modula-3 Report. Palo
Alto, CA: Digital Equipment Corporation Systems
Research Center, 1988.

Caruso, M.; Strong, R.; Williams, M.; Zdonik, S., and
Nastos, N. Object-Oriented Database Systems.
OOPSLA'87 Tutorial, Oct. 1987, Orlando, FL.

Caruso, M. J. The Evolution and Design of an Object-
Oriented Database Management System. OOPSLA'88
Tutorial, Sept. 1988, San Diego, CA.

249

Christodoulakis, S.; Ho, F., and Theodoridou, M. "The
Multimedia Object Presentation Manager of MINOS: A
Symmetric Approach." Proceedings of ACM SIGMOD'86
International Conference on Management of Data,
Washington, D.C., May 1986; SIGMOD Record, Vol. 15,
No. 2, June 1986, pp. 295-310.

Codd, E. F. "A Relational Model of Data for Large
Shared Data Banks." Communications of the ACM,
Vol. 13, No. 6, June 1970, pp. 377-387.

Cointe, P. "Metaclasses are First Class: the ObjVlisp
Model." OOPSLA'87 Proceedings, Oct. 1987, Orlando,
FL; Special Issue of SIGPLAN Notices, Vol. 22, No.
12, Dec. 1987, pp. 156-167.

Conrad, R.; Piersol, K., and Van Orden, E. The Analyst
Project: A Smalltalk-80 Application Case Study.
OOPSLA'87 Tutorial, Oct. 1987, Orlando, FL.

Copeland, G., and Maier, D. "Making Smalltalk a
Database System." Proceedings of the ACM SIGMOD,
Boston, MA, June 1984, pp. 316-325.

Cox, B. J. "Message/Object Programming: An Evolutionary
Change in Programming Technology." IEEE Software,
Vol. 1, No. 1, Jan. 1984, pp. 50-61.

Cox, B. J. Object-Oriented Programming: An Evolutionary
Approach. Reading, MA: Addison-Wesley Publishing
Co., 1986.

Danforth, S., and Tomlinson, C. "Type Theories and
Object-Oriented Programming." Computing Surveys,
Vol. 20, No. 1, Mar. 1988, pp. 29-72.

Diederich, J., and Milton, J. "Experimental Prototyping
in Smalltalk." IEEE Software, Vol. 4, No. 3, May
1987, pp. 50-64.

Digitalk Inc. Smalltalk/V: Tutorial and Programming
Handbook. Los Angeles: Digitalk Inc., 1986.

Duhl, J., and Damon, C. "A Performance Comparison of
Object and Relational Databases Using the Sun
Benchmark." OOPSLA'88 Proceedings, Sept. 1988, San
Diego, CA; Special Issue of SIGPLAN Notices, Vol.
23, No. 11, Nov. 1988, pp. 153-163.

250

Fishman, D. H.; Beech, D.; Cate, H. P.; Chow, E. C.;
Connors, T.; Davis, J. W.; Derrett, N.; Hoch, C.
G.; Kent, W.; Lyngbaek, P.; Mahbod, B.; Neimat, M.
A.; Ryan, T. A., and Shan, M. C. "Iris: An
Object-Oriented Database Management System." ACM
Transactions on Office Information Systems, Vol. 5,
No. 1, Jan. 1987, pp. 48-69.

Gallaire, H.; Minker, J., and Nicolas, J-M. "Logic and
Databases: A Deductive Approach." Computing
Surveys, Vol. 16, No. 2, June 1984, pp. 153-185.

Graphael. The Data and Knowledge Manaqement Company.
Waltham, MA: Graphael, 1988.

Halbert, D. C., and O'Brien, P. D. "Using Types and
Inheritance in Object-Oriented Programming." IEEE
Software, Vol. 4, No. 5, Sept. 1987, pp. 71-79.

Hendler, J. "Enhancement for Multiple-Inheritance."
SIGPLAN Notices, Vol. 21, No. 10, Oct. 1986, pp.
98-106.

Hudson, S. E., and King, R. "Object-Oriented Database
Support for Software Environments." Proceedings of
ACM SIGMOD'87 Annual Conference, San Francisco, CA,
May 1987; SIGMOD Record, Vol. 16, No. 3, Dec. 1987,
pp. 491-503.

Hutt, A. E. "Data Base Management and Administration."
In Computer Handbook for Senior Management, pp.
119-135. Edited by D. B. Hoyt. New York:
MacMillan Publishing Co, Inc., 1978.

Jacky, J. P., and Kalet, I. J. "An Object-Oriented
Programming Discipline for Standard Pascal."
Communications of the ACM, Vol. 30, No. 9, Sept.
1987, pp. 772-776.

Kemper, A.; Lockemann, P. C., and Wallrath, M. "An
Object-Oriented Database System for Engineering
Applications." Proceedings of ACM SIGMOD'87 Annual
Conference, San Francisco, CA, May 1987; SIGMOD
Record, Vol. 16, No. 3, Dec. 1987, pp. 299-310.

Kernighan, B. W., and Ritchie, D. M. The C Programming
Language. Engelwood Cliffs, NJ: Prentice-Hall,
Inc., 1978.

251

Khoshafian, S. N., and Copeland, G. P. "Object
Identity." OOPSLA'86 Proceedings, Sept.-Oct. 1986,
Portland, OR; Special Issue of SIGPLAN Notices,
Vol. 21, No. i, Nov. 1986, pp. 406-416.

Kim, W.; Banerjee, J.; Chou, H-T.; Garza, J. F., and
Woelk, D. "Composite Object Support in an Object-
Oriented Database System." OOPSLA'87 Proceedings,
Oct. 1987, Orlando, FL; Special Issue of SIGPLAN
Notices, Vol. 22, No. 12, Dec. 1987, pp. 118-125.

Kim, W.; Ballou, N.; Banerjee, J.; Chou, H-T.; Garza, J.
F., and Woelk, D. "Integrating an Object-Oriented
Programming System with a Database System."
OOPSLA'88 Proceedings, Sept. 1988, San Diego, CA;
Special Issue of SIGPLAN Notices, Vol. 23, No. 11,
Nov. 1988, pp. 142-152.

Lieberman, H. "Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems."
OOPSLA'86 Proceedings, Sept.-Oct. 1986, Portland,
OR; Special Issue of SIGPLAN Notices, Vol. 21, No.
11, Nov. 1986, pp. 214-223.

Maier, D.; Stein, J.; Otis, A., and Purdy, A.
"Development of an Object-Oriented DBMS."
OOPSLA'86 Proceedings, Sept.-Oct. 1986, Portland,
OR; Special Issue of SIGPLAN Notices, Vol. 21, No.
11, Nov. 1986, pp. 472-482.

Martin, J. Principles of Data-Base Management.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1976.

McGregor, J. D. "Object-Oriented Programming with
SCOOPS." Computer Language, Vol. 4, No. 7, July
1987, pp. 49-56.

Merrow, T., and Laursen, J. "A Pragmatic System for
Shared Persistent Objects." OOPSLA'87 Proceedings,
Oct. 1987, Orlando, FL; Special Issue of SIGPLAN
Notices, Vol. 22, No. 12, Dec. 1987, pp. 103-110.

Meyer, B. "Genericity versus In-heritance." OOPSLA'86
Proceedings, Sept.-Oct. 1986 Dortland, OR; Special
Issue of SIGPLAN Notices, 21, No. 11, Nov.
1986, pp. 391-405.

Meyer, B. "Eiffel: Programming for Reusability and
Extendibility." SIGPLAN Notices, Vol. 22, No. 2,
Feb. 1987a, pp. 85-94.

252

Meyer, B. "Reusability: The Case for Object-Oriented
Design." IEEE Software, Vol. 4, No. 2, Mar. 1987b,
pp. 50-64.

Meyer, B. Eiffel: An Introduction. Goleta, CA:
Interactive Software Engineering Inc., 1988a.

Meyer, B. Object-Oriented Design for Software
EnqineerinQ. OOPSLA'88 Tutorial, Sept. 1988b, San
Diego, CA.

Milani, M., and Ege, R. An Introduction to Object-
Oriented Concepts. OOPSLA'88 Tutorial, Sept. 1988,
San Diego, CA.

Moon, D. A. "Object-Oriented Programming with FLAVORS."
OOPSLA'86 Proceedings, Sept.-Oct. 1986, Portland,
OR; Special Issue of SIGPLAN Notices, Vol. 21, No.
11, Nov. 1986, pp. 1-8.

Ong, J.; Fogg, D., and Stonebraker, M. "Implementation
of Data Abstraction in the Relational Database
System INGRES." SIGMOD Record, Vol. 14, No. 1,
Mar. 1984, pp. 1-14.

Ontologic Inc. Vbase: For Object Applications.
Billerica, MA: Ontologic Inc., 1988.

Orenstein, J. A. "Spatial Query Processing in an
Object-Oriented Database System." Proceedings of
ACM SIGMOD '86 International Conference on
Management of Data, Washington, D.C., May 1986;
SIGMOD Record, Vol. 15, No. 2, June 1986, pp. 326-
336.

Osborn, S. L., and Heaven, T. E. "The Design of a
Relational Database System with Abstract Data Types
for Domains." ACM Transactions on Database
Systems, Vol. 11, No. 3, Sept. 1986, pp. 357-373.

Papazoglou, M. P.; Georgiadis, P. I., and Maritsas, D.
G. "Object-Oriented Programming With SCOOPS."
Computer Languages, Vol. 9, No. 2, 1984, pp. 107-
131.

Penney, D. J., and Stein, J. "Class Modification in the
GemStone Object-Oriented DBMS." OOPSLA'87
Proceedings, Oct. 1987, Orlando, FL; Special Issue
of SIGPLAN Notices, Vol. 22, No. 12, Dec. 1987, pp.
111-117.

253

Pinson, L. J, and Wiener, R. S. An Introduction to
Object-Oriented Programming and Smalltalk.
Reading: Addison-Wesley Publishing Co., 1988.

Reiter, R. "On Closed World Data Bases." In Logic and
Data Bases. Edited by H. Gallaire and J. Minker.
New York: Plenum Press, 1978.

Rentsch, T. "Object Oriented Programming." SIGPLAN
Notices, Vol. 17, No. 9, Sept. 1982, pp. 51-57.

Rumbaugh, J. "Relations as Semantic Constructs in an
Object-Oriented Language." OOPSLA'87 Proceedings,
Oct. 1987, Orlando, FL; Special Issue of SIGPLAN
Notices, Vol. 22, No. 12, Dec. 1987, pp. 466-481.

Sandberg, D. "An Alternative to Subclassing."
OOPSLA'86 Proceedings, Sept.-Oct. 1986, Portland,
OR; Special Issue of SIGPLAN Notices, Vol. 21, No.
11, Nov. 1986, pp. 424-428.

Schaffert, C.; Cooper, T.; Bullis, B.; Kilian, M., and
Wilpolt, C. "An Introduction to Trellis/Owl."
OOPSLA'86 Proceedings, Sept.-Oct. 1986, Portland,
OR; Special Issue of SIGPLAN Notices, Vol. 21, No.
11, Nov. 1986, pp. 9-16.

Schmucker, K. An Introduction To Object-Oriented
Concepts. OOPSLA'87 Tutorial, Oct. 1987, Orlando,
FL.

Seidewitz, E. "Object-Oriented Programming in Smalltalk
and Ada." OOPSLA'87 Proceedings, Oct. 1987,
Orlando, FL; Special Issue of SIGPLAN Notices, Vol.
22, No. 12, Dec. 1987, pp. 202-213.

Servio Logic Corp. GemStone: Product Overview.
Alameda, CA: Servio Logic Corp., 1988a.

Servio Logic Corp. Selecting an Object-Oriented
Database Management System. Alameda, CA: Servio
Logic Corp., 1988b.

Shaw, M. "Abstraction Techniques in Modern Programming
Languages." IEEE Software, Vol. 1, No. 4, Oct.
1984, pp. 10-26.

Skarra, A. H., and Zdonik, S. B. "The Management of
Changing Types in an Object-Oriented Database."
OOPSLA'86 Proceedings, Sept.-Oct. 1986, Portland,
OR; Special Issue of SIGPLAN Notices, Vol. 21, No.
11, Nov. 1986, pp. 483-495.

254

Sloan, A.; Carolan, J., and Dockrell, A. C++ and
Obiect-Oriented Desiqn. OOPSLA'88 Tutorial, Sept.
1988, San Diego, CA.

Smith, K. E., and Zdonik, S. B. "Intermedia: A Case
Study of the Differences Between Relational and
Object-Oriented Database Systems." OOPSLA'87
Proceedings, Oct. 1987, Orlando, FL; Special Issue
of SIGPLAN Notices, Vol. 22, No. 12, Dec. 1987, pp.
452-465.

Snyder, A. "Common Objects: An Overview." SIGPLAN
Notices, Vol. 21, No. 10, Oct. 1986a, pp. 19-28.

Snyder, A. "Encapsulation and Inheritance in Object-
Oriented Programming Languages." OOPSLA'86
Proceedings, Sept.-Oct. 1986, Portland, OR; Special
Issue of SIGPLAN Notices, Vol. 21, No. 11, Nov.
1986b, pp. 38-45.

Stefik, M., and Bobrow, D. G. "Object-Oriented
Programming: Themes and Variations." AI Magazine,
Vol. 6, No. 4, Winter 1986, pp. 40-62.

Stein, L. A. "Delegation is Inheritance." OOPSLA'87
Proceedings, Oct. 1987, Orlando, FL; Special Issue
of SIGPLAN Notices, Vol. 22, No. 12, Dec. 1987, pp.
138-146.

Stonebraker, M., and Rowe, L. A. "The Design of
POSTGRES." SIGMOD Record, Vol. 15, No. 2, June
1986, pp. 340-355.

Stroustrup, B. "An Overview of C++." SIGPLAN Notices,
Vol. 21, No. 10, Oct. 1986a, pp. 7-18.

Stroustrup, B. The C++ Programming Language. Reading,
MA: Addison-Wesley Publishing Co., 1986b.

Stroustrup, B. "What is Object-Oriented Programming?"
IEEE Software, Vol. 5, No. 3, May 1988, pp. 10-20.

Texas Instruments Inc. PC Scheme: User's Guide.
Revision B. Austin, TX: Texas Instruments Inc.,
1987a.

Texas Instruments Inc. TI Scheme: Language Reference
Manual. Revision B. Austin, TX: Texas Instruments
Inc., 1987b.

255

Thatte, S. T. Report on the Object-Oriented Database
Workshop: Implementation Aspects. Held in
conjunction with OOPSLA'87, Oct. 1987, Orlando, FL.

Thomas, D. Survey of Obiect--Oriented Programming
Systems. OOPSLA'87 Tutorial, Oct. 1987, Orlando,
FL.

Touati, H. "Is Ada an Object Oriented Programming
Language?" SIGPLAN Notices, Vol. 22, No. 5, May
1987, pp. 23-26.

Ullman, J. D. Principles of Database Systems.
Rockville, MD: Computer Science Press, 1982.

Ungar, D., and Smith, R. B. "Self: The Power of
Simplicity." OOPSLA'87 Proceedings, Oct. 1987,
Orlando, FL; Special Issue of SIGPLAN Notices, Vol.
22, No. 12, Dec. 1987, pp. 227-242.

Wegner, P. "Classification in Object-Oriented Systems."
SIGPLAN Notices, Vol. 21, No. 10, Oct. 1986, pp.
173-182.

Wegner, P. "Dimensions of Object Based Language
Design." OOPSLA'87 Proceedings, Oct. 1987,
Orlando, FL; Special Issue of SIGPLAN Notices, Vol.
22, No. 12, Dec. 1987, pp. 168-182.

Wiederhold, G. "Views, objects, and Databases." IEEE
Computer, Vol. 19, No. 12, Dec. 1986, pp. 37-44.

Wiener, R. S., and Pinson, L. J. An Introduction to
Object-Oriented Programming and C++. Reading, MA:
Addison-Wesley Publishing Co., 1988.

Woelk, D.; Kim, W., and Luther, W. "An Object-Oriented
Approach to Multimedia Databases." Proceedings of
ACM SIGMOD'86 International Conference on
Management of Data, Washington, D.C., May 1986;
SIGMOD Record, Vol. 15, No. 2, June 1986, pp. 311-
325.

Xerox. Analyst Product Description. Pasadena, CA:
Xerox Special Information Systems, June 1987.

Xerox. The Analyst. Narrated by Kurt Piersol, 30 min.,
Xerox Special Information Systems, Mar. 1988,
videocassette.

256

Zdonik, S.; Moss, E., and Herlihy, M. Object-Oriented
Databases. OOPSLA'88 Tutorial, Sept. 1988, San
Diego, CA.

Zortech Inc. Zortech C++ Compiler. Arlington, MA:
Zortech Inc., 1988.

UNIVERSITY OF CENTRAL FLORIDA

OFFICE OF GRADUATE STUDIES

DISSERTATION APPROVAL

DATE: November 9, 1988

BASED ON THE CANDIDATE'S SUCCESSFUL ORAL DEFENSE, IT IS RECOMMENDED

THAT THE DISSERTATION PREPARED BY Michael L. Nelson

ENTITLED "A Relational Object-Oriented Management System and an

Encapsulated Object-Oriented Programming System"

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF Doctor of Philosophy

FROM THE DEPARTMENT OF Computer Science

IN THE COLLEGE OF Arts and Sciences

Ai Orooji, Major Professor
Department of Computer Science

Terry J. 'ryderick, Graduate Coordinator
Department of Computer Science

Jn). Rollins, Dean

Colege of Arts & Sciences

Louis M. Trefonas
Dean of Graduate Sudies

UNIVERSITY OF CENTRAL FLORIDA

OFFICE OF GRADUATE STUDIES

DEFENSE OF DISSERTATION

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE DOCTOR

OF PHILOSOPHY DISSERTATION OF Michael L. Nelson

HAS BEEN SUCCESSFULLY COMPLETED ON November 9, 1988

TITLE OF DISSERTATION: "A Relational Object-Oriented Management

System and an Encapsulated Object-Oriented Programming System"

MAJOR FIELD OF STUDY: Computer Science

COMMITTE r.: ___________________

Chairperson - Ali Orooji

MembAPPRO. MichaelVMoshell

Member- Charley Hulikr

APPROVED: I

L. M. Trefonasf D~fe/
Dean of Gradu e Studies

