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1. INTRODUCTION AND RESEARCH OBJECTIVES

This is a final report on work carried out at the Gas Turbine Laboratory at MIT, as part of a

multi-investigator effort on unsteady flow phenomena in turbomachines. Support for this program

was provided by the Air Force Office of Scientific Research under Contract Number F49620-85-

C-0018, Captain H. Helin, Program Manager.

The present report gives a summary of the work for the period 10/19/87 - 10/18/89. As such,

it is not intended to be the primary source and the referenced reports and publications, as well as

the previous progress report [1], should be consulted for details and background. These address

the work in considerable depth.

Within the general area of turbomachinery fluid dynamics, four separate tasks are specified

under this contract. These are, in brief:

I. Unsteady flow effects in compressors including the three-dimensional nature of, and radial

transport in, the unsteady flow field due to the vortical wake structure.

II. Development and application of computational techniques for unsteady flows, including

investigation of unsteady flows in transonic diffusers and assessment of losses due to

unsteady rotor/stator interaction.

III. Unsteady phenomena, inlet distortion and flow instabilities in multistage compressors,

including experimental and analytical investigations of the structure of instability modes in

advanced blading geometries.

IV. Unsteady blade-vortex street interaction in transonic cascades including models to describe

the unsteady development of vortex streets in and around blades.

In addition to these tasks, the multi-investigator contract encompassed the Air Force

Research in Aero Propulsion Technology (AFRAPT) Program. The work carried out in each of
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the tasks will be described in the next section. Publications generated are given in the individual

task descriptions, and an overall list appears in Section 4.

Reference

1. Greitzer, E.M., Epstein, A.H., Giles, M.B., McCune, J.E., Tan, C.S., Annual Technical
Report on Contract F49620-85-C-0018, "Unsteady Flow Phenomena in Turbomachines,"
December 1988.

I
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TASK I: UNSTEADY FLOW IN COMPRESSORS

(Investigators: A.H. Epstein, T. Barber)

Objectives

Compressors have very heavily loaded boundary layers and, as in any high Reynolds

number device, the boundary layer behavior controls the performance of the machine. This is

especially true for modem current transonic, low choke margin designs. Understanding and

(hopefully) prediction of the three-dimensional boundary layer behavior -- especially transition and

separation -- are a key to improved design tools and design realization. Unfortunately, the

prediction of transonic three-dimensional, unsteady boundary layer on airfoils with strong rotation

in turbulent flow is among the most difficult of fluid mechanics problems from theoretical,

numerical, and experimental points of view.

The focus of the research described herein is to make first-of-a-kind measurements of the

three-dimensional, unsteady boundary layer behavior on full-scale compressors under typical

operation, and to understand the influence of this behavior on compressor design and operation.

Progress During This Reporting Period

Progress during this reporting period can be divided into two : the analysis of radial

transport caused by separated blade boundary layers and other mechanics, and the design of thin

film boundary layer sensors. The radial transport analysis of work (supported under previous

AFOSR sponsorship) is detailed in the attached paper which will be presented at the ASMIE Gas

Turbine Conference in June 1990.

The thin film gauge development work has concentrated on the construction of analytical

models to aid in the design of sensors capable of yielding quantitative measurements of wall shear

on operating high speed compressors. There are two goals that these sensors are being designed to

meet. The first is that they have sufficient spatial extent so they can yield accurate information on

boundary layer separation and shock wave-boundary layer interaction without requiring precise
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foreknowledge of the location of these interactions. This problem is being addressed by using

spatially dispersed sensors.

The use of ladder-type gauges increases the spatial extent of the measurements while

conserving gauge number and thus wire number (an important factor governing the cost and

complexity of an experiment in a rotating environment). The concept, illustrated in Fig. 1, is to

use multiple, closely spaced, sensing elements which are electrically in parallel. This would

generate a staircase-like waveform as a separation or shock wave passed over the sensor,

permitting the unambiguous determination of the flow structure position. Flow reversals can be

handled by an analysis technique recently developed at NASA.

The second goal is the quantitative measurement of wall shear in a compressor, where the

wall and freestream boundary conditions are not well known. The solution here is multilayer thin

film geometries (see Fig. 2) in which the bottom sensor serves to monitor the heat flow into the

substrate, thus allowing calibration and operation from dc through tens of kilohertz. One problem

that has come up is that the magnitude of the steady state conduction heat loss to a metal substrate

(a blade, in this case) is much larger than the unsteady fluid mechanic signal of interest. To avoid

having to measure the small difference between two large signals (the heat flow with and without

flow), we have been analyzing the use of a constant temperature gas heater under the temperature

sensor to reduce or eliminate the heat flow to the blade.

Work Planned for Next Reporting Period

During the next reporting period, we intend to finish the analytical modelling of sensor

behavior, construct sample gauges, and test their behavior in a shock tube and free jet.
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Fig. 1: Ladder-type gauge geometries are being explained to extend
spatial coverage while reducing complexity
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Fig. 2: Multilayer gauge decouples sensor response from substrate heat flow
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UNSTEADY RADIAL TRANSPORT IN A TRANSONIC COMPRESSOR STAGE
by

P.A. Kotidis' and A.H. Epstein
Gas Turbine Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT C(X,Y) tracer gas concentration (mass fraction) at point X,Y
d maximum blade thickness

Time-resolved radial transport has been measured in a F strength of line source of tracer gas injection per unit
cansonic compressor rotor by injecting a thin sheet of tracer gas length
upstream of the rotor and then surveying the tracer concentration at h lateral spacing at the two rows of vortices in the
tne rotor exit. The simultaneous, co-located, high frequency vortex street
response measurements of local tracer gas concentration, total k vortex circulation outside the vortex
cemperature, and total pressure made downstrearn of the rotor K, modified Bessel function of the second kind, zero
showed that most of the fluid transported radially appears in the blade order
wakes and that this fluid has considerably higher entropy than the L axial chord
c:rcumferentiai mean. Both inward and outward fluid transport along M Mach number
the soan was observed (3.5% of the total throughflow moved toward p static pressure
the tip while 1.6% moved toward the hub). Tracer concentration and PT total (stagnation) pressure
fluid total temperature and pressure varied considerably from wake to r radial distance from vortex center
wake, even on multiple samplings of the same blade. The time mean ro radius of vortex core edge
spreading rate inferred from these measurements is in general R gas constant
agreement with previously reported studies on multi-stage low speed R radial (spanwise) distance, measured from the rotor
cmpressors and is well predicted by the method of Gallimore and centerline

Cumosty. It is suggested that a vortex street in the blade wakes Re vortex Reynolds number = k/v
could be responsible for both the observed radial transport and the R, tip radius of the rotor
large wake to wake variability. A quasi-three-dimensional model of a As specific entropy change
vortex street wake was developed and shown to be consistent with t time
the data. The model predicts all of the inward transport but only 20% TT total (stagnation) temperature
of the outward transport. It is hypothesized that outflow in separated U free stream velocity
regions on the blade suction surface is rcsponsible for the remainder .R,8,z) velocity in vortex core in the blade relative frame
of the transport toward the rotor tip. Since the entropy, as well as the W(R,B,z) freestream velocity in blade relative frame
mass of the fluid t-ansported radially, was measured, an estimate of Wi velocity induced by vortex street
the redistribution of loss in rotor due to radial fluid transport could be WP peripheral velocity at vortex core edge
made. This shov -d that the effect of radial transport in this rotor ot empirical eddy viscosity constant
was to move substantial loss from the rotor hub to tip, implying that mixing coefficient
a conventionally measured spanwise efficiency survey may not y ratio of specific heats
accurately represent the performance of individual blade sections. p static density

v Idnematic viscosity
NOiM ENCLATURE vt  eddy kinematic viscosity

0flow coefficient
a longitudinal spacing between vortices a relative total pressure loss coefficient
, constant pressure specific heat cl rotor angular velocity

ax maximum tracer gas concentration (mass fraction) < > averaged over vortex core circumference

C stadc pressure coefficient SbcitC(X,Y)/Ca uscil
c within vortex core
core isolated vortex core
pot isolated potential vortex

Current address: Avco Research Laboratory-Textron, Everett, MA row single row of potential vortices
02149 R spanwise direction



vortex streamwise direction Their data, however, were measured in the time average only so that
direction orthogonal to vortex streamwise the mechanisms and structure of the radial mixing remained II some
rotor axial direction debate. Furthermore, although many flow phenomena are weil
rotor tangential direction modelled in low speed machines, some are not. Given the degree of

, freesrream. outside vortex core uncertainty in the detailed fluid mechanics of compressor radial flows
and the lack of data on loss redistribution (if any), measurements on

SiUt erscri2t.1 high speed compressors seemed in order.
non-dimensional The objective of the research described herein was to make
frame moving with vortices with origin along vortex quantitative measurements of the radial transport in a modem
street centerline transonic rotor with sufficient spatial and temporal resolution so as to
frame moving with vortices with origin at vortex establish the magnitude of the radial flows and to elucidate
center mechanisms responsible. In the next sections, we describe the

experimental apparatus, present the data, develop an analytical model

INTRODUCTION of the flow field to explain the observations, and finally comment on
the importance of radial flows in transonic fans and compressors.

Traditionally, axial compressors have been designed on a EXPERIMENTAL APPARATUS
primarily two-dimensional basis, using streamline curvature
techniques to ensure radial equilibrium. The mean streamsurfaceswere designed, the blade-to-blade flows calculated, and then the The conceptual basis of the experiment was to inject a thin sheet

swe esied. s tkbladetolade fowst caate a nd thene- of tracer gas upstream of the rotor (the sheet is oriented normal to the
spanwise variations taken into account. The advent of three- radial direon) and then map the tracer gas disibution downstream
dimensional Euler calculadonal procedures have permitted more of theto with entathe rqe nc reson islre

detailed looks at the 3-D inviscid flow structure. Stages are designed of the rotor with instumentation whose frequency response is large

for the most part to minimize radial flows.. It has long been known, compared to blade passing (Fig. 1). The frequency response of the

however, that some spanwise transport does occur across the laboratory frame instrument translates into spatial resolution in the

nominal steady state 2-D streamsurfaces. This three-dimensional rotor relative frame and also yields information on the rotor relative

mixing is clearly important in multistage compressors and has been unsteadiness of the flow. The instrument chosen also measures time

accounted for in the design process by empirically based models of resolved total temperature and pressure and thus entropy so that the

spanwise mixing such as that proposed by Adicins and Smith (1981). instantaneous loss distribution can be determined simultaneously

Rz-d:. ,-nsport may also be of concern in single-stage with the tracer distribution.
comoressors as well. Kerrebrock (1980) noted that although the total The test compressor selected was a low aspect ato, high

loss in transonic rotors may be well predicted, the spanwise loss throughflow, transonic machine designed by WVennersa-om (198-).

distribution often is not. It is puzzling in that the rotor efficiency is With a design stage pressure rado of 2.1 and peak efficiency of 90%.

much lower near the tip and higher near the hub than could be this 0.43m diameter, 427 m/s tip speed machine is the prototype for a

explained by strictly 2-D shock and viscous loss models, including current generation of military compressors now under development.

tio clearance losses. Accounting for the 3-D shock structures as The compressor was operated in the MIT Blowdown Compressor

proposed by Prince (1980) does not help here since the shock leaning Facility (Kerrebrock et al., 1974) which provides steady state
predicts reduced rather than increased loss in the supersonic tip running conditions for approximately 50 ms in an argon-Freon 12

region and has no direct influence in the subsonic region near the atmosphere. Previous measurements on this high hroughflow stage

hub. Kerrebrock speculated that the high tip and low hub efficiencies in the blowdown facility were reported by Ng and Epstein (1985).

might be caused by radial flows which would serve to redistribute The tracer gas was injected through the hollow trailing edge of a

losses radially without necessarily generating much loss themselves. NACA 65-021 airfoil located approximately 0.2 ch ,rds upstream of

Thompkins and Usab (1981) examined the radial flow on a transonic the rotor. (This section was chosen because it remained subcridcal at

fan rotor blade using a quasi-three-dimensional boundary layer code the rotor inlet Mach number, while having sufficient cross-sectional

and concluded that centrifuging of the attached boundary layer would area to pass the tracer mass flow at low loss.) The airfoil was hollow

not transport much loss radially. Given a sufficiently large separated with a thin (0.75 mm) slot along the trailing edge and oriented so as

region, however, a considerable amount of lossy fluid could be to inject the thin sheet of tracer tangent to the circumference at one

moved radially, radial location spanning approximately two rotor blade pitches (Fig.

What was clearly needed at this point was some additional data 2). The airfoil was supported on two radial so-uts (also NACA 65-

which could clearly delineate the physical processes at work in these 021) such that its spanwise position could be varied between tests.

machines. Gallimore and Cumpsty (1986) and Wisler et dl. (1987) The struts were hollow and supplied the gas to the injector. In order

have measured radial mixing in multistage low speed compressors. that the sheet of injectant gas suffer the minimum dispersion, it is

Probe Surve

Station

Fig. 1: Experimental arrangement in high throughflow compressor

showing upstream tracer gas injector and probe survey Fig. 2: Scale drawing of compressor near tip section showing
station relative scale of injector and concentration probe

2
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imcortant that the velocity at the injection slot exit match that of
freestream. In a blowdown tunnel the Mach numbers are constant. tip
however, the freestream temperature and thus velocity decays with t.P
ame. Therefore, the injectant was also blown down from its own
supply tank whose volume was adjusted so that its decay rate 0 0
matchled that of the main flow. A miniature, high frequency response

pressure transducer was mounted within the injector to monitor the 0. 0 22 Tracer Mass
pressure during the blowdown test. Fraction

0.O11

INSTRUMENTATION hub C.CC0

The principal instrumentation for this experiment was a dual hot
wire aspirating probe first reported by Ng and Epstein (1983). This
probe (Fig. 3) consists of two co-planar, 6.25 gm diameter hot wires Fig. 4: Time-averaged survey of tracer distribution with blading
at different temperatures. mounted in a constant area channel with a removed
choked exit. When operated in constant temperature anemometer
loops, the hot wires respond to the total temperature (TT) of the gas
and the mass flux (pU) by the wires. The mass flux through the The principal sources of measurement error were noise in the
choked channel of fixed geometry is; function of the freestream total anemometers and drift between calibrations. The exact magnitude
pressure (PT) and total temperature (TT). Thus, there are only two was a nonlinear function of the instantaneous concentration,
unknowns (PT and TT) and two measurements (the voltage from temperature, and pressure, and this error was calculated for each time
each hot wire). Nonuniform gas composition influences both the point for each test. The average total uncertainty was 0.08% in total
mass flux by the wires and the heat transfer from the wires and thus pressure and 0.21% in total temperature as a percentage of
introduces a third variable which requires a third measurement. This instantaneous value; and 0.33% of full scale in mass fraction of the
was provided by 'piggybacking" a high frequency response pressure tracer gas.
transducer (Kulite XCQ-093) on the aspirating probe to measure The rotor and stator are closely coupled in this stage and the
pressure directly. The two signals from the hot wires are then used stator sweeps forward from midspan to both the hub and tip. Thus,
to determine temperature and gas composition. The spatial resolution the probe was traversed at constant velocity from tip to hub during
of the measurement is limited by the size of the probe (3 mm each test at a station located just ahead of the midspan stator leading
circumferentially and 6 mm radially). The frequency response was edge at mid stator pitch. (The traverse velocity is less than 1% of that
established through shocktube testing and calculation to be of the freestrearn.)
approximately 20 kHz (4-5 times blade passing frequency). More
details on the probe are given by Kotidis and Epstein (1990), and PROOF OF CONCEPT TESTS
Kotidis (1989).

The probe sensitivity is dependent on the chemical composition There were two criteria which were critical for the success of
of fluid. The criteria for tracer selection were that it match the density these measurements. The first was that the presence of the upstream
of the main flow in order to properly follow flow accelerations within injector and injectant not influence the operation or performance of
the rotor and that it give maximum sensitivity and thus signal output the compressor stage. The second was that the sheet of tracer gas not
from me probe. After considering many tracers, including CO-, and a mix excessively due to factors other than the influence of the rotor
He-Xe mix, a mixture of helium and Freon-12 was selected. Tfhis flowfleld during the transit from the injector to the survey station at
57% weight fraction He -kture matched the 54.5 molecular weight the stator leading edge.
of the main flow argon-Freon 12 mixture in the blowdown facility, The influence of the injector on the rotor performance was
while having the high thermal conductivity necessary for good probe assessed by examining radial traverses of the time averaged rotor
sensitivity. Since we were unable to accurately calculate the outflow. Since the distribution of rotor exit total pressure,
properties of a quaternary gas mixture, the probe response was temperature, and flow angle were the same with and without the
established by steady state parametric testing at various temperatures, injector present, we concluded that the influence of the injector on the
pressures, and concentrations to establish calibration curves. These rotor flow was not a concern.
curves were then dynamically checked at a few points in a shockube. The degree of radial spreading of the jet which is independent of
Koddis gives details of the data reduction procedure. the rotor flowfield was assessed by blowdown tests with the rotor

and stators replaced by casing fairings. Figure 4 shows a
measurement of the time averaged tracer distribution measured at the

Transducer same axial station as it would be with the stage in place. The
Olaenragm measured jet thickness (0.9 cm) is small compared with the passage

height at this station (10 cm) and is consistent with estimates of
spreading from turbulent jets. (The inflow turbulence intensity level

t Xwas measured as 0.6%.) This amount of spreading is sufficiently
Ht Wies (2) small for our purposes.

Another concern was to insure that the total amount of tracer gas
detected by the probe was consistent with the amount injected. This

Cchecked both that the probe d.c. calibration was valid and that the
,f - ceci orfc, injector flow was mainly two-dimensional. The total mass of gas

measured by the probe was 80% of that injected, based upon the
assumption that the flow from the injector is only two-dimensional.

Wire Plans Again, this agreement was sufficient for our purposes. Thus. we
conclude from these consistency and proof of concept checks that we
understand the nature of the experiment and that the artifacts
introduced in the data by nonideal behavior were small,

To Vacuum DATA PRESENTATION

The data reported herein were all obtained at design point
Fig. 3: -Ugh frequency response concentration, temperature, and operation of the compressor. The experiments were performed with

pressure probe the injector positioned at three spanwise locations which we will refer

3
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:0 :s C:)'R.7 = 0.95). rnidscan (,'R, = 0.36), aznz h.b (R,'R = ace-mroves outward toward te tip, mostly in the wake region. By
0.8 1). All data were taken as instantaneous values of concentration, comparing the contours of the three tests, we note that there is
pressure. and temperature as the probe was slowly traversed from relatively less radial transport with op injection than with midspan or
nrw to hub. The entropy change of the fluid was calculated from the hub injection, Note that these contours do not extend all the way to
temperature, pressure. and concentration. The instantaneous data the tip and I-, ) surfaces so that details of the endwall flows are not
were then ensemble averaged or time averaged in post-test seen. In particular, the edge of the tip vortex may just be at the top of
processing, depending on the use. the contours.

We present the ensemble averaged data first in Fig. 5, which While the contour plots are effective in conveying large amounts
shows 10 blade ensemble averages of the concentration, temperature. of data quickly, the ensemble averaging process can filter information
-ressure. and entropy assembled into contour plots as viewed from the data. Figure 6 shows a short segment of time resolved data
,ooking upstream over two blade pitches. The blade wake positions taken with ridspan (r/rt = 0.86) tracer injection for measurements
as indicated on the figures are judged from the locadton of the total made at three spanwise positions. (Note that the tip, midspan, and
pressure defects (or excesses depending on the local velocity hub measurements are not taken simultaneously since the probe is
triangles). Comparing the total pressure and temperature plots, we traversed from tip to hub during a test.) In the hub region, the
see some variation with injector location of these flow quandtdes downspikes in total pressure are the blade wakes. In the tip region,
whose spanwise dime-averaged distributions are unaffected by the the velocity triangles are such that the wakes have a total pressure
presence of the injector (see Proof of Concept Tests, above). This excess. Note that all quantities show the flow to be highly unsteady
variation is not due to the injector presence but rather is a result of the and aperiodic. There are very significant blade to blade differences.
relatively small number of blade passages averaged to make the These are much larger than can be explained by minor geometry
contour plots in this highly unsteady flowfield (dictated by the short differences between blades or turbulent fluctuation, Epstein et al.,
-nning dime of the facility). Here, we are concerned mainly with the 1988. (It is this high level of fluctuation which causes the variation
average flow features which are reproduced from test to test. in the contour plots of Fig. 5.) The tracer concentration at each

In the case of near tip injection in Fig. 5, while most of the tracer spanwise posidon is not uniform across the blade pitch but rather all
::mains near the tip, some does travel inward all the way to the hub. of the tracer gas is concentrated in a relatively few "spikes" which
D e fluid which migrates inward does so in the blade wakes. When appear only in the blade wakes. Not al wakes contain tracer,
the tracer is injected near midspan. the tracer actually moves both however. It is important to note that those wakes with tracer
radiailv inward and outward. The inward transport is again confined concentration spikes also contain high entropy. A more complete
to the wake region. When the injection is done closer to the hub, the presentation of these time resolved measurements can be found in

Tip Midspan Hub

PT2

0. C0200.9

0.000

rotation rotation rotation

[2 r TT2

1.. 23 TTTT17
V~~00 A~ Sit LO I

0.05 CWakes Cp

Fig. 5: Ten blade ensemble avrgedcontour plots of a-al sressurratio, tracerconcentrtion (C), total tempeture ratio, and entropy

measured near the stator leading edge for various injector locations; two blade pitches of" data are shown

4I6 T
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Tip (R/Rt= 0.94) Midspan (R/Rt = 0.85) Hub (R/Rt= 0.78)

Slade Passing
2.4 Period

0

T, 2.o

0.02-

U. 0.01

0.2CL0.00

U 0.0I
0 1 2 11 12 13 19 20 21

Time (ms) Time (ms) Time (ms)

Fig. 6: Instantaneous measurements of total pressure, tracer concentration, and entropy measured at different radii with the injector
located near midspan

= F lxjy )(2
Koddis. C(X[Y) -x (2)

The measurements thus show that most of the fluid transported C(XY) =
along the span in this transonic compressor rotor appears in the blade
wakes but does not appear in every wake sampled. Furthermore, the
fluid that is transported radially has high entropy relative to the mean. Folowg the procedure of Gallimore and Cumpsty, we then derive
The implication is thus that the radial transport may modify the an expression for spanwise spreading rate, Y/L (where L is chosen
spanwise efficiency distribution of the rotor. as the rotor axial chord), as a function of normalized mixing

coefficient cIUL, and C,, = C(X.Y)/Cma x,
COMPARISON OF TIME AVERAGED MIXING RATES I .4_L NlIn 1

While our interest here is more toward elucidating the details of L UL L
the radial flow in a transonic cornressor rather than deducing
empirical spanwise mixing rates Tor a designer, it is useful as a first C, is assumed to occur along the X axis.
step to compare our tie averaged results with published data such as Given the measured concentration distributions (Fig. 5). the
Gailimore and Cumpsty, and Adkins and Smith. if for no other mixing coefficient can now be estimated with Eq. (3). The crossflow
reason than as an additional validity check on our measurements and dimension, Y, was derived from the contour plots in a manner
data reduction procedure. consistent with that of Wisler et al.. which was concerned with only

The goal here is to derive a diffusion constant, c, from the the turbulent diffusion contribution to the mixing;, specifically, the
experimental data in a manner consistent with previous work. The cross-stream dimension, Y, is taken as the point at which the
only difference is that, in this case, the tracer is introduced as a line concentration is 20% of the maximum value. This is illustrated in
source rather than the point source as used by Gallimon- and Fig. 7. Note that the tracer in the wakes has been ignored in this
Cumpsty. The solution of the diffusion equation for a line source of analysis.
strength F per unit length is given by Hinze (1959) as The results of this fit to the data are shown in Fig. 8, along with

some data reported in the literature for multistage compressors. The
rU(X2 , y2)1121 values from this work fall within the range of values expected from

C 2t.Y) = e (1) the literture. Single-stage low speed compressors with high inflow
2ne 2 r 2e turbulence exhibit comparable mixing rates, but those with low

inflow turbulence levels (the case here) show considerably reduced
where C is the concentration at X and Y, X is the flow direction, Y mixing (Cumpsty). The high level observed in this compressor
the radial (spanwise) direction, U the free stream velocity, and K0 the could be due either to a higher level of inherent flow unsteadiness
modified Bessel function of the second kind, zero order. This can be witin the rnsonic machine due to such phenomena as shock
simplified for small values of VUiX and small values of Y/X as osciUations (Ng and Epstein, 1985). or to some interaction between
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pk al., 1976: Greenway and Wood. 1973). More recently, Gertz (1986)
value 20% couxto identified vortex streets in the wakes of highly loaded transonic

compressor rotor blades. The flow in these vortex street wakes can
explain several of the more puzzling aspects of the high frequency
response measurements, including the large wake-to-wake variability

0 ..20 (Epstein et al., 1988) and also, as we shall see, some of the spanwise
: 'fluid transport. The large blade-to-blade variation in wake total

Stemperature, pressure, and concentration (Fig. 6, for example) can be
0.• 1 5 seen as an artifact of the pseudo-random sampling of the vortex street

(which is periodic in the blade relative frame) by instrumentation
Sfixed in the laboratoty frame. Thus, the wake total temperature (for

example) may appear to vary by -200 C, depending upon whether a
vortex core happens to be sampled by the probe.

0.05 Gertz constructed a simple, two-dimensional model of the vortex
t street wake, details of which are given in the Appendix. The wake is

modelled as two staggered rectilinear rows of Rankine vortices of
n in a uniform freestream. The vortices consist of an

0inner region with a forced-vortex core and an outer region following
the irrotational flowfield of the classic von Karman vortex street.

Fig. 7: The 20% concentration contours were used to derive an The wake is characterized by the vortex size (r.) and strength and the
average mixing coefficient for Eq. (3) ratio of streamwise vortex spacing (a) to the distance between vortex

rows (h) (Fig. 9). This is sufficient to completely describe the vortex
street with such parameters as vortex convection velocity, shedding
frequency and wake average temperature and pressure defect yielded
directly by the model. These parameters were derived by Gertz from

:he injection process and rotor flowfield that doesn't appear in the fitting the model to experimental data as measured at one spanwise
:ime averaged rotor performance. (Note though that the no-rotor data and axial station. As such, the model describes the wake only at that
point in Fig. 8 is a factor of 5 below the with-rotor mixing position and offers information neither on the temporal evolution of
coefficient, implying that most of the mixing is due to the rotor.) the wake nor on its three-dimensional structure. We have extended

Gallimore and Cumpsty proposed that the turbulent mixing this model in a simple fashion to provide this information. The
coefficient can be estimated as approach taken is to fit a 2-D vortex street model at several radial

positions, establish consistency between the 2-D layers, and then to
L= Al. [cdd/']t stack the 2-D models to yield the spanwise static pressure gradient

AL I from which the radial transport can be calculated. We realize that this
L t32 (4) approach is neither rigorous nor complete but rather is presented as a

first estimate of the role that wake vortices may play in spanwise
where d is the blade thickness, L the compressor length, 0 the flow fluid transport in a high speed compressor.
coefficient, o the loss coefficient, and A a property of turbulent flow The first step in consuucting this quasi-3-D model is to fit the 2-
with a proposed value of about 0.4. Applying Eq. (4) to this D model at various spanwise locations- R/R =0.95, 0.88, 0.81,

-mpressor yields the dashed straight line on Fig. 8, which is in and 0.75 were chosen. Gertz fit his model to laser anemometer data,
luite good agreement with the data. Note that the measured relative inferrng the vortex strength from the wake velocity defect and the

total pressure loss coefficient (about one half of which is shock loss vortex spacing ratio (h/a) from the statistical distribution of velocities.
in this transonic compressor) was used here. Since we did not have laser anemometry data available for this stage,

From these comparisons we concluded two things. First, that we developed a procedure based on the wave forms of the high
the data reported herein is in fact consistent with previously reported frequency response probe data. Basically, the vortex street model
nultistage measurements. The second is that the techniques of was fit to the data by guessing the values for the vortex strength and

Gallimore and Cumpsty, derived from low speed multistage data, do spacing ratio, predicting the time resolved total pressure in the
a quite reasonable job in predicting the time averaged mixing in a laboratory frame, and comparing the model prediction with the
transonic comprr ssor rotor. measurement (Other information was needed to establish the flow

RADIAL TRANSPORT BY
SPANWISE WAKE VORTICES 0- -

The measurements show that the fluid in the wakes at the l
measurerment station has undergone considerable radial transport. 20 . - ------

both radially in and out. Wake outward centrifuging has long been ...................
observed on low speed compressors and, although some 0
experimenters have reported measurements of inward flows, they I '0
have not been explained. An order of magnitude analysis of such
classical mechanisms as secondary flow and tip leakage vortices does
not account for this degree of transport (Kodis). Radial flow in the s
rotor blade boundary layers can account for much of the radial / C w o
outflow if the boundary layers are separated (Thompkins and Usab), C ouren,: wn, WitNhot or

but does not explain the inward radial migration of the nacer. One "-@-IT ',',. Me" fao ii.t Do n

physical phenomenon which may account for much of this transport - - 0WO,,..,mCMPS" Model Iff otorsarn w

is the spanwise vortex street structure within the blade wakes. In the --
--'  - A * SaIS e" fo Wn CIYWarsaw

following sections, we shall present some background on this , ",
phenomena, develop a very simple 3-D vortex street model, and 0.0 o.04 . 0012 o

compare the radial fluid transport predicted by the model with the m I.SeN

measurement.
The presence of vortex streets has long been recognized in the Fig. 8: Normalized spanwise mixing coefficients for this single

wakes of high Reynolds number. transonic flat plates and turbine stage transonic compressor compared to low speed
iirfoils in steady flow (Paterson and Weingold, 1984; Heinemann et multistage data from the literature
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To simplify the process, we will neglect: (a) any tilling or distorting

a of the vortex, and (b) any influence the endwalls may have on the
hl vortex formation and development, since the radial pressure gradienty Y' should be a predominant influence. We justify these assumptions on

o rather than predictive.

------.... =. ----- We write the equation of motion for the vortex core region in
Bladeong T O +w W rotor relative frame (neglecting viscous stresses) as
Edge I (5)

"_ - p22x (5)Dt PC

Fig. 9: Schematic of 2-D vortex steet wake behind rotor blade where D/Dt denotes the substantial derivative, Q,,s the angular
velocity of the rotor, w the velocity in the core, R the radial
(spanwise) location, and p; and Pc the vortex core fluid static

geometries, namely wheel speed, flow angle, Mach No., and wake- pressure and density. Similarly, in the free stream,
to-pitch ratio which came from time resolved measurements on this
stage reported by Ng and Epstein.) In particular, the maximum peak- 2;x Vp,
to-eak pressure excursion (related to vortex strength, k) and the -+ 1 (6)
relative number of up spikes and down spikes about the mean D .. (
(related to the vortex spacing) were compared, Fig. 10. The guess of
vortex strength and spacing ratio was then modified and the wjere p. and p. are the freestrearn static pressure and density, and
procedure repeated until the model prediction and data agreed. This W is the freestream velocity.. When the vortex core and the
procedure was less tedious than it might appear, quickly converging freestream are at the same spanwise location, we can subtract Eq. (6)
to seemingly unique values of vortex strength and spacing. An from Eq. (5) yielding
uncertainty analysis was performed in which the uncertainties of the
individual measurement quantities input to the model were assessed
(total pressure, wheel speed, flow angle, Mach No., and wake-to- awI: . 2WR , 2i x p. Vpc (7)
pitch ratio), and then fed in the worst case through the procedure. Dt Dt Pe. Pc
The net result was an uncertainty of approximately 5% in vortex
strength and spacing. More detail on this procedure may be found in The radial (spanwise) velocity in the vortex, AwR, can be derived
Kotidis. -from Eq. (7) by vector manipulation (the radial velocity in the

The vortex model was then used to predict the shedding freescaram is assumed to be small compared to that in the vortex
frequency of the vortex street at the specified radii. This is shown in cores):
Table I along with a St'ouhal number based on wake momentum
thickness at the blade -aling edge (estimated by the method of Koch r " W9+w0 + J.+P.(
and Smith, 1976). The frequencies are about the same at each radius AwR (We- _ + 2 _ A + _apcR (
within the experimental error (as discussed above). This condition is
absolutely necessary for the vortices to be coherent along the blade
ian. The relative phase coherence of the shedding among the radii This can then be translated into the laboratory frame, since the wheel

%the other necessary condition) could not be assessed from this data. speed and vortex geometry are known. We estimate the quantities in
It seems likely to us, however, that natural processes evident, for Eq. (8) in the following manner. The time interval, At, is calculated
example, in cylinders in shear flow (Gaster, 1969; Gerrard, 1966) as the particle convection time from the blade tailing edge to the
tend to enforce coherence over at least part of the span. We predicate probe survey location using the calculated distribution of axial
the remainder of the analysis, then, on the assumption that the shed velocity in the vortex cores. The vortex model fit to the data at each
vortices in the wake are coherent over much of the blade span. spanwise station yields w9 (the 0 component of Eq. (A.9)), while

W9 is taken from the direct measurement on this rotor by Ng and

TABLE I Epstein. The density is calculated with the state equation

VORTEX SHEDDING FREQUENCY FROM 2-D P. yp..

VORTEX MODEL FIT P- = " W. (9)

Radius Rato (R) Frequency (kHz) Strouhal Number
0.95 16.9 ±1.5 0.155
0.88 16.7 ±1.5 0.151 Highest Peak

0.81 17.3 ±1.5 0.164 ExP RMuE " MODE,
0.75 16.4 ±1.5 0.180 2.4

Also of interest are the numerical values of the shedding I
frequency (about three times blade passing) and the Strouhal number. ,.
These are consistent with the findings of Gertz on a different
transonic rotor. The Strouhal numbers ae within the general range - -. ---- --

of universal wake Strouhal numbers, St*, based on wake width that L

number (Griffin, 1980). a 3 4 2 3
Tni.. (met TI. (met

FLOW ALONG TiE VORTEX CORES
Fig. 10: Comparison of experimental data and model prediction; the

The 2-D vortex models (Eqs. (A.10) and (A. 12)) show a strong peak-to-peak amplitude and relative number of up and
spanwise gradient of static pressure (Fig. 11) and we will use this down spikes are matched to derive vortex strength and
information to calculate the resultant fluid transport along the core. spacing rado
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1.4- more is known), noting differences between the two such as the non-

Spanwise Position inertial frame of the wake and the streamwise orientation of thetrailing edge vortices.
t = 0.5 Lamb (1945) estimated the growth of a vortex in laminar flow,

giving the circumferential velocity, lw"l, as;n 1.3-13 (-r/e-4vt))

0.. 2r(1
0 0.8 where r is the radius of the vortex core, v the kinematic viscosity,

1.2 and k the circulation outside the vortex. Squire (1965) extended this
to turbulent flow by simply replacing v with an eddy viscosity, v,

-0 vt = aK (12)
where a is an empirical constant. Govindaraju and Saffman (1971)

P reported values for c ranging from 5x10"5 to 7.6xlO3, depending on
C. vortex Reynolds number. For our vortices Re = 105, so that at =

- t .74x0 4. Following Squire's suggestion of defining the radius of the
edge of the vortex core, ro, as the distance at which the vorticity is

1.0 - /5% of that at the center, we can write the vortex edge radius at any
time (t) as

.j I I I1ro(t) = (12 v t t)1/2 (13)

-1.0 -0.5 0.0 0.5 1.0
We must include the effects of the initial vortex size when it is

Distance From Vortex Center, r/ro formed, so Eq. (13) can be rewritten as

Fig. 11: Static pressure distribution through the vortex cores as ro(t) = (ro(t=0)2 + 12 vt At)1/2  (14)
predicted by the 2-D model at four spanwise locations

and, assuming the static temperature is uniform W.r

. p - (10) 0

* ..here M. is the blade relative free stream Mach number. M_ and p. t =.J5
were measured by Ng and Epstein. The spanwise static pressure
gradients (apJ/R and apc/aR) are estimated from the vortex model 1
results in Fig. 11. Note that Pc and Pc are functions of r/rO. Wr Tip

We now have a snapshot of the three-dimensional vortex
structure at the probe survey location. The radial velocity distribution W.
calculated with Eq. (8) is shown in Fig. 12. The spanwise vortex
core shape resulting from the model tapers by 80% from tip to hub 0

(the diameter varies from 2.9% to 1.6% of the rotor tip chord) and
contains both inward and outward flow along the blade at each
soanwise location. The substantial outward flow in the core is a R/Rt 0.88
result of the rotor tangential velocity component introduced by the
non-inertial frame of vortices. (If the vortex were in the laboratory Wr
frame, the flow would be entirely inward along the span, given the
:ame static pressure gradients.) The net fluid motion is essentially
:ero at the three outer spanwise locations indicated on the figure, and
about 40% of the freestream velocity toward the hub at R/Rt = 075. 0
The ratio of peak spanwise to freestream total velocity, 0.6-0.7, is
similar to that observed by Koochesfahani (1989) in vortices in the 0.81wake of a pitching airfoil (a somewhat different flow), implying that Hub
this model and data fitting procedure give physically realizable
values. w T

ESTIMATING VORTEX EVOLUTION $

In order to estimate the total spanwise transport of fluid in the 0,Jte -
compressor, we must establish the time history of the shed vortices
in the wake. We would, in general, expect both their size and
strength to change with time as they ae convected from the blade R/Rt . 0.75
trailing edge to the probe measurement station. Unfortunately, we do
not have measurements of this process but here must rely on
modelling. We will make an analogy between the wake vortex Fig. 12: Perspective of radial velocity distribution within the vortex
evolution and that of wing tailing edge vortices (of which much cores as predicted by the model at the probe survey station

ma
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whe e ro(t--0) is the core size near the blade trailing edge where the COMPARISON OF VORTEX ,IODEL AND DATA
vortex can first be considered fully formed. The location of this
vortex origin point has not been rigorously determined. For A comparison between the vortex model estimate above and the
simplicity, we will adopt the findings of Cantwell and Coles (1983) measured spanwise transport is summarized in Table 3. The model
who found the vortex to be fully formed approximately three predicts about 85% of the total mass transport from tip to hub but
diameters downstream of right circular cylinders. Since the only 15% of that from hub to tip. The spanwise extent of the motion
:haracteristic of length scale for the compressor blade shedding is the is in reasonable agreement.
boundary layer momentum thicknesses, we will assume that the
vortices are fully formed three momentum thicknesses downstream
of the blade trailing edge. For the vortex convection velocities TABLE 3derived from the data fit, this formation period (the end of which is SPANWISE TRANSPORT BEHIND ROTOR
now defined as t-0) is 20% of the total flow time from the trailing
edge to the probe sampling location. Thus, the At in Eq. (14) is 80% _ Vortex Model Measurement
of the flow time. The vortex evolution can now be estimated by % o? Compressor Mass
marching downstream in small time steps, starting at the vortex
formation location. At each time step, the vortex core radius, to, is Flow Moving From:
calculated with Eq. (14). Gertz's 2-D vortex model is then fit to the Hub to Tip 0.6% 3.5%
new ro at each spanwise station, assuming the vortex strength is Tip to Hub 1.3% 1.6%
constant. (The only role that viscosity plays in this modelling is to Extent of Spanwise Fluid
diffuse the vortex.) Numerical values are presented in Table 2. Motion as Fraction of Span:
Overall, the vortex size does not change greatly, implying that the Hub to Tip 0.58 0.40
accuracy of the growth race estimate may not be critical. Figure 13 Tip to Hub 0.44 0.40
illustrates the vortex evolution as it is convecrted downstream.

We infer from this comparison that a spanwise coherent vortex
TABLE 2 street in the wake is the principal physical mechanism for inward

WAKE VORTEX GROWTH ESTIMATE radial transport in the transonic compressor rotor studied, but that a
different mechanism may account for the major portion of thepanwise I ro(()* Near ro(t)* at outward transport. A likely candidate for the outward transport isLocation, P/Roi, Trailing Edge Probe Location motion within separated regions of the blade boundary layers. A0.95 2.7% 2.9% previous 2-D numerical study (Epstein et al.) showed that vortex

0.88 2.1% 2.4% shedding was itself tied to boundary layer separation in that the larger
0.81 1.5% 1,9% the region of separation on the blade, the stronger (and larger) the
0.75 1.1% 1.6% vortices in the wakes (since the vorticiry in the boundary layer can

As percent of rotor tangential tip chord. end up as vorticity in the wake vortices). When there was little
separation, the vortex shedding was very weak. An unpublished
experimental investigation of two transonic fans with similar relative

Using this description of vortex growth, we can then calculate Mach numbers and pressure ratios, but different blading, showed
the total spanwise transport numerically. At each streamwise station, that the blades with suction surface separation (as inferred from
he Gertz model is refit to yield the velocity and density distributions deviation measurements) shed strong vortices (as inferred from laser

,vithin the core, from which the instantaneous radial velocity anemometer statistics), while the unseparated (or at least less
distribution is calculated with Eq. (8). This procedure is repeated for separated) blades did not. Thus, some separation would seem to be
each time step as we march downstream to the probe survey station. necessary for strong vortex shedding in the blade wake. It is quite
Integration of the spatial distribution of the radial velocities then likely that very highly loaded blading such as the rotor studied here
directly yields the total spanwise transport. have some regions of boundary layer separation, even though the

overall rotor performance is very good. Thus, we believe that the
vortex transport described in this paper is not necessarily present in
all rotors but is a function of individual blade design. Furthermore,
this phenomena should be of more importance for transonic and
supersonic blading since the shock wave boundary layer interaction
often results in regions of separated flow, especially at higher Mach
numbers. To the degree to which such 2-D thinking can be extended
to 3-D. we believe that the less the separation, the less the radial
transport. Verificadon of this hypothesis will require further
experimental evidence and would greatly benefit from more
sophisticated modelling of the 3-D separation and vortex structure.

f INFLUENCE OF SPANWISE FLUID TRANSPORT
ON APPARENT ROTOR SPANWISE PERFORMANCE

We have presented measurements of spanwise fluid transport in
a transonic compressor rotor. A key feature of this data is that most

ir 1 of the transport is within the blade wakes and the measured entropy
of this fluid is quite high compared to the mean. Thus, the transport
serves to redistribute entropy as well as fluid along the span. We
wish here to assess the impact of this fluid motion on the apparent

- vam spanwise distribution of rotor efficiency. The question we ask is
W -. whether the efficiency as measured at (for example) the stator leading

edge plane represents the true loss incurred along the nominal 2-D
design strearsurfaces through the rotor, or does the spanwise
entropy transport significandy alter the apparent loss of each bladeFig. 13: An example of the saramwise evolution of the radial element? We will base this calculation on the information from thevelocity distribution within the vortex cores experimental measurements rather than the analytical model.
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7The dst,4m-dcn of roor adiabatic efficiency in the absence of quite bad. This quantitatively bears out Kerrebrock's original
radial flow was estimated in the following manner. The rotor conjecture on the loss distribution in transonic rotors.
flowfield was divided into four streamtubes centered at the spanwise To generalize, we would infer from these measurements and
locations of Fig. 12 with the quantitative mass exchange among the calculations that the performance of the hub sections of high pressure
sz:eamtubes inferred from the measured tracer concentration and the ratio transonic rotors can be much worse than generally realized, with
,uid state from the temperature and pressure measurements. The much of their loss mistakenly attributed to the tip sections. (This
results of the vortex model were then used to establish the fraction of should not be surprising since these hub sections have quite large
tt e mass exchange occurring downstream of the blade trailing edge turning and diffusion while tending to exhibit (apparently) extremely
(5% of the inward flow and 15% of the outward). The remaining low loss.) It may make sense, therefore, to revisit the design of the
mass exchange was assumed to occur within the blade passage hub region in transonic rotors in an attempt to improve overall
! presumably in the blade boundary layers or separated regions). The efficiency. There may be more loss there than meets the eye.
total temperature change due to the work done on the fluid displaced
radially within the rotor passage was calculated with Euler's turbine SUMMARY AND CONCLUSIONS
-quation. This fluid was then mixed out assuming a constant area
mixing process, thus incurring a total pressure loss. Because the This paper describes a set of time resolved measurements of
transit time from the blade trailing edge to the probe survey station is spanwise fluid transport in a high pressure ratio transonic
so short compared to turbulent mixing times, the fluid transported compressor stage. The measurements show spanwise transport ofr:dially downstream of the rotor trailing edge was assumed not be be several percent of the total mass flow. This transport is both radially

mixed at the measurement station and thus was not debited with a inward and outward and is concentrated mainly in the blade wakes.
mixing loss. We now have a quantitative measure of the change in The fluid which moves along the span has considerably higher
tc al temperature and pressure in each streamtube due to the spanwise entropy than the mean and this can redistribute the loss without
fluid transport. Subtracting this change from the measurements necessarily altering the overall efficiency of the machine.
-tong the span then yields an estimate of what the efficiency A quasi-three-dimensional vortex street wake model is
distribution would be were there no spanwise fluid exchange. (The presented. When fit to the data to derive the vortex characteristics,
turbulent mixing, as in Figs. 7 and 8, has a significantly lesser the model predicts most of the inward fluid transport along the span
spanwise extent than the processes of importance here). The exact and about 15% of the outward motion. It is hypothesized that most
magnitude of the entropy change proved sensitive to the fraction of of the outward transport is in separated regions within the blade
,he mass transport assumed to occur within the blade passage, since boundary layers. The net effect of the spanwise fluid transport is to
only this mass was debited with mixing losses. (Other than in move some of the loss incurred in the blade passage near the hub
providing this information by way of the model, wake vortices do toward the rotor tip, making the hub section performance appear
not enter into this calculation. The results would be the same should better than it actually is and the dip section performance concomitantly
some other physical mechanism be responsible for the measured worse.
spanwise transport.) Future work in this area could include more sophisticated 3-D

The results of this calculation are presented in Fig. 14, which modelling of the boundary layer separation, vortex formation, and
shows the rotor adiabatic efficiency distribution (1) as measured, (2) vortex evolution processes. Experimental information on the steady
as it would be without spanwise entropy transport (the above and unsteady boundary layer behavior of full scale compressors is
:aiculation), and (3) as estimated by Kerrebrock as the sum of 2-D required here. (Flow visualization would be very helpful.) Also the
viscous plus normal shock losses. In the first and second cases, the question of loss generation (rather than just loss migration) in these
-. ficiency integrated over the span is similar. We wish to emphasize processes should be studied.
ine general trend of these calculations (which are based on several
avers of approximate models) rather than make a strictly quantitative ACKNOWLEDGEMENTS
:omparison. It is clear that a principal effect of this spanwise
.:ansort is to move a substantial amount of loss from the rotor hub This work was supported by the US Air Force Office of
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APPENDIX A: TWO-DIMENSIONAL
VORTEX WAKE MODEL where

The rotor blade wakes have been modeled as modified ideal WX L -
Karman vortex streets consisting of two staggered rectilinear rows of rpt r r wx,= = "

Rankine vortices of opposite sign in a uniform freestream. The
wnalysis is performed in the reference frme moving with the vortex ((-iiin) -- ( imn
-ores, and a coordinate transformation is used to compute the ' Wyc =re
lowfield, as would appear to a stationary probe.

The vortex street is modeled by summing the contributions of Here (C'ia is the axial distance to the center of the nearest vortex
he two staggered rows of Rankine vortices. Each vortex consists of core. For a vortex core of negative circulation (upper row), the

U.
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4;.-::ion of t.he contributions due -o the isolated vortex mus: be Within a vortex core. :he radial mor!en:um at~or is e..:e .

reversed. across the core. The inner- and outer-pressure solutions are matched
The flowfield of the complete vortex street is now found by at r, with the variation in velocity accounted for by the average of the

summing :he velocity components of two isolated rows spaced h velocity squared around the circumference. The pressure at the
apart and staggered by a/2. Each row induces a motion in the center of jhevortex is then expressed in terms of this average
opposite row, which results in motion of the entire vortex street. velocity, Iw-, and the pressure coefficient inside the vortex cores,
This motion, the induced velocity Wi, is found by solving for the r < r,
velocity induced at the center of a vortex by the opposing row

t ar (A.) 2 i 2(A. 12)

if the vortex street is formed in a freestream of velocity, W, then in The average of the velocity squared at the vortex core, r = r, can be
:he frame of reference fixed to the blades (xy) the vortex steet found numerically given the vortex e For a t.
moves with velocity equal to W_ + Wi. In the (x',y') frames, the von Karman-like street (h/a = 0.28), is nearly equal to uniyfreestream velocity is simply (-Wi). The velocity components in the von rale r h 0., f is eal equalnto ty~ried rae ae ten(1.002). For values of r < ro . r- is evaluated at a point on the
primed fra me are then circumference (r = r.) where a ray from the center of the vortex

waw w row -Athrough the point in question intersects the edge of the core at r = r.w x = W xup P~ r row +  
W x ow r row "W i (A .6a) s n th M o e

IJsin the Model
.. .... The 2-D vortex model was utilized in the following manner. ToWY = Wyuppe r row + Wylower row (A.6b) begin with, h/a and W., were guessed (classic von Karman

vortex street values could be used to start). The ratio roa/h was set
constant and equal to 0.5 following the argument of Gertz.The velocity fw-'l is then Now, the non-dimensional vortex strength, k, can be calculated
using the non-dimensional version of Eq. (A.2). The induced

rwI = \wf 'i +w'.f (A.7) velocity of the vortex street, Wi, is then calculated with Eq. (A.5).
Euadons (A.3) now give the velocity components, ('jxow and

Given a location in the (x',y') frame, the upper and lower velocity (w 'y)mw, of an isolated row of vortices which are then used in Eqs.
ocan be calcul',) frome, (A.) bp a spe vooriat (A.4) to calculate the velocity distribution in the vortex core frame,-omponents can be calculated from Eqs. (A.3) by a simple coordinate w", and w" . This is then transformed into the frame of the vortex

transformaton and by noting that the sign of k changes. For the street with Eq. (A.6), which is in turntransformed into the blade
upper row, relative frame using Eq. (A.8). We now have the velocity field

everywhere in the blade relative frame. Fwj can be calculated with
L'- ' = Eq. (A.9) at=r o, the square of which an en be averaged about
2 2a the circumference of the vortex to yield (rw-a). The pressure

and, for the lower row, coefficient, C,. is now calculated with Eq. (A.12).
W. can be calculated from the measured M. and T. so

. . . -,+ h therefore, since W1,/ W. is known (it was guessed), the static
yy 2a pressure, p. is given by Eq. (A.9) (p. was measured). Alternately,

W, can be calculated from a standard data match (streamline
curvature fit) to the time averaged measurements. (These two

Since the vortex cores move at a velocity of (W. + Wi), the parallel approaches yielded similar answers.)
and perpendicular velocity components in the frame relative to the We now have a complete description of the flowfield and can
rotor blades (x,y) are then calculate the laboratory frame total pressure history. This is then

compared to the measurement (Fig. 10) and the guesses for h/a and
S (Aa WVW., revised until the model prediction and measurements agree.+ (W. + W'i (A.a) The values which best fit the data are presented in Table A. 1.

7y = ( A.8b) TABLE A.1

The blade relative velocity is then 2-D VORTEX MODEL PARAMETERS WHICH FIT DATA

= ' I ,F tAn' [.-Spanwise PositionR/R . 0.95 0.88 0.81 U.75
'" h/a (±0.03) 0.66 0.57 0.48 0.40

In the frame of reference moving with the vortices (x'.y') the W/W. (--.02) 0.15 0.30 0.38 0.52
flow is steady and the frvestream velocity is equal to (-Wi). For the
cases considered herein, it is sufficient to assume constant density
since the maximum Mach number in this frame of reference is In the body of the paper, w(xy) - the 2-D model blade relative
ipproximately 0.10. The pressure is expressed in terms of a velocity derived in this appendix-- is referred to as v(R,8,z) inside
pressure coefficient based on the pressure-defect velocity W, the vortex cores (r < ro) and as W(R,8,z) outside the cores

(r > r,).

p,, Wj (A. 10)

Thus, in the irrotational, inviscid regions outside ot a vortex core,
r > ro, the pressure is found from Bernouilli's equation

2 ~ (A. 11)

1.2
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TASK II: COMPUTATIONAL TECHNIOUES FOR UNSTEADY FLOWS

(Investigators: M.B. Giles, S. Allmaras, G. Fritsch)

A. Non-Reflecting Boundary Conditions for the Euler Equations

The work on this topic was completed over a year ago, but in the last year a paper was

presented at the AIAA CFD Conference in Buffalo [1]. A copy of this paper is attached to this

report. Also, extensions to the theory for isolated airfoils, with applications to aeroacoustics and

radar scattering, are being pursued under a separate research grant from the Northrop Corporation.

B. Numerical Method for Unsteady Diffuser Flows

This project was to develop a novel method for the calculation of unsteady diffuser flows.

It involved a coupled inviscid/viscous analysis with a flux-vector-splitting Euler method in the

inviscid region and a box-method Navier-Stokes method in the viscous region. The components

of the method have been described in previous years' progress reports, and are contained in a

report that appears as Appendix A [2].

The primary work in the early part of this last year was to solve problems in the unsteady

coupling of the inviscid and viscous solutions. These problems were overcome and self-excited

unsteady solutions were indeed obtained for the transonic diffuser problem, matching, at least

qualitatively, experimental results. Quantitative agreement was not as good as hoped for, partially

because of problems in properly modelling the experimental setup in which there was significant

boundary layer suction near the outflow of the experiment, and partially because of lack of

sufficient numerical grid resolution to accurately resolved the unsteady shock motion.

This work was written up by Steven Almaras in his Ph.D. thesis which was completed in

January 1989 [3]. A research paper was presented at the AIAA Aerospace Sciences Meeting in

Reno in January 1989 [4], and is attached to this report. Dr. Aimaras is now working at Boeing

Commercial Airplane Company, adapting his work for use in coupled viscousinviscid analyses of

aircraft configurations, with the inviscid analysis being performed by full potential or panel

methods.



21

C. Assessment of Unsteady Losses in Stator/Rotor Interactions

The objective in this area is to assess the importance of different unsteady effects in

turbomachinery. The first component of this research, which was completed in the last year, was

to investigate th.z u- --" ady losses associated with the vortex sheet shed by an airfoil that is

experiencing an unsteady circulation due to an unsteady stator/rotor interaction. This research

together with preliminary results was discussed in last year's annual report.

The second component of this research has been to examine the consequences of the highly

unsteady pressure field on the boundary layer. Using a high frequency asymptotic analysis,

following ideas due to Lighthill, it can be shown that in the high frequency limit, the boundary

layer can be split into two layers. In an outer layer, which comprises almost all of the boundary

layer, the vorticity is essentially steady since the diffusion time scale is large compared with the

frequency of oscillation. This means that the velocity profile is essentially invariant and a change

in the freestreaxn velocity causes the entire outer layer to vary by the same amount. The inner layer

is a very thin Stokes layer in which the unsteady vorticity is generated so that the no-slip velocity

boundary condition is maintained. This unsteady vorticity in the Stokes layer contributes to the

mean dissipation rate, producing a source of loss due to unsteadiness which is the main objective

of interest. A full analysis including arbitrary spatial and temporal pressure fluctuations has

recently been completed and is currently being written up. Applying the theory to an unsteady

stator/rotor interaction for which the unsteady surface pressures are known, shows that the

unsteady losses are of the order of 0.4% on the rotor, with the major contribution being on the

suction surface in the region where the mean flow is almost sonic. Like the losses due to the

unsteady circulation, this is a small but significant effect.
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Non-Reflecting Boundary Conditions
For Euler Equation Calculations

Michael B. Giles*
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Cambridge, MA 02139

Abstract they use a formalism and assume a background foundation
in advanced differential theory which makes it difficult for
the ppr ob prcae yohr iha niern

This paper presents a unified theory for the construction papers to be appreciated by others with an engineering

of steady-state and unsteady non-reflecting boundary con- background.

ditions for the Euler equations. These allow calculations to The author has recently completed a lengthy report on
be performed on truncated domains without the generation the formulation of non-reflecting boundary conditions and
of spurious non-physical reflections at the far-field bound- the application to the Euler equations 15). This report
aries. The general theory, developed previously by math- presents a unified view of the theory, with some exten-
ematicians, is presented in a more easily understood form sions required for the Euler equations, and does so using
based upon fundamental ideas of Fourier analysis and eigen- the simplest approach possible based upon Fourier analy-
vectors. The application to the Euler equations is given, and sis and eigenvectors. In taking this approach some rigor is
the relation to standard 'quasi-one-dimensional? boundary sacrificed, and the conditions for wellposedness become nec-
conditions is explained. Results for turbomachinery prob- essary, but possibly not sufficient. The report also shows in
lems show the effectiveness of the new boundary conditions, full detail the application of the theory to the Euler equa-
particularly the steady-state non-reflecting boundary condi- tions. Another report describes the details of the imple-
tions. mentation of the numerical boundary conditions [61 for two-

dimensional turbomachinery applications.

1 Introduction The purpose of this paper is to summarize the principal
parts of these two reports, and present results which demon-
strate the effectiveness of the new boundary conditions inThe objective in formulating non-reflecting boundary con- turbomachinery applications. Because of space limitations,

ditions is to prevent spurious, non-physical refection at all of the welposedness analysis, a large amount of alge-
infsow and outow boundaries, so t ththe calculated fow braic detail, some interesting additional applications, and a
field is independent of the poaition of the far-field boundary variety of helpful comments and insights have been omitted
condition. This leads to greater accuracy' and greater corn- from this paper; the interested reader is urged to refer to

putational efficiency since the computational domain can be the oriiinal two reports to obtain these.

made much smaller.

The theoretical basis of non-reflecting boundary con-
ditions stems from a paper by Engquist and Maida [1, 2 General analysis
which discusses both ideal non-reflecting boundary condi-
tions and a method for constructing approximate forms, 2.1 Fourier analysis
and a paper by Krel" [21, which analyses the wellposedness
of initial boundary value problems for hyperbolic systems. In two dimensions, the analysis is concerned with the fol-
Many workers have been active n this area In the last ten lowing unsteady, hyperbolic partial differential equation.
years, but their work has been mainly concerned with scalar
p.d.e.'s, with only a couple of recent applications to the Eu- au + AU- + B- = 0 (1)ler equations in specific circumstances (3,41. Also, almost all at 82 y
of the literature has been written by mathematicians, and
in their desire to be absolutely rigorous in their analysis, U is a N-component vector and A and B am constant

_Nx ×N matrices. Fourier analysis considers wave-like solu-
*Hsrold Z. Edg rtou Asulsutat Professor tions which are equal to a scalar wave function multiplying

_A M
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a constant column vector. 2.2 Ideal non-reflecting b.c.'s

U(z, y, t) = .i,)R(2)
Suppose that the differential equation is to be solved in

Substituting this into the differential equation gives the domain z > 0, and one wants to construct non-reflecting
It boundary conditions at z = 0 to minimize or ideally pre-

(-wli + kA + IB)u = 0. (3) vent the reflection of outgoing waves. At the boundary at

which has non-trivial solutions provided that z = 0, U can be decomposed into a sum of Fourier modes
with different values of w and 1, so the analysis begins by

det(-wI + kA + IB) = 0 (4) considering just one particular choice of w and 1. In this

This equation is called the dispersion relation, and is a poly- case this most general form for U is

nomial equation of degree N in each of w, k, and 1. We will
be concerned with the roots k. of this equation for given U(z,,t) = u)e
values of w and 1. By dividing the dispersion relation by w .=1
we obtain

det(-I + -A + -- B) = 0 (5) k. is the t'J root of the dispersion relation for the given
W W values of w and 1, and u: is the corresponding right eigen-

and so it is clear that k./w is a function of /w. Thus the vector.
variable A = /w will play a key role in constructing all of

the boundary conditions. The ideal non-reflecting boundary conditions would be
to specify that a. = 0 for each n that corresponds to an

A critical step in the construction and analysis of bound- incoming wave. Because of orthogonality,
ary conditions is to separate the waves into incoming and
outgoing modes. If w is complex with lm(w) > 0 (giving R ]ke' *((Vt)

an exponential growth in time) then the right-propagating U
waves are those for which Im(k) > 0. This is because the am- ,m=t
plitude of the waves is proportional to cIm((

- /) where ,- ek.,S (tPo)(12)
c= rm(w)/Im(k) is the apparent velocity of propagation of
the amplitude, and so an equivalent specification of non-reflecting bound-

If w and k are real then a standard result in the analysi ary conditions is

of dispersive wave propagation [7 is that the velocity of V 0

energy propagation is the group velocity defined by for each n corresponding to an incoming mode.( 'In principle these exact boundary conditions can be im-
, (6) plemented in a numerical method. The problem is that in

- general v, depends on A and so the implementation would

Hence for real w the incoming waves are those which either involve a Fourier transform in y and a Laplace transform in

have Im(k) > 0, or have real k and ' > 0. t. Computationally this is both difficult and expensive to
implement. In situations in which there is only one known

The column vector uR is the right null-vector of the sin- frequency, it is possible to use the ideal boundary condi-
gular matrix (-wI + kA + 1B). The construction of the tions, and this has been done for linearised, unsteady po-
non-reflecting boundary conditions requires the row vec- tential and Euler equations. The remainder of this paper
tor u1 which is the left null-vector of the' singular matrix is concerned with three types of approximation which can
A-'(-wI + kA + 1B). be used in the more general situation, without requiring the

e"A-i(-wI + kA + 1B) = 0. (7) Laplace transform.

One of the important features of this left null-vetor is its

orthogonality to uR. If k. and k. are two different solu- 2.3 One-dimensions,, unsteady b.c.'s
tions of the dispersion relation for the same values of w and
I, and if u. and v! are the corresponding right and left The one-dimensional, non-reflecting boundary conditions
eigenvectors, then are obtained by ignoring all variations in the y-direction and

- 1 (-wl + k,.A + B)u = 0, setting A = 0. The corresponding right and left eigenvec-
tors are Important in defining and implementing the other

and boundary conditions, and so we label them w.
+ kA + l = 0. (9)

Subtracting one from the other gives n = U".Lo (14)

(k. - k,)elis% = 0 * 9 = 0 (10) W" V(

2



26

The one-dimensional boundary condition, expressed in 2.5 Approximate, two-dimensional, unsteady
terms of the primitive variables, is b.c.'s

w U = 0 (16) A sequence of approximate non-reflecting boundary con-

for all n corresponding to incoming waves. If the right and ditions can be obtained by expanding ur in a Taylor seriesaafunction of A =/w [lj.
left eigenvectors are normalized so that

,L,,,,R. = , =~ m (7T) +=A2  ! 6 o + 1. X d 2V! + "'" (25)

o) ,= +A '-

then they can be used to define a transformation between The first order approximation obtained by just keeping

the primitive variables and the one-dimensional character- the leading term just gives the one-dimensional boundary

istic variables, conditions. The second order approximation is
N

U EZcnu?1 (18) '1() = 0 + I t(26)
mt=1 I A=O

where The overbar denotes the fact that U is an approximation to
c= wU. (19) v. This produces the boundary condition

Expressed in terms of the characteristic variables, the / ! d "
boundary condition is simply that c. = 0 for each incoming- + =__) U = 0. (27)
wave.

Multiplying by w, and replacing w and I by i and i
2.4 Exact, two-dimensional, steady b.c.'s respectively gives, aa

The exact, two-dimensional steady boundary conditions LoU da~ au=0 (28)

may be considered to be the limit of the ideal boundary . at dA I " 0)
conditions as w - 0. Performing a Fourier decomposition
of the solution on the boundary (which is assumed to be This is a local boundary condition, with the same dif-
periodic with period 21), ferential order as the governing equations, and so can in

general be implemented without difficulty.

U(0,y,t) = cra te", (20)
-0o 2.6 Wellposedness and Reflection Analysis

where

'(t)= U(0, y, t)e'- ' dy. (21) Well-posednese is the requirement that a solution exists, is
2z funique, and is bounded in the sense that small perturbations

in the boundary data produce small changes in the solution.The boundary conditions for I $ 0 are Any hyperbolic system arising from a model of a physical

a±Ch = 0 (22) problem ought to be well-posed and so it is critical that anyfar-fteld boundary conditions which are used to truncate the
for each incoming wave n, where solution domain must give a well-posed problem. Higdon

has written an excellent review [81 of the work of Kreiss [21
S. = lm V (,(A). (23) and others, and in particular gives a physical interpretation

of the theory in terms of wave propagation.

The boundary condition for the I= 0 mode, which is the Due to space limitations the theory is not presented here.

solution average at the boundary, is The basic idea behind the theory is that if there is an in-
coming wave which exactly satisfies the boundary condi-

(0)o= 0 * t0 = 0 (24) tlons, then it can grow without bound and so the problem
is ill-posed. Using an energy argument, it can be shown

for each incoming wave u. The right-hand-side of Eq. (24) that If A and B are symmetric and can be simultaneously
can be modified by the user to specify the value of the in- symmetrized, the one-dimensional boundary conditions are
coming average characteristics. Further discussion of this always well-posed. However, for the higher order nonrefeoct-
point will be delayed until the section on the application to ing boundary conditions, no such general result exists, and
the Euler equations., each application must be analysed separately. In the case

3
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of the Euler equations, there are difficulties in the analysis Following the analytic theory described earlier, we first
due to two different types of degeneracy. Additional theory obtain the dispersion relation.
to overcome these problems is presented in one of the two (Uk + V1 - W)2 ((uk + Vi - w) 2 

- k2 
-

12) = 0 (33)
original reports [51.

A slight variation on the well-posedness analysis assesses Two of the four roots are clearly identical.
the effectiveness of the boundary conditions, by consider- W - V1
ing a general solution which is a sum of incoming and out- k1. = - (34)

going modes. The amplitudes of the incoming modes can For u >0 these both correspond to right-travelling waves.
be expressed as a function of the amplitudes of the outgo-
ing modes, using reflection coefficients. In the ideal case, The other two roots are given by
these coefficients are zero. Using one-dimensional bound- (I _ U2 ) k2 - 2u(__ - w)k - (_ - w)2 + 12 = 0 (35)
ary conditions the coefficients are 0(11w), and using the
approximate unsteady boundary conditions they are in gen- Hence the third and fourth roots are defined by,
eral 0(11w).k = (W-V'1)(-u+S) (36)

3 Application to Euler Equations k = (W-V,(-u-S) (37)

3.1 Fourier analysis where

S = V - -(1 ul)p / W VI) (38)

The linearized two-dimensional Euler equations written
in primitive form are For 0 < u < 1, which corresponds to subsonic flow normal

to the boundary, the third root is a right-travelling wave,

+ A-- + B- = 0, (29) and the fourth root is a left-travelling wave, provided the
t Y Z 2) correct branch of the complex square root function is used

where in defining S. It can be shown [51, that if w is real and S2
5p is real and positive, then the positive root must be taken,

while if w and/or S are complex then the comlex root must

U , (30) be chosen such that k3 has a positive imaginary component
5V and k, has a negative imaginary component.

and 3.2 Elgenvectors

is P 0 0 (V 0 P 0\ RootlI.,entropy wave

AI B= (31 W-V
00 U 0 0 0 (1 (39)
0 'YP 0 U 0 0 p 'Y

After some algebra [51, it can be shown that appropriate

The elements of the vector U represent perturbations right and left eigenvectors are

from a uniform flow, and the matrices A and B ar evalu-
ated using those same uniform flow conditions. The analysis 0
is greatly simplified if the unsteady perturbations and the 0 (40)
steady variables in A and B are all non-dimensionalized us-
ing the steady density and speed of sound. With this choice 0
of non-dimensionalisation the final form of the matrices A and
and B is vf =(-i 00 1) (41)

(u00 0 e 0 This choice of sigenvectors corresponds to the eLtropy

A ( 1J, B = , (32) wave. This can be verified by noting that the only non-zero
0 0 U0 0 0 VI term In the right algenvector Is the density, so that the wave

0 1 0 U) 0 0 1 has varying entropy, no vorticity and constant pressure.
Also, the left sigenvector 'measures' entropy in the sense

and the variables a and Y in the above matrices are now the that vfU Is equal to the linearized entropy, ip-4p (remem-
Mach numbers In the 2 and y directions. bering that c= 1 because of the non-dlmeionallsation).

4
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Root 2: vortlcilty wave 3.3 One-dimensional, unsteady b.c.'s

kJ = W - VI (42) If the computational domain is 0 < z < 1, and 0 < u < I,
U then the boundary at z = 0 is an inflow boundary with

The second set of right and left eigenvectors for the mul- incoming waves corresponding to the first three roots, and
tiple root is given by the boundary at z=1 is an outflow boundary with just one

incoming wave due to the fourth root.
0 0

- A (43) When A = 0, S 1, and so the right igeavectors w are
-u/w = -A(3

0R 0 ~ R

and 
U

I=--( 0 -U' 1-VA -A) (44) 0 0

This root corresponds to the vorticity wave, which can
be verified by noting that the right eigenvector gives a wave
with vorticity, but uniform entropy and pressure. 0 0

Root 3: downstream running pressure wave and the left eigenvectors wL' are

,= -i0 0 i)
k3 = (W-VI)(S-U) (45) = ( a 0 1)

I-U
2  

L,2 o o 1 o)

The eigenvectors are L =( 0 1 0 1) (52)

-f,-(,,VA)US, w,', 0 -1 0 1).

lR u / k3 / -1 )
S I - F (1- U2 )A Hence the transformation to, and from, ,.D characteristic

W-Uk3-V~I i -(1-vA)uSi variables is given by the following two matrix equations.

and(4)6
3d =(0 (I-VA) UA (I-VA)S) (47) 01 00 01 0 6U (53)

( J L0 1 0 1 6V
This root corresponds to an isentropic, irrotational pres- 0 -1 0 1 8 p

sure wave, travelling downstream.

f 1 0

Root 4: upstream running pressure wave 8U 0 0 (

=-U (48) 2 24

6p, u, v and J6 are the perturbations from the uniform
The elgenvectors are flow about which the Euler equations were linearized, and

w-Uk4 -VL +(l-uA)uS cL,C2, CS and c4 are the ampltudes of the four characteristic

waves. At the inflow boundary the correct unteady, non-it -S = k,) -,- (+ reflecti, boundary conditions are

i (49) C =, (55)

and (cs
94 -(0 -(1-VA) -SA (1-VA)S (50) while at the outflow boundary the correct non-reflecting

This root corresponds to an Isentropic, Irrotatlonal pres- bundary condition Is

sure wave, travelLing upstream provided i< 1. C4 = 0. (56)

|5
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The standard numerical method for implementing these is and at the outflow the boundary condition is
to calculate or extrapolate the outgoing characteristic values
from the interior domain, and then use Eq. (54) to recon- (a 0 -u / ) C m = 0. (64)

t the solution on the boundary. For subsonic flow,/6 depends on I and hence the mode num-

ber m. For supersonic flow, P does not depend on I and
3.4 Exact, two-dirmenslonal, steady b.c.'s so the boundary conditions are the same for each Fourier

mode other than m=0.
The exact, two-dimensional steady boundary conditions

are essentially the ideal boundary conditions in the limit In order to discuss the approach in implementing these-0. One begins by performing a Fourier decomposition conditions, we now transform from primitive variables into

of U along the boundary. characteristic variables. The inflow boundary condition be-
comes

U(0, y, t) = > O'.(t),"'", (ST) /

where 0- - (+) -Z(i-2) ' 0, (65)
' '-~(t = (0 Y~o , t~i- dy, (58) 2(-) (+) e

a3
and and the outflow equation becomes

= 1-" (59)

Boundary conditions are now constructed for each Fourier Z20/(6
mode. If the mode number m is non-zero, then 0 -2 (/+u) Z(3-) , (6

Um S(A) =
A-o

2

---- (60) Solving to obtain the incoming characteristics as a func-
V tion of the outgoing ones gives

where

isin()/1-u
2-V 2

, u2 +u < 1 (at \+(

(6) - ( ) a (67)
;- si (gn )_ U2+, > 1 a 3'

The reason for the choice of sign functions in the defini-
tion of 6, is that for supersonic flow S must be positive, as and
discussed when S was first defined, and for subsonic flow S Z4 (i2i Z2 - (P+V as. (68)
must be consistent with Im(ks) >0. (6- - ')

The next step is to construct the steady-state left eigen- It has already been stated that if the incoming one-
vectors a . Since it is permissible to multiply the eigen- dimensional boundary conditions are set to zero then the
vectors by any function of X, we wiU slightly modify the initlal-boundary-value problem is well-posed. This suggests
definition given in the theory section in order to keep the that the evolutionary process for the steady-state problem
limits finite as A -C o. will be well-posed if we lag the updating of the incoming

a m iinuf =(-1 0 0 1) characteristics.

=n , o-&-, -t) (
8 _ x s =(o -, ,,)(= k-s" c (69),+,,

a"= timjIe, = (0 e -u )' 0 a (62) . -

Using these vectors, the exact, two-dimensional, steady- ((2u (-a4 ~' (70)
state, non-reflecting boundary conditions at the infow are - - 6 -u)

-1 0 0 1 / ,Numerical experience indicates that a suitable choice for

0 -, (,) a is 1/P. This completes the formulation of the bound-
0 -t 6 ary conditions for all of the Fourier modes except m = 0,
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which corresponds to I = 0 which is the average mode. For For implementation purposes it is preferable to rewrite
this mode the user specifies the changes in the incoming these equations using one-dimensional characteristics.
one-dimensional characteristics in order to achieve certain
average flow conditions. In the turbomachinery program 0o 0 0c

* developed by the author, at the inflow the three incoming + l 1 .! =0 (74)
characteristics are determined by sp@ifiying the average en- 5t V j - = 0 (74)
tropy, flow angle and stagnation enthalpy, and at the out- (ce) +a

flow boundary the one incoming characteristic is determined C4
by specifying the average exit pressure. Full details of this
the problems caused by the fact that because we have used 4 =0

a Linear theory we can get second-order non-uniformities in - + 0 u 0 c =0. ( 5)

entropy and stagnation enthalpy acrou the inflow boundary.

These are undesirable, and are avoided by modifying one of C4

the inflow boundary conditions, and replacing another by
the constraint of uniform stagnation enthalpy. The report Before actually implementing these boundary conditions,
also shows how the same boundary condition approach can a wellposednes analysis was performed. This revealed that
be used to match together two stator and rotor calculations, the outflow b.c. is weilposed, but the inflow b.c is ill-posed
so that the interface is treated in an average, conservative with an incoming wave which grows exponentially. Hence,

manner. it was necessary to modify the inflow boundary conmdition.

3.5 Approximate, two-dImensional, unsteady Modified boundary conditions
b.c.'s

To overcome the ill-posednese of the inflow boundary con-
Second-order b.c.'s ditions we modified the third inflow boundary condition. To

do this we noted that we are overly restrictive in requiring

Following the theory presented earlier, the second order I to be orthogonal to t4 and t4. Since the first two in-
non-reflecting boundary conditions are obtained by taking flow boundary conditions already require that a = 0,

the second-order approximation to the left eigenvectors v L we only really require that VL is orthogonal to uR. Thus we

in the limit A\s0. In this limit S P 1 and so one obtains the proposed a new definition of i which is equal to (1)o

following approximate eigenvectors. plus A times some multiple of the leading order term in V2.

0 0 0 1=(o 1 ) i)+ AM(0 0 0) (76)

4'0 0 (a 1-V- The variable m was chosen to minimize ,44, which con-

4 = (0 1- A \A I- A ) (71) trois the magnitude of the reflection coefficient. The motiva-
tion for this approach was that the second approximation to

4 = (0 -(i-A) -UA 1-VA) the scalar wave equation is well-posed and produces fourth

order reflections [1I. Carrying out this procedure resulted

Actually, the first two eigenvctors are exact since the in the following modified inflow boundary condition.

only approximation which has been made is S su 1 in the
third and fourth aigenveoctors. Consequently, the Inflow (i 0 0 1 0 0 V)
boundary conditions will be perfectly non-reflecting for both 0 0 1 0 -U + 0 s V 1 . = 0. (77)

of the incoming entropy and vorticity characteristics. t1 0 V --

The second step is to multiply by w and replace w by -
and I by 8. This give the inflow boundary condition A weilposednes analysis confirmed that this is welposed.

Finally, it is helpful to expres this boundary condition in

)o + 00 0 0 characteristic form.
0 o o - 0 a 1 - =0, (72)0o10 a 0 ay* C1 0 0 0

l9+ + 0 1 - a C 2 = 0 .

and the outflow boundary condition i C2 2 2 - Cs

(0-1 01) ! +0. (73) )4

at o, , (TS)

[7
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The numerical implementation of this boundary condi- where
tion is straightforward. In the program developed by the f isign(I)V , M < 1
author, the changes in the outgoing characteristics are ob. P = i (85)
tained from the changes distributed by Ni's version of the -sign()V--1 , M > 1
Lax-Wendroff algorithm which is used to solve the unsteady
Euler equations on the interior domain. The changes in the d) Fourth order, two-dimensional, unsteady, inflow b.c.
incoming characteristics are calculated by integrating the
boundary conditions using a one-dimensional Lax- Wendroff / 0 0 0 (C 1
algorithm. The combined characteristic changes are then (CL+u t' 0 C2 0(
converted back into changes in the primitive variables, and Ft C 0 V - - - = 0. (86)
hence the conservation variables (6]. The outflow boundary 2 2 8 C3

condition is implemented in a similar fashion. 2 C,

3.6 Dimensional boundary conditions e) Second order, two-dimensional, unsteady, outflow b.c.

For convenience, this section lists all of the boundary con- a,

ditions in the original dimensional variables. -t- + ( 0 0 : 2 = 0. (87)

a) Transformation to, and from, one-dimensional charac- c,
teristic variables.

ol_2 0 01' 6P A Results
C2 ( 0 0 PC

0  ,, tA (79)

C3 0 pc 0 1 6V 4.1 Steady non-reflecting b.c.'e

C4 0 -pc 0 1 sp
To verify the effectiveness of the steady-state non-

/ ~ 0 /reflecting boundary conditions, Figs. 1 and 2 show results
O_ UT -0 2. for a high-turning turbine cascade. The first figure shows

6,, -P 0 1o- ,T. (80) results for subsonic outflow conditions, with two different
6V 0 -L 0 0 Cs locations of the far-field boundaries. The results are al-

6p 0 0 1 C_ €most identical. The second figure shows the corresponding
2 2 results for a supersonic outflow condition which, has two

weak, oblique shocks extending from the trailing edge. The
b) One-dimensional, unsteady b.c.'s,. agreement in this case in not quite as good due to second-

Inflow: order nonlinear effects which are not considered by the lin-

(ct) ear theory. However, under the standard boundary con-
C2 =0. (81) ditions which impose uniform exit pressure, the outgoing

shocks produce reflected expansion waves which greatly con-
C3 taminate the solution on the blade. This behavior is shown

Outflow: in Fig. 3. Thus the non-reflecting boundary conditions give

C, = 0. (82) a major improvement in accuracy.

c) Exact, two-dimensional, steady b.c.'s. 4.2 Unsteady non-reflecting b.c.'s
Inflow:

The unsteady test case s a relatively simple linear test

a) ~a steady uniform flow past an unloaded flat plate cascade.
Z2 Z-4a - .2 (83) This case was chosen because the results can be compared

s 2 )to those obtained using LINSUB, a program developed by
(ces whltehead [91 based upon the linear singularity theory of

\+V /Smith 1101. The steady low has a Mach number of 0.7 and
Outflow: a flow angle of 30", parallel to the flat plates which have a

pitch/chord ratio of 0.577. The unsteady wakes have a pitch
494 o ( 2% Z, - e--=-_ s _ e), (84) which is a factor 0.9 smaller, and an angle of -30 which

\C e-v 40-/ corresponds to the outflow angle relative to the upstream

8
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The unsteady boundary conditions are based upon a
second order approximation of the ideal nonrefleting
boundary conditions, whereas the standard 'quasi-one-
dimensional' boundary conditions correspond to the first
order approximation. This means that If the wavecrests of
outgoing waves are at an angle 0 to the boundary then the
amplitude of the artificially reflected wave is 0(02) for the
new boundary conditions, as opposed to O(0) for the stan-
dard boundary conditions. However, numerical results are
unable to demonstrate this Improvement, due to the doml-
nance of the truncation error of the numerical algorithm.
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Figure 1: Pressure contours using non-reflecting b.c.'s, M..ia 0 .75

Figure 3: Pressure contours using nrefecting b.c.'s, M.. =1.
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Abstract flow variations exist, which must be resolved to be accu-
rately predicted. This requires local grid refinement, which

This paper presents a coupled Euler/Navier-Stokes algo- in turn requires a priori knowledge of the boundary layer
rithm for solving 2-D unsteady transonic flows. Separate thickness-eomething that is part of the solution. Further-
Euler and Navier-Stokes algorithms are used on overlapping more, these Navier-Stokes solvers typically use the same
grids and are coupled through wall transpiration fluxes. The discretisation throughout the flowfleld. This has the ad-
Navier-Stokes algorithm us" two-point differencing across vantage of simplicity in implementation, but it has several
the boundary layer, this is second order accurate for both In- drawbacks. For example, viscous effects are calculated ev-
viscid and viscor., terms on nonsmooth grids. Flux-splitting erywhere even though they are negligible throughout most
is used for the estamwise discretisation to capture shocks. of the flowfield. This results in wasted computing effort.
The spatial discretisation admits no decoupled modes and Another drawback is that flowflelds often include different
does not require added artificial dissipation. A smi-implicit features, such as shocks, boundary layers, acoustic waves,
t me integration is employed. As is shown by a stability which are predicted by the same discretisation. Eac of
analysis, this allows a time step that is determined by the these could be more efliciently solved by different algo-
streamwise grid spacing only. The algorithm uses a dy- rithms.
namic coordinate rescaling to evolve the viscous grid to the We present an alternative method for the solution
changing boundary layer thickness. Results are presented of such flowfields with unsteady, strong viscous/inviscid
for a subsonic laminar compression duct and an unsteady interaction-a coupled 2-D Euler/Navier-Stokes algorithm.
transonic turbulent diffuser. Separate but coupled algorithm are developed to solve the

lnviscid and viscous regions of the flowfield; each algorithm

Introduction is tailored to the important physics of that region.
This paper concentrates on the development of a new

Transonic flows at high Reynolds numbers are often dom- Thin-Shear-Layer Navier-Stokes algorithm and the coupling

inated by the interaction of shocks with boundary layers. procedure. The Euler algorithm, previously presented by

This interaction can also be naturally unsteady. Examples Almaras and Giles [21, is briefly discussed here. The Euler

of such lows ar engine inlets, where the shock and bound- algorithm, the TSL Navier-Stokes algorithm, and the cou-

amy layer in the diffuser section of the Inlet can interreact pling procedure are all developed in detail by Allmaras [3].

with the compressor face in an oecillating manner. Thes
oscillations are typically small but depending on geometries Gover g Equations
and flight conditions, they may become large, seriously de-
grading performance. Pressure oscillations of 20% magni-
tude have been observed experimentally [91. The Thin-Shear-Layer Navier-Stokes equations are writ-

ten in vector form as,
Today prediction of 2-D unsteady, strongly Interacting

Lowfelds Is becomdng possible with the tools of CFD. Be- au F a . 1 S ()
case of the strength of the shock/boundary layer Inter- at a2 ay r a'
action and extent of viscous regions, these flowbeds are
presently simulated by algorithms solving the full Navier- where the invisid conservation and flux vectors are,

Stokes equations everywhere. In principle, all relevant P ,
physis will be present In such solutions, but this not i p 2 + p I• (2)
necessarily the case. Wlthin boundary layers sigificant; Pi po e + iP

*Reseuerh Assistant, Member AIAA R ) ' pH )/
t1erold Z. Ndgereso Asiseas Profeser, Member AIAA
Copyrigirt CAmerlen Institute of Aeronaueics s" Astre- in these vectors p is density, p is pressure, 5 is total inter-

matisk, Ins., 1940. AU rights reserve& nal energy, H is total enthalpy, and *I + 9) is the velocity



37

vector (u and v are the Cartesian components in the z and Starting from the wall, the inner model is used up to the
y directions, respectively). Viscous effects are represented point where the outer model first exceeds the inner; the
by the vector S given by, outer model is used from there.

S= 0 o No transition model or mechanism for changing from lam-

- Inar to turbulent boundary layers is incorporated into the
S= 0 (3) present algorithm.

--q + u

where the shear stress r and heat transfer q are defined as, Defect Formulation

r = (p + p.) 2U-, Away from the wall, viscous effects become negligible and
a/ N. [OH au (4) the Navier-Stokes equations asymptote to the Euler equa-

q =- + -- u! . tions. Thus, solving the Navier-Stokes equations every-
Swhere is inefficient since most of the lowfield is effectively

The molecular viscosity p is determined by Sutherland's inviscid. This section presents an alternative formulation of
law. The turbulent viscosity p. is obtained from the Cebeci- the problem involving a composite solution using both the
Smith two-layer algebraic turbulence model [8]. Euler and TSL Navier-Stokes equations.

The governing equations are nondimensionalsed by a Probably the most obvious means of obtaining a compos-
reference length ",, density Pret, velocity Cet, molecu- ite solution is to solve the TSL equations from the wall to
lar viscosity 14.1, thermal conductivity coefficient k,,t, and the edge of the boundary layer and patch to a solution of
specific heat coefficient cr. In the resulting nondimen- the Euler equations in the outer flow. In this approach,

sionailsed governing equations, the reference Reynolds and the domain is divided into two regions and the solution in
Prandtl numbers appear; thee are defined a, each represented by different equations sets. The final so-

lution is then a patch of the viscous and inviscid solutions.
e PtC,,Ir.,! = 1 4__(S) We choose instead to describe the flowfield by the Defect

Re pr Pr ""' " formulation of Le Balleur [15,16]. Here, two equation sets,
both applicable throughout the entire domain, are used to

For air the laminar and turbulent Prandtl numbers are s- describe the ftowfield; the composite solution is the sum of
sumed constant (Pr = 0.72, Pr, = 0.9). the two solutions.

The Thin-Shear-Layer Navier-Stokes equations are ob- In the Defect formulation the governing equations are
tained from the full Navier-Stokes equations by neglect- split into an inviscid contribution described by the Euler
ing streamwise gradients of the viscous stresses and all vi- equations (8a) and a viscous contribution described by the
cons terms in the y-momentum equation. If the inviscid Defect equations (8b),
y-momentum equation is replaced by the condition that
pressure is constant through the boundary layer then the 8,0 at ad
equation set reduces to the Prandtl Boundary Layer equa- t + -z + O- = O, (8a)

tin.a(t-U) + ±-(F-F) + -(-G) + -L S= 0.(8b)

Turbulenco Model Far from the wall, the viscous solution U asymptotes to the
inviscid solution 0,

The Cebeci-Smith turbulence model Is composed of Inner

(law-of-the-wall) and outer (law-of-the-wake) regions. In U -0 as V -e c. (9)
the inner region, the turbulent viscosity is given by,

Pis + -(6 Outside the boundary layer, the Defect Is zero, leavingA$" or ., != 711- - A  only the Eler equations. Within the boundary layer, equa,-

I (a-) tion (8a) results in an Inviscid solution which has no physical

Y= 3----1, , = sigiflcance. Le Balleur refers to this as the pseudo-inviscid
V solution. It does not satisfy Inviscid solid wall boundary

conditions; instead, the fluxes at the wall are driven by the
where a 0.40 and A + = 2. In thi implementation of viscous contribution.
the model, the shear velocity %, is based on the local shear
rather tha the waill shear. In the outer region, the turbu- Analytically, this approach Is no different If the Defect
lent viscosity is given by, equations (Sb) are replaced by the full TSL equations (1)

within the boundary layer. The real advantag of the Defect
A at(.) .a, ' - [1 +.. (7) equations is In the quality of numerical results when differ-

ent algorithms an used to determine the pseudo-inviscid
where a = 0.0168, 8j is the Incompressible displacement solution 0 and the viscous solution U or 0 - U, as is done
thickness, I is the boundary layer thickness, and -f is Ke- in this paper. The source of the difference Is numerical trun-
baaof's latermittency factor, cation error, and Its resulting effect Is a mismatch between

2
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the inviscid and viscous components of the solution outside equations as written and solve for & viscous defect (3- U
the boundary layer. given a known pseudo-inviscid solution 1U. The second &p-

In fact, solution of the Defect equations may be viewed proach emerges from the above discrete operator analysis.
as elegant means of truncation error manipulation. To A discretihd TSL operator or algorithm i first developed.

elegansthe of truncation eror maaingpelaton. Then the discrete Defect operator (16) is constructed by
tation. Let the operator Lsa denote the analytic TSL taking the difference of the TSL operator operating on the

Navier-Stokes equations (1) and Lou, the analytic Euler viscous solution U and the known inviscid solution O. We
equations (8a). Let U be the analytic solution of the TSL have chosen this second approach to discretise the Defect
equations with no slip boundary conditions, and ID be the equations.

associated pseudo-inviscid solution,

=Lre(U) = 0, L..L(O) = 0. (10) Euler Algorithm

By construction, U asymptotes to ( far from the wall. Sim- The 2-D Euler algorithm, initially developed by Ailmaras
ilarly, assume two different numerical operators, LILL and and Gles (2) and further detailed and improved in Ref. [3),
L , for the solution of the Euler and TSL equations, re- has been designed for unsteady transonic flows. In par-
spectively, and let th and Uh be their solutions with ap- ticular, it has been developed with the objectives of crisp
propriate boundary conditions, resolution of unsteady shocks combined with low trunca-

S Of =otion error even on nosmooth grids. Moving shocks an
LTs5 (U) - 0, Ls, (O') = 0. (11) captured crisply and without oscillations using upwinding,

It is desired that U' asymptote to 0', just as the analytic more specifically, van Leer's flux-splitting [281. The flux
solutions do, but this is not necessarily the case. Far from through each face is obtained by first extrapolating two so-
the wall, the analytic solution U of the TSL equations is lutions to the face, one from either side; the spit-flux vec-
also a solution of the Euler equations, tor is then calculated from these two solutions. In upwind

methods it is the accuracy of these extrapolated solutions
Lo, (U) - 0 as Y -0 co. (12) that determines the overall spatial accuracy of the solution.

In the present algorithm, these extrapolations are made ;ec-
However, the exact solution U' of the discretised TSL op- ond order accurate by using a linear solution approximation
erator does not asymptote to an exact solution of the dis- within each cell. Both averages (U) and gradients (Uxx,
cretised Euler operator, W-) are stored for each cell as shown in Fig. 1, and a Un-

-c' 0 as . (1 ear Taylor expansion used to extrapolate the solution to the
,0  $0 (13) faces of the cell,

The reason is differing truncation errors between the two U(z,y) = U+ (z-z.)Ux-+ (V-y.)Uy. (17)
numerical operators or algorithms. The result will be a
mismatch between Ul' and ' outside the boundary layer. The averages on each cell are evolved in time by a finite
A computational example of this is shown in Fig. 4. Fortu- volume solution of the unsteady Euler equations. In a simi-
nately, this situation can be rectified by altering the viscous lar manner, the gradients are evolved in time by solving the
solution, giving U. , so that it does asymptote to an exact first moments of the unsteady Euler equations. Two-point
solution of the Euler operator, Gauss quadrature is used to calculate the flux on each face

s , 0 a, (14) of the cells. This gives second order accurate gradients for
a steady flow. It also eliminates all decoupled modes and

thereby allowing _ to asymptote to 0' (ea Fig. 5). This any need for explicitly added artificial dissipation. In addi-
altered viscous solution is no longer a solution of the dis- tion, nonlinear consistency in the discretised first moment
cretised TSL operator, in fact, equations has been found to be crucial for convergence near

shocks. This nonlinear consistency is obtained using Roe's
S" as 1 -40 o, (15) parametric vector (23). An explicit 3-stage Runge-Kutta

scheme is used to integrate both the discrete Euler equa-
but it is an exact solution of the discretised Defect operator, tions and the first moments of the Euler equations in time.

i -LLe(.) ( 0 (1B) The resulting upwind algorithm has grid Independent sec-
) L L If ) ond order accuracy for both steady and unsteady flows.

Hence, solution of the Defect equations is a means of sub-
tracting of the undesired difference n truncation error be-
tween the discretized Euler and TSL operators. Thin Shear Layer Navier-Stokes Algorithm

This conclusion can alternately be obtained by noting Before presentation of the algorithm, a few comments are
that 0 - U - 0 Is both an analytic solution of the Do. In order. This algorithm Is developed from the start with the
fect equations (Sb) and an exact solution of any properly intent to use It only In viscous regions and to couple it with
discretised form of the Defect equations, an outer Inviscid solver. As wJl be discussed later, the form

Two approach. to the discretisatlon of the Defect equa - of coupling used in this paper is new for Euler/Navler-Stokes
tions (8b) become apparent. The Ant Is to discretiso the algorithms. To reduce unnecessary geometric complexity

-- dko -

3
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in the coupling, the TSL Navier-Stokes equations (1) are The transformed TSL Navier-Stokes equations (1) can then
discretised on a grid with one set of coordinate lines parallel be written in conservation form as,
to the y -axis, rather than on a body normal grid. Errors
in the TSL equations are introduced by this assumption, A (AU) + W( ) (21)
particularly in the definition of the shear stress and heat o'
transfer. Thes errors small for the duct cases presented, + = - .S -
since their walls are nearly parallel to the z-axis 8 ,7 Rd

Hereafter, the time coordinate r will be replaced by t to
Objectives avoid confusion with the shear stress.

The present TSL Navier-Stokes algorithm is developed Cros-Stream Disretization (n-direction)
with three major objectives or goals in mind. The first is
high spatial accuracy across the boundary layer. Within Typical approaches to discretising the Navier-Stokes
boundary layers, the viscous terms are as important as theinviscid terms normal to the wall. In this algorithm, both equations use 3..point differencing asuming a uniform grid
inviscid and vious terms across the boundary layer are to discretise viscous terms [1,4,26,271. For the stretched
disretied to scond order accuracy for the stretched grids grids commonly used in viscous calculations, this fails to

typi o scndo rder acurac y fortbe second order accurate. In the present algorithm, bothtypical of viscous calculations. inviscid and viscous terms across the boundary layer are

The second objective is to avoid impractical time step discretised to second order accuracy for nonsmooth grids.
restrictions imposed on fully explicit time integration tech- Among algorithms for solution of the boundary layer
niques. This algorithm uses semi-implicit time integration equations is the highly successful Keller Box scheme [141.
to circumvent this problem. In this scheme second order accuracy is obtained for both

The third major objective is to adapt the viscous grid inviscid and viscous terms across the boundary layer (q-
to the changing boundary layer thickness. This is accom- direction). The key to this scheme is rewritting the govern-
plished by a dynamic transformation of the y-coordinate. ing equations as a system of A-rt order equations and using

two-point differencing to evaluate all n-derivatives. This is
the approach taken in the present algorithm.Coordinate Resesling The TSL Navier-Stokes equations are solved as a sys-

The extent of the viscous region is not known a priori; tern of six first order equations as written in (21) and (4),

hence, the computational grid cannot be specified. Since It where the vectors U, F, G and S are given by (2) and (3).

changes both along the wall and in time, some form of adap- Thus, the shear stress r and heat transfer q are stored along

tation must be used to determine the extent of the viscous with the conservation variables U. These six unknowns are

region and the grid. The technique used here has been used stored at face midpoints as shown in Fig. lb. With un-

in the boundary layer schemes of Carter [71 and Drela 1101. knowns stored in this manner, two-point differencing is used

The y-coordlnat, is rescaled by the local boundary layer to evaluate 1-derivatives on each cell. For example,

.hickneu, and the resulting transformed equation solved G = G 0(4.), (22)
on a fixed grid in computational space. all'A+j+11/- (22

Define the coordinate transformation to computational
space, where the convention ( )+ = ( );.+i and ( )- = ( ),j is

y - (z), (18) use throughout this section. This discretisation is second
Z' =' t,)=, S order accurate for nonsmooth spacing In the i-direction.

Derivatives with respect to t and 4 will remain undefined
where A(z, t) Is a scaling parameter which depends on the for the present, except to say that 8U/8t Is evaluated at
local boundary layer thickness, and j(z) is the location of the center of the cell using the midpoint rule in n (which is
the stationary wall. Including i in the definition of .p ac- also second order accurate),
counts for wall curvature effects. Derivatives with respect
to z, y and t then become, U a (U +U- + ( 2). (a'-, .,/=:t -2 (,)

8 9 ,7A = 9-("+ 8179 (9 .
= @'-t - + , The resulting semi-discrete TSL Navier-Stokes equations in

=S Ys8 8f (19) 3-'conservation form on each call are given by,
a 811 a I a((U)

$ a-- a a it- -T L 2 IL
t =  -3r + 8t Nq 5 r A9 a'1

- wreS+ - S-) - A.i(.+F+ - o7-F-) (24)
where R

M (20) - ..(F+ - F-) - A,(.r+U+ - n-U-)j =o,83V.-, A, _- -, (
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where A, A., and Ag, are the scaling parameter and its Time Integration
derivatives at the cell center. The A, and A. derivatives
are given by, Resolution of the large gradients within the viscous re-

&in+,5 gion can result in very small grid spacing normal to the
S At A,+ A4, - (25) wall, particularly for turbulent cas. To avoid impracti-

cal time step restrictions on a fully explicit scheme result-
The scaling parameter at the left and right faces of the cell ing from this small spacing, the equations are integrated in
is obtained by interpolating the values at the midpoints of time using a semi-implicit formulation. Discretisatlon nor-
the two adjacent cells. mal to the wall (sy-direction) Is evaluated implicitly, whereas

The definitions of shear stress r and heat transfer q on streamwise discretiation (4-direction) is evaluated explic.
each cell complete the system. They are discretised in the itly. As will be shown by a stability analysis, this allows the
same manner as the conservation equations. For example, solution to be integrated using a time step At determined
the shear stress definition is, by the streamwise resolution Az only.

r+ + r_- -t.- - In the present implementation, the equations are Inte-
2 + Is,) A =0, (28) grated using a single stage backward Euler for q-derivatives

and forward Eler for 4-derivatives to advance the solutionfrom time t (level n) to t + At (level n + 1). Thus, in the

conservation equations, streamwise fluxes derivatives (27)
Streamwise Discretination (4-direction) are evaluated explicitly using the solution a level it. The

remaining spatial derivatives in the conservation equations
The 4-derivative in the conservation equations is evalu- are evaluated completely at the new time (level n+1), giving

ated by differencing the fluxes at the midpoints of the left
and right faces of the cell (the subscript i + 1/2 is assumed [A+ ,(U+ U- M+1 ' U-.
inthe following analysis), T[ N+ 2 ) - ~ 2 ]

AP-' (AP)i+./ 2  (Af)i.1 2 + O(A1 2). (27)1

+ I(AF)i'1 2 -(AF),- 1 /21  (30)
This formula is second order in Aq due to the midpoint rule. Z- +
The fluxes at the faces are evaluated using flux-splitting for r
capturing shocks in the outer portion of the boundary layer, + . (G+ - G_)M+l - I(S+ - )M+ l

Fi12= F+U + F(U'1 2  (28)- (QF - , fl -sjJ-
• ,-,,/, = .W/2",/) + F-Ci= /2), -

whezd F± are the split flux vectors developed by van
Leer [28j. U " is the solution at the face interpolated from - AI(M+U+ - f-U-).+1= 0.
the right, and U- that interpolated from the left. Since
streamwise accuracy is not as important as the croe-streamdiscretistion in this preliminary development, a first order Likewise, the shear stress and heat transfer definitions (2)
interpolation is used, are evaluated completely at the new time level. These equa-tions form an implicit nonlinear system for the evolution of

U =+I1 + -U , the solution in time. The nonlinear system at each stream-

= i(U+ 4 + + 2 (29) wise and time step is solved by Newton's method.u4+113 2(uis+li + ui+1J),

and similarly for U* at the left face. Thes interpolations Discrete Defect Equations
ar O(A(, Asy2 ) accurate, reulting in a first order accurate
streamwise dicretisatlon. In this section the discretisation of the Defect equations

(Sb) Is discussed. We use the approach suggested by the op-

Artificial Dissipation erator analysis leading to the discrete Defect operator (16).
In this approach the discrete Defect operator is constructed

Given sufficient grid density to resolve the gradients Of from the discrete TSL Navier-Stokes operator (30), where
the boundary layer solution, the present spatial discretisa- the explicit streamwise discretisation Is given by (27-29).

tion admit no decoupled sawtooth modes. Hence, no added A proper discretisation of the Defect equations would re-
artificial dissipation is required; this is an advantage over east by taking the difference of (30) operating on the viscous
most other Navier-Stokes algorithms which do admit de- solution Uh and the known pseudo-inviscid solution O' In-
coupled modes. Artificial dissipation adds user adjustable terpolated to every cell of the viscous grid. We have not
constants, require additional nonphysical boundary cond- done this. Instead, we have constructed a simplified dl-
tions, and If not properly done can contaminate solutions cretisation using the fact that the discrete Defect equations
as indicated In Ref. 1I. are a means of manipulating the relative truncation errors

Arthrmore, the use of flux-plitting in the streamwiso of the viscous and nviscid algorithms.

direction allows shocks to be captured without explicitly The outer Euler algorithm developed In Ros. (2,31 is spa-
added artificial dissipation. tially second order accurate even for nonsmooth grids. The
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TSL algorithm developed in this section is spatially second For supersonic flow at the inlet, al flow variables are spec-
order accurate in the q-direction but only first order in the ifled from an inlet profile. For subsonic inflow, the entropy,
streamwise direction. Thus, the major contribution to so- total enthalpy, and v velocity are specified; and the Mie-
lution mismatch at the edge is the frst order interpolation mann invariant u - '-L c is extrapolated from the interior.
(29) in the streamwise discretization (27). This component At the inlet, the specified viscous profile is generated by an
of the relative truncation error is largely eliminated by sub- assumed flat plate similarity boundary layer solution. Equa-
stituting the inviscid edge solution into the discrete TSL tlon (21) is solved with the assumptions of steady flow, con-
equations of the outermost viscous cell and subtracting the stant pressure through the boundary layer and aF/Of = 0.
result from all cells at that streamwise station. Hence, the The scaling parameter A for the similarity profile is given
simplified discrete Defect operator on each cell is given by, by (36) and a power law assumption used to evaluate A..

L (UA- o~ )+z/2 (31) At the exit, all flow variables are extrapolated from the
interior for supersonic flow. For subsonic flow, the entropy,

= (L. (UA)].+, - (L.L(OL )]. _ , v velocity and Riemann invariantu + 2-I c are extrap ..ated.4+1/3 .,J-j1// from the interior;, the exit pressure is specified.
where j = I to J - 1, and L,.L is the operator notation for
(30). This is a proper discretisatlon of the Defect equations Scaling Parameter
only for the outermost cell.

The pseudo-inviscid solution and its gradients are known As previously stated, the governing equations are trans-
at the edge at both the n and n + 1 time levels. Thus, 0 formed by scaling the y-coordinate with the local boundary
is known at the upper and lower faces of the outermost cell layer thickness. Since the edge of the boundary layer is
by interpolation, not well defined, relations for the scaling parameter A(z, t)

must be chosen empirically. Hers it is defined in terms of the
O+ = O , (32a) incompressible (or kinematic) displacement and momentum

A thicknesses,th_ = (32b) f/0( ")"
(Yb. ~ ~ ~ ~ ~ 8 t A4,)~.,(2)~ = -.- dy, 0, f ~ ~ i-.- div. (35)

where t. is the inviscid edge solution, k = n or nt + 1, where u. is the s-component of velocity at the edge of the
and dti, = ,- i',.._. Substitution of these values into boundary layer.
the discrete TSL equations (30) gives the psoeudo-inviscid As suggested by Drela (101, one method is to express the
component of the simplified discrete Defect operator (31). scaling parameter as a linear combination of r and 0k,

This simplification is essentially an approximation that I-O (
the pseudo-inviscid solution is linear across the boundary A(z, t) = ua, + - , (0 < a < 1) (36)
layer and given by the solution and gradients at the edge. where H is the value of the shape parameter for incompres-

ibis flat plate flow (H = 2.6 for laminar and H = 1.2 for
Wall and Outer Edge Boundary Conditions turbulent). Defined in this manner, A is independent of a

for flat plate flow.
At each streamwise station, containing (J - 1) cells acros Unfortunately, this definition of the scaling parameter is

the grid, there are 6J unknowns and 6(J - 1) equations, not adequate. The major reason is that (36) results in nearly
This leaves 6 boundary conditions to be specified to close discontinuous grids when shocks ae encountered, leading
the numerical system. At the wall, noslp and adiabatic to solution divergence. Resolution of this problem le in
wall conditions are specified, smoothing the scaling parameter. Here, we employ an anal-

v(',0,t) =0, V((,0,t) = 0, q(f,0,t)=O. (33) ogy to the l-D heat equation to evolve the scaling parameter
in time,

The outer edge of the viscous grid Is a nonphysical bound- - = V (A, - ) + I (37)
ary where three sonditions need to be specified; these a where the coefficients Y, and Y2 control the relative amount
chosen to be prese, shear stres and total enthalpy, of smoothing as well as the relaxation of A in time. The

p( ,,,t)= ., r(Ciy,t) =0, H(f,e,t)= ,, (34) previous definition (36) Is used as the source term &.q,
and explicit second differences used for the dissipation term

Here P. and A'. are the values of the outer Inviscld flow 8A/Ws2 . Thus,
interpolated to the edge of the viscous grid. AS,* = + + - A7'] (38)

Wet/lt Boundar Conditions +,t[, Z -2A7 + A..],

The inlet and exit planes are nouphyslcal boundaries where *& and $* are evaluated at the ft + 1 time level. A
resulting from truncation of the computational domain. won Neumann stability analysis 1221 requires &ft < 1/2 forBoundary conditions at these planes are enforced using I-D stability. All test case presented In this paper use the values
characteristic theory In the s-direction. - 0.1, Y2 = 0.46 and a' - 0.8.
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Newton Solution Procedure With these translation operators the discrete equations may
be written as,

At each streamwise station, a time step consists of the I
solution of the following nonlinear system: (K + 1)(Z -)u,'?, + -t-(K + 1)(1 -T)uz,, (43)

Unknowns: U, r, q at nodes 61 + -t(K - i)Zut2i - (K - 1)Ztjla= 0,A, Ih( 2-dy A,
where r,", is obtained from the shear definition,

Equations: Conservation on cells 4(J - 1)
rand q defus. on cells 2( -1) ,= = 2Y (K-) ! L'Ag (44)
Boundary conditions a
A, 0; dan. 2 Substitution for rj' gives the dnal result,

Here, I is the total number of nodes and (I - 1) is the total (Z - 1) + A.(i - T) + 2A,Zk - 4oZkC = 0, (45)
number of cells. The unknown 6; is introduced through
the turbulence model. This system Is solved by Newton's where dt bat Vat
method, which is quadratically convergent. A. - -- A, a (46)

The Newton procedure is conceptually straightforward.

The system of nonlinear equations may be written as, Equation (45) is now examined for the Fourier mode,

F(x) = o, (39) -= <(s,+i ) - < :< +r (47)
-r < +r

where F is the vector of equations and X is the vector of
unknowns. Given a guess for the solution at some iteration where t = %/T. For this mode the translation operators
level k, the next guess X"+ ' Is obtained by setting the linear become Z = g, T = e- 's, and K = e'* . Substitution of
Taylor series expansion for F(Xh+') to zero, this Fourier mode into (45) gives the amplification factor g,

r

OP := (4oa) = + 52A = 0, ( (48)

P(X&+Ol) I(5  + MA, tan(#/2) - 4q tan 2(/) 4)

X ' + * 
= Xh + 8Xh. (40b) For stability, we require that IgI 5 1.

The term OF/8X is the Jacoblan matrix whose entries Note that the numerator is a function of 9 only and the de-
(8F/X)X. are the partial derivative of the mtb equation nominator a function of 0 only; hence, their amplitudes can
P. with respect to the %,'h unknown X.. Thes entries are be analyzed independently. The denominator has a mag-
evaluated at the kt h iterate. Because 87/8X is a matrix, a nitude greater thaa I for all positive A, and er, except at
linear system must be solved to obtain the changes 8X6. 0 = 0 where it has a magnitude of 1. Thus, for stability the

numerator must have a magnitude that is not greater than
In the present algorithm, the linear system resulting from 1; this requires A. < 1. For the Navier-Stokes equations,

the Newton procedure is a block tr-diagonal matrix with the wave speed a is replaced by Jl + c, giving the stability
6 x 6 blocks. The linear system s solved by Gaussian slim- restriction,
ination. -(J l + C)At < 1  (49)

AX
This shows that the numerical stability of the algorithm

Stability Analysis depends only on the streamwise spacing Ax.

The stability boundary of the present algorithm Is de-
termined by a Yon Neumann stability analysis of the 2-D Euler/Navler-Stokes Coupling
advection-diffslion equation,

Separation of the flwdeld Into inviscid and viscous re-

S+ a L + bLA - - 0, r = *YL (41) gions requires a procedure for coupling the respective solu-
t &- OF - or tions. In this section, a procedure Is described for coupling

Consistent with the present algorithm, this equation I the Euler and Thin-Shear-Layer Navier-Stokes algorithms.

cretlsed using a single-stage time Integration with implicit Previous methods for coupling Euler and Navier-Stokes
two-point dIffereacing In the rl-<rectlon and explicit upwind regions of a flowleld have used patched grids or slightly
differencing In the s-direction. The diecratised equations overlapping grids; both approaches ar used by Rai r21].
can be written compactly using the following translation Coupling is through conservative flux evaluation at the In-
operators: terface In the former and solution interpolation within the

overlap region in the latter. Positioning of interfaces and
Zu' M %,I+1, Tv4 a ut-t, Kulu a4+1. (42) overlap regions require a priori knowledge of the extent of

--.7,.. m m m ,,
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viscous regions if they are fixed, and regridding of the entire
fiowdeld if they are adapted. Furthermore, a smooth match-
ing of solutions is not guaranteed if different algorithms are -
used to solve the inviscid and viscous regions.

We have chosen to couple the inviscid and viscous al-
gorithms by the technique of wall transpiration fluxes. ,
This technique has proven very successful with bound-
ary layer schemes coupled with potential or Euler algo-
rithm (15,13,291. The present work represents the first
extension of this coupling technique to the solution of the
TSL Navier-Stokes equations, both for steady and unsteady
flows. The fundamental issues addressed in this extension
are the matching of the inviscid and viscous solutions with
this equation set and the performance of the technique for Geometry: , y o Solution: U, U, TV
boundary layers which may have substantial thickness. To a) Euler Grid
better isolate these issues, geometric complexity is removed Y
by making simplifying assumptions on the Euler and vis-
cous grids. These are that j grid lines are vertical, even
for curved walls, and coincide for the two grids as shown in L
Fig. 1.

In review, the flowfield is solved using the Defect for-
mulation of Le Balleur [15,161. At each point in the flow-
field two equation sets are used to represent the solution.
The first are the Euler equations and the second are the * Geometry: , q o Solution: U, r, q
TSL Navier-Stokes equations written in the form of Defect b) Viscous Grid
equations. The Euler equations are solved on a fixed grid,
while the viscous grid dynamically evolves with the bound-
azy layer thickness. The Defect equations reduce to an iden-
tity in the outer inviscid portion of the flow. Thus, they are ------

solved to the edge of the boundary layer and outer bound-
ary conditions imposed by the solution of the Euler equa-
tions. Within the boundary layer, the solution of the Euler
equations has no physical significance. This pseudo-Inviscid
solution does not satisfy the zero mass flux condition at the
wall. Instead, it satisfies boundary conditions driven by the
viscous solution; thee ar referred to as wall transpiration
conditions. Hence, coupling the two solutions involves de-
termining outer or edge boundary conditions for the viscous
equations and boundary conditions at the wall for the Euler
equations.

c) Composite Grid

Interpolation of Edge Solution Figure 1: Composite Grid Topology for Coupling

To implement the outer boundary conditions for the vie-
cous solver, the inviscid solution is needed at the edge of the suggested by Johnston and Sockol [13', these wall transpi-

viscous grid. This solution In Interpolated from the inviscid ration fluxes can be derived by integrating the Defect equa-

grid in a rather straightforward manner. The assumption tions in transformed coordinates across the boundary layer.

that j grid lines coincide for the Euler and viscous grids The integration is performed subject to the no-slip condi-

reduces the geometric complexity of finding the edge of the tions on U at the wall sad the constraint that the viscous

viscous grid; it also makes the interpolation essentially one solution U asymptotes to the inviscid solution t. Written

dimensional. in transformed coordinates, the transpiration fluxes are,
I S . ( 50 )

Wall Tanaspiratlon Fluxees A

The inviscid solution ( satfies boundary conditions at +3Z J t( - - u) i0r+
the wall driven by the viscous solution, rather than the solid where Indicates values at the wall
wall slp conditions. These boundary conditions are tran-
spiration Auxes or surface blowing constructed to reproduce The unsteady Euler equations describe scoustic and con-
the viscous effects on the outer nviscid solution. As first vective wave propagation; therefore, It Is physically Incor-
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rect to impose all four of the transpiration fluxes. The Numerical Coupling Procedure
proper choice of boundary conditions has been addreued by
Murman and Bussing [201 using a 1-D characteristic analy- Evolution of the flowfield in time is by means of an explicit
sis normal to the wail. Their recommendation was to specify coupling procedure between the Euler and TSL Navier-
three conditions, the mas, x-momentum and energy fluxes, Stokes algorithm. At each time step the inviscid and vi.
for the usual case of flow into the domain. Conversely, for cous solutions an integrated separately. Communication
low out of the domain only the mas transpiration flux between the two is through the viscous outer edge bound-
should be specified. ary conditions and inviscid wall transpiration fluxes. The

In the present coupling procedure, we impose only the procedure is schematically presented in Fig. 2. Given the
mass transpiration flux, allowing all other flow quantities at transpiration fluxes at time level n, the Eler algorithm is
the wall to float to values predicted by the Euler algorithm. integrated one time step to produce the updated inviscid
This choice is motivated by the following reasoning, based solution ',r+I. Based on the position of the viscous grid
on Lighthill's analysis for steady flow [171. The primary of- at the previous time step, the inviscid edge solution 10" + '
fect of the boundary layer on the outer inviscid flow is a and its gradients are interpolated from the updated inviscid
displacement of the streamlines away from the surface of solution. With the updated edge solution, the TSL Navier-
the body. For the solution of the outer inviscid flow, this Stokes algorithm is then integrated one time step; this gives
effect can be produced by physically thickening the body the updated viscous solution UJ+ '. Finally, the mass De-
by the displacement thickness 6' of the boundary layer. It fect equation is integrated across the boundary layer by (51)
can be equivalently produced by a distribution of sources on to produce the updated mass transpiration flux at the wall
the surface of the body (i.e. the mas transpiration flux). In for the next time step.
this case the streamline located at the displacement thick-
ness of the boundary layer divides the outer flow from all
fluid injected at the surface. Hence, properties of th fuid i
that ars convected along streamrlines, such as the entropy
and vorticity, have little or no effect on the outer inviscid Euler time step
solution. 0 " - O+

The same discretization developed for the solution of the J 0,t+1
Defect equations (31) is used to numerically integrate the
mass Defect equation across the boundary layer. Hence, at Interpolation
a given streamwise station, the discrete counterpart of (50) of edge solution
is,

J-1I Viscous time step

+ -[(4-r) , - ((51a) U91  
f

+ --
U

At E i+t/2"
a +/Mas transpiration flux

The equations am written here in vector form, but only the
mas equation is used. Consistent with the approximations
used in the discrete Defect equations, the psudo-inviscid -

profile is assumed to be linear and given by the edge solution
and its gradients. Thus, the Defect integrands 6F and SU Fgre 2: Flow Chart for Numerical Coupling Procedure
are given by,

The present coupling procedure ues no under-relaxation
eI~l/2 = J - 17+1/2, (Sb) of the interpolated edge solution or mass transpiration flux.

6Ut+12= 
0

1-12- UJ+1 I2 . In addition, the procedure is not iterated at each time

Since the discretisation of the" equations is the same as step to converge the edge solution and transpiration fluxes.

that used to Integrate the Defect equations one step In time, Hence, these quantities a first order accurate in time.

al terms am known. In particular the split-flux voctors at
i * 1/2 am known and do not need to be recomputed. Proper vs. Appr odmate Tkanspiration Fluxes

In the present coupling procedure, the time derivtive
term in (Sl) has been found to have a destablising effect for A proper discretisation of the Defect equations (Sb) re-
the more difficult cases attempted. In these circwmstances, suits If the pseudo-inviecid solution is interpolated to each
this term is neglected and a quasi-steady asumption for the point in the viscous grid and substituted into the disete
ms transpiration flux I used. Thi assumption Is minor viscous equations on each vicous cel. It is proper in the
since the time term is usuly small physicaly (although it sense that no approximations in the pseoudo-inviscid pro-
can cae unbounded numerical growth). file through the boundary layer me made. Likewie, this is

dill, u.9
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also the proper way to numerically integrate the mass De- fixed Euler grid is 48 x 8, and the lower wall viscous grid is
fact equation acros the boundary layer to obtain the mass 16 cells acros.
transpiration flux. This has not been done in the present This case was first run with the discretised TSL Navler.
research. Instead, a linear pseudo-inviscid profile given by Stokes equations (30) solved within the boundary layer.
the edge solution and its gradients Is asumed. Velocity profiles at three streamwiss stations are shown in

The distinction between proper and approximate dis- FIg. 4. The stations ar located in the constriction where
cretisation of the Defect equations and mass transpiration the flow is accelerating as indicated in Fig. 3. The plots
flux is important In that approximate Integrations cannot In Fig. 4 show both the viscous profile U and the pseudo.-
guarantee complete matching of the inviscid and viscous so- inviscid profile t through the boundary layer. The plots
lutios at the edge of the boundary layer. Furthermore, show that the viscous and Inviscid solutions do not quite
thes mismatches will remain in the limit of infinite grid match at the the edge of the viscous grid. Although the
resolution, viscous solution asymptotes to an Inviscid solution towards

The assumption of a linear or even constant pseudo- the outer edge of the viscous grid, it is not the same as
invisid profile through the boundary7 layer is typical of that predicted by the outer Euler solver. Also worth noting

viscous/inviscid coupling techniques appearing in the lit- is the difference in 8vlSy between the visous and inviscid

erature. In practice a linear assumption is actually quite profles; this indicates a difference In the streamwise velocity

good. Only for cases of thick or rapidly changing bound-
ary layers in conjunction with severe geometries or shocks is
there any appreciable variation of the peoudo-inviscid pro-
file. Numerically, nonlinear variations can only occur for y 8
large boundary layer thicknesses measured in terms of the
number of inviscid cells in the boundary layer. For exam- 0.04

pie, if the boundary layer is completely contained within a
single inviscid cell, there will be essentially no difference be-
tween a proper and approximate discretisation of the Defect 0.05

equations.

0.02

Discussion of Results

Subsonic Compresion Duct 0.0t

The first case presented is a steady subsonic compression
duct with a laminar boundary layer on the lower wall. Its
purpose is to demonstrate the improvement in numerical re- 0.1 0.2 03 ' 0.4' 0.3

suits obtained with the solution of the Defect equations (8b) a) Axial Velocity
rather than the TSL Navier-Stokes equations (1) within vis-
cous regions. 0.o

0.00

Y I I I i fill[ I im 0.04I f

velWdlty 0.02

Flgure 3: Subsonic Compression Duct Geometry and Grid
(vertical scale doubled) 0.01.w

Figure 3 shows the geometry and composite grid for this
case. The duct has a& exit to inst as, ratlo of 0.8, with a
c01(s) riato in the pper wall m = 0 to s 2. The "4 -a .x:-M1

Raynolds namber Is Re = 10 and the ,xt Mach number I b) Vertical Velocity
M,-, = 0.5. Inviscid slip bowdary condtions are Imposed
on the upper wall, and no-slip condtion on the lower. At Figure 4: Velocity Profiles Using TSL Naver-Stokes Equa-
the Inlet, a flat plate similarity boundary layer profile is tions
specifed with a thickns of 3.4% of the inlet height. The

10
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As previously stated, the cause of the mismatch is the Transonic Diffuser
difference in truncation errors between the Euler and TSL
Navier-Stoke algorithms. Hence, solution of the Defect The second test case for the coupled Euler/Navier-Stoks
equations should cancel the difference in truncation errors, algorithm is a 2-D transonic diffuser with turbulent bound-
allowing the the solutions to match. Because the Defect ary layers. The geometry, depicted in Fig. 6, has been

equations have been approximately discretised, assuming a the subject of extensive experimental investigations at
linear pesudo-invisod profile, we cannot expect to match McDonneli-Douglas [5,6,24,25) Into the nature of 2-D un-
the solutions precisely. However, they should be close since steady shock/boundary layer interaction. The experimental
the viscous grid Is completely contained within the first Eu- studies have included both self-induced and forced oscilla-

lr cell. Figure 5 shows the velocity profiles obtained from tions of the diffuser flowfield. For all cses containing termi-
the solution of the discrete Defect equations (16) within the nal shocks in the diffuser section, low amplitude natural os-
boundary layer. The resulting velocity profiles are shown in cillations were observed in the experimental Investigations.

Fig. 5. The plots show a dramatic improvement over those The physical mechanisms responsible for the unsteadiness
in Fig. 4. The a velocities match to within plotting accu- were found to depend on the strength of the terminal shock.
racy, and the v velocities are very close. In addition, 89/I8 se view

matches between the viscous and nviscid solutions. The v
velocity is the most difficult solution component to match - .
because it is typically quite small, and matching is almost 6 & "
completely dependent on the mass transpiration flux rather Thro

than edge boundary conditions on the viscous solution. ot Rtor
I ~t 3Ex,, s reference

0.06 n 5to

0.016 5. : 9 2.% 12.7%
T~, I I

0.0 1 1

Vertical dirnefuOf doubleS
0.013 Slat sites eaggerated

Figure 6: Experimental Geometry (from [251)

0.01 The geometry has also been the subject of Navier-Stokes

simulations (11,12,181 using MacCormack's algorithm (19[.
These simulations also investigated both forced and self-

. . . induced oscillations. Reference [121 included self-induced
oscillations for a strong shock case, in which the bound-

Axial Velocity ary layers separate. To these authors' knowledge, computa-

0.06 tional results for the natural oscillations of the weak shock
cae presented in this paper have not been reported previ-
ously.

0.04 The specific case presented In this paper Is an exit prs-

sure of R, = 0.826 (exit static to inlet stapation), pro-
ducing a weak shock with a pro-shock Mach number of

0.04 M = 1.235. The Reynoldis number Is 1.1 x 106 based on
the throat height h. and stagnation conditions at the inlet.
For this case the turbulent boundary layers on the upper

0.0 and lower surfaces remain attached throughout the diffuser.
Low amplitude self-induced oscillations have been experi-
mentally observed downstream of the shock. Ths were
identified as longitudinal acoustic modes resulting from the

o.o8 interaction of the shock and the diffsr exit. The frequency

and number of observed modes changed with the difuser
1length [51.

4 - -I -ise This cue is computationally difficult for three reasons.

b) Vertical Velocity The lnt is that the unsteadiness Is naturally occurring

Figure 5: Velocity Profiles Using Defect Equations rather than forced. Hence, the physics cauing the uteadi-
ness must be corectily modeled. The second reason Is Is that

1t
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the upper and lower wall boundary layers grow by an or- station at z/h. = 8. The Euler grid ie constructed from a
der of magnitude downstream of the shock. This presents uniformly spaced 48 x S cell background grid with stream-
difficulties for any viscous solver, and is an excellent test of wise clustering in the vicinity of the shock increasing the
the coordinate rescaling in the present algorithm. The third resolution to 71 x 8. The upper and lower wall viscous grids,
reason is that the boundary layers nearly merge at the exit, each 31 cells across, are exponentially stretched away from
pushing the limit of applicability of viscous/inviscid cou- the wall. The minimum grid spacing for the upper wall grid
ping in general. It also presents a test of the present con- is Ay_, = 1.5 from the inlet to the shock and increases to
pling technique, and the approximations made herein, since 5 at the exit. Likewise, the minimum lower wall grid spac-
several inviscid cells are located within each boundary layer ing is 1.5 from the inlet to the shock and increases to 7.5
near the exit. at the exit. This places the first few cells well within the

laminar sublayer which extends to approximately y+ -_ 30.

Quasi-Steady Results The viscous grids are thin upstream of the shock and grow
dramatically downstream of the shock. The initial guesses

The case was initially run using steady-state acceleration for the upper and lower wall viscous grids were flat plate
techniques discussed in Ref. (31 until the residuals leveled turbulent boundary layers beginning at the specified inlet

off (this occurred two orders above single-precision machine profils.
zero). The quasi-steady results for the diffuser section are The contour and wall distribution plots show that the low
presented in the contour plots of Fig. 7 and the wall distri- accelerates through sonic conditions at the throat with a
bution plots of Fig. 8. terminal shock located at z/h. = 1.45. The experimentally

1.3 ]determined mean shock position was located at z/h. = 1.47.
y/h. The grid plot and some of the wall plots indicate that the

1.0 presence of the shock is felt upstream within the bound-
ary layers, beginning at about z/h. = 1.1. In accordance
with experimental observation, the skin friction coefficient

0.6 on the upper and lower walls (Fig. 8c) show that the bound-
ary layers remain attached throughout the diffuser section.

0 Downstream of the shock, the boundary layers grow byral-0xh. 6a most a factor of ten as shown in Figs. Sd-*. Because the
a) Composite Grid y-coordinate rescaling in the viscous grid is dynamically de-

(Euler 7I x 8, Viscous 71 x 31 lower and upper) pendent on the local displacement and momentum thick-
neses, these growths are accurately duplicated by the via-
cou grid.

y/h. The Mach contours (Fig. 7b) indicate an overshoot in
1.0 the viscous profiles downstream of the shock on both walls.\\\\These are the result of shear layers originating at the base of

0the shock. Within both boundary layers, the shock becomes
a compression fan, and at the shock-fan junction, a shear
layer forms. Although the grid is not fine enough to resolve

0 0 2 • the fan at the base of the shock, the shear layer is captured.
b) Mach Contours (A 0.02) Results of the present computation are compared with ex-

perimental data in Fig. 8. In general the agreement is quite

1. -- good. The major reason for any discrepancies is the lack

Y/A. [of experimental data on the boundary layers at the inlet.
Bogar et al [51 give displacement and momentum thickness

1.o0 data for the upper wall at the inlet; however, the nominal
Inlet station at z/h. = -4 is In accelerating flow. Hence, it

0.6is difficult to specify an inlet profile replicating these values.
No data is given for the lower wall. Raference (S1 states that

0 -a suction slot is located upstream of the throat producing
0 2 4 z/. a new laminar boundary layer of its lip. This boundary

c) Static Pressure Contours (4 - 0.01) layer remains lminar until it transitions at the shock. This
causes problems for the present algorithm since no transi-

Figure 7: Traaonlc Diffuser. Quasi-Stoady Grid and Con- tion mechaniam Is built into it. In previous computations,
tour Plots (vertical scale doubled) s-lah st L (11I specified flat plate turbulent profiles for the

inlet upper and lower wall boundary layers; the thicknes
Figure 7a shows the composite grid (with invicid cells wer reported to be from experimental data and specified

inside the boundary layers hidden). The computational do- to be 9% and 4.5% of the throat height. We specify the"

main etnds from the experiment's nominal inlet station same conditions.

at s/h. - -4 upstream of the throat to the nominal exit The contour plots of Fig. 7 give an indication of the qual-

12
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ity of solution matching at the edge of the viscous grid. The
U/o . , pressure is correctly matched throughout the diffuser since

it is a prescribed boundary condition at the outer edge of
- Present Algorithm the viscous grid; it also transitions smoothly through the

o.S Experiment [6] interface. The Mach number, along with other flow quanti-
ties that are not prescribed at the edge, matches fairly well
ahead and just aft of the shock. Farther downstream, the

o. mismatch becomes more noticeable as the boundary layer
grows rapidly. Part of the reason for the mismatch is the

0.40 rapid growth of the boundary layers and the fact that they0 2 4 z/h. becomes several inviscid cells thick at the exit. As a re-
a) Core Axial Velocity suit the linear inviscid profile assumption in the discrete

0.9 Defect equations and the mass transpiration flux is begin-
/pw,.lo pp.r nugn to break down. Another reason may be the lack of

.4 I-ewer, cross-stream resolution in the outer portion of the viscous
0.7 grid.

0.4 Unsteady Results

O.4 For the weak shock case (R, = 0.826), unsteady results
'.,0 2 , Sos were reported for two diffuser lengths by Bogar et at[S].

For a diffuser length of z.,as/h. = 14.4, two natural fre-
b) Wall Static Pressure quencies in the shock motion were observed; these core-

(xO.00) lated well with measured wall static pressures. The two

f 4frequencies where 60 and 230 Hs, which correspond to re-
duced frequencies of 0.046 and 0.178, respectively, based on
the throat height h. and inlet stagnation speed of soypd

2. co 1i.s. The amplitude (rms) of the shock motion was mea-
sured to be 1.4% of the throat height. For a diffwer length

I uof z.,It/h. = 30.5, three natural frequencies were observed.

In the present computations, the constantluseure exit
0 z/he plane was specified at z/h. = 8, which was the nominal exit

station in the experiments. Starting with the quasi-steady
c) Wall Skin Friction Coefficient solution, the flowleld was marched in time at a CFL of A =

1.6 0.55 (and a At based on the Euler grid) for approximately

A 90,000 iterations.
.0. Figure 9 shows a trace of the unsteady pressure com-

ponent on the upper wall at x/;h. = 5.4. The unsteady
component was taken as the difference between the instan-

o.5 06 taneous and time-averaged pressures. This trace is typical
of streamwis. stations downstream of the shock. It shows

oil__ __ distinct periodic oscillations that reach a constant ampi-
, 2 4 /he tude after 5 or 6 periods. The last 20 periods of the trace

d) Upper Wall Displacement and Momentum Thicknesses was Fourier transformed and the resulting power-spectral-
density plotted In Fig. 10. A peak is present at a reduced

1.6 frequency of 0.135, and a second, smaller peak is present at
0.7.

1.0 6The computed natural frequencies are difficult to com-
pars to the experiments. The reason is the effect of the

o.6 differing experimental and computational diffuser lengths.
Since the experimentally observed oscllations were Identi-
fled as longitudinal acoustic modes, their frequencies would

0 / vary Inversely with the diffuser length. Thus, the values
S/h." of 0.046 and 0.178 experimental observed with the exit at

s) Lower Wall Displacement and Momentum Thicknesses z/k. = 14.4 should increms for a shorter dIffasr. By
how much they should Increase for a diffuser of length 8

Figure 8: Transonic Difuser. Quasi-Stesdy Core and Wall is clouded by the presence of boundary layer suction and
Distribution Plots the unused exciter downstream of z/h. - 8 In Fig. 6.

An additional uncertainty is the constant-pressur exit

13
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(xo.000 1) boundary condition, chosen for practical reasons, in the
4 4p/,j. computation. It does not correctly model the physical wave

reflection and attenuation at the open exit. This should af-
3 fect both the strength of refected waves at the exit and the

effective length of the diffuser.

2 Figure 11 shows the amplitude (rms) of the unsteady pres-

sure component along the diffuser. The amplitude is great-
I est in the Immediate vicinity of the shock (z/h. = 1.45),

producing a sharp peak there. Downstream of this peak,
the amplitude decreases slowly to zero at the exit, where

0 constant pressure is prescribed. Essentially no oscillations
occur upstream of z/h. = 1, which from the quasi-steady

.1 results is approximately the farthest upstream point in the

boundary layer that in affected by the shock. Experimental
.2 - amplitudes are also plotted in Fig. 11; the values are ap-

0 0.2 0.4 0.5 0.8 1.0 :.2  proximately an order of magnitude higher than predicted
t/(h./cO1.let) (x10OO) by the computations. This difference may be caused by

Figure 9: Transonic Diffuser: Unsteady Pressure Trace on the fact that the unsteady shock motion is not resolved
Upper Wall at x/h. = 5.4 on the present grid. The experimentally measured shock

motion was 0.014h., but the streamwise resolution is only
(x1o-') Az/h. = 0.063 at the shock in the present computations.
1.2 This calculation was also performed on a coarser grid cor-

Present Algorithm posed of a 48 x 8 uniform Euler grid with a streamwise
.n resolution of Az/A. = 0.25 at the shock; the resulting flow

PSD Experiment (251 was completely steady. This suggests that as the shock mo-
0.4 tion is resolved, the amplitude of the pressure fluctuationst winl ncreas.

wilConclusions

This paper has presented a new coupled Euler/Navier-
0.2- Stokes algorithm for the solution of 2-D unsteady transonic

.I flows. The flowfield is separated into viscous and inviscid
regions and solved using a Defect formulation. Separate Eu-

0
0 : 0.2 O.5 0. ler and Navier-Stokes algorithms are solved on overlapping

W/(cob-lel/h.) grids, with the Euler grid extending to the wall. Coupling
Figure 10: Transonic Diffuser: Power-Sp*ctral-Density of between the Euler and Navier-Stokes solutions is through
Unsteady Pressure on Upper Wall at z/h. = 5.4 outer edge boundary conditions on the viscous solution and

a mass transpiration fux at the wall for the Euler solution.
(xo.001) Evolution of the fowfield is by an explicit coupling proce-

10 dune.
iIAP/Iia"i.j - Present Algorithm In the Navier-Stokes algorithm, the inviscid solution

* . Experiment 15] along with the shear stress and heat transfer are stored at
horizontal face midpoints. Two-point differencing is used to
discretise the equations across the boundary layer;, this is

Ssecond order accurate for both inviscid and viscous terms
on nonsmooth grids. Streamwise discretintion is by first
order accurate flux-splitting to capture shocks. The spatial

4 dlscretisation of this algorithm admits no decoupled modes.
Thus, it requirm no added artificial dissipation.

2 The viscous equations are integrated in time using a
single-stage smi-lmplicit time-marching tochnique. Dis-
cretisation acros the boundary layer Is integrated lmplic-

2- itly snd streamwise discretisation Is integrated explicitly.
0 2 Z/h.e  The nonlinear Implicit system at each streamwise station

and time step Is solved by Newton's method. A stability
Figure 11: Transonic Diffuser. Amplitude (rm) of Un- analysis shows that the time step At Is dependent only on
steady Premure Along Upper Wall the streamwias grid spacing As. Thus, the scheme avoids

14
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impractical time step restrictions imposed on fully explicit [8) Cebeci, T., and Smith, A. M. 0., Analysis of Turbulent
techniques by the small grid spacing normal to the wall. Boundary Layers, Academic Press, Now York, 1974.

The viscous grid evolves with the changing boundary [91 Clark, W. H., 'Experimental Investigation of Pres-
layer thickness by a dynamic coordinate transformation, sure Oscillations in a Solid Dump Rtamjet Combustor,'
Thus, a priori knowledge of the boundary layer thickness Journal of Spacecraft, vol 19, no 1, January-Februaryf is no necessary to spefy the grid. 1982, pp. 47-53.

Two test cases have been presented. The An~rt is a steady [101 Drela, M., *A New Transformation and Integration
subsonic laminar compression duct. The results demon- Scheme for the Compressible Boundary Layer Equa-
strata the improvement in numerical results, in particular tions, and Solution Behavior at Separation,* 3.M4 The-
the inviscid/viscous solution matching, obtained by solv- 6s, Department of Aeronautics and Astronautics, Mas-
ing the Defect equations within viscous regions. The aec sachusetta Institute of Technology, May 1983. Also Nu-
ond test case is a transonic turbulent diffuser. The flow- merical and Physical Aspects of Aerodynamic Flows 1,
field has been experimentally observed to be naturally un- T. Cebeci ed., Springer-Verlag, New York, 1984, pp.
steady, and this unsteadiness is detected by the present 327-335.
algorithm. This case demonstrates the algorithm's ability [11) Eslsh, T., Wardlaw, A. B. Jr., Collins, P., and Coakley,
to predict shock/boundary layer interaction and boundary T. J., 'Numerical Investigation of Unsteady Wnet Flow
layers which grow by an order of magnitude. Quasi-steady Fields,* AIA.A Paper 84-0031, January 1984.
computational results compare well with experimental time- [12] Hsieh, T., and Coakley, T. .J., 'Downstream, Boundary

avergedresuts.Effects on the Frequency of Self-Excited Oscillations in
Transonic Diffuser Flows,' AIAA Paper 87-0161, Jan-
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TASK III: UNSTEADY PHENOMENA, INLET DISTORTION, AND FLOW

INSTABILITIES IN MULTISTAGE COMPRESSORS

(Investigators: E.M. Greitzer, C.S. Tan, R. Plumley)

ifl~orodutiQ n

This task is focussed on the basic instabilities which set fundamental limits to the

performance.Qf turbomachines; specifically, on the travelling wave type of disturbances that grow

into the large amplitude limit cycle mo,_ons that are known as rotating stall and, more globally,

surge. During the past several years, under other sponsorship, we have developed new

approaches (using pseudo-spectral computational techniques) for modelling the evolution of these

wave transients. This has allowed us to examine instability inception with uniform flow and with

inlet distortion, the latter being a case of more practical interest.

An interesting result of the computations has been an elucidation of the not well understood

phenomena of coupling between imposed propagating disturbances and the propagating

disturbances that are the natural eigenmodes of the system. This is somewhat analogous to the

resonance which occurs in simple dynamical systems, but is fluid dynamically more complex.

Such imposed disturbances can arise, for example, from one compressor in rotating stall feeding

another, as occurs in two-spool engines.

Where there has been comparison with data, the models seem to give good results, at least

qualitatively, but the data generally concerns only an overall behavior. While this is useful, there is

litrze fundamental information that addresses the key unsteady fluid dynamic effects that are being

modelled.

The present program is aimed at providing data of this type. The experimental work is

carried out in cooperation with Dr. D.C. Wisler's group from the General Electric Aircraft Engine

Group and uses the GE low speed research compressor facility. This facility is extremely well-

suited for carrying out the type of experiments that are envisioned. The instrumentation is

extensive, the rig has rapid-acting throttle capability for transient studies, and the large size is

conducive to detailed unsteady and three-dimensional fluid dynamic measurements. A cross-
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section of the low speed research compressor is shown in Fig. I and detailed information about the

rig is given in Ref. [1].

Experiment Definition and Design

The initial efforts were focussed on defining, in a conceptual sense, the experiments to be

carried out. The basic ground rules were to obtain a clear demonstration of tie wave interaction

phenomena described, in a situation that is relevant in a parametric sense. Beyond this, we have

specifically defined the fluid mechanic situations that are of interest. This, in turn, involves

computations of the effect of rotating distortions on compressor stability, as well as computations

for defining the inlet distortion generator, based on the former.

In the design of the distortions to be used, there were two different screen parameters to be

selected: distortion sector size and distortion amplitude. To choose these, an extensive set of

computations were carried out to define the regimes over which the compressor was predicted to

show a significant effect due to the distortion. This involved an analysis of not only the non-

axisymmetric screen flow field but also the distorted flow through the compressor.

These computations were described in the Annual Report of December 1988 and will not be

covered here in any detail. The main point is that a screen was selected of 120 degree extent and

having a pressure drop at design of 0.12 pU 2. Figure 2 shows stagnation (total) pressure versus

circumferential position downstream of the screen. The goal of the design and the experimental

measurements are both indicated and it can be seen that the computation procedure (essentially that

given in Ref. (21) does a good job.

The rotating mechanism and support ring for the actual distortion screen were designed at

General Electric. An aluminum support ring of 5-foot diameter and 5.5-foot outer diameter was

used to hold the screens. This ring was placed in a housing and held in place by retainer bearings.

It was tapped every 10 degrees to allow insertion of support cylinders which extended radially

inward toward the center of the ring, with the screen safety wired to the cylinders. The screen and
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support cylinders were weighed, and an equal mass of sheet metal was screwed into the inside

edge of the ring 180 degrees away from the center of the screen to balance the ring.

The aluminum support ring was driven by a rubber drive pulley, contact friction being

adequate to drive the aluminum ring. A motor drive regulated the power supplied to the electric

motor and a photo detector was chosen to sense and control the speed of the screen. The distortion

screen could be rotated either with the rotor or against it, up to 70% rotor speed at the normal rotor

velocity and up to 130% of rotor speed if the rotor velocity were reduced. The device performed

well throughout the program.

The design and setup of the experiment, however, is just the means to the end, and what is

of more interest is the unsteady response of the compressor. We wished to look at several basic

questions concerning this unsteady behavior:

1) Is there an identifiable "precursor" to rotating stall, both with and without inlet distortion?

2) Is the response to a rotating distortion different than to a stationary one?

3) If so, how?

These issues are discussed below.

Rotating Stall Precursor

This part of the experiment addressed the structure of disturbances occurring prior to stall.

The data were recorded by 8 evenly spaced single element hot films located at plane 0.4, (0.7 radii

upstream of IGV's). The procedure was to set the compressor throttle at a position very close to

stall, and then begin logging data, with the goal to have the compressor stall while data were being

recorded. It was also important to take data at a point far from stall, to verify that what was seen

near stall was indeed present only near stall.

To look for a precursor, the technique used by Gamier [3] was employed. At each point in

time, an FF1 was done on the 8 signals,

Ck = j-Vi e:{2ijk7t]
8j- 8
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and the magnitude and phase of the first harmonic plotted against rotor revolutions. In Fig. 3, the

growth of the amplitude of the first harmonic is shown. Rotating stall can be seen clearly towards

the end of the trace where the stall is fully developed and the magnitude is much larger. (The

oscillations in this regime reflect differences in probe calibration which have been deliberately set to

be accurate in the small amplitude range of interest. The oscillations are an artifact of these

calibrations; the magnitude of the first harmonic, while in rotating stall, should be constant.) There

is a hump at about 17 revolutions, as well as 2 smaller humps between 20 and 30 revolutions;

these represent a coherent first harmonic signal that we can identify.

From just beyond 10 revolutions to 30 revolutions, a wave appears to be travelling around

the annulus at about 20% of rotor speed. In Fig. 4, the signal is shown for a shorter data sample

which does not include the fully developed rotating stall. The time inerval brackets the bump that

occurs near 17 revolutions in Fig. 3. Two peaks can be identified: one at 8.59 Hz represents the

frequency of the rotor, and the other (the highest peak), at a frequency of 1.56 Hz, corresponds to

a travelling disturbance at 18% of rotor speed. The data thus show that a wave travels around the

annulus prior to stall onset although, because of probe location, the signal to noise level is not

adequate for further definition.

Another aspect of wave behavior prior to stall is the influence of the distortion on the

waveform. The qualitative behavior was predicted in Ref. [4], where it was suggested that the

amplitude of the fluctuating wave would increase (with 0) in the low velocity region and decay in

the undistorted region. The wave shape thus gives another point of reference with the modelling,

and we can examine distorted inlet flow data to investigate this idea.

The recording procedure was identical to the one described above; we record a data trace

that included unstalled as well as stalled data and the regime prior to rotating stall was examined.

The velocity signals were processed for tus portion of the analysis in the same manner as

described earlier. The time average velocity for each probe is plotted in Fig. 5 as a triangle. Also

shown are calculated velocity profiles for a stationary distortion at the same measurement plane and

at the compressor inlet.
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With reference to Fig. 5, we now examine the data in Fig. 6, which shows the maximum

cross correlation for each set of adjacent wires. The cross-correlation was obtained by first

subtracting out the mean velocity from each trace and multiplying the resulting velocity fluctuations

for adjacent wires using different time delays. These were summed along the length of the data

trace and then divided by the total number of points in the data trace. The maximum cross-

correlation for that range is plotted at the circumferential point corresponding to the midpoint of the

two probes used to do the correlation. The calculated line is the square of the fluctuation of the

most unstable eigenmode predicted by the model, adjusted so that theory and data would have the

same peak. The agreement between the two plots is quite good. As predicted by the theory, the

maximum cross-correlation actually occurs in the high total pressure region after growing in the

low velocity sector.

Data from Steady State Instrumentation

All of the steady performance data were taken using the in-place instrumentation coverage.

Data were obtained on compressor performance (speed lines) including stall onset and cessation

points. These data were obtained over screen rotations of 0 to 120% of rotor RPM.

Effect of Screen Rotation on Stall Points

To determine the stall points, the screen was brought up to the desired rotation speed with

the compressor running at a stable throttle position. The compressor was then slowly throttled

until stall occurred, and throttle position was then recorded. This was done for a range of rotation

speeds and three different compressor speeds, 500, 350, and 275 rpm. The resulting flow

coefficient vs. rotation speed curves can be seen plotted in Fig. 7 along with the results of the

calculations.

Figure 7 demonstrates the dependence of the instability point on rotation speed. The

compressor is most stable for negative distortion rotation rates (i.e. counter-rotation). The flow

coefficient at instability increases steadily with positive rotation until the smallest stable flow range

is reached at about 30% of compressor speed, and then drops with further increase in screen
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rotation rate. A smaller increase in instability flow also appears at a rotation rate of about 70% of

compressor speed. At high negative distortion rotations, the compressor is more stable. The

stability decreases with the minimum stability (i.e. maximum stalling flow coefficient) occuring at

roughly 0.3 experimentally compared to 0.5 theoretically. The calculated stalling flow coefficient

becomes constant above about 70% of rotor speed.

The stalling flow coefficient for high distortion rotation rates differs for experiment and

theory. To examine whether the discrepancy results are due to inadequate representation of the low

flow side of the axisymmetric characteristic used in the theory, calculations have been carried out to

determine neutral stability points for the two other characteristics with different steepness. As

discussed in [5], changing the low flow side does change the constant stall point for both large

negative and large positive rotation rates and may account for some of the difference, but this is

clearly not all of the story. More importandy, it cannot explain the differences in the high rotation

rate values.

Summary of the Work Done to Date

Sparse experimental evidence had shown that a compressor subjected to a rotating inlet

distortion suffers a degradation of performance. General trends had been demonstrated

experimentally and theoretically, but no direct comparisons between experiment and theory had

been done.

A stability assessment of a compressor with a rotating inlet distortion was therefore carried

out on a four-stage compressor. The results, which were consistent with qualitative trends seen in

earlier experimental work, gave a clearer quantitative picture of the phenomenon. The unsteady

flow model was able to predict the stability trends, but there are discrepancies; at high positive

rotation rates, the model predicts greater stability than what was seen experimentally.

The pre-stall flowfield investigation showed travelling waves at about 60% of fully

developed stall cell speed, although more detailed experimental investigations are needed. The

results of the experimental investigation of pre-stall travelling waves in distorted flow showed
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excellent agreement with the predictions of the model concerning travelling wave growth in the low

velocity region and decay in the high velocity region.
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TASK IV: VORTEX WAKE-COMPRESSOR BLADE INTERACTION IN
CASCADES: A NEW RAPID METHOD FOR UNSTEADY
SEPARATION AND VORTICITY FLUX CALCULATIONS

(Investigators: J.E. McCune, H. Benson, A. Gioulekas, G. Lam)

I Introduction

In flow involving streamlined airfoils or cascade blades, use of the Kutta

condition as a part of the potential flow calculation provides a means by

which blade circulation (and hence lift or mean turning) can be determined,

thus eliminating the need for complex viscous calculations. For bluff bodies

and blades with rounded trailing edges, however, this classical approach

must be modified [191 to include the interaction between the body boundary

layers and the wake behind the body.

In the steady flow case, the blade circulation is determined by setting the

net vorticity flux leaving the blade equal to zero '. [161. The position of

the separation points on both top and bottom surfaces is calculated, taking

i1
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into account the interference effect of the wakes, and the blade circulation is

chosen so that the velocities in the main stream at the points of separation

are equal.

In the unsteady flow case, the rate of change of the blade circulation

is equal to the net vorticity flux leaving the blade. It is then necessary to

determine the boundary layer developments on the blade, and in particular

the location and the motion of the separation points, since these determine

the net vorticity flux into the wakes. The calculation in addition to the un-

steadiness of the incoming flow, must also take into account the interaction

of the blades with their wakes.

A principal goal of this research has been to devise a simplified method

of determining blade-wake interaction by providing a quick and accurate

method for determining separation point location and movement. Promisig

new results have been obtained in the past period; these are summarized

briefly in the following sections, together with a description of how they

are going to be applied in the planned next steps.

2 Prediction of the location of separation

2.1 Use of the Stratford criterion in the steady flow

case

In the case of steady boundary layers, particularly on blades in turboma-

chines, remarkable success has been achieved by Stratford [22] and others

2
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21 in devising a simplified method for predicting the location of boundary

layer separation, for both laminar [221 and turbulent [23] boundary lay-

ers. Stratford's procedure avoids detailed calculation of the boundary layer

development by using in the prediction of the separation location key flow

properties known to control boundary layer behaviour. His method is often

used quite effectively, for example, in predicting blade losses and refining

blade design in cascades.

Early in our research on this topic, we decided to apply Stratford's idea

to the prediction of steady lift versus incidence on bodies with rounded

trailing edges where the Kutta condition cannot be expected to apply. In

particular, we applied this procedure to the prediction of the lift on an

ellipse at various angles of attack, a problem first discussed by Howarth [61.

Moore [17] improved Howarth's calculation in more recent work, employ-

ing improved calculation methods and apparently correcting an error in the

earlier study. We discovered that the Stratford criterion worked very well

indeed for such an application and we were able to duplicate Moore's results

right up to the stall of the ellipse. The calculation was done for both turbu-

lent and laminar flows. Thus, under the right circumstances, the Stratford

approach seems to provide a means of determining blade performance with

almost the same ease as the Kutta condition at least in steady flow.

2.2 Prediction of unsteady separation

The next step was to investigate whether a similar method could be

devised for unsteady flow. The flow past compressor blades in actual oper-

3
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ation varies periodically with time. The general unsteady boundary layer

equations can be applied to the problem. However, the difficulty for car-

rying out a general analysis is great, because of the inertia terms in the

equation of motion. These terms give rise to periodic variations at higher

harmonics of the frequency of the changing outside stream.

In the case of turbomachinery the flow unsteadiness occurs at moderate

to high reduced frequencies, based either on blade chord or cascade pitch

[3]. In that case, a very good approximate analysis due to C. C. Lin [101 and

his students [4] can be applied. The basis of this analysis is the following.

If the reduced frequency of the oscillation is high, the local acceleration is

much larger than the time-dependent part of the convection of momentum.

Then, to a first approximation the time-dependent part of the motion can

be treated by a linear theory (Stokes second problem). The oscillatory

motion in the boundary layer influences the time-mean component of the

flow, because there is a Reynolds stress associated with it (in analogy with

turbulent flow).

We find that such an approach offers a remarkable opportunity to gen-

eralize the Stratford criterion to unsteady flows in turbomachines. The flow

is divided into two parts : the 'Prandtl layer' and the 'Stokes layer'. The

'Stokes layer' responds primarily to the unsteady component of the external

flow, whereas the 'Prandtl layer' corresponds primarily to the mean com-

ponent. The two layers interact most strongly at the blade surface where

they together must satisfy a no-slip condition.

This picture of the unsteady boundary layer is very useful for our pur-

4
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poses in several ways. First of all, it simplifies the identification of sep-

aration in the unsteady case. Adopting the classical generic definition of

separation of Landau and Lifshitz [81, valid for both steady and unsteady

flows, we look for a dramatic increase in the normal component of the ve-

locity in the boundary layer, or equivalently a dramatic increase in the

displacement thickness. The condribution of the 'Stokes layer' to the dis-

placement thickness is closely limited, bounded by an inverse power of the

Reynolds number, in contrast with the contribution of the 'Prandtl layer'.

Focussing on the Prandtl layer behaviour, and assuming that the dramatic

increase in the normal velocity component near separation is the manifes-

tation of a square-root singularity in the coordinate along the wall [201, [14]

we derive two conditions for unsteady separation. If we add the 'Stokes'

to the 'Prandtl' velocity so as to reconstruct the full boundary layer ve-

locity these conditions yield the Moore-Rott-Sears criterion for unsteady

separation [17], [18], [20].

A second major advantage to Lin's approach is that both the steady

and the unsteady components of the Prandtl velocity can be expressed in

terms of the steady flow driven by the mean part of the free stream velocity

('basic flow') and key unsteady flow parameters. If we use Stratford's ideas

to describe the development of the 'basic flow' (a steady problem), the

generalization of Stratford's criterion to unsteady flows follows naturally.

5
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3 Flow in a boundary layer with a rapidly

oscillating free-stream velocity

3.1 The 'Splitting' of the Solution

The system of the unsteady boundary layer equations and boundary

conditions is:

au a a, au au au
at+(u +V ,  -)u a y  t + U a
au av
aX ay
y=oo:u=U(X,t); y=O:u=v=O

The solution (u, v) is split into two components ,the 'Prandtl' velocity

distribution (up, vp) associated with the component U(x) of U(x, t), and the

'Stokes' velocity distribution (u,,v,) corresponding to the U(x,t) compo-

nent of U(x, t)

u =up+ us; V =VP+V,

These velocity components satisfy the following boundary conditions

y = o0 : up = Tu(),u, = U(X,t); y = 0 : up + u. = 0.,, = ,, = 0

Appendix A explains how the boundary layer equations are split. The

end result is :

au- ,au,2 a a a~a
at 'y ay +

- a a -au allfj.+(U. +.F)u, = + a

6
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axp ayp
Y=oo:up= 7 L(x); y=O:up+u,=O,vp=O(1

au. a 2 u a a -a a
at +y 'ax +a' LY), h 'a- )x + (. V.T]P+

+(p +Vpa )u au+ -au
a + 

-0)=
ax, avy

Y=0x:u,=CU(x,t) y=O:U,+up=O,v.=O (2)

3.2 The Non-dimensional Form of the Equations

We introduce the dimensionless variables:

.* x .= y Y: ! y * w

and the dimensionless functions:

U; (*, Y;, t) = U , V;Xp,* = = l--eL

U(X*,;:, to) = ,V;(x*,Y,t) V-

U(t - (x,t) U(x) . (xXt Uxt)

v .(x,y,t) = V6, v = b au bp o u 1 w (x , t)
_Y, [ 5 +W.*(x',tol = y P 5xr. +-1 ax*

(Reminder: 6p, b= A

7
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The system (1) in non-dimensional form is:

- , vou"  + v~a + ) 2); a+;a )" 0-ate 8 y;2  I Pa~ Iay PTu+ay.
V

2

V2 - a v. , a = .a_ _alC.

+ + v vy-; T a. + T a.
V2

au; + av; = 0a

S= o:, = U'(x); y,=o:u +u.=O,v,=O

Dividing by Vw and dropping the asterisks:

auI__2 a a a a:--+ - [ - a--w + (upwx + "P - up + (u x+ VP--)u+
at A2 +vyP)u + P
+(,a + aV.a)UPI = 1-d ( dUj auu

au p + a P

ax ayp
yP = oo : u= U(x); y, = o :up +U. = o, V= o (3)

The system (2) in non-dimensional form is:

au; va 2 u; V 2  a a,Vw - I/, y-;2 + T{,,. .+ V, ; },,; +
at, b.a aeay;

at'
,V2 a V- .1 a . u+T(u; - ie)- + (V; ay

+T -. (a vsia- vi- a(uu° af.
-. v, -~--V)( =0)- w -- '

au +av; 0
axe ay;

8
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r
Dividing by Vw and dropping the asterisks:

au5  af C a2u, 1 a+ aSat at a y.2 +'- T2 TX" +""

-a a+ [ (,,. - u)TX + (,,. - .u

+(U.a + Ava-)(-F")} =2 U -X

au. av,--= + a-y. = 0

y.=oo:u,=(xt); y.=O:U,+u,=o,v.=o (4)

Since = = «<<1, u, and vp are replaced in (4) by their series
65,

expansions which are valid for small values of yp

00 1 y. a-u X,.

==o A n! ay' (x, 0)

VP 1 y anV

n=0 Ann! ay;

The boundary condition at the wall requires that vp(x,0) = 0, while

up(x, 0) 0 0 is allowed by the coupling condition.

Appendix B describes how these substitutions lead to the final form of

(4):

at, a& aU,. 1 a ([ + ,(,o ))
-y. u(2zW+up(X)0) +at at ax,(+ .+u(,(,,,o)+

a avp. a+[(t'- + up (x,0)) T + (v, + Y-'y (x '°)) y. (u. + up (z,o)) }+
00 1 Y, a"u a ,+I 9,n+1,

a , y;(,). ] (U. - U) +
+Z (n + 1)!



75

+ I ( - )2 + (. .- a up 0

a, ay 
n!a

ax + y.=0

y. = 00 : s = (xt); y. = 0: us + u, = 0,. = 0 (5)

3.3 The solution

The solution to (Ep) - (3) and (E.) - (5) is obtained by expanding up

and u, in powers of I:

00 1001

n=O 
n=O T

At each step the time average and the fluctuating part of the velocity,

Up,n = up,n + inpn, usn = ,n, + ii,, are calculated by solving four coupled

systems: (Ep,n), (Ep,n), (Ea,n), (En).

3.4 First approximation

iip,0 = 0

aris,o a , au

=0

at ay,, at

y.= 0o, i"o = U; y. = 0 , .,o + ipo= 09,VO = 0

Solution: ti,o = !{ 1(1 - e-")Ue" }

U , M 0

10
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(zp'o+a + VP, a) UPO F Udu = 0

Yp = oo : 19P.o = U; yP- 0 : P.o + U .O = O,'o = 0

The solution to (Ep,o) is called the 'basic' flow (ub, vb). It is the velocity

profile which corresponds to the steady free-stream velocity U(x).

3.5 Third approximation

The potential oscillation (I, -ypA4J) interacts with (Ub, vb) and creates

an unsteady Prandtl flow (ii,2, 9p,2). Since there is no viscous action, ilp.2

does not reduce to zero at the wall.

a I-2'at - U,41 + aU aU
at 49I+Yayp ax

Y/p = o : up,2 = O; Yp = 0 : ip, 2 + il,, 2 = O, p,2 = 0

Solution :
ip,2 = - et (T + b aC}

',' = T{ =[u ( - u&)1 + yp a , a=}
I a ay ax

The resultant slip velocity , ilp,2(X,O) =R{ !"L (LU) } is balanced

by the unsteady Stokes flow when the coupling boundary condition at the

wall is applied.

In the Stokes layer, the Reynolds stress associated with the shear os-

cillations gives rise to ( v,.2 ), which by viscous diffusion adjusts to the

wall boundary condition.

11
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ai,,2  a2 ,,2 + aio, 0 + Co = 0
at +  . ay a.

Ys = oo, us,2 = 0; yj = O,,,,2 + ip,2 0, 0,,, 2 = 0

Solution :
,, = e{ __(a ,-.u,,.}

The Reynolds stress creates a steady Stokes flow (acoustic streaming),

which the viscous forces cannot reduce to zero at the wall.

a + . , a a5%, oo 5au)-- 71 +  ( ---:,o + V.,o a= - -- = 0
ay2 axV 5  ax

Solution

r;= 7- ." -. 1+- if V2u,,2 =-_R{ 1+R(3- + y. )e. ' - .' " - -- e'v 5 I-Uv ' }
+ yvt~ e2 e* ax

On the wall there is a non-vanishing u-component, which is responsible
for (7Up,2, p.2).

9,2(X) = -,,(X,0) = -3, .

4 ax
The steady Prandtl flow of order , is induced by the coupling at the

wall.

aUbffp2  68 UP'2 + u a2p., U
ax a + y ay = o

Yp oo : Up,2 = 0; yp = 0 : ttp,2 + U,, 2 = 0, Up,2  0

Solution

ay a

12
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where : (x) = h( =

The presence of (Vp,2, Vp,2) can be interpreted as a vertical displacemnt of

the 'basic' flow by the distance h), because g, = ub + -2 = Ub (X, p + U1 ).

4 Unsteady separation

4.1 Conditions for the velocity profile at the position

of unsteady separation

The wall-stress ( in non-dimensional variables ) is

Tw = 7P,W + ,,,W, =- ( I + 0( )+

+ 11 d

The mass flux defect is

= (U - )dy = U + {[- + 0(,)Ie}

where 3' is the displacement thickness of the mean flow.

The contribution of Stokes flow in r,, is of order O(A), whereas in Arh

of order 0(Q).

For high frequencies, r , oscillates with large amplitude (of 0(A)), while

the fluctuations in Ath are small (of 0(1)). At separation, there is a

sharp increase in 6" and consequently in Arh. The Stokes flow is mainly

13
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responsible for the sign reversal of re,; on the other hand its contribution

to Arh is small. We conclude therefore, that backflow may be present in

the Stokes layer without affecting the occurence of separation.

For this reason, we focus on the 'Prandtl' component of the flow in our

effort to derive the conditions for unsteady separation.

The equation for the 'Prandtl' component of the velocity is in non-

dimensional form :

au; 1 aUa a a a-at+ - -a -- + (u;-. + v=)u; + (U;- + +

au; oA2 ay; aU*1 0

az* ay;Oz--:8+ -- P =

Y; =o:u,;=F(X'); Y =O:u;+U;=O,V;=O (6)

Far upstream of the point of separation : 1-

As the position of separation is approached, the flow breaks away from

the wall. In other words, the normal velocity component becomes of the

same order as the tagential velocity component, a - 1 .Up

The ratio of the dimensionless velocity components, near separation is,

= v, Vt'
U; Up

Let us examine how the derivatives of the velocity components change

in magnitude, as separation is approached.

Far upstream: zv; ,; at separation: V (remains the

same).

Far upstream: 1, at separation: v.--'A (because v;

14
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increases by a factor VK).

Far upstream : 2-h- 1. Because of continuity, the magnitude of this

term at separation is : - 2-- - vr.

Since the magnitude of u; does not change as separation is approached,

then A - V. Thus, changes in the x-direction become dramatic near

separation [21].

Far upstream : . -* at separation : -~ e, because both v;

and increase by a factor of Vr near separation.

If x" = z (u;, vp,t'), y; = y;(u;,vp,t ), t = t', are considered to be

the independent variables, then:

aup" a*v' at* a- at',
p a , a ; a .

Near separation the magnitude of this expression is: L --

as x -+xo(t).

The asterisks are dropped, and in what follows, all symbols represent

dimensionless quantities.

Let the coordinates of the 'centre of separation' be (zo(t), yo(t)) and

the x-component of the 'Prandtl' velocity at the station of separation be

up(xo(t),yp,t) - uo (y,,t) for yp _> yo (t).

Near the 'centre of separation' the differences up - uo and zo(t) - x are

small, and xo(t) - z can be expanded in powers of up - Uo.

Since -I- -- as u, -- u0, the first term in this expansion is u

15
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The expression for up - Uo, if second degree terms are retained is:

X - x (t) = Up - UO + f(yp, t)(up - uo) 2

up-Uo 7g --- X1 + 4f (xo(t) - x) 1-- 1 +1 X W X
2 f fv'P- 2f 1+(t-

UP,, - ,,,o = -E1 (yp,t) + a (yp, t) . 2(yp, t) + (xo(t) - x)

where : a(y,t) = = 1 =

7 (,,otf(Y )7- 4~~)

Thus,

up( ,y,,t) = uo(y,,t) + a(y,t) zo(t) - z + o(0 ) (7)

From continuity

avp_ aup a(yp, t)

9 Y -a x 2 XoWt) - + o(k)

therefore,

1v(ypt) b(yp,t) (8)
VXo(t) - Z + (8)

where : b(y,t) = f~c()a(y,t)dy.

The dominant terms in (6) are those of order 1 .

The terms in (6) that contribute to the dominant balance near separa-

tion are:

auo -u0 + a(yp, t) dxo + aa /. 1-+- xo~t)-x Q-
at at 2v xo(t) -z+o() dt at Re

U = --Pa - [uo +a (yp,t) Xot) - -- + o() x(

16
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au, b b(yp, t) au0 o - +

P a V /xo(t) - X + o(W)Ja y(

ab

[ aup =_qvP f 8_b

After multiplying by o(t) - x + 0( ) and using the fact that 1 -- 6-

2 6YP

we get:
a dxo ab u _ ab
2 dt a yp y ayp

b a-
-7- (Uo + dX0 b-

Pdr" ayp

At x = o(t) for y > yo, v, - VN up (in nondimensional variables).

On the other hand, vp must satisfy the boundary condition at the wall,

VP = 0 for yp = 0. Thus, there must be a connecting region, which

extends from the position of the 'centre fo separation' to the wall, where

VP PU -p 1 => b(ypIt 0: '

From (9) it follows that

b(yp, t) = c(t)[uo(yp,t) + U -
dt

The expressions for the velocity components, valid as x -- xo(t), be-

come:

up (X,yp,t) = U0(yp, t) + 2Ct) 5y-(p, t) o(t) - X + o( ) (10)

v.(x,y.,t) = C(t)uo(y,,t) + " - dM(VPo(tI - ) + o()t

17



83

Since a( - [iU is finite, it is reasonable to expect a to

8:Oz 8

be finite in a region which extends from the wall to the 'centre of separation'

(0 < y < yo(t)). Using (10),

BUnaup ay_"

ax /o(t)-z+o(-)
This expression is finite at (xo(t),yo(t)) when

aOoa 0  (12)

Furthermore, vp(xo(t), yo(t)) is finite if

uo(y,t) + Uo _ do = 0 (13)
dt

The 'Stokes' equation imposes the constraint yo(t) > 8, on the location

of the 'centre of separation'.

In the 'Stokes' equation,

au, ao a2u, 1 a a 9

+ I(u, -U) 5 + (V, - V,) l- Iup +

i a a 1_au
+ (u + Avoy-)(u° - 0) - 0

au. av
-- +  ay. o

-. = 00 UI(xt); Y. u, + up =oV, 0 (14)

the terms of order are

a- a
U), E = (, ( .) =(,- ) ) + o1

18
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AV a(.-) .Aa(U. - u) b (y,t) au,
ay. - -ay- rx/o(t) - x+ a) y

After multiplying (14) by xo(t) - z + 0(A)

( ab = b(uay, -u = °"ay"

This equation is identically satisfied if yo(t) > 6, because then u, = U.

The boundary layer velocity, at the 'centre of separation' is : u

UP + U$ = Up + U.

Using (12) and (13) we find that the bouidary layer velocity must satisfy

the following relations at the position of separation (xo(t),yo(t)):

au
-0

ay

dxo
dt

This is the Moore-Rot-Sears criterion for unsteady separation (17], [18],[201.

4.2 Unsteady separation criterion

In deriving the unsteady separation criterion we use many of the ideas

that led Stratford to his separation criterion for steady flows. It is useful,

therefore, before getting into the unsteady separation criterion to discuss

the steady case first.

We consider a steady flow with uniform pressure between x 0 and

x = X m and an adverse pressure gradient downstream.

19
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In the outer part of the boundary layer, the flow is nearly inviscid, and

Bernoulli's equation yields:

122
(P2 Pou). P=(p+2 u), + AH (15)

where 6H = f.' ,(x, ?)ds represents a (small) correction for the effects of

viscosity. The term ' does not change very rapidly along a streamline in

the outer part of the boundary layer, and is approximately the same as if

the pressure had remained constant. Stratford [22] assumed that the loss of

total head along a streamline in the the outer part of the boundary layer is

independent of the pressure rise, and is the same as for the corresponding

streamline in the Blasius case, where the pressure remains constant.

12 1 2 1 2
(p + po,=, = (p + 5pu1 )z, + AH= Pm + P(u!)z, , + XH (16)

Subtracting (16) from (15) we get:

(p +12 = Pm +P p(u2) ,P (17)

By differentiating this result with respect to V) we get:

/OU auu -0 U auf )-0
a o aaoZ~J=(u

or

(8 uI (18)ayo, auy

If we differentiate once more with respect to ik, we get:

(( . , C19)

ay 2  uf ay,

20
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Equations (17), (18), and (19) give the significant properties of the

'outer profile', which must be joined to an 'inner profile' at a distance yj

from the wall. The 'inner profile' is assumed to extend over only a small part

of the total boundary layer thickness, and this requires that the pressure

rise (p - p,,) be small. In this case ¢1 is small, and in the range of interest

the Blasius profile is almost linear.

(au)Tfay
( )=, o

where rf = 0. 3 3 2 0 6 ALzL V- is the Blasius skin friction.

With these approximations the 'outer profile' at the junction becomes:

2 T pPM

auo.y r

( y A
aY2

In the 'inner layer' the fluid inertial forces are small and can be ne-

glected. The pressure force is balanced by the gradient of the shear force,

and the 'inner profile' has the form:

/um, = ry + lp y 2- B()y S

which satisfies the boundary condition at the wall, (Or -=

21
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Now we consider an unsteady flow with free steam velocity : U(z, t) =

-U(x)+CI(x,t) -- U(x)+O2(x)cos(wt), which has the properties: 0' = U' 0

from z = 0 to x = x,,,, and U', U_' < 0 downstream of x = x,,,. We have

shown that if the unsteady part of the free stream velocity, oscillates with

a J;ah reduced frequency, the occurence of unsteady separation can be

identified by focussing attention primarily on the behaviour of the 'Prandtl'

part of the flow as the overall boundary layer develops along the wall.

The steady part of the Prandtl layer is [4]:

U(x,Iy) = Ub( , y + h(x)) (20)

where h(x) is chosen so as to satisfy the boundary condition at the wall:

p(x, 0) = ub(x,h(x)) = - CTCP

By expanding Ub(Z, h(x)) in Taylor series we obtain:

- + 1/ - r00,
h(x) 4W

Since h(x) > 0, the mean Prandtl velocity profile has a smaller shape pa-

rameter than the 'basic' flow (Figure 1); therefore, the mean position of

separation is displaced downstream, a prediction which agrees with exper-

imental findings [7].

According to (20), the 'inner profile' satisfies the relations.

g¢, = -r.(y+h)' +-'P(y+h) +-B(x)(y +h)4 rw '
2642 6 4

1..,

P, = Iw(y + h) + !p (y + h)2 + B(z)(y + h) 3

22
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It must be patched to an 'outer profile', which is linear at the junction,

as in the steady case. The difference is that the joining occurs now at a

larger value of yj. Near the junction, the 'outer profile' has the following

form:

U! Prf

ayA
a2 fu

The joining conditions are the requirement for continuity in b, u, A.u aLu

APi 2 r. : (yj + h)' + 6 '(yi + h) 3 + 4 B (x)(y + h)"- 2,- ih- 6 h P 4= ,

(21)

LU2 = T,. (y 1 + h) + 1 (y± + h)2 + B(z)(yj + h)3 (22)

,= T, +V'(y + h) + 3B(x)(yi + h)2  (23)

o=' + 6B(x)(yj + h) (24)

12 = 2 - P- (25)

If we eliminate successively a, yi, V;1, and u. from the above system of

equations we get:

LP+mLP)-(--AW)(l )1T, A2  IA3+ rf ' A4 (26)
p f 9 rf Trf 2 rf 6 48 rf- r.

where

xo(t) : location of unsteady separation point

23
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- "-(xo(t)),15' = j'(xo(t)) mean pressure and mean pressure gradient

at the position of separation
A = A(w,Re) - L+ (&2_ 'fU

rt ?J f

r. wall shear of the 'basic flow' at xo(t)

. Urn: mean pressure, mean velocity at the suction peak

r 1- .332O6 "u R
"Ot0 OZ, N): 'Blasius' shear

&(X, t) = fJ(x)cos(wt) : unsteady component of external flow

If the flow is steady, the above equation reduces to c,(xP)2 = 0.0108(1-

S)2( 1+ 2r), which is the relation for the variation of skin friction of Curie

and Davies [11, Eq. (6.77).

Figure 2 depicts the evolution of the mean 'Prandtl velocity' along with

the trajectory of the 'centre of separation'.

The unsteady component of the 'Prandtl velocity' is:

sin(wt) auau
w ax t-{b)I + y - U--] }.V

-(sin(w t) (()'- 1o ' + ((2& - ) (2U'B - UB')yo

where B =
12(r -r.)

Now, by using t" above expressions for the mean and the unsteady part

of the 'Prandtl velocity', we derive from the general conditions for unsteady

separation the remaining two equations of our practical separation criterion.

The first condition, A-A = , in dimensional form is:

0= [r + V(yo + h) + 3B(yo + h) 2 +

+ sin(wt) -r.', + CO"d- V')yo + 3(2U'B - UB') yo (27)

24
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The second condition, uo(yo, t) + Uo - Ila = O, yields in dimensionaldt

variables:

d-0 fcos(wt) =

_ (yo+h) + (23)A r C+iyo + h) + B(yo + h)' I + (23)

sin(wt) -- , -,Y1o
+i (t [ (U ry (UV' -0U")yo6 + (2&'B - 0B')yo!

Boundary conditions:

zo(t) = Xo(t + 27r

yOt) = yo(t + 2)

W(t) = r,(t + 2 ) (29)

In the absence of unsteadiness (26), (27), and (28) reduce to the steady

Stratford's criterion. Indeed, (28) becomes u = 0, with soluton yo = 0,

(27) becomes N = 0, or r,, = 0, and (26) yields = , which,

upon differentiation with respect to x, and use of the expression rf =

0.33206RzL-VjZ-L', yields the relation:

C, (x ) 2 = 0.0108

which is the initial form of the Stratford relation [22]. However, Curle and

Skan [21 have shown that the value 0.0104 for the constant gives results

that agree better with all the known accurate computations for flow with

separation.

25
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The system of equations (26), (27), and (28), subject to the boundary

conditions (29), are solved by a Newton-Raphson method. Complete results

for the cases of pulsating flow over a circular arc, and past the Howarth

ellipse at an angle of attack, will be available early in January, and will be

compared to experimental data [71, [12].

5 Next steps

We plan to use our method for determining the location and motion

of the blade separation points in our calculations of unsteady blade-wake

interaction. The importance of describing the influence of the unsteadi-

ness on the the boundary layer behaviour by means of a number of key

flow parameters emerges at this stage. Our method, combined with new

efficient techniques for describing the coupling between the wake and the

approaching the blade flow [13j, [9), enables us to perform a first-of-a-kind

analysis of the interaction between the unsteady separated flow over blades

in cascade and their wakes.

In the 2-D case, we will be able to determine the 'natural' frequency,

or Strouhal number, of cascade vortex shedding, a task analogous to deter-

mining the pro-erties of a Karman vortex street behind a cylinder or a bluff

body at lower Reynolds numbers. We will also be able to investigate the

effects of blade shape, incidence, and spacing, mean cascade turning, pres-

sure use, mean flow Mach number, and other key cascade parameters on

the natural oscillations. Study of the trends will lead to useful comparisons

26
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with available experimental results [3J, [5].

In thr 3-D case, the information obtained in the above rapid interactive

calculations is vital to the analysis of the spanwise variations in the actual

, vortical structure. For example, varip Uions along the blade span of relative

Mach number, blade incidence, and loading are of essential importance

to a realistic determination of the wake 3-D patterns. Without a rapid

parametric treatment of boundary layer separation, such a computer-aided

analytic study of unsteady wake formation behind a cascade might well

be prohibitively difficult or lengthy. At present, a pure CFD approach is

also unlikely to be successful because of resolution problems at realistic

Reynolds numbers.

The work of developing a program which will implement our method in

the case of a 2-D compressor cascade is proceeding well. The computational

treatment of the problem should be possible by the end of spring 1990 or

in the early summer. As the proceedure is refined, we expect to be able

to thoroughly investigate the predicted trends and to develop checks with

experiment and other computational work.

A Appendix

The splitting of the solution is a two-step proceedure.

First step:

Separate the forcing terms
au~~~~ata aau au. - o

UP-)U, = (u4 + --
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ata - + ( ' a +V,)U, + (" + ' T )"" +
a a a af

+ ( ., , , + , , , , ) ,U s = .a -+ r a
ax ayax

Second step

In order to cancel out the term a and thus satisfy the boundary

condition, up = U(x) at y = oo, add to Ep and subtract from E, the terms:

(U +a )C + (Ua + V ay)uP

Ep becomes:

au oh (aU p a + a a(-- + a + + -)u + (u + v -)U
-a a -au aquU+ (5.a + v, ),,. == - 7+ ax

and E, becomes:

a 11. a2U a a a a--- v- w -+ (,, ,- + + [(us- + (,.-v)],
a a aO au

+(u- + v,,)(,., - U) = +
at tunaut te U at +Ux

It turns out that the boundary condition u, = U(x,t) is identically

satisfied at y = oo.

Note : E, contains no (u.,v,), only (CV,).
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B Appendix

E, can be rewritten as

aa

af a a, 1 (a + u, )- + (up) +,

By substituting in E,

.p y a-n(x 0) a (o) + Sl
n= "nn! ayfl

00= ,, a V (, (a o) s
n!,= ay A ayp X )+S

we get:

au, a& a2u,
at at ay23

+iz { (U, + up(X,,0))a- + AY.- (X,0)) a I (U, + up(X, 0)) -
,\ 2TX \a a

( +up (X, 0)) a(U + up(X, 0)) + (Sa+ AS2  )(, + u(X,o)) +
a a a y,

a ,a l+ S +2ax )S-l W(UP (XI0))-
+-I (u +up(x,)) -s ayS, (s-+ S } ax

as asx as.

au, a a 2U,

229
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a- aa aa___

+ u (X 0) +up(X,0) + SIa +AS a U,+ S aUV(XIO) +

+[(u, + U (X, 0))g + V,~J~ aa1a+pZ)

ax ax ( + }.

au, a fl a2U.

at , +t upxO)++(. a1 a avp a+-T2 (u, + up(X, 0)) T + (V. + A!-- (u0)-)y a (. +u .(X,o0)) -

-+ up (Xa c +0 f(+,))+ (sUa+ \s2Pa)(Us ) +

axa TX a,
a a a +

+ [ (u, -u)) + (( , - o'y. S 0

a. a aU 1 ( a + u a,))at at k2:+  { ( ax

1 y",axup a y, + a,+v

E. n+2X ( (,o) + + 1)- ,. (X,o0)-a I (Us - Fj) +
n=0

an! a yp
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3. AIR FORCE RESEARCH IN AERO PROPULSION TECHNOLOGY
(AFRAPT) PROGRAM

The research at MIT is strongly tied in with the AFRAPT Program. At present, there are

11 students working in the Gas Turbine Laboratory under this training program. The students,

advisors, and research projects are:

Trainee: Steven Allmaras (finished Ph.D. thesis, 1/89)
Advisor:. Prof. M.B. Giles
Project: Computation Techniques for Turbomachines (Unsteady Flows in Turbomachinery)

(AFOSR)

Trainee: Scott Barton
Advisor: Prof. A.H. Epstein
Project: Distortion Amelioration in Centrifugal Pumps (ONR)

Trainee: Jonathan Elliott
Advisor: Prof. E.M. Greitzer/Dr. C.S. Tan
Project: Computation Procedures for Convoluted Trailing Edge Flows (NAVAIR)

Trainee: Victor Filipenco
Advisor: Prof. E.M. Greitzer
Project: Unsteady Flows in Diffusers for High Performance Centrifugal Compressors (GE)

Trainee: Daniel Gysling (finished M.S. Thesis, 9/89)
Advisor: Prof. J. Dugundji/Prof. E.M. Greitzer
Project: Active Control of Aeromechanical Systems (AFOSR)

Trainee: Dana Lindquist
Advisor: Prof. M.B. Giles
Project: Development of Adaptive Procedures for Turbomachinery Flow Computations

Trainee: Douglas Loose (finished M.S. Thesis, 10/89)
Advisor:. Prof. M. Martinez-Sanchez
Project: Tip Clearance Excited Turbomachine Rotordynamic Instabilities (NASA MSFC)

Trainee: Theodore Manning
Advisor:. Prof. E.M. Greitzer/Dr. C.S. Tan
Project: Vortical Structures from Convoluted Trailing Edges (NAVAIR)

I
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Trainee: Knox Millsaps
Advisor. Prof. M. Martinez-Sanchez
Project: Rotor Dynamic Instability Due to Alford Forces (NASA MSFC)

Trainee: George Pappas
Advisor: Prof. A.H. Epstein
Project: Radial Temperature Distribution Effects on Turbine Rotor Heat Transfer

Trainee: Judith Pinsley (finished M.S. Thesis, 11/88)
Advisor:. Prof. E.M. Greitzer
Project: Smart Engines - Active Stabilization of Aeromechanical Systems (ARO)

Trainee: Robert Plumley (finished M.S. Thesis, 11/89)
Advisor:. Prof. E.M. Greitzer/Dr. C.S. Tan
Project: Unsteady Phenomena and Flow Instabilities in Multistage Turbomachines (AFOSR)

Trainee: Earl Renaud
Advisor:. Dr. C.S. Tan
Project: Three-Dimensional Vortical Flows in Axial Turbines (NASA LeRC)

Trainee: Peter Silkowski
Advisor: Prof. E.M. Greitzer/Dr. C.S. Tan/Prof. N.A. Cumpsty (Cambridge University)
Project: Unsteady Phenomena and Flow Instabilities in Multistage Turbomachines (AFOSR)

Trainee: William Steptoe (finished M.S. Thesis, 10/89)
Advisor: Prof. A.H. Epstein
Project: Influence of Radial Temperature Distribution on Turbine Heat Transfer

Aerodynamics (RRI)

Trainee: Eric Strang
Advisor: Dr. C.S. Tan/Prof. E.M. Greitzer
Project. Inlet Distortion Effects in Multistage Turbomachines (NASA)

A more detailed description of the work carried out on these projects is given in Refs. 3.1

and 3.2.

3.1 Greitzer, E.M., Dugundji, J., Epstein, A.H., Giles, M.B., Martinez-Sanchez, M., Tan,
C.S., "Air Force Research in Aero Propulsion Technology," Annual Technical Report on
Grant AFOSR-85-0288, September 1988.

3.2 Greitzer, E.M., Dugundji, J., Epstein, A.H., Giles, M.B., Martinez-Sanchez, M., Tan,
C.S., "Air Force Research in Aero Propulsion Technology," Annual Technical Report on
Grant AFOSR-85-0288, September 1989.
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4. PUBLICATIONS AND PRESENTATIONS

Epstein, A.H., Greitzer, E.M., Tan, C.S., Giles, M.B.,"Advanced Three-Dimensional and Time
Varying Turbomachinery Problems," Short Course presented at Concepts, ETI, November 1988.

Giles, M.B., "Developments in the Calculation of Unsteady Turbomachinery Flow," invited paper
at ICFD conference held at Oxford University, March 1988 (CFDL-TR-88- 11).

Giles, M.B., "Non-Reflecting Boundary Conditions for the Euler Equations," seminar presented at
Princeton University, November 1988.

Giles, M.B., "Non-Reflecting Boundary Conditions for the Euler Equations," CFDL Report TR-
88-1.

Giles, M.B., "UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery,"
GTL Report No. 195, October 1988.

Giles, M.B., Tan, C.S., "An Introduction to Computational Fluid Dynamics," 2-day AIAA short
course, July 1988 and July 1989.

Greitzer, E.M., "Advances in Turbomachinery Stability," seminar presented at Concepts ETI
Seventh Anniversary Symposium on State-of-the-Art in Turbomachinery, December 1987.

Greitzer, E.M., "Effects of Unsteadiness on Multistage Compressor Instability," presentation at
General Electric Aircraft Engine Group, March 1988.

Greitzer, E.M., "Unsteady Flows in Turbomachines: Recent Advances and Opportunities for
Control," seminar presented at United Technologies Research Center, April 1988; also presented at
NASA Lewis Research Center, August 1988; also, invited presentation at US-Korea Joint Fluids
Engineering Seminar, September 1989.

Greitzer, E.M., 3-lecture series in AGARD Seminar on "Gas Turbine Engine Instability,"
Cranfield Institute of Technology, Cranfield, England, October 1989.

Kotidis , P.A., Epstein, A.H., "Unsteady Radial Transport in a Transonic Compressor Stage," to
be presented at 1990 ASME Gas Turbine Conference, Brussels, June 1990.

Lee, N.K.W., "Effects of Compressor Endwail Suction and Blowing on Stability Enhancement,"
MIT Gas Turbine Laboratory Report #192, January 1988; also presentation made at Allison Gas
Turbine Division, February 1988, on this topic. by E.M. Greitzer. Paper presented at 1989 ASME
Gas Turbine Conference, and accepted for publication in ASME I. Turbomachinery.
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5. PROGRAM PERSONNEL

Principal Investigator:

Edward M. Greitzer
H.N. Slater Professor of Aeronautics and Astronautics
Director, Gas Turbine Laboratory

Co-Investigators:

Alan H. Epstein
Associate Professor of Aeronautics and Astronautics
Associate Director, Gas Turbine Laboratory

Michael B. Giles
Assistant Professor of Aeronautics and Astronautics

James E. McCune
Professor of Aeronautics and Astronautics

Choon S. Tan
Principal Research Engineer

Graduate Research Assistants:

9/83 - 11/88 Petros Kotidis**

9/86 - 1/89 Steve Allmaras** (AFRAPT student)

9/87 - 10/89 Rob Plumley* (AFRAPT student)

6/88 - 6/89 Hewett Benson*

6/88 - present Alexandros Gioulekas

6/88 - 9/89 Gordon Lan*

* M.S. Degree Completed
** Ph.D. Degree Completed
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6. INTERACTIONS

As we have noted previously and as may be inferred from the presentations that were

given, there are considerable interactions between Gas Turbine Laboratory personnel and industry

and government This occurs in several forms. One of these is support of research in the

laboratory from industry and from government laboratories. This creates a direct link with those

persons who are actively working in similar areas in other establishments, and aids considerably in

helping transfer technology.

A second type of interaction is through presentations and discussions with industry or

government agencies. These were listed in Section 4 covering the contract period. It should be

noted that only1 those which involved discussion of AFOSR supported projects are given.

Finally, the Gas Turbine Laboratory has an active seminar program which brings speakers

from industry and government. Listed below are the speakers for the period 10/19/88 to 10/18/89;

those in the previous year were given in Ref. [1].

Dr. R.A. Delaney, Allison Gas Turbine Division
"Computations of Turbine Vane-Blade Interaction"

Mr. L.A. Gross, NASA MSFC
"Past, Present, and Future Problems in Space Propulsion Systems"

Dr. L.H. Smith, General Electric Aircraft Engine Business Group
"Unducted Fan Aerodynamic Design"

Mr. D.N. Herr, American Airlines
"Airline Maintenance Requirements and Programs for the GE CFC Family of Engines"

Dr. D.G. Holmes, General Electric Corporate Research and Development Center
"Solving the Euler and Navier-Stokes Equations on Unstructured Quadrilateral and
Triangular Meshes"

Dr. R.W. Paterson, United Technologies Research Center
"Gas Turbine Applications of Strearnwise Vorticity Flow Structures"
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7. DISCOVERIES, INVENTIONS, AND SCIENTIFIC APPLICATIONS

During the present contract period, there have been no inventions.
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8. OTHER RELATED ACCOMPLISHMENTS

In addition to the publications that have resulted directly from the research, there are also

two survey lectures that deal with the general area of unsteady flows in turbomachines. The

material in these lectures relates closely to the field of research, and reflects much of the work that

has been funded by AFOSR, not only during the present contract but over a longer time period.

As such, we feel it is appropriate to include these two lectures as Appendices to the main text of the

Progress Report.

The lectures are entitled "Numerical Methods for Unsteady Turbomachinery Flow," by

M.B. Giles, which appears as Appendix A, and "Unsteady Flow in Turbomachinery: Basic

Phenomena and Practical Aspects," by E.M. Greitzer and C.S. Tan, which appears as Appendix B.
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9. CONCLUDING REMARKS

The topic of unsteady flows in turbomachines is one that is of high intellectual and

technological interest. With the availability of modern data processing and flow computation

procedures, phenomena that were formerly just guessed at are becoming amenable to quantitative

scrutiny and, as discussed by Wennerstrom [9.1], there is real potential for increased performance

through including these phenomena in the design process in a rational way. Although the

problems are complex, the aim here is a clear understanding of, and physical insight into, this

general class of flows, rather than just case by case ad hoc examination of results. We believe that

this can only occur if there is strong coupling between experiment, computation, and theory. The

Multi-Investigator program and the interaction it fosters between different investigators is

extremely useful in promoting just this type of interaction.

Reference

9.1 Wennerstrom, A.J., "Low Aspect Ratio Axial Flow Compressors: Why and What It
Means," to appear in ASME J. Turbomachinery, Vol. 112, 1990.
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APPENDIX A

Numerical Methods For

Unsteady Turbomachinery Flow

by

Michael Giles

CFDL-TR-89-3 April 1989

This report is a set of Lecture Notes to accompany three lectures on Unsteady Solution
Methods which form part of a lecture series entitled Numerical Methods For Flows In

Turbomachinery, to be held a. ttke Von Karman Institute, Brussels, Belgium on May 22-26,

1989.
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Chapter 1

Introduction

1.1 Objectives of Lectures

The intent of these lectures is to present an overview of the full diversity of approaches
to calculating the unsteady flow in turbomachinery. The different approaches vary greatly

in the accuracy of the physical model used to represent the very complicated fluid dynamics
that occurs in a turbomachine. Therefore, one objective is to discuss what it is that one

is interested in determining when performing a numerical calculation or simulation, and
examine the extent to which relatively simple models can be used. The emphasis here will
be on the formulation of the mathematical models, the assumptions and approximations

which they involve, and the circumstances under which these remain valid.

As a direct consequence of the differing levels of accuracy of the physical models, there
is an accompanying variation in the computational time required to numerically solve the
mathematical equations produced by the physical model. This variation spans several orders

of magnitude, from a few seconds on a MicroVax II to several days on a CRAY-XMP. In
practical, industrial applications of unsteady flow calculations, there is a very definite need
to keep numerical solutions as cheap and as quick as possible, while still providing solutions
which are sufficiently accurate that they are useful. Thus, a second objective, very closely
related to the first, is to give as much insight as possible into the trade-offs in time and

accuracy between the different methods. This is an issue that it is not generally addressed
in the research literature, and so it will necessarily be a rather personal viewpoint.

The third objective of these lectures is to discuss in some detail the key features of the
different numerical methods. Unlike steady solution methods, the emphasis will usually not
be on the basic numerical algorithm for solving the partial differential equation. Instead,

the emphasis will usually be on the unsteady boundary conditions, both their mathematical

formulation and their numerical implementation. In discussing current areas of research,
different numerical algorithms being used by different researchers to solve the same math-

ematical model will be presented, and some of their relative advantages and disadvantages

will be discussed. There is insufficient time to be comprehensive in discussing the numer-

ical details of all of the algorithms, but the bibliography gives references to all the major
research works in this area, and the reader is urged to read these.
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wake/rotor

vortex
shedding

flutter.potential

interaction

Figure 1.1: Sources of unsteadiness in turbomachinery flow

1.2 Sources of Unsteadiness in Turbomachinery

In this section we will intorduce the various different sources of unsteadiness in a tur-

bomachine, and will discuss their characteristics and their particular features or conse-

quences which are of engineering concern. As shown in Fig. 1.1 there are four principal

*two-dimensional sources of unsteadiness in a single stage of a turbomachine.

Wake/rotor interaction causes unsteadiness because the stator wakes, which one can
assume to be approximately steady in the stator frame of reference, are unsteady in the

rotor frame of reference since the rotor is moving through the wakes and chopping them

into pieces. This causes unsteady forces on the rotor blades and generates unsteady pres-

sure waves. Although the stator wakes are generated by viscosity, the kinematics of the

subsequent interaction with the rotor blades is primarily an inviscid process and so much

of the interaction can be modelled by the inviscid equations of motion.

There are two principal engineering concerns with regard to wake/rotor interaction. The
first is the forced response of the rotor, the vibration of the rotor blade due to the unsteady
loading and moment caused by the interaction [29]. When the gap between the stators

and rotors is large, the wake/rotor interaction is the primary contributor to the unsteady

forces on the rotor, and these can be of the order of 5% of the steady forces. At this level,

the interaction is approximately linear, and so the simplest model which will capture the

essential features would be a linear inviscid model which is able to treat both the vorticity

and entropy variations in the wake.

The second concern is the effect on heat transfer and loses. Extensive experimental

research on wake/rotor interaction in transonic turbines has shown that the passing stator

2
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wakes can cause an intermittent transition in the rotor's boundary layer, causing the heat

transfer to alternate between a low, laminar value and a high, turbulent value (13,.,,16,6,251.
This greatly increases the mean heat transfer and also the mean overall loss of the turbine
rotor [47]. Numerical prediction of this phenomena requires the solution of the unsteady

Reynolds-averaged Navier-Stokes equations with a very sophisticated transition model and

turbulence model.

A similar phenomenon to wake/rotor interaction is hot streak interaction. The flow

leaving the combustor in a gas turbine is not temporally or spatially uniform. Streaks of
hot, less dense gas, with the same static and total pressure as the surrounding colder gas,
pass through the first stator row and become hot jets of fluid. These are the opposite of
wakes in that their velocity is greater than the other, colder fluid. A second-order nonlinear

effect [351 causes this fluid to preferentially "migrate" towards the pressure surface of the

first rotor row [7,36,441. This increases the mean tempez.ature of the fluid at the edge of the
boundary layer, and so increases the mean heat transfer. This is believed to be the reason

for unexpected thermal damage on the pressure surface of the rotor, and is a current topic

of interest in both experimental and computational research. Since the nonlinearity is a

fundamental part of the problem, linear methods are unsuitable. However, the migration
effect is an inviscid phenomenon and so inviscid methods may be suitable to calculate the

increase in the mean stagnation temperature at the edge of the boundary layer, from which

the increased heat transfer could be deduced.

Potential stator/rotor interaction causes unsteadiness due to the fact that the pressure

in the region between the stator and rotor blade rows can be decomposed approximately

into a part that is steady and uniform, a part that is non-uniform but steady in the rotor

frame (due to the lift on the rotor blades) and a part that is non-uniform but steady in the
stator frame (due to the lift on the stator blades). As the rotor blades move, the stator
trailing edges experience an unsteady pressure due to the non-uniform part that is locked

to the rotors, and the rotor leading edges experience an unsteady pressure due to the non-

uniform part that is locked to the stators [14,341. This is a purely inviscid interaction and
the sole engineering concern is the unsteady forces and moments which it causes. When the
gap between the stator and rotor is small, and when the stator outflow is supersonic, these

unsteady forces can become very large, as much as 20% of the steady forces. In the design

of a stage, this is the primary limitation on how the spacing between the stator and rotor,

and so fast, accurate methods of predicting the forces are required to avoid serious design

problems. There are two approaches to modelling this interaction. The first is an unsteady,

inviscid calculation of the stator and rotor blade rows. The second is an unsteady, inviscid

calculation of just one of the blade rows, either the stator or the rotor, with the unsteady

pressure being specified as a boundary condition. The latter approach is more efficient,

but when the spacing between the stator and rotor rows is extremely small, and/or there

3



are shock waves moving in the region between them, one may not know what to specify as

unsteady boundary conditions and so one may have to adopt the first approach.

The first two sources of unsteadiness were both due to the relative motion of the stator

and rotor rows. The remaining two sources are not. The viscous flow past a blunt turbine

trailing edge results in vortex shedding, very similar to the Karman vortex street shed

behind a cylinder. In fact real wakes lie somewhere between the two idealized limits of

a Karman vortex street and a turbulent wake with a steady mean velocity profile. It is

believed that provided the integrated loss is identical the choice of model does not affect

the subsequent interaction with the downstream rotor blade row. However, this is an

assumption which needs to be investigated sometime in the future. The importance of

vortex shedding lies in the calculation of the average pressure around the blunt trailing

edge, which determines the base pressure loss, a significant component of the overall loss.

There is also experimental and computational evidence of vortex shedding in compressors

Finally, there can be unsteadiness due to the motion of the stator or rotor blades. The

primary concern here is the avoidance of flutter. This is a condition in which a small

oscillation of the blade produces an unsteady force and moment on the blade which due to

its phase relationship to the motion does work on the blade and so increases the amplitude of

the blade's unsteady motion. This can rapidly lead to very large amplitude blade vibrations,

and ultimately blade failure. Since the unsteadiness is initially of low amplitude, linear

methods are clearly appropriate. Inviscid assumptions are also perfectly acceptable until

one is concerned about stall flutter, in which case unsteady separation of the boundary layer

becomes very important and a viscous model is necessary.

There are several other sources of unsteadiness which deserve to be mentioned briefly.

Shock/boundary layer interaction can cause a boundary layer to separate, and the free shear

layer is then unstable. Under the correct conditions the shear layer instability can couple

acoustically to an oscillation in the shock position, which in turn drives an oscillation in

the separation position. This is known to occur in transonic inlet diffusers, and may also

cause unsteadiness in transonic compressors. In bypass fans, the thick pylons can have an

associated potential field which extends far upstream ahead of the outlet guide vanes, and

cause unsteady forces on the fan. In three dimensions, there is unsteadiness due to rotors

interacting with passage vortices and inlet flow distortions, and due to stators interacting

with passage and tip vortices. Also, there is the large subject of rotating stall and surge.

The direct simulation of these highly unsteady, viscous, three-dimensional, large-scale flows

lies well beyond our current capabilities. Instead, a completely different approach to the

mathematical modelling of the whole fluid dynamic compression system is required. The

state-of-the-art in the analysis of these problems is reviewed by Greitzer in Ref. (241.

4
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Chapter 2

Linear Methods

2.1 Flat Plate Analysis

The flat plate analysis method was developed in the early 1970's. Although various

people contributed to its development, the first complete analysis of the subsonic problem,
together with a numerical method for the solution of the resulting integral equation, is due

to Smith (481. A unified presentation of the theory for both subsonic and supersonic cases

is given by Ni [401.

The analysis considers linear perturbations to a uniform flow (at zero incidence) past
a cascade of flat plate airfoils. The airfoils can have an arbitrary stagger and pitch, and

the uniform flow can have an arbitrary Mach number although it will be assumed in the

discussion below that the flow is axially subsonic. Thus, the principal effects which are

neglected in this model are the thickness of real compressor or fan airfoils, and the steady

loading on the airfoils.

The two-dimensional Euler equations in the so-called "primitive" form are

au au au
t+ A--+ B -5- (2.1)

where

U i ,A= o = 0 V 0 (2.2)

00 0 U 0 ' 0 0 V i/p

0 YP 0 u 0 0 -Yp V

p, IUI, v, p are the density, velocity components and pressure respectively. -y is the constant
ratio of specific heats for the gas which is assumed to be ideal. U is the vector of perturbation

from the uniform steady flow-field, and A and B are constant matrices based upon the

uniform flow variables.

The eigenmodes of this equation are wave-like solutions of the form

U(z, V, t) = exp(;kz + ;ly - iwt) C. (2.3)

Substituting this equation into the governing differential equations yields

(-w + kA + IB)T = 0. (2.4)

This has a non-trivial solution only if the matrix is singular.

det(-wl + kA + IB) = 0 (2.5)

5
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This equation is the dispersion relation, relating the frequency w to the wavenumbers k,1.

For a particular problem, each- (real) frequency component is analyzed separately, since
by linearity these components can be added to form the general linear solution. 1 has a

discrete set of real values to satisfy the periodicity constraint. The dispersion equation then

gives the axially wavenumber.

k = k(w,) (2.6)

For each w, 1 there are four values of k and four corresponding eigenmodes ft. Assuming

axially subsonic flow these have the following features.

* U1 is an entropy wave which affects only the density. This wave is convected at the

local steady fluid velocity, and so k is always real.

* 0 2 is a vorticity wave which affects only the two velocity components. Like the entropy,

it is convected at the local steady fluid velocity.

* f3 is a downstream running pressure wave, which affects density, pressure, and both
velocity components. If the steady flow is subsonic then k is real only when 1 is

within a finite range. Outside this range k is complex implying that the pressure
wave decays exponentially downstream. If the flow is supersonic then the reverse

occurs. k is complex for a finite range of values of 1, and real otherwise

* U4 is an upstream running pressure wave, which again affects density, pressure, and

both velocity components. k behaves in a similar manner to the downstream running

pressure wave, except then when it is complex the imaginary component has the

opposite sign so that the pressure wave decays exponentially upstream.

The next step in the analysis is to perform an actuator disk analysis to calculate the
outgoing waves due to a point force normal to an infinitesimal part of every blade. This

is shown schematically in Fig. 2.1. The multiple point forces are first decomposed into a

Fourier series in y, using the following identity.

E 6(y - nP) exp(in") = I exp i(21m + a) ) (2.7)

P is the blade pitch, and a is the inter-blade phase angle, the phase difference between the

unsteady forces on two neighboring blades. Each Fourier mode in y is treated separately in

the actuator disk analysis which matches the mass flow and entropy on the two sides of the

disk, and changes the momentum according to the distributed forces along the disk. This

gives four equations from which the amplitudes of the four outgoing waves are determined.

Because of the isentropic matching condition the outgoing entropy wave has zero ampli-

tude, and so the solution is a combination of a vorticity wave and a pressure wave going

downstream, and a pressure wave going upstream.

6
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u2, O'
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Figure 2.1: Outgoing waves in actuator disk analysis

Summing over the different Fourier modes produces a vector Green's function for the

response shown in Fig. 2.1 due to the unit force on the infitesimal blade element. Integrating

over the whole blade, using this Green's function, gives the unsteady flow due to distributed

unsteady loading on the blade.

;Y(,,,t) = G(z- a cos 0, y-s sin 0) Ap(s) ds (2.8)

The total unsteady flow field is obtained by adding incoming external disturbances, due

to either incoming vorticity waves or incoming pressure waves.

9
6(z, , t)= fG(z-scse,y-ssine)4p(.)da + C.t (2.9)

At the blade surface there is no flow normal to the blade. If the blade is moving (as

in a flutter calculation) then this statement is modified to say that there is no normal flow

relative to the moving blade. This produces an equation of the following form.

f 9(s'- ) p() de = f,,(s') + fIb o,(s') (2.10)

9(s) is another Green's function corresponding to the flow normal to the blade produced by

G(s). 1,.t is the normal flow produced by the incoming, externai perturbation, and fbiad.
is the contribution due to the moving blade.

The final step is to solve this equation to obtain ap(s). This cannot be done analytically
and so is done by a numerical method which turns the integral equation into a matrix

equation in which the unknowns are the pressure jump@ at various points along the blade.

This numerical solution is extremely accurate and can be considered for practical purposes

7
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to be exact. It is also an extremely cheap procedure, requiring on the order of 1 CPU min.

on a MicroVax II.

In addition to its low cost, there are three good points about this method. It can

handle all two-dimensional inviscid phenomena, including wake/rotor and potential/rotor

interactions and flutter in compressors and fans. Also, according to Verdon [491 the analysis

has proven to be very useful in the prediction of supersonic fan flutter. The final point is

that it can be used as an analytic test case to validate the other computational methods to

be presented in this review. Due to the difficulty in obtaining good experimental unsteady

flow data for code validation, analytic test cases such as these are invaluable.

The limitations in the method are due to the fact that it completely ignores the effects of

thickness and loading, which change the mean flow, about which the unsteady perturbation

is being calculated. In the same review article, Verdon states that this renders it ineffec-

tive in predicting flutter at transonic or subsonic speeds, and prevents the forced response

prediction from being any more than an order-of-magnitude answer.

2.2 Linear Potential Methods

This class of methods was developed in the late 1970's, with major contributions coming

from Verdon and Caspar [50,BJ and Whitehead [511. This approach begins by assuming that

a steady, isentropic, irrotational flow field has already been determined through the solution

of the steady, nonlinear full potential equations by some appropriate numerical method. The

analysis then considers linear, unsteady, irrotational, isentropic perturbations to the steady

flow. Since linearity allows the superposition of unsteady flows of different frequencies, it

can be further assumed that there is only one frequency and so the unsteady component

varies harmonically.

The description that follows is for the simplest case of subsonic, isentropic, irrotational,

two-dimensional flow. Extensions to include the effects of three-dimensionality, transonic

flow, and incoming entropy and vorticity will be discussed briefly later.

The nonlinear, unsteady mass equation for an isentropic, irrotational, two-dimensional

flow is
ap + V vt) 0(2.11)

at

The linear, harmonic man equation is obtained by expressing the density, p, as the sum

of the steady density and a harmonically oscillating unsteady component.

p = ;+ exp(-iwt) A (2.12)

A is the complex amplitude of the unsteady density. In this equation and others that will

8. i
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follow, it is implicitly understood that the density is actually the real part of the right-

hand-side of the equation..

Similarly the potential 0 is expressed as a sum of a steady component and a harmonically

varying unsteady component.
S= 1±+ exp(-s'wt) $ (2.13)

Substituting these into the unsteady mass equation, and ignoring all second order prod-

ucts of the linear perturbations, yields the linearized, unsteady mass equation.

iW A +V. V$) + V. V¥) = 0 (2.14)

For irrotational, isentropic flows the unsteady Bernoulli equation is
S1 / dp
+ IV+ - + L = const. (2.15)

Linearizing this equation gives
t=' (2.16)

where -h=-iW + V. -V 
(2.17)

Dt

Finally, the isentropic assumption means that the density and pressure perturbations

are related through

(2.18)

Combining the three linear equation to eliminate the density and pressure variables

yields the final form of the linear, harmonic, unsteady potential equation.

17(= 2 $ )y - ; -'V. (V 0)= (2.19)

Before addressing methods for solving this equation, we must address the boundary

conditions required to complete the specification of the problem.

The boundary condition at the surface of the moving blade i6 that there is no normal

flow relative to the blade, or equivalently that the flow velocity normal to the blade is equal

to the blade's velocity normal to its surface.

vO.n = U. (2.20)

In this equation n is the unit vector normal to the surface of the blade.

This boundary condition, in the form in which it is written, must be applied at the

instantaneous location of the moving blade surface. Thus, as the blade moves the location
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n

Figure 2.2: Geometry for unsteady wall boundary condition

at which the boundary condition must be enforced varies too. It is much more convenient

however to reformulate the boundary condition so that it is enforced at the fixed, mean

blade position. To do this, a Taylor-series expansion of the potential 4Z is used. If the

location of a point on the blade's moving surface is given by

r = F + exp(-ict) ;b, (2.21)

then

4(r) t 4(F) + (r- ) -- 4(F) + exp(-iwt) ($ + f" V;) (2.22)

The other step in linearizing the wall boundary condition is to express the unsteady

normal vector as

n = W+ exp(-iWt) a. (2.23)

The vector A is normal to the vector N (since the magnitude of n is always unity), and

represents the rotation of n due to the blade's motion. Fig. 2.2 illustrates the geometry of

the moving wall. Inserting these equations into Eq. (2.20), • with the wall's velocity being

given by -iw exp(-iwt) b, gives the linearized, harmonic wall boundary condition.

V. f + ;b"- 7(,V .-F) + V;. -ii = -fb -F(2.24)

The unsteady boundary condition along the wake is simply that there is no pressure

jump across the wake.

[p] = 0 (2.25)

Linearizing this equation, in the same manner as the wall boundary condition, leads to

[P+ P, -VPl = 0, (2.26)

where f. is the amplitude of the oscillation in the wake position. This equation is simplified

by noting that in a steady potential flow there is no discontinuity in the pressure gradient

10
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or velocity across the wake. Hence, the linearized wake boundary condition is

D I1=? (2.27)

At the inflow, a Fourier eigenmode analysis, similar to that discussed earlier for the

flat plate analysis, reveals that the harmonic unsteady potential is a sum of incoming and

outgoing parts, each of which is a sum of modes with differing values of 1, the circumferential

wavenumber.

S(X, y) = exp(ik,,z + ily) $, + exp(ikotz + ily) o.t (2.28)

The incoming modes are prescribed by the user, and the outgoing modes are to be

determined by the calculation. Fourier transforming the potential yields a simple algebraic

equation relating the Fourier amplitudes at two different axial locations.

p(x,, 1) - exp(ikxj1 ),f = exp(ik.,t(z- X2 )) (MX(z2,1) - exp(iki.X2 )$,n) (2.29)

There is a similar equation at the outflow, but in this case there is an additional term

due to the unsteady vortex sheet that is shed along the wake by the airfoil due its varying

circulation.

The final boundary condition is the periodic boundary condition, which is simply

$(Z, Y+ P) = exp(-i,) ,(Z, V), (2.30)

where P and o are again the blade pitch and the inter-blade phase angle, respectively.

There are different approaches to the numerical solution of the linear, harmonic, un-

steady potential equation. In the method used by Caspar and Verdon [8], $ is defined to

be quadratic in the neighborhood of each node of the computational grid.

$= a+bx+cy+dz 2 +exY + fy 2  (2.31)

The coefficients in this definition are chosen to match the local nodal values of in a "least-

squares" best fit. They refer to this procedure as an "implicit least-squares interpolation".

Substituting this local quadratic formulation into the unsteady potential partial differential

equation yields an algebraic equation at each interior node, and on one side of the wake.

The same basic method is used to discretize the surface and wake boundary conditions,

and the periodic boundary condition is easily incorporated. The inlet and outlet boundary

conditions are implemented by replacing the continuous Fourier transforms by discrete

Fourier transforms, assuming the computational grid has been constructed such that the

inlet and outlet nodes are uniformly spaced. The axial locations x, and z2 correspond to

the boundary plane and the first plane of nodes interior to the boundary.

i 11
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The entire set of interior and boundary equations can be written as a block tridiagonal

system and are then solved by Gaussian elimination.

Figures 2.3-2.5 show results computed by Verdon, with comparison against experimental

results obtained by Carta. The cascade is a NACA 65 series cascade which was tested at

UTRC. Fig. 2.3 shows the steady pressure distribution calculated using a nonlinear full

potential code. To obtain good agreement with the experimental data, the inflow angle in

the calculation was modified slightly. Fig. 2.4 shows the real and imaginary components of

the complex surface pressure amplitude due to a torsional oscillation of the airfoils, for one

particular frequency and inter-blade phase angle. The agreement is fairly good, but not

excellent, particularly near the leading and trailing edges.

Fig. 2.5 shows the resultant moment as a function of the inter-blade phase angle. Al-

though the qualitative trends are correct, there are now significant quantitative differences

between the calculation and the experiment. However, the calculation is accurate in pre-

dicting the flutter boundaries, which correspond to the imaginary component of the moment

being zero. When the imaginary component is positive the product of the moment and the

torsion rate is positive on average, and so during one period of the oscillation the fluid does

net work on the airfoil and increases the amplitude of its oscillation, leading ultimately to

structural failure.

The linear potential method has been extended by several researchers to analyze tran-

sonic flow. In these applications, a conservative full potential transonic solver is used first

to calculate the steady transonic flow field. This includes "capturing" any shocks in the

flow field, meaning that they are not modelled as a line discontinuity in the flow field but

instead simply appear in the flow field as part of the solution. In formulating the linear

unsteady flow problem, the shocks are then "fit" and treated as an internal boundary. The

corresponding boundary condition is the linearized form of the isentropic equivalent of the

Rankine-Hugoniot moving shock relations. In form it is similar to both the solid wall and

wake conditions. The other change for transonic flow is in the numerical discretization in the

supersonic region. For reasons of numerical stability it is necessary to use an upwind-biased

approximation to the streamwise second derivative operators.

Linear potential methods are about ten times more expensive than a flat plate analysis,

taking of the order of 10 CPU mins. on a MicroVax II. In return for this additional expense,

they are considerably more accurate, due to the inclusion of the effects of both airfoil

thickness and airfoil loading. In particular, the linear, potential analysis is the simplest

model which gives an accurate prediction of the very large changes in lift and moment

due to shock motion in transonic applications. Engineering experience shows that these

methods are very effective in predicting subsonic and transonic flutter, provided any shocks

are not so strong that they significantly violate the isentropic assumption.

12
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The limitations of potential method are all associated with the irrotational and isen-

tropic assumptions. Computational results for stead) flow past isolated airfoils have shown

that potential solutions can be totally incorrect once the pre-shock Mach number exceeds

1.3. Also, the standard formulation of the linear, potential analysis does not allow for in-

coming vorticity or entropy waves, and so does not allow for the caluclation of wake/rotor

interaction. Verdon [491 has shown that there is a more general formulation which allows

for wake/rotor interactions by separating the unsteady velocity into a rotational part and a

potential part, but no results have yet been published using this approach, and the increase

in complexity suggests that one might be better advised to proceed instead to the next

development, the linear, Euler methods.

13
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2.3 Linear Euler Methods

Linear Euler methods are an idea whose time is coming. I am personally convinced

that there is an important place for this class of methods in the toolkit of aerodgnarnic

designers. They promise the efficiency of linear potential methods, without the restrictions

of the isentropic and irrotational assumptions.

The current literature on the subject is limited to two pioneering Ph.D. theses. The first,

by Ni in 1974 [39,411, used the isentropic form of the Euler equations, replacing the energy
equation by the condition of uniform entropy. He validated the concept by comparison with

the linear flat plate analysis.

The second thesis, by Hall in 1987 [26,271, used the full Euler equations. Ha!l also de-
veloped a shock-fitting technique, for both the nonlinear, steady solution and the linear,

unsteady solution, which is analogous to that used in linear, unsteady potential methods.

Due to the complexities of shock-fitting, it was developed only for duct applications, al-

though the rest of the thesis included cascade applications.

The development of the linear Euler methods begins with the conservative vector form

of the unsteady, nonlinear Euler equations.

U OF OG

- + -j- + - = 0 (2.32)

where

U PU F= PU'2 + p  G= PU (2.33)
pV puUt P 2 + p
pE puH pvH

E and H are the total internal energy and stagnation enthalpy per unit mass, respec-

tively. They are related to each other and the other flow variables through the following

ideal gas equations.

H = E + , p= (-Y - 1) (PE - ~P(U2 + V2)) (2.34); p

To obtain the linear, unsteady equations, U is written as the sum of a steady part and
a harmonically varying unsteady perturbation.

U . Vr+ C-"'( (2.35)

Performing a Taylor-series expansion gives

FA+ aF (2.36)
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and

G -+e aG (2.37)
au

Hence, the linear, harmonic, unsteady Euler equations are

_a -6O)+ a( 0)o (2.38)

The boundary conditions are very similar to the those for the potential method. Without

going into any additional detail, the wall boundary condition is

u. K + U. A + f.- V U" = -iwfb • if. (2.39)

There are two boundary conditions along the wake. The first comes from the fact that, by

definition, no fluid crosses the wake.

a. K + U. A + V = -iw • f. (2.40)

This equation must be satisfied on both sides of the wake. The second condition comes

from the fact that there cannot be a pressure jump across the wake.

[ + .v + V [ I = 0 (2.41)

The inflow, outflow and periodic boundary conditions are also very similar to the potential

boundary conditions.

Ni and Hall used very different methods to solve these equations. Examining Hall's

method first, on each quadrilateral cell, the unsteady equations are integrated to obtain

ff -iwU dx d!y + f X & dy - ff & dx = 0. (2.42)

This equation is approximated by trapezoidal integration. The boundary conditions are

then discretized in a straightforward fashion and are combined with the interior equations

in a least squares formulation which tries to drive all residual errors to zero. Minimization of

the resulting quadratic function gives a linear equation which is solved by banded Gaussian

elimination.

Ni's approach is to go back to the basic formulation, and instead let

U(,, y, t) = Or(x, y) + exp(-iwt) O(z, y, t) (2.43)

Substituting this into the unsteady, nonlinear Euler equations gives

a C a _
a- (A ) + -(") = twU. (2.44)

This looks like the regular, non-harmonic, linear, unsteady Euler equations, but with a

source term on the right-hand-side of the equation. This equation can now by solved
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by one of the standard time-marching methods used to calculate steady solution to the

Euler equations, since the "steady-state" solution of this equation is simply the desired
complex harmonic amplitude L6. The advantage of this approach is that multigrid and

other acceleration techniques can be used to obtain the solution extremely quickly. This
is particularly important in three dimensions where the direct solution method of Hall

becomes very expensive.

Figures 2.6-2.9 show results computed by Hall. The first two figures compare Hall's

calculations with those performed by Allmaras using a nonlinear finite-volume unsteady

Euler method. The test case is a transonic diffuser in which the exit pressure is being

oscillated sinusoidally. The nondimensional frequency, based on the throat height and the

sonic speed of sound, is 3.125, and the exit pressure oscillation is equal to 10% of the inflow

stagnation pressure. When comparing results in Fig. 2.6, it must be noted that in the linear

results the shock position appears to be stationary since the graphics post-processing did not
take into account the calculated shock motion amplitude. With this in mind, the agreement

between the linear and nonlinear results is extremely good for this large amplitude unsteady

case. Fig. 2.7 shows the corresponding complex amplitude of the pressure oscillations on

the lower wall. The agreement is very impressive, and demonstrates the usefulness of the

linear Euler method for cases with strong unsteady shocks. The computational cost of the

linear method was approximately 50 times less than the nonlinear method, which illustrates

the practical potential of these methods. This means that a single two-dimensional linear

calculation takes about one minute on a CRAY; a three-dimensional calculation would

take maybe fifteen minutes. Additional algorithm work would probably reduce this cost

significantly.

Fig. 2.8 shows steady Mach contours and surface pressure data computed for an analytic

incompressible test case due to Gostelow [23]. Hall's surface pressure results include a

Prandtl-Glauert correction to remove the very weak compressibility effects in his calculation.

Fig. 2.9 shows the surface complex pressure amplitude due to the airfoil oscillating in pitch,

with reduced frequency w = 0.4 and inter-blade phase angle a = ;r. The comparison is with

results obtained by a semi-analytic incompressible theory (3].
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Chapter 3

Non-linear Unsteady Euler Methods

3.1 Basic Algorithms

It is assumed that the reader is already somewhat familiar with the most common

explicit methods for solving the Euler equations. However, for the sake of completeness,

and to define the notation which will be used, a brief review is given in this section.

The integral form of the nonlinear, unsteady Euler equations for a fixed, two-dimensional

control volume 11, is

. JUdxdy + Fn. +Gnds=O (3.1)

where (n., .,)T is the outward-pointing unit vector normal to the boundary afl.

Jameson's cell-based and node-based Runge-Kutta algorithms are both based directly
upon this integral formulation. L tt first step is the spatial discretization which yields the

following semi-discrete systex. t ordinary differential equations for the flow variables at

each grid node.
dU

Area -=- (Fn, + Gn) As (3.2)

The difference becween the cell-based and node-based versions is in the definitions of the

cell areas and the fluxes. Figure 3.1 shows the grid geometry for both algorithms. The solid
circles correspond to the locations at which the flow variables are defined. In each case the
appropriate area is the area of the shaded cell. In the cell-based scheme, the fluxes through
the faces are based upon the averages of F and G at the cell centers of the cells on either
side [31]. In the node-based scheme, they are based upon the averages of F and G at the

0

cell-centered scheme node-based scheme

Figure 3.1: Grid geometry for Jameson's Euler algorithms
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two ends of each face [30]. Eq. (3.2) can be re-written as

dU R. (3.3)
tT

In general, the definition of R includes additional numerical smoothing, but details of the

smoothing will not be presented here. The temporal discretization is performed using a

Runge-Kutta approach.

U(1) = Un-!&tRa

U(1) = Un- 1At R(M

U(3) = U' - AtR (2)  (3.4)

U -
+ 1 = Un- AtR (3)

U1 and U'1 are the state vectors at the old and new time levels, and U(1), U(2), U(3 ) are

intermediate values of U in the multi-stage algorithm. R", Rn+ , R(), R (2), R(3 ) are the

corresponding values of R.

Figure 3.2 shows the grid geometry for Ni's Lax-Wendroff algorithm [38,28,111. The

change in U at node 1, for one timestep can be written as a sum of contributions from the

four cells surrounding it.

AU 1 = 5UIA + 5UIB + 6Uic + 6UID (3.5)

The sum of the contributions which cell A 'distibutes" to its nodes is equal to the flux into

cell A, divided by its area.

8U1A+*5U2A+ 6U3A+SU4A = (Fn 5 +Gn,)As (3.6)
Aa cell A

The distributed changes have a first order component proportional to At, and a second

order component proportional to At 2 . The four first order components are equal, and so

.. 4 3

B A

1-2

C D

Figure 3.2" Geometry for Ni's Euler algorithm
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for very small timesteps the algorithm has the same spatial discretization as Jameson's

node-based algorithm. The second order terms introduce an element of upwinding which

stabilizes the numerical procedure and makes it second order accurate. Further details can

be obtained from the references.

3.2 Moving Grids

When calculating nonlinear flutter problems in which the unsteadiness is due to some

prescribed motion of the blades in the cascade, it is necessary to perform the calculation

on a grid which deforms to match the motion of the blades. This requires a generalization

of the basic numerical algorithms.

The modifications can be derived by examining either the differential or integral forms

of the Euler equations. Starting with the former approach, we define computational coor-

dinates , Y?, r.

x = x(f,,) 7 , f = (x, Y,t)

t=r , r=t

f and 7 have been chosen such that the grid is steady in the computational (C, n) coordi-

nates, and so the motion of the grid in the physical domain is fully contained in the time

dependence of the z and y definitions.

Applying the chain rule gives

au ac au a au U8
t =at a t Tv 7 at'

a _ aaF + aq aF (3.8)

aG a_ aG +a aG
= +

19Y aY 19 aY a7

Also, because the mapping from (z,y,t) to (,7,r) is the inverse of the mapping from

,7, r) to (z, y, t), the Jlacobian matrices of the mappings in the two directions must be

the inverse of each other.

1=1 (3.9)
or aa *e at)

Hence, after some tedious algebra, the transformed Euler equations become

8(JU) at a ay at+ ~ } kGar ) a 7

26



134

Figure 3.3: Moving control volume

1.y"[(F ) () 0 (3.10)

The four underlined terms are the additional terms due to the motion of the grid. J(r)

is the determinant of the mapping from (C,qi) to (z, y) which is the ratio of the areas of

corresponding infinitesimal volumes.

The integral approach to obtaining this same equation begins by integrating the Euler

equations over a control volume fQ which is no longer assumed to be fixed.

Wr a 8F 8G
]h - + - y) dx dy= 0 (3.11)

Now, because of the motion of the boundary afl,

d U dzd = a- id dv + U -ab-ii ds (3.12)

As shown in Fig. 3.3, the second term corresponds to the volume being swept out by the

moving boundary, with b being the velocity of the boundary. Hence,

d ffUdd ff I aGdxd f Uu.fndsT ./d jv= - Z _jz + Y "' = + n

- (f F -Uu&..)n. + (G- Uu,, ) n. da (3.13)

The underlined terms are again the extra terms due to the motion of the grid, with

a& U6 d (3.14)
dy

U6V (dt

Comparing the forms of Eq. (3.10) and Eq. (3.14) it is apparent that they are equivalent.

The algorithm changes required as a consequence of these extra terms are relatively

small. For Jameson's schemes, one needs to modify the flux terms and the time integration

27
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since the cell areas are no longer constant. At least as much work is required in the grid

generation task of producing a moving grid which conforms to the motion of the blades,

and in the graphical post-processing of the results produced on the moving mesh.

A final note is that the wall b.c. is that there is no normal flow relative to the moving

blade. Thus, the flux term for a wall face contains only pressure terms in the momentum

equations (which are the same in steady flow) and in the energy equation there is a term

corresponding to the work being done by pressure forces due to the motion of the surface.

0

(CF-UUb)n, + PG-Uu&,)n,) As - I (3.15)
pnAs

P 9b JAS

3.3 Inlet/Outlet B.C.'s

There are two steps in the construction of inlet and outlet boundary conditions. The first

is the construction of an appropriate phyical model for the flow at the inflow or outflow. This

is simply a uniform flow if there are no incoming disturbances. If there are disturbances then

these need to modelled. The procedure which I follow is to first model the incoming wakes

by specifying that in the wake frame of reference the flow has uniform pressure, uniform

flow angle and a prescribed velocity defect, which may have a Gaussian distribution or

some other form. If the upstream blade row is approximately adiabatic then one could

assume that the stagnation enthalpy is approximately constant. If one is concerned with

cold wakes, or incoming hot streaks, then a variation in the stagnation enthalpy would have

to be prescribed.

To model incoming potential disturbances at the inflow-or outflow, a linear analysis in
the potential frame of reference in which the disturbance is steady can be performed. This

assumes uniform entropy, uniform stagnation enthalpy and a prescribed velocity variation

based on linear eigenmodes. In subsonic cases the eigenmodes decay exponentially away

from the boundary and so one can assume that only the dominant fundamental mode is

important. In supersonic cases all modes propagate indefinitely, and so instead a linear

shock/expansion fan model is employed.

The combined model is

= U,h, unsteady nonlinear wake model

+ Upt unsteady potential perturbation (3.16)

+ 8U,.adv steady perturbation.

28



136

The steady perturbation term, which is taken from a previous steady calculation, is required

to ensure that the steady flow is still a solution to the unsteady flow problem when there is

no incoming disturbance.

The second step in formulating boundary conditions is their numerical implementation.

This is accomplished using a characteristic treatment. The two-dimensional, linear Euler

equations using primitive variables, and assuming no variations in the y-direction along the

boundary, are

0 U 0 U 0 1/p a U( + = 0 (3.17)

0 0 U 0 V
p 0 'Ip 0 U p

This can be diagonalized to obtain

C1 U 0u 0 0 O c1a 2 + 0= 0 a C 0 (3.18)at C3 0 0 u+C 0 ax CX

C4 0 0 0 u - c C4

The equations defining the transformation to and from characteristic variables are

C2 0 0 Pc 0 ( (3.19)

C3 0 PC 0 1

C4 0 -Pc 0 1

and

( (C1
I 0 1 1 I

0 4- 2c C2 (3.20)
0 0 0 CI

2 2

In standard non-reflecting boc.'s in which the flow is assumed to be uniform far from the

blade row, U is the pertarbation from the uniform far-field steady flow. The characteristic

variables c are set to zero for incoming waves and are extrapolated for outgoing waves. This

ensures that the outgoing waves 'pass cleanly through the boundary" without producing

any spurious non-physical reflections.

When there are incoming wakes and potential disturbances U is the perturbation from

the prescribed combined model. Again, the c's are set to zero for incoming waves and are

extrapolated for outgoing waves. Further details on the numerical implementation can be

obtained from Ref. [22).
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3.4 Stator/Rotor Interface

In the current literature there are four different approaches to treating the stator/rotor

interface for performing stator/rotor interaction caluclations.

The approach used by Rai is to use two grids, one fixed to the stator and the other

fixed to the rotor, which meet each other at a sliding interface, a line which is common to

both grids [42,43]. The numerical algorithm is constructed in a fully conservative manner,

with the flux through each segment of the common interface being carefully calculated from

values on either side.

Lewis also uses two grids which are steady in the stator and rotor frames respectively,

but the grids overlap by a few cells [37]. The numerical coupling procedure forms boundary

values for each grid's calculation by interpolation from the interior of the other grid. This

is not a conservative formulation and so will give inaccurate, and incorrect, results for flows

in which narrow wakes or shocks cross the interface.

Gibeling's approach uses just one grid which is attached two both the stator and rotor

blades [17]. As the rotors move past the stators the grid deforms steadily. At the end of

a blade-passing period, the flow solution is interpolated onto the computational grid which

existed at the beginning of the period, and a new period is begun. This is also a non-

conservative procedure, and the interpolation procedure will tend to smear any shocks and

wakes. In addition there are some severe limitations on the stator/rotor gaps which can be

analyzed, since very small gaps produce unacceptably high shearing of the computational

grid.

My approach is similar to Rai's except that a one cell gap is left between the stator

and rotor grids (21]. This gap is bridged by a line of shearing cells formed by connecting

stator boundary nodes to the nearest rotor boundary nodes. This produces cells which

become progressively more sheared until thay reconnect to different nodes. As shown in

.. .......... .... V

Stator Rotor

Figure 3.4: Shearing cells at stator/rotor interface
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P IV

Figure 3.5: Periodic boundary conditions with equal pitches

Fig. 3.4, the shearing cells are initially in the position indicated with solid lines. As the

rotor grid moves, they pass through a stage shown with dotted lines. Finally they end

up in the position indicated with dashed lines, and at this moment they are readjusted,

by changing the logical connections in the program, to the original solid-line cells. Since

the shearing cells all have the same area, this process is completely conservative. The flow

algorithm uses Ni's Lax-Wendroff scheme with moving-grid modifications for the shearing

cells. For the maximum computational efficiency, the calculation on the main rotor grid

uses rotor-relative flow variables so that the grid is steady. At the interface one must be

careful in converting between stator-relative and rotor-relative variables, particularly in the

construction of the numerical smoothing.

3.5 Periodic B.C.'s

When performing a stator/rotor calculation in which the stator and rotor blade pitches

are equal, as shown in Fig. 3.5, the periodic boundary condition is very simple. It is assumed

that what is happening on the upper periodic.boundary is exactly the same as is happening

on the lower perioidc boundary, at the same time.

U(, Y +P, t) = U(Z, Y,t) (3.21)

In this equation P is the blade pitch. Strictly speaking this statement is an assumption,

which may be incorrect for viscous flows. If there is vortex shedding at the trai ng edges

there is no particular reason to believe that the shedding at neighboring blades will be

in phase. Equation (3.21) prevents the possibility of non-synchronized shedding, but it is
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Figure 3.6: Periodic boundary conditions with unequal pitches

believed that this is not a serious error. To check this, calculations could be performed using

multiple blade passages, for example with four stators and four rotors, with the periodic

boundary condition having P replaced with 4P. If there are no significant differences then
it will show that our assumption is reasonably valid, or at least is a good approximation.

When performing a stator/rotor calculation in which the stator and rotor blade pitches

are not equal, as shown in Fig. 3.6, the periodic boundary condition is much more compli-

cated. If, as indicated, the rotor pitch is smaller than the stator pitch, then at one instant

the lower rotor is aligned with the lower stator, and a little later the upper rotor is aligned

with the upper stator. The time delay is equal to the difference in pitches divided by the

AT = (P, - P,)/V (3.22)

The periodic boundary condition therefore has this time delay built in. On the stator side

of the interface, the boundary condition is

U(z, y + P,, t) = U(z, y,t + AT), (3.23)

while on the rotor side it is

U(z, V + P,, t) = U(z, y, t + AT). (3.24)

The question now is how to implement the periodic boundary condition. In the equal

pitch case it extremely simple. The boundary condition is exactly satisfied by logically

32



140

t dummy

t-AT

t -(T -AT)

0

0P 1/

Figure 3.7: Erdos periodic boundary condition treatment

equating the nodes on the lower and upper periodic boundaries, saying that the corre-

sponding periodic nodes are in fact the same node.

In the case of unequal pitches this no longer works. The first solution developed for

this problem is due to Erdos [16]. As shown in Fig. 3.7, Erdos implemented the periodic

boundary conditions by using a line of dummy nodes just outside the computational do-

main. The dummy nodes on the upper periodic boundary are updated by using the lagged

boundary condition and setting their values equal to the values on the lower boundary at

the time AT earlier. The dummy nodes on the lower periodic boundary are updated by

assuming that the flow field is periodic in time, with period T equal to the blade-passing

period. Thus,

U(z,y,t) = U(z,y,t - T) = U(z,y + P,t - (T-AT)). (3.25)

This allows the lower dummy nodes to be set from stored values along the upper boundary.

There are three problems with this approach. The first is it requires a lot of storage,

which becomes a particular problem in three dimensions. The second is that the lagging of

boundary information greatly delays convergence to a periodic state. The third, and most

serious problem, is the assumption that a final temporally periodic state exists. This is not

true in viscous applications with multiple frequencies, such as will occur when the blade

passing and vortex shedding frequencies are independent. Thus Erdos' method is limited

to inviscid applications.

I have developed an alternative approach of 'time-inclined computational planes" which

overcomes the limitations of Erdos' method. The basic concept is illustrated in Fig. 3.8.

Whereas usually all of the nodes in a computational time-level are at the same physical

time, in this technique the computational plane is "tilted' such that nodes at different

values of V are at different times. In particular, the nodes on the upper periodic boundary

j _33
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Figure 3.8: Giles periodic boundary condition treatment

are exactly AT later in time than the corresponding nodes on the lower periodic boundary.

Thus the lagged periodic boundary condition can be trivially implemented again by logically

identifying the upper and lower as being the same.

Mathematically this technique corresponds to a transformation to new computational

coordinates.
z ! = z

= Y (3.26)
t' = t-AY,

where

A = ATIP. (3.27)

Under this transformation, the periodic boundary condition becomes simply

U(z', + P, t') = U(z', Y, t'), (3.28)

and the Euler equations become

a 49F aG(U - AG) + - + p=0(.9
TV Y,(3.29)

For a perfect gas U can be calculated directly from U-AG, and so the modifications to

the basic algorithm turn out to be relatively minor, involving at most an additional 15%

computational effort.

Further information can be found in a number of references [22,20,19,18].

As an example of the kind of calculation which can be performed with an Euler method,

Fig. 3.9 shows several snapshots of one period of a stator/rotor interaction. This a transonic

turbine stage in which the stator and rotor outflow Mach numbers are both approximately

1.1. Consequently, there is an oblique shock system at the trailing edge of both stators and
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rotors. In the case of the stators upstream, one oblique shock propagates upstream to the

neighboring stator, and then reflects downstream. The other shock propagates downstream

and strikes the downstream rotor. This produces a reflected shock, one part of which moves

across to the neighboring rotor, and the other part of which moves upstream again to the

next stator. This interaction leads to extremely large unsteady forces on the rotor, which

in practice could lead to significant blade vibration. This calculation required slightly less

than the equivalent of one hour of CRAY CPU time. At this speed and cost, it is still

not practical to perform large numbers of calculations on a regular basis. However, it is a

very practical tool for investigating specific engineering problems or for use as a research

tool to understand specific physical phenomena. It is quite possible that within ten years

the leading gas turbine manufacturers will be using such codes on a regular basis in their

design systems for the assessment of unsteady forces in cases where the linear methods are

considered to be not sufficiently accurate.

3
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Figure 3.9: Pressure contours in unsteady stator/rotor interaction
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Chapter 4

Unsteady N-S Methods

4.1 Basic Equations

The two-dimensional, compressible N-S equations are

aU aF aG
+ -+ = T-0(4.1)at ax 8t

where

(u Pt,
Pu pu -- z

FPu 2  G puv - rz (4.2)
puV - +,2V  pV2 + p - 4V.

puH - ur.2 - ,.v* + qJ pvH - ur, - vr2 v + qY

The following auxiliary equations are needed to define the stresses and heat conduction

terms.

(u2a)4av 28u auav) (3)"z = 'vv ia / jy" = iax r/ , - = , 'U + (4.3)

aT aTqz=k " ,  qu = k Y(4)

To understand qualitatively the nature of a viscous flow it is helpful to form order-of-

magnitude estimates of the length scales and time scales involved. Steady-state boundary

layer length scales can be estimated using the following variables which represent typical

values of certain important parameters.

" L = length scale for variations along boundary layer

" 6 = length scale for variations across boundary layer

" U = typical magnitude of velocity alon, boundary layer

" V = typical magnitude of velocity across boundary layer

" Y = typical magnitude of kinematic viscosity

Matching viscous and convective terms in the z-momentum equation givesU, , U 6)-1/2 P 1,
52 (UL -- .- 1/2 (4.5)
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Similarly, matching terms in the mass equation gives
V 6~ 8 

(4.6)

Three time scales can also be estimated on an order-of-magnitude basis. The first is the

convection time scale which is the time taken to convect the distance L.
_L

T, = L (4.7)

The second is the time scale for diffusion of momentum across the boundary layer.

Td = 2= (') 2 UL L£ ~ r 0(4.8)

As this equation shows, the diffusion time scale is comparable to the convection time scale.

The final time scale is the time required for a pressure wave to cross the boundary layer.

This time scale is important because it is the one which determines the maximum stable

time-step for explicit algorithms, and it turns out that it is very much smaller than the

convection time scale for the large Reynolds numbers which are typical in turbomachinery.

6 U8L
Tp = = ~ T AUMRe - / T <T (4.9)

Based on the fact that 6 << L, one often uses the thin-shear-layer version of the Navier-

Stokes equations in which streamwise diffusion is ignored, and the definition of the remaining

stress terms is simplified accordingly.

_ U +P Pt,-.U
F = Pu G = + (4.10)I i ' )u

puH pvH - puup - kT V

It is important to note that using a coarse grid in the streamwise direction has a similar

effect, since even if the full N-S equations are used the numerical smoothing terms in the

strearnwise direction will be substantially larger than the streamwise viscous stresses.

4.2 Turbulence Modelling

Turbulence modelling is an extremely important subject which has already been covered

by other lectures in this series, and is also presented in an excellent review paper by Rubesin

[451. However, there are some brief comments which I would like to make on the subject as

it relates to the calculation of unsteady flows.

There are three major classes of turbulence model which are used in engineering calcu-

lations of steady flows. The first clans is algebraic models, of which the Cebeci-Smith [9]
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and Baldwin-Lomax (41 models are probably the best known examples. In these models the

effect of the turbulence is modelled by a turbulent "viscosity" jut which is based on the local

boundary layer velocity profile. This approach is very good in the inner layer of a turbu-
lent boundary layer (the so-called laminar sub-layer and the log-law region) because that
part of the boundary layer is in a dynamic equilibrium between the generation, diffusion

and dissipation of turbulence, with characteristic length scales and time scales which are so
small that the turbulent mixing exhibits very little "history" of the nature of the boundary

layer further upstream. In the outer (wake) region of the boundary layer, the time scales

are much longer and so history effects are more significant, and the algebraic models are

more in error.

The one-half equation models, of which the Johnson-King model (321 is a good exam-
ple, attempt to rectify the principal weakness of the algebraic models by using the same

inner layer defintion and an outer layer formulation in which an o.d.e. is integrated in the
streamwise direction to provide time lag effects.

The third class of methods is based upon the solution of one or more partial differential

equations. In the one equation models, such as the Wilcox-Rubesin model [52], At is based
on an algebraically specified mixing length I and a turbulent kinetic energy k which is

calculated by solving a convection/diffusion p.d.e. In two equation models, such as the
Jones-Launder model 133], jt is based on the turbulence dissipation rate c and the turbulent

kinetic energy k, both of which calculated by solving a convection/diffusion p.d.e.

Having briefly listed the main characteristics of the most popular turbulence models,
let us now examine some of the problems which are encountered in unsteady flows in tur-

bomachinery.

The first problem is wake/boundary layer interaction. Experiments by Doorly at Ox-
ford have shown that the passage of a turbulent wake over a laminar boundary layer can
cause that boundary to undergo premature transition [13,46]. Unsteady heat transfer mea-

surements clearly show that the heat transfer changes from a laminar value, to a turbulent

value as the wake passes by, and then later returns to a laminar value when the boundary
layer re-laminarizes. None of the current turbulence models have been developed with such

a situation in mind, and so extensive work may be required to extend them to include the

effect of intermittent freestream turbulence. The models which are based upon a p.d.e. for
the turbulent kinetic energy seem the moet likely to succeed in this regard.

A second problem is shock/boundary layer interaction. Doorly's experiments also show
a shock impinging near the leading edge of a downstream blade which produces a separation
bubble which later collapses and appears to form a turbulent spot which grows and convects
downstream. Another area of shock/boundary layer interactions is in transonic diffusers,
in which the interaction with acoustic feedback can lead to a self-excited instability. It
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seems very likely that the accurate calculation of this will depend critically on unsteady

turbulence modelling incorporating the correct time delays and growth rates, but this is an

area which has not been extensively studied.

A third problem is vortex shedding. The boundary layers at the trailing edges of tur-

bines are turbulent, but the basic mechanism behind vortex shedding is not a turbulent

process. However, turbulence models treat the extremely high velocity gradients in vortices

as "turbulence producing" leading to large values of turbulent viscosity and therefore rapid

diffusion. Experimentally, it is known that vortices can convect a large distance before

breaking down into turbulence, but this is not what will be predicted by current turbulence

models.

These personal comments are not meant to be overly critical of the current turbulence

models. As stated at the beginning of this section, turbulence modelling is an extremely dif-

ficult area, and progress in validating new modelling concepts requires very time-consuming

numerical testing. However, some of the above problem areas will need to be addressed in

the future if we are to successfully predict the heat transfer and losses produced by unsteady

flows in turbomachinery.

4.3 Periodic B.C.'s

As with the inviscid equations in the last chapter, there is a time lag in the periodic

boundary condition in cases in which the stator and rotor pitches are not equal. This time

lag is overcome by again using the concept of "time-inclined" computational planes, as

introduced in the last chapter. The transformed N-S equations are

(Q a a 0 (4.11)

where

Q = U -AG (4.12)

The difference from the inviscid time-inclined equations is that now F and G include vis-

cous stress terms, and so Q contains derivatives of U and there is no simple algebraic

transformation from Q to U.

The solution to this problem is to simply ignore the derivative terms in Q), or equivalently

to replace Q by U-AGi.i.ij. This procedure can be justified for large Reynolds numbers

as follows. Time derivatives are comparable in magnitude to streamwise spatial derivatives,

and so
a82u (=o 0ReI) xl (4.13)
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Figure 4.2: Low Reynolds number domain of dependence

Therefore, the neglected terms are comparable in magnitude to the terms which are dropped

in the usual thin-shear-layer N-S equations, due to their being much smaller than the

dominant diffusive terms in the boundary layer.

An alternative approach which would also work for high Reynolds numbers is to use
"time-tilting" only outside the narrow viscous regions around each blade, and in each wake.

This idea is illustrated in Fig. 4.1. The high-Reynolds number assumption is required to

ensure that the wakes and boundary layers form a small fraction of the total domain.

Both of the above approaches fail at low Reynolds numbers. This is correct and proper

since, as shown in Fig. 4.2, parabolic equations have infinite speed of propagation of informa-

tion and any inclined computational plane will not fully include this domain of dependency,

and so cannot produce the correct solution.

4.4 Algorithms

Several researchers have developed explicit algorithms for the Navier-Stokes equations

which are a natural extension of corresponding methods for the Euler equations. For exam-

pie, Chima [101 has developed a Navier-Stokes extension of Jameson's cell-centered scheme,

and Davis [121 has developed a Navier-Stokes extension of Ni's Lax-Wendroff algorithm.
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The primary advantages of these explicit methods are that they are relatively simple,
very easily vectorized on today's-vector and parallel computers, and can be used on un-

structured meshes with grid adaptation.

The disadvantage with these methods for unsteady calculations is the timestep restric-

tion. For a convective process, the timestep limit is

At < -- T, (4.14)

L
where T. is the convective time-scale defined earlier in this chapter. For the process of

diffusion across the boundary layer, the timestep limit is

At < - ) Td (4.15)

Since T, is of the same order as Td, these two restrictions are comparable, assuming the

number of points across the boundary layer is not much more than 20. The limiting timestep

restriction, however, is due to the propagation of pressure waves across the boundary layer.

This limit is

For typical Reynolds numbers of 106, this places a very severe restriction upon the maximum

stable timestep. In steady calculations, this problem is overcome to a large extent by the

use of local timesteps, implicit smoothing and multigrid acceleration techniques. However,

typical unsteady calculations require 10 iterations per blade-passing period.

The only true solution to this difficulty is the use of an implicit method. To present the

full spectrum of implicit algorithms, it is helpful to begin with the fully implicit nonlinear

scheme. On a regular Cartesian mesh, as shown in Fig. 4.3, the Navier-Stokes equations

U 8F aG

-t- + + -Y = 0 (4.17)

can be approximated using Backward Euler time discretization as
U.+1-uL A'(f '- (G+ G"', (4.18)

It is important to note that the viscous fluxes F and G include derivative terms. These

are evaluated using the nearest surrounding nodes. For example, the inviscid compo-

nents of F,+I i are based on U,,h and Ui+,k, while the viscous components also involve

U5,,-, U.+.,k-, U',U+, Ui+,,,k+l. Thus, all nine sets of flow variables shown in Fig. 4.3 are

involved in defining the fluxes into and out of cell (j,k).

The fully implicit scheme as it stands so far is a nonlinear system of equations for U at

the new time-level. Since this system cannot be solved in closed form, the next step is to

linearize it. Conceptually, linearizing gives

Fn+1 ; F" + A AU, (4.19)
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ijk

0 0 0

Figure 4.3: Flow variables used in cell-centered implicit N-S algorithms

where

This equation is deceptively simple in appearance, since A is actually a 4 x 24 matrix

representing the derivatives of each component of F with respect to each component of U

at the six locations involved in the definition of F. Linearizing Gn+l in a similar manner

gives the following, linearized, fully implicit scheme.

I At At " n t !At (421
IItS) AU =- XAF

There are several good features to this scheme. The main one is that it is unconditionally

stable for a linear, convection diffusion problem. Also, for the same linear problem with

implicit boundary conditions in the limit at - oo it gives the steady-state solution in one

step. For unsteady calculations, the choice of At is limited only by the accuracy desired.

The bad news about this method is that because the implicit operator includes all nine

neighboring AU's the number of operations required to solve the linear system of equations

is 0(JP) for a two-dimensional JxJ grid, and 0(J7 ) for a three-dimensional JxJxJ grid.

This is considerably more than the 0(J) and 0(J 3)j operations required per timestep for

an explicit method in two and three dimensions, respectively.

To overcome this problem of efficiency, Beam anu Warming developed the technique of

approximate factorization [5]. Under this procedure the linear, fully implicit operator is

factored approximately to give

( At At ) at 6j\ At 6G (4.22)

which can be rewritten in two steps as

t A t at n
I +L A) AU* = Ax8P 51G

(I+ 6,2) SV AU = AU* (4.23)
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In two dimensions this algorithm is still unconditionally stable for the model linear

problem. In three dimensions, it is unconditionally unstable for the model problem without

any numerical smoothing. However, the instability is extremely weak, and is cured by

the addition of the standard numerical smoothing. The implicit operators are now one-

dimensional, and so the solution requires only block tri-diagonal inversions. Consequently,

the computational cost is reduced to about 5 times more than an explicit scheme.

The efficiency gains have not been achieved without paying a cost. The factorization

error which has been introduced is
At 2

A 6,A 5YB Au. (4.24)

This is second-order when At = O(Az), but becomes much larger when At > Ax, Ay.

In the limit as At - oo, the convergence rate actually goes to zero, and the optimal

convergence occurs when Ax
At ,- 5 u (4.25)

Jul + c
This behavior means that implicit schemes have no significant advantages over explicit

schemes for the Euler equations, and only emerge as winners in the solution of the Navier-

Stokes equations because of their timestep being independent of the extremely tight grid

*spacing across the boundary layers.

* One important point which needs to be mentioned is the potential ill-conditioning of the

implicit operator. For the scalar convection equation the 1-D implicit operator obtained

using central differencing has the following form.

1 A

-A 1 A
-A 1 A

A-A 1 A (4.26)S-A 1 A

~-A 1 A

[ -A 1

where
A t= -(4.27)
2Az

This matrix is ill-conditioned for A > 1, and will lead to very large amplification of machine

roundoff error. This potential problem is overcome by either adding implicit smoothing, or

using upwind differencing (431.

To eliminate the splitting error introduced by the factorization, a number of researchers,

such as Rai [43], use the technique of sub-iteration. What this means is that there is an
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iterative process embedded within each timestep. The process begins by setting

AU=O (4.28)

The next step is to calculate 5U using the following factorized discrete equation.

+ U = 6(F+AAU)- - +BAU) (4.29)

The third step is to define an improved value of AU by

AU "e = AUold + 6U. (4.30)

One then can iterate by repeating the last two steps as often as one wishes.

Iterating once gives the standard factored algorithm. Iterating very many times con-
verges to the AU which is the solution of the linear, fully implicit method. In practice, Rai
usually iterates three times, and finds that this eliminates most of the factorization error.

Another algorithmic approach to solving the Navier-Stokes equations is a semi-implicit
scheme in which an explicit algorithm is employed in the streamwise direction, and an
implicit algorithm in employed in the normal direction (1]. In this scheme the timestep is
restricted by the streamwise CFL limit, and so it retains the efficiency of implicit algorithms.
One of the principal features of this method is that it allows the use of an unstructured

mesh in the streamwise direction (and in the crossflow direction in three dimensions).

A completely different class of methods are hybrids, in which the Navier-Stokes equations
are solved using one algorithm in the viscous regions, the boundary layers and possibly the
wakes, while the Euler equations are solved with a different algorithm in the remaining

majority of the flow field. The two calculations are coupled together by a conservative flux
treatment at the interface. The reasons for this approach are that explicit node-based Euler
algorithms are second order accurate on flexible unstructured grids, while the implicit cell-

based Navier-Stokes algorithms are efficient and second order accurate on smooth structured
grids which are easily generated for the boundary layer on blades. One example of this

approach is an algorithm developed by Krouthin [36]. This algorithm uses Jameson's cell-

centered spatial discretization in both regions. In the inviscid region a multi-stage algorithm
is used for the time integration, while in the viscous region the Beam-Warming approximate

factorization method is used.

To illustrate the capabilities of unsteady viscous capabilities, Figs. 4.4 and 4.5 present
results from a paper by Rai (441, in which he calculates a two-dimensional viscous sta-
tor/rotor interaction with an incoming hot streak from the combustor upstream. The first
figure shows temperature contours at one particular instant. Note that there is clear indica-
tion of vortex shedding at the trailing edges of the rotors. The second figure is a comparison

with an experiment performed by Butler et aL (71. The plotted variable is the difference
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Figure 4.4: Temperature contours in unsteady hot streak calculation

between the average surface temperature and the temperature of the cold fluid, divided by

the difference between the average temperature of the incoming fluid (including the hot

streak) and the cold fluid temperature. A value of 1.0 is what would would be expected

from a linear analysis. A value greater than 1.0 corresponds to an accumulation of hot

fluid, and experimentally this is observed to occur on the pressure surface, and can lead

to excessive temperatures on the rotor. Because of a number of differences, such as three-

dimensionality, between the experiment and the calculation, there is very poor agreement

between the two. Another numerical investigation by Krouthin (361 examined the role of

various variables, but achieved only slightly better agreement. Theme calculations by re-

quired the equivalent of a few hours of CRAY CPU time. This larg cost means that these

methods are not yet suitable for regular 'production' use as part of an engineering design

system. It is also partly resposible for the fact that much work remains to be done in the

validation and application of Navier-Stokes methods for unsteady flows. However, the use

of these methods will probably grow rapidly over the next ten years as computer speeds

increase and the costs decrease.
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APP IX B

UNSTEADY FLOW IN TURBOMACHINERY:
BASIC PHENOMENA AND PRACTICAL ASPECTS

E.M. Greitzer and C.S. Tan
Gas Turbine Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

ABSTRACT

A survey is presented of some of the unsteady flow phenomena associated with modem
high performance turbomachinery. The central theme is that increases in performance canbe achieved through improved understanding of unsteady flow and incorporation of this
understanding into turbomachinery design. Within this overall theme, three main aspects
are addressed: 1) the impact that unsteady phenomena can have on so-called steady state
performance including interpretation of steady-state instrumentation results, 2) the consid-
erable recent progress in one's ability to compute and to measure these flows, and 3) the
new possibilities for using different types of non-uniformities (spatial as well as temporal)
to control the flows of interest and thus to enhance the performance of advanced turboma-
chines and propulsion systems.

1. INTRODUCTION

It is a textbook item to state that turbomachines depend on unsteady fluid dynamic process-
es for operation and that turbomachinery flows are inherently unsteady. In spite of this, for
the majority of current design procedures, unsteadiness tends either to be avoided, by
adopting coordinate systems moving with the local blade row of interest, or neglected by
assuming that the effects of upstream rows are "mixed out" and potential field effects of
downstream rows are negligible. In situations where it is recognized that unsteadiness can
impact performance, non-steady effects are often accounted for using correlative proce-
dures, rather than by any truly unsteady calculation.

Work on unsteady fluid flow in turbomachines has thus been concentrated on areas where
one cannot, even on the most basic level, avoid dealing with non-steady phenomena, for
example aeroelasticity, flow instability, and noise. Even for these problems, however,
much of the approach to "prediction" in the design process has been basically empirical.
While the various correlations that have been developed provide very useful guidelines
over certain regimes, they are often not based on a solid understanding of the fluid physics
and hence not capable of extrapolation or extension.

There now appears to be growing recognition that to improve the performance of turboma-
chines further, one will have to better understand the unsteady flow effects. In this paper,we will discuss some of the unsteady phenomena that affect turborachinery operation, re-view some of the progress that has been made over the past decade or so in these areas and,

Survey paper presented at Joint US-Korea Fluids Engineering Seminar,
September 1989.
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where appropriate, attempt to point out relevant new research areas. The common thread
is the view that increased performance can be obtained through a deeper understanding of
unsteady effects.

2. GENERAL BACKGROUND AND SCOPE OF THE PAPER

Some brief comments should be made concerning the material to be presented. We stress
that the paper is not meant as an all-inclusive survey, but rather as a more personal per-
spective on the topic of unsteady flow in turbomachines. As such, a large fraction of the
examples and illustrations have been taken from work carried out at MIT and at Cam-
bridge University, simply because the authors are most familiar with the research in these
two institutions. The aim, however, is to present the reader with a view of the state of the
art as far as research efforts and important problems to be attacked in the field. Through-
out the paper, emphasis will be placed on giving useful, if introductory, descriptions of the
phenomena that characterize these unsteady flows in advanced turbomachines and propul-
sion systems.

There were several good reviews of unsteady flows in turbomachines written in the mid
1970's [1], [21, and it is of interest to compare problems and approaches between then and
now. First, the situation with respect to computations of unsteady flow has changed con-
siderably. A decade ago, most unsteady computations were for inviscid flow past lightly
loaded blades, with just the beginnings of procedures being developed to include loading.
There now exist methods to compute (albeit with some questions concerning turbulence
modelling) unsteady viscous flow past two- and even three-dimensional blade rows.

The difference in computational power is not just quantitative, for example, slightly better
computations of pressure distribution. Rather, it is that one can now carry out "numerical
experiments" using the computation to interrogate physical phenomena. This has been the
situation for some time in other areas of fluid mechanics (two-dimensional vortex dynam-
ics is one application) where the configurations are simpler, but the ability to do this in a
turbomachine geometry is fairly new. We will see below several examples where numeri-
cal computations have provided at least tentative conclusions about phenomena which
were previously not at all understood.

The situation is also different experimentally, because one can now routinely store and re-
duce a large amount of unsteady flow data, as well as conditionally sample an unsteady
flow field so that data taking is keyed to times when interesting events occur. This has
made it possible to examine topics such as the structure of rotating stall cells [3], [4], wake
transport through blade passages [5], and unsteady transition in turbomachine boundary
layers (6], [7], [8]. From an experimental as well as a theoretical/computational viewpoint,
therefore, the situation is qualitatively different than at the point of (1] and (21, and we will
attempt to further point up these differences with specific examples.

The organization of the review is as follows. The next section is a short discussion of
some basic features of unsteady flows; this serves as an introductory framework from
which to view the subsequent examples. We then describe some effects of unsteadiness in
situations where the flow into the machine is (nominally) uniform and steady, and where
the machine is at, or near, its design point. This includes mass flow capacity in transonic
compressors, wake induced transition of blade boundary layers, and implications of flow
unsteadiness for data analysis. Following this, several situations with operation at off-
design conditions are examined, starting with non-uniform inlet flows (distortions). Insta-
bilities in compressors and compression systems are then addressed, with respect to incep-
tion as well as to behavior subsequent to instability onset. This leads naturally into a dis-
cussion of the dynamic control of instability, either through active means or through
tailoring of the system structural properties. The final topic examined is mixing in turbom-
achines, as regards both mechanisms and opportunities for its control.
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3. SOME BASIC FEATURES OF UNSTEADY FLOWS

There are several features of unsteady flows that are of interest in the present context. First
is the potential for the addition or abstraction of energy. In an inviscid, adiabatic flow with
no body forces, unsteadiness provides the only mechanism for changing the stagnation en-
thalpy of a fluid particle, as shown in the equation for the rate of change of stagnation en-
thalpy along a pathline:

Dht I ap

A second feature, perhaps less well appreciated, concerns the variation in time average
stagnation pressure seen in an unsteady flow. The point can be illustrated using the mo-
mentum equations for incompressible inviscid flow. If the velocity is written as a time
mean plus a fluctuating part, with the former denoted by an overbar and the latter, which is
not necessarily small, by a prime, the momentum equation can be written:

av' VPt
v (v + v') x (o x o) =

Taking the time average of this yields

v x .0) + V'XO)' -
P

If the time mean flow is irrotational, this is
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Time mean gradients in stagnation pressure due to unsteady flow will thus occur only if the
unsteady velocity field is rotational*. Many of the unsteady phenomena of interest in tur-
bomachinery are, in fact, associated with some type of vortical structure. The above two
features are closely related since the second implies that the (unsteady) static pressure field
associated with the change in stagnation enthalpy is due to some type of vortical structure,
for example a row of "bound vortices" which represent a turbine or compressor blade row.

A third aspect, which we will see in several different applications, is the susceptibility of
so-called steady-state flows to substantial alteration due to flow instability. This implies
the possibility for qualitative, not just quantitative, changes in flow regime due to unsteady
perturbations.

One additional point to be noted is that often one's "intuition", which has been developed
for steady flow situations, does not apply in cases where there is strong unsteadiness. The
stagnation enthalpy is no longer constant along a streamline, the blade force versus inlet
angle relations from steady flow are not valid, and it is no longer sufficient that the square
of the Mach number be small for compressibility effects to be absent.

It is useful in what follows to refer to some measure of how unsteady a given flow is. For
this, an appropriate parameter is the so-called "reduced frequency", which can be intro-
duced as a ratio between the time for the flow to change significantly and the time needed
for a fluid particle to connect through the device of interest. If the unsteadiness is periodic

* An instructive discussion of this point in a quite different context is given in [9], where
the idea of a vortex force, i.e. "an effective force on unit volume of fluid equal to density
times vorticity times velocity", is introduced.
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with predominant frequency, w, the length of the device is L, and a characteristic velocity
is U, this non-dimensional parameter can be written as

Reduced frequency - flow through time (oL
flow change time -- U

Values of reduced frequency much less than unity imply that unsteady effects are small
and that the flow can generally be considered quasi-steady, while those much larger than
one mean that unsteady effects are dominant. Many turbomachinery applications have re-
duced frequency of order unity or higher.

4. UNSTEADY EFFECTS ON UNIFORM INLET FLOW PERFORMANCE:
DESIGN POINT OPERATION

Even with nominally "uniform" inlet flow into a multi-row machine at the design point, it
is apparent that there are sources of unsteadiness both upstream and downstream of a given
row, due to the presence of neighboring blade rows. There are also unsteady effects that
are self-excited, such as vortex shedding and motion of the separation location; these can
occur even in an isolated rotor. For many of these effects, the reduced frequencies are of
order unity or larger*. Also, in modern aircraft compressors, the trend of decreasing aspect
ratios means that both wake and potential flow effects (the latter of which scale as the
blade pitch) are more important than previously.

4.1 Flow Capacity Variations in Transonic Stages

The first example that we present has been described in connection with the performance
of transonic stages (stages where the rotor Mach number is greater than one over a signifi-
cant portion of the span) in multistage compressors [10]. Experiments are cited in which
the flow into a stage was found to be too high by several percent. This is of concern be-
cause the stee. ness of the speedlines in these types of stages means that overflowing leads
to performance with low efficiency.

It was hypothesized that the higher flow capacity was linked to the circumferential non-
uniformities at rotor inlet, which are seen by the rotor as an unsteady flow. A supporting
circumstance was that the compressor had a low aspect ratio, which implied that the non-
dimensional spacing between the blade rows was also low, and the wakes have much less
opportunity to mix out. (As pointed out in (101, for a given level of diffusion, compressor
wake thickness scales as blade chord.)

To investigate this idea, unsteady, two-dimensional, viscous flow computations were car-
ried out [I l) for the rotor, using the measured stator exit profiles as upstream conditions.
The results of the computations (which one can regard as a numerical experiment in the
spirit described above) are shown in Figure 1, where flow capacity of the blade row is seen
to be increased over the situation for uniform inlet flow with equivalent mass averaged
conditions.

The significance of this result is discussed very wel' -1 (10] where the central theme of this
paper is also expressed. Adverse consequences - he a mismatch of the stage - can result
due to unsteadiness and present design methods do n, : account for this. In addition, as
shown in the computational studies reported in (121, the parametric dependence of the ef-
fect is not simple and its influence on new configurations is unknown.

* For problems of rotor-stator interaction, consider the rotor and stator to have roughly
equal chords and solidity of unity. If the relative velocity is taken to be approximately
equal to wheel speed, the value of the reduced frequency is 27c.
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4.2 Wake Effects on Boundary Laver Transition. Loss. and Heat Transfer

When wakes pass through a following blade row one can show simply, from velocity trian-
gles, that they will have a cross-passage "slip" velocity relative to the mean flow. Wakes
will thus impinge on the pressure side of a compressor blade passage and the suction side
of a turbine blade. One effect of the wake transport is redistribution of stagnation enthalpy
[1]; another is the influence on laminar-turbulent transition. In turbomachinery, blade
boundary layer transition is strongly linked to the periodic local variations in turbulence as
the wakes pass.

The location of transition affects overall loss as well as heat transfer. As an example, com-
parison of losses for a turbine blade section tested in a linear cascade and as a rotor showed
the loss to be approximately fifty percent higher in the latter. Boundary layer measure-
ments from these tests are presented in Figure 2, which shows the time averaged shape fac-
tor, H, on the suction surface, for the turbine rotor and the linear cascade [6]. Results from
a turbulent boundary layer calculation are also plotted. Over much of the blade surface,
the time averaged shape factor has a value which is midway between the laminar and fully
turbulent boundary layers. The same is true for the heat transfer as shown in Stanton num-
ber measurements (for another turbine section) in Figure 3 [13].

One view of the process leading to the data of Figures 2 and 3 is given schematically in
Figure 4, which shows an x,t plane (i.e. the diagram refers to a two-dimensional blade/
wake configuration). In the figure, the shaded areas are regions in which the boundary
layer is turbulent. Transition is taken as occurring at a location T whenever a wake passes.
The process is seen as analogous, in many ways, to turbulent spots, which are created
when the wakes impinge at T (although the turbulent spots seen in "natural transition" in
conventional boundary layers occur irregularly across the span of the flow, while the struc-
tures here are two-dimensional). The analogy appears to be a useful one and has formed
the basis for a heuristic model of unsteady transition, using the idea that the wake causes
an initial production of turbulent "strips" which then propagate and grow along the blade
surface independent of the subsequent wake motion [14], in similarity with the evolution
of a turbulent spot.

At higher Mach numbers, unsteady shock impingement on the blades can also affect transi-
tion, not directly by shock wave-boundary layer interaction but by initiating a local separa-
tion which causes a turbulent "patch" that propagates downstream. Discussion of this is
given in [7], using time resolved heat transfer data at different locations along an instru-
mented transonic turbine cascade, with bars moving in front of it.

The influence of wake passing on blade boundary layers has also been examined for com-
pressor blades in a rig [151 and in a specially designed large, low speed cascade with an
upstream grid of moving rods of it [16]. In constrast to the turbine, however, the presence
of wakes did not have a significant effect on the exit boundary layer properties, compared
to the situation without wakes, even though the detailed transition process was quite differ-
ent in these cases [16].

The periodic transition process has a clear technological importance for turbomachinery.
Its recognition, however, is even more important as far as phenomenology; accounting for
unsteadiness, even in a simple fashion, leads one to results which are much closer to the
actual machine behavior.

4.3 Modelling of Mullistage Turbomachinerv Performance

All the examples discussed so far are really parts of a broader problem, that of modelling
the behavior of multistage turbomachines. If one starts from direct application of the equa-
tions of motion, it rapidly becomes clear that there are a wide range of length and time
scales that must be dealt with, even if one excludes detailed description of the turbulence.



165

0.005 o Rotor
0Cascade

0.004
' 00

E~ 0.003
00 0

o '0
E0.002- 0

C 0

0.001 -Calculations:
T urbulent

--. Transitional
0-

0 1.0 2.0

Streamwise Distance/Axial Chord

FIGURE 3. Stanton Number distribution on rotor and cascade (131.

Start of Wake- Natural
Induced Tran~siton Transition

3 A

M

- - ~ -. A ]Turbulefit
- ' ALaminar /

A,'

A,

A0 - -

II

0.0 0.2 0.4 0.6 .0.8 1.0
Distance/Chord

FIGURE 4. Schematic distance-time diagram of boundary layer states showing case of
end of forced transition (at M) before natural transition (constant free-stream velocity).
Line AA indicates free-stream velocity [8].



166

One approach to this task has been proposed in (171 and [18]; this provides the rigorous be-
ginnings of a road map for an attack on this problem.

Although one can formally reduce the complexity of the flow field by averaging, either
spatially or temporally, this brings in (unknown) correlation and body force terms, similar
formally (although not in content) to Reynolds' stresses. Many of the terms in the correla-
tions, however, do not appear to be important in a practical sense. Further, those that are
important may well be able to be adequately modelled [19], i.e. this is not the turbulence
closure problem in another guise. An important question is at what level one carries out
the averaging and what must be done to model, in a generic manner, the dominant terms
that appear in the correlations associated with this averaging. A key issue in developing
improved predictive schemes for multistage turbomachine performance is thus modelling
of unsteady flow effects; this has only recently started to be addressed in earnest.

5. IMPLICATIONS OF UNSTEADY FLOW PHENOMENA

FOR DATA ANALYSIS

5.1 Unsteady Structure in "Real" Turbomachine Wakes

Wakes are often viewed as constant pressure regions with a velocity defect. Actual wakes,
however, have a well-defined unsteady vortical structure because the steady wake velocity
profile is strongly unstable. The instability is inviscid, associated with the presence of a
maximum of vorticity, and growth rates tend to be much larger than those associated with
amplification of Tollmien-Schlichting waves in boundary layers. The situation down-
stream of the trailing edge is thus often as shown schematically in Figure 5, with a vortex
street forming downstream.

One result is that time resolved measurements of rotor exit flow will not show a periodic
wake signal unless they are ensemble averaged. As an example, Figure 6 shows the rela-
tive flow angle determined by a high response probe at exit of a transonic rotor [20). The
upper trace is instantaneous data, the lower trace is for a 90 rotor revolution ensemble aver-
age.

Laser doppler anemometer measurements also reflect this unsteadiness, and can show a bi-
modal probability density distribution (p.d.d.) in the presence of vortex shedding, indicat-
ing that the wake may be more properly viewed as composed of two velocity states, one
centered near the core flow velocity level and the other lower than the core flow level by
nearly twice the time-mean wake velocity deficit.

H A -

Iy

Blade T u u i
Trailing / (
Edge - -

U ----

FIGURE 5. Geometry of rotor blade vortex street.
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Mvodelling the unsteady flowfield downstream of the rot'or very simply as a two-
dimensional vortex street appears to give a useful qualitative picture of the flowfield. This
unsteady vortex model reproduces the wake shape and bimodal p.d.d., and accounts for the
high level of blade to blade variation observed in several transonic compressors, which is
now viewed as being due to intermittent sampling of the vortex street by the fixed frame
probe (20].

5.2 EnergX SeParation in Unsteady Flow

Another effect of the wake vortex structure is the creation of a nonuniform relative (i.e., as
measured in the blade fixed system) total temperature [21]. The situation is similar to that
analyzed in the seminal paper on this topic by Preston [22], and can be demonstrated by
examining the kinematics of a vortex row. Close to any vortex, the streamlines in the vor-
tex fixed coordinate system are roughly circular. Velocity magnitude, pressure and tem-
perature are roughly constant on these streamlines. To a stationary observer, fluid particles
on one side of the vortex row have a high velocity and those on the other a low velocity, so
particles on one side of the row have a higher total temperature than those on the other.
Unsteadiness due to the vortex row is thus tied to total temperature differences.

The top part of Figure 7 shows a row of vortices moving to the right, and the solid line rep-
resents a particle path. Static pressure changes experienced by the particle are also shown.
The terms "turbine" and "compressor" are appropriate because ]cinematically the vortices
act like turbines for the passage of fluid across the row from the upper side and like com-
pressors for the passage from below to above the row.

For a turbomachine wake which consists of two of these vortex rows, moving from the free
stream to the wake has the same effect as going across a turbine blade row, i.e. a drop in
total temperature (consider the circulation of the vortices shown in Figure 7). Neglecting
dissipation and heat transfer, the relative total temperature difference would be expected to

0lmm m m m.mm mm mm mlmmmmmm mm m ml
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be roughly Uv F/h, where Uv is the vortex velocity as seen in the blade fixed system, F is
the circulation of a vortex, and h is the vortex spacing. As is evident from this basic dis-
cussion, the variations in temperature and pressure observed will scale approximately as
relative Mach number squared.

Wake structure can affect the efficiency that one infers from high response measurements
and, as indicated in (231, can give rise to apparent differences of order 1% between ma-
chines which actually have the same performance.

5.3 Unsteady Seoaration

Vortex shedding is a phenomenon with characteristic frequency of order ten kilohertz for a
half meter diameter transonic fan. There are also much lower frequency sources of un-
steadiness that exist, which may affect not only performance, but may be in a frequency
range to excite blade vibrations.

To understand the cause of the low frequency unsteadiness, two-dimensional unsteady vis-
cous calculations have been carried out [231 using the midspan geometry of a transonic ro-
tor. The vortex shedding shows up quite clearly in the calculated trailing edge static pres-
sure, Figure 8, along with a lower frequency which modulates its amplitude and the
frequency, similar to the modulation observed experimentally. The lower frequency corre-
lates with the computed motion of the separation point along the suction surface and with
axial motion of the passage shock. The numerical solution indicates a considerable fluctu-
ation in blade moment (roughly 30% for the case examined) at this frequency (-300 Hz)
which can be of concern structurally. The exact cause of this movement of the separation
point is not yet clear but it does appear similar to instabilities observed in high speed dif-
fusers [23].

The large fluctuations in frequency shown in the numerical simulation also tend to explain
the difficulty often ercountered in extracting a single, unambiguous frequency estimate
from experimental measurements. Fluctuations of this magnitude may also blur the bi-
modal anemometer ' 'stograms. The point to be emphasized is that separation is generical-
ly an unsteady process and that there can be aerodynamic, as well as perhaps aeroelastic,
consequences of this for turbomachines.

5.4 Stator Pressure Field Effects on Comnressor Measurements

Another aspect of un teady flow which is important with respect to supposed steady-state
quantities is seen in the interpretation of interstage measurements in turbomachines. A
well-known example arises in examining stator leading edge measurements, which often
disagree with measur.-ments made at further downstream locations.

The physical reason tor this disagreement is also well-known qualitatively. The circumfe-
rentially non-uniform pressure field of the stator causes the rotor to see a time varying
flow. The circulation round a given rotor blade, and the local enthalpy rise, thus vary with
time. In terms of the :ime mean quantitiez seen in the stator coordinate system, this im-
plies that there will be a circumferential variation, with a period of a stator pitch, of rotor
stagnation enthalpy rise. Reference [24] shows, in a very neat manner, that the time mean
spatial variations in stagnation enthalpy, h't, are simply related to the temporal variation in
rotor blade circulation, 1", by

=

where S is the blade pitch; this again illustrates the role of the vortical perturbations dis-
cussed in the introduction.
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To show the magnitude of the effect in a representative situation, calculations have been
carried out using a two-dimensional inviscid Euler code for rotor stator interaction [25].
The rotor and stator geometries used were those of the NASA Stage 67 because of the
large amount of data published for the stage. The radial location corresponds to a station
slightly outboard of the sonic radius. The computational procedures, which used a time-
inclined plane approach, are described in [26] and [27].

Figure 9 shows time averaged stagnation temperature computed using the Euler turbine

equation

Aht= Ubladeve

at an axial station between the rotor and stator. Measurements of this quantity using a laser
anemometer are also shown. There are significant variations in the stagnation temperature
across the blade pitch.

It should be evident that the degree to which this effect is important will vary strongly with
the rotor-stator spacing (or, more precisely, primarily with the non-dimensional parameter,
rotor-stator axial spacing/stator pitch), and Ref. [25] presents some parametric studies
showing this variation. Another point is that for efficiency measurements, the relative lo-
cations of the temperature and pressure probes are important. Figure 10, also from [25],
presents contours of error in adiabatic efficiency (local value minus average) as functions
of the pitchwise location of the temperature and pressure probes. The variation for the
worst case, with one probe at mid-passage and the other at the stator leading edge, is 3%,
which is very significant. While probe placement in general would not be expected to be
chosen this crudely, it is clearly important to locate pressure and temperature instrumenta-
tion at close pitchwise locations to avoid sampling errors.



171

1.00
-1.5

0.7

0

0.50a.

CL

a_ 0.25

0.00

0.00 0.25 0.50 0.75 1.00
Temperature Probe Position

FIGURE 10. Deviation from average efficiency as a function of
relative locations of temperature and pressure probes and stators [25].

6. COMPRESSOR PERFORMANCE IN DISTORTED INLET FLOW

6.1 Inlet Distortion Effects on Comoressor Flow Instability

One area in which unsteady effects have been addressed because of their importance at
even a basic level is engine response to inlet circumferential distortion. Initial attempts to
utilize quasi-steady ideas (in the basic parallel compressor theory) were very useful in de-
veloping an understanding of asymmetric flow, but they did not capture at all the small ef-
fects on stall inception that were encountered with distortions of narrow extent or having
several sectors.

These two trends are illustrated graphically in Figures 1 la and I lb [28]. The first shows
data from a multistage compressor run with circumferential inlet distortions of varying ex-
tent. The abscissa is the angle of the distortion generator and the ordinate is the compres-
sor exit pressure at surge, expressed as a percent of the uniform flow value. There is a
strong influence of angular extent until an angle of between sixty to ninety degrees, after
which there is little change. This behavior has given rise to ideas such as a "critical angle"
of distortion to affect the stall point, or a "critical residence time" of the rotor in the low
flow region.

Data from another series of tests is shown in Figure 1 lb. In the figure, the total circumfe-
rential extent of the distortion is ninety degrees, but the sector angle is divided so that there
are 4 x 22.51 and 2 x 45* sectors as well. The axes are individual sector angle and com-
pressor exit pressure at surge. Although the total extent is the same for all three tests, the
smaller sectors, which have stronger unsteady effects, have considerably less adverse influ-
ence on stability.
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It was recognized early on that discrepancies between the quasi-steady (parallel compres-
sor) models and this type of data were due to "unsteady response" although precisely what
this meant was not clear. The need to include some description of this type of behavior,
however, spurred a considerable amount of work. A recent useful review of the present
state of the art is given in [29].

To see another example of the effect of unsteadiness, we examine a compressor subjected
to a rotating inlet distortion. (This might be caused by rotating stall in a low compressor
which was then fed to the high compressor in a two-spool engine.) Experimental results
showing flow coefficient at stall versus distortion rotation speed are given in Figure 12
[30]. A marked increase occurs in the value of the flow coefficient when the rotational
speed of the distortion is close to the natural speed of stall propagation.

As will be shown below, it is clear that the decrease in stability is not an effect that one can
predict from any steady theory. At least in our view, it is associated with the behavior of
the disturbance wave structure in the compressor annulus, and its understanding and pre-
diction at even a basic level involves unsteady flow effects.

6.2 Analysis of Compressor Instability With Inlet Distortion

The most important problem associated with inlet distortion is the change in the operating
point at which flow instability occurs. One approach currently being pursued as a joint
MIT-Cambridge University effort is a rigorous stability analysis of the circumferentially
nonuniform flow in a compressor, i.e. the stability (to small amplitude perturbations) of a
steady circumferentially non-uniform flow field in an axial compressor [31], [32]. In this,
the steady flow non-uniformity must come into the problem in a nonlinear manner, other-
wise there is no interaction between distortion and unsteady perturbations. It is also neces-
sary to include not just a description of the compressor, but the compression system as
well, because the presence of a travelling wave perturbation in a distorted flow will cause
changes in the annulus averaged flow quantities.

A key feature of the calculation procedure is a model for the fluid dynamic interaction be-
tween the spoiled and unspoiled sectors of the compressor. This, rather than any critical
residence time in the low flow region, appears to be linked most closely to stability. The
analysis shows that there is an approximate stability criterion, annulus averaged slope of
the compressor pressure rise characteristic equal to zero.

fd2 ' de = 0

where V = non-dimensional pressure rise and 0 = axial flow parameter. This is valid in the
many situations when the dynamics of the compressor distorted flow field do not couple
strongly to the compression system or when the structure of the imposed distortion is not
similar to that of the eigenmodes of the flow in the compressor annulus.

Application of this criterion to different multistage compressors is given in Figure 13 [28].
The figure shows first-of-a-kind computations, based on the theoretical model, of 0crit,
which is a parameter used to modify the parallel compressor theory to correlate stall mar-
gin loss.

To understand the previously mentioned decrease in stability for rotating distortions, calcu-
lations have been carried out (321 for distortions rotating at various fractions of rotor
speed. f, from f = -0.6 (against rotor rotation) to f -0.6. As in the experiments, rotation
rate has a marked effect on the overall distorted flow compressor characteristic as well as
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the stall point. The results are shown in Figure 14, which is based on representative pa-
rameters for a three-stage compressor. As the distortion rotation rate is increased from
zero to 0.3, there is a drop in the compressor performance and a shift in the stall point, and
for f = 0.3 there is only a small regime in which the flow is stable. We view this as a (non-
linear) resonance between the inlet disturbance and the natural eigenmodes (i.e., the em-
bryo propagating stall modes which have f_ 0.33) of the flow in the compressor annulus.

6.3 Counled Comnoressor/Comoression System Flow Instability

The analysis in [32] also indicates that with inlet distortion there will be a decrease in sta-
bility due to interactions between the compressor and the compression system, when the
frequencies of the system (surge-like) and compressor (rotating stall-like) perturbations ap-
proach each other. The surge frequency is basically determined by system parameters and
independent of rotor and rotation rate, while the rotating stall-like frequencies scale to a
good approximation with rotor rotation. As speed is changed, therefore, one can encounter
a situation where these two frequencies coincide.

To understand why the stability is adversely affected, it is useful to consider the distur-
bance wave structure and, for simplicity, represent the eigenmodes by zeroth and first har-
monic components only. The former represents the system "part" of the disturbance, the
latter the compressor part. A sketch showing the relationships of these two components is
given in Figure 15, which portrays different times during a disturbance period. The time-
mean flow (the background flow) has a low velocity region from roughly 1800 -- 3600 and
a high velocity region from 0* -- 180', i.e. the local operating points of the compressor lie
on a characteristic with positive slope (destabilizing) in the region from 1800 - 360' and
with negative slope (stabilizing) in the region from 0* -- 1800.

Al Component A0 Component
(First Harmonic) (Zeroth Harmonic)

-1.0 Low Mean

0 VeTime1
1.0- Mean

Velocity

10 1m 2_________

0 jj.Time 3

1.0
4.0

0 ime 4
0 1 ,80 360 Jo 180 360

Circumferential Angle (Deg.) Circumferential Angle (Deg.)

FIGURE 15. Sketch of zeroth and first harmonic
component phase relationship near compressor/compression
system frequency coincidence [32].
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When the travelling wave part of the eigenmode is in phase with the time mean velocity
profile, as in the (Time I) top plot in Figure 15, the system component of the eigenmode
has a negative velocity associated with it. When the travelling wave is out of phase with
the time mean velocity (Time 3 plot), the system component gives a positive velocity.

The effect of these phase relationships is indicated on a compressor characteristic in Figure
16. Unsteady velocity perturbations are shown for the high flow and low flow regions: the
nomenclature 1,2,3,4 refers to the situation at the times in Figure 15. The larger filled
symbols refer to a representative time mean operating point in each region, i.e. representa-
tive points on the positive and negative sloped regions of the compressor characteristic.
The main point is that, at Time 1, the excursion in the low flow (positive slope) region will
be larger than that in the high flow region, since both components of the eigenmode con-
tribute a negative velocity in the former. In the high flow region, the travelling wave part
of the velocity is positive while the system part is negative so the net excursion is much
less.

At Time 2 and Time 4 the perturbation is near zero, but at Time 3 there is again addition of
velocities from the different harmonic components in the low flow region and partial can-
cellation in the high flow region. The kinematics of the phase relationships between com-
pressor perturbations (travelling disturbances) and the system pulsations thus result in ve-
locity fluctuations in the positively sloped region which are much larger than those in the
negatively sloped region. This enhances the possibility for mechanical energy addition to
the perturbations, and thus to decreased stability, when the two frequencies are close.

7. COMPRESSOR AND COMPRESSION SYSTEM INSTABILITY

Although one cannot now predict the onset of flow field instability in a turbomachine or
engine with the desired accuracy from a first-principles basis, there has been significant re-
cent progress in understanding the instabilities that are of practical concern in gas turbine
engines.

I4
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7.1 Rotating Disturbances Prior to Stall

One recent finding has been the demonstration that rotating stall is preceeded by small am-
plitude waves which travel at roughly the same speed as the fully developed stall cell.
Waves of this type can be readily seen by using an array of sensors positioned round the
circumference. They have been hypothesized for some time (and in fact lie at the base of
all the linearized stability analyses that have been carried out), but the first publication of
data showing the phenomenon was in [33], with a single-stage, low speed compressor.
Since then, disturbance waves have been found in multistage machines as well [34].

In the experiments that have been carried out, the disturbance waves have been sensed us-
ing a circumferential array of six to eight hot wires, approximately 0.4 to 0.5 radii up-
stream of the compressor. Putting the sensors this far upstream means that the higher har-
monic components of the disturbances are filtered (the decay rate is like enx/R, where n is
the harmonic number). With eight wires, one can examine the phase and amplitude of the
first and second disturbance Fourier components. A plot of the phase of the first harmonic
is shown in the lower part of Figure 17, which gives data from a three-stage, low speed re-
search compressor. The actual time trace from a single wire is shown at the top. The time
scale is in rotor revolutions, this being the natural unit of time. It is clear from the figure
that the disturbance can clearly be detected by its constant phase velocity long before it is
evic' t as a velocity disturbance. The low order harmonics are of most interest since it is
thes .hat are the most dangerous.

Time traces of the phase and amplitude of the first harmonic show that, when the compres-
sor is operating very near the stall inception point, these small disturbances can be present
for several tens or even hundreds of rotor rotations. The disturbance amplitude can also
fluctuate with time. The presence of these disturbances appears to be a necessary, but not
sufficient, condition for rotating stall onset. Our present view of this is that the compressor
is responding as a narrow band system to external disturbances. Near instability where
there is very little damping, the "system", i.e. the compressor flow field, response can be a
slowly decaying transient which is the natural eigenmode of the compressor annulus. We
associate such eigenmodes with the initial (linear) stages of rotating stall cells, so it may
not be too surprising that propagating disturbances at near stall cell speed are seen before
stall.
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FIGURE 17. Circumferential phase as a rotating stall discriiminant [34].
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References (34] and [351 were concerned primarily with the detailed passage fluid mechan-
ics near stall, rather than with the wave structure. To this end, detailed unsteady on-rotor
measurements were made. These revealed that the endwall blockage fluctuates as the
small amplitude velocity disturbance comes round. This is shown in Figure 18 which is
based on rotor mounted hot wire measurements. The increase, then decrease, in blockage
from a to b to c can be clearly seen. These fluctuations in blockage, which are also not part
of any steady state description of compressor stall, again illustrate the importance of recog-
nizing these unsteady effects in formulating a well grounded picture of compressor stall.

Figure 19 shows the nonlinear evolution of such disturbances from small amplitude to fully
developed rotating stall [34). What is plotted in the figure is the amplitude of the first cir-
cumferential Fourier component of axial velocity parameter versus time (in rotor revolu-
tions) for a three-stage, low speed compressor. It can be seen that, while the small ampli-
tude disturbances persist for a long time, once the disturbance becomes unstable, the
growth (from a level of five percent, say) to a near-asymptotic value is quite rapid, occur-
ring in several rotor revolutions.

An important item is to verify how generic in nature these waves are, as well as what link
they have with the stall inception process. Pre-stall waves have so far been found in four
different compressors, at MIT and Cambridge University, but they do not appear to be
present in at least one other build at Cambridge [36]; the reason is still not clear. This is an
area that is largely unexplored at present.
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FIGURE 18. Contours of throughflow velocity ratio in casing-suction surface endwall

corner showing disturbance passing. Tip clearance/chord ratio is 3%. Contours from 0.05
to 0.45 every 0.05 (351.
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7.2 Flow Stabilization bv Downstream Stages or Components

Another important finding relating to instability was reported in [37], in which three sets of
experiments were carried out with a three-stage compressor. The pressure rise characteris-
tic of the first stage only from these runs is shown in Figure 20. In the first set of experi-
ments, three ideal stages were used. In the second set, stages two and three had stagger an-
gles increased by ten degrees. The result of the increased stagger was that the compressor
went into rotating stall at a lower flow coefficient than for the matched build. Of more in-
terest from a basic fluid mechanical viewpoint, however, is the first-stage performance for
this mismatched build, which is shown on the right in Figure 20. It can be seen that the
stable flow range has been extended appreciably and there is also now a portion of the
curve which has a positive slope. Note that, in defining this range, detailed measurements
were taken with hot wires to make sure that rotating stall did not exist.

What has occurred is that the downstream stages have suppressed the growth of rotating
stall. The mechanism for doing this is most likely through acting on the wavelike distur-
bances described above The stabilizing effect of downstream components has been noted
before (see e.g. [38]) but, to the authors' knowledge, the data in [37] is the first clear dem-
onstration of the existence of an "axisymmetric" compressor characteristic with a reasona-
bly strong positive slope. Figure 21 is a plot of the first-stage performance in all three situ-
ations: isolated stage, matched three-stage compressor, and mismatched build. It can be
seen that there is very little difference indeed, except for the difference in stall point, be-
tween the three experiments.

There are several implications that one can dra%/ from these tests. First is that no computa-
tion of the flow in a blade passage only will lead one to encounter rotating stall. Details of
the fluid dynamic processes associated with the tip leakage flow, for example, are crucial
in setting the stage performance but knowledge of the stage performance is not enough.
Rather, one must be able to account for the interaction between the blade passage and the
upstream and downstream flow field. Put another way, the stall point and the stalled per-
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FIGURE 21. Unstalled axisymmetric performance of research
stage in the three different environments [37].
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formance of a stage, or even of a compressor, are a prooertv of the fluid mechanic environ-
ment as well as the local stage behavior.

7.3 Behavior Suibsequent to Instability Onset

Another important question related to instability is whether a given compression system
will exhibit large amplitude oscillations of mass flow and pressure ratio (surge), or whether
the system will operate in rotating stall where the annulus averaged mass flow and pressure
ratio are essentially steady, but are greatly reduced from the pre-stall values [391. Initial
analysis of the nonlinear system behavior employed a simple lumped parameter representa-
tion. For a given compression system, it was shown that there is an important nondimen-
sional parameter, B, on which the system response depends:

B =
2WoLc

where to is the Helmholtz resonator frequency of the system, Lc is an "effective length" of
the compressor duct, and U is the rotor speed. For a given compressor, there is a critical
value of B which determines whether the mode of instability will be surge or rotating stallI [38J.

An examination of stall transients in compressors from a more general point of view, en-
compassing surge and rotating stall as special cases, is given in [40]. Nonlinear coupling
exists between the (local) compressor performance and the (global) system behavior for
two reasons. First, the rate of growth of the stall cell is dependent on the annulus averaged
velocity at the compressor face, which is dependent on the system dynamic behavior. Sec-

* ond, the overall pressure rise depends on the shape (extent, amplitude, etc.) of the rotating
stall cell which is a function of the unsteady compressor performance. The general tran-

* sient can be viewed as the approach to two limit cycles. One, in 0, is rotating stall and is
embedded in a more global limit cycle in time, which is surge.

The calculations that have been carried out show a complex axial velocity waveform dur-
ing surge. It includes disturbances that propagate around the circumference, pulsations
that are roughly planar, and an admixture of both, at different times in the cycle. The post-
stall transients seen in actual machines, however, appear to have many of the same fea-
tures. In addition, as in many other nonlinear systems over a range of parameters, the com-
putations for a two-mode representation of the axial velocity exhibit what appears to be
chaotic behavior at instability [41]. These features can be of import in attempting to devise
control strategies for extending the stable flow range.

7.4 Stability Enhancement Using Endwill Region Flow Manaeement

In connection with the general topic of flow instabilities in turbomachines, one other as-
pect that deserves mention is the large increases in stability that can be achieved through
alterations in the endwall flow region. For example, so-called "casing treatments"
(grooves in the shroud over the tip of a rotor) have been known for almost two decades,
and can even be seen in some civil aircraft engines as one boards. The precise mechanism
of operation of these grooves is still not clear but some general, design-oriented guidelines
have emerged from the work done on this topic. One of these is shown in Figure 22, de-
rived from experiments using grooves on a rotating hub underneath a cantilevered stator to
simulate (for ease of instrumentation) representative rotor tip flow. The figure shows the
increase in peak pressure rise capability (i.e., blade row pressure rise at stall) as a function
of normalized streamwise momentum flux from the groove, for three different groove ge-
ometries. There is a strong correlation between this streamwise momentum injection and
the pressure rise at stall. While several competing mechanisms can be proposed for this in-
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crease ([42] gives some discussion of these), the point here is that the observed trend gives
a strong message to the groove designer as to what is desired.

Most of the groove geometries examined initially were configured to fit within the casing
of an aircraft engine, and thus had only small depth (compared to blade span, say). Recent-
ly, however, there have been several tests of shroud geometries with much larger depths,
which have yielded very impressive results. Figure 23 shows an example of one of these
configurations for an axial fan [43]. The fan solidity is not representative of aircraft engine
turbomachines, but other experiments [44] have been carried out with more generic type
blading and these also show large increases in peak pressure rise. Investigation of these in-
creased vane treatments for more representative aero-engine geometries seems a fruitful
area to pursue.

These shroud (or casing) treatments have been mentioned for two reasons. Although they
do not necessarily represent a phenomenon that one must think about in terms of unsteady
flow, they cert," ly do represent a method for controlling or suppressing undesirable un-
steady effects cunnected with rotating stall. Further, they serve to highlight the critical role
of the endwall region in setting tne overall blade row pressure rise, and the onset of insta-
bility. In essence, it is the view of the authors that, in most modem turbomachines, rotat-
ing stall is due to phenomena associated with endwall effects, and these devices work di-
rectly on the source of the problem.

8. DYNAMIC CONTROL OF UNSTEADY FLOWS IN TURBOMACHINES

An exciting and relatively new topic in unsteady fluid mechanics is the use of integrated
control in turbomachines to alter many of the aspects of operation from open loop to closed
loop. Topics now being pursued are active stabilization, i.e. using unsteady effects to sup-
press aerodynamic instabilities, such as surge and rotating stall [45], as well as "passive"
stabilization through the use of tailored structures. This work is still very much in its ini-
tial stages, but it may have a significant potential for altering stall margin requirements.
The approach is fundamentally different from those tried previously and is based on the
recognition that the instabilities of interest are dynamic phenomena. If the aerodynamic
damping (of these instabilities) were increased using active control, one might operate in a
previously unstable, high performance region (as illustrated conceptually on the (deliber-
ately provocative) compressor map in [45]).

8.1 Control of Rotating Stall

We consider first (briefly) the local instability, rotating stall, which we view as the growth
of an unsteady propagating flow disturbance. The method of control is to sense this distur-
bance and generate an additional disturbance, possibly with a transducer system driven
from processing data measured inside the turbomachine. The controlled system constitutes
a machine of fundamentally different characteristics in which stable operation can be
achieved under conditions which previously implied breakdown of the flow.

We have analyzed some initial control strategies, where an upstream velocity non-
uniformity was generated of the form

(SCx)far upstream = Z(Cx)compressor face

where 8Cx denotes a perturbation in axial velocity. A simple proportional controller was
used with Z -+ just a complex constant independent of frequency, and the control perturba-
tion was considered to be generated by a row of inlet guide vanes. The results of the calcu-
lations, which are discussed in detail in [45], were quite encouraging. They showed a sig-
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nificantly increased stable flow range for physically plausible vane motions. This topic is
thus currently being examined experimentally.

8.2 Active Control of Comnression System Instability (Surge)

Rotating stall is a local instability, but for a multistage axial compressor, one must stabilize
both the local (compressor) and the global (compression system) instabilities that can exist.
For a centrifugal compressor, however (and perhaps for single-stage axial fans), the local
instability that leads to rotating stall is often of less consequence than the system instabili-
ty. If this is the situation, one can deal with the latter only. This provides an easier entry
into the control of instability and has been explored in somewhat more depth. More expli-
citly, stabilizing surge in a centrifugal compressor may be more accessible than suppress-
ing rotating stall in an axial one because of the spatial uniformity and the low frequency of
the oscillations and relatively slow growth rate of the instability.

Experimental and theoretical investigations of centrifugal compressors are reported in [46]
and (47], also in complementary MIT-Cambridge University efforts. The experiments
were based on the two simple approaches set out in (45]: control using a moveable plenum
wall and a downstream throttle motion respectively. Both methods were found to suppress
surge and to extend the stable flow regime. Some of the experimental results of [471 are
shown in Figures 24, 25, and 26. Figure 24 shows the surge oscillations (limit cycle) in a
pressure-mass flow plane for the situation without control; the amplitude of the flow fluc-
tuations is over one hundred percent of the steady state flow. Figure 25 gives the pressure
pulsation amplitude versus non-dimensional flow coefficient for the situation with control
and without control. The onset of pulsation (surge) can be seen to be moved to a lower
flow coefficientas well as to be decreased in amplitude. In addition, although the control-
ler was designed on the basis of linear theory, it has been found to be able to suppress large
amplitude limit cycle oscillaticns associated with surge, as shown in Figure 26.

To understand the mechanisms by which the controller suppresses the growth of oscilla-
tions, it is useful to examine production and dissipation of perturbation energy in the sys-
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FIGURE 24. Centrifugal compressor surge cycle (47].
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tern. Detailed discussion is given in [45], but the important point is that it is the unsteady
behavior (of the compressor, of the compression system, and of the controller) that must be
understood to implement these schemes in an effective manner.

The results presented in [46] and [47] are promising, even though neither of the active con-
trol methods is anywhere near optimum, in the sense of having the most authority to affect
the system dynamic behavior. Work is now being carried out to define, in fluid dynamic
terms, more useful actuation schemes for practical devices. Computations carried out so
far indicate that (as perhaps one might expect) the actuation should be closely coupled to
the compressor rather than isolated (in some sense) from it by a large volume.

8.3 InstabilitX Control Using Tailored Structures

Another approach to instability control, which also arises out of considerations of unsteady
system behavior, is the use of tailored structures in a passive control scheme. A schematic
of the general concept can be seen in Figure 27 (48]. One wall of the plenum in the system
has been made compliant to be able to respond to pressure perturbations, such as those en-
countered as a precursor to the surge [49]. The basic concept is that wall motion results in
dissipation (due to the dashpot), and this dissipation can counter the mechanical energy in-
put into the oscillations due to the unsteady flow through the compressor, although there is
no effect on the steady state performance. Calculations have been carried out to define the
mass-spring-damper characteristics of the compliant wall so as to maximize the extent of
stabilization. Examination of the flux of perturbation energy reveals that the moving wall
can provide an order of magnitude more damping of the amplitude oscillations associated
with the instability than that existing (due to the flow in the throttle) in the original system.

Based on the calculations, an experiment has been designed incorporating a plenum with a
moving wall. Results for a centrifugal compressor (turbocharger) operated with this sys-
tem are shown in Figure 28. It can be seen that the compliant wall gives an increase in
stable operating regime over the whole speed range. Further results illustrating parametric
trends are given in [48].

Plenum Wall
(Spring/Mass/Damper)

Compressor
Plenum

Duct

FIGURE 27. Schematic of compression system with tailomd structure (plenum wall) [48).
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9.0 MIXING PROCESSES IN TURBOMACHINES
AND OTHER PROPULSIVE DEVICES

In predicting the performance of a turbomachine, especially a multistage machine, it is im-
portant to be able to account for mixing processes that occur, such as radial transport of
quantities from the endwall regions to near midspan. Mixing is included in the phenomena
covered in this lecture because it is viewed here inherently as an unsteady process.

In this connection, we can briefly note some of the recent results concerning mixing in sit-
uations that are much simpler than turbomachines, for example, turbulent plane shear
layers [50], where it is recog *zed that the "turbulence" has a definite organized unsteady
vortical structure to it. Descriptions using this structure appear to provide a more funda-
mental picture of the flow than approaches which do not. In this instance, at least, it seems
that there is an increase in insight if one recognizes the inherent unsteadiness of the phe-
nomena, rather than tries to devise procedures which suppress the unsteadiness through
some sort of averaging.

The mixing process in turbomachines is more complex and, in the past five years, two dif-
ferent descriptions have been put forth. One of these attributes is the radial transport to an
organized secondary flow [5 11, the second to "turbulent diffusion" [52]. Although the de-
scriptions are based on totally different mechanistic ideas, they both appear to give good
results when applied to multistage machines. (As stated in (9]: "One conclusion one
might reach is that the introduction of any spanwise mixing model is better than none at all
in attempting to predict multi-stage compressor performance.")
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Some resolution of the two viewpoints has been made by Wisler [53], who showed that a
combination of both mechanisms occurs. What is not well known is how mixing is influ-
enced by compressor design parameters. If a turbulent-like process is indeed occurring, it
would seem useful to examine it using some of the recent concepts concerning coherent
turbulence structure, i.e. by again recognizing the unsteadiness and vortical structure and
not trying to simply fit the process into an ad hoc gradient transport framework. The
whole topic of mixing in turbomachines is an area of unsteady flow which needs further
exploration on a L sic level.

10. FLOW CONTROL USING EMBEDDED STREAMWISE VORTICITY

A final topic, which is related to the two previously described areas of mixing and flow
control, and which has been of considerable recent interest, is flow control using embedded
streanwise vorticity. This differs from other phenomena that we have been discussing in
that the process involved may not be intrinsically unsteady (at least on the larger scale of
the motion involved). Nevertheless, it is appropriate to include it because of the potential
offered for decreasing base drag in subsonic flows (through the strong effect on the un-
steady vortex shedding which is critical in setting the base pressure), suppressing airfoil
separation, altering wake structure in turbomachines, reducing unsteadiness in stall and dif-
fusing passages, and enhancing mixing in a variety of propulsive devices. In connection
with the last aspect, one point to be noted when examining mixing results is that the level
of mixing needed for different processes in turbomachines and propulsive system compo-
nents can vary considerably. Combustion requires that the mixing take place on a molecu-
lar scale, while ejector or mixer nozzle aerodynamic performance may require that the
flow be mixed in a bulk fashion, i.e. larger length scale.

The genesis of the idea arose from work done over a decade ago on forced mixer nozzles
for turbofan engine noise reduction. A generic configuration is shown schematically in
Figure 29 (531. The presence of convolutions or lobes, in the surface between two streams,
creates trailing vorticity, similar to that from a finite wing. Streamwise vorticity in these
flows can be much stronger than that seen in natural mixing layers between two streams.

h

FIGURE 29. Sketch of mixer lobe geometry [54].
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Studies of the behavior of flow downstream of the lobes reveal an abrupt transition (as a
function of downstream distance) from well-defined spiraling motion to a highly mixed
state. Mixer nozzles, as well as other fluid dynamic devices relying on mixing for their op-
eration, can accomplish this much sooner than with natural mixing, i.e. with a splitter plate
between them. One can thus drastically shorten an ejector, for example, and still obtain al-
most ideal performance. Strong streamwise vorticity can also inhibit coherence of span-
wise vortex shedding, altering the flow in the base region of airfoils and decreasing base
drag [53].

Figure 30 presents sample results for an ejector tested with free and with convoluted split-
ters [531. Secondary to primary flow rates (pumping) versus overall ejector lengths are
shown. Calculations based on a simple control volume analysis are also indicated by the
"ideal" line. Over the regime tested, the convoluted splitter increased injector pumping by
over 100 percent, due to the greatly increased mixing. A major effect of the streamwise
vortices was to improve the downstream diffuser performance because the large scale vor-
tices sweep low energy boundary layers away from the outer wall surface [54].

A basic question concerning operation of these mixers is the extent to which the increased
mixing is due to the increased area of the interface between the two streams or to the stir-
ring action of the streamwise vortical structure. Exploratory investigations have been car-
ried out using a flat plate, a mixer nozzle having a geometry similar to that reported in
[521, and a configuration which had a parallel walled section, approximately one lobe
height in length, downstream of the mixer lobes. This last configuration thus had the same
cross-section as the mixer nozzles, but (due to the parallel walled extension) less stream-
wise vorticity at exit. Preliminary results indicate that, although the increased area is a fac-
tor, the streamwise voricity has a very strong effect on the overall mixing level.

The central problem of designing mixing lobes of this type can be posed as questions
about: I) What is the distribution of vorticity in the flow that will lead to the desired flow
modification? and 2) How does one create this distribudon? While these questions are
complex, there appear to be substantial opportunities for improvements in propulsion sys-
tem performance using embedded streamwise vorticity.
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