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ABSTRACT

Formula scoring is the systematic study of measurement statistics
expressed as linear combinations of products of item scores. The theory is
currently being used to compute non-parametric estimates of ability
distributions, item response functions, and option response functions. The
theory has been used to design algorithis for estimating itam response
functions from adaptive test data (on-line calibration), monitoring and
correcting drift in observed score distributions for adaptive tests (on-line
equating), computing optimal tests for cheating, and combining
appropriateness measurement information from several subtests. In this
paper a portion of the theory is developed from a few principles.
Applications are considered to the problems of deciding whether ability has
the same distribution in two demographic groups, to finaing latent class
models that are equivalent to item response models, and to controlling drift

in adaptive testing programs.
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FORMULA SCORING
BASIC THEORY AND APPLICATIONS

Preface

For several years, Bruce Williams and 1 have been presenting
applications of a new approach to measurement, which we call formula
scoring. Our presentations to the annual ONR Contractor's Conferences have
been punctuated with the phrase, "It can be shown ... ." This technical
report begins a series of papers providing proofs of these claims. An
attempt will be made to derive formula score theory from a few basic
principles.

This version of the report is being used to introduce graduate students
to the work in our laboratory. Very explicit, computational proofs are
provided for some basic results. A shorter version is being prepared for
publication. -

Tnanks to Bruce Williams and Fritz Drasgow there are many data-based
applications1 of formula scoring, which are now starting to appear in
printz. The data-based applications are nect suitable for motivating this
paper because Bruce's programs use concepts that are developed in later
papers. Therefore an alternative way to motivate the report had to be
found.

Three examples of results that can be obtained with the theory have
been selected to motivate the theory. I don’'t think the results would have
been discovered without the theory. Each seems surprising - at least to me
- and somewhat contrary to conventional psychometric wisdom. Each result
can be easily proven with the theory. And each result seems hard to prove

without reproducing the reasoning in the theory.
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Some Examples to Motivate the Theory

Formula score theory can be used to derive some unexpected, hopefully
useful, consequences of the assumptions of item response theory. Three
examples follow.

The examples are valid for parametric and non-parametric item response
models. Except where noted, the results hold for all "continuous, one-
dimensional, probabilistic item response models for bounded abilities."
Thus, item response functions are permitted to have any shape, provided they
are continuous functions of one variable with values strictly between zero
and one. The cumulative distribution of ability also is permitted to have
any shape, provided there is some - possibly very large - interval such

that the distribution is zero or one outside this interval.

Example One: Checking for ability distribution differences

A quick way to recognize ability distribution différences is to check
average tests scores. Thus, if girls on the average have higher test scores
than boys on an unbiased test it is safe to conclude that ability is
distributed differently among girls and boys. The converse obviously is not
true because very different distributions may have same mean.

Using observed scores to check for group ability differences is
believed to be uniquely uncomplicated for the Rasch model. Since the number
right score is a sufficient statistic for estimating ability it might be
expected that it is possible to determine the presence or absence of group
ability differences by comparing distributions of number right score. This
(incorrect) assertion can also be expressed as follows:

There is a set of statistics XO’ Xl’ . Xn such that the group
ability distributions are different if and only if at least one
of the stetistics has different expected values among girls and

boys.
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Here n 1s the number of items on the test, and Xj is the statistic which
is one if exactly j items were answered correctly and zero otherwi-e.

The theory shows that the Rasch model is not unique in having a small
number of diagnostic statistics. The theory also shows what can and cannot
be concluded when corresponding pairs of expectations are equal.

For any item response model, Rasch model or other, th2re is a set of
statistics Xl' X2’ ce XJ such that if at least one pair of corresponding
expected values differ, then the group ability distributions are different.
But if corresponding expected values are equal, then the distributions still
may oe different. However, it can be shown that no statistical test (using
only the answers to the n items for data) exists that can demonstrate the
difference! In particular, for a test satisfying the Rasch model if boys
and girls have equal expected Xj's , then ability may be distributed
differently in the two populations, but no analysis of test data can be used
to demonstrate the.diffe.ence. Details follow the proof of Theorem One.

Recall that for the Rasch model each item response function Pi

Pi(t) = Prob(correct answer for item i | ability = t)
-(t-b.)
can be written in the form Pi(t) = [lte N i for some constant bi
To avoid mathematical digressions irrelevant to the main points of this
paper, it will generally be assumed that for i»j , birﬁbj . Thus no two
Rasch model items have exactly the same item response function.

As an example of another model having a small set of diagnostic

statistics, consider the generalization of the Rasch model having item

response functions given by the following equation

P(6) = ¢, + (L-e)[ 1+ e 2(E-b;) -1

As with the Rasch model, it will generally be assumed that different items

have different difficulties. Thus if 1i<j , bi¢bj . For this model J is
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less than or equal to the number of items, and Xj can be taken to be the
score that is one if item j is answered correctly and zero otherwise., (If
for some i#j , biwbj , then a somewhat more complicated set of Xj must be
used, but J 1is still small.)

Incidentally, these results are related to the identifiability of
ability distributions. Since different distributions can give the same
vector of expected Xj's , the ability distribution is not identifiable,
even when the item response functions are completely specified.

Example Two: How to turn an item response model for an ability continuum
into an isomorphic latent class model with finitely many classes

Suppose we are given an item response model with continuous item
response functions » 0,1 and a continuous ability density £ . Using the
theoretical results in this paper it can be shown that it is possible to
select abilities t.<t.< ... t. and numbers p(to),p(tl), . p(tJ) such

01 J

*
that for each item response pattern u , the "manifest probability"
)
Prob(Sampling an examinee with item response patttern u‘) ,
which is ordinarily computed by i tegrating the likelihood function,
1., % iqs
fc lik(u | ability = t) f(t) dt

can be computed by evaluating the sum
J *
2 1lik(u | ability = t.) p(t,)
3 =) J J
J
For the item response functions given by the formulas in Example One, J
can by set equal to the number of items.
Since the manifest probabilities sum to one, X p(tj) =1 . Thus if

p(tj) = 0 for j<J , we have a latent class model with J+l1 classes that is

isomoxrphic to the continuous latent trait model.
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I haven’'t found a simple proof based only on the results in this paper

of the existence tj Hov2ver the result also is true and

with p(t.) =20
J
is proven in next paper in this series. In any event, even when some of the

p(tj) are negative the result seems able to greatly reduce computation
L 4

times in some applications noted below.

Example Three: On-line equating or Simulation results without simulation
Consider two subtests, say, word knowledge (WK) and arithmetic
reasoning (AR), of a computer administered adaptive test such as the
adaptive version of the Armed Services Vocational Aptitude Battery (ASVAB).
Suppose the item pool for WK has just been changed by introducing some new
items that haven’t beer ministered often enough to highly motivated
examinees to have well estimated item response functions. To analyze and
contrel the effect of the new items on the distribution of an observed score

A
GWK we wish to calculate three functions, usually computed by simulation:

A

Fl! sxpectation { 0WK | 0WK =t}
F2(t - Variance { GWK | 0WK = t}
P(x|t) = Prob { 0WK < x| 0WK = t)

Fl and F2

score are affected by the new items and can be used to make corrections.

show how the first two conditional moments of the observed

For example, if Fz(-l) is observed to increase very much when the new

items replace easy old items then countermeasures such as adding more easy

items can be tried.

P(x|t) provides the remaining moments. It can be used

A

to predic. how the marginal distribution of BWK will be affected by future
changes in the ability distribution.

Since the item response functions for the new items are not known,
~

simulation is not possible. (When the score

g is a Bayes mode or

maximum likelihood ability estimate, then item parameter estimates derived
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from small samples of not highly motivated examinees may be used to compute
the score, but such estimates are not suitable for including in a
simulation.) Thus, the following result is of interest.
It is generally possible to use the item xesponse functions for the old
WK items to compute functions co(t),cl(t), cen cK(t) and to sort examinees
A

into groups using only an AR score 0AR . According to the theory, the

A

conditional expectation of § (computed frowr item scores for both old and

WK
new items) can be calculated with the formula

A

Expectation { OWK | GWKut } =
K N A
kfo ck(t) Expectation { oWK | 0AR is in the kth score group)
In words, we use 0AR to group examinees and then compute the conditional

expected WK score as a linear combination OWK group averages. The 0WK
score is computed using item scores for both old WK items and new WK items.
However, only the well estimated old WK item response functions are used to
compute the coefficients of the linear combination. In this way the effect
of introducing new items on an observed score at each ability level can bhe
calculated from actual data. Since the method does not use item parameter
estimates for the new items, it is not adversely affected by item parameter
estimation error on the new items.

A similar formula gives the conditional variance since for the same

cj and groups

Expectation { 02

wg! =t )
K ~o A
= kio ck(t) Expectation{ 0WKI 0AR is score group k )

Finally, for the random variable defined by
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1 if GWK < x

0 otherwise

X—

A

the conditional distribution of GWK is given by

Prob{ GWK <X |0wx't’ = Expectation{ X | ¢

K™t
K A
= ¥ ¢, (t) Expectation{ X |8,, is in group k )
k=0 k AR

The calculation of these three conditional expected values illustrates
a more general result described in the discussion of "quasidensities"

(Section Two, below).
NOTES

1. Formula score theory currently is being used to compute non-
parametric maximum likelihood estimates of ability distributions,
item response functions, and option response functions. The theory
has been used to design algorithms for estimating item response
functions from adaptive test data without interrupting testing (on-
line calibration), to compute optimal tests for cheating, and to
combine appropriateness measurement in:~rmation from several
subtests. The theory yields measures of item bias and test
dimensionality. The theory seems to lead to a tractible, non-
parametric, multidimensional item response theory, which is
currently being developed. The theory is also being applied to what
might be called "online equating," i.e., monitoring and correcting
changes in the distribution of observed scores for an adaptive test
as the test’s item pool is replenished.

2. Drasgow, F., Levine, M.V., Williams, B., McLaughlin, M.E.,, and
Candell, G.L. Modelling incorrect responses with multilinear
formula score theory. Applied Psychological Measurement, In press,
1989; Drasgow, F., Levine, M.V., and McLaughlin, M.E. Multitest
extensions of appropriateness indices. Applied Psychological
Measurement, accepted for publication, 1989.




Section One

Formula Score Theory and Equivalent Distributions

Formula score theory systematically studies measurement statistics
expressed as linear combinations of products of item scores. The theory
begins with an equivalence relation on ability distributions.

We consider a fixed test of n items. A pair of distributions F and
G are defined to be equivalent relative to the test if every statistic
computed from the test's item scores has the same distribution under the

hypothesis

HO: Ability has cumulative distribution F

as under the alternative hypothesis

Hl: Ability has cumulative distribution G

Notice that there is no way whatsoever to use item responses on the
test being analyzed to distinguish between a pair of equivalent
distributions. For if F 1is equivalent to C and if the statistic X is
used for hypothesis testing, then decisions based on X will be no more
valid than decisions based on the flip of a coin or other irrelevant random
process.

Notice also that equivalence is defined relative to a fixed test of
specified items. Thus a pair of distributions may be equivalent relative to
the test, but distinguishable if one more item is added to the test. 1In
fact, if one of the items is replaced by a slightly different item, the
equivalence relation may be changed. This is a significant limitation of
the present algebraic version of the theory. Later papers on applications

use metric concepts to get around this problem.
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The main result of this section is a characterization of equivalent
distributions in terms of the expected values of finitely many statistics.

Comments on implications and applications of this result are at the end of

this section.

Item Response Theory and Formula Score Theory

To make the paper more nearly self-contained and to make explicit just
what assumptions of item response theory are used to prove the new results,
we begin with some definitions from item response theory.

An item response model provides a probability measure for set (a)} ,
which is interpreted as a set of possible or actual examinees. There are
two types of random variables in item response theory: observed item scores
ul(a), u2(a), ce un(a) and unobserved abilities #(a) . 1Item scores are
either one or zero. "ui(a)=1“ is interpreted as "examinee a successfully
answered item i ."

In this paper, the abilities 8(a) are numbers. However, after some
routine changes, all of the results in this paper and their proofs
generalize to multidimensional abilities, i.e., vector-valued §6(a)’'s .

Item response theory relates item scores to abilities with functions

Pi called item response functions
Pi(t) = Prob{ ui=l|0=t )

Pi(t) is interpreted as the probatility of observing ui(a) = 1 , when
examinee a 1s sampled from all those with ability ¢t

In this paper, details about the item response functions are generally
left unspecified. Only continuity and a weak condition, 0 < Pi(t> <1l , are

assumed. These conditions are also implied by the parametric formulas of

most item response models,
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Formula scoring differs from much of item response theory on the domain
of definition of the item response functions. In item response models
Pi(L) is usually defined for all numbers ¢t , despite the fact that the
models predict essentially the same behavior from examinees with ability 20
and 20,000 and despite the fact that applications of the parametric models
usually proceed as if abilities were bounded.

In this section the domain of definition of the item response functions
can be bounded or unbounded. However, in the following sections Pi(t) is
defined only for t in an interval of finite length. Some discussion of
this point is at the end of this section.

The main ass'.mption of item response theory is local independence. It
asserts that item responses are conditionally independent, i.e., for any

sequence of zeros and ones

% % *
Up, Uy, .. Uy
and any ability ¢t
Prob * & ugeun e I, Prob 10
rob({ uluu1 u2=u2 e un==un ] =t} = 5 rob{ uinuil =t}

In item response theory analyses of data, the item responses are
recorded and inferences are made about 4 . Only the item responses are
observed. Thus if the word "statistic" is to be reserved for random
variables that are functions of the observables, only functions of the ug
are statistics. Since the range of each ug is finite, every function of
the u, is a random variable. Thus X is a statistic if and only if X
is a function of item scores.

The set of all statistics for a test is obviously a vector space since
a linear combination of functions of item scores is a function of item
scores. Since the uy take on only finitely many values, every statistic

. : . . . 2
can be written as a polynomial in the item scores. 1In fact, since u; = u,
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every statistic is a linear combination of the following statistics, which

are called elementary formula scores,

Thus the elementary formula scorcs, or some subset of the these scores, form
a basis for the vector space of all statistics. Since there are finitely

n A ; i
many ( 2 ) elementary formula scores, the set of all statistics is a finite

dimensional vector space.

The regression function RX(-) or conditional expectation function of

a statistic X

R (£) = E(X|0=t)

expresses the conditional expected value of the statistic as a function of
ability. Since every statistic is a linear combination of the elementary
formula scores, local independence implies that each regression function can

be written in at least one way as a linear combination of the following

functions
1
Pl(t), Pn(t)
Pl(t)Pz(t>’ Pl(t)P3(t), A Pn_l(t)Pn(t)
n
I P.(t)
i=1 *
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The central concept of formula score theory is the canonical space.
The canonical space (CS) of a test is the vector space of regression
functions of statistics. Obviously it is the vertor space spanned by the
square-free monomials, i.e. the products of item response functions without
repeated factors, listed above. Thus, the canonical spece is a finite

dimensional vector space of continuous, real-valued functions.

An Alternative Characterization of Equivalent Distributions

Using the canonical space it is possible to derive a simpler test for
equivalent distributions. The definition would have us check the
distribution of every statistic. It will be shown that only finitely many
statistics need to be considered and that all that needs to be known about
each statistic is its expected value. First, some notation.

F will be used in all sections of this paper to denote the (generally
unknown) ability distribution. For any statistic X and number x , the

distribution function of X evaluated at X can be written
Prob(X<x) = [ Prob(X<x|f#=t)dF(t)

If G is F or any other distribution, then the distribution of X

relative to G evaluated at x will be denoted by P(x;X,G) . Thus
P(x;X,6) = [ P(¥<x|0=t)dG(t)

Similarly, the expected value of X and the expected value of X relative

to distribution G are denoted by

E(X) = [ E(X|0=t)dF(t)

E(X;6) = [ E(X[0=t)dG(t)

Using this notation the definition of equivalent distributions given

earlier can be succinctly expressed: Two distributions F1 and F2 are
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equivalent if for all statistics X and reasl x
P(x;X,Fl) - P(x;X,Fz)

Theorem One is an alternative characterization of equivalent

distributions.

Theorem One: Let J+1 be the dimension of the canonical space. Then there

are J statistics Xl, X2, . X.J such that F1 is _equivalent to F2

if and only if

E(Xj;Fl) = E(Xj;Fz) for j=1, ..., J .

Furthermore, if YO’ Yl’ ce YJ are any statistics with linearly

independent regression functions, then F. Is equivalent to F, if and

1 2
only if E(Yj;Fl) - E(Yj;FZ) for j=0, 1, ... J .

Proof: Let hO’ e hJ be a basis for the canonical space. Since the

constant function is in the CS, hO can be taken to be the constant

function, ho(t) = 1 ., Since the hj are in the CS, there are statistics
Xj such that hj(t) = E(Xj|0=t) for 0<£j<J . For any statistic X and
real =x , the regression function of the indicator random variable, x

- { 1, if x<u1, e, un) < x

0, if X(ul, cee un) > x
is in the canonical space and consequently can be written
J
E(x|6=t) = jfo ah, (£)

Therefore for i=1,2

i

P(x;X,F;) 1) Ejajhj(t)dFi(t)

S.a.E(X.;F,
505y Fy)

Since E(Xy;F)) = [ 1 dF () =1 = E(X;F,) ,
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E(Xj;Fl) = E(Xj;Fz) for j=1, ... , J

implies that Fl and F2 are equivalent. Conversely, each Xj can be

written as a sum of products of the binary item scores,

n
2
X,. = ¥ av
i vy
. ES
. \ n
where v v2, cee Vo eee v is an enumeration of the 2 elementary

2

formula scores. Since v, is either zero or one, for i=1 or 2
E(vy;Fi) = l-P(O;vU,Fi)

Therefore "F1 is equivalent to F2" implies

E(Xj;Fl) = 5 avE(xu;Fl)

= 5 a [1-2(05v ,F))]

= E(Xj;FZ)

Finally, if J+1 statistics Yj have linearly independent regression

functions gj then for some non-singular (J+1)xX(J+1l) matrix Aw(ai.) ,

J
gj(-)=2 ajkhk(-) . The remainder of the proof follows routinely from
k
E(Yj;Fi) = E ajkE(Xk;Fi) for j=0, 1, ... J and i=1,2 .

Implications and Applications

The theorem has negative implications for distribution estimation. We
have observed that when J is small, two distributions with clearly
different shapes can be equivalent. As noted in Example Two a discrete
distribution on a few points may turn out to be indistinguishable from a
distribution with a continuous density, Thus, even when item recponce

functions are known, it is not possible to coasistently estimate the ability

distribvtion without additional assumptions.
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Note that for some applications it is valuable to know that ability
distributions are equivalent. Returning to Example One of the Prefz -, if
the ability distributions for boys and girls are equivalent relative to the
test, then any selection procedure based on test results is as likely to
select a boy as a girl.

The theorem shows, as was asserted in Example One, that by checking
finitely many pairs of expected values, a difference between the ability
distributions can be demonstrated. In Section 3 it is shown that J can be
small. TFor the Rasch model and its generalization, J can be taken equal
to the number of test items and Xj can be taken to be the jth item score.
Thus a necessary and sufficient condition for there to be a demonstrable
difference between distributions is that there be at least one item on which
the proportion of boys passing the item is different from the proportion of
girls.

For other models J can be large and the Xj may be complicated,
Models with large J are discussed in Section 4., The task of computing J
and Xj is also discussed in Section 4,

Example Two illustrates a second situation in which distribution
equivalence may have practical importance. In Example Two we considered
replacing an ability distribution having a continuous density with a step
function having finitely many steps. The goal in doing so was to reduce
integrals to sums. (In Section 3 a procedure for calculating the location
and size of the steps is described.) 1In optimal appropriateness
measurement1 it is necessary to integrate over ability to obtain a
uniformly most powerful test for cheating and other forms of aberrance.
Even for unidimensional tests a great deal of computing is required to

compute the theoretical manifest probabilities in Example Two. For
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multidimensional tests and "multi-unidimensional" test batteries such as
ASVAB considerably more computation is required.

So far we have successfully avoided computing multiple integrals in our
analyses of test batteries in which each subtest measures a different
ability2 by using approximations. .:he results in this section indicate an
alternative, more general way3 to calculate probabilities. Since an
integral must be evaluated for each of thousands of examinees and since
multivariate quadrature requires a lot of computation, replacing a
continuous multivariate with an equivalent discrete distribution on a small
number of points is very desirecble.

This section is concluded with comments on the issue of bounded and

unbounded ability continua, which is raised by Theorem One.

Why Bounded Abilities

Sometimes whatever is being measured by a test is intrinsically
bounded. Adding extremely hard items to a test generally changes what is
being measured and may cause a test to fail to be unidimensional. Thus a
calculus item is not a very hard arithmetic item but an item measuring an
ability or achievement other than what is being measured by a grade school
subtraction test, At the other extreme, a child totally ignorant of
subtraction occupies a lower end point on the measurement scale.

Theorem One raises questions about the domain of definition of the Pi
and also motivates considering bounded continua. Suppose tbat on a
particular test no examinee has an ability outside the interval [-5,5]
Then there can be a pair of inequivalent distributions Fl and F2 such
that Fl(t) = Fz(t) for jt| =5 , even though no empirical study can
distinguish between F1 and F2 . This awkward situation can be kept from

occuring by defining the item response functions as functions of abilities
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in [-5,5) . If t'e Pi are defined only for |t| =5 , then the CS
becomes a set of functions defined on an interval. Distributions that agree
on the interval will then be equivalent in the sense of Theorem One as well
as in the intuitive sense. Thus by treating the Pi as functions of a
bounded variable the intuitive and technical meanings of "equivalent" can be
brought closer together. Alternatively, attention can be limited to ability
distributions that are zero or one outside this interval. Both options are
developed in the next section.

The assumption of boundedness turns out to be very weak. In any
practical imeasurement situation, it can be trivially satisfied by
considering a very large interval, an interval so large that the probability
of sampling an examinee outside the interval for all practical purposes is
zero. For theoretical work, boundedness can be imposed on a test model by
transforming abilities without affecting the only assumptions being made

about item response functions: continuity and 0 < Pi(t) <1

NOTES

1. Levine, M.V. and Drasgow, F., Optimal Appropriateness Measurement.
Psychometrika, 1989,

2. Drasgow, F., Levine, M.V., and McLaughlin, M.E. Multitest extensions of

appropriateness indices. Applied Psychological Measurement, accepted
for publication, 1989.

3. The method can be thought of as a quadrature technique developed for
evaluating the integrals that occur in psychometric applications. The
selection of the quadrature points and weights is discussed in Section
3. Each quadrature formula is exact for some set of integrands. The
new method is exact for integrating functions in the CS.
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An Inner Product and Quasidensities

When abilities are bounded, the CS has an inner product with a simple
statistical interpretation. And each distribution function can be treated
as if it had a continuous derivative. This "derivative," the quasidensity,
is the subject of this section.

In the remainder of this paper it will be assumed that there are
numbers c¢<d such that Prob (¢ = 4 £ d) =1 . Item response functions
will be treated as functions defined on ([c,d] , and the canonical space
will be a set of functions defined on [c,d] . After these changes are made

the function <e,«> defined on pairs of functions £,g in the CS by
d
<f,g> = fc f(t)g(t)de

becomes an inner product.

Note that when the ability distribution has a density and this density
is in the CS, then the inner product has a statistical interpretation, For
if R(t) = E(X|f=t) 1is the regression function of a statistic X and if
the ability distribution has a density £ also in the CS, then <R,f> is
the expectation of X . The major result of this section is to generalize
this property to situations in which the ability density is not in the CS
and to situations in which the ability distribution is not differentiable.
It will be shown that there is a unique continuous function g in the CS

such that for all statistics X

E(X) = J$ E(x|0=t) dF(t)
- JS Ex|0=t) g(r)de

= <RX,g> .

Theorem Two: If P(c<f=<d) = 1 , then there is a unique continuous function
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g in_the CS such that for every statistic X

B(X) = 9 E(X[o=t) g()de .

Proof: Let ho, hl, ces hJ be an orthonormal basis for the CS relative to
its inner product <.,«> . Thus <hi’hj> = 1 or zero according to whether
i =,%j . For each j<J a statistic Xj can be found such that E(Xj|0=c)

- hj(t) because every function in the €S is the regression function of at

least one statistic. Let X be any statistic and R, its zegression

X
function. Since the hj form a basis for the CS, RX can be written
¢) = 3%, b.h,(-
Ry(+) = 35 bihy ()
for some constants b, . Since the h. are orthonormal <RX,h.> = b, and
J J J J

RX(-) -~ Zj <RX,hj>hj(~)

Consequently
E(X) = fc RX(t) dF(t)

- J¢ B, <Ry,hy>hy (€) dF(E)
=, <Ry,hp> fz h, (£)dF(c)
= 2, <Ry,h>E(K)

-z, J¢ Ry (£)h, (£)de E(X,)
= S Ry() Z; E(X,)h, (6)de
- JS Ex|o=t)g(t)de

for g=2 E(Xj)hj(o) in the CS.

To prove uniqueness, suppose that for some h in the CS

E(X) = [ R (Dh(E)de

for all statistics X . Since the hj form a basis, h(s) = Z ajhj(-) for
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some constants aj . Since the hj are orthonormal, for X = Xj
d
E(Xj) = fc Ry (£)h(t)de
J
- [9h.(t) = ah, (£)de
c j X kk

>

=3 a <hj'hk

K k

Thus h=g , as was to be proven.

If G=F or any other distribution function, then G will be called a
distribution on [c,d] if for t<c , G(d) - G(t) =1 . If G is F or
any other distribution on [c,d] then a function g in the canonical space

is called the quasidensity1 for G if for all statistics X
d
E(X;G) = fc E(X|6=t) g(t)dt .

Note that Theorem Two implies that every distribution on {c,d] has a
unique quasidensity. Furthermore the proof shows that the quasidensity for

G can be written as

J
g(+) = E(X.;G)h,(+)
j=0 J J
where {hj};no is any orthonormal basis for the CS and each Xj satisfies
RX = hj . Since the quasidensity is unique, the choice of the orthonormal
h/

basis and statistics Xj used in the formula is inconsequential,

At the end of this section some facts about quasidensity densities are
listed and proven. The quasidensity for the unit step at -1 is shown to
have the simple form g(t) = = h,(-1)h.(t) where (h.)q is any

<y 3 j j j=0
j=
orthonormal basis for the CS. This formula was used to compute an

approximation to the quasidensity for the unit step at -1 . The first 19
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hj's for 100 three parameter logistic items by the methods in Section 4.

Figure One shows the graph of g(t) = ¥ h.(-L)h,(t) . If q(t) is
j=<18 I J

multiplied times any of the 100 logistic functions and integrated, the
result should be very close to Pi(-l) . IPi(-l) - f: Pi(t)q(t) dt| was
found to be generally small, as shown in Table One.

For shorter tests, the quasidensity of the unit step function can be
computed without approximation., The graph shown in Figure One is typical.
The precision of the approximation shown in Table One serves to

illustrate a point developed in Section Four: For some purposes, high
dimensional canonical spaces can be approximated by much lower dimensional

spaces,
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-3.0 -29 -1.0 0.0 10 20 3.0

ability

Figure One: Cumulative distribution function for the unit step function at

6§ = -1 and its quasidensity
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Quasidensities
Table One:
P,(-1) JP.q
L1223 .1223
.0852 .0852
L1449 .1449
.2958 .2958
.2601 .2601
.2380 .2380
.3024 .3023
.3385 .3385
.2798 .2795
L4482 L4483
.7634 L7634
.7804 .7804
.8695 .8696
.2832 .2832
L1463 L1463
.1396 .1396
.2578 .2578
.2262 .2262
.2521 .2521
.3256 .3256
.3734 L3734
.6150 .6149
.7948 .7948
.7835 .7835
.8228 .8227
L1133 L1133
.0605 .0605
.2024 .2024
.3809 .3809
.3495 .3495
.1521 L1521
.2931 L2931
.2569 .2569
L4459 L4459
L6179 .6179
.7718 L7718
.8167 .8167
.8775 8774
.2074 .2074
.0660 .0660
.2858 .2858
.1365 .1365
.2095 .2095
.2888 .2888
.3565 .3565
.3742 L3742
.7894 .7894
.7856 .7856
.8536 .8532
.8159 .8159

Averages:

Pi(-l) and an Approximation

diff

.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0000
.0003
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0001
.0001
.0000
.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0004
.0000

414162

item

100.

.414137

P

i('l)

.0601
.1639
.1878
.2058
.3345
.2093
.2965
.4869
.7576
.8665
.9014
.9054
L1391
.2334
.1504
L1374
.2314
.1881
.2788
.2676
.5322
.6617
.7852
.8159
.9064
.0662
.2013
.2697
.1809
.3370
.2812
.2673
.3876
.6903
. 8457
L7427
.8800
.1406
.2022
2454
.0996
.1368
.1741
.2685
L4457
.3632
.4970
.7681
.7984
.9671

.000025

page 23
fPiq diff
.0601  .0000
.1639  ,0000
.1878  .0000
.2058  .0000
.3345  ,0000
.2093  .0000
.2965  .0000
.4869  .,0000
.7575  .0001
.8665  .0000
9012 .0002
.9054  .,0000
.1391  .0000
.2334  .0000
.1504  .0000
L1374 .0000
.2313  .0001
.1880  .0000
.2788  .0001
.2673  .0003
.5322  .0000
.6614  ,0003
.7851  .0001
.8159  .0000
.9062  .0001
.0662  .0000
.2013  .0000
.2697  .0000
.1809  .0000
.3370  .0000
.2812  .0000
.2673  ,0000
.3876  .0000
.6903  .0000
.8454 0003
7427 .0000
.8800  .0000
.1406  .0000
.2022  .0000
L2454 ,0000
.0996  .0000
.1368  .0001
.1740  .,0000
.2684  .0001
.4457  .0000
.3632  .0000
4970  ,0000
.7681  .0000
.7984  ,0000
.9674  .0003
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An Application of Quasidensities

As an illustrative applicationz, we return to Example Three of the

A

Preface. Let X be a statistic such as 0WK for which we desire

E(X]0=t) . Let Ml’MZ’ . MK be binary random variables indicating group
membership. For example in Example Three, K numbers =x

0AR can be used to define variables of the form

K in the range of

A

M =1 if |8

K <.5

- Xkl <

AR , else zero

dividing examinees into K not necessarily disjoint groups. Let

qys --- 9y be the quasidensities for the (conditional) distributions
Fk(t)=Prob(05t|Mk=1)

Suppose K 1is large enough and the Fk different enough so that some
subset of the 9 forms a basis for the CS. Let q(+;s) be the
quasidensity of the unit step at s in [e¢,d] . Then there must be numbers

ck=ck(s) such that

q(t;s) = 32 ck(s)qk(t) , cst=d .
k=<K

From the definition of q(-;s) we have
d
E(X|f=s) = fc E(X|8=t)q(s;s) dt .

Thus

E(X|f=s) = fg E(X|0=t) = ¢, (s)q(t) de
ksK

d
= 3 (s) E(X|0=t)q, (t) dt
Lok ®k fc [ Qy

= 3 ¢, (s) E(X|M,=1)
ek K K
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Thus the regression function on the left - expressing a conditioning on an
unobserved ability - equals a linear combination expected values of observed
scores for tune objectively defined groups.

To apply this result K is taken to be large, q(-;s) 1is computed with
the identity (derived at the end of this section)

q(e;s) = ? hj(s)hj(t)

The q, are estimated by maximum likelihood. The ck(') are computed

for each s by minimizing a quadratic objective function such as
Qe e = I3 la () - = ¢ (s)q (0)) e
1" "7 7K c s k k )

In this way a conditional expected value of a statistic given ability can be
computed when simulation is not possible or practical.
In addition to the three examples in Example Three, there is the

interesting special case of ZX=u the item score for a new item, and

n+l ’

E(X|f=t) = Pn+l(t) )

its item response function. Thus the formula at the bottom of page 24
expresses an unknown item response function as a linear combination of the

expected values of statistics.
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Summary of Properties of Quasidensities

Throughout this summary, let (hj};=0 be an orthonormal basis for the
CS and {Xj)§=0 be statistics satisfying E(Xj|0=t) = hj(t) for

cstsd .

Properties One, Two, and Three are useful for guessing the shape of the
quasidensity when F has a density in the CS or is closely approximated by
a distribution on [c,d] with a density in the CS. Property Four can be
used even if no close approximation of F has a dens: ty in the CS.

Property Five underscores the identifiability of the quasidensity by
exhibiting a strongly consistent (albeit, inefficient) estimate for the

quasidensity.

Defining Property of Quasidensities: A function g in the CS is the

quasidensity for G if for all statistics X
d d
fc E(X|f=t) dG(t) = fc E(X|f=t)g(t) dt

Formula for Quasidensities: g(t) = Ej E[Xj;G]hj(t)

s3]
=
[«5

|

Quasidensity for Step Functions: Let Gs be the unit step at s

q(+;s) 1its quasidensity. Then

q(t;s) = Ej hj(s)hj(t)
. . - d =
Proof: E[Xj,Gs] fc hj(t) dG (t) hj(s)

Property One: If G has a continuous density G’ and G’ is in the
canonical space then G’ is the quasidensity of G .

Proof: <RX,G'> = E(X;G) for all statistics X .

Property Two: If G has a (not necessarily continuous) density G’ then

the quasidensity of G 1is the projection of G’ into the canonical

space_in the sense that the quasidensity g is the unique minimizer in
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the CS of
I CHCIEIC

Proof: The general function in the CS can be written h(t,d) =
Ej[E(Xj;G) - dj]hj(c) for some vector of constants d . Since E(Xj;G) =
fg hj(t)G'(t)dt and since the hj are linearly independent it suffices to
show that h(t,0) is a minimizer. This follows from the identity

d o 2 d .2 2 43 a2
Jo (6'(t) - h(t,d))%de = fc ¢'“ -3z E(Xj,G) + 3 dj .

Property Three: If distributions are close,  then their quasidensities are

close in the following sense:

I1f Fl and F2 be distributions on ([c,d] with quasidensities q

and q, and O [F(0) - Fy(0))fae s ¢, then [9 (q)(0) - qp(0)) %t

IA

€

Proof: For i=1,2 F, can be written F, = q, + (F.-q.) = q, + r, . For
R i i i i7i i i
any orthonormal basis (hj) , <ri,hj> = 0 for each j . Thus fcr any h

in the CS, <ri,h> = 0 . Consequently
[ - Roifae = f2 g - o)’
+ 0
w19 ) - r,))? de
c 1 2
2 9 (ay(0) - g0t .

Property Four: The quasidensity of the limit of a convergent sequence of

distributions on [c,d] is_the limit of the corresponding sequence of

quasidensities. More precisely,

If (Gn} is a sequence of distribution functions on {c,d] weakly

convergent to a distribution G on ([c¢,d], then the sequence of
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quasidensities of the Gn converges uniformly to the quasidensity of

Proof: Let X be any statistic. Since the regression function for X is
continuous, by Helly's second theorem lim E(X,Gn) = lim fz E(X|8=t) dGn(c)

= E(X;G) . vuniformity follows from the continuity of quasidensities.

The ability distribution clearly isn’t determined by item response
data. This is obvious from Theorem One. When J 1is small, markedly
different distributions can be equivalent. The quasidensity, on the other
hand, can be recovered from item response data. The formula for the
quasidensity shows that all one needs to estimate the quasidensity from data

is the expected values of finitely many statistics.

Property Five: The quasidensity is determined by item response data in_the

sense_that there is a strongly consistent quasidensity estimation

procedure.

Proof: The variance of each Xj must be finite because there are only
finitely many possible values for Xj , one for each of 2" possible

response patterns. Consequently X,

5N the sample average for N

randomly sampled examinees, tends to E(Xj) with probability one as sample
size is increased. In fact, the multivariate strong law of large numbers

implies that the vector of sample means <X0,N’ . XJ N> almost surely

converges to the vector of expected values <E(X . E(XJ)> . Since the

0))
quasidensity g for the ability distribution F satisfies

J
B(8) = 2 B(X;)hy(c)

j=0

the random function defined by
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J
t) = T X, h,(t) , c=t=d
gy(t) 2 B (t)

almost surely converges to the quasidensity. Furthermore, the convergence

must be uniform in t because the hj are continuous on [c,d]

NOTES

1. The term seems apt because the prefix "quasi" means "to some
degree, in some manner." Although g(t) may be negative,

d d
J, h(e) de(r) = [ h(r)g(t) de
at least for every function h in the CS.

2. There is a technical problem beyond the scope of this paper that
arises in applications of this type. When the CS has been computed
from only a subset of the test items then Rx(t) = E{X|f6=t] may not

be in the CS. In this case the analysis yields an estimate of the
projection of RX into a subspace of the CS computed from all the

test items. We have observed that when only a small number of items
have not been included the projection and Rx(t) agree to several

decimals, provided the not included items are not extremely easy,
extremely hard or otherwise atypical.
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The Canonical Space

Logistic Models and the Examples

This section contains proofs and additional details for assertions made
earlier about the examples. We begin the study of computing the
dimensionality of the CS and selecting basis functions hj and statistics

Xj for some simple models.

The Rasch Model and its Generalization

In Examples One and Two it was asserted that the generalization of the
Rasch Model has J 1less than or equal to the number of items and that the

item response functions or some subset of them form a basis.

1f Pi(t) =c; * (1-ci)[ 1+ e.a(t'bi)]'1 then we can solve for e2C
and obtain
at 2P P (&)-c.
e = e i i
1-Pi(t)

Thus for ixj

abi ab.
e T [1-B(e) [ By(t)e; | = I 1R () ) HORN

If bis-ébj , then this equation can be simplified to obtain an expression of
form
Pi(t)Pj(c) = a + bPi(c) + ch(t:)

where a, b, and c are independent of t . Thus any product of two item
response functions can be rewritten as a linear combination of the item
response functions plus a constant. Using this fact it's easy to prove the

assertions concerning these models in Example One.
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If item response functions satisfy the formula for the Rasch model or its

generalization with biﬁbj for i=j , then
1. The dimensionality of the canonical space is less than or equal to
one plus the number of items

2. The constant function and the item response functions or some

subset of these functions form a basis for the CS

3. The item scores satisfy the condition on the Xi in Theorem One
and Example One.

Proof: Since the square-free monomials span the canonical space, it is
sufficient to show that every square-free monomial can be expressed as a
linear combination of the Pi plus the constant function ho(t)nl . Any
square-free monomial containing two or more of the item response functions
can be written in form RPin for i%j for R equal to a square-free
monomial not divisible by Pi or Pj . Thus RPin = aR + bRPi + cRPj can
be rewritten as the linear combination of three square-free monomials, each
of which has fewer factors than the original monomial. By iterating this
process one eventually obtains a linear combination of square-free monomials
depending on one of the Pi or none of the Pi (i.e. ho). Thus h0 and
the Pi span the CS, which proves 1. and 2. The remaining assertion

follows from E(ui|0=t) = Pi(t)
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Selecting Points for Example Two

In Example Two we considered changing integrals to sums. It was
asserted that there were numbers co,tl, . tJ and p(to),p(tl), SN p(tJ)
* .
such that for any vector of zeros and ones u , the manifest or pattern

probability
{ 1ik(u™|t) dF(t)
could be written

Lk
Ek lik(u |tk)p(tk)

This is an example of a more general result, proven in this subsection: For

any statistic X (including the statistic that is one if the observed item

*
response pattern equals u  and zero otherwise)
J E[X|0=t] dF(t) = %, E[X]0=t, Ip(t,)

The choice of the € and computation of the p(tk) is also discussed. We

use the notation q(-;t for the quasidensity of the unit step function at

K’
tk and the fact that q(-;tk) - Zj hj(tk)hj(o) for any orthonormal basis

for the CS.

The result need only be proven for bounded ability continua since any
item response model with continuous Pi#O,l can be transformed by an
invertible transformation to a bounded model. The proof is split into two
parts: The existence of a basis consisting of quasidensities and
interpretation of the p(tk)

The results indicate the following procedure for selecting points and

computing p’s for a model with CS having basis (hj);=0 :

1. Choose t such that the matrix

to,tl, cee by
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h (to) hl(to) ... h (to)
h (tl) hl(tl) h (tl)
hoicJ) hlitJ) . hJicJ)
is nonsingular
2. Compute p(to),p(tl), s p(tJ) by solving the linear equations
g(tj) - Ek p(tk)q(tj;tk) for j=0,1, ... J where g is the

quasidensity of F .

For the generalization of the Rasch model, the procedure can be simplified;

the p(tk) can be found by solving the system of linear equations

E(u,) = 3 p(£ )P () i=l, ... n
1 =3 p(t)

Generalizations and proofs follow.

If a test has continuous item response functions =0,1 defined on an _interval
fc,d] then the CS has a basis consisting of quasidensities of unit step

distributions.

Proof: Let {h.)J

575=0 be an orthonormal basis for the CS and let h(t)

Since the hj are linearly independent there must be J+1 values of ¢t

such that the vectors h(to),h(tl), cen h(tJ) are linearly independent. It
follows that the partitioned matrix [h(to),h(tl), ce h(tJ)] has an
inverse, say Au(aij) . Consequently, using Kronecker’'s delta notation each

hj can be written as a linear combination of the quasidensities q(v;ti)
hj(t:) = Ek hk(t:) ‘skj

(t)[E h, (t )a ]

m’“mj

= Zm amj zkhk(t)hk(tm)
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- Em amj q(t;tm)
Thus the quasidensities form a basis for the CS.

As a corollary, we have

The quasidensities of unit step distributions at to,tl, . tJ span the CS
if and only if [h(to),h(tl), - h(tJ)] is non-singular.

In practice on this type of problem we compute the t, recursively.

k

t, we choose such that h(t

o't o & il k1)

makes a relatively large angle with its projection into the linear space

After having chosen t

spanned by h(to),h(t ... h(t

l) ’ k)

After the t, are selected the calculation of the p(tk) is straight

forward. Since the quasidensities for the t, form a basis for the €S, the

k
ability distribution’s quasidensity is a linear combination of the
q(-;tk) and the coefficients of the combination are unique. The p(tk)

are simply the coefficients of the linear combination.

Let (q(-;tk)}i_o be a basis for the CS and the quasidensity for the

ability distribution be Ek p(tk)q(-;tk) . Then for any statistic X ,

E(X) = Ek E(X]ﬂ—tk)p(tk) . In particulayr for any vector of zeros and ones

* *
u , Prob(u=u ) = 3

%
" Prchb (u=u |0utk)p(t

»
Proof: Let X be any statistic. Then from the defining property of

quasidensities
d .
E(X) = [, E(X|o=t) 2 p(t)q(t;r,) de
=3 pet) f¢ E(X]0=t)q(t;t,) dt
k k! Y¢ 'k
= 2, p(t) E(X|0=t))

%
In particular for any vector of zeros and ones u if X 1is the random

variable that is one if u=u and zero otherwise, Prob(u=u“) = E(X)
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-3 Prob(u—u*loutk)p(t

k k)

Models with Very Large J

If J is small, as is the case with the Rasch model and its
generalization, then standard techniques can be used for computing an
oxrthonormal basis. wsever, if the dimensionality of the CS is as large as
the number of square-free monomials ( 2" ) then computing an orthonormal
basis is problematical. To conclude this section it is shown that for the
most commonly used item response models, the three parameter logistic
models, J#l1 typically is equal to its upper bound.

Item response functions are three parameter logistic (3PL) if

P () =, + (L-c)[L + e 23 (D)1

for some item parameters ai>0, bi’ and s in [0,1) . It is natural to
consider the item parameters random variables because in most applications
they are estimated from data. Suppose the sampling distribution of the
estimated parameters has a continuous density. Then the following result is

of interest.

If the joint distribution of the n jtem parameter vectors <ai’bi’ci> as

a_continuous density, then with probability one the CS of the 3PL item

. . . . . . n
response model defined with sampled item parameters will have dimension 2

Thus, for example, if one begins with the any published set of estimated

item parameters for an application of the 3PL model and adds an independent

normally distributed “"error" with zero mean and very small variance, say
-10

10 , to each of the 3n parameters, then with probability one either one of

the a’s or c’s will be moved outside its allowed range or a 3PL model with

J as large as it possible can be will be obtained.
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Proof: With probability one, the functions

a,t a,t at
1 2 n
e ,e , .. @

will be algebraicly independent over the reals, i.e. will not satisfy any
nontrivial polynomial with real coefficients. But if J+1<2"  then one of
the square-free monomials can be expressed as a linear combination of the

remaining monomials. On multiplying both sides of the equation giving one

a,t a.b,
. . s - i i’i
monomial as a linear combination of the others by positive Hi[e + e ]

a.t
one obtains a polynomial in the e ' and a contradiction to the hypothesis

J+1<2® .




Section Four

Large Canonical Spaces

Consider Example Three for a test with large CS for an application cur-
rently in progress. In a large scale simulation we are attempting to
monitor and control the changes in a Bayes modal ability estimate as new
items are introduced into a 100 item adaptive test item pool. The item
response function estimates for the new items are not expected to be very
accurate because of motivation, test format, and ability distribution dif-
ferences between the item response function estimation sample and the
examinees in the application. The methods to be reviewed in this section
permit us to compute as many as we need of the roughly 2100 orthornormal
hj for the test counsisting of old items.

The trick is to compute the hj one-at-a-time in such a way that the
hj needed to complete the application are computed first. Tk—s the CE& is

treated as the union of nested vector spaces CSK

CSK = Span{ho,hl, - hK}

where functions in only a dozen or so spaces can be and need be accurately

computed. Some details follow.

A

We wish to approximate E(0WK|0—C) = R(t) , where 0WK is the Bayes
mode adaptive test score. It turns out that although J 1is very large, the

A

projectica R of R into the twelfth space

R(E) = 25419

A

is very close to R(t) . Now if q(+;s) = =

<R,h.>h,.(t
3 J( )

j<12

hj(s)hj(t) is the projec-
tion q(+;s) into the twelfth space then fg E(0WK|0=t)q(t;s) dt =

A

R(t) . Thus if we can write q(-;s) as

q(+58) = B p ¢ (s)q ()
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a linear combination of quasidensities for the K AR score groups qk(-) ,

then
R(t) = stK ck(s) E[0WK|0AR is in Mk]
The point is that if an application can be completed using ho,hl, o hK

only then it may be possible to proceed as if J=12 .

This section describes a general technique used by our laboratory for
calculating the hj one-at-a-time in such a way that functions that are
likely to be needed for an application are well approximated by a function

in CSK for small K .

The General Method

The first step of our approach to large spaces is to select a set of

N
y=]

variables ZV fu(s)fu(t) can be easily evaluated. For example if fl’f2’

. fu’ ... £ n is any enumeration of the square-free monomials then the
2

fu span the CS. Furthermore for any s and t

functions {fy) that span the CS and are such that the function of two

n

2 n
uil fV(S)fV(t) = ? (1 + P (3)P,(t)]

can be evaluated with 2n-1 multiplications and n additions. (This iden-
tity can be verified by induction on test length n .) Other examples of
tractible spanning sets and additional criteria for spanning sets are dis-
cussed below.

There are two important points to be emphasized here. Although there
are generally billions of fu to enter into the sum H(s,t) = EV fy(s)fy(t) ,
the multiplicative formula for H(s,t) requires only n additions and 2n-1
multiplications. Second, the ordering of the fu is inconsequential.

Whereas the outcome of a Gram-Schmidt orthogonalization applied to the
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square-free monomials or any other large set of functions fu would be very
order dependent, the calculation of H is not,

The next step in computing the hj can be carried out with commercial
software or can be converted to a eigenvalue/eigenvector problem: Compute
positive numbers X and functions h not identically equal to zero such

that each h is in the CS and satisfies
d
Ah(e) = fc H(s,t)h(t) dt

where H(s,t) = Ev fu(s)fu(t) . There will be only finitely many different
values of X such that there is some h=0 in the CS satisfying the equa-
tion. Since the h’s are in the CS there can be only finitely many
linearly independent solutions h for any X . Thus any maximal set of
linearly independent solutions can be subscripted and arranged in order of

their subscript so that X Ala ces ZAK>0 for some KR<J and Ajhj(-) =

02
I3 H(e, £)h, () dt .
c J

Without loss of generality we can set <hj,hj>=l since hj(t) is a
solution for Aj if and only if hj(o)/<hj,hj> is. Since the set of all
h's corresponding to any A form a vector space, they can be selected to
be orthonormal. Since it can be shown h's with different \’'s are or-
thogonal, the hj will form an orthonormal set of vectors 1In fact it is
easy to show that when the fu span the CS, K=J and the h, computed in
this way form an orthonormal basis for the CS. If an application suggests a
set of fu that don’t span the CS, then K<J and the hj will be a basis
for whatever subspace the fu span.

Note that except in the unusual case that more than one h correpsonds
to one X , the h's are fully ordered by their X’s . Even if for some

i Aj-Aj+1 , the h's corresponding to different X's will be ordered and

we can still speak of hj occuring early or late in the sequence of h's .
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The ordering is important because for various reasons (cumulative numerical
errors and the fact that Xj is very close to zero for large j ) the hj
that occur early in the sequence are relatively easy to compute (although
the remaining hj can be very hard to compute).

There are two related advantages in arranging tne computation of basis
functions as described above. The hj with large Aj , which are easy to
compute, can be computed without computing the hj with swall X , which
can be very hard to compute. This is important because Aj generally
measures the relative importance hj in representing functions in several
senses, For example, if fu is approximated by its projection into

CSK—span(ho, ces hK} , which turns out to be fu(-) = jEK <fy,hj>hj for
K<J , then the total error

s [ [£,() - fu(c)]2 dt
v

is simply = X, . (This sum can be evaluated even if J is very large
j>K
because
d
fc H(t,t) dt - T A, = T A _.)
jx J >k J

As a bonus, the method also delivers a set of statistics X, needed
for Example One and Theorem One (i.e., statistics such that h,(t) =
E[Xj|0=t] for all t in ([c,d] ). Details are given in the final

subsection.

Some Examples of Spanning Sets

In addition to the square-free monomials we use the 2" 1likelihood

functions for short tests. Here
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* %
n ui v (1'ui V)
f(e) =T P.(t) 777 [1-P.(t)] ’
v s i i
i=1
where u:, e u:, v u*n is any enumeration of the 2" item response
2
patterns. For these functions
H(s,t) = EU fy(s)fu(t)
n
=I].-[ (Pi(s)Pi(t)+[l'Pi(S)][1'Pi(t)]’ )

which can be easily evaluated. (This also can be proven by induction on

test length n after noting that each likelihood function can be written as

n * * - 3
fu(t) = igl (ui,uPi(t) + (1-ui,y)[1-Pi(t)]} .) These functions certainly

span the CS because any square-free monomial can be written as a linear com-

bination of likelihood functions. (To prove this, simply write the general

monomial 1T Pi as the sum of the likelihoods for patterns w  with

2 Yy
For adaptive tests and long tests satisfying (exactly or approximately)

an algebraic property described below, we use likelihood functions for

selected subtests. For example to study a fixed length adaptive test of 15

100 100
15

likelihood functions with fifteen factors since every statistic computed

items with a 100 item pool it is natural to consider the [ ] <2
from an examinee'’'s score depends on only 15 item scores.

The discussion of the Rasch model introduces a second rationale for
forming the fu from the likelihood functions for short subtests. Recall
that for the Rasch model every polynomial in the CS could be rewritten as a
"polynomial” in the CS, no monomial of which contained 2 or more factors.
This property is remarkably general. For the 3PL model (and most of its

generalizations) every polynomial in the CS can be rewritten as a linear
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combination of monomials with five or fewer factors, at least to a surpris-
ingly high degree of approximationl.

When every function in the CS can be expressed as a linear combination
of square-free monomials with five or fewer factors, then the CS is spanned
by the likelihood functions from subtests with five factors. There are
still an enormous number of likelihood functions fu that can be formed
from from all five item subtests. Nonetheless H(s,t) = I fu(s)fu(t) can

be computed efficiently for these functions as follows:

Let Fi(s,t) abbreviate Pi(s)Pi(t) + (1-Pi(s)][1-Pi(t)]

Let H?(s,c) denote the sum of the likelihood functions for all 1

item subtests formed from the first m items.

To initialize set
Hl(s t) = F.(s,t)
l s 1 ]
H}(s,c) =0 for i=2,3,...5.

To update, compute

m+1 m

Hi = Fm+1Hi-l for 1i=2, 5
m+1 m
By = Fn i
If in the update step H§+l is computed first, followed by H2+l , etc.,

then H?+l can be written over H? and the amount of storage required by
the algorithm can be kept small.

Most of our current applications to one dimensional ability tests use
this algorithm. Although some of the CS may be left out, the algorithm in
practice works very well. It is the only algorithm that has consistently

produced useful results with long tests.
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Reduction of Proofs to Matrix Algebra

A number of assertions were made without proof concerning the solutions

for the functional equation
Pp(h) = Ah

where P(h)(+) = fg H(+,t)h(t) dt for H(s,t) = Eu fu(s)fu(t)

By taking advantage of the finite cdimensionality of the CS these proofs can

be obtained with matrix algebra. In this section the reduction to matrix

algebra is indicated after a few of the assertions are proven directly.
First ¢ is a transformation of the CS to itself because the fu are

in the CS and Y(h) = Eu <fy,h>fy is a linear combination of the fu .Y

is thus a linear mapping of a finite dimensional vector space into itself.
To show that the eigenfunctions of ¥ span the CS it is neccesary to

show that ¥ maps the CS onto the CS. Equivalently, since the CS is finite

dimensional, one may show %(h)=0 implies h=0 . To show this one can
J J
write £ (*) = T a .g.(+) for some orthonormal basis (g.}. . The
v j=0 ¥373 37 3=0

matrix A=(ayj) must have rank J+1 since the fu span the CS. 1If
$(0)=0 , then 0 = <g; H(h)> = e§ATA<g,h> , J=0,...J where e, is the jth
unit vector and <g,h> is the column vector of <gj,h>’s . Thus
ATA<g,h>-0 . Since ATA has rank J+1 , <g,h>=0 , i.e., h 1is orthogonal
to each gj . Thus h=0 .

The existence of eigenfunctions in ghe CS and the fact that the eigen-
functions span the CS can be shown with matrix algebra. To introduce matrix

notation, for each t in [c¢,d] let £(t) be the column vector with wvth

coordinate fV(t) . Then H(s,t) 1is the scalar product of £(s) and

f(t) . Let Q denote the matrix of definite integrals
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Q = fg f(t)fT(t) dt , i.e. Q is the matrix with typical entry q , =
<f £ ,> .
vy

Q must be positive definite or positive semidefinite since for any

vector a , aTQa = fd [a~f(t)]2 dt = 0 ., Therefore for some K , Q can be

0 1 1 K

written Q = [a ,a”, ] D[ao, , ... a ] for K+l orthonormal vectors

al and a diagonal matrix D having positive diagonal entries dj>0 .

0<jsK 1let hj be defined by

L a2 3,
hj(t) dj a«f(t)

Since each hj is a linear combination of functions in the CS, each must be

in the CS. The hj are orthonormal since

_l/2.0-172 3T d T k
<hj,hk> dj dy a fc f(e)f () dt a

4172
d "y

_ [0, if j=k
1, if j=k

1/2 iTq,k

In fact the hj must be eigenfunctions of 3 because

#(hy) = EROYE SL¥ 12 dlgcey ae

31/2 9% [ £y ey ae £()
a2 3oz s
at/? 23T¢ .y
j
= d.h,
3

K must equal J because otherwise ¥ would not map the CS onto the CS.

Thus the eigenfunctions form an orthonormal basis for the CS.




Section Four: Algorithms and Approximations for Large Spaces  page 45

The Statistics Xj

In Example One and Theorem One statistics with regression functions
equal to hj were needed. Of course such statistics exist because every
function in the CS, by definition, is the regression function of at least
one statistic. Finding a statistic matching a function fortunately turns
out to be easy for bases formed from eigenfunctions.

When the hj are obtained as eigenfunctions, these statistics are cal-
culated in two steps. First, the examinee’s data is transformed into a
continuous function X(t) . Then a statistic is obtained by computing
<X,h.>/X.

T3

For concreteness consider the second example of the general method in
which each fy is a likelihood function. The general technique applied to
this example gives X(t) equal to the familiar likelihood function as the
random function

n
X(t) = T [ugP.(t) + (1-u;)Q, (1))
i=1
and X, = [9 X(t)h, (t) de/A,
J c J J
To verify that the regression function for this statistic is hj , we

compute as follows. The regression function for Xj evaluated at @=s 1is

B[, [0=s] AilE[ [OINORTIES

n
NS IR UOR () ()0 01y () de

1

1

-1 }
Aj f H(s,t)hj(t) dt

i

hj(S)

The general rule for obtaining a random function X(t) for arbitrary

fu is to make the replacements

Pl(s) - Uy
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Pz(s) -+ U,

Pn(s) »u
in fu(s) to obtain a random variable Yu(u) from fy(s) . A random
function X 1is defined by
X(t) = ZU Yy(u)fu(t)
Finally, a random variable having regression function equal to the jth basis
function is obtained as fg X(t)hj(t) dt:/Aj . To summarize
Let H(s,t) = Z fu(s)fu(t) for functions in the CS fv not necessarily

spanning the CS. Let h satisfy fg H(+,t)h(t) dt = Ah(+) for positive

A, For each t in [c,d] let X(t) be the random variable obtained by

replacing each Pi(s) by u; in the formula defining H(s,t) . 1I1f Xj m

<X’hj>/’\j , then E[xj|0=t] = hj(t) for e=t=d .

Note, the transformation fu(s) - YV generally cannot be defined on the CS
because if two items have the same item response function, then we can have
fu(-) = fy,(-) as functions in the CS but YV¢YU, . The problem can be
avoided by regarding fV(s) as a polynomial with real coefficients in

algebraicly independent variables Pl(s),Pz(S), cen Pn(s)

Proof: E[X(t)|f#=s]) = H(s,t)

NOTES

1. Levine, M. and Williams, B. Latent trait theory as fundamental
measurement, Paper presented at Society for Mathematical Psychology
Annual Conference, Irvine, California, 1989,
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