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1 Introduction

Two of the profound open problems in the theory of three dimensional viscous flow are

the unique solvability theorem for all time and the existence theorem for the global attrac-

tor. We have shown in our earlier studies [10, 9, 11, 13] that certain regularizations of the

Navier-Stokes equations are uniquely solvable (up to dimension six) and can be character-

ized by compact global attractors. A natural question then is to investigate the possibility

of establishing such results for the conventional Navier-Stokes equations by a limit process.

In this paper we will accomplish this for the two dimensional case. We prove in particular

that the compact global attractor A, for the regularized system converges to the compact

global attractor A of the conventional system as E -+ 0.

The outline of the paper is as follows. In §2 we present the relevant mathematical frame-

work for the paper. In §3 we establish several uniform estimates for the generalized solutions

of the regularized system. These estimates hold independent of the size of the regulariza-

tion parameter and remain valid when this parameter goes to zero. In §4 we show that the

solution of the regularized system converges to the solution of the conventional system as

the regularization parameter goes to zero. The next two sections deal with convergence of

attractors. In §5 we establish the convergence of the simple case of time periodic solutions.

Then in §6 we prove the central result of this paper establishing the upper semicontinuity of

the compact global attractor A, at c = 0.

The question of the convergence of A, to A is thus completely answered for the two di-

mensional case. Our future investigations will be concerned with the corresponding problem

for the three dimensional case. We have already reported partial results in this direction in r

[10, 9] where it was shown that the generalized solutions of the three dimensional regular-

0ized system converges to the solution of the conventional system under certain conditions. 0

The methods validated in this paper certainly give us guidelines to elaborate the three di-

mensional case. We remark here that the use of the artificial viscosity method to establish /

solvability has also been successful in other branches of partial differential equations. A well :? Codes
nd/or
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known example of such a result is the viscosity solution method for the Hamilton-Jacobi

equations [2].

2 Notations and Preliminaries

We regularize the Navier-Stokes system by adding a fourth order artificial viscosity term

(Laplacian square) to the conventional system. In this paper we will restrict ourselves to

periodic boundary conditions. A thorough study of the regularized system with this and

other types of boundary conditions was carried out in [10, 9, 11].

Let us consider the velocity field u = (u1 , u 2) and pressure fiel p with space periodic

condition in R 2 such that for Q = (0, L) x (0, L), we have

- + EA 2 u - VAu + (u _ V)u + Vp f, in Q x (0, oo), (1)

V.,U = 0, in 0 x (0, oo), (2)

u,(z + Lei,t) = u(z,t) i 1,2, V t E (0, oo), (3)

p(z + Lei, t) = p(m,t) i = 1,2, V t E (0, oo), (4)

u(Z,0) = uo(O), in 0. (5)

Here v > 0 is the coefficient of the kinematic viscosity of the fluid and c > 0 is the artificial

dissipation parameter. f and uo are prescribed vectorfields. Notice that the conventional

Navier-Stokes equations correspond to the value of the regularized parameter E = 0.

We denote by H"(f2), the Sobolev space of L-periodic generalized functions (condition

(3)) which have up to order m square integrable distributional derivatives. These spaces are

endowed with the inner product

(U,), = ' (D u,D v)L 2 (n)

and the norm

I1ju11 = E Z 1D" U112 2(n))1/ 2.
Iot K<-
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Suppose we expand u E H"(D) by the Fourier series

U(Z) = E cke 1,,k-./I,
kEZ

2

then the Sobolev space u E Hm(Q) can be characterized by

H'(f2) = {uI k = c-k, E Ikl'IckI2 < oo}.
kEZ

2

We denote by fH(Q) the subspace of Hn(f2) with zero average:

/"( 2) = {u E H(D); j u(z)do = 0}.

For m = 0, we have H0!(O) = L2 (i).

We introduce the following solenoidal subspaces which are important to our analysis:

H= {u E L2(n), divu 0, u-nIr, -u nIr+2, i= 1,2};

V" = {u E f!'(Q), divu = 0, -ou Ir, +,u ri+2 , i = 1,2}.

V = {u E ft 2(1), divu =0, -your = 7u0 r,+2 ^lu lIr = -^uIr,+2, i= 1,2}.

Here the faces of Q are numbered as

ri = &I n{xi=0} and ri+2 =ofQnn{x=L}, i=1,2.

Here -yo, -yi are the trace operators and n is the unit outward normal on all.

The space H is endowed with the inner product (u, V)L(n) and norm uI = (u, ,U)1()

(or II lo). It can be shown that the norm induced by H1/(Q) and the norm IIVulL2(n)

are equivalent in V'. Similarly, in V the norm induced by /: 2 (f2) is equivalent to the norm

IIAuIIL (n). We then denote Ilull = llAullL.(n) = (u,u)1/2 as normr, in V derived from the

inner product

(u,V)V = (Au, AV).

Let V', V' denote the dual spaces of V and V respectively.

3



The Stokes operator A1 can be characterized explicitly using Fourier series. We write the

Stokes problem,

- Au+Vq 
g, in 0,

V-U =0, inf.
as

Aiu g, with D(Ai) = {u C H, Alu e H}.

We have in fact,

u c D(A)= H 2 (C) n H = V. (6)

Similarly, we can solve by Fourier series the following linear problem which is fundamental

to our analysis: { A 2 v+Vp=f, in S,

V-V =0, in n.

The linear operator A (which we call the dissipation operator) is characterized by Av = f. It

can be shown that the self adjoint operator A G £(D(A); H)f £(V; V') is closed with D(A)

dense in V C H. Moreover, we can define positive as well as negative powers A*, a E R

with domain D(A'). Let us denote by Xa the space,

X. = D(A '14) = {u E '(fl), divu = 0}.

In fact the norm induced by ft'o(1) is equivalent to the norm IA"/ 4u I in X,,. This means

,8111U 114.: IA'uI __ 021JUII4. V u E D(A"), V a E R. (8)

We can deduce from a theorem due to Lions [71 that D(Al/ 2) = V. Thus,

D(A1 ) = V = D(A'/ 2). (9)

By Rellich's Lemma [1] A-1 as a mapping in H is compact. Hence the spectrum of

operator A is discrete with finite multiplicities and can be written explicitly using Fourier

series as
16w't

Ak = 10 Jk14, k = (ki, k2).
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The self adjoint operator A possesses an orthonormal set of eigenfunctions {w ,}2, complete

in H,

Awj = Ajwj, w E D(A), Vj.

The above results can be applied to the Stokes operator A, as well. The eigenvalues of A,

are

ILA: = 4w2-kl, k = (k,k2 ).L2

The corresponding orthonormal set of eigenfunctions {ij jjcP= is complete in H and

A, = Ait , i, t; E D(At), V j.

Remark: For the space periodic case considered in this paper, the Stokes operator A, is

in fact equal to A'1 2. However since for other types of boundary conditions they are different

we prefer to give them distinct notations.

Let us now define the trilinear form b(.,-,.) associated with the inertia terms:

2
b(U,,,) = .. ,Dv,w do, D

It can be easily-shown that

b(, v, w) =-b(, w, v), V.,., EV

and

b(u,v,v) = 0, V u,v E V.

In the case of periodic boundary conditions, we have in addition [15, Lemma 3.1]

b(u,,A,u) = 0, V u ED(A,). (10)

Using the discrete H6lder inequality and Sobolev embedding theorem we can show that

b(.,.,.) is trilinear continuous on k/ (n) x ftx+ (n) XHm(fl), mj _ 0 [15]:

Ib(-, .,,,)1 ol I1,mi I1j l1.2+ jI1' I1. 3
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m1 + M2 + m 3 > .

The following well known estimate will be used later,

jb(uv,,,)j _ cIu/I 2IVI 11/Il/ 1 IV,,11 2IVWI, V. u,V, E V( or f), (11)

where cl is a positive constant.

The continuity property of the trilinear form enables us to define (using Riesz represen-

tation theorem) a bilinear continuous operator B from kl"" (11) x H +1 (1) into ( ' (fn))'.

In particular, for u,v,w E V, B(u,v) E V' will be defined by

< B(u, V), W >VXV= b, v, w), Vw E V.

Similarly, we define b(u, v) E V" by

< B (u, v),- >w x bU, V, W) V-, E .

Using the operators defined above we can write the regularized system (1)-(5) in the

evolution form:
... u. 4eA,,+ vAiu.+ B(u,u.) =f, t>O,

dt (12)
u.(0) = U..

The existence and uniqueness theorems for initial value problem (12) can be found in [10, 9].

The main result in this work is:

Theorem 2.1

(i) Let f E L2 (0, T; V') and uo E H be given. Then there ezists a unique weak solution of

(12) which satiss u,. E C([O, T];H) nL'(0, T; V), V T> 0.

(ii) Let f E L2(0, T; H) and uo E V be given. Then there ezists a unique strong solution of

(12) which satisfies u. E C([O, T];V) nL L2(0, T; D(A)), VT > 0.

0
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Let us denote by W,(t) the nonlinear semigroup associated with the solution of the regularized

system (12). This means W,(t,0; uo) = u,(t) for all t > 0.

Notice that the conventional Navier-Stokes system can be written in the evolution form:

du
-+vAju+B(u,u)=f, t>O, (13)

U(0) = U.

The following unique solvability theorem for the system (13) is well known.

Theorem 2.2

(i) Let f E L2(0, T; V') and uo c H be given. Then there exists a unique weak solution of

(13) which satisfies u G C([O, T]; H) n L2(0, T; V'), VT > 0 (Lions and Prodi [8]).

(ii) Let f E L2 (0, T; H) and uo E V be given. Then there exists a unique strong solution of

(13) which satisfies u G C([0, T]; n) fl L 2(0, T; D(A1 )), VT > 0 (Kiselev and Ladyzhenskaya

[5]).

0

We will denote by W(t) : uo -- u(t) the nonlinear semigroup associated with the solution

of Navier-Stokes equations.

Let us introduce the following result [10, 9] which is needed for the convergence of u. as

the regularized parameter c --* 0.

Proposition 2.1 Let {Uh} be a sequence of vectorfields that converge weakly in L2(0, T; V),

weak-Star in L'(0, T; H) and strongly in L 2(0, T; H). Then, the following limits are obtained

for any vector function w in Y = {w E C(0, T; V); w' E L 2(0, T; H)}

(a) lim f(uk(t), )w'(t))dt = (u(t), Iw'(t))dt,

T T
(b) lim (Vuk(t), Vw (t))dt= (Vu(t), Vw (t))dt,Jo Jo"
(c) lim b(uk(t), uk(t), w (t))dt = b(u(t), u(t), w (t))dt.
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3 Uniform Estimates for the Solutions

In this section we will establish various estimates uniform in E for the solution of reg-

ularized Navier-Stokes equations. These bounds will be used to establish the limit of these

solutions to the conventional Navier-Stokes equations.

Lemma 3.1 Let f E L 2 (0, T; H), then the weak solution u,(t) of the regularized Naier-

Stokes equations satisfy

(i) sup IU(t) 2 < dl,tE0,T]

(ii) fTIVu,(t)12dt < d2,

where dl, d2 are both independent of e.

Proof: By taking the inner product of (12) with u,(t), we obtain the energy equality:

-1,u.l + 2r:11ue112 + 2vVu, 12 = 2(f,u,.).

Here we have used the fact that b(u6 , u,, u.) = 0. By applying Young's inequality and the

Poincare Lemma IVUI 2 > t11IuI 2 , we get
d
d[ue12 + 2el1u.12 + vIVu,! 2 < If 12 (14)

where il = 4r 2I/L 2 is the smallest eigenvalue of the Stokes operator A1 . If we drop the

positive term associated with e, we obtain

d IU.12 < if 12
dt I1

Hcnce, by integrating the above inequality from 0 to t, we get

ue (t)12 < IU. 2 Cc + ~. Ift (s)12 e-a(t - ' ) ds,

with a = viq. That is,

sup Iu,(t)12 < di.
tE[0,TJ
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with d, = dl(uofa,T) = _uolI + I If(s)12 ds.

If we drop the term 2e11 E112 in (14) and integrate from 0 to T,

Iu,(T)I + dt < IUoI2 + _ Ildt. (15)

This implies
jTIVul 2d < J U.0I2 + k TIf 12 d]Tluldt < Il+- ll d t ]

That is
f rV,,(t)12 d2 = di

Notice that d, and d2 do not depend on e.

Corollary 3.1 Let f E H be independent of time then,

(i)lu(t)12 < IU,(0)12e-a' + P2(1 -e-"t), PO - I)l , t > O,
f 1( 2 IfI2T)

(ii)]IVu12dt <__ Ifol + T T > 0.

Proof: By integrating (14) from 0 to t with f E H, we obtain result (i) with Po = If I/a.

Result (ii) is a direct consequence of (15).

0

Lemma 3.2 Let f E L 2(0, T; H), then the strong solution u,(t) of the regularized Navier-

Stokes equations satisfy

(i) sup IVUe(t)12 < d3,
tE[O,T]

(ii) jT IAjiu (t)12dt < d4,

where d3, d4 are both independent of e.
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Proof: We consider the strong solutions and take the inner product of (12) with Alu,

obtaining
dIVuI2 + 2eIA 3 / 4 U,12 + 2vIAju 12 = 2(f , Alu,).

Here we have used the fact that b(u,, u,, Au,) = 0 and

(Au ,Au,) (A'1/4 A 3 4 ue, A'1/ 2u)

= (A3/ 4 u , A3/ 4 u)

=A 3A/4,U.[2

since D(A1 ) = D(A'/ 2) and both A, A, are self adjoint. By applying Young's inequality, we

get
d IVuI 2 + 2eIA 3/4 ,I2 + vIAiuI12 < I (16)

We can drop the positive term 2,E 1A3/4,4 12 and use the inequality IAiuel 2 > ,,LIVueI 2 to get
d IVu 2 + VttIIV u 12 < If 12 (17)

dt

Integrating the above inequality from 0 to t, we get
IVu,(t)12 < iVu,12 - t + - 2  (t-) ds,

VO0

where a = vjsl. This gives

sup IVU.(t)12 < d3.
tE[o,T]

with d3 =d 3(uo,f ,v,T)= IVu~ofI + Ij f(s) 2 ds.
V

We can drop the term 2c A 3/ 4u,12 in (16) and integrate from 0 to T to get

IVu,(T) 2 + v IAiu,Idt < Vu~oI2 + l f I'dt. (18)

This implies

IAiueldt < 1[ IVuoI + V T dt

That is

TA 1,,(t)l 2dt < d4, d =d

Notice that d3 and d 4 do not depend on e.

10



From this proof we can easily deduce the following results.

Corollary 3.2 Let f E H be independent of time then the strong solution u,(t) satisfies:

if 12(i)IVu.,(t)i2 < IVue(0)I'e t + p'( 1 - e' t ), P2 =- V t > 0,

(ii) T IAiue12dt < 1 ( IVUo + I1FT), T > 0.

Jo L

0

4 Limit to the Navier-Stokes Equations

In this section we will establish the convergence of the strong solution of the regularized

Navier-Stokes equations as e -4 0. In [10, 9], a similar convergence result for the weak solution

was established under certain conditions. In this section we will prove the convergence

without any assumption on the bound for the solutions.

Theorem 4.1 Let u,(t) be the strong solution given by Theorem 2.1. Then as E --+ 0

the solution u, converges to a unique limit which is the strong solution of the Navier-Stokes

equations.

Proof: We need three forms of convergence for appropriate subsequences. Namely,

(i) u,, - u in L 2(0, T; V) weakly;

(ii) u h, - u in L'(0, T; H) weak-star; (19)

(iii) u, -- u in L 2(0, T; H) strongly,

as Ek' --+ 0.

It follows from Lemma 3.2 that u,,. C L 2(0,T;D(Ai)) n L'(0, T; 1V) with bounds in-

dependent of ek. This easily implies (i) and (ii). (In fact, better convergence results are

obtained.) The strong convergenre result (iii) can be established as follows:
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Let {u,,} and {u,} be two sequences of strong solutions of (12) corresponding to the

same initial data with ek = a = , respectively. (i.e. Ei,, e, --+ 0 as k, I --+ oo.) We

denote by u,(t) = u,.(t)- u,,(t) so that u,(0) = 0. By subtracting the equation (12) for u,,

from that for u, we get

'U14±EAue EIjAu. + vAlu, + B(u,,, u,,) - B(u,,,,u) = 0 (20)

Taking the inner product of (20) with u,, we get

(u, u') + Ek (Au., u,) - E, (Au,,, u,) + v(Alu,, u,) + b(u,,,, u., u,) - b(ue,, UeJ, Ue) = 0.

By using the fact that (Au,v) = (Aiu,Ajv) and the properties of the trilinear form b

established earlier, we obtain

ld1- dU12 + Elk (Alu,,, Aiu,) - El (Alu, Alu,) + vIVuI 2 - b(ue, U&, Ut,) = 0.
2 dt

Thus

2 U,1 + vIVuI 2 < Ek I(Alu,, Au,)l+ el I(Au,,, Au,)l + lb(u, u,, u, )I. (21)

The trilinear term can be estimated using (11) as,

Ib(u , u, ,u,,)l cl IuI IVuI IVu,,,,I
V 2 C<_ IVUd12 + -I 1U12 IVu,.12.
2 2v

Substituting the above result into (21), we obtain

d L2

- 12 + vIVuI 2 < 2EI, IAIurI IA,,,I + 2EI IAu,,,LI IAu,,I + I U, 12 IVU.I12.

We drop the positive term vIVuI12 and integrate this equation from 0 to t, and noting that

u (0) = 0, we get

Iu, (t)12 < 2Ek IAu,,, I IA,,Idr + 2cl f IAu,, IAiuldr

+ cjI ue2 IVu' 12 dr. (22)
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From Lemma 3.2, we have u,,, E L2 (0, T; D(A1 )) with bound independent of Ek. Hence by

applying the Schwartz inequality we have

efjuj IAluEld7- < ek(j IAlukI dT1- ( IAiu Id'r)"

<k (31/2d 4).

Similarly we have

E, IAu,,,lI IAAuId& < EI(31/2d4 ).

Since from Lemma 3.2 u,, E L°x(O, T; V) with bound independent of ek,

oU'.I IVuCI' dr < d3  Iu eU'2d'r.

Combining all of the above results into inequality (22) we get,

lue(t)12 < 2. 31/ 2 d 4 (ek + 61) + tu,(r)1 2 d-. (23)

Notice that here cl, d3 and d4 are all independent of e. Now, if we denote y(t) = f~ uc(.)12d'.

then (23) becomes
dy c2I y < 2 -31 /2 d4(Ek + 'El) + -d3Y(t)

dt - V

y(O) = 0.

From this we can deduce that,

y(t)<31/2 V(1E + ) [expJ(di3t)- t[0,T].

Hence,

u ,(r)12d -- 0, as Ek, El 0.

That is

I1,,,, - U',IIL2(o,T;H) - 0, as ek, el --+ 0.

This means {u, } is a Cauchy sequence in L2 (0, T; H) and there exists a limit u in L2 (0, T; H)

such that

IIU'Jk - UIIL2(OT;H) 40 as ck -+ 0.
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This completes the proof of the strong convergence result (iii) of (19).

Let us now establish the limit of the equation (12) as ek -* 0. Let us take a test element

4, such that

4 E C(O,T; V) and 4'EL2 (0, T;H).

Taking the inner product with (12), we get

(u,,4' ) + ck(Au.,4 ) + v(Aluh,4, ) + b(uc, U., 104) =(f 0)

Integrating with respect to t and then integrating by parts we get,

(u,, (T),4(T)) - (uC,(0), 4'(0)) - o(uh, 4')dt

+k f(Au,, A,4)dt + v jT( , V4)dt

+10 b(u e,,, 4,)dt = (f,4, )dt. (24)

Let us choose E, - 4, E )(0, T; V). Using the convergence Proposition 2.1 we can take

the equation (24) to the limit as Ek --. 0,

T (u,,')dt + v I V , V,)dt + b(uU, , )dt = ,(f ,)dt.

Here the term

I T

CA: (A, u,,, A, )dt 0,

as Ek -40 since

0T(Aluh, Al0)dt < const. independent of Ek.

Since u E L 2(0, T; D(A1))fnL-(0, T; ), we can conclude that u is indeed the strong solution

for the conventional Navier-Stokes equations.

0

From Lemma 3.1, we can deduce that the weak solutions uh E L2(0, T; V) n L-(0, T; H)

are bounded independent of Ek. Hence the convergence results (i) and (ii) are satisfied by

14



the weak solutions. However, such convergences are not sufficient to conclude the strong

convergence in L2 (0, T; H). Therefore, Theorem 4.1 is not valid for weak solutions. We can

nevertheless establish a convergence theorem for the weak solutions provided they satisfy a

certain bound. The following theorem is proved in [10, 9]:

Theorem 4.2 Let u, be the weak solution of problem (12) given by Theorem 2.1 with f E

L 2(0, T; H). Moreover, u,, E L-(0, T; L3+6(Q)) uniformly in E (6 > 0) and v > c, where c

is a positive constant. Then, for e -+ 0, u, approaches a unique limit u which is the weak

solution of the Navier-Stokes equations.

0

5 Convergence of T-time Periodic Solution

In this section we will show that the T-time periodic solution of the regularized Navier-

Stokes equations converges in the limit to a T-time periodic solution of Navier-Stokes equa-

tions. Existence theorems for T-time periodic solutions to the regularized Navier-Stokes

equations were established in [10, 91. For similar existence theorems for conventional Navier-

Stokes equations see [12, 17, 14]. Let us first give a definition for the time periodic solution.

Definition 5.1 Let f(t) E L' (-oo,+oo;H) and be periodic with period T. Then u,(t)

is said to be a T-time periodic solution of regularized Navier-Stokes equations if it satisfies

u,(t) E L*(-oo, +00; H) n L'L(-oo, +0; V), T-periodic in time and

f+{-(.(t), 0'(t)) + C (Au.(t), AO (t)) + v(Vu.(t), VO (t))

+ b(u.(t),u,(t),tP(t))}dt= L00 (f(t),p(t))dt, V, E Y (25)

with y = {,O E Co(-oo,+oo;V) and b' G L(-oo,+oo;H)}.

Here Co(-oo, +00; V) denotes the set of continuous V-valued functions that vanish outside

a compact time interval.
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In [10, 9], it has been proven that a necessary and sufficient condition for a T-periodic

solution to be a weak solution in (-oo, +oo) is that it must be a weak solution in the

interval [0, T]. The regularity of periodic solutions can be obtained by noting that 3t, E

(-oo, +oo) such that u,(z, ti) E V. We use this as the initial value and study the regularity

in [ti, oo) by standard methods [15]. Repeating this in each interval we deduce the regularity

of the periodic solution in the entire interval (-oo, +oo) as u,(t) C L-(-oo,+oo; V) n

L'(-oo, +oo; D(A)). Let us now state the main theorem:

Theorem 5.1 Let f(t) C L' (-oo,+oo;H) be given and u,(t) e L-(-oo,+oo;V) n

L',(-oo, +oo; D(A)) be the T-time periodic solution of the regularized Navier-Stokes equa-

tions. Then as e -- 0, u,(t) converges to a limit u E L°(-oo, +oo; r)L' (-oo, +oo; D(A1 ))

which is a T-time periodic solution of the Navier-Stokes equations

Proof: Since u,(t) is a T-periodic solution which satisfies (25), for any k E Z we can choose

a test function , (t) = 0 0(t) so that it vanishes outside the compact interval (kT, (k + 1)T).

Thus, J(k+1)T
I {-(u(t)'00(t)) + C(Au'(t),AqO (t)) + v(Vu'(t)'VO °(t))

j(k+ f(t),(t))dt V k E Z,

with u,(t) E L-(kT, (k + 1)T; V) n L 2 (kT, (k + 1)T; D(A)). In particular if we let k = 0, we

obtain the strong solution in the sub-interval (0, T).

Let {u,,} be a sequence of such solutions with ck = 1/k. Then,

f{-(ufh(t),, 00(t)) + k (Au,(t), AO O(t)) + v(Vu,.(t), VO(t))

+b(u.k(t), u.,(t), 0 o(t))}dt = j(i (t), 0 (t))dt,

V 4i0 EG(0,T;V) OOEL 2 (0 ,T; H).

From Lemma 3.2, we have the strong solution u,,, E L2 (0, T; D(Aj)) fl L'(0, T; 1 ') with

bounds uniform in ek. Thus, by applying the convergence Proposition 2.1 we obtain

0IT-(u(t), 0 1 (t)) + v(VU (t), V o(t))
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0T

+b(u (t), u (t), 0(t))dt= 0(i (t), 0& 0(t))dt,

V oOEC(O,T;V) o' eL 2(O,T;H).

Here

Ck (AU,, AO o)dt ) 0

as Ek -- 0.

Now, by periodicity of the strong solution we get

b((k+lI) + V(Vu W)I VOk )

.( k+1)T

+ b(u (t), u(t),'Ok (t))}Idt =I (f (t), 0 k(t))dt, (26)

for each sub-interval (kT,(k + 1)T). Here we denote t0k(t) = 0(t - kT).

The above result implies that u(t) E L- (kT, (k + 1)T; V) n L 2(kT, (k + 1)T; D(Aj)) is a

strong solution in each sub-interval. Hence, by choosing a suitable 0' (t) and summing over

k, we get (25) with e = 0. This completes the proof.

6 Upper Semicontinuity of Attractors

In this section we will show that the compact global attractor A, associated with the

semigroup W,(t, .) converges to the compact global attractor A associated with the conven-

tional Navier-Stokes system. We prove this result by establishing the upper semicontinuity

of A, at e = 0. In this section f E H and is independent of time.

We begin by showing that W,(t, .) admits a compact attractor A, in H for each E > 0.

According to Ladyzhenskaya [6], the formal definition of a global attractor is as follows: A

set A, C H is called the global attractor for the semigroup W.(t, .) if

(i) A, is bounded in H;

(ii) A. is an invariant set, W,(t, 0; A,) = A., Vt E R;

(iii) A. is a compact set that attracts the bounded sets of H.
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For a study on the global attractor to the Navier-Stokes equations the reader is refered to

Constantin, Foias and Temam [3] and Temam [16].

It follows from Corollary 3.1 that for f E H we have

IU (t)12 < IU.(O)12 eCt  p2 [1 - e"], t > O, (27)

where a = vIl and Po = If I/a. Note that both a and po are independent of e. Hence, for

any ball B& = {u,(O) E H; Iu(O)I < Ro}, there is a ball B 0 in H centered at origin with

radius ro > Po (Ro > ro) such that

W,(t,O;B&) c B, for t > to(B&) = 0 R - p0"

The ball B o is said to be exponentially absorbing and invariant under the action of the

map W.(t,O; .).

Recalling the inequality (14), we have
d 2 (28
dluI2 + 2E1u. 112 + VIVU1 2 < If 12  (28)

Integrating from t to t + 1, we obtain for u0 E B&

j+ VUE1dT r - (or + Lf), Vt > to(B,). (29)

Now, we recall the inequality (17),

dIVU.1 2 + V'IlVueI 2 < Ifl 2

We drop the positive terms vplIVu.I 2 and integrate with respect to r from j to t + 1 to

obtain

IVU,(t + 1)12 < IVU,.(s)12 + ifl (t + 1 - s).

We then integrate the above inequality with respect to s from t to t + 1 to get

IVUCt + 1)12 < +1 IVu"(s)1ds + if-r.
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It follows from (29) that

: -)1 2- + Lf + =fr R' 2 Vt > to(BR,) + 1.

This means for uo E B&o and any r > to(B&) + 1, we have u,(r) E BR = {u.(r) E

V; iVu,(7)i < R1}. That is,

W(r,O;B&) C BR,, for T > 0(BR) + 1. (30)

From Corollary 3.2, it is easy to show

IVuC(t)1 < IVu,(r) 2 e-a( - T) + p2 (1 - e€,-T), vt > - > to(B&) + 1,

where a = vit, and p2 = If 12 /va. Again, both a and p, are independent of '. Hence, for

any ball BR,, there exists a ball B,, in V centered at origin with radius r, > P, (R > rz)

such that

W.(t,T; BR) C B,,, fort >t 1 (B ) to(B )+ 1 + ln -  R(

a 2(1, _ , p1"

The ball B,, is said to be exponentially absorbing and invariant under the action of the

map W.(t, -r; -). Combining results in (30) and (31) and applying the sernigroup property

gives us

W.(t, 0; B,) = W. (t, r; W,(r, 0; B& )), > to(B&) + 1

=W(t,,r; BR) C Bi, Vt > t(B&).

That is, ball B, of radius r, in V will absorb any bounded set B& in H. Since the

embedding of Vr in H is compact, we deduce that W,(t,0;.) maps a bounded set in H into

a compact set in H. In addition, the operators W(t, 0; are uniformly compact for

t > t1(Bp&). That is,

U W.(t,0; B&)
t>tt

is relatively compact in H. Due to a theorem from Temam [16, Theorem 1.1], there exists a

compact attractor A. which attracts every bounded sets in H. A, is the global attractor for
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operators W,(t, 0; .) and it is also the w-limit set of the absorbing set B, (i.e. A, = W(B'.)).

This means if we denote W,(t, 0; B,.,) = B,, (t) then

A,= n l U (u B7 (t))

Note that the global attractor A, must be contained in the absorbing balls in H and V:

A, cB, n B,,.

Notice that all the above bounds are independent of e. In particular, for e = 0, we obtain

existence of the compact attractor A for the conventional Navier-Stokes equations. We now

prove the following theorem:

Theorem 6.1 For c > 0, W admits a compact attractor A, which attracts bounded sets of

H and is contained in the absorbing balls B,, n B,.,, where ro and ri are independent of C.

Moreover, dH(A,, A) -- 0 as e --+ 0.

Proof: We need the following result [4, Lemma 2.1]:

Let X be a Banach space and T(t), t > 0, a semigroup on X. Let Th(t) be an approximate

semigroup (depending on a parameter h > 0) to the sernigroup T(t). For 6 > 0, let /V(B, 6)

denote the 6-neighborhood of a bounded set B E X which is the union of open balls of radius

6 centered on B.

Proposition 6.1 Let B E X be a bounded set and Uo, j be two open sets such that

N(B, do) c Uo, .A(B, d,) C U, for some do, d, > 0. If

(i) B attracts Uo under T(t) and

(ii) Th(t) approzimates T(t) on U1 uniformly on compact sets of [to, o), with to > 0,

then for any 6 > 0, there are ho > 0 and ro > to such that, for 0 < h < ho, for t > To,

Th(t) (U 0 n U, ) C /(B, 6).

0
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We will now prove the semicontinuity property for the global attractor A,. This can

be proven by showing the hypotheses of above proposition are satisfied by W(t, 0;-) and

W,(t, 0; .) for e small enough. Clearly, it is sufficient to show that the 6-neighborhood of

attractor A is an absorbing set and that W,(t, 0; .) approximates W(t, 0;-) on BR2 = {u (0) E

V; IVu,(0) I _ R 2} uniformly on compact sets of [0, oo). Let us prove this in two steps:

First step:

Let /A(A, 6) be the 6-neighborhood of the attractor A. Since A is a global attractor, for

any bounded set B& = {u(0) E H; I u(O) 1_ Ro} C H

dH(W(t, 0; B&), A) -. 0 as t --+ oo.

Here dH(A, B) is the semidistance of two subsets A, B of H:

dH(A,B) =sup inf d(x,y).
zEA YEB

Thus, there exists 6 > 0 and t > t6 such that

6

dH(W(tO;Bp,),A) - for t > t6 .
2'

This implies

W(t,0;B R,) C A(A, 6), for t > t6 .

This shows that AK(A, 6) is an absorbing set.

Second step:

We want to show W,(t, 0; .) approximates W(t, 0; .) on BR2 uniformly on compact sets of

[0, oo). By subtracting (13) from (12), we obtain for w = u,- u

w I+ cAu, + vAlw + B(u.,,)- !h(u, u) =0.

Taking the inner product with w, we get

1 d 1w + E(Au.,w) + lVWI 2 = b(ww,u,). (32)
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Since D(A'1 2 ) = V = D(Aj), the second term of left hand side of equation (32) can be

written as

e(Au,,w) =e(Au,,u,)-e(Au,,u)

= E IA1/ 2uel2 - ,-. (A'/2U e, A'/2U)

= EIAl/ 2UeI2 - (Al/2U,,u).

This leads to

1 _Iw12 + /2c /U.1u 2 + tIVv1 2 =,E(A 1/2ut,,Aiu) + b(w, w,u,).
2 dt

By applying Young's inequality, we have

c(A/ 2 u ,Aju) < EIA'/ 2u'I IAiuI
< 1A'/2UI2 + 21AiI2.

_< clWl IVWI IVuI

2 ~2v
-< 21v'ml2+ Iw2I lVu ' lI '

By combining all of the above estimates in (32), we get

d1W 12 + e1A 1/2UC12 + VIVtV 12 < e IAiu 12 + L-2-jWl 21Vw 12.

We can drop the positive terms e IA'/ 2u,12 and vIVW 12 to obtain the following differential

inequality
dIW12 < EIIAul 2 + IW VI 2 . (33)

Using Corollary 3.2 we get,

IVue(t)l2 < IVU.(O)1 2e- t + p2( 1 - e-Ot ).
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This implies that any ball BR, = {u,(0) c V'; IVu,(O)l < R 2} in Vr with radius R 2 > pi will

satisfy

W, (t,O; BR,) C BR,, for t > 0.

This means if u,(O) E BR,, then W,(t, 0; u,(O)) is defined and belongs to BR2 for t > 0. The

ball BR2 is therefore invariant under the map W,(t, 0; .). That is , we have

IVu,(t)l < R2, t > 0, for u,(0) E BR2 . (34)

Let u,(O) E BR, then it follows from (33) that

d JW 1 u1 + 1, 2 , t > 0. (35)
IV

From the standard Gronwall Lemma, (35) gives

IW(t)12 < Iw(0) 2 exp IjcR2dr

+ E A, u(s)12 exp ( cR2dr) ds

- J IACs)l2 exp [1 ds,

where w(0) = u,(O) - u(0) = 0.

Let us now consider t E [0, T] such that 0 < s < t < T. This gives

,(t) 12 < IE eXp 2 TR I,(3)12ds

By applying (ii) of Corollary 3.2 (with E = 0), we obtain

]wtl exp L-T) (R22 + T t E [0, T).

V V

This means for u,(0) E BR 2 , then

IW.(t, 0; u(O)) - W(t, 0; u,(O)) < g (',E V, R2, IT),

with

g(ev, R 2 , f ,T) = c (2+ 'f 'T)exp
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and

lirn g (, v, R2, f, T) = 0.

Hence W,(t) approximates W(t) on BR, uniformly on [0, T]. According to the Propo-

sition 6.i, then for any 6 > 0, there are co > 0 and To > 0 such that

W.(1)(B& n BR,) C .(A,6), for 0 < c < co, t > ro.

Since the attractor A, is contained in BR n BR2 , we have

W,(t)(A,) C MA(A,6), for 0 < e < co, t > To.

Since A, is an invariant set, we deduce that

A, C A/(A, 6), for 0 < e < co, t > r0 .

Since 6 is arbitrary, we obtain the upper semicontinuity of A. at e = 0:

dH(A, A) -0, as e -- 0.
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