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. ,This dissertation considers the discrete-time control of

a spacecraft consisting of a rigidplatform with retargetable

flexible antennas. The mission consists of independent

minimum-time maneuvers of each antenna to coincide with pre-

determined lines of sight, while the platform is stabilized

in an inertial space and elastic vibration of the antennas is

suppressed. The system is governed by a set of linearized,

time-varying equations of motion. A discrete-time approach

permits consideration of the time-varying nature of the system

in designing the control law.

Both global and decentralized controls are proposed for

a noise-free system with full-state feedback. Initially, a

time-varying linear-quadratic regulator (LQR) is implemented,

followed by two types of decentralized controllers.k First,

a collocated control law is devised in which actuator forces

are based on the position and velocity at the actuator locations.

Next, a new method called Substructure-Decentralized Control

is proposed, where each flexible substructure is controlled



based on state measurements associated with the substructure

modes of the separately modeled appendages.

In both global and decentralized cases, a linear control

law is first implemented coupled with an open-loop

disturbance-accommodating control based on the known inertial

disturbances caused by the maneuver. Elastic motion is next

controlled using nonlinear (on-off) antenna controllers for

each decentralized case. For Substructure-Decentralized

Control, the controls translate into quantized actual controls.

Lastly, nonlinear (on-off) control laws are also used to control

the rigid-body motion for each case.

Next, the problem of controlling the time-varying system

in the presence of noisy actuators and sensors is examined.

It is assumed that only displacements, not velocities, are

sensed for both rigid-body and elastic motion, making state

reconstruction also necessary. A discrete-time, full-order

Kalman filter is constructed for the time-varying system. A

pseudo-decentralized control is proposed whereby feedback

controls are based on system state estimates. As before, both

linear and nonlinear controls are implemented. For each case

mentioned, a numerical example is presented involving a

spacecraft with a single flexible maneuvering antenna.
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I INTRODUCTION

As the complexity of future space systems and missions

increases, e.g., NASA's Space Station, the problem of maneuver

and control of flexible spacecraft takes on added importance.

The orientation of simple flexible spacecraft along a desired

line of sight has been generally addressed by slewing the

entire vehicle and suppressing vibration in the flexible

components during and/or after maneuver completion. However,

instances arise in which it is more efficient to reorient

specific components, e.g., an antenna, relative to a main body

while stabilizing the main body in an inertial space and

suppressing elastic motion of the flexible parts of the

spacecraft. Such an approach becomes particularly attractive

in the case of spacecraft consisting of a main rigid-body and

several flexible substructures, each requiring independent,

simultaneous retargeting. This dissertation addresses the

control of such a system.

1.1 Background

Since the beginning of the "Space Age" more than 30 years

ago, the dynamics and control of flexible spacecraft have been
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a growing concern (Ref. 39). The problem of efficient derivation

of the equations of motion for complex spacecraft has been a

constant goal in the analysis of systems such as the one

considered in this dissertation. Indeed, equations of motion

for flexible spacecraft are typically very complicated, leading

to many recent attempts to develop more convenient expressions

for spacecraft motion. Several of these are compared in Ref.

16. Another effective modeling technique using Lagrange's

equations of motion for flexible bodies in terms of quasi-

coordinates (Ref. 23) was proposed by Meirovitch (Ref. 33).

As the complexity of missions has grown beyond simple

station keeping to include maneuvering, control design has

also become more difficult. The control of large flexible

structures in general is treated in several works, e.g. Refs.

2,4,15,16,22,25-27,51. Studies involving single-axis maneu-

vers of simple spacecraft consisting of a main rigid-body and

a number of flexible appendages with fixed orientation relative

to the main body provided important insights into problems

confronting engineers (Refs. 5,7,8,30,31,42,44,47,48). Turner

and Junkins (Ref. 47), Turner and Chun (Ref. 48) and Breakwell

(Ref. 8) proposed methods for simultaneous maneuver and

vibration suppression of such systems, while Baruh and Sil-

verberg (Refs. 5 and 7) separated the maneuver and vibration

suppression tasks. More recent work has centered on NASA's

Spacecraft Control Laboratory Experiment (SCOLE) and the



3

possibility of missions involving control of flexible struc-

tures carried into orbit by the space shuttle (Refs. 29,42,49).

The objective of SCOLE is to reorient the structure line of

sight in minimum time with limited control authority. As in

the case of simpler systems, the SCOLE is concerned with

reorienting the entire spacecraft.

For more complex systems involving rotational maneuvering,

the derivation of the equations of motion by means of Lagrange's

equations for flexible bodies in terms of quasi-coordinates

is particularly attractive. The beauty of this method is that

the equations of motion are based on body-fixed coordinates,

hence it is convenient to design a control law based on these

body-fixed coordinates. This approach was successfully applied

by Meirovitch and Kwak (Ref. 35) to multi-body systems in which

individual substructures are reoriented to coincide with

desired lines of sight. Figure 1 shows a typical spacecraft

of the type described above consisting of a rigid main body

and several flexible appendages.

The control design problem for a system of the type shown

in Fig. 1 was first treated by a continuous-time approach by

Meirovitch and Kwak (Ref. 32) under the assumption that the

time-varying terms in the coefficients are sufficiently small

that they can be ignored for the purpose of control design.

This is based on the premise that the appendages are relatively

small and that the maneuvers are "slow." Reference 32 also
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assumed noise-free, continuous, full-state feedback by means

of perfect actuators and that each antenna maneuver is carried

out open-loop using a bang-bang control law, while platform

inertial stabilization and appendage vibration suppression are

performed simultaneously. Reference 19 contains a summary of

Refs. 32, 34, and 35 that propose a disturbance-minimization

technique, a proportional-plus-integral (PI) control and a

perturbation method, respectively, to control the spacecraft.

A perturbation method was applied to the time-varying system

in Ref. 34 using both an "adiabatic approximation" (Ref. 12)

and an integral method to update the system parameters and

calculate feedback control gains at discrete intervals during

a maneuver while employing a continuous time controller. Gains

calculated using both techniques are held constant between

updates.

The time-varying nature of the system was considered by

Meirovitch and France (Ref. 36) using a discrete-time approach.

The resulting control laws assumed noise-free, full-state

feedback and perfect actuators. Both decentralized and global

linear control laws were demonstrated, as well as a combination

of linear and nonlinear decentralized controls to stabilize

the rigid-body motions and elastic deformations, respectively.

Reference 38 extended the work of Ref. 36 by considering noisy

actuators and sensors, where the sensors measure elastic

deformations of the antennas relative to local coordinate
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frames. This sensor output is then processed by a Kalman

filter that provides current estimates of the system states,

upon which each antenna's pseudo-decentralized control input

is based.

The use of strain gauges in measuring elastic motions has

been discussed in several papers (Refs. 9,15,18,41). Reference

18 demonstrated that strain gauges could be used to measure

very high frequency phenomena. Optical sensors also show great

promise in low-noise sensing of elastic motions (Refs. 43,49)

as well as in distributed sensing (Refs. 40,50).

Nonlinear control of flexible structures using quantized

controls was proposed in Ref. 28, while on-off attitude control

of spacecraft, and rigid-body systems in general, is discussed

in many sources (e.g., Refs. 1,17,46). Several decentralized

control techniques for control of large flexible structures

have also been proposed (Refs. 3,22,45). Uniform Damping,

developed by Silverberg (Ref. 45) is attractive because control

forces at discrete actuator points can be determined inde-

pendently of stiffness properties given position and velocity

information at the actuator location. A method of substructure

control based on the Component Mode Synthesis method has been

proposed by Young (Ref. 51). Reference 36 demonstrates the

use of Uniform Damping in a discrete-time formulation for the

system in question, and it proposes a Substructure-

Decentralized Control.
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The design of both continuous-time and discrete-time

full-order Kalman filters to estimate states in a system with

incomplete and noisy measurements is well known (Refs.

11,13,20,27). In the case in which some measurements are

noise-free and others are not, i.e., a singular sensor noise

covariance matrix, some attempts have been made to define a

reduced order Kalman filter (Refs. 10,21), although the com-

putational savings when applied to real systems remains in

question.

Much of this dissertation is based on the work presented

in Refs. 36 and 38. It extends this earlier work by including

the use of a nonlinear (bang-off-bang) control law to stabilize

the rigid-body motions and by considering a pseudo-collocated

control to suppress vibration of the flexible appendages. As

before, each additional approach is demonstrated by means of

a numerical example involving a spacecraft with a single

flexible antenna undergoing a 450 reorientation relative to

the platform, while the platform is stabilized relative to an

inertial space. Results for the various cases are then compared

and discussed.

1.2 Organization of the Dissertation

Chapter 2 gives a summary of the equations of motion for

a spacecraft consisting of a main rigid-body and several

independently retargetable flexible antennas developed in Ref.
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26. Coefficient matrices for these equations are shown in

detail in Appendix B.

Chapter 3 presents both global and decentralized control

laws for the deterministic (noise-free) system assuming

full-state feedback. First, a discrete-time version of the

linear disturbance-accommodating control derived in Ref. 32

is presented based on the inertial disturbances caused by the

known antenna maneuver. Then, a step-varying linear quadratic

regulator is proposed. Both linear and nonlinear collocated

controllers are discussed, with the linear case based on the

concept of Uniform Damping. A new approach, Substructure-

Decentralized Control, is then presented using both linear and

nonlinear control.

The problems associated with controlling a noisy system

with incomplete measurements is addressed in Chapter 4. First,

the unique problems associated with sensor selection and output

processing are discussed, as are the advantages and disad-

vantages of several specific sensor types. Design of an

appropriate step-varying, full-order Kalman filter is then

presented, followed by a discussion of the effects of such a

global estimation on controller design. Next, the concept of

pseudo-decentralized control is addressed for each of the

decentralized control techniques presented in Chapter 3.

Chapter 5 presents numerical examples of each control law

considered for both the deterministic and stochastic systems.
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Each case is evaluated on a system consisting of a main

rigid-body and one flexible antenna undergoing a 450

reorientation relative to the platform, while the platform is

stabilized relative to an inertial space. Finally, in Chapter

6, the work contained in this dissertation is summarized and

the results of the numerical examples are compared and dis-

cussed.



2 EQUATIONS OF MOTION

The equations of motion for the system shown in Fig. 1

were derived in Ref. 32 using a new formulation of Lagrange's

equations for flexible bodies in terms of quasi-coordinates

(Ref. 33). Following is a brief summary of these equations.

Referring to Fig. 1, we identify a set of inertial axes XYZ,

a set of body axes xyz attached to the rigid platform and a

set of body axes x.yz, embedded in the typical flexible

appendage e, (e= 1,2,..., N). The position vector of a point in

the rigid body is given by Rr = R o+r and that in the appendage
can be written as R Ro+ro.+r, +U, (e=1,2,...,N), where Ro

is the radius vector from 0 to o, r is the position vector of

a point in the rigid body relative to xyz, r is the radius

vector from o to e, re is the position vector of a nominal point

in the undeformed appendage relative to x~yoz° and u e is the

elastic displacement of that point. Vector R. is expressed

in terms of components along XYZ, r and ro. in terms of components

along xyz and r. and u. in terms of components along xyz°.

The velocity vector of o can be written in terms of components

along xyz in the form Vo = CR0 , where C is the matrix of direction

cosines between xyz and XYZ and R is the velocity vector of

o in terms of components along XYZ. The angular velocity

9
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vector of axes xyz in terms of components along xyz is given

by w-=DO, where 0 is a vector of angular velocities e, and D
is a matrix depending on the angular displacements ei (i = 1, 2,3).

In view of the above, the velocity vector of a point on the

rigid body in terms of components along xyz is

V -V + xr (2-1)

and that of a point in appendage e in terms of components along

xyoz. is

V =Ee(V +wxro,)+(Ew+w)X(r +u)+v, e= 1,2,..., N (2-2)

where w. is the angular velocity of axes XoyZo, E. is a matrix

of direction cosines between axes x~yzo and xyz and v is the

elastic velocity of the point in the appendage relative to

XoyQZ0 , vue= ,. For the proposed maneuver, the angular velocity

vectors w. of XoyZe relative to xyz are given, so that the

rotational motions of the appendages relative to the platform

do not add degrees of freedom to the system.

The equations describing the rigid-body translations and

rotations of the system are ordinary differential equations

and those for the elastic motions of the appendages are partial

differential equations, so that the equations of motion are

hybrid. Because control design for systems described by hybrid
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equations is not feasible, we must discretize the system in

space. This is accomplished by expressing the elastic dis-

placements as linear combinations of space-dependent admissible

functions multiplied by time-dependent generalized coordinates

of the form

u(r,t)= (r)q(t), e= 1,2,...,N (2-3)

where 4>e is a matrix of admissible functions and qe is a vector

of generalized coordinates. The equations of motion, dis-

cretized in space, are given in Ref. 32 and will not be repeated

here in full. Assuming small motions of the stabilized rigid

platform, a linearized version of these equations has the state

form

x'(t) = A(t)x(t) + B(t)j(t) + D(t)d(t) (2-4)

where x(t)=[RTOT q Tq2r T...q '"T i] is a state vector, in

which e is a symbolic vector of angular displacements of the

platform and

[ 0

I D(t) - tb,c)B It) M_(t)B'(t ) ( - b )
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are coefficient matrices. Moreover, d(t) is a vector of

disturbances caused by the maneuver and f(t)=[FTMTLILI2 ""T

TjT _2..._2T j ...N T ]Tis the control force vector, in which

F: and M are actuator force and torque vectors acting on the

rigid platform and L., are the actuator forces acting on

appendage e at point nf, where appendage e has n, actuators.

Explicit expressions for the matrices M(t), K(t), G(t) and B(t)

are given in Appendix A.



3 DETERMINISTIC DISCRETE-TIME CONTROL

3.1 Introduction

For the system considered in this dissertation, maneuvering

of each antenna is carried out open-loop using a bang-bang

control law, while simultaneously performing platform stabi-

lization and appendage vibration suppression. To this end,

the control law design process begins by considering a

discrete-time approach that permits consideration of the

time-varying nature of the system. The resulting step-varying

controller can then be applied to the time-varying spacecraft.

It is initially assumed that, as in Refs. 32 and 34, the sensors

and actuators are noise free, i.e., that the system is det-

erministic, and all the states necessary to compute the feedback

controls are available. Therefore, no state estimation or

filtering is required.

In this section, the control process is divided into open-

and closed-loop components for linear control. The open-loop

control is a the discrete-time adaptation of the continuous-time

disturbance-accommodating controller presented in Ref. 32.

Next, both global and decentralized control laws are considered.

13
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The global control is a discrete-time linear quadratic regu-

lator. Two different decentralized approaches are discussed:

Colocated Control and Substructure-Decentralized Control. In

the case of decentralized control, both linear and nonlinear

controllers are proposed for rigid-body stabilization and

vibration suppression.

3.2 Disturbance-Accommodating Control

We propose to control the system by means of a combination

of open- and closed-loop controllers, taking into account the

time-varying nature of the coefficient matrices and the fact

that for an open-loop maneuver the inertial disturbances are

known. Hence, the control is separated into open and closed-loop

components as follows:

(t) - (t) + I(t) (3-1)

Then, with reference to Eq. (2-4), the open-loop control is

chosen to satisfy

B(t)fo(t) D(t)d(t)-O (3-2)

Considering Eqs. (2-5b,c), then

B*(t)Lo(t)+d(t)=O (3-3)
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so that the open-loop disturbance-accommodating control is

given by

ot)=-[B *"(t)]t d (t) (3 -4)

where

-l-

[B'(t)] = [(B*(t)) T B*(t)] [B*(t)] r  (3-5)

is the pseudo-inverse of B*(t).

In the case of a discrete-time system, the open-loop

control at step k becomes

o (k) = -[B*(k)] t d(k) (3-6)

where each of the terms in Eq. (3-6) are evaluated at time

t=kT as described in the next section. This open-loop control

can be implemented in conjunction with any linear closed-loop

control.

3.3 Global Control

For closed-loop control, we first consider a discrete-time

linear quadratic regulator. The discrete-time equivalent of

the state equations, Eq. (2-4) is (Ref. 11)

x(k+ ])=A(k)x(k)+!S(k)u(k), k=0,1,2,.... (3-7)
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where k denotes the time t= tk = kT, in which T is the sampling

period, and

A(k) -eAlkIT+ A(k)T+ A(k)T A'(k)T . (3-8)
1! 2! 0

5(k)= IT+ +, +... + T ... B(k) (3-9)
3' !(i+ 1)!

are discrete-time coefficient matrices. Equations (3-8) and

(3-9) are obtained by regarding A(t) and B(t), Eqs. (2-5a,b),

as constant over the steps kT<t<kT+T, (k=O,1,2,...). The

discrete-time optimal feedback control can be written as

u(k)=t(k)x(k), k=0,1,2,... (3-10)

where t(k) is the discrete-time control gain matrix, obtained

by minimizing the discrete-time quadratic cost function (Ref.

13)

N-1

J=xT (N)P(N)x(N) Z [x T (k)Q(k)x(k)+u T (k)R(k)u(k)] (3-11)
k-O

The weighting matrices P(N), Q(0), Q( I)... Q(N- 1 ) and R(0), R(1),

.... R(N- 1) are symmetric. Moreover, Q(k) and R(k) are positive

definite and P(N) is positive semidefinite, and for our purposes

they are assumed to be constant and diagonal for all N control

steps with P(N)=Q(N- I). Also, it is assumed throughout this
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chapter that all system states are available for feedback, and

that there is no estimation error involved.

The solution to this state-feedback problem is based on

the work of either Kalman or Bellman and can be found in a

variety of texts . Following the procedure based on Bellman's

Principle of Optimality described in Ref. 13, the optimal

feedback gains are calculated backwards in step. Beginning

with i= 1 and the known P(N), we write

*(N-i)=-[ST(N-i)P(N+ I-i)S(N-i)+R(N-i)] - ,

x2T(N-i)P(N+ 1-i)A(N-i) (3- 12)

P(N-i)=[A(N-i)+25(N-i)K(N-i)]T P(N+ 1 -i)[A(N-i)

+25(N-i)r,(N-_i)]+KT (N-i)R(N-i)Z(N-i)+Q(N-i) (3- 13)

and continue until %C(O) is calculated. For our system, the

final step occurs several time steps after the slewing maneuver

is completed, at which time the system can be regarded as

time-invariant. Therefore, the gains calculated soon after

the completion of the maneuver will be treated as constant,

leading to steady-state regulation.

If the system complexity results in computational

requirements in excess of the controller's capacity, given the

desired control frequency, then in implementing such a control

law the LQR gains can be calculated prior to maneuver execution,
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based on the known system parameters and slewing profile, and

stored in the computer for use during and after the maneuver.

The disturbance-accommodating open-loop control is calculated

during the maneuver and updated with each time step.

In evaluating the utility of such a control law versus

the time-invariant approximation, we must weigh the improve-

ments in the time response of the spacecraft against the added

computational complexity involved in a time-varying plant.

3.4 Decentralized Control

Implemention of a decentralized control law has many

significant advantages for the type of system under investi-

gation. Especially in the case of a spacecraft with several

antennas, using many simple independent controllers reduces

the computational requirements significantly compared to a

global control system. The computations can also be performed

completely "on-line," as opposed to a significant amount of

premaneuver computations required by global controls. This

computational savings could allow for faster, more accurate

sampling in the case of discrete-time control.

In this dissertation, two different types of decentralized

control are investigated: the first in which individual points

on the antennas are controlled with collocated sensors and

actuators (Collocated Control) and the second in which indi-

vidual modes of the independently modeled substructures are
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controlled (Substructure-Decentralized Control). In the case

of Collocated Control, it is assumed that both displacements

and velocities at the sensor locations, measured relative to

the appendage body axes, are available. In the case of

Substructure-Decentralized Control, each appendage has an

individual controller whose actuator forces are based solely

on the generalized displacement and velocity of the substructure

modes corresponding to that appendage. In both cases, the

rigid-body motions of the entire system are controlled inde-

pendently via actuators and sensors located on the main

platform. As in Collocated Control, in the case of

Substructure-Decentralized Control, all states associated with

the flexible motion of the antennas are available. Although

the controls are designed using a decentralized approach, the

response in both cases is calculated by applying the decen-

tralized control law to the full spacecraft.

3.4.1 Collocated Control

3.4.1.1 Linear Control - Uniform Damping

In this case, a linear control law is first considered

for the controllers at all points. Control gains for each

controller are designed and implemented using a discrete-time

approach considering the time-varying nature of the plant.

Each of the six controllers responsible for the rigid body

motion of the spacecraft are designed separately, each with
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a closed-loop frequency chosen well above the fundamental

frequency of the flexible appendage and damping equal to 70%

of the critical damping. The controllers are designed on the

basis of the discrete-time version of the state equations.

The continuous-time equations for the rigid-body motions are

d [xL(t)-Ax 1 (t)J +B,(t)u,(t), i- 1,2,...,6 (3- 14)

where

Aj= , 8(t)=[ - (t)], j= 1,2,...,6 (3 1 5 a , b )

in which mij is mass or moment of inertia corresponding to the

rigid body modei. Using full state feedback for each controller,

the closed-loop difference equation is

x(k+l)=[A(k)+S(k)rC(k)]x(k), k=O.1,2,... (3-16)

where I(k) is chosen to yield satisfactory closed-loop response.

For the point controllers located on the appendage(s),

the control law is based on the concept of Uniform Damping

Control (Ref. 45). This technique is attractive because the

control design is independent of the system stiffness. When

n discrete actuators are used on an antenna, the control forces

at points P, are given by
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_Fr(t)=-a 2 M rU (t)-2aMrOr(t), r= 1,2,...,n (3- 17)

where Ur(t)=U(Prt) and Ur(t)=u(P,t) are measurements of

displacement and velocity, respectively, at points Pr and

Mr-fDP(P)dDr is the mass associated with the region on which

Fr(t) acts; a is the desired exponential decay rate of the

closed-loop response.

3.4.1.2 Mixed Control

Next, we implement a nonlinear (bang-off-bang) control

law for the point controllers on the appendage. A combination

of velocity and position feedback is used in conjunction with

a control deadzone. A dual elliptical deadzone is used to

reduce control interaction between subsystems and slow

limit-cycle behavior, thus conserving fuel. The two deadzones

are such that the "off" deadzone is smaller and lies completely

within the "on" deadzone (Ref. 37). The "off" deadzone is

defined by

L12, U2,
2( e (3- 18)2 2

aoff boll

Once turned off, the control remains off until the "on" criterion

2, U 2

0+ > 1 (3-19)
2 2;zn b on
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is met. A state-plane description of the control law is shown

in Fig. 2.

3.4.1.3 Nonlinear Control

As in the linear control case, each rigid-body mode is

considered separately, with its own control law and actuator.

However in this case, nonlinear controls are used to stabilize

the rigid-body motions as well. The state-plane switching

curve used for each rigid-body mode is that of a time-optimal,

discrete-time controller for a double-integrator system as

described in Ref. 17. The mass and inertia terms, and thus

the switching curve for each mode, are updated at each control

step. However, because in reality the system modes are coupled,

the resulting system control is suboptimal. Figure 3 shows

these new switching curves with control deadzones in the state

plane. The appendage controllers are of the same type as in

the previous case, in which linear rigid-body controls were

used.

3.4.2 Substructure-Decentralized Control

Next, we propose is to control each flexible substructure

by means of actuator forces depending on state measurements

associated with a given substructure alone. For example, in

the case of a system modeled as one or more flexible antennas

hinged to a rigid platform, a controller is implemented in

which each antenna's feedback forces are based on displacement
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and velocity information taken at discrete points on that

antenna. Therefore, each antenna is modeled separately as a

cantilever beam with a substructure control law designed to

control a finite number of antenna modes.

3.4.2.1 Linear Control

As in the case of Collocated Control, a linear control

for both the rigid-body and the flexible motions is employed

first. The control law used for rigid-body motions is unchanged

from the Collocated Control cases. The equations of motion

for substructure e can be expressed as the infinite set of

decoupled second-order substructure modal equations

Q(t)+Wjq(t)=Qj(t), i=1,2,... (3-20)

or as the set of first-order state equations

d qi(t) 2- 0 ] (t qi (t) , i=1,2,.... (3-21)dt q(t) 0 ]+(t) 0 ]

where wi is the natural frequency and Qj(t) the generalized

control force, each associated with the ith substructure mode.

Of course, it is neither necessary nor possible to control

all substructure modes using discrete controllers. Hence, the

first step is to truncate these equations, controlling enough

modes to simulate the motion adequately and to minimize control
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spillover into the uncontrolled substructure modes. Using a

number of actuators larger than or equal to the number of

controlled modes helps reduce spillover (Ref. 6). Feedback

gains are chosen for the equations of the controlled sub-

structure modes so that the discrete-time formulation of these

equations yields a damping factor and settling time for the

fundamental substructure mode of each appendage comparable to

the settling time for the uniform damping case. Lower factors

for the higher modes are chosen so as to yield a settling time

for each equation comparable to that of the fundamental mode

for tiat appendage. The discrete-time closed-loop system

matrix can then be constructed and the eigenvalues checked at

key points in the maneuver to assure convergence. The resulting

fl, generalized control forces can then be transformed to n,

actual control forces for antenna e using the transformation

(k) (3-22)

where 4.(z.,) is the substructure participation matrix, i.e.,

a matrix of admisssible functions evaluated at the location

of actuator et, and Q,(t)=[Q@IQ,2""Q,,0]T is the vector of

generalized controls. If the matrix multiplying Q 0(t) is not

square, then the pseudo-inverse, described earlier for the
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disturbance accommodation control, should be used. The

coefficient matrix for the closed-loop system can then be

expressed as

AC (k) = A(k) + S(k)K (3-23)

where

[r=c1 0 C 0 (3-24)

in which K(1 and (13 are diagonal 6x 6 matrices, the first with

elements cii(t) (i= 1,2,...,6) corresponding to discrete-time

position feedback gains for the ith rigid-body mode and the

second with elements bii(t) (i- 1,2,..., 6) corresponding to

velocity feedback gains. Moreover, (22 and t24 are the result

of transforming diagonal matrices, with each diagonal element

corresponding to a feedback term from the substructure modal

equation similar in form to the rigid-body equations, to the

configuration space using the substructure matrix of admissible

functions; an example is given in detail in Appendix C. Of

course, these gains are constant, because they are based on

the independent, time-invariant substructure, and they are

zero for the uncontrolled modes. The remaining blocks are

zero matrices of appropriate dimension.
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3.4.2.2 Mixed Control

The nonlinear case for Substructure-Decentralized Control

is similar to the Collocated Control case for controlling the

rigid-body motions. The flexible motion of each antenna is

controlled by bang-off-bang controllers associated with sub-

structure modes. Because the natural frequencies of a sub-

structure are only indirectly related to the eigenvalues of

the overall system, basing the switching curves solely on

substructure eigenvalues would have little value. Nonlinear

damping is added to each mode (i.e., on-off control based on

velocity feedback) by means of a modal force similar to that

used in Ref. 28, i.e., using the control law

S-kr, Or >cr

I' =  0, 14rl <Cr , r=1,2,3 (3-25)
kr,9 qr<-C r

However, if the fundamental frequency of the system with

stabilized rigid-body motions is so low that settling time

requirements can be met only through added nonlinear stiffness

(i.e., on-off control based on position feedback), then a more

appropriate control law is

-kr, q, dr U [qr - d r qr c rC]
Jr =  0, lqrl<dr n 1qrl<Cr r=1,2,3 (3-26)

k rI q, -dr u [qr dr r) qr -Cr]
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In this case, position feedback is used when large displacements

occur, while velocity feedback is employed for small amplitude

motions. Figure 4 is a state plane description of this

criterion.

3.4.2.3 Nonlinear Control

The fully nonlinear case simply combines the nonlinear

controllers for each appendage described in the previous section

with the nonlinear rigid-body controller used in the nonlinear

collocated control case in Sec. 3.4.1.3.



4 STOCHASTIC DISCRETE-TIME CONTROL

4.1 Introduction

In an effort to address some of the problems involved in

applying the previously discussed control techniques, in this

section I consider the use of noisy actuators and sensors.

In addition, I remove the assumption of full-state feedback,

resulting in the need to estimate unmeasured states aid filter

system noise for the time-varying system.

4.2 Sensors

Whereas rigid-body motions of the main structure can be

measured using conventional techniques, such as gyros or star

sensors, measurement of elastic deformations in an antenna

subject to independent slewing maneuvers presents unique

difficulties. This dissertation is concerned only with the

selection of sensors for measuring antenna elastic motions.

Ideally, these measurement devices should be able to account

for the changing nominal antenna position by either sensing

deformations directly in the antenna local coordinate frame

or by measuring positions in the rigid-body frame and then

performing a simple transformation. Accelerometers, for

example, which measure inertial accelerations, require sig-

nificant processing of the output to separate antenna local

28
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accelerations. This output, in turn, depends on other measured

and estimated values, such as rigid-body angular rotations and

rates, making accelerometers a poor choice as sensors for

elastic motions.

4.2.1 Strain Gauges

Among sensors already used in flexible structure control

experiments, strain gauges are particularly attractive.

Indeed, they can measure antenna strains, from which dis-

placements relative to the local frame can be easily derived.

The strain gauge output voltage is proportional to the bending

strain, E of the antenna outer fibers. The beam strains

corresponding to bending about the x0- and yd-axis are given

by

02U (z.,,t)L 2 UY(Z°. t
E.(Z.)=h az ' h2(z.,)-h h z = 1,2,..., p0 (4-I)

where h,, and hy are the half-thicknesses of the beam, whose

undeformed neutral axis coincides with the local z, axis, and

i denotes the p, strain gauge locations. Recalling Eq. (2-3),

we can write

d2u ,(z 0 ,,t)

dz =¢o"(z, )q (t), e= 1,2,..., N (4-2)
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Assuming a circular cross-section h, - hy Y h and solving for the

vectors of elastic generalized displacements of the antenna,

we obtain

q(t)= (1 r"T(z..) -'i "(Zo2) " hr(Z, h- 4 3

where

, [4>.T-"(z. , ) T-"( Z.,4>"" Cr (z.,.)] r  4-4)

and

is the vector of strain outputs from the 2 p, gauges located

on antenna e.

Unfortunately, strain gauge outputs tend to be noisy, due

primarily to the quality of the associated electronic equipment

and low-output signal strength. Use of a Kalman filter to

compensate for this drawback will be discussed in Sec. 4.3.

4.2.2 Optical Sensors

Another convenient choice is a photogrammetric sensor

(Ref. 49). In this case, two or more sensors are placed on

the main spacecraft for each antenna. Small infrared light
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emitting diodes (LEDs) are then placed at desired locations

on the antenna and fired sequentially. As an LED fires, its

position is sensed by a planar photodiode. Combining data

from two of these sensors and comparing this information with

the known sensor and undeformed antenna position yields the

elastic deformation at each source point. One shortcoming of

an optical system, such as that described above, is a sample-rate

limitation that depends not only on the type of sensors, but

also on the number of light sources. Because all sources are

tracked by the same set of sensors, only one source per

antenna-sensor set can be active at any given instant.

Another optical technique would use the same type of

sensors, but the optical signal would be provided using a

combination of lasers mounted on the main rigid-body and small

mirrors placed at desired points on the antenna. Reference

43 demonstrated that such a system can generate high accuracy

output at high frequencies (>900Hz), though its ability to

sense large deflections is somewhat limited.

4.3 Kalman Filter Design

Independent of the measurement technique used, we assume

that the output includes only elastic displacements, and not

velocities. Likewise, rigid-body translations and rotations

are available while rates are not. All measurements are

considered contaminated by "white" noise whose statistics are
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known. The system itself is also subject to white noise due

to actuator errors, unknown disturbances, etc. In light of

this assumption, an estimate is required of both the unmeasured

and noisy states.

Because construction of separate substructure estimators

is meaningless, a standard full-order step-varying discrete-

time Kalman filter approach is proposed (Refs. 11,13,20). In

fact, unless a method to directly measure elastic displacements

and velocities is available, thus rendering additional pro-

cessing to recover incomplete or noisy states or for compen-

sation of the time-varying nominal position of the antennas

unnecessary, some type of global state estimation for feedback

will be required. Implications of a requirement for global

estimation on control law design are addressed in later sec-

tions.

Kalman filter design requires that the discrete-time

equivalent of the system matrices A(t) and B(t), as well as the

filter gains, be calculated at each time step. The corresponding

closed-loop discrete-time state equations are given by

x(k+l)=A(k)x(k)+23(k ) ,  k=0,1,2,... (4-6)

y(k) = Cx(k) + v(k) (4- 7)
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where k denotes the time t-tk-kT, in which T is the sampling

period, x(k) is the state vector and u(k) is the control input

vector at step k. Moreover, w(k) and v(k) are corresponding

actuator and sensor noise vectors, respectively, and A(k) and

S(k) are again the discrete-time coefficient matrices given

in Eqs. (3-7,8). In the case in which rigid-body displacements

are measured directly and strain gauges are used to detect

flexible motion in a system with one antenna, C has the form

C = 066, 00] (4-8)

where S, was defined in Eq. (4-4).

The state estimate i(k) is given by

_(k) =(k)+ M(k)CT[CM(k)CT+R]- y (k)-C9(k) (4-9)

where

9 (k)= A(k- 1)(k- 1)+!S(k- 1)u(k- 1) (4-10)

is the estimate of the state based on the previous state

estimate and input,

M(k)-A(k- 1)P(k- 1) y(k- I)+ET (k- 1)QS I(k- 1) (4-11)

and
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?(k- 1)=M(k- 1)-M(k- I)CT[CM(k - I)C r + R] - CM(k- 1)(4- 12)

where M(0) is known and R and Q are the covariance matrices

associated with the sensor and actuator noise intensities v(k)

and w(k), respectively.

For more accurate state estimation, the discrete

approximation of the known inertial disturbance D(t)d(t) can

be added to Eq. (4-6), so that

(k)=A(k-1)x(k-1)+3(k-1)u(k-1)+D(k-1)d(k-1) (4-13)

where

(k)= IT+ + +.. '+ .."T D(k) (4-14)12! 3 ! (i+ I)! 1

Moreover, d(k) is constant over each time interval kT < t < (k + I)T

and is equal to d(t) evaluated at t=kT. Equation (4-14) is

obviated by the use of an open-loop disturbance-accommodating

controller, as discussed in the next section.

4.4 Pseudo-Decentralized Control Law Design

As mentioned earlier, when incomplete and/or noisy

measurements necessitate global estimation, true decentralized

control is not possible. Instead, a pseudo-decentralized

control is proposed where feedback controls are based on

estimates of antenna and rigid-body motions. The system control
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laws are pseudo-decentralized in the sense that substructure

control inputs depend only on state estimates for that par-

ticular substructure. Those estimates, however, are calculated

using a global observer - in our case, a Kalman filter.

This dissertation investigates two different approaches

to pseudo-decentralized control. As in the case of the

deterministic system discussed earlier, individual points

corresponding to actuator locations on the antennas are con-

trolled, based on observer estimates of the elastic states of

the points in the antenna local coordinate frame

(Pseudo-Collocated Control). In the second case,

Substructure-Decentralized Control is employed. For

Substructure-Decentralized Control, each appendage has an

individual controller whose actuator forces are based solely

on the globally derived state estimates associated with that

particular appendage. In both cases, the rigid-body motions

of the entire system are again controlled independently via

actuators and sensors located on the main platform. Although

the controls are designed by means of a pseudo-decentralized

approach, the response is calculated by applying the decen-

tralized control law to the full spacecraft.

Each of the six controllers responsible for the rigid-body

motions of the spacecraft are designed separately, in the same

fashion as in the deterministic cases. However, now the
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estimated states from the Kalman filter are used as feedback

for each controller. The closed-loop difference equation is

therefore

x(k+l)=A(k)x(k)+S(k)[9C(k)&(k)+w(k)], k=0, 1,2,... (4-15)

where w(k) is the actuator noise vector and 9C(k) is chosen to

yield satisfactory closed-loop response.

4.4.1 Pseudo-Collocated Control

The linear control law for the case in which point

controllers are located on the appendage(s) is again based on

the concept of Uniform Damping Control. For the stochastic

system, the uniform damping control forces at points P,, are

given by

F (k)--a 2 M. , (k)-2aM.,U (k), I-1,2,..., n. (4-16)

where U, (k)-a(P.,,k) and Uo,(k)-a(P,,k) are estimates of

displacement and velocity, respectively, at points P..

Moreoever, 0,,(k) and L, (k) are found using the Kalman filter

estimate of antenna states, 4,(k) and q (k). Hence,

0 (k)=4,.(P. , ).(k) , 0(k)= (P.,)q(k) , e=,2,..., N (4-17)
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On the other hand, M,, and a retain the same meaning as in the

deterministic case.

Next, a nonlinear, bang-off-bang control law is implemented

for the point controllers on the appendage using the same type

of state-plane switching curve as in Section 3.4.1. Because

the controls are now based on estimates of the local position

and velocity, the deadzone "on" and "off" criteria become

02 02
.I + I < 1 (4-18)2 2

aoff boff

02 02
+ > 1 (4-19)

on bon

For the fully nonlinear case, the rigid-body control is

the same as that used in the deterministic case except, of

course, that now the nonlinear controls are based on the

estimated rigid-body states.

4.4.2 Substructure-Decentralized Control

Next, the system is controlled in a manner similar to the

earlier Substructure-Decentralized Control (Sec. 3.4.2),

except that the feedback control for a given flexible sub-

structure is based on estimated states associated with that

substructure as given by a global Kalman filter. Otherwise,

the same control laws can be used for the linear, mixed and
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nonlinear cases. For convenience, the term Substructure-

Decentralized Control is retained although the technique is

actually a pseudo-decentralized control.



5 NUMERICAL EXAMPLES

5.1 Introduction

The mathematical model considered consists of a rigid

platform with one flexible antenna, represented by a uniform

beam, hinged to the platform at one end and free at the other

(Fig. 5). The antenna is slewed through a 450 angle about the

x.-axis. The beam is discretized in space using five admissible

functions for each displacement component. The admissible

functions for the y.-displacement component are taken in the

form of cantilever modes

*yj=-(cospz-cosh P1 z)+C (sin Piz-sinh Piz), j=1,2,3,4,5

This is consistent with the fact that the flexible antenna

represents a slewing cantilever beam, where the slewing angle,

is a given function of time. The admissible functions for the

xd-displacement component have the same form. The platform

has one actuator corresponding to each rigid-body degree-of-

freedom and the antenna has three sets of bi-directional

actuators located at z,=1,/3,21,/3,1,. The following data was

used in the computer simulation:
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mr = 10.0kg m,= 1.Okg

I =5.0m r =2.0km El - 122.28N m 2

I= 08.33 g"M 2  1i =  020. 0 0 g. m 2

08. Okg20. 0 kgm2g
00 0 0 0 20.0

Structural damping equal to 0.2% of critical was added to the

simulation model for each of the system elastic modes in the

premaneuver configuration.

The time-optimal slewing profile is shown in Fig. 6. For

all cases, the angular acceleration rate of the antenna was

±n/8 rad/s, so that the entire maneuver is completed in about

2.8 s. The uncontrolled motion of the platform relative to

the inertial space and the elastic displacement of the antenna

tip are shown in Fig. 7.

When only the rigid-body modes are controlled linearly,

the resulting deterministic uncontrolled tip displacement of

the antenna in the yj-direction is quite large, as can be seen

in Fig. 8.

5.2 Deterministic Control

In the case of control using the step-varying LQR, the

weighting matrices P=Q= 100x[I] 24x24 and R=.001X[] 12X1 2 were

used. Figure 9 shows the tip displacement for the case in

which open-loop disturbance accommodation is employed together
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with the LQR. Figure 10 shows the same information without

disturbance accommodation. In all cases, except for full

nonlinear control, the rigid-body displacements were insig-

nificant when compared to the elastic displacements of the

antenna.

Linear Collocated Control using Uniform Damping was

implemented using a decay rate a= 5.0. The rigid-body motion

was controlled using a linear control law with w,= lOrad/s and

= 0.70. Figures 11 and 12 show displacements with and without

the open-loop disturbance accommodating control, respectively.

For the case of nonlinear antenna control using the

parameters

f1 =0.18N f 2 =0.SN f 3 =0.22N

cr=.OSm/s, a-,, =.OOlm/s aon=.Olm/s

b. 1/ =.003m/s b0 r=.03m/s, r= 1,2,3

the resulting tip displacement is as shown in Figure 13. Figures

14-16 display the time history of the substructure actuator

forces.

In the case of nonlinear control of both the rigid-body

and the elastic motions, the parameters used were as follows:
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f1 =0.18N f 2 =0.SN f 3 =0.22N

cr = .O4 m/s ao/1 .=.Olm/s ao r = .02 m /s

bo1 1 r=.05m/s bon =.lOm/s, r=1,2,3

F X =F y =FZ =0.8N M =My =M = 1.6N

a' = a. =a = .001rn/s aO =a =a0 =.O01rad/s

b, =by=b,,=.003rn b. =be =b =.OO3rad

The corresponding antenna displacement and actuator histories

are shown in Figs. 17-20. Because the most significant

rigid-body motion is rotation in the plane of the maneuver,

Figs. 21 and 22 show the in-plane rotation and the actuator

torque, respectively.

In the case of linear Substructure-Decentralized Control,

the discrete-time control gains for each of the three controlled

substructure modes were designed so as to yield an exponential

decay rate of a=5.0. The antenna tip displacement with and

without disturbance accommodation is shown in Figs. 23 and 24,

respectively.

A nonlinear control next replaces the linear

Substructure-Decentralized Control with the following

switching parameters:

C1 =C 2 =C 3 = .O05rn/s, k l =0.80N. k 2 =k 3 =O.40N
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Nonlinear damping, as described earlier, was used for the first

substructure mode with d1 IO.Olm. The resulting tip dis-

placements are shown in Figure 25 and the actuator force

histories are shown in Figures 26-28.

In the case in which both the rigid-body and the elastic

control is nonlinear, use of the parameters

kI = .80N k 2 =k 3 =O.40N

cI =c 2 =c 3 = .005m/s d, =0.01m

F =Fy =F 2 =I.ON M =My =M z =2.ON

ax=ay =a,=.OO1m/s aO.=aO =aO =.O01rad/s

bx =b y =b = .003m b. =b9 = b9.OOlrad

resulted in the antenna tip displacements and actuator histories

shown in Figs. 29-32. Figures 33 and 34 again display the

rigid-body in-plane rotation and actuator torque.

5.3 Stochastic Control

The Kalman filter was based on a truncated model of the

simulated system. In this case, the antenna was modeled by

only three admissible functions in each direction, corre-

sponding to the three controlled substructure modes. It was

also assumed that the actuator noise manifests itself as unknown

forces and torques on the system. Therefore, we choose
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0 12X121

I = 12x 12

In the simulation, "white" noise was added to all outputs,

y(k), at each sampling time to simulate sensor noise. A similar,

uncorrelated "white" noise was added to each system state

(including uncontrolled flexible states) at every simulation

time step to simulate actuator noise and unknown disturbances.

The "noise level" used for each term was

E{(V(k)}=)E{w(k)}=1O -4. For simplicity, the sensor noise

covariance matrix R is taken as an identity matrix of appropriate

dimension and

0 0

0 1 12X 12I

Linear Pseudo-Collocated Control using uniform damping

was implemented first, again using a decay rate a=5.0. The

rigid-body motion was also controlled using linear control

with w=10 rad/s and t=0.70, i.e., the same as in the

deterministic case. Figure 35 shows the antenna tip dis-

placement with and without the open-loop disturbance accom-

modating control, respectively.

Using the same parameters k,,c 1,a,b[, the resulting tip

displacement is as shown in Fig. 36. For comparison, the case

with only rigid-body control (Fig. 8) is also shown. Figures
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37-39 display the time history of the substructure actuator

forces.

For nonlinear control of both the rigid-body and the

elastic motions, the parameters used were as follows:

1 1=0.18N f 2 =0.SN 1 3 =0.22N

Cr = .04m/s a ot = .Olm/s aofl= .02m/s

boff =. 0 5 m/s bor = .lOm/s, r= 1,2,3

F. = Fy= F Z = 0.8N Mx = My= M= 1.6N

a,=a,=at=.OOSm/s aO =aO,=aO =.OO5rad/s

b =b =b= .0Im b. =be =bo =.OI1rad

The resulting antenna tip displacements, antenna actuator

forces, in-plane rotation and actuator torque are shown in

Figs. 40-45, respectively.

In the case of linear Substructure-Decentralized Control,

the discrete-time control gains for each of the three controlled

substructure modes were also chosen identical to those in the

deterministic case. The antenna tip displacement with and

without disturbance accommodation is shown in Fig. 46. In

Figs. 46-56, the term Substructure-Decentralized Control

(Pseudo) is used to distinguish between these and those from

the deterministic cases.

The linear Substructure-Decentralized Control was then
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replaced with the nonlinear control used in Sec. 5.2. The

resulting tip displacement is shown in Fig. 47, again compared

with rigid-body control alone (Fig. 8); the actual actuator

force histories are shown in Figs. 48-50.

For the case in which both the rigid-body and the elastic

control is nonlinear, use of the same parameters as in the

deterministic case yields the results displayed in Figs. 51-56.



6 CONCLUSIONS

This dissertation considers the control of a spacecraft

with retargetable flexible antennas using discrete-time

techniques. It significantly expands upon earlier work that

derived the continuous-time equations of motion for this type

of systems and applied global control laws based on a noise-free,

full state feedback system that was considered largely time-

invariant. Chapter 3 of this dissertation presents a

discrete-time approach for designing an adequate control law

that accounts for the time-varying nature of the system, but

still assumes full state feedback and no sensor or actuator

noise. First, a global approach using a discrete-time,

step-varying linear quadratic regulator was implemented to

control the time-varying mathematical model. Because a global

controller requires extensive computations, the step-varying

feedback gains can be precalculated and stored for use during

a known spacecraft maneuver of a system with many appendages.

Next, two decentralized approaches were proposed: Collocated

Control and a new method designated Substructure-Decentralized

Control. Both offer the advantage of lower computational

effort, while still accounting for the time-varying nature of

the system. Whereas Collocated Control suppresses the elastic
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motion at specific points, Substructure-Decentralized Control

suppresses the elastic appendage substructure modes, taken as

cantilever modes in the case of a beam-like antenna. In each

of the decentralized cases, linear and nonlinear (on-off)

schemes were presented for controlling the elastic motion of

the antennas and the rigid-body motions of the system. The

linear Collocated Control law was based on a discrete-time

application of Uniform Damping. Note that on-off controls

used to suppress elastic motions translate into quantized

actual controls in the Substructure-Decentralized Control case.

The nonlinear control of the rigid-body motions assumed full

decoupling of the rigid-body modes and used a switching curve

based on a discrete-time, step-varying interpretation of a

time-optimal controller for a double-integrator system. In

all global (LQR) and decentralized cases using fully linear

control, a discrete-time disturbance-accommodating, control

designed to counteract the inertial disturbances caused by the

known antenna maneuver profile was also included.

Chapter 4 considers the effects of noisy actuators and

sensors, as well as the reality of incomplete state feedback,

was addressed. A step-varying, full-order discrete-time Kalman

filter was developed to estimate the system states upon for

feedback control. Strain gauges were selected to measure

-elastic deformation in the slewing antennas because of the

small amount of processing required to determine system states
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from their output. Pseudo-decentralized control was then

proposed whereby control forces used to suppress the elastic

motion of an individual antenna are based on the globally

derived estimates of states corresponding to that specific

antenna. Indeed, if any processing of antenna sensor outputs

is required to account for the relative motion of the antenna

local coordinate frame during a maneuver, true direct output

feedback control with collocated sensors and actuators is not

possible. Similarly, a requirement of state estimation due

to noise of incomplete measurements would make true decen-

tralized control in general impossible.

The decentralized controllers applied to the deterministic

system were therefore selected for use on the stochastic system.

The difference here is that control forces are based on estimates

of substructure modal states in the case of Substructure-

Decentralized Control and estimates of the position and velocity

of specific points on the antenna, measured in the antenna

local coordinate frame, in the case of pseudo-collocated

control.

A numerical example using a deterministic system with one

antenna was presented and the results of each case compared.

In each of the linear cases, the spacecraft was controlled

quite well, with both decentralized methods offering per-

formance comparable to the more computationally intensive

step-varying LQR. While the linear controls performed
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significantly better than the mixed or nonlinear cases, as

might be expected, the mixed controller methods performed

adequately, reducing tip motion for the 5 m antenna to under

4 mm within one second of maneuver completion, with minimal

limit-cycle behavior. The fully nonlinear controller case

using Substructure-Decentralized Control also performed well,

converging quickly with little noticeable limit-cycle behavior.

The Collocated Control case exhibited more limit-cycle

behavior.

Next, numerical examples using a stochastic version of

the same system with one antenna was presented. Strain gauges

to sense elastic motion and a step-varying Kalman filter were

used and the results for each different control law again

displayed. Both linear pseudo-decentralized methods controlled

the cpacecraft quite well, with performance comparable to

earlier results based on noise-free full-state feedback. Once

again, the linear controls performed much better than the mixed

and nonlinear ones. Both mixed control methods performed

adequately, comparable to the determistic applications of the

same controllers. The fully nonlinear controllers performance

was also similar to that of their deterministic counterparts.

In conclusion, simulations confirm that for both the

deterministic and stochastic case, linear and nonlinear

discrete-time antenna controls based on Substructure-

Decentralized Control are able to suppress elastic motions of
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a slewing appendage in a time-varying spacecraft effectively.

Strain gauges can conveniently sense elastic states associated

with each appendage and, when coupled with a global step-varying

estimator (or Kalman filter for a noisy system), can provide

feedback for pseudo-decentralized substructure-decentralized

controllers. Based on globally estimated states, each con-

troller, in turn, effectively controls the elastic motions of

its individual antenna.



REFERENCES

1. Athans, M. and Falb, P.L., Optimal Control: An Intro-
duction to the Theory and its Applications, McGraw-Hill, New York,
1966.

2. Balas, M.J., "Active Control of Flexible Systems," Journal
of Optimization Theory and Applications, Vol 25, No 3, July 1978,
pp. 415-436.

3. Balas, M.J., "Direct Velocity Feedback of Large Space
Structures," Journal of Guidance, Control and Dynamics, Vol 2,
No 3, May-June 1979, pp. 252-253.

4. Balas, M.J., "Trends in Large Space Strucure Control Theory:
Fondest Hopes, Wildest Dreams," IEEE Transactions on Auto-
matic Control, Vol 27, 1982, pp. 522-535.

5. Baruh, H. and Silverberg, L., "Maneuver of Distributed
Spacecraft," Proceedings of the AIAA Guidance and Control Con-
ference, Seattle, WA, Aug 20-22, 1984, pp. 637-647.

6. Baruh, H. and Meirovitch, L., "Implementation of the IMSC
Method by Means of a Varying Number of Actuators,"
Proceedings of the 4th VPI&SU/AIAA Symposium on Dynamics and
Control of Large Structures, Blacksburg, VA, 1985.

7. Baruh, H. and Silverberg, L., "Implementation Problems
Associated with Simultaneous Maneuver and Vibration Suppression
of Flexible Spacecraft," Proceedings of the Fifth VPI&SU/AIAA
Symposium on Dynamics and Control of Large Structures, Black-
sburg, VA, 1985, pp. 585-599.

8. Breakwell, J.A., "Optimal Feedback Slewing of Flexible
Spacecraft," Journal of Guidance and Control, Vol 4, No 5, 1981,
pp. 472-479.

9. Bickle, L.W., "An Introduction to the Use of Strain Gages
for the Measurement of Propogating Strain Waves," SC-DC-70-
5193, Sandia Laboratories, Albuquerque, NM, 1970.

52



53

10. Fairman, F.W. and Luk, L., "On Reducing the Order of
Kalman Filters for Discrete-Time Stochastic Systems Having
Singular Measurement Noise," IEEE Transactions on Automatic
Control, AC-30, No 11, Nov 1985, pp. 1150-1152.

11. Franklin, G.F. and Powell, J.D., Digital Control of Dynamic
Systems, Addison-Wesley, Reading, MA, 1980.

12. Friedland, B., Richman, J. and Williams, D.E., "On the
Adiabatic Approximation for Design of Control Laws for Linear,
Time-Varying Systems," IEEE Transactions on Automatic Control,
AC-32, No 1, Jan 1987, pp. 62-63.

13. Hostetter, G.H., Digital Control System Design, Holt,
Rinehart and Winston, Inc., New York, NY, 1988.

14. Hughes, P.C., Spacecraft Attitude Dynamics, Wiley-
Interscience, New York, 1986.

15. Juang, J.-N., Horta, L.G. and Robertshaw, H.H., "A Slewing
Experiment for Flexible Structures," Journal of Guidance,
Control and Dynamics, Vol 9, No 5, Sept-Oct 1986, pp. 599-607.

16. Kane, T.R. and Levinson, D.A., "Formulation of Equations
of Motion for Complex Spacecraft," Journal of Guidance and
Control, Vol 3, No 2, March-April 1980, pp. 99-112.

17. Kirk, D.E., Optimal Control Theory, Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1970.

18. Koshiro, 0., "Transient Response of Bonded Strain Gages,"
Experimental Mechanics, Vol 6, No 9, Sept 1966, pp. 463-469.

19. Kwak, M.K., "Dynamics and Control of Spacecraft with
Retargeting Flexible Antennas," Ph.D. Dissertation, VPI&SU
1989.

20. Kwakernaak, H. and Sivan, R., Linear Optimal Control
Systems, Wiley-Interscience, New York, 1972.

21. Leondes, C.T. and Novak, L.M., "Reduced-Order Observers
for Linear Discrete-Time Systems," IEEE Transactions on
Automatic Control, Feb 1974, pp. 42-46.



54

22. Lindner, D.K. and Reichard, K., "A Survey of Decentralized
Control Techniques for Large Space Structures,"
Proceedings of the Sixth VPI&SU/AIAA Symposium on Dynamics
and Control of Large Structures, Blacksburg, VA, 1987, pp.
89-102.

23. Meirovitch, L., Methods in Analytical Dynamics: McGraw-Hill
Book Co., New York, 1970.

24. Meirovitch, L., Computational Methods in Structural
Dynamics, Sijthoff & Noordhoff, The Netherlands, 1980.

25. Meirovitch, L. and Baruh, H., "Control of Self-Adjoint
Distributed Parameter Systems," Journal of Guidance, Control
and Dynamics, Vol 5, No 1, Jan-Feb 1982, pp. 60-66.

26. Meirovitch, L., Baruh, H., and Oz, H., "A Comparison of
Control Techniques for Large Flexible Systems," Journal
of Guidance, Control and Dynamics, Vol 6, No 4, July-Aug 1983,
pp. 302-310.

27. Meirovitch, L. and oz, H., "Digital Stochastic Control
of Distributed Parameter Systems," Journal of Optimi-
zation Theory and Applications, Vol 43, No 2, June 1984, pp.
307-325.

28. Meirovitch, L., Baruh, H., Montgomery, R.C., and Williams,
J.P., "Nonlinear Natural Control of an Experimental Beam,"
Journal of Guidance, Control, and Dynamics, Vol 7, No 4, July-
August 1984, pp. 437-442.

29. Meirovitch, L., Quinn, R.D. and Norris, M.A., "Maneuvering
of Flexible Spacecraft with Application to SCOLE,"
Proceedings of the Sth VPI&SU/AIAA Symposium on Dynamics and
Control of Large Structures, Blacksburg, VA, 1985, pp. 525-546.

30. Meirovitch, L. and Sharony, Y., "Optimal Vibration Control
of a Flexible Spacecraft During a Minimum-Time Maneuver,"
Proceedings of the 6th VPI&SU/AIAA Symposium on Dynamics and
Control of Large Structures, Blacksburg, VA, 1987, pp. 579-601.

31. Meirovitch, L. and Quinn, R.D., "Mane --ring and Vibration
Control of Flexible Spacecraft," The Jott al of the Astro-
nautical Sciences, Vol 35, No 3, 1987, pp. 301-328.



55

32. Meirovitch, L. and Kwak, M.K., "Dynamics and Control of
a Spacecraft with Retargeting Flexible Antennas,"
Proceedings of the 29th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, Williamsburg, VA,
April 18-20, 1988, pp. 1584-1592.

33. Meirovitch, L., "Equations of Motion for Flexible Bodies
in Terms of Quasi-Coordinates," IUTAM/IFAC Symposium on
Dynamics of Controlled Mechanical Systems, Zurich, Switzer-
land, May 30 - June 3, 1988.

34. Meirovitch L. and Kwak, M.K., "Control of Spacecraft with
Multitargeted Flexible Antennas," AIAA/AAS Astrodynamics
Conference, Minneapolis, MN, August 15-17, 1988.

35. Meirovitch, L. and Kwak, M.K., "State Equations for a
Spacecraft with Maneuvering Flexible Appendages in Terms of
Quasi-Coordinates," presented at the Pan-American Congress of
Applied Mechanics, Rio de Janeiro, Brazil, January, 1989.

36. Meirovitch, L. and France, M.E.B., "Discrete-Time Control
of a Spacecraft with Retargetable Flexible Antennas,"
12th Annual AAS Guidance and Control Conference, Keystone, CO,
February 4-8, 1989.

37. Meirovitch, L., Dynamics and Control of Structures, Wiley-
Interscience, 1989 (to appear).

38. Meirovitch, L. and France, M.E.B., "Discrete-Time
Maneuvering of Flexible Spacecraft," Proceedings of the
Seventh VPI&SU/AIAA Symposium on Dynamics and Control of
Large Structures, Blacksburg, VA, 1989.

39. Modi, V.J., "Attitude Dynamics of Satellites with Flexible
Appendages - A Brief Review," Journal of Spacecraft and Rockets,
Vol 11, November 1974, pp. 743-751.

40. Montgomery, R.C. and Welch, S.S., "Application of Optical
Distributed Sensing and Computation of a Large Flexible
Structure," Proceedings of the Seventh VPI&SU/AIAA Symposium
on Dynamics and Control of Large Structures, Blacksburg, VA,
1989.

41. Perry, C.C. and Lissner, H.R., The Strain Gage Primer, 2nd
ed., McGraw-Hill, New York, 1970.



56

42. Quinn, R. D., "Maneuver and Control of Flexible Spacecraft,"
Ph.D. Dissertation, VPI&SU, 1985.

43. Schuda, F.J., "High Precision, Wide-Range, Dual-Axis Angle
Monitoring System," Review of Scientific Instrumentation, Vol. 54,
No. 12, 1983, pp. 1649-1652.

44. Sharony, Y. and Meirovitch, L., "Accommodation of Kinematic
Disturbances During a Minimum-Time Maneuver of a Flexible
Spacecraft," presented at the AIAA/AAS Astrodynamics Confer-
ence, Minneapolis, MN, Aug 15-17, 1988.

45. Silverberg, L., "Uniform Damping Control of Spacecraft,"
Proceedings of the Fifth VPI&SU/AIAA Symposium on Dynamics
and Control of Large Structures, Blacksburg, VA, June 12-14,
1985, pp. 145-162.

46. Skaar, S.B., Tang, L. and Yalda-Mooshabad, I., "On-Off
Attitude Control of Flexible Satellites," Journal of
Guidance, Control and Dynamics, Vol 9, No 4, July-Aug 1986, pp.
507-510.

47. Turner, J.D. and Junkins, J.L., "Optimal Large-Angle
Single-Axis Rotational Maneuvers of Flexible Spacecraft,"
Journal of Guidance and Control, Vol 3, No 6, 1980, pp. 578-585.

48. Turner, J.D. and Chun, H.M., "Optimal Distributed Control
of a Flexible Spacecraft During a Large-Angle Maneuver,"
Journal of Guidance, Control and Dynamics, Vol 7, No 3, May-June
1984, pp. 257-264.

49. Welch, S.S., Montgomery, R.C. and Barsky, M.F., "The SCOLE
Optical Attitude Measurement System," Unpublished work relayed
by S.S. Welch, NASA-Langley, Hampton, VA 1989.

50. Welch, S.S., "A Flexible Beam Experiment to Develop Control
Using Optical Distributed Sensing and Computation,"
Proceedings of the Seventh VPI&SU/AIAA Symposium on Dynamics
and Control of Large Structures, Blacksburg, VA, 1989.

51. Young, K.D., "A Distributed Finite Element Modeling and
Control Approach for Large Flexible Structures," Proceedings
of the AIAA Guidance, Navigation and Control Conference, August
15-17, 1988, Minneapolis, MN, pp. 253-263.



FIGURES

57



58

Z Inertial Frame Z

p p e g
.e Elastic

dAppendage

1 R P o wi l ie

AppeAppendage

Fig 1Riid lafom ithFlxieAppendages



59

fe ke, Uefk)

fe= +-ket

q, \N f = -0e

ff Ue uok)

' " e, ke,

fe ,=  + ke ( 
e

eg + ke

Fig. 2 Antenna Collocated Control Switching Curve



60

xi (k)=-xi (k~mi /FjO 
F - mi

F= +i
F 10

FFi +g o Mi F -Fo

xi (k) = xi (k)2m/Fio

rFi  + +F0

Fig. 3 Rigid-Body Motion Control Switching Curve



61

q e j(k)

Qe k e

Qej ± kei

e.

d Qej 0 qej~k

-de Ce e

Qej + ke j

Qej k e

Fig. 4 Antenna Substructure Control Switching Curve



62

Elastic Antenna einitial

ze fial i:Initial Position

Final Position

Ye

e Rihgid Body

y

Fig. 5 Mathematical Model



63

0.8

C'4 0.7
U)

c NN~0.6
o - 0

U O) 0.5

0'" C 0.4

0Co
E ~0.3

u .._ 0.2 -

0 u .

-> < 0

-- .- -0.1
0 0 (D

:D :3 -0.2

C C C-" -0.3

-0.4,

Time (s)

Fig. 6 Antenna Slewing Profile



64

0.2 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

'N 0.15

C) 0.1 -Ds lc m n

'' 0.05 -Y rnl~o

C:
0) 0 -

E
0) -0.05-

a-. -0.1
U)

-0.15-

-0.2 -Rigid Body

0 2 4 6

Time (s)

Fig. 7 Uncontrolled Platform and Antenna Displacements



65

0.4 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0.3

0.2- Anten a Ti
E Dispi cemet

' 0.1

0) 0 -

E
Q0 -0.1

o -0.2-
U)

-0.4

-0.5-

-0.6 -

0 2 4 6

Time (s)

Fig. 8 Tip Displacement for Linear Rigid-Body Control,
Uncontrolled Antenna



66

0.0004-

E 0.0003-

E 0.0001 -

0.0002

-0.000 21 -

-0.00021

--0.0002

0.00 2.00 4.00 6.00

Time (s)

Fig. 9 Tip Displacement for LQR with Disturbance
Accommodation



67

0.007-

0.006

? 0.005

0.004

- 0.003
C
0 0.002

E 0.001 -

0 -0.001

V) -0.002

C)-0.003

-0.004

-0.005

-0.006 -

0.00 2.00 4.00 6.00

Time (s)

Fig. 10 Tip Displacement for LQR without Disturbance
Accommodation



68

0.0010

N

* 0.0005C

E

Q)

U 0.0000 :

-0.0005

-0.0010
I I II

0.00 2.00 4.00 6.00

Time (s)

Fig. 11 Tip Displacement for Linear Collocated
Control with Disturbance Accommodation



69

0.0400

? 0.0300

0.0200

Q 0.0100

E
(1)

0.0000-

0
n -0.0100

-0.0200

-0.0300

-0.0400,
0.00 2.00 4.00 6.00

Time (s)

Fig. 12 Tip Displacement for Linear Collocated
Control without Disturbance Accommodation



70

~' 0.0500-

C

E) 0.0000-

CJ)

-0.0500-

-0. 1000 1 -

0.00 2.00 4.00 6.00

Time (s)

Fig. 13 Tip Displacement for Linear Rigid-Body Control,
Nonlinear Collocated Antenna Control



71

0.600

0.500- Z le /3
Q) 0.400
U

0.3000
W._ 0.200

0 0.100

0 0.000

-0.100

-0.200
0
C -0.300
C

Q) -0.400

-0.500

-0-600IIII

0.00 2.00 4.00 6.00

Time (s)

Fig. 14 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Collocated Antenna Control, zl =t,/3



72

0.600-

0.500-'~ 2 1

0.400- 
2 1/

0.300-

0
0.200--

0.100-
0

0.000--- _______________

0.100-

< -0.200-

o -0.300-

C: -0.400-

-0.500-

< -0.600-

0.00 2.00 4.00 6.00

Time (s)

Fig. 15 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Collocated Antenna Control, Z2 =21./3



73

0.600

0.500 Z3  le

0.400

0.300
0

LL. 0.200-

o 0.100-

o 0.000

-0.100-

< -0.200-

C_ -0.300-
C_

Q) -0.400-

C -0.500

-0.600
0.00 2.00 4.00 6.00

Time (s)

Fig. 16 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Collocated Antenna Control, Z 3 1,



74

0.4000

Uncontroll
0.3000- Antenna

0.2000

E 0.1000
Q)

u -0.1000

-0.2000
U)

-0.3000Contro le

-0.4000

-0.5000

-0.6000
0.00 2.00 4.00 6.00

Time (s)

Fig. 17 Tip Displacement for Nonlinear Rigid-Body and
Collocated Antenna Control



75

0.600

0.500- Z = le 13
c) 0.400-

0 0.300
0.200-

0 0.100-

U) -0.100

-0.200-0
C -0.300-

Q) -0.400-

-0.500-

-0.600
III II

0.00 2.00 4.00 6.00

Time (s)

Fig. 18 Antenna Actuator Force for Nonlinear Rigid-Body
and Collocated Antenna Control, zl=1,/3



76

S 0.600 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0.500 z2 - 2 1,/3
Q) 0.400-

~- 0.300-

Li.. 0.200-

o 0.100-
0..0

(3 -0.100-

-0.200-

C -0.500-

-0.600-
0.00 2.00 4.00 6.00

Time (s)

Fig. 19 Antenna Actuator Force for Nonlinear Rigid-Body
and Collocated Antenna Control, Z2 -21./3



77

S 0.600

0 .5 0 0 -Z 
3 z le

0.400-

0.300-
0

L. 0.200-

0 -0.100-

-0.200-

co -0.300-
S -0.400-

C -0.500-

0.00 2.00 4.00 6.00

Time (s)

Fig. 20 Antenna Actuator Force for Nonlinear Rigid-Body
and Collocated Antenna Control, z3 -1,



78

0.0500
7)

'-.- 0.0400-

C_

Q)0 0.0300-
C

0 0.0200-

O-
V)

0 0.0100-

~ 0.0000-

C-

-0.0100- I I I

0.00 2.00 4.00 6.00

Time (s)

Fig. 21 x-Axis Angular Displacement for Nonlinear
Rigid-Body and Collocated Antenna Control



79

3.00-

E 2.00
z

Q) 1.00-
D
CT

o 0.00

0
-- -1.00-

<U -2.00

-3.00- , I

0.00 2.00 4.00 6.00

Time (s)

Fig. 22 x-Axis Actuator Torque for Nonlinear
Rigid-Body and Collocated Antenna Control



80

0.0025 -____________________________________

?0.0020-
0.0015-

0.0010-

E 0.0005-

o 0.0000.

-') 0.0005-

-0.00 10-

-0.0015-

-0.0020-

-0.0025-

0.00 2.00 4.00 6.00

Time (s)

Fig. 23 Tip Displacement for Linear Substructure-
Decentralized Control with Disturbance Accommodation



81

0.0600

? 0.0500

E 0.0400

• -F.- 0.0300

. 0.0200

E 0.0100

(3 0.0000

_ -0.0100
C).
CO -0.0200

-0.0300-

-0.0400

-0.0500

-0.0600

-0.0700
0.00 2.00 4.00 6.00

Time (s)

Fig. 24 Tip Displacement for Linear Substructure-
Decentralized Control without Disturbance Acc- 1modation



82

0.1200 -

E 0.0600

0 0.0000

E

U -0.0600

U)

-0.1200

-0. 1800

-0.2400 I , I , I

0.00 2.00 4.00 6.00

Time (s)

Fig. 25 Tip Displacement for Linear Rigid-Body
Control, Nonlinear Substructure-Decentralized Control



83

0.5-

S- 0.4 Z1  Ie / 3

) 0.3

0 0.2

0.-

0.

o -0.1

0 -0.2
c-
Q) -0.3
4-

-0.4

0 2 4 6

Time (s)

Fig. 26 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Substructure-Decentralized Antenna

Control, zj-Io/3



84

0.5 -

0.4 - Z2 = 2 1e/3
Q~) 0.3

U0 0.2 "

0.1-
03

0--

) -0.1 -

o -0.2
C
CC) -0.3

C
C -0.4

-0.5 V
0 2 4 6

Time (s)

Fig. 27 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Substructure-Decentralized Antenna

Control, z 2 =21./3



85

0.5

Z 0.4 -

Z3 le
o 0.3
U

0 0.2

I IS.- 0.1

o -0.D

C -0.3
0
' -0.4

-0.5 ,

0 2 4 6

Time (s)

Fig. 28 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Substructure-Decentralized Antenna

Control, z3 -1,



86

0.4000

0.3000 Uncontrolled

E 0.2000

0.1000
C
E 0.0000/

( -0.1000

CQ._ -0.2000

- -0.3000 Controlle v

-0.4000

-0.5000

-0.6000
0.00 2.00 4.00 6.00

Time (s)

Fig. 29 Tip Displacement for Nonlinear Rigid-Body
and Substructure-Decentralized Antenna Control



87

0.500

0.400 ZlIe /

0.300

0 0.200

L- 0.100
0

0 0.000 WW

U. -0.100

0-O -0.200C

C- -0.300

- -0.400

-0.500,
0.00 2.00 4.00 6.00

Time (s)

Fig. 30 Antenna Actuator Force for Nonlinear Rigid-Body
and Substructure-Decentralized Antenna Control, z1 = ,o/3



88

0.500-

0.400- z2 = Le/
Q)

0.300-

0
EL_ 0.200

0 0.100-
.a

0.000

o -0.200 -
<C

0 -0.300-

()
C -0.400-

-0.500

0.00 2.00 4.00 6.00

Time (s)

Fig. 31 Antenna Actuator Force for Nonlinear Rigid-Body
and Substructure-Decentralized Antenna Control, z2 = 21, / 3



89

0.500-

0 .400- z = e
Q)

0.300

0
L__ 0.200

oo0.100
0.000-

-0.100

o -0.200
C
C -0.300

C -0.400

-0.500 , , , ,
0.00 2.00 4.00 6.00

Time (s)

Fig. 32 Antenna Actuator Force for Nonlinear Rigid-Body
and Substructure-Decentralized Antenna Control, z3= 1.



90

0.0500-

-0
L 0.0400

0.0300

E
Q) 0.0200
U
0

Q-_ 0.0100

0.0000-

-0.0100
C

-0.0200 
,0.00 2.00 4.00 6.00

Time (s)

Fig. 33 x-Axis Angular Displacement for Nonlinear
Rigid-Body and Substructure-Decentralized Antenna Control



91

3.00 -

? 2.00
z

1.00

CTo 0.oo-fl
0 -0.00

0
4- -1.00-

U -2.00-K

-3.00-

0.00 2.00 4.00 6.00

Time (s)

Fig. 34 x-Axis Actuator Torque for Nonlinear
Rigid-Body and Substructure-Decentralized Antenna Control



92

0.20

0.15 Without Disturbance
I- Accommodation

0.10 With Disturbance
-  0.05 Accommodation

E1) 0.00-

-0.05
CO

-0.10

-0.15

-0.20

-0.25 I I
0.0 2.0 4.0 6.0

Time (s)

Fig. 35 Tip Displacement for Linear Pseudo-Collocated
Control



93

0.40

Uncontrolled
0.30 Antenna

0.20

0.10

E0 -0

0(U -0.10

-0.20 Controlled

-0.40

-0.50

-0.60 , ,
0.0 2.0 4.0 6.0

Time (s)

Fig. 36 Tip Displacement for Linear Rigid-Body Control,
Nonlinear Pseudo-Collocated Antenna Control



94

0.6 -

Z 0. Zi - e 5
0.4-

U
L_ 0.3-
0
LL 0.2-

o 0.1-

0 o

U -0.1

-0.2
0

C -0.3
C_
(D -0.4.4-d

< -0.5

-0.6 I i

0 2 4 6

Time (s)

Fig. 37 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Pseudo-Collocated Antenna Control,

z, = 1./3



95

0.6 -

-7 0.5

0o.4 -Z 2
= 2 1e/5'

(D

L 0.3
0
L_ 0.2-

o 0.1-

00.
-0.2

0 0D
C -0.1 -
U

< -0.2 -
0
C -0.3 -
C
(2) -0.4 -

,4--

C: -0.5-

-0.6- , ,
0 2 4 6

Time (s)

Fig. 38 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Pseudo-Collocated Antenna Control,

Z 2 = 21./3



96

0.6

Z 0.5 -

) 0.4

L._ 0.3
0

tL_ 0.2

0.1 '

0

_ -0.1
U
< -0.2

C -0.3
C
0 -0.4

-0.

-0.6
0 2 4 6

Time (s)

Fig. 39 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Pseudo-Collocated Antenna Control,

Z 3



97

0.4000 -

0.3000-
Uncontroll

0.2000- 
Antenna

4-1 0.1000-

0 0.0000E
Q) -0.1000-

-0.2000

-0.3000 V

-0.4000 
-

-0.5000-

-0.6000
0.00 2.00 4.00 6.00

Time (s)

Fig. 40 Tip Displacement for Nonlinear Rigid-Body and
Pseudo-Collocated Antenna Control



98

0.600-

0.500 ZI le /3
Q.) 0.400

U

0.300-

0.200-

0 0.100-
C 0.000

-0.100 -

-0.200-
0
C -0.300-

(l) -0.400-

C -0.5oo0-
-0.600

- 60 -II I III

0.00 2.00 4.00 6.00

Time (s)

Fig. 41 Antenna Actuator Force for Nonlinear Rigid-Body
and Pseudo-Collocated Antenna Control, z =l./3



99

, - 0.600

0.5oo0 z2 = 2 1e/ 3
Q) 0.400
U

0 0.300

0.200-

0 0.100

:3 0.000
9 -0.100

-0.200
0

- -0.300

Q) -0.400
--

-0.500

-0.600 I ,
0.00 2.00 4.00 6.00

Time (s)

Fig. 42 Antenna Actuator Force for Nonlinear Rigid-Body
and Pseudo-Collocated Antenna Control, z 2 =21./3



100

0.600
0.500 Z3 le

(]) 0.400
U
o 0.300

Lt. 0.200-

0 0.100

D 0.000-

( -0.100 ,

-0.200-

C -0.300
C:
QL) -0.400-

C -0.500

-0.600 , ,
0.00 2.00 4.00 6.00

Time (s)

Fig. 43 Antenna Actuator Force for Nonlinear Rigid-Body
and Pseudo-Collocated Antenna Control, z3 1.



101

0.0400-

- 0.0300

0 0.0200
E

o 0.0100-
°_

0.0000 -

-0.0100-
CD

-0.0200,,,,,,

0.00 2.00 4.00 6.00

Time (s)

Fig. 44 x-Axis Angular Displacement for Nonlinear
Rigid-Body and Pseudo-Collocated Antenna Control



102

3.00-

2.00-

1 .00-

o 0.00-

o -1.00-

'j -2.00

- 3.00-II
0.00 2.00 4.00 6.00

Time (s)

Fig. 45 x-Axis Actuator Torque for Nonlinear
Rigid-Body and Pseudo-Collocated Antenna Control



108

0.4000 -? 0.3000

Uncontroll

E 0.2000 Antenna

4- 0.1000

0
E 0.0000 -
Q)
U -0.1000-
0
Q_ -0.2000-
U)
- -0.3000-

Controlled
-0.4000-

-0.5000-

-0.6000
0.00 2.00 4.00 6.00

Time (s)

Fig. 51 Tip Displacement for Nonlinear Rigid-Body and
Substructure-Decentralized Antenna Control (Pseudo)



103

0.20 -

0.15 Without Disturbance

E Accommodation
's 0.10

With Disturbance

C 0.05 mmo

E
) 0.00

-0.05

CO
-0.10

-0.15

-0.20

-0.25, ,

0.0 2.0 4.0 6.0

Time (s)

Fig. 46 Tip Displacement for Linear Substructure-
Decentralized Control (Pseudo)



104

0.40

Uncontrolled
0.30 Antenna

E 0.20

4_- 0.10

C
U. -0.10
0

(' -0.20

Controlled-0.30 o

-0.40

-0.50

-0.60 ,
0.0 2.0 4.0 6.0

Time (s)

Fig. 47 Tip Displacement for Linear Rigid-Body Control,
Nonlinear Substructure-Decentralized Antenna Control

(Pseudo)



105

0.5-

0.4 z = le /3

0.3oD 0.2U
0 0.2

"_ 0.1
0

~4_0
0 o

U -0.1

o -0.2
C
c -0.3(D

- -0.4

-0.5 ,

0 2 4 6

Time (s)

Fig. 48 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Substructure-Decentralized Antenna

Control (Pseudo), zj=I 0 /3



106

0.5 -

Z 0.4 - " z2 = 21e/3
0 0.3-

U

o 0.2U-

. 0.1
0
o 0

) -0.1

o -0.2

C
C -0.3

C -0.4

-0.5 4 ,
0 2 4 6

Time (s)

Fig. 49 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Substructure-Decentralized Antenna

Control (Pseudo), Z2 =21,/3



107

0.5 -

Z 0.4- Z3= Ie

0 0.3-

0 0.2-
U-i

L- 0.1
0
0 0 -

J -0.1 -

o -0.2 - -- L

- -0.3 -

- -0.4 -

-0.5 , ,

0 2 4 6

Time (s)

Fig. 50 Antenna Actuator Force for Linear Rigid-Body
Control, Nonlinear Substructure-Decentralized Antenna

Control (Pseudo), z3 =1,,



109

~N 0.500 -

0.400- ZI le 3

0)
.) 0.300

0
E 0.200 -

0 0.100-

U -0.100-

o -0.200-
C
C -0.300-
Q)
C -0.400-

-0.500 ,, ,
0.00 2.00 4.00 6.00

me(s)

Fig. 52 Antenna Actuator Force for Nonlinear Rigid-Body
and Substructure-Decentralized Antenna Control (Pseudo),

z, = I./3



110

rN 0.500z
0.400 Z2= 2Ie/3

( 0.300

0
LL_ 0.200

L.

0
0.000

U -0.100

0 -0.200
C
C -0.300

- -0.400

-0.500

0.00 2.00 4.00 6.00

Time (s)

Fig. 53 Antenna Actuator Force for Nonlinear Rigid-Body
and Substructure-Decentralized Antenna Control (Pseudo),

z 2 = 21/3



111

0.500

0.400 Z3 - le

) 0.300

0 0.200-

*- 0.100-
0

I.

U_ 0.100

. -0.200-

( -0.200
0

C,
E' -0.300-
Q)

c -0.400

-0.500 , , , , ,

0.00 2.00 4.00 6.00

Time (s)

Fig. 54 Antenna Actuator Force for Nonlinear Rigid-Body
and Substructure-Decentralized Antenna Control (Pseudo),

Z 3 =



112

0.0600 -

0.0500

• 0.0400

0

E 0.0300-

o 0.0200-
C-

0.0100-

0.0000-

-0.0100
C

-0.0200 T

0.00 2.00 4.00 6.00

Time (s)

Fig. 55 X-Axis Angular Displacement for Nonlinear Rigid-
Body and Substructure-Decentralized Antenna Control

(Pseudo)



113

3.00

E 2.00

(W) 1.00

0 -1.00

0

i -2.00

-3.00 , I ,
0.00 2.00 4.00 6.00

Time (s)

Fig. 56 x-Axis Actuator Torque for Nonlinear Rigid-Body
and Substructure-Decentralized Antenna Control (Pseudo)



APPENDIX A

If a(t) is a three-dimensional vector, i.e.,

a(t)=[a1 (t)a 2 (t)a 3 (t)]T, then the skew symmetric matrix d(t),

called the vectrice (Ref. 14) is defined as

0 - a3(t) a2(t)1
Ct(t)= a 3 (t) 0 -a,(t) (A-1)

-a2(t) al(t) 0

Using this expression, the cross product of two vectors is

then given by

a(t) X r = c2(t)r = -Fa(t) (A - 2)

Furthermore, the skew symmetric matrix of the cross-product

is

[db]=d6-6a (A-3)

and the time derivative of a direction cosine matrix, for

example

Cce2c03  cOs 3-sese2c63 s 1s63-colsO 2cO3 (

s02  -secO2  cOIc02

where c01=cos61 , s8,=sin,, can be expressed as

114



115

e = -JC (A -5)

or

CT= CT(Z (A -6)

where

(A) VO(A -7)

arnd

C02 OS 3 01[)t -C62Se3 C03 0 (A -8)
S02 0 1



APPENDIX B MATRIX EXPRESSIONS

The components of the system state equations (Eq. 2-5a),

M(t), K(t) and G(t) have the form

T T T
t• ..EEIN'D+I E N C

U (t)= t , NE,+ I EI O,

-T T T ...

¢NEN CEN + 4,ENFN 0O" M N

(B-I)

o 0 E0N
-0' _ ... ",W + , + , ,,w)J(W ) F. -" EN W + ,)$,+EN,[ NJ,(WV)+ J,(WN)]

0 0 r ,C + Hl),+[ ,J(w ,) J(l ) o... 0

o o 0 KN+_H,(w N)+N (WN)

(B-2)

N T ....

0 2ZE g,w' 2E(,)141  2EN N N
0-1

0 G 22 G 23 ... GN
23 23

G(t)= 0 [$,uo,-JT(W ,)]E, 2A,(w,) '" 0 (B-3)

o NN-J (N) EN 0 2AN(WN)
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where

N s~rN
, rr+ zme S = din, ; '(m.F 0 + E.GE (B-4,5,6)

.- I .- 1

Ir~f 1.j.T dir Ie= f a FTd me (B -7,8)
i .= f. ard .

N
It=[r +  - eoF FT@ + E.' Ee F T  TS + ET .EeFo. )  (B-9)

a-1

Ma~4~)ain 4, e 4adm a f e4)adene (B- 10, 11, 12)

f,( 4J)= ) a, a dma H(W )=f ,T2Pd Me (B- 13,14)

Ja( . )J (a&a+['Fa,])4)dMa Ka=[i4',,.P] (B- 15, 16)

in which the symbol [ , ] represents an energy inner product

(Ref. 24).

N
[(21 [SW ]E.) (B- 17)

a-1I

G2=2roE ET e,+EJa(W_) (B -18)

The matrix B'(t) (Eq. 2-5b) is given by
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I b' b2  • bNr

0 c 0 . 0

B*(t)= 0 0 c2  0 (B- 19)

0 0 0 • cN

where

b°= - - ET T (B-20)ro.E °.+ E Tr o,  ro,. o + E o r o.2  F.. o.o+ E. F,..

The inertial disturbance vector is defined as

N

a-I

a-!

, + -j ' ' ' dm, (B- 22)

- N~2N~f., OiNfNiwNdnN

N-



APPENDIX C BDC LINEAR FEEDBACK MATRICES

The submatrices (from Eq. 3-23) associated with the

feedback gains for linear Substructure-Decentralized Control

applied to the flexible appendages of the system in question

are given by

Z-2 k .,T(~ >T (r j ,p

where, for e-ample, in the case of one antenna,

c, 0 0 b,,, 0 0o cx 22  0 ' 0 0 bx2 00X 22 b,22
0 0 0 0 0 0

0 c.. 0 00 b*,, 0 0
k22 0 c, 0 0 24 0 byl 0 * 0

0 c ,Y 0 0 0 b 22  0 0

0* 0 0 O|

0 0 0 0 0 0 0 c,, L 0 0 0 0 0 0 0 byj

Note that cy,,=by,=0 if the ith substructure mode in the

y.-direction is uncontrolled, and the same can be said for

substructure modes in the x.-direction.
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