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ABSTRACT OF THESIS

THE INVERTIBILITY PRINCIPLE FOR A SIMPLE HURRICANE MODEL

We present a reinterpretation of Ooyama's classic tropical cyclone model in terms

of the more recent theoretical notions of the potential thickness equation, the potential

radius coordinate and the invertibility principle. This helps place tropical cyclone theory

in a theoretical framework closer to that of midlatitude theory. We first present a shallow

water model of axisymmetric, frictionless flow of homogeneous incompressible fluid on an

f- plane. Tlen-ve-itrodu.e the potential thickness, the inverse of potential vorticity,

and wzqe the equation for its evolution. We transform the system from physical space

to absolute angular momentum or potential radius space. This eliminates the radial

component of the wind from the problem and provides better resolution in areas of large

vorticity. We derive and solve the invertibility principle using five different methods-

solving for a potential function using the shooting method, the fluid depth using the same

method, the fluid depth using a nonlinear equation solving "black box", a transformed

velocity using a tridiagonal matrix equation solver, and the transformed velocity with the

nonlinear equation solver. The first four methods can not be generalized to two layers. A

short review of Ooyama's model shows how the wind field is determined from the radial

mass flux. Then we generalize the concepts of the shallow water case to a two layer model

using the nonlinear equation solver to solve the invertibility for the transformed velocity.

Robert M. Fogarty
Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado 80523
Summer 1989
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Chapter 1

INTRODUCTION

When studying atmospheric dynamics it is often useful to begin with the simplest

form. By reducing a problem to its least complicated terms we can learn about its most

important features. In 1969 Ooyama presented what is apparently the simplest closed set

of equations that describe the life cycle of tropical cyclones. His model has the simplest

geometry, moist physics, and the minimum vertical resolution. Ooyama's model can even

be thought of as the tropical meteorologist's analogue of the mid-latitude meteorologist's

Eady model which is the simplest model of baroclinic instability (Haltiner and Williams,

1980).

The vortex is axisymmetric and described on an f-plane (f, the Coriolis parameter, is

constant). The vertical structure is a shallow diagnostic boundary layer and two prognostic

main layers above. Moisture is carried only in the boundary layer and only deep convective

clouds are parameterized. The simplicity of the model makes it attractive for use in

trying different formulations of the physical processes involved in the formation of tropical

cyclones.

Some recent advances in atmospheric dynamics can be very useful in the study of

tropical cyclones. The use of potential vorticity reasoning (Hoskins et al., 1985; Schubert

and Alworth, 1987) in combination with absolute angular momentum, or potential radius,

coordinates (Shutts and Thorpe, 1978; Schubert and Hack, 1983) has proven advantageous

in this endeavor. The goal here is to introduce these ideas in the framework of Ooyama's

model. From the theoretical standpoint this work is concerned with the solution of the

invertibility principle.

A historical review of the study of potential vorticity is given by Hoskins et al. (1985).

Some of the important early work was done by Rossby. He found (Rossby, 1939) that only
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the vertical component of vorticity is important for describing the large scale atmospheric

flow. In addition, he was able to produce the barotropic model by assuming the absolute

vorticity is conserved following the motion of an air parcel. It is important to note that

this model describes two-dimensional horizontal motion. Rossby's later work (1940) gave

us perhaps the simplest statement of potential vorticity. He showed that if h is the fluid

depth then C/h = constant following the motion, where C is the absolute vorticity. This

equation relates the creation of vorticity by stretching/shrinking of vortex tubes and the

horizontal advection of absolute vorticity which are the two processes that are generally

most important in the vorticity budget. Ertel (1942), working independently, generalized

Rossby's result to three-dimensional, nonhydrostatic flow. He showed that following the

motion of an air parcel, the potential vorticity, P = p-C .VO = constant, where p is

the density of the fluid and 0 is the potential temperature. Thus, we have the concept of

potential vorticity which Hoskins et al. describe as "a potential for creating vorticity by

changing latitude and by adiabatically changing the separation of isentropic layers."

Because it is conserved, the potential vorticity was quickly recognized as a Lagrangian

tracer. An air parcel can be identified once and for all by its potential vorticity. However,

this quantity is much more useful than just a tracer. Hoskins et al. credit Kleinschmidt

(1950a,b; 1951, 1955, 1957) with the earliest discovery of this. He recognized that the

complete flow structure can be acsertained from the potential vorticity by the inversion

of a Laplacian type operator. This idea of recovering the wind field from the potential

vorticity field is known as the invertibility principle. For example, in the barotropic

case once the vorticity i known, the streamfunction can be calculated, and the winds

determined. However, it is not as simple as it first appears. There are three necessary

conditions to make invertibility possible. The problem must be solved globally, in reference

to a basic state, and under some balance condition (geostrophic, gradient, etc.). The

necessity of a balance condition is probably the reason potential vorticity has not been

used extensively until recently (Schubert et al., 1986).

Before looking at some recent work using potential vorticity reasoning to describe the

structure of tropical cyclones it is useful to examine the potential radius coordinate. In
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1978 Shutts and Thorpe used the absolute angular momentum as the radial coordinate in

a gradient balance vortex model. They described it as analogous to the use of geostrophic

momentum coordinates in the semi-geostrophic equations. This formulation allowed dy-

namical effects associated with departure from gradient balance to be included implicitly

in the same way Hoskins and Bretherton (1972) showed ageostrophic motion is included

implicitly in the semigeostrophic theory of frontogenesis. Schubert and Hack (1983) trans-

formed the Eliassen (1952) balanced vortex model to potential radius coordinates and used

it to study tropical cyclones. This model describes a slow, quasi-balanced, thermally or

frictionally driven axisymmetric vortex. If friction is assumed to be confined to a shallow

boundary layer then absolute angular momentum is conserved above it. This allows the

use of potential radius above the boundary layer. They introduced this coordinate as a

dependent variable in Eliassen's equations then switched the roles of actual radius and

potential radius making it the independent variable. The result of this transformation

is the stretching of regions of positive relative vorticity and the shrinking of regions of

negative relative vorticity. This again is compared to Hoskins and Bretherton's results in

their frontogenesis study. These studies show that the potential radius is indeed a useful

tool.

The question arises is it worthwhile to create a tropical cyclone model which uses

potential vorticity as a predictive variable? One study which suggests the answer is yes is

Haynes and McIntyre (1987). They present a theorem on potential vorticity in isentropic

layers which they state as

(i) There can be no net transport of Rossby-Ertel potential vorticity (PV) across any

isentropic surface.

(ii) PV can neither be created nor destroyed, within a layer bounded by two isentropic

surfaces.

This holds whether or not there is diabatic heating, friction, or other forces. An application

of this theorem, presented as a thought experiment, leads to some insight into tropical

cyclones. Their experiment involves applying a pulse of cooling to an unbounded, stably
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stratified, rotating fluid at rest on an f-plane. If we reverse this and instead apply a pulse

of heating (Fig. 1.1) we have a system analogous to a tropical cyclone, the heating being

the release of latent heat. If we assume the heating occurs on a time scale much faster

than any dynamical adjustment process then by the arguments of Haynes and McIntyre

the isentropes adjust by curving as shown in Fig. 1.2. The greatest compaction of the

isentropes is just below the area of maximum heating and this creates a positive potential

vorticity anomaly in that region while the reverse is true above. They show that these

anomalies are the result of horizontal transport and are merely a result of redistribution

of potential vorticity along the isentropes. Thus, we can see that the release of latent heat

leads to the production of cyclonic relative vorticity at low levels and anticyclonic relative

vorticity at upper levels. This is essentially the case in a tropical cyclone.

Let us now look at combining the potential radius with the potential vorticity to

study tropical cyclones. The usefulness of this technique was demonstrated by Schubert

and Alworth (1987). They also analyzed the balanced vortex equations of Eliassen (1952).

They used potential radius, as the horizontal coordinate with potential temperature as

the vertical coordinate. This combination of coordinates led to a simple flux form of the

inverse potential vorticity equation which separated it from the transverse circulation.

Solving the invertibility, a second-order partial differential equation, allowed them to re-

cover the wind field from the potential vorticity. The solutions show that latent heat

release generates potential vorticity at low levels and destroys it at upper levels. In addi-

tion, vertical advection causes deepening of the low level potential vorticity maximum and

pinching off of the upper level potential vorticity minimum. Ultimately, this shows that

the potential vorticity used with the potential radius coordinate makes modeling tropical

cyclones simpler and leads to better physical understanding.

The work discussed to this point has dealt with balanced vortex models similar to

tropical -yclones, but not a closed model. Our goal is to move toward a closed model which

incorporates these principles. We begin in chapter 2 by presenting the basic concepts of

potential vorticity and potential radius in a shallow water vortex. We start with the

equations of motion for axisymmetric, frictionless flow in a shallow layer of homogeneous
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Figure 1.1: Initial state of experiment proposed by Haynes and McIntyre (1987). A pulseof heating (dashed circle) is applied to an unbounded, stably stratified, rotating fluid at
rest on an f-plane.
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Figure 1.2: Final state of experiment proposed by Haynes and McIntyre (1987). Isentropes
have curved in response to heating creating positive potential vorticity anomaly (+) below
heating and negative potential vorticity anomaly (-) above.
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incompressible fluid on an f-plane. Then we introduce the potential thickness, the inverse

of potential vorticity, and write the equation for the evolution of it. This equation, in some

sense, describes the release of latent heat. Next we transform the equations to potential

radius space. This eliminates the radial wind component from the problem. In chapter 3

we present several different ways to derive and solve numerically the invertibility principle.

This problem turned out to be more difficult than expected. We derived several different

methods solving for different variables with three different numerical methods-the shooting

method, a nonlinear equation solver, and a tridiagonal matrix equation solver. Chapter 4

gives a brief description of Ooyama's model, concentrating on the prediction of the wind

field. Then in chapter 5 we generalize these ideas to the full tropical cyclone model. The

results of all the methods are presented in chapter 6.



Chapter 2

SHALLOW WATER MODEL

We start by presenting the concepts of potential thickness, potential vorticity, and

the invertability principle in a shallow water model.

2.1 Potential thickness equation

We consider axisymmetric, frictionless flow in a shallow layer of homogeneous incom-

pressible fluid on an f-plane. If we assume this flow is in gradient balance, the gradient

wind, absolute angular momentum, and mass continuity equations are

f + V 00,(2.1)f+ r Or'

D rv +-ir2) =0, (2.2)

DhhO(ru) Q, (2.3)

Dt r.9r

where
D 0D- = - + Ur a(2.4)
Dt Ot 5r

is the total derivative, u and v are the radial and tangential components of the wind,

= g(h - h) is the deviation geopotential, h is the fluid depth, and h is the undisturbed

depth at large radius.

The vorticity equation for this system is derived by expanding the total derivative in

(2.2) to obtain
a) O 2) = 0.-(rv) + u-(rv

Now multiplying the second term on the left hand side by r/r and operating on the entire

equation with &/(rOr) yields
D7 O(ru) = 0, (2.5)

Tt rOr
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where C = f + O(rv)/(rr) is the absolute vorticity. Now we use this equation to eliminate

the divergence term from (2.3) by multiplying (2.5) by -h and adding C times (2.3) to

obtain

& - h(= (Q.
Dt Dt

Defining the potential thickness H = (f/C)h we can write

DH H5t- = T Q "  (2.6)

Thus, the potential thickness is the depth a column of fluid would obtain if C were changed

to f while conserving the ratio h/C. It is important to note the potential thickness is

inversely proportional to the potential vorticity (/h.

2.2 Potential radius coordinate

Let us define the potential radius R by f R2 /2 = rv + fr 2 /2, the right side of which is

the absolute angular momentum. According to (2.2), R is conserved following the motion.

We now define T = t and transform from (r,t) space to (R,T) space, but note O/Ot implies

fixed r while 0/ST implies fixed R. We transform the partial derivatives so that

0 OR 0 0
at = at OR + -' (2.7)

8 - OR " (2.8)

FrTr R

The definitions of R and C allow us to wrtite (2.8) as

a- C (2.9)
rOr f ROR"

Notice in regions where C is large the spatial derivatives are stretched in R space giving

better resolution. Next we transform the total derivative operator (2.4) by substituting in

(2.7) and (2.8). Then using the definition of potential radius and noting the conservation

of absolute angular momentum, (2.4) becomes

D a (2.10)
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so that the total derivative looks like a local derivative in (R,T) space. This allows the

potential thickness equation (2.6) to be written

OH/ _
HOT Q . (2.11)

Thus, transforming to (R,T) space allows us to compute the potential thickness without

explicitly determining the radial component of the wind u. This then is the prognostic

equation of the model. If the time evolution of the H field can be forecast with (2.11), we

can use it to solve an invertibility principle. The derivation and solution of the invertibility

is the subject of chapter three.



Chapter 3

THE INVERTIBILITY PRINCIPLE

We now wish to derive an expression, the invertibility principle, which enables us to

recover the mass field h form the potential thickness H. The invertibility principle for this

problem can be stated in a number of different ways. The challenge is to find one that can

be solved efficiently on a personal computer and easily be generalized to two layers. We

have explored five different methods of solution for the shallow water case each with its

own strengths and weaknesses. In this chapter we will examine these, first revealing the

various forms of the invertibility and then discussing the numerical integration methods

used with each.

3.1 Method one

Method one involves solving for a new variable 4. Let us introduce the two new

variables t and V, defined by
121 V (3.1)

RV = rv. (3.2)

Substituting (3.2) into the definition of absolute vorticity and transforming the result into

R space with (2.9) gives

f+ _ _ fff (3.3)

while from (3.2) and the definition of potential radius we obtain

_ f(3.4)

f f_ IW
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so that as 9(RV)/(ROR) approaches f the absolute vorticity becomes infinite, and as 2V/R

approaches f the absolute circulation per unit area becomes infinite. The definitions (3.1),

(3.2), and R along with (3.3) allow us to transform the gradient wind equation (2.1) to

f ) fV= 84 (3.5)

We now wish to derive the relation between the potential function t and the potential

thickness H. From (3.1) and the definition of potential radius we get

f2 (R2 - r2) 2  (3.6)

-8 r2  (

Using (2.9) to operate on r and using the definition of potential thickness we get

Or RO* (3.7)

where " = gH. Using the definition of potential radius and (3.2) in (3.5) yields

9- f2R (: 2Ii 1) (3.8)

OR -2 ,r 1

We solve the system (3.6)-(3.8) for t using appropriate boundary conditions.

At the center of the vortex symmetry requires the inner boundary condition to be

dt-=0 at R=0. (3.9)
dR

The lateral boundary condition t - 4 as r -* oo must be replaced by an approximate

condition at large but finite r = R = Rb. To derive this approximate condition suppose

that at large r the potential thickness has not been disturbed from its initial value so that

H = h for large r. We also assume that the lateral boundary is far enough away from any

anomalies in the potential thickness that the induced rotational flow at the boundary is

weak and approximately geostrophic. Then, the weak flow conditions I( - fl << C and

1t - $1 << allow the definition of potential thickness to be linearized to (f/() - 1 +

(0- *)/0* = 0, (3.5) to fV = O0/OR, and (3.6) to t = 4'. These relations, along with

(3.3), can be combined to yield

d ( d\
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where 12 = f 2 /4 and 4 is the undisturbed or basic state value. The solution of this is

-P = Alo(ARb) + BKo(pRb) + C,

where Io and Ko are the modified Bessel functions. We eliminate the Io part of the

solution, because -P must be bounded as R - oo and use the derivative relation for Ko to

obtain
d ,

- + A( -) 0 at large R, (3.10)
dR

where

K_ Ig(pRb) (3.11)
Ko(ARb) (

Using f = 5.0 x 10- 5 s-,$ = 5.0 x 103 m 2 s- 1, and Rb = 1600 km gives A = 9.77 x 10- 7

m- '. Thus, the invertibility principle is defined by (3.6)-(3.11).

3.2 Methods two and three

Methods two and three both solve for h and differ only in the numerical schemes used.

We use the definitions of potential radius and the deviation geopotential to write (2.1) as

f 2 R 4  Oh
I--i =-" -"

4 ( 4  r

Now using (2.9) and the definition of potential thickness we get

Oh f 2 HR JR 4 (
5R 4g- h (T4 (3.12)

which relates the slope of the top boundary to the wind field, through the difference

between the potential radius and the actual radius, and the thermal field, through the

fluid depth. To determine r(R) we use a slightly modified version of (3.7)

Or RH (3.13)
OR rh "

The boundary conditions here are the same as in method one with h replacing 4, in (3.9)

and (3.10).
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3.3 Method four

In method four we return to the V variable and derive an expression to solve for it.

We start with the definition of potential thickness

H- h. (3.14)

Using (3.3) in (3.14) and taking 0/OR of the new equation gives

h 0 (O(RV) ) f Oh OHf -R + C 3.15R

Now we substitute (3.12) for Oh/OR to yield

ghO (O(RV)) ff R(R R4  0 g OH (3.16)f25R3 -R) C i 4 fOR*(.6

Notice that by factoring R4 - r 4 into (R 2 + r 2 )(R 2 - r 2 ) the second term on the left hand

side of this equation becomes

(L) R 2+r 2 ) f(R 2 - r 2 ) = (L)2R2(R 2 + r2(f) 2 R(R+(2 -+2r2)

which makes (3.16)

gh 0 (O(RV)) +R 2 (R 2 + r2 ) H2 I  O
f2OR\ RR + N O2rR h) V- (3.17a)

where we've used H/h = f/(. Knowing H we solve this equation, with appropriate

boundary conditions, for V.

At the center of the vortex symmetry requires that

V = 0 at R = 0, (3.17b)

and we assume the lateral boundary is far enough from the center that the flow decays to

zero. So

V = 0 at R = Rb (3.17c)

where Rb is some large but finite R.
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3.4 Method five

Method five proceeds along as method four does, but continues to eliminate h and r

from the invertibility equation. By using the relations (3.3),

and

R2 + r2 = 2R 2( V

(3.17a) is written

-8 (O(RV)\ I iOH( O(RV))+V f = 0.f RA (3.18)
OR '~ROR) Hol5R (f RRf +2V~)2

which becomes the new statement of the invertibility. The boundary conditions here are

the same as in method four.

3.5 Numerical integration

We have devised three different numerical analysis schemes to solve these five systems

of equations. Methods one and two are solved using the shooting method with the 4th

order Runge-Kutta technique to determine the values of our functions at each grid point

and the secant method to solve the lateral boundary condition, methods three and five

using a nonlinear equation solver, and method four using a tridiagonal matrix equation

solver.

In each case we start by creating a grid in R space and specifying the heating. The

grid is set up by letting

Rj= jAR, j = 0,1,2,...,J. (3.1r

In addition we include the half points

Rj+= +j=0, 1,2,...,J (3.20)
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where AR is the space increment in the horizontal. The heating is determined from (2.11).

For the sake of illustrating the nature of the solutions of this equation let Q/h = S, which

we assume is a known function of R and T. The solution of (2.11) can then be written

H(R, T) = H(R, 0) exp (I S(R, T')dT). (3.21)

An interesting consequence of (3.21) is that it is not necessary to compute the solution

for all times less than T in order to obtain the solution at time T; only the "total forcing"

(the exponent in (3.21)) need be specified. If two solutions happen to have the same

distributions of potential thickness, they also have the same distributions of mass and

wind since these fields are derived diagnostically from the potential thickness. So let us

consider the case in which S has a Gaussian distribution in R and is independent of time.

Equation (3.21) then reduces to

H(R,T) = H(R,O)e(R), (3.22)

where r(R) = SoTexp(-R/PN), with the constant So denoting the value of S at R = 0.

Thus on the grid,

Hj = Hoe', (3.23)

where H0 is specified and,

,r = T, (3.24)

with

c-0exp - j) (3.25)

where Q0 is either +1 or -1 determining whether there is a mass source or sink and R0 is

the horizontal scale of it. We also determine H at the half points. Fig. 3.1 shows H(R, T)

for Ho = 500m, Ro = 250km, Qo = -1, and T = 1,2,...,6 days. Having a solution for H

we can solve the invertibility principle and recover the physical fields.
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Figure 3.1: The potential thickness H times g as a function of R for T = 1,2,..., 7 days.
As fluid is pumped out of the vortex, the potential thickness at the center decreases.
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3.5.1 The shooting method

The shooting method (Burden and Faires, 1985) works by integrating (or shooting)

from the center to the outer boundary and using the error in the outer boundary condition

to make another pass. The values of the functions can be calculated by many techniques.

We have chosen to use the 4th order Runge-Kutta method. We use the secant method to

reduce the error in the outer boundary condition. Our algorithm proceeds as follows. We

make two initial guesses for the variable in question. Then, stepping outward, calculate

the value at the lateral boundary and compute an error. The secant method is then used

to find a new of value of this variable which is used to start another iteration. Convergence

is reached when the error is reduced to an acceptable value. The 4th order Runge-Kutta

system is of the form

AR
xj+j = X? + AR (k1 + 2k2 + 2k3 + k4) (3.26)

where

k= F(Rj,xj), (3.27)

k2 = P Rj + 2 , xj + ki, (3.28)

k3 = F Rj + 2-, xj + 2k 2), (3.29)

k4 = F(Ri+I,xi + ARk 3). (3 O0

and the secant method is
((1) _ - (2)

XGNEW) G 2 - GI (3.31)

where x( ) are the guesses for x and Ej the corresponding errors.

We use a subroutine to calculate the functions F in (3.27)-(3.30). For method one

we use the equations
8 f2 rq) 2  (3.32)

CJ 8 rj

ar _ R,4; (3.33)

OR rj4 0'



19

and

-$ f2  , / -2  .
aR 2 -- ) (3.34)

For method two we use
h f2 HjRj j (3.35=~ f2-..( , (3.35)

and

0_r R, H(3.36)
OR rjhj

The iteration begins with initial guesses t) - G or h = hG. We note that as R -+ 0,

r -* 0, and (3.33) and (3.36) are not defined. Therefore, we use L'Hospital's rule to get

an initial value of r

ro = (±)(

where ft is the guess for 4t. In method two €* and *G are replaced by H and hG

respectively. The error, -, in the outer boundary condition is computed from
'-j = AODJ - 1i) + 34 j - 4 o'j_I + 4 J-2 (3.38)

2AR

where we replace hj for 4), and h for 4 in method two.

3.5.2 The nonlinear equation solver

Methods three and five use this technique. From a numerical analysis standpoint our

problem is solving a system of nonlinear equations of the form

F(x) = 0,

or more specifically in the case of method three F(h(O)) = 0, a system of one equation in

one unknown, and in method five F(V) = 0, a system of 79 equations in 79 unknowns.

Since this is a fairly common problem we decided to search the literature for existing

software to use as a "black box" to solve it. We found a suitable subroutine in Kahaner

et. al. (1988). This code requires us to provide an initial guess for the solution and a

subroutine to calculate the value ' the function. For method three the subroutine that

we have devised uses the fourth-order Runge-Kutta method, discussed previously, to solve
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for h and r with an initial guess of h(0) = hG. For method five the subroutine solves the

finite difference form of (3.18)

= 1 (R,+ 1 ,+- RjVj RjV- Rj-lVj-1 ) +
(AR)2  Rj+ R

(2RJAR

__(R, , A - R. . Vj (3.39)

-H l?}, 2RjAR gH(f 2

with initial guesses of V = 0.

3.5.3 The tridiagonal matrix solver

When we write (3.17a) in finite difference form we create a system of linear equations

in V. If we use matrix notation to solve this system, the coefficient matrix of V is

tridiagonal, all the entries are zero except those on the diagonal and on both sides of it.

This form is particularly convenient when solving the matrix equation

Ax = b. (3.40)

One method to accomplish this is Crout reduction(Burden and Faires, 1985). If A is the

coefficient matrix

all a 12  0 ... 0

a21 a 22  a23

A 0 0A= 0 "' "' "' 0

an-1,n

0 •,. 0 an,n-1 ann

it can be factored into the lower-triangular matrix L and the upper-triangular matrix U

(LU-decomposition)
111 0 ... ... 0

121 122 " . " .

L= 0 "'. "

0. . . 0

0 ... 0 'n,,n-1Ifl.,
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1 U1 2  0 ... 0

0 1

0

Un-l,n

0 ... ... 0 1

Since A = LU, (3.40) becomes LUx = b or

Ux = L-'b

which we use to solve for x. The LU-decomposition is carried out by noting the multipli-

cations involved in A = LU

all = III,

ai'i-1 = ii for each i = 23, ... , n,

aii = li,,-Iui-li + ii for each i = 2,3,... ,n,

ai'i+ 1-: iiui,i+2  for each i = 1,2,...,n - 1.

Once the matrices L and U are known we introduce a dummy variable z and solve

Lz = b

using
b,

III

zi= (bi - lI,-jz,-1) for each i = 2,3,..., n.lii

The final step is to solve

Ux = z

using

Zn = Zn

Xi = Zi -- Ui,i+lxi+ 1  for each i -- n - 1, . 1.

This form is particularly attractive in our problem, because it updates all of the values at

the interior grid points at one time without changing the values at the end points which

in our case are always zero.
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So we write (3.17a) in finite difference form

gh, { RjV+ - RV _j~ - jV-f2(AR) 2  Rj+2  - R.i_+ 2 rj hV Vi
2~ 2r

g -]\- j (3.41)

or the more convenient form

(R_ 2R R(R r2 ) H,2 f 2(AR) 2  _ (R3+i Y

- ('gh3  H~ (3.42)

Next we determine the coefficient matrix A and the right hand side of (3.42). These

are passed to a subroutine that performs the LU-decomposition and solves the tridiagonal

system. The subroutine passes back a solution for V which we use to update r 2 and h

and compute a residual.



Chapter 4

REVIEW OF THE OOYAMA TROPICAL CYCLONE MODEL

4.1 The fluid system and equations of motion

The cyclone-scale motions in Ooyama's model are approximated by a quasi-balanced

axisymmetric vortex. It has three vertical levels two of which are prognostic; the other

is diagnostic. For simplicity the fluid is assumed to be homogeneous and incompressible.

This assumption eliminates any true thermodynamics which is reasonable for adiabatic

motions, but can be a problem for diabatic processes. Fortunately, only unstable moist

convection involves diabatic motions and this is formulated indirectly in the model.

The system consists of two main layers and a shallow planetary boundary layer. Fig.

4.1 shows a schematic diagram of the fluid system. This allows for the low level cyclone

and the upper level anticyclone of the tropical storm. The density of each layer is assumed

constant, and the system is stably stratified such that

c=_2 <1 and Po= p l .  (4.1)

Pi

Also important to note are the boundary layer has constant thickness ho, and the top

boundary of the system is a free surface.

For convenience he introduces a reference density p such that

p=pl = p  and P2= P.

He also defines the nondimensional static stability

= 1-C. (4.2)

Since the fluid is assumed to be incompressible changes in the thickness correspond

to adiabatic temperature changes. A layer's thickness can only change by convergence
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,P, h o w v

Figure 4.1: Schematic diagram of the fluid system proposed by Ooyama (1969).
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and divergence of the fluid caused by the radial wind. The tangential wind can not have

any effect on the divergence, because of axisymmetry. Thus the radial mass fluxes, O' for

each layer are

10= -houor, (4.3)

V1= -hjulr, (4.4)

and

2 =-Eh2u2r, (4.5)

where uj is the radial component of the wind defined positive outward. Actually the mass

flux is poi, but ikj is used with little confusion.

Diabatic processes are represented by the change in density of a fluid parcel associated

with the vertical motion. Thus, diabatic heating, the movement of air from high density

to lower density, is pQ+, and diabatic cooling is pQ- where Q+ and Q- are the diabatic

mass fluxes.

Next he writes the mass continuity equations. Since the boundary layer has constant

thickness its continuity equation is

0 tr0 w (4.6)

rOr

where w is the vertical velocity at the top of the layer. The equations for the main layers

are

ih, = 9.-- - Q+(4.7)

and
O h 2 = V2 + Qat + 2  (4.8)

where Q = Q+ - Q- is the net diabatic flux.

Using the hydrostatic approximation the pressure in each layer is written

p, = gp(ho + h, + h2 - z), (4.9)

P2 = rgp(ho + hi + h2 - z), (4.10)
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and

Po = Pi (4.11)

where z is the height above the sea level and g is the acceleration due to gravity. Now,

if hi and pi denote the undisturbed or average values of hj and pj then the deviation

geopotential is defined by

i - Pj (4.12)
Pi

As previously stated the tangential circulation is represented by a balanced axisym-

metric vortex. The radial equation of motion is thus approximated by the gradient wind

equation

(f+ ) v. = L,.- (4.13)

where f is assumed constant. Since from (4.12) 0o = €1, from (4.13) v0 = vj.

Ooyama defines the absolute angular momentum for this system as

1 2 (.4Mj = vjr + -fr (4.14)
2

The angular momentum budgets in each of the main layers is then written

a ah~) 19(.5
(hM1 ) = -r('Mj + A1 ) - Z 12 + Zo (4.15)

and

E= (--2M) (0,2M 2 + A2) + Z, 2  (4.16)
rOr

where Ai are the radial fluxes of angular momentum due to lateral eddy transport, Z12

is the vertical flux of angular momentum between the two main layers, and Z01 is the

vertical flux of angular momentum from the boundary layer to the lower main layer. The

model equations are derived from these basic equations.

4.2 The model equations

The equations for Ooyama's model are listed in the box below. A model run consists of

predicting 01 and 02 with (4.17) and (4.18). In these equations G1 are the diabatic heating

terms which are dependent on Q+. This in turn depends on i which is a nondimensional
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parameter developed from energy considerations and is dependent on representative values

in layers 0 and 1 of 8e, an arbitrary constant 0, and the saturation value in layer 2 0;.

Once 01 is known h, and h2 are determined with (4.19) and (4.20) after which v, and v2

are predicted with (4.21) and (4.22) where F are the friction terms.

a78=r-,. (01 + '2) + GI (4.17)

= ( +-1) + G2  (4.18)

where G1 = gw and G 2 = g(w + E-IaQ)

hi =l + (0g)-'(01 - e02) (4.19)

h2 h '12 + (o')- 1(-01 + 02) (4.20)

2(tir) = hl7(f + (1)01 + FI (4.21)
at

= (Eh2)-(f + C2)P2 + F2  (4.22)

where (i = (8(j))/(rZr)

1 Q- + P)(V2 - vl)r + rAgr (4.23)

=2 .. (Q+ + p)(vl - v2)r + (4.24)

Q- = 0 (4.25)

Q+ = (4.26)
0, if w < 0.

77= 1 + X 2 (4.27)
X2 -X a

where Xo = (0,)o - 0, X, = (6,), - E), and X2 = (8;)2 -EO



Chapter 5

INCLUSION OF POTENTIAL VORTICITY IN THE OOYAMA

TROPICAL CYCLONE MODEL

The closed tropical cyclone model is developed from the basic concepts of the shallow

water model with some major modifications. We use a more general fluid system with

three layers. The lowest layer represents the moist, cyclonic boundary layer, and the upper

two layers represent the cyclonic and anticyclonic flows above. In addition to the more

complicate -, -.. system we include surface and internal frictional forces. Absolute angular

momenmw-. is no longer conserved with friction included. However, using the potential

radius coordinate remains an advantage. In this chapter we generalize the concepts of

the shallow water model and derive and solve the invertibility principle for the two main

layers of the tropical cyclone model.

5.1 Potential thickness equations

We use the fluid system proposed by Ooyama consisting of three layers, the lowest

two having density p, and the iippermost having density ep where e < 1 so that the system

is statically stable. The layer thicknesses are h0 , hl, and h2 where ho is a constant, and

h, and h 2 depend on radius and time. We define the deviation geopotentials

,01 =g[(h - h) + -(h2 - h2)] (5.1)

and

10= g[(h, - hi) + (h2 - h 2 )] (5.2)

and write the gradient wind equations for the upper two layers as

f + 11 =9 (5.3)
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where I is the layer number. Since we assume the hydrostatic approximation and the lower

two layers have the same density, they also have the same radial pressure gradient force.

If we further assume that the boundary layer is also in gradient wind balance, we conclude

that vo = vl. Although there is no difference between the tangential wind components in

layers 0 and 1, we shall allow a difference between their radial components.

We now turn our attention to the mass conservation and angular momentum princi-

ples, both of which provide prognostic equations for the layers above the boundary layer.

An objection sometimes raised against the use of a homogeneous incompressible fluid sys-

tem for tropical cyclone modeling is that it does not include explicit thermodynamics.

This objection can be answered by means of analogy. Suppose we consider constant po-

tential temperature layers instead of constant density layers. Then, the geopotential is

replaced by the Montgomery potential and the layer thicknesses are replaced by the pres-

sure differences across the isentropic layers. Except for some non-Boussinesq effects the

isentropic layer equations turn out to be identical to the isopycnic layer equations. With

this in mind, let us consider the isopycnic layer continuity equations

"9 (ruoho) + w = 0, (5.4)
rOr

Oh- - (rulh) + Q+ - 0 (5.5)-T +  - -w = 0,(5 5
Oh2  O Q

e-y + - (erUh 2 ) - Q + Q- = 0, (5.6)
Ot r~r

where w is the vertical velocity at the top of the boundary layer, pQ+ is a vertical mass

flux from layer 1 to layer 2, and pQ- is a vertical mass flux from layer 2 to layer 1. In

the isentropic layer model the analogue of the net mass flux p(Q+ - Q-) is a0, where

a = -Op/O0 is the isentropic pseudo-density. Thus, Q+ represents movement of air from

low to high potential temperature (diabatic heating) while Q- represents movement in

the opposite sense (diabatic cooling).

Let us define the absolute angular momentum ml and the potential radius Ri as

Mn = fR']2 = rvi + Ir2 /2. Then, the absolute angular momentum equations can be
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written
f 7 CD IVI V1, 1=0

fRR1 = (Q- + p)(v2 - vI), 1 = 1 (5.7)

-27(Q+ +p)(vI - v2 ), I = 2

where cO is the drag coefficient, p is the constant coefficient for momentum transfer

through shearing stress at the interface, and A, is the total derivative of R1. We have

neglected lateral momentum transport due to turbulent eddy processes.

Assuming Q+ and Q- can somehow be parameterized, we regard (5.1)-(5.7) as a

closed system in u0 , u1, U2, VI v2 W, 1, 24, hi, h2 . Since (5.1)-(5.3) diagnostically relate

hi, h2 , v 1 , v2 , the prediction of h, and h2 from (5.5) and (5.6) must be consistent with

the prediction of vi and v2 from (5.7). This implies a coupled pair of diagnostic equations

for ul and u2 (see Equation (4.1) of Ooyama, 1969). This coupled pair can then replace

either (5.5) and (5.6) or (5.7). In the next section we adopt a different approach. We first

combine (5.5) and (5.6) with (5.7) to obtain the potential thickness (or inverse potential

vorticity) equations. These equations contain ul and u2 as advecting velocities. We then

transform the independent variable from actual radius to potential radius, which removes

ul and u2 from the problem.

Defining the vertical component of absolute vorticity by

S2 - f + o(rV)

we can differentiate (5.7) to obtain

a(, + -o (r,,,Ct- f IR) = 0, (5.9)

where f RtR1 has been used as shorthand notation for the right hand sides of (5.7). Defining

the potential vorticity as qt = Ct/h we can write (5.9) as

(hi) (ruhq- fR, R,) = 0. (5.10)

Thus, rulh1q, - fRRL can be interpreted as the flux of potential vorticity. This flux is

along the layer so that the interfaces between layers are impermeable to potential vorticity.
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Integrating over the area within some large radius at which both rul and R/,R vanish we

obtain

O f q9htrdr = 0. (5.11)

In this sense the potential vorticity within the layer is indestructible. These two restrictions

on the way in which the potential vorticity can change have been clearly discussed by

Haynes and McIntyre (1987) and McIntyre (1987).

We can now combine (5.5) and (5.6) with (5.9) to obtain the potential thickness

equations. We do this by multiplying (5.5) and (5.6) by f/(. Now we subtract (5.9)

times (fhl)/( from (5.5) and (5.9) times (Efh2)/(2 from (5.6) to obtain

OHI+OHI HfO (R1 R•

at 0 r +  r~r

-Q- - w) = 0 (5.12)

and
OH2  OH2  Hf O R"

- + u 2 - + H 2 -- a(RR 2 )
,OF Or C2 rOr

H2 (Q+ _ Q) = 0 (5.13)
Eh2

where

H f = Lh (5.14)

is the potential thickness of layer 1. Since HI is the inverse of the potential vorticity, we can

interpret H1 as the depth layer I would acquire if (I were changed to f under conservation

of the ratio h,/l(.

5.2 Potential radius coordinate

With (r,t) as independent variables we regard the RI(r,t) as dependent variables.

We now reverse this situation and regard (R,T) as independent variables and r,(R,T)

as dependent variables. We define T = t but note that 0/Ot implies fixed r while 9/OT

implies fixed R. We transform the partial derivatives to

a ORO 0 
t -Ot OR -T



32

and
= _ -R1  (5.16)

r O8rO R

the second of which combined with the definitions of potential radius and absolute vorticity

is written

rOr - f ROR 7)

Using (5.15) and (5.16) we write the total derivative

0 0 0 (OR1  OR1\ 0o-a + a = a + (2-T +  - -OR

or

O Or -07 +  R. (5.18)

Substituting (5.17) and (5.18) into (5.12) and (5.13) gives

0111 0 •wH 1

0+ -RO-(RRIHj) + (Q+ -Q- - w)y- = 0 (5.19)

and

S - (RR2H2) - (Q+ - Q-4- = 0, (5.20)

which now serve as the prognostic equations of the model. Note that the radial components

ul no longer appear explicitly.

5.3 Invertibility principle

Again we wish to derive expressions for the relationships between hi and Hj. Following

the procedures of method five for the shallow water model we start with the definition of

potential thickness (5.14) and then introduce the new variables V defined by

RVi = rvi. (5.21)

Substituting (5.21) into (5.8) and transforming the result into R space with (5.17) gives

f + (iva) f
tar = -(5.22)

while from (5.21) and the definition of potential radius we obtain

f f_ i (5.23)

"~~~ - 42V mn
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so that as the absolute vorticity becomes infinite O(RVI)/(ROR) approaches f, and as the

absolute circulation per unit area becomes infinite 2V/R approaches f.

Now using (5.22) in (5.14) and taking 0/OR of the new equation gives

-a((RVi) +L.h = O(RV1) 1OH2 (5.24)
wRROR hIhR (f ROla bH OR

and

- o(RV2). f to f= Oh e O(RV2) 1 Mo2  (5.2)
R ROR +2 h(2OR e RO H2 O9R (.5

which cat be written

a O(RV1)\ - 1 OH1
R/ - O(R1) f1 2  Oh 0

ORk R,9R IR H OR k ROR ,Hk (I =0R

and

RR ui OH2 ((RV 2) 2 O5.1h2) 0  (5.27)
o R k H2 OR (o-ROR ) TgH2  )(2I OR

where ao 1 - E. Now we need to find an expression for 0~h1/OR. Equations (5.1), (5.2),

and the definition of potential radius are used to write (5.3) as

f 2 (L4 Oq)
4

From these two equations, (5.1), and (5.2) we write

Ri o f th l
4 ~ gr rar

and

f2 (R4-R1 OA2
4 04  ) =

Now using (5.17) and (5.14) we get

O~h, f2 fLR(R 4 - c4R 2 (r(R)) 4  (5.28
O R 4go, C( [ri(R)]4  )(.8

and
Oh2 _f

2 f ( R 4 - Rr2)1
OR 4gca (2 k [r 2 (R]4)(.9

We need to be very careful when determining Rj(rj(R)) in these two equations, because of

the coordinate transformation and discretization of the model. To illustrate this examine
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(5.28). To calculate hi we take some arbitrary R. Then we need to find the coresponding

R 2 to subtract from it. Because of the coordinate transformation r space is distorted (Fig.

5.1), and we can't simply use the value of R in layer two. We have to find the value of r,

coresponding to R and then find R2 on this r surface. This is depicted graphically in Fig.

5.2. To do this we need to know ri as a function of R. This will be discussed further in

the section on the numerical integration.

So, we substitute (5.28) and (5.29) into (5.26) and (5.27) to get

a (O(RV) 1H OH( O(RV) +
OR ROR, H1 oR A l)

(f M(RV)R(r()]_\
f RoR) RR4 - [R2(r(R))]4 _ = 0 (5.30a)

and

o (O(aV 2 )) 1 OH 2 (f O(RV2) +
OR , R) H2 OR_ ROR +

3f - M 4 4~
RR R R

agH 2  4, [r 2(R)] 4  -0 (5.30b)

which along with appropriate boundary conditions are the invertibility for the two layer

model.

At the center of the vortex symmetry requires that

t = 0 at R = 0, (5.30c)

and we assume the lateral boundary is far enough from the center that the flow decays to

zero. So

V = 0 at R = Rb (5.30d)

where Rb is some large but finite R.

A model computational cycle consists of predicting new values of H1 and H2 using

(5.19) and (5.20) followed by solution of (5.30) to obtain V. We then solve (5.21) for vj.
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Figure 5.1: The transformed coordinate system. Surfaces of r = constant are distorted in
R space.
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corresponding to this as the R axis. The same holds for R2(r,(R)).
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5.4 Numerical integration

We generalize the nonlinear equation solver method developed for the shallow water

problem to the tropical cyclone model. Our problem now is solving the system

F(Vl) = 0

We again use the subroutine from Kahaner et al.(1988) providing guesses V,j = 0. Our

system now is 158 equations in 158 unknowns.

The subroutine we provide solves the finite difference forms of (5.30a) and (5.30b).

However, to do so we need to know rj(R) which we find from (5.21)

rlj Rj 1 - 1/.'j 2 (5.31)
r2,j--- ~ RR122j)

r 2 f Rj (I 2V2.j. (5.32)

The finite difference forms of (5.30a) and (5.30b) are

Fj 1 )2(Rj+IVI,j+l -- RjV~j RjVi,j - Rj-i~i,j-i +
F1,3 - (AR) 2 ( Rj+ 1  Ra_ I

1l OHI ) j ( f - Rj+I VI'j+l -RjRR- 1Vl'j- 1)
HII 8R) 2RjAR

R1,+ V,+-R, -I V1 .2-1 3

(agH1 , ) 2 c(R 2(rI(Rj)] - a = 0 (5.33)

and

F2 ,j = (-R) 2 (R-;j+i - R -V2- Rj RV 2  +

1(H2H ( f _ Ri+IV2.j+, - Rj-lV,,j_-l

(f _ R , + V2,.,+,-R,_1 V, .,, )3 -

f- 2RAR R [Rjr R!,- ( 4 fRj) )]'
agH2,j 4 [r2(Rj)]4  0 (534)

The algorithm proceeds as in the single layer case with the grid set up in R space.

We then calculate rij at the grid points and use a cubic spline routine as another "black

box" to create a smooth function. We also use the cubic spline to create R 2(rj(R,)) and

R1(r 2(Rj)). Then when we need values of these we evaluate the splines.
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To calculate the heating we assume frictionless flow with w = 0 and Q- = 0. This

reduces (5.19) to
OH1  +I~ H+(5.35)

and (5.20) to

WH2 Eh2

We now let St = Q+/h be some known function of R and T. Now we integrate (5.35)

and (5.36) to obtain

Hh(R,T) = Hi(R,O) exp (-T S,(R,T')dT) (5.37)

and

H 2(R, T) = H2(R,0) exp S2(R, T')dT' . (5.38)

Now to illustrate the solutions of (5.37) and (5.38) we let S = S1 = S2/E be a function

with a Gaussian distribution in R and independent of time. Then (5.37) and (5.38) reduce

to

H1(R,T) = Hi(R,O)erl(R) (5.39)

and

H2(R,T) = H 2(R,O)e1(R) (5.40)

where r,(R) = -SoTexp(-R 2 /R4) and r2(R) = SoTexp(-R 2/R). This creates a mass

sink in layer one and a mass source in layer two.

After H is computed at all the grid points, the solution is carried out as in the single

layer case. The output variables vi, hi, and (I/f are calculated from

V R-V = (5.41)rj

hij = Hj f (5.42)

and

f 
(5.43)f Htj"



Chapter 6

RESULTS

6.1 Shallow water case

Four of the five methods used to solve the shallow water invertibility work very well.

They are efficient and able to produce fairly strong vortices. The fifth is efficient, but can

produce only a weak vortex. For comparison, each method was run at 168 hours except

method four. Method four does not run that far, so it was run at 96 hours. Fig. 6.1 shows

the v and (/f fields for all five methods. All the methods produce very similar results

that resemble a tropical cyclone. The individual results are now presented in more detail.

6.1.1 Methods one and two

Method one works very well. The v and (/f fields for this method are shown in Fig.

6.2. It runs to a maximum of 242 hours. At 168 hours it produces a peak wind of 36.66

m/s at R = 180 km. The error in the boundary condition is reduced seven orders of

magnitude to 10- 9 in five iterations.

Method two also works very well. It runs to a maximum of 330 hours and at 168

hours (Fig. 6.3) produces a peak wind of 36.41 m/s at R = 180 km. The error in the

boundary condition here is reduced seven orders of magnitude to 10-11 in seven iterations.

However, these methods are hard to generalize to two layers, because of the secant

method. The secant method is used to solve a function of a single variable. The two layer

model when formulated as in methods one and two is a problem of two equations with

two unknowns. Specifically, the errors in the lateral boundary conditions of each layer are

dependent on the depths of both layers at the center. Thus, the secant method can not

be used to solve this problem.



40

40 -

35 -

30 -

25 -

20 -

15

10 -

5

0 200 400 ow0 800

F~km)

190

180

170
160

150

140

130

120

110

100

90 -N

80 -

70 -

s0 -

50-

40 -

30 -

20

10 -

0 - 1
0 200 400 GO0 800

Figure 6.1: Top: The tangential wind (v) as a function of R for all five solution methods
and T = 7 days (Method four T = 4 days.). Bottom: The normalized vorticity ((If) as
a function of R. All else the same.
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Figure 6.2: Top: The tangential wind (v) as a function of R for method one (T = 7 days).
Bottom: The normalized vorticity ((/f) as a function of R for method one (T = 7 days).
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Figure 6.3: Top: The tangential wind (v) as a function of R for method two (T = 7 days).
Bottom: The normalized vorticity ((/f) as a function of R for method two (T = 7 days).
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6.1.2 Method three

Method three is slightly slower than one and two, but still works very well. It runs to

a maximum of 360 hours. At 168 hours (Fig. 6.4) it produces a peak wind of 36.41 m/s

at R = 180 km. The error in the lateral boundary condition is reduced thirteen orders

of magnitude to 10-11 in nine iterations. Again this method is hard to generalize. The

problem is not well defined in two layers. The error in the outer boundary condition is not

uniquely determined by the guesses of hi(O). The problem is the coordinate transforma-

tion. As previously stated when we nake the coordinate transformation and discretetize

the two layer model we have to interpolate RI(rn(R)). When we use the nonlinear equation

solver the interpolation is done separately and is not constrained in any way. Thus, if we

choose different interpolations we would expect the nonlinear equation solver to produce

different results. So, we can not uniquely define the problem to be solved.

6.1.3 Method four

Method four does not work well. It runs to a maximum of only 108 hours and to get

it that far we have to use previous solutions as initial guesses. At 96 hours (Fig. 6.5) it

produces a peak wind of 16.43 m/s at R = 180 km. The problem here seems to be in

computing the diagonal of the coefficient matrix for (3.42). The tridiagonal solver gets

very sensitive as the vorticity gets large and produces infinite vorticity in a fairly short

time.

6.1.4 Method five

Method five is the one we've been looking for. It works well, but is somewhat slow.

While the other methods all ran in seconds, this one runs in approximately two minutes.

However, we were able to generalize it with good results. In the shallow water case at 168

hours (Fig. 6.6) it produces a peak wind of 36.93 m/s at R = 160 km.

Since this method is the one we used to solve the two layer case a more complete

output set is included. Fig. 6.7 shows the V(R) fields corresponding to the H(R, T) fields

in Fig. 3.1. Fig. 6.8 shows the corresponding v(r) fields computed from (3.2). Note that

as the r at which the peak v(r) occurs decreases with time, the R at which the peak V(R)
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Figure 6.4: Top: The tangential wind (v) as a function of R for method three (T = 7
days). Bottom: The normalized vorticity (t/f) as a function of R for method three (T = 7
days).
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occurs increases with time. This is a consequence of (3.3)-stretching in regions of large

vorticity.

Another way to view the solutions is shown in Figs. 6.9-6.11. Fig. 6.9 shows the r

space distributions of H and Figs. 6.10 and 6.11 show its factors h and f/. We see that

as the mass sink forces changes in the potential thickness, the fluid responds by mutually

adjusting the mass field, h, and the wind field, c/f, to maintain gradient balance. Which

is adjusted more, the mass field or the wind field? From Fig. 6.9 H at the center of the

vortex is initially fairly low. At the same time h is very high while (/f is small. Thus,

initially the wind field makes a greater contribution to H. As the system evolves, H gets

lower as does h, but (/f gets very large. So, with time the contributions from h and (/f

approach each other. Thus, the mass field adjusts to the wind field.

6.2 The two layer model

The results shown for the two layer model are for the heating given in (5.39) and

(5.40) with HI,(R, 0) = 5133.0 m, H2(R, 0) = 3523.8 m, Ro = 250 kin, and r 2 = -0.5r 1 .

The model was run at SOT = 1,2,...,7 and f = 5.0 x 10-5s- 1. Fig. 6.12 shows the

H(R, T) field in layer one for the times listed above.

The results show good tropical cyclone structure. The lower layer is as in the single

layer case. Fig. 6.13 shows V(R) and again we get the radius of maximum "wind"

increasing with time while, as can be seen from Fig. 6.14, the radius of maximum actual

wind decreases with time. Figs. 6.15 and 6.16 show h(r) and C/f. As noted in the shallow

water case they depict the adjustment of the mass field and the wind field. The adjustment

here is in the same sense. As the potential vorticity field evolves the contribution from

the mass field increases and the contribution from the wind field decreases.

The results from the upper layer show some interesting features. Fig. 6.17 shows

v(r). We see that the upper level anticyclone intensifies with time and is pushed outward.

This is also evident in Fig. 6.18 which shows V(R). However, in this case the radius

of maximum "wind" decreases. The fluid depth and vorticity fields (not pictured) show

some of the features we would expect, increasing fluid depth and decreasing vorticity with
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Figure 6.9: The potential thickness (H) times g as a function fo r for method five corre-

sponding to the H(R,T) fields in Fig. 3.1.
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Figure 6.10: The fluid depth (h) times g as a function of r for method five corresponding
to the H(R,T) fields in Fig. 3.1.
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Figure 6.11: The normalized vorticity ((/f) as a function of r for method five correspond-
ing to the H(R,T) fields in Fig. 3.1.
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Figure 6.12: The potential thickness (B) in layer one as a function of R and T = 1,2,..., 7
days. As fluid is pumped from layer one to layer two, the potential thickness decreases at
the center of the vortex in layer one.
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Figure 6.13: V as a function of R for layer one corresponding to the H(R,T) fields in Fig.
6.12.
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Figure 6.14: The tangential wind (v) as a function of r for layer one corresponding to the
H(R, T) fields in Fig. 6.12.
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Figure 6.15: The fluid depth (h) as a function of r for layer one corresponding to the
H(R,T) fields in Fig. 6.12.
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Figure 6.16: The normalized vorticity ((/f) as a function of r for layer one corresponding
to the H(R,T) fields in Fig. 6.12.
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Figure 6.17: The tangential wind (v) as a function of r for layer two corresponding to
T= 1,2,...,7 days.
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Figure 6.18: V as a function of R for layer two corresponding to T = 1,2,... ,7 days.
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time at the center. However, due to the crude lateral boundary condition the outer region

is somewhat anomalous. We get increasing, slightly cyclonic vorticity. This is caused by

requiring the average vorticity be zero.



Chapter 7

SUMMARY AND CONCLUSIONS

We have attempted to solve the invertibility principle for Ooyama's tropical cyclone

model using potential vorticity reasoning and potential radius coordinates. Presentation

of potential vorticity and potential radius in a shallow water model showed how they are

used to an advantage. They provide stretching in regions of large vorticity for better

resolution and eliminate the radial component of the wind from the problem.

We showed that the invertibility principle can be written and solved several different

ways. Solving for (1 or h using the shooting method works very well. However, these

methods can not be generalized to two layers, because the secant method only works for

problems of a single variable. Solving for h using a nonlinear equation solver "black box"

also worked well. Again this was difficult to transport to the full model, because we were

not able to uniquely define the problem in this case. Solving a tridiagonal matrix equation

for V looked promising, but proved disappointing. This method produced only a weak vor-

tex, because the matrix solver was too sensitive to small changes in the vorticity. Finally,

solving for V with the nonlinear equation solver proved the best. Although somewhat

slow, this produced good results and generalized easily to two layers.

We next looked at Ooyama's model and how it solved for the wind field. This model

is based on gradient balanced, axisymmetric flow in a homogeneous incompressible fluid.

Prediction is based on the radial mass flux and involves solving a system of three cou-

pled pairs of equations. The results show a vortex which evolves into a tropical cyclone

after approximately six days. The structure and evolution are in strong agreement with

observational data.
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Our tropical cyclone model incorporates the potential radius ideas as in the shallow

water case. Although we include friction in this case, the advantages of coordinate stretch-

ing and elimination of the radial wind component remain. The invertibility is derived and

solved using the nonlinear equation solver. It is interesting to note that the problem has

been reduced to one coupled pair of equations.

Through this analysis we have shown a different way of looking at tropical cyclones.

The release of latent heat produces positive relative vorticity at low levels and negative

relative vorticity at upper levels. This in turn produces cyclonic winds at low levels and

anticyclonic winds at upper levels. The wind and mass fields mutually adjust to the

production of potential vorticity anomalies by latent heat release.

This work has shown that it is possible to create a tropical cyclone model using

potential vorticity as the predictive variable. However, more work needs to be done to

close the system and make it a true tropical cyclone model. The boundary layer must

be added to include the air-sea interchange of moisture and surface frictional effects. A

parameterization of cumulus convection needs to be added to more accurately describe

the release of latent heat. It would also be useful to make the model less restrictive by

allowing the user to specify the initial wind field, the sea surface temperature, and the

latitude. This way the model could be used to examine different initial conditions in

different locations.
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