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\ ABSTRACT

Reliability evaluation of fault tolerant control systems (FTCS) that
include sequential tests for failure detection and identification involve
the transient analysis of finite-state semi-Markov chains of very large
dimension. Such models for the time horizons of interest are intractable
even for simple architectures. This has motivated the work summarized in
this report as well as the work that was accomplished under a previous AFOSR
grant.

The basis for the work is the idea of asymptotic aggregation of
semi-Markov chains that include slow and fast transitions. The extension of
earlier asymptotic aggregation results (primarily due to Korolyuk) to models
that include decomposed classes that are non-ergodic and the subsequent
application of these results to FTCS models was the subject of studies
conducted under the previous grant.

The research efforts reported here concentrate on the application of the
results from the previous study to more general FTCS architectures. A
difficulty is pointed out in using the limit theorems of the previous work
to approximate the occupancy probabilities of transient states that have
large holding times. A modified algorithm that leads to better
approximations for these states is presented in this report. The application
of this modified algorithm to the nine state semi-Markov reliabil®!y model
generated by a simple dual redundant system is then discussed.

Extension of the limit theorems developed in the earlier work to models
with more general decomposed classes is also presented in this report. In
particular, the results are extended to models that have multiple

trapping states within each decomposed class.




1. INTRODUCTION

— e e e e

The work discussed in this report relates to the prediction of the
reliability and other performance measures for complex fault tolerant
systems. The criteria by which the design of a fault tolerant system is
evaluated are usually related to predicted reliability and performance
quantities. Thus, the development of the means for making such calculations
has become a major concern as the reliability and performance requirements
of these systems have been made more demanding.

One method that has proven to be useful for evaluating the reliability
and performance of a fault tolerant system is the use of finite state Markov
and semi-Markov models [1-6]. As the introduction to the final report on the
previous grant [7] points out, however, four basic difficulties to the
numerical implementation arise when generalized Markovian models are used to
represent the behavior of a fault tolerant system:

1. The dimension of the model is typically large, even for relatively
simple architectures.

2. The transient behavior of the model is the behavior of interest
because the operating time of the system is always much shorter than the
time necessary for all the components fail (which is the steady state
condition). Generating numerical results for the transient behavior of
generalized Markovian models is a problem for which few short-cuts exist.

3. Although the operating times of interest are short relative to the
time necessary for all of the components to fail, it is often long relative
to the time between applications of the failure detection tests that are in
use. Thus, we are often interested in the transient behavior of a Markovian

model after many thousands of time steps.




4. A significant time scale separation exists between the average times
necessary for a failure to occur and the'average time necessary for the
failure detection decisions to be made. However, some failure detection
decisions, particularly "false alarm" decisions (a decision that a failure
is present when in fact one is not present), require an average time of
considerable length relative to the component mean time to failure.

These difficulties make the problem of evaluating such quantities as the
reliability of a fault tolerant control system impractical even with
powerful digital computing machinery. It is this intractability with which

this study (and the previous study) is concerned.

1.2 Summary of Previous Work

The four difficulties discussed in the preceding subsection motivate
the development of approximate strategies to quantitatively solve the
Markovian models that represent fault tolerant systems. Many of the
approximate techniques (including those discussed in [7] and in this repecrt)
are based upon the exploitation of the time scale separation mentioned in
Comment 4 above. The basic idea is to aggregate into classes the states of
the model that share transitions that occur in the fast time scale. Then,
the transitions between the classes can be characterized by the slow time
scale behavior while the behavior within each class is assumed to be
well-approximated by the steady state behavior of the class with slow
transitions neglected. This leads to two types of Markovian models to be
solved, each of relatively small dimension: a transient model that evolves
in the slow time scale describing the interclass transition dynamics, and a
steady state model for each class. The approximate behavior of the originaf
model over long time horizons is then approximated by multiplying the

transient probability of occupying each class by the steady state




probabilities of occupying each state within that class.

The introduction of (7] summarizes much of the work done by other
authors on the problem of aggregating finite state Markovian models to
generate approximate solutions. In the interest of brevity, that summary is
not repeated here. The interested reader 1s referred to (7].

The primary contribution of the work reported in (7] was to extend some
previous results (primarily due to Korolyuk [8,9]) to situations that more -
accurately reflect the types of models that represent the behavior of
fault-tolerant systems. In particular, the work summarized in [7]:

- Extended Korolyuk’s theorems to time-scaled models that do not

decompose into ergodic decomposed classes.

+ Developed the discrete time versions of Korolyuk's original theorems
and the discrete time analog of the extension to models with nonergodic
decomposed classes.

+ Applied the discrete time results to a relevant, though simple,
discrete time fualt tolerant system model for which exact results could
also be generated.

- Made a preliminary effort to extend the results further to models
that include decomposed classes with multiple trapping states.

As was pointed out in (7], these contributions make feasible the use of
semi-Markov reliability models as a design tool for fault tolerant systems
by making it possible to approximately solve for the reliability and other

performance measures efficiently.

1.3 Research Goals of Present Work

The work reported here was motivated by two shortcomings of the work
reported in [7]. One is alluded to in the contributions summary of the

previous subsection. The other relates to the assumption that essentially




all approximate aggregation strategies make regarding the strong separation
in time scales of the slow and fast transition behavior.

In [7], an incomplete proof was given for applying the approximate
aggregation results to models that yield multiple trapping states in the
decomposed classes. One goal of the work reported here was to complete this
proof.

The other shortcoming in the results of [7] relates to the
numerical results that were obtained for a model that represented the
behavior of a simple dual redundant system used in a primary-secondary mode
(cf. Section 2.5.2 of [7]). If a decomposed class of the model contains at
least one trapping state when slow transitions are neglected, then the
steady state distribution within that class will indicate zero probability
for any state that is transient. Hence, when the approximation is
constructed, the approximate solution predicts zero probability for these
states. This is not a good approximation if these states have average
holding times that are a significant fraction of the time scale over which
the slow transitions occur, as would be the case for a fault tolerant system
with very long mean times to false alarm. Much of the work reported below is

an effort to address this problem.




2. PROGRESS SUMMARY

2.1 Summary of Section

This section summarizes the salient aspects of the work carried
out during the one-year period of the grant. Section 2.2 describes the
extension of earlier limit theorems for semi-Markov chains to more general
case that includes multiple recurrent subsets in decomposed classes.
Derivation of the semi-Markov model for a simple dual redundant system is
presented in section 2.3. Application of the earlier limit theorem and a
modified algorithm developed during the period of this research on the
resulting nine state model is then discussed in a paper that is included as

Appendix A and summarized in section 2.4.

2.2. Behavioral Decomposition of Semi-Markov Models - General Case

The decomposition of semi-Markovian models that include fast and slow.
transitions between the various states was considered by Korolyuk [8]. It
was shown in [8] that a semi-Markov chain that depended on a small parameter
€ which could be split in the limit as € 0 into a disjoint set of
non-communicating classes of states Ek, k=1,...,m, can be represented by a
m-state Markov chain when the classes are ergodic. Extension of this result
to non-ergodic classes Ek that included one irr~ducible recurrent subset of
states was given in [7]. We consider below more general classes Ek and
extend the limit theorem for semi-Markov processes originally considered in
(8].

Let the set of states of a semi-Markov process that depends on a small
parameter &£ be split into disjoint classes of states,

E= LE (2.1)
k=1

such that the probability of departure from each class and the sojourn time




in a given state tend to zero along with €. The total sojourn in each class
is assumed to have a nondegenerate distribution in the limit as € O.

Further, let each of the classes be split into a set of transient states Ek
t

and irreducible recurrent subsets Ek such that,
1

n
E =E + Y E (2.2)

where n may in general be different for various classes. Note that the

recurrent assumption on the subsets Ek implies that these subsets are
1

ergodic. We derive below the nature of the inter-class transitions when ¢
tends to zero.

Let the elements of the transition probability matrix (Pfj(t); i,j €
E) specifying the semi-Markov process depend as follows on the small

parameter e:

€ _ € o
Pij(t) = le Flj(t/e) ; 1,j €eE (2.3)
with,
. P,y - ed,) i L) €E,
pU = (2.4)
(k)
cqU ; 1 e Ek , J & Ek
Here,
L p=1,1¢cE (2.5)
JEE, ]

Also, since each Ek represents an irreducible recurrent subset of states,
1

we have
T p:‘j‘x’ =1, 1¢ekE (2.6)

JeE, 1
1
We further make the assumption that all out of class transitions when
€ 0 take place only from the ergodic states in each class. Let rill

1 v

be the

sojourn of the semi-Markov process in the subset Ek of class k when it
1




starts from the state ieEk and moves to the irreducible recurrent subset
1

Er in class r. The transitions from the subset Ek to Er can be split into

v 1 v

direct transitions and indirect transitions through the transient set Er in
t

class r such that:
p{r(” < t} = p{r‘”d < t} + P{r“)L = t} (2.7)
kr kr kr
1l v 1 v v

Here, the first term on the right hand side of (2.7) represents the direct
transition sojourn and the second term the sojourn for a transition through
the transient set in class r.

Let CC‘J denote the sojourn of the semi-Markov process in the i-th
state with distribution Flj(t)’ while 5fj are the indicators of transition

from the i-th to the j-th state. Using the expression for total probability,

we obtain for the random quantities ti”d .
lrv
P{r‘”d < t} = T P{ae a1, ec + D < t}
kr 1] lj kK r
1v J€E 1y
k
1
+ z P{ac =1, CC = t} (2.8)
3 1)
JEE_

v

Since subsets Ek and Er contain only ergodic states by construction,

1 v
we have from Korolyuk’s limit theorem ([8]
lim d _d _ _
e o P{Tklrv = t} = pklrv {1 exp{ Aklt)} (2.9)

which is independent of i. Here,

k) _(k k) (k)
¥ n: 1)q: 1Y y q, 1
1€E {EE
d % k)
- . = 2.10
Py v k) (k) Akl k)_(k) ( )
1 a Y LRI A ) mora
1€E 1€E
k k

10




q:klrv) = ¥ ::1) ; q:kl) = Y q:kl) (2.11)
JEE JEE J
r k
v 1
“) = v oa p* a = I tF (t) (2.12)
1 13713 1] 1)
JEE,

1

In the above, n:kﬁ represents the stationary probability distribution

)

in the imbedded Markov-chain defined by p:tl. )

The elements pf?x) and qiil
are respectively the pzj) and qfﬁ) terms for the indices i,jeEk.
1

The probability distribution of the sojourn time for transition from

k
1 v t

P{r‘”‘ = t} =p P{r‘” = t} (2.13)
kr rr kr
lv tv 1t

Here, the term P . represents the probability of transition from the
tv

E to Er through the transient set Er can be further split into:

transient set Er to the subset Er within class r and is given by:
t v

(r)

L I p,
1€EE  J€EE
r r

p = t v (2.14)

rr (r)
tv. L L LI P,
v 1€E J€E
r r
t v

Proceeding as before with similar notation, we obtain for the

distribution of sojourn time starting from the i-th state in Ek to the j-th
1

state in Er:

Hence,

11




Y] (1) €
P{T st} = P{t = t-u} dP (u)
K r L K r 1)
It J€E 1t
k
1
€
+ ¥ P1 (t) (2.16)

JEE
r
t

Taking the Laplace transform of (2.16), we obtain

() _ o} € 1 €
¢, . (sl = ¥ ¢ ° (s) pij(s) + L g plj(s) (2.17)
1t JjE€E 1t JEE
k r
1 t
where,
€ _ -st €
plj(s) = I e dPiJ(t) (2.18)

Recalling (2.3) and (2.4), after simple manipulations it can be shown that:

£ 2 faw o w) (, L i
plj(s) = [pijl eqijl] [1 esalj] ; jeEkl (2.19)

€ ook
plj(s) = equl ; JeE”t (2.20)

Substituting these expressions in (2.17), we get:

(1) o k) 1 (k)
S - S = £ - 1
¢, . (s) e, (s)pn L g9,
1t J€EE 1t J€E
k r
i t
-eg Y |sa p(kl) + q(kl) w(j) (s) (2.21)
13 1] 1) k. r
JEEk 1t

1

Passing to the limit as € 0, the functions will (s) are found to satisfy the
1t

system of equations:

(1)

kr
1t JEE 1t
kl

o, (s) - T o) () p™ =0 (2.22)

1)

It follows from this and the fact that the Markov chain defined by the
transition probabilities pfjl), i,jeEk is ergodic, that the solution of the
1

12




: ,

system is independent of the superscript, i.e. wiﬁi(s) =9 . (s) v ieEk.
1t 1t 1

Multiplying (2.21) by the stationary probabilities n:kl) and summing

over all ieEk and cancelling €, we get:
1

Y n:kl) Y [saijp(kx) + q(kl)] w‘j) (s) =

1€E €E 1 1 T
Kk ek,
1 1
¥ n:kl) ) q:kl) (2.23)
1 EE J€EE J
k r
1 t

On passing to the limit € 0, noting that all the ¢:?‘(s) have the limit

1t

function ®, {s), we obtain,
1"t
Akl

= (2.24)
s + Akl

ni=

@ r(s)=pkr

1t 1t

k
which is independent of the starting state i in Ek . Taking the inverse

1

transform,
c o P{tklrt = t} = pklrt [1 exp Aklt)] (2.25)

Here, /\kl is same as defined in (2.10) and,

Z n:kl)q:klrt)

1€E

*
Per © (k) (k) (2.26)
1t T LA A

1€E
K
1

with,
q:klrt’ = ¥ qztl) (2.27)
JEE_

t
Hence, the probability distribution of the sojourn time from the set

E:k to Er is independent of the starting state and is given by:
1 v

13




;‘: P{Tklrv < t} = [p‘:lrv + pklrt p’t’v]‘[l - exp(-/\klt)] (2.28)

This is a general result that is valid for any arbitrary set of
classes defined by (2.1). In this sense then, this result is an extension of
the results reported in [7]. In fact, it generalizes the approximate

aggregation results to essentially all fault tolerant system models in

semi-Markov form.

In this section, a semi-markov model is developed that represents the
behavior of a simple dual redundant system. This model is identical to a
model considered in [7]. However, the construction of the model presented
here differs from the model construction method employed in [7] and
therefore warrants detailed presentation. The next section will discuss the.
numerical results generated for this model.

Conslider a dual redundant fault tolerant system architecture where two
identical instruments are measuring a scalar quantity of interest. An
instrument is deemed to have failed when the measurements are corrupted by a
bias error sufficiently large to cause mission failure if the output is used
in the control scheme. At the two level stage where both instruments are
operational, two one-sided sequential ratio detection tests (SRDT) are used
to detect a failure [7]. If the SRDTs simultaneously arrive at a decision,
the test is reset. Depending on whether SRDT 1 or SRDT 2 arrives at a
decision, an isolation option of either 1 or 2 is triggered. In either
option, two sequential probability ratio tests (SPRT) are used to arrive at

an isolation decision or an alarm rejection as follows:

14




Isolation Option 1:

SPRT 1 SPRT 2 Decision

Isolation Isolation Reinitiate SPRT’s

Isolation Rejection Declare instrument 1 failed
Rejection Isolation Declare instrument 2 failed
Re jection Rejection Reject SRDT alarm

Similar isolation options following the triggering of SRDT 2 are defined.

Once an instrument is declared faulty, the FDI tests are
discontinued. To simplify the calculation of the exact results required for
comparison to the approximate results that will be generated later, it is
assumed that all tests are reset after five time samples, which reduces the
number of terms in the numerical convolution sums to be evaluated to a
maximum of five. For isolation, we assume that an independent estimate of
the scalar quantity of interest is available to vote between the two
instruments.

For developing the semi-Markov model for this fault tolerant
architecture, it is suggested in [7] that all the states of the model must
be enumerated first, based on the FDI logic and failure event occurence.
Another approach is to start with a state characterized by all working
components and then list the various combinatorial events that can happen
for this state during a single time step. This method is more efficient and
does not require the states of the model to be enumerated apriori. After
considering the varlous combinatorial events and hence the possible states
for the model, we derive the core matrix elements [9] for the semi-Markov
model. The core matrix elements are then examined to see whether they
represent a valid probability mass function. If the probability masses for
transitions out of a particular state does not sum to one, then it implies

either there are other states to which it can transition to, or the core

15




matrix elements for transitions from this state are in error. We then
sultably modify the model and check for a valld probability mass function.
Thus, the construction of the semi-Markov model in general becomes a

relatively simple trial and error procedure.

We start the model development for the two component redundant system
from a state that rpresents a condition with all components available, none
failed and no detection alarm present. The various possible events that can
occur during one time step are as follows:

(1) No failure but SRDT alarm occurs.

(2) One instrument failed and correct detection alarm occurs.

(3) One instrument failed, detection alarm occurs for wrong pair.
(4) One instrument failed and no detection alarm occurs.

Thus by considering all possible combinatorial events from a known
state, we have enumerated four other states of the model. We then proceed as
above to list other possible states for the model from these known states.

For this FDI scheme with the given architecture, we get a nine state
model. The nine states and the notation used to represent them are given
below.

1. Two instruments available, none failed, no detection alarm
present, SRDT's operating. (2/0/0)

2. Two instruments available, none failed, one SRDT detection
alarm present, SPRT’s operating. (2/0/D)

3. One instrument available, one eliminated due to false
isolation [FDI discontinued]. (1G/FI)

4. Two instruments available, one failed, correct detection alarm
triggered, SPRT’s operating. (2/F/C)

5. Two instruments available, one failed, detection alarm present

16




-

for wrong pair, SPRT’s operating. (2/F/W)
6. Two instruments available, one failed, no detection alarms
present, SRDT’s operating. (2/F/0)
7. One good instrument available, one faulty instrument isolated
[FDI discontinued]. (1G/F)
8. System loss due to one failure and one false 1isolation.
(SL/F/FI)
9. System loss due to two failures. (SL/2F)
The state transition diagram for this model is given in Appendix A.
The thick lines indicate fast transitions while the dashed lines indicate
slow transitions. The self loops in each state indicate the reset mechanism
incorporated in the tests. We notice that some of the states in this mocdel
can be aggregated, for instance states 8 and 9 which represent a vehicle
loss. This has not been done in order that when the nine state model is
decomposed, it breaks up into three classes with the inter-class transitions
taking place in the slow time-scale (of order €, the failure rate of the

components).

2.3.1. Set notation used
Before deriving the core matrix elements we present the set notation

used to represent the various events associated with the model.

F; A failure of instrument i at time sample m

?i No failure of instrument i at time sample m

D; A failure indication by SRDT for instrument i at time
sample m

ol No decision avalilable from SRDT on instrument 1 at

time sample m

R Rejection of alarm by SPRT for instrument i1 at time

17




;ample m

I; Isolation decision by SPRT for instrument i at time
sample m

N Denotes the intersection of events

U Denotes the union of events

It is assumed in the development of the semi-Markov model that all of
the events are statistically independent. A complete statistical description
of the SRDT and SPRT used in the FDI scheme requires knowledge nf the
conditional probability mass functions (pmf) of the time to decision of the
sequential tests. The following functions are used to describe the behavior

of the sequential tests.

fg(-) pmf for detection given no failure is present for SRDT
f;(-) pmf for detection given failure is present for SRDT
f?(-) pmf for detection given no failure is present for SPRT
fg(-) pmf for rejection given no failure is present for SPRT
fi(-) pmf for detection given failure is present for SPRT
f;(') pmf for rejection given failure is present for SPRT

The above pmf's can be expressed in the event notation as follows:

m-1

m-1
0 i =1 =1
fD(m) = Pr{Dm N DIn N Fk} (2.29)
k=1 k=1
1 y 20 1
fD(m) = Pr{D n D. Fo} (2.30)
k=1
) g 2T et
fR(m) = Pr{Rm n Dm N Fu} (2.31)
k=1 k=1
o R (b B
fI(m) = Pr{Im N Dm N Fk} (2.32)
k=1 k=1
1 y 2ol 1
fn(m) = Pr{Rm k91 Dm Fo} (2.33)

18




(2.34)

An important observation to be made concerning the above pmf’s is that

the fault monitoring event at time sample m is conditioned on the failure

events that take place prior to and including time m-1. Thus, it is assumed

that there is a delay of at least a single time step between when a failure

takes place and when it is detected.

We further define the quantities Si(m), which will be used frequently

in the derivation of the core matrix elements.

S;(m) Probability that no decision has

reached at a

given time m in the absence of a failure for SRDT

S;(m) Probability that no decision has

reached at a

given time m in the presence of a failure for SRDT

Identical quantities for the SPRT are defined with the superscripts taking

the value 2 in each case.

In terms of the event notation each of the above quantities can be

expressed as follows:
m-1 1
N P

st(m) = pr{ﬁ‘
0 m 1

k

F;} : mz1

1 _ 4L - 1 R
Si(m) =1 §1fo(k) ; mz1

k

m
sj(m) =1 —kg[fz(k) + f‘:(k)] —

19
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m
s2m) =1 -% [f;(k) + fi(k)] ; m=1 (2.38)
k=1

An additional assumption made in deriving the model is that the
failures exhibit a geometrically distributed time of occurence. The

probability of failure € over a single time step can be expressed as:

Pr{F
m

2.3.2. Core matrix element derivation

F } =g (2.39)
m-1

We now proceed to derive the core matrix elements for the semi-Markov
model of the dual redundant system. To be concise, we indicate the steps
involved in the derivation of the core matrix element gij(-) for one case
and give the final expressions for other cases.

Let us examine in detail the core matrix element gll(m), i.e.,a reset
of state 1. A reset arises at time m if no failures take place for all times
prior to and including m, the chain entered state 1 at m=0, and both SRDT's
indicate a detection of failure at time m. Since it is assumed that the
tests are reset after m=5, we have:

5, = e[ n DL ][ n 7L F]} o,

k=1 k=1

m-1 m
+ Pr{[D; D:][ n ﬁ; 5i][ N ?i ?i]} (2.40)
= K

k=1 =1

Noting that all of the above events are conditionally independent,
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m -1 m > m 1 m-1_1
gxl(m) = Pr{ n Fk } Pr{ N Fk } Pr{ no n Fk }
k=1 k=1 k=1 k=1
® m-l_z
Pr{ N Dk n Fk } 5m5
k=1 k=1
m 1 m 2 1 m-l_1 m-l_1
+ Pr{ N Fk } Pr{ N Fk } Pr{ D nbD n Fk }
k=1 k=1 k=1 k k=1
m-1 > m-1
Pr{D nDd n'ﬁi} (2.41)
k=1 k=1

Applying the definitions for the pmf and using the notation defined earlier,

we can simplify (2.41) to yield:

_ 2m 20 2 2n [0 2
g (m) = (1-¢) [1 - kglfn(k)] 5+ (1-e) [fn(m)] (2. 42)

Consider the core matrix element gal(m), which is the pmf for the SPRTs
to arrive at a no fallure decision given no failure is present. This
transition occurs when either SPRT arrives at a no failure decision at any
time prior to and including m and the the other SPRT decides on a no failure
decision at instant m given that no failures are present. This can be

represented in the event notation as,

m-1 m
821(m)=Pr{ [R: R:] [kglo; Di] [kDIF; Fi]}

1 m-1 ~1 -1 m-1 5 25 m —
+2Pr{ [Rm n Dk] L NR] DH][ nF, Fk]} (2.43)
k =1

k=1 =1 j=1 k=
Using the conditional independence of various events this simplifies to,
E 2 ) »!o
g, (m) = (1-¢) [[fn(m)] v 2 £2m) kglfR(k)] (2. 44)

Proceeding along similar lines, the core matrix elements for other cases

are summarized below.
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_ 2n 0 o 0
812("') = 2(1-¢) fD(m)[l - k§1fn(k)] (2.45)
- _.y(am-1) 0 w0
gu(m) = 2e(1-¢) fD(m)[l k§1fD(k)] (2.46)
gls(m) = g“(m) (2.47)
m 2
g, (m) = 2e(1-e)""““’[1 - zfg(k)] (2.48)
k=1
gu(m) =0, i=3,7,8,9 (2.49)

2 -1
_ (1[0 0 o
g, (m) = (1-¢) [[fl(m)] v 2 £2m) kglfl(k)]

2n 2 0 0
+ 2(1-¢) [1 - So(m)][fl(m) . fR(m)]Sms (2.50)
anf 0 2.0 0 =1,
g23(m) = 2(1-¢) [f{(m) ¥ fR(k) + fR(m) Y fl(k)] (2.51)
k=1 k=1
_ .y (2m-1)
324(m) = 0.5(1-¢) (2.52)
gzs(m) = g24(m) (2.53)
(2m-1) [ [0 2 0 m-1 o
826(m) = g(1-¢g) [[fn(m)] + 2 fR(m) k§1fn(k)] (2.54)
gal(m) =0 ; i=7,8,9 (2.55)
gaa(m) = (1--::)6Inl (2.56)
gsa(m) =€ am (2.57)
gsl(m) =0 ; 1#3,8 (2.58)
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g, (m) = (l-e)m[f:(m)

g48(m)

49
41

S5

56

g57(m)

58

359("‘)

51

i

m m-1
LE(k) + £(m) T f;(k)]
k=1 k=1

nf.2 2 2 2
+ (1-¢) {So(m)[l—sl(m)] + Sl(m)[l—So(m)]}aIns (2.59)

- m m-1
m| .1 (0] (0] 1
(1-2)"| £ (m) k);jlfk(k) + £0(m) kglfn(k)] (2.60)
o m o m-1 1
(1-)"|£ (m) L fo(k) + £(m) T fI(k)] (2.61)
- k=1 k=1
1 - 0 ==l
(1-e)m[fn(m) LEK + £)(m) T fR(k)] (2.62)
k=1 k=1

e(x-e)""“’{ss(m)[1-sf(m)] + sf(m)[1-s§(m)]} (2.63)

0 :

(1-¢)"

i=1,2,3,5 (2.64)

0 0 ) m-1,
(1-8)"'[f (m) £2(m) + 2 £.(m) 3 (k)]

I 1 1 k=1 I

+ 2(1-¢)" Sz(m)[l—sz(m)]a (2.65)

0 (o] mS
[£°(m) £2(m) + 2 £2(m) m-1f°(k) (2.66)
| R m R m 1 m k§1 I :

m -1 5
(1-)®[£2(m) T £2(k) + £2(m) ¥ £O(k) (2.67)
- k=1 " R k=1 &
o m 0 m-1 0 -
(1-)"[£2(m) T £2k) + £2(m) ¥ £o(k) (2.68)
| R k=1 I I k=1 R i
2(1-¢) ™M si(m)[l-sf)(m)] (2.69)
0; i=1,...,4 (2.70)
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_ e? o1 1
854(m) = (1-¢) So(m) fD(m) (2.71)
g65(m) = (1-€)" S:(m) fg(m) (2.72)

_ Ry 1 1 0 1
gsﬁ(m) = (1-¢) [So(m) Si(m) 6m5 + fD(m) fD(m)] (2.73)

_ oy (m-1) 1 1
gég(m) = g(1-¢) So(m) Sl(m) (2.74)
g6i(m) =0; i=1,2,3,7,8 (2.75)
g77(m) = (1-8)6m1 (2.76)
g79(m) = 6m1 (2.77)
g7i(m) =0 ; i#7,9 (2.78)
gaa(m) = 6m1 (2.79)
gai(m) =0 ; i=8 (2.80)
ggg(m) = Gm (2.81)
g (m) =0 ; i»9 (2.82)

The numerical values used for S:(m) in computing the core matrix for
the dual redundant system considered in the example are given below.

s;(1)=o.989s; s;(2)=0.9792; S;(3)=0.9696; s(‘)(4)=o.9608; s;(s)=o.9531
Si(l)=0.7862; S:(2)=0.5845; S:(3)=0.3861; s:(4)=o.2o12; s:(5)=o.0199
2 2 2 2 2
§.(1)=0.7900; S_(2)=0.5845; S_(3)=0.3819; S_(4)=0.1867; S.(5)=0.0008
2 2 2 2 2
s2(1)=0.7812;5%(2)=0.5745; S7(3)=0.3721; S°(4)=0.1842; S.(5)=0.0009

The decision time mass functions considered for the SRDT's give Pfa=o'047

and those of the SPRT’s give P_ =0.047 and Pm=0.02.

fa
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2.3.4 Decomposition of the model

The semi-Markov model for the dual redundant fault tolerant system
exhibits fast and slow transitions between various states and can be
decomposed into different classes such that the transitions within each
class are all in the fast time scale. Class 1 comprises states 1,2, and 3 (1
and 2 transient), class 2 states 4,5,6,7 and 8 (4,5 and 6 transient), and
class 3 state 9. Class 2 contains two trapping states for €=0 and hence is a

non-ergodic class.

2.4 Modified Algorithm for Generating Numerical Results

Earlier results based on Korolyuk’'s limit theorem for semi-Markov
chains approximate the aggregated state model after time scale decomposition
by a homogeneous Markov chain. The inter-class transition rates are derived
from (among other things) the invariant distribution in each class.

Many states in a FTCS model lacking on-line repair are transient. When
these transient states have large holding times, considerable error in the
asymptotic approximation for the original semi-Markov model results over the
time scales of interest. Furthermore, in some cases, occupation of these
states is the only means by which some of the interclass transitions can
occur. In these cases, the class probability approcimations can also be in
considerable error.

One of the key results of the research during the period of the grant
is the development of a modified algorithm to account for inter-class
transitions from transient states with long holding times. In this
algorithm, a non-homogereous aggregated Markov chain is used to evaluate the
class probabilities after decomposition. The time varying transition rates
for this Markov chain are derived taking into account contributions from the

transient states. This leads to a more complex algorithm for approximating
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the state probabilities, but considerable improvement in the accuracy of the
approximations is the result. See Appendix A for details.

The modified algorithm was investigated by applying it to the
dual-redundant FTCS model derived in the preceding section. Comparison of
the numerical results from the two asymptotic approximations are discussed
in appendix A. Since the nine state model considered in the example is
representative of FTCS models, the results are quite encouraging.

It is interesting to note that when the earlier limit theorem is used,
there is 100% error in the estimates of the occupancy probabilities for all
the transient states and significant error in the class probabilities as
well. However, using the modified algorithm mentioned above, the transient
states are better approximated with class probability errors within 10%.
This is a significant improvement over the earlier methods and makes this

technique a valuable tool for evaluation of FTCS designs.
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3. SUMMARY OF SIGNIFICANT FINDINGS AND FUTURE WORK

3.1 Significant Findings

The work during the grant period produced two key findings. They are:

1. The extension of the approoximate aggregation results to decomposed
classes that contain multiple trapping states. (See section 2.2.)

2. The development of the modified algorithm that accounts for
interclass transitions from transient states with long holding
times. (See sections 2.3 and 2.4 and Appendix A.)

The first of these findings is significant because it implies that
approximate aggregation can be applied to a broad range of semi_markov
reliability models of fault tolerant systems. The second finding is
significant because the modified algorithm, while introducing another source
of error, leads to significantly more accurate numerical results for models
that include transient states with very long holding times within the

decomposed classes.

3.2 Future Work

A proposal has been submitted to AFOSR to continue this work. The focus
of the continuation of the work is to extend the class of models to which
the modified algorithm can be applied. Also, the proposed effort will begin
to examine fault tolerant systems from a control system performance
viewpoint, a viewpoint which has been secondary to our reliability
evaluation work. Finally, we will attempt to examine more complex models of

fault tolerant systems.
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ABSTRACT

Reliability models of fault tolerant
control systems (FTCS) are described by
semi~Markov models when sequential tests
are used for failure detection and
identification (FDI). The transient
analysis of these semi-Markov chains are
of interest because the steady state
behaviour 1is trivial. The relatively
rare occurence of the failure events
compared to the fast decisions by the
FDI tests allow time-scale deccomposition
of these models. This leads to an aggre-
gated state model which is approximately
Markovian in character in the limit when
the failure rates approach zero. An
aggregate non-homogeneous Markov model
is considered over the transient period
of interest and an algorithm to compute
the transition rates from the aggregated
states is described. From the aggregated
model, the state probability distribu-
tion of the original semi-Markov model
can be derived by a disaggregation step.

1. INRODUCTION

A fault-tolerant system architecture
is described by a redundant set of
components and a redundancy management
(RM) algorithm to reconfigure the system
when failures occur. These failures typ-
ically occur z: a relatively slow rate
compared to the RM decision events. The
RM decisions are made based on FDI tests
on output signals of interest. Since the
FDI tests operate in a noisy
environment, to keep the decision errors

low (typically of order 107% to 107° per
test) these tests are often seguential
in nature. Such sequential tests have
non-exponential holding times before a
decision is made. This gives rise ¢to
semi-Markov models for the FTCS
reliability models (1].

A semi-Markov chain is characterised
by a discrete set of states and an
arbitrary distribution of the holding or
sojourn time for each transition. The
semi-Markov chain specialises to a
Markov chain when the holding times are
geometrically and identically distribut-
ed for all transitions exiting a
particular state.

In any FTCS design the designer must
choose the thresholds for the FDI tests.
These thresholds govern the probability
of false alarms (pfa) and the

probability of missed detection (Pm) for

each execution of the test. To
investigate whether the thresholds are
acceptable, one needs efficient but
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computationally simple techniques to
evaluate the reliability of the system
over a desired mission time. Since such
designs are iterative in nature, it is
imperative that the computational schenme

be as simple as possible. The
approximate reliability evaluation of
semi-Markov models prcposed in this

paper is designed specifically to
address the above issue. The results
derived in the sequel are applied to a
representative FTCS architecture and the
approximate results are compared with
the exact results obtained by sclving
numerically for the interval transition
probability matrix &(n).

Many methods exist for evaluating

the steady state behaviour of seni-
Markov chains [2]. However, most FTCS
models contain one or mcre trapping
states (such as the system loss state)

and hence the steady state behaviour is
trivial and not of interest. In order to
evaluate the reliability of the FTCS
over the time period of interest, the
interval transition probability matrix
¢(n) of the transient semi-Markov model
must be computed [2). The computation of
®(n) involves convolution sums and hence
is memory and computation intensive
{3,4]. The time step 'n’ over which %(n)
must be evaluated is often very large in
an absolute sense but short in
comparison with the mean time between
failures (MTBF) of the components.

Other schemes for transient analysis
based on time-scale decomposition of
original model into fault-handling and

fault-occurence sub-models have been
proposed {5,6]. In (5] techniques are
described for multi-processor systems

where FDI tests are single sample tests
that give rise to Markov models. In [6]}
the presence of non-exponential sojourn
times in the states are considered and
an extended stochastic Petri Net model
is used for the fault-handling behaviour
while a non-homogeneous Markov chain is
used for possibly non-Poisson fault-
occurence behaviour. However, the
presence of false alarms in developing
the fault handling sub-models is not
taken into consideration.

In the technique proposed here we
consider only constant failure rates but
arbitrary sojourn times in the various
states and also take into consideration
the probability of false alarms.

The paper is organised as follows.
In section 2, the previous work in this
area and existing 1limit theorems for
semi-Markov chains are discussed. 1In
section 3, an algorithm for approximat-




ing the transient behaviour of the
original model is developed. Section 4
describes the application of the
proposed technique to a two component
redundant system architecture that uses
sequential tests for faillure detection.

2. BACKGROUND

Earlier results have been based on
Korolyuk’s limit theorem for semi-Markov
chains {71, which approximates an
aggregated state model by a homogeneous
Markov chain. The original semi-Markov
model is decomposed into various classes
where each class contains a group of
states characterised by an identical
number of failures. For instance, class
1 contains all states with no failures,
class 2 contains all states with one
failure, etc. The inter-class transiti-
ons take place in a slow time-scale at a
rate of order e, the failure rate of the
components. It has been shown that the
aggregate class-to-class transitions
have exponential sojourn times when the
embedded Markov chain in each class for
€¢=0 is ergodic [7]. In [8], the invari-
ant distribution in each class of the
aggregate model is used to derive class-
to-class transition rates. One difficul-
ty with such a technique for FTCS is
that, for systems that 1lack on-line
repair capability, many of the states in
each class are transient. When the
original semi-Markov model probability
distribution vector is recovered, the
estimates for the transient states are
zero [4]. These states may have large
holding times, which in the original
model may be of the order of the mission
time, and hence approximating their
prokbabilities by zero may not be valid.
Futhermore, in some cases, occupation of
these states is the only means by which
some of the interclass transitions can
occur. In these cases, class probabili-
ties can alsoc be considerably in error.

Another drawback of the technique in
[{8] is that the approximation is valid
only if the embedded Markov chain in
each class is ergodic. This means that
each class must contain exactly one
irreducible closed subset of positive
persistent aperiodic states ([9]. Many
FTCS architectures give rise to non-
ergodic classes when the time-scale
decomposition is used. A modified algor-
ithm is presented in [4] that relaxes
this condition for some of the classes.

In section 3, we present an algori-
thm that gives good approximations for
state probability distributions of
semi-Markov models and also relaxes
ergodicity condition for all classes.

First, we summarize the results in
{8) and introduce notation used in the
later sections.
2.1 Limit Theorem For Semi-Markov Chains

Let the set E of states of the

semi-Markov chain be expressible as a
union of disjoint classes:
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E= E Ek keHE{l,z,..,R} (1)
k=1
Let téi) be the sojourn time of the
semi-Markov chain in class Ek when it
starts from state ieEk and moves to
class Er where r=k. Suppose the follow-

ing two conditions hold for the semi-
Markov chain E:
1. The elements of the core matrix

sequence {ggj(n) | i,jeE} specifying the

semi-Markov chain depend as follows on
the small parameter g:

€ € n
gi;m = o5y hyy( 2 ) (2)
where hij(n) is the holding time mass
function for a transition from state i
. _ €
to state j and hjj(O)—o. The pij can be

expanded in a Taylor series about ¢=0.
Retaining terms that are linear in ¢:

(%) _

(k) s s s
ij cqij +0(c) 1if l,jEEk

e _ p
1 (k) . . (3)
cqij +0(c) if ieEkand J¢Ek
The embedded Markov chain for &£€=0 obeys
the usual Markov chain properties:

(K)_,. (k) .
JEEpij =1; and pij €{0,1]; ¥V KeM (4)
k

Bere cq;;’, i,jeEk are probabilities by
which the Markov chain defined by [p;;)
is defective if the e-dependent transi-

tions are taken into account, and cq;;n

1eEk, j¢El are c-dependent out of class

transition probabilities.
2. The embedded Markov chains defined

by the matrices {pﬁ?)li,jeEk v keH} are

ergodic with stationary distribution
{n§g) lieE, v ken}.
Then:
lim Pr{t St}=1 {l-exp(-l t/T)} 5
e kr kr k (s
where:
(k) (kr)
ZIEEk niS q.i
7" (6)
kr (K) . (K)
ZIGE. Mis 9
(k) (k)
Z:ezk"is q;
A = 7)
K T _(RI(R) (
Ze:."is Ty




Here:
qlgkr) . ,E;?ig) (8)
W kel
ri(") = ’E)Ekpi(;.‘) T (10)
%ij = ;n hij(n) (11)

For proof, we refer the reader to [4].
If we consider a discrete state
continuous time semi-Markov chain with

probability transition matrix [pij(t)],

i,jeE, and holding time cumulative
distribution functions Fij(t/c) depend-

ing on the small parameter ¢, then iden-
tical results can be derived [4]. We now
proceed to derive our algorithm for
approximating the state probability vec-
tor of the original semi-Markov model.

3. MODIFIED ALGORITHM

An interesting aspect of many FTCS
without on-line repair capability is
that the inter-class transitions take
place in an hierarchical manner with
transitions from each class leading to a
more degraded class, with the last class
a trapping class. This implies that:

ql(:kr)=q£k) v ieE, if k—>r (12)
and,
1 if k—>r
7kr={ o] otherwise (13)

where k-—>r implies that there exist
transitions from class k to class r.

In [4] the invariant distribution in
each class is used to compute the inter-
class transition rates Ak' It is clear

from the results in (4] that the transi-
tion rates from the classes ultimately
converge to this after the invariant
distribution in each class is establish-
ed, but may be different over a transi-
ent period that can be quite large.
Hence, it is intuitively clear that if
we are in a position to characterise a
time varying Ak for the transitions, we

can get better approximations for the
results. One way to achieve this is to
define a time-varying Ak(k) that depends

on the probability distribution over the
transient period in each class so that
out of class transitions from the trans-
ient states are given due importance.
This will give rise to a non-homogeneous
Markov chain for the aggregate model. To
reduce the complexity of =solving a
non-homogeneous Markov chain, we assume
transition rates are stepwise constant
over the desired time interval.

We first define the notion of
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step-size for the algorithm that we will
discuss later. Let ‘m’ be the desired
time step at which the reliability of

the system 1is to be evaluated. Wwe
sub-divide m into N intervals each of
size m/N. We refer to the time interval
m/N as the step-size of the algerithm.
Notice that if the holding time in
transient states in each class are very
small compared to the time interval m,
then the approximation in [4] of using
constant A, over the entire interval is

valid. The violation of this assumption
in most FTCS models is the motivation
behind our modified algorithm.

As discussed above, to incorporate a
time~-varying transition rate we need to
evaluate the probability distribution in
each class at various time steps for the
case £€=0. In trying to do this, we are
faced with the difficulty that the vari-
ous classes can be semi-Markov and hence
this probability distribution can depend
upon the time at which the class-to-
class transitions occur, which is not
known. Apart from this, sclution of
semi-Markov models in each class is not
attractive even though scolution of such
reduced order models is computaticnally
feasible. An engineering approximation
to overcome this drawback is to solve
the reduced order semi-Markov model for
class 1 and then compute the e¢-dependant
transition probabilities to class 2 to
determine the probability distribution
in this class. Making use of the assumed
hierarchical nature of the FTCS model,
we then proceed to compute the distribu-
tions in other classes in the sane
manner once the probability distribution
in the previous classes is known.

The algorithm to compute the approx-
imate probability distribution vector at
the desired time step m is given below.
3.1 Aggregation step

Let n=m/N be the step-size of the
algorithm and 1let k/n=1,2,...,N. Let

n;"(k) be the probability of occupying

the ith state within class 1 when g=0.

As pointed out earlier, this can be
obtained by solving the transient semi-
Markov model of class 1. The approximate
probability distribution in other
classes are computed as follows.

For kesz{n,zn,...,Nn} and v=1,2,...,R~1

ﬁ;Vq)(k)=j§E H;V)(k)qji/Eji:iEEVol(14)
14
(;Vu)(k)sB;Vq)(k)/ T B;V”’(k) (15)
IEEV
;7" =g emy+ LGV (ke
jEEv.1
(ov) ;467 00 =gV (kem) - 26)



n;Vq)(k)=€;Vﬂ)(k)/ T €;V”)(k) (17)

1 €E
Vet

where (pv)ji is (j,i)th element of the

matrix [p}:“)]m/n and the initial
conditions are:
v+
;7" (0)=0 (18)
¢V 0y=0 (19)

i
The new transition rates of the non-
homogeneous Markcv chain are determined
as follows:

A:(k)=.5*[kv(k)+kv(m)]: VkeS & veM (20)

where A, (k) is evaluated as in (7) with
nig) replaced by niv)(k). Notice that
for v=1, we need not store niv)(k) vk if
we compute at each step, Av(k) YveM. The

averaging done in equation (20) gives a
simple heuristic algorithm to account
for transitions from transient states
during the mission time of interest. The
probability transition matrix at the
desired time step ‘m’ is then determined
from,

P(m)=exp (A:*c*n) (21)
where,
. N o
A= .E,A" (22)
Here, A is the transition rate matrix
of the Markeov chain {2}, given by,
A =A(k)*(T-I) (23)

where A(k) is a diagonal matrix with
elements A:(k), r=[v and I is the

identity matrix.
3.2 Disaggregation step

From the approximate probability
transition matrix P(m) the probability
distribution vector of the aggregate
mcdel at the desired time step can be
determined from the known initial
condition. We denote its elements by
pl(m), 1eM. The state probability

distribution of the original model are
approximated at the disaggregation step
as follows:

'n;”(m)=p‘(m)*rr;”(m); VieM & VieE (24)

vr)

' (m=n""(m)/ T 2"’ (m) (25)
3 b 1. J

where nf’(m) are the elements of the

probability distribution vector of the
original semi-Markov chain.

4. NUMERICAL EXAMPLE
The proposed technique is applied to
a two component redundant system that
uses sequential tests for FDI. At the
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two level stage where both instruments
are operational, two one-sided sequenti-
al ratio detection tests (SRDT) are used
to detect a failure [1]. If the SRDTs
simultaneously arrive at a decision, the
test is reset. Depending on whether SRDT
1 or SRDT 2 arrives at a decision, an
isolation option of either 1 or 2 is
triggered. In either option, two sequen-
tial probability ratio tests (SPRT) are
used to arrive at an isolation decision
or an alarm rejection. Once an instrum-
ent is declared faulty, the FDI tests
are discontinued. To simplify the calcu-
lation of the exact resuits regquired for
comparison, it is assumed that tests are
reset after five time samples, which
reduces the number of terms in the
nunerical convolution SUums to be
evaluated tc a maximum of five.

This strategy gives rise to a model
with nine states:

1. Two instruments available, none
failed, no detection alarm present,
SRDTs operating. (2/0/0)

2. Two instruments available, none
failed, one SRDT detection alarm
present, SPRTs operating. (2/0/D)

3. One instrument available, one

eliminated due to false isolation [FDI
discontinued]. (1G/FI)

4. Two instruments available, one
failed, correct detection alarm
triggered, SPRTs operating. (2/F/C)

S. Two instruments available, one
failed, detection alarm present for
wrong pair, SPRTs operating. (2/F/W)

6. Two instruments available, one
failed, no detection alarms present,

SRDTs operating. (2/F/0)

7. One good instrument available, one
faulty instrument isolated [FDI
discontinued). (1G/F)

8. System loss due to one failure and
one false isolation. (SL/F/FI)

9, System loss due to twe failures.
(SL/2F)

The state transition diagram for this
model is shown in Fig. 1. The thick
lines indicate fast transitions while

"the dashed lines indicate slow transi-

tions. When behavioural decompcsition of
the nine state model is done, it breaks
up into three classes with the inter-
class transitions taking place in a slow
time-scale. Class 1 comprises states 1,
2, and 3 (1 & 2 transient), class 2
states 4,5,6,7 & 8 (4,5 & 6 transient),
and class 3 state 9. Class 2 contains
two trapping states for £=0 and hence is
a non-ergodic class. The decision time
mass functions for the SRDTs were
assumed to give Pfa-’°47 and those of

SPRTs to give pfa-'°47 and P =.02. The
holding time mass functions hij(n) are
computed from the core matrix elements
ggj(n) which are derived as indicated in

[3). The matrices [pij]' [qij]' and




[Eij] were derived for two cases:
case(1): € = 5x10°°

case(2): ¢ = 5x10
The matrices for case(2) are given in
table 1 truncated to 4 decimal places.

We define normalized error between

8

the exact and approximate class
probabilities as follows:
wy w)
Normalized error= °"°:v) “PPTOX  (26)
nCX act
where n:r;t is the exact probability
distribution in class veM calculated
numerically. The normalized error for

different class prokabilities using the
above algorithr for both cases consider-
ed is shown in Fig. 2-7. We notice that
the normalized error in all the classes
is less than 0.1 (except in one case)

at the desired time step of interest and

the error decreases as the step-size
decreases.
A comparison of the exact state

probabilities at the desired time step
with the approximate probabilities deri-
ved from (i) the algorithm presented
here and (ii) the algorithm given in (8]
is shown in table 2. A modified version
of the algorithm presented in [4] to
treat non-ergodic classes 1is used to
derive the approximate probabilities in
case (ii).

4.1 Discussion of results

From table 2, we infer that there is
always 100% error between the exact and
approximate probabilities for transient
states using the algorithm iven in
[4]). Also, the class 3 probability is
always approximated as zero implying a
100% error also exists in one of the
class protatilities. The reason for this
is that the transient states in class 1
have large holding times that are of the
order of the mission time of interest,
whereas in [4] it is assumed implicitly

that holding times are negligible
relative to the mission <time. Such
holding time mass functions are not

unusual in FTCS design when we try to
keep the probability of a false alarm
and a false isolation very small, as is
desirable.

The numerical example presented here
is typical of many FTCS architectures.
The good approximation of the results
indicates the usefulness of the
algorithm for approximate reliability
evaluation. Comparing the exact state
probabilities with those computed using
the approxinate technique presented
here, we infer that the results agree
well for small € over large mission
times which are still considerably
smaller thar the MTBF of the components.

However, from Fig. 2-7 it is noticed
that, although the normalized error
becomes smaller as the step-size decrea-
ses, the convergence of the algorithm is
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not asymptotic. Hence, an optimum choice
for the step-size is not clear. A good
choice depends on the mission time of
interest, and the step-size can be large
for large mission times. One rule of
thumk is to choose n=50 to 100. This
gave good approximations in most cases
investigated in this work.

5. CONCLUSION

An algorithm for approximate evalua-
tion of the state probability vector of
a semi-Markov process governed by widely
different transition rates has been
presented. The method was used to
evaluate the reliability of a represen-
tative FTCS architecture and the superi-
ority of the scheme over that in {4] has

been demonstrated. Also, the scheme is
applicable to systems that contain
classes with more than one recurrent

chain when the behavioural decomposition
is used. It is noticed that the
approximation is better when the time
scales are distinct and the step-size cf
the algorithm is small. The sensitivity
of the scheme to the time scale
separation and order of the failure rate
€ remains to be investigated.

The primary contribution of the
paper is the extension to ncre general
classes of systems that cannot be handl-
ed by the scheme in [4,8] and betrter
approximation of the transient state
probabilities of the original model that
might have large holding times.
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Table 1

0.9087 0.0913 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9067 0.0039 0.0894 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
[p..] - 0.0 0.0 0.0 0.0478 0.0 0.0181 0.9332 0.0009 0.0
ij 0.0 0.0 0.0 0.0 0.0039 0.9067 0.0447 0.0447 0.0
0.0 0.0 0.0 0.9519 0.0199 0.0282 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
__0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
9.0018 0.5400 0.0 0.0913 0.0913 9.4192 0.0 0.0 0.0
5.4293 0.0271 0.5449 2.5000 2.5000 0.9067 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
[q..]= 0.0 0.0 0.0 0.0689 0.0 0.0232 1.1869 0.0013 1.5980
1] 0.0 0.0 0.0 0.0 0.0082 1.6453 0.0436 0.0436 1.5951
0.0 0.0 0.0 1.6481 0.0189 0.0918 0.0 0.0 1.9370
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
__0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.9989 2.8341 0.0 2.8341 2.8341 2.9623 0.0 0.0 0.0
3.7424 4.2362 3.6921 3.0 3.0 3.7424 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
[E..]= 0.0 0.0 0.0 3.7270 0.0 3.5445 3.7294 3.4850 2.4646
i) 0.0 0.0 0.0 0.0 4.2362 3.7424 3.6921 3.6921 2.4721
0.0 0.0 0.0 2.8977 1.9723 4.2688 0.0 0.0 2.0206
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0
0.0 0.0 0.r 0.0 0.0 0.0 0.0 1.0 0.0
__0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Table 2
Comparison of exact and approximate probabilities
Time step | Exact results Approx. results Approx. results
and ¢ (state 1 to 9) |using step-size=50|using scheme (4]
10,000 0.000027684938 0.000028037752 0
-8 0.000009194938 0.000008243412 0
€=5*10 0.999432770000 0.999434580306 0.999500124979
0.000000000047 0.000000000021 ]
0.000000000003 0.000000000021 0
0.000000000156 0.000000000241 0
0.000061669460 0.000054278419 0
0.000468653400 0.000474833582 0.000499875021
0.000000028505 0.000000026245 0
15,000 0.000027582208 0.000027927991 0
-8 0.000009187481 0.000008233990 0
€=5%10 0.999183050000 0.999184825377 0.999250281179
0.000000000057 0.000000000020 0
€¢.000000000003 0.000000000020 0
0.000000000156 0.000000000236 0
0.000061654051 0.000053300697 0
0.000718480390 0.000725668978 0.000749718820
0.000000044321 0.000000042689 0 .
10,000 0.000033414812 0.000016518806 [+
-5 0.000835702550 0.000016518806 0
€=5*10 0.588035090000 0.588829863265 0.606530659712
0.000006652044 0.000000015147 0
0.000000329155 0.000000015147 0
0.000003095837 0.000000177613 0
0.036292407000 0.039965861579 0
0.353017460000 0.349653693105 0.393436934028
0.021775854000 0.021528998622 0
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