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IABSTRACT

Reliability evaluation of fault tolerant control systems (FTCS) that

include sequential tests for failure detection and identification involve

the transient analysis of finite-state semi-Markov chains of very large

dimension. Such models for the time horizons of interest are intractable

even for simple architectures. This has motivated the work summarized in

this report as well as the work that was accomplished under a previous AFOSR

grant.

The basis for the work is the idea of asymptotic aggregation of

semi-Markov chains that include slow and fast transitions. The extension of

earlier asymptotic aggregation results (primarily due to Korolyuk) to models

that include decomposed classes that are non-ergodic and the subsequent

3 application of these results to FTCS models was the subject of studies

conducted under the previous grant.

The research efforts reported here concentrate on the application of the

3 results from the previous study to more general FTCS architectures. A

difficulty is pointed out in using the limit theorems of the previous work

3 to approximate the occupancy probabilities of transient states that have

large holding times. A modified algorithm that leads to better

I approximations for these states is presented in this report. The application

3 of this modified algorithm to the nine state semi-Markov reliabill[y model

generated by a simple dual redundant system is then discussed.

3 Extension of the limit theorems developed in the earlier work to models

with more general decomposed classes is also presented in this report. In

I particular, the results are extended to models that have multiple

trapping states within each decomposed class.

IJ!.
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I 1. INTRODUCTION

1.1 Motivation and Discussion of Problem

The work discussed in this report relates to the prediction of the

reliability and other performance measures for complex fault tolerant

systems. The criteria by which the design of a fault tolerant system is

evaluated are usually related to predicted reliability and performance

quantities. Thus, the development of the means for making such calculations

has become a major concern as the reliability and performance requirements

of these systems have been made more demanding.

One method that has proven to be useful for evaluating the reliability

and performance of a fault tolerant system is the use of finite state Markov

and semi-Markov models [1-61. As the introduction to the final report on the

previous grant [7] points out, however, four basic difficulties to the

numerical implementation arise when generalized Markovian models are used to

I represent the behavior of a fault tolerant system:

3 1. The dimension of the model is typically large, even for relatively

simple architectures.

2. The transient behavior of the model is the behavior of interest

because the operating time of the system is always much shorter than the

I time necessary for all the components fail (which is the steady state

3 condition). Generating numerical results for the transient behavior of

generalized Markovian models is a problem for which few short-cuts exist.

* 3. Although the operating times of interest are short relative to the

time necessary for all of the components to fail, it is often long relative

I to the time between applications of the failure detection tests that are in

use. Thus, we are often interested In the transient behavior of a Markovian

model after many thousands of time steps.

4I



I
4. A significant time scale separation exists between the average times

* necessary for a failure to occur and the average time necessary for the

failure detection decisions to be made. However, some failure detection

I decisions, particularly "false alarm" decisions (a decision that a failure

is present when in fact one is not present), require an average time of

considerable length relative to the component mean time to failure.

* These difficulties make the problem of evaluating such quantities as the

reliability of a fault tolerant control system impractical even with

powerful digital computing machinery. It is this intractability with which

this study (and the previous study) is concerned.

i 1.2 Summary of Previous Work

The four difficulties discussed in the preceding subsection motivate

* the development of approximate strategies to quantitatively solve the

Markovian models that represent fault tolerant systems. Many of the

approximate techniques (including those discussed in [71 and in this report)

3 are based upon the exploitation of the time scale separation mentioned in

Comment 4 above. The basic idea is to aggregate into classes the states of

the model that share transitions that occur in the fast time scale. Then,

the transitions between the classes can be characterized by the slow time

I scale behavior while the behavior within each class is assumed to be

3 well-approximated by the steady state behavior of the class with slow

transitions neglected. This leads to two types of Markovian models to be

3 solved, each of relatively small dimension: a transient model that evolves

in the slow time scale describing the interclass transition dynamics, and a

steady state model for each class. The approximate behavior of the original

3 model over long time horizons is then approximated by multiplying the

transient probability of occupying each class by the steady state

I
I



probabilities of occupying each state within that class.

The introduction of [7] summarizes much of the work done by other

authors on the problem of aggregating finite state Markovian models to

3 generate approximate solutions. In the interest of brevity, that summary is

not repeated here. The interested reader is referred to [7].

The primary contribution of the work reported in [71 was to extend some

previous results (primarily due to Korolyuk [8,9]) to situations that more

accurately reflect the types of models that represent the behavior of

fault-tolerant systems. In particular, the work summarized in [7]:

Extended Korolyuk's theorems to time-scaled models that do not

decompose into ergodic decomposed classes.

3 • Developed the discrete time versions of Korolyuk's original theorems

and the discrete time analog of the extension to models with nonergodic

3 decomposed classes.

Applied the discrete time results to a relevant, though simple,

discrete time fualt tolerant system model for which exact results could

3 also be generated.

Made a preliminary effort to extend the results further to models

3 that include decomposed classes with multiple trapping states.

As was pointed out in [71, these contributions make feasible the use of

I semi-Markov reliability models as a design tool for fault tolerant systems

3 by making it possible to approximately solve for the reliability and other

performance measures efficiently.

I
1.3 Research Goals of Present Work

* The work reported here was motivated by two shortcomings of the work

i reported in (7]. One is alluded to in the contributions summary of the

previous subsection. The other relates to the assumption that essentially

I
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all approximate aggregation strategies make regarding the strong separation

U in time scales of the slow and fast transition behavior.

In [7], an incomplete proof was given for applying the approximate

* aggregation results to models that yield multiple trapping states in the

decomposed classes. One goal of the work reported here was to complete this

I proof.

The other shortcoming in the results of [7] relates to the

numerical results that were obtained for a model that represented the

behavior of a simple dual redundant system used in a primary-secondary mode

(cf. Section 2.5.2 of (71). If a decomposed class of the model contains at

least one trapping state when slow transitions are neglected, then the

steady state distribution within that class will indicate zero probability

for any state that is transient. Hence, when the approximation is

constructed, the approximate solution predicts zero probability for these

states. This is not a good approximation if these states have average

I holding times that are a significant fraction of the time scale over which

the slow transitions occur, as would be the case for a fault tolerant system

with very long mean times to false alarm. Much of the work reported below is

3 an effort to address this problem.

I
I
I
I
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I 2. PROGRESS SUMMARY

2.1 Summary of Section

This section summarizes the salient aspects of the work carried

out during the one-year period of the grant. Section 2.2 describes the

extension of earlier limit theorems for semi-Markov chains to more general

case that includes multiple recurrent subsets in decomposed classes.

Derivation of the semi-Markov model for a simple dual redundant system is

presented in section 2.3. Application of the earlier limit theorem and a

* modified algorithm developed during the period of this research on the

resulting nine state model is then discussed in a paper that is included as

I Appendix A and summarized in section 2.4.

2.2. Behavioral Decomposition of Semi-Markov Models - General Case

3 The decomposition of semi-Markovian models that include fast and slow.

transitions between the various states was considered by Korolyuk [8]. It

U was shown in [8] that a semi-Markov chain that depended on a small parameter

3 c which could be split in the limit as c 0 into a disjoint set of

non-communicating classes of states E , k=l, .. ,m, can be represented by a

3 m-state Markov chain when the classes are ergodic. Extension of this result

to non-ergodic classes E that included one irr-ducible recurrent subset of

kkIstates was given in [7]. We consider below more general classes E kand

extend the limit theorem for semi-Markov processes originally considered in

[8].

3 Let the set of states of a semi-Markov process that depends on a small

parameter c be split into disjoint classes of states,
M

SE= E k  (2.1)
k=1

3 such that the probability of departure from each class and the sojourn time

8
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I in a given state tend to zero along with c. The total sojourn in each class

is assumed to have a nondegenerate distribution in the limit as c 0.

Further, let each of the classes be split into a set of transient states Ek

and irreducible recurrent subsets E such that,

n
E =E + E E (2.2)I t 1=1 1

where n may in general be different for various classes. Note that the

recurrent assumption on the subsets Ek implies that these subsets are

ergodic. We derive below the nature of the inter-class transitions when C

tends to zero.

Let the elements of the transition probability matrix (P~ (t); i,j E

5 E) specifying the semi-Markov process depend as follows on the small

parameter c:

pC Ct) = p' F (t/) ; i,j e E (2.3)

5 with,

w (k) Cq (k); ij e E
p C I J - J k (2.4)

eq (k) I e E I j e E
iJ k k

5 Here,

(k) = 1 , I E (2.5)5 JEEk

Also, since each E represents an irreducible recurrent subset of states,

I we have

(k 1 1 I e E (2.6)I ' P'1i = k,

I EEkl

5 We further make the assumption that all out of class transitions when
(I)

c 0 take place only from the ergodic states in each class. Let r be the
kIr
I v

sojourn of the semi-Markov process in the subset E of class k when it
k

U]
I9
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U starts from the state iEE and moves to the irreducible recurrent subsetk
I

E in class r. The transitions from the subset E to E can be split into
r k r

V I v

direct transitions and indirect transitions through the transient set E in
r

t

class r such that:

* T 1)- t} Pf Md t} + P 1 t} (2.7)

Here, the first term on the right hand side of (2.7) represents the direct

transition sojourn and the second term the sojourn for a transition thro.gh

the transient set in class r.

Let c<J denote the sojourn of the semi-Markov process in the i-th

state with distribution F (t), while 6E are the indicators of transition
IJ IJ

from the i-th to the j-th state. Using the expression for total probability,

we obtain for the random quantities T M
d

k|r,

+ d<t} E j p6= 1 J (Jd<t

+ E. P a C e=' < :5t(28
JEEr fIr

V

Since subsets E and E contain only ergodic states by construction,
I r

we have from Korolyuk's limit theorem (8]

11" P T d t = p (1- exp-At) (2.9)

C 0 f k rk k

which is independent of i. Here,

(kl) (Icr ) (k ) (k)
I q~ Iv uq

Sq1 1
1EE 1EE

d A = (2.10)
~kIr a E7 (k i)q (kc I k E (kI) (kc (2i0

lEEEk I  k I

10
I ...... ............ ... ... .



I (kr) (kI (k 1 q (k )
qlv = " q1 ; qI = q (

JEE JEEIr k
V 1

(k) (k)
a 1= IaJpJ ; a j (2.12)

~k

In the above, 7( 1 represents the stationary probability distribution

(k (k) (k)in the imbedded Markov-chain defined by P jI The elements pI and q

are respectively the p and q terms for the indices i,jEE
iJ i J k

The probability distribution of the sojourn time for transition from

E to E through the transient set E can be further split into:kl r r t

1 v t

{ t klr = Pr Pr{() t} (2.13)

Here, the term p represents the probability of transition from the
r r

transient set E to the subset E within class r and is given by;r t  r.

lE JE p~rrr

piErt JErv (2.14)

v - EE JEE

t v

Proceeding as before with similar notation, we obtain for the

distribution of sojourn time starting from the i-th state in E to the j-th

Istate in E
t

[ klrt = E J ' Jj +kl tj

I t EEkI

II
I£

+ EP f6 i, 1 4 (2.15)
J rEE f I

r
t

Hence,

11I



{(i) ( t P TM tu dP Cu)

k I kr t  J EEk k I kr t j(U

1

+ Z p, (t) (2.16)

J EE I

t

Taking the Laplace transform of (2.16), we obtain

v (_) (s)= IEk Pr (s) pC (s) + E PC (s) (2.17)
1 t jEE k 1 t rE

k rt

* where,

P C(s) = e-s t dP Ct) 
(2.18)

Recalling (2.3) and (2.4), after simple manipulations it can be shown that:

C S) = - - sa JEE (2.19)

S1 (k) (2 2

pC (s) = Cq 1k ;jEE (2.20)
1i Ij rt

Substituting these expressions in (2.17), we get:

(1) (J) (k ) (k
(s)kl s P I C E S q ISJEEk t

- E (sa p(kl) + q (k ) ( (J) (s) (2.21)
l1EE tj i I kr t

I

Passing to the limit as c 0, the functions (1) (s) are found to satisfy theOk r
I t

3 system of equations:

(1) (J) (kc
( I (s) - E (k(s) P(S 1 0 (2.22)1k rt E E k I t

I

It follows from this and the fact that the Markov chain defined by the
(k )

transition probabilities pI l I i,jeE is ergodic, that the solution of the
I12

I
12

I



I (1) ()= S c
system is independent of the superscript, i.e. Vk ( S) = (P (s) V ieE

It I t k

I Multiplying (2.21) by the stationary probabilities n (k) and summing

over all iEE and cancelling c, we get:

1(I ( (k1) (kl) k) )

E I s au'I q (l (2.23)LEE kE 1 te I

I 1 1IilE JE
k r

1 t
mI On passing to the limit c 0, noting that all the I Cs) have the limit

I t

function p (s), we obtain,
• 1it

A
V (s) = P k! (2.24)

I t It k1

which is independent of the starting state i in E k Taking the inverse

transform,

1 k t - t = Pr t (1 - exp(-Akt)) (2.25)

U Here, A is same as defined in (2.10) and,

klkk1 (kI) (k r (

CEE

k

p - (2. 26)Pk r (I) (IC)"
it w 1gl

with,

q (k Ir ) (k) (2.27)li t = q11i
JEE 1

r

t

Hence, the probability distribution of the sojourn time from the set

E to E is independent of the starting state and is given by:IC r
V

I
13
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P PT S t + pJ*(i - exp(-Alt)) (2.28)

This is a general result that is valid for any arbitrary set of

3 classes defined by (2.1). In this sense then, this result is an extension of

the results reported in [7]. In fact, it generalizes the approximate

* aggregation results to essentially all fault tolerant system models in

semi-Markov form.

1 2.3. Model of dual redundant system

In this section, a semi-markov model is developed that represents the

I behavior of a simple dual redundant system. This model is identical to a

model considered in [7]. However, the construction of the model presented

I here differs from the model construction method employed in [7] and

3 therefore warrants detailed presentation. The next section will discuss the

numerical results generated for this model.

3 Consider a dual redundant fault tolerant system architecture where two

identical instruments are measuring a scalar quantity of interest. An

I instrument is deemed to have failed when the measurements are corrupted by a

i bias error sufficiently large to cause mission failure if the output is used

in the control scheme. At the two level stage where both instruments are

3 operational, two one-sided sequential ratio detection tests (SRDT) are used

to detect a failure [7]. If the SRDTs simultaneously arrive at a decision,

I the test Is reset. Depending on whether SRDT 1 or SRDT 2 arrives at a

decision, an isolation option of either 1 or 2 is triggered. In either

option, two sequential probability ratio tests (SPRT) are used to arrive at

3 an isolation decision or an alarm rejection as follows:

I
3

14
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I Isolation Option 1:

SPRT 1 SPRT 2 Decision

Isolation Isolation Reinitiate SPRT's

Isolation Rejection Declare instrument 1 failed

Rejection Isolation Declare instrument 2 failed

Rejection Rejection Reject SRDT alarm

Similar isolation options following the triggering of SRDT 2 are defined.

Once an instrument is declared faulty, the FDI tests are

discontinued. To simplify the calculation of the exact results required for

comparison to the approximate results that will be generated later, it is

I assumed that all tests are reset after five time samples, which reduces the

number of terms in the numerical convolution sums to be evaluated to a

maximum of five. For isolation, we assume that an independent estimate of

the scalar quantity of interest is available to vote between the two

instruments.

I For developing the semi-Markov model for this fault tolerant

architecture, it is suggested in [7] that all the states of the model must

be enumerated first, based on the FDI logic and failure event occurence.

U Another approach is to start with a state characterized by all working

components and then list the various combinatorial events that can happen

I for this state during a single time step. This method is more efficient and

does not require the states of the model to be enumerated apriori. After

considering the various combinatorial events and hence the possible states

for the model, we derive the core matrix elements [9] for the semi-Markov

model. The core matrix elements are then examined to see whether they

represent a valid probability mass function. If the probability masses for

transitions out of a particular state does not sum to one, then it implies

either there are other states to which it can transition to, or the core

I
15
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i matrix elements for transitions from this state are in error. We then

suitably modify the model and check for a valid probability mass function.

Thus, the construction of the semi-Markov model in general becomes a

* relatively simple trial and error procedure.

I We start the model development for the two component redundant system

from a state that rpresents a condition with all components available, none

failed and no detection alarm present. The various possible events that can

* occur during one time step are as follows:

(1) No failure but SRDT alarm occurs.

1 (2) One instrument failed and correct detection alarm occurs.

(3) One instrument failed, detection alarm occurs for wrong pair.

(4) One instrument failed and no detection alarm occurs.

* Thus by considering all possible combinatorial events from a known

state, we have enumerated four other states of the model. We then proceed as

I above to list other possible states for the model from these known states.

For this FDI scheme with the given architecture, we get a nine state

model. The nine states and the notation used to represent them are given

* below.

1. Two instruments available, none failed, no detection alarm

U present, SRDT's operating. (2/0/0)

1 2. Two instruments available, none failed, one SRDT detection

alarm present, SPRT's operating. (2/OlD)

3. One instrument available, one eliminated due to false

isolation [FDI discontinued]. (1G/FI)

4. Two instruments available, one failed, correct detection alarm

triggered, SPRT's operating. (2/F/C)

5. Two Instruments available, one failed, detection alarm present

1
16I



i for wrong pair, SPRT's operating. (2/F/I,)

6. Two instruments available, one failed, no detection alarms

present, SRDT's operating. (2/F/a)

3 7. One good instrument available, one faulty instrument isolated

[FDI discontinued]. (G/F)

8. System loss due to one failure and one false isolation.

3 (SL/F/FI)

9. System loss due to two failures. (SL/2F)

The state transition diagram for this model is given in Appendix A.

The thick lines indicate fast transitions while the dashed lines indicate

slow transitions. The self loops in each state indicate the reset mechanism

3 incorporated in the tests. We notice that some of the states in this model

can be aggregated, for instance states 8 and 9 which represent a vehicle

3 loss. This has not been done in order that when the nine state model is

decomposed, it breaks up into three classes with the inter-class transitions

I taking place in the slow time-scale (of order c, the failure rate of the

i components).

2.3.1. Set notation used

Before deriving the core matrix elements we present the set notation

I used to represent the various events associated with the model.

3 Fm A failure of instrument I at time sample m

Fi No failure of instrument i at time sample m
m

Dt I A failure indication by SRDT for instrument i at timeM

sample m

3 D! No decision available from SRDT on instrument i at
M

time sample m

RI Rejection of alarm by SPRT for instrument i at time

1U
17U



I sample m

I I Isolation decision by SPRT for instrument i at timeIm

sample m

Sfn Denotes the intersection of events

U Denotes the union of events

I It is assumed in the development of the semi-Markov model that all of

3 the events are statistically independent. A complete statistical description

of the SRDT and SPRT used in the FDI scheme requires knowledge of' the

3 conditional probability mass functions (pmf) of the time to decision of the

sequential tests. The following functions are used to describe the behavior

I of the sequential tests.

fo ) pmf for detection given no failure is present for SRDT
D
f ) pmf for detection given failure is present for SRDT

D
Ifo 0 pmf for detection given no failure Is present for SPRY
II

f () pmf for rejection given no failure is present for SPRT
R

f( ) pmf for detection given failure is present for SPRT
I

f1  ) pmf for rejection given failure is present for SPRT
R

The above pmf's can be expressed in the event notation as follows:

f 0 (m) = Pr D n flF1 (2.29)
k=1 k=1 k

f (m) = Pr Di f1 D1 F1 (2.30)

f0 (m) = Pr{R I I D- 51 M T1 (2.31)I k= k=1

f 0(m) = Pr I I -  (2.32)Ik=l k=t

SfI (m) = Pr R 'f 1  F (2.33)
R m0

I
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fm) = Pr Il P' F} (2.34)
I m k=1

I
An important observation to be made concerning the above pmf's is that

3 the fault monitoring event at time sample m is conditioned on the failure

events that take place prior to and including time m-1. Thus, it is assumed

I that there is a delay of at least a single time step between when a failure

3 takes place and when it is detected.

We further define the quantities Sj(m), which will be used frequentlyi

3 in the derivation of the core matrix elements.

S0 (m) Probability that no decision has been reached at a

I given time m in the absence of a failure for SRDT

S (m) Probability that no decision has been reached at a

given time m in the presence of a failure for SRDT

3 Identical quantities for the SPRT are defined with the superscripts taking

the value 2 in each case.

3 In terms of the event notation each of the above quantities can be

expressed as follows:

1 (m) = Pr 5, k F} ; m:l (2.35a)

I 1
S Cm) = 1 - Z, f(k) ; mzl (2. 35b)

3 k=1

S1 {m) = 1r - Ffk ; m z (2. 36b)

I k=1

(S2 m) = 1 +(k) ; mI (2.37)

0D k=1

I
I
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(m) = 1 (k)~i~ + f'k ;t (2.38
k=1 i

An additional assumption made in deriving the model is that the

I failures exhibit a geometrically distributed time of occurence. The

probability of failure c over a single time step can be expressed as:

Pr{F F} = c (2.39)

2.3.2. Core matrix element derivation

We now proceed to derive the core matrix elements for the semi-Markov

3 model of the dual redundant system. To be concise, we indicate the steps

involved in the derivation of the core matrix element g] (.) for one case

I and give the final expressions for other cases.

3 Let us examine in detail the core matrix element g1 (m), i.e.,a reset

of state 1. A reset arises at time m if no failures take place for all times

3 prior to and including m, the chain entered state 1 at m=O, and both SRDT's

indicate a detection of failure at time m. Since it is assumed that the

I tests are reset after m=5, we have:

g (m) = Pr{ l 51 i p11k n k k nTk k m5

+Pr{[D.1 D] [ ~ fi In [iCk kI40

I Noting that all of the above events are conditionally independent,

I
I
I
I
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gN (m) = Pr { f -1 Pr F } Pr { k l I -1
k P k=l Ik=1 k=1

i r n k n k m5
k=1 k=1

k=l k=l }l k=

Pr{ D2 Ml12 j kp:2} (2.41)

Ik=1 k=1

Applying the definitions for the pmf and using the notation defined earlier,

I we can simplify (2.41) to yield:

g (m) m1 - 2f(k) a + (i-c2 f0(m) (2.42)

k=1

Consider the core matrix element g21(m), which is the pmf for the SPRTs

to arrive at a no failure decision given no failure is present. This

5 transition occurs when either SPRT arrives at a no failure decision at any

time prior to and including m and the the other SPRT decides on a no failure

decision at instant m given that no failures are present. This can be

I represented in the event notation as,

1 - J=l

I Using the conditional independence of various events this simplifies to,

g (m) = (-) [f(m) 2 2f°() (k) (2.44)

1( k= 1 R= k=1

Proceeding along similar lines, the core matrix elements for other cases

are summarized below.

I
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() 2(1-c) f(M - fo(c)] (2.45)
1 k=l

g14 (m) = 2c(1-c) ( -1) (m) 1 - Ef(k)] (2.46)

g1SCm) - g14 (m) (2.47)

g16 (m) = 2c(1 c)(2m-1) 1 - f(k) (2.48)
k=l

SC1m) = 0 ; i=3,7,8,9 (2.49)

(M) =(1-C) 2[f() + 2fo(m) f 0

2m l _ S2(M)][fO(M) 
k )]

2(-c)~[ + f0 (M) I 3 (2.50)

g23 (m) = (1-c) f (m) E f (k) + f (m) E f°(k) (2.51)

k=l k=l

3 g 2 4 (m) = O.5(1-c) (2m- 1 )  (2.52)

3 g25 (m) = g24(m) (2.53)

g g(M) = C(-C) (23-1) ~f0 (M) + 2 f0 m) E f 0(k) (2. 54)
26C R R m =1

3 21(m) = 0 ; 1=7,8,9 (2.55)

3 g3 3 (m) = (1-8)(ml (2.56)

g 38 (m) = c a£ml (2.57)

9 g(m) = 0 ; 1*3,8 (2.58)

I
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I
g4 (m)= (1-) f (m) f k) + (m) E f(k)

k=l I k=l

+ (1-c)s0{S2(mi)[1-S2(m)] + S2(m)[1-S2(m)]} a (2.59)

rID 1 1 0 iIms1

g46 (m)= Cl-)E f m) f(k)+f(m) f (2.60)

1 k=l k=l

47( E +f(1-:)m fI(m) fk)+ f(m fi(k)fW (2.61)
k=l k=l

g (m) = c(1-c)(M-1) s 2(m) [1-S2(m)] + S2(m)[1-S2(m)]} (2.63)

I (m) = 0 ; i=1,2,3,5 (2.64)

gs(m)= (l-) m f 0(m) f0 (m) + 2 f0 (m) E fO(k)5511 1 I I I

k=1
+ 2(1-c)' S 2(m) i-S 2(m)ia (2.65)

g5 6(m)= (l-)
m f0 (m) f 0 (m) + 2f 0 (m) Efo(k) (2.66)
[HR R k= I I

(m)=(1- ~ f m fo(k) + f0(m) E fo(k)] (2.67)
I k=l k=l

gs(m) = (1-C) m f (m) E f (k) + f (m) E f W (2.68)

k=lI k=l

g 5 (m) = 2(1-c) (M- I) S 2(m) [-S2(m) (2.69)
590 0j

g5 1 (m) = 0 ; 1=1.... (2.70)

23U



g (m) = (1-c) M S oCm) f (m) (2.71)

g (m ) = (1-C)M S I(m)1 f°0(m) (2.72)

I 1 g6 (m) = C 1-e)[SI1(m) S ICm) a5 + fo Cm) f I (in)] (2.73)

(g6 9 m) = C(1-C) (M-l)S1(m) St (m) (2.74)

I g 6 1 m) = 0 ; 1=1,2,3,7,8 (2.75)

3 g7 7 (m) = (1-c)6mi (2.76)

g7 (m) = 8 (2.77)

Cm) = 0 ; 1#7,9 (2.78)

g 8 (m) = .3 (2.79)

g81 (m) = 0 ; 1#8 (2.80)

g9 9 (m) = (2.81)

g1 Cm) = 0 ; 1*9 (2.82)

The numerical values used for SJ(m) in computing the core matrix for

the dual redundant system considered in the example are given below.

S1 (1)=0.9895; S1(2)=0.9792; S1 (3)=0.9696; S (4)=0.9608; S1 (S)=o.9g31
0 0 0 0 0

S (1)=0.7862; S1 (2)=0.5845; S(3)=0.3861; S1 (4)=0.2012; S(5)=0.0199

1 2 (i)=0.7900; S2 (2)=0.5845; S (3)=0.3819; S (4)=0.1867; S2 (5)=0.0008
0 o 0 0 0

S 2 (1)=0.7812; S (2)=0.5745; S2 (3)=0.3721; S'(4)=0. 1842; S (5)=0.0009

The decision time mass functions considered for the SRDT's give P fa=0.047

and those of the SPRT's give P fa=0.047 and P M=0.02.
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2.3.4 Decomposition of the model

The semi-Markov model for the dual redundant fault tolerant system

exhibits fast and slow transitions between various states and can be

* decomposed into different classes such that the transitions within each

class are all in the fast time scale. Class 1 comprises states 1,2, and 3 (1

and 2 transient), class 2 states 4,5,6,7 and 8 (4,5 and 6 transient), and

class 3 state 9. Class 2 contains two trapping states for c=O and hence is a

non-ergodic class.

2.4 Modified ALgorithm for Generating Numerical Results

Earlier results based on Korolyuk's limit theorem for semi-Markov

chains approximate the aggregated state model after time scale decomposition

by a homogeneous Markov chain. The inter-class transition rates are derived

3 from (among other things) the invariant distribution in each class.

Many states in a FTCS model lacking on-line repair are transient. When

these transient states have large holding times, considerable error in the

asymptotic approximation for the original semi-Markov model results over the

time scales of interest. Furthermore, in some cases, occupation of these

states is the only means by which some of the interclass transitions can

occur. In these cases, the class probability approcimations can also be in

* considerable error.

One of the key results of the research during the period of the grant

is the development of a modified algorithm to account for inter-class

transitions from transient states with long holding times. In this

algorithm, a non-homogeneous aggregated Markov chain is used to evaluate the

class probabilities after decomposition. The time varying transition rates

for this Markov chain are derived taking into account contributions from the

I transient states. This leads to a more complex algorithm for approximating

I
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the state probabilities, but considerable improvement in the accuracy of the

approximations is the result. See Appendix A for details.

The modified algorithm was investigated by applying it to the

dual-redundant FTCS model derived in the preceding section. Comparison of

the numerical results from the two asymptotic approximations are discussed

in appendix A. Since the nine state model considered in the example is

representative of FTCS models, the results are quite encouraging.

It is interesting to note that when the earlier limit theorem is used,

there is 100% error in the estimates of the occupancy probabilities for all

the transient states and significant error in the class probabilities as

well. However, using the modified algorithm mentioned above, the transient

states are better approximated with class probability errors within 10%.

This is a significant improvement over the earlier methods and makes this

technique a valuable tool for evaluation of FTCS designs.

I
I
I
I
I
I
I
I
I
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m 3. SUMMARY OF SIGNIFICANT FINDINGS AND FUTURE WORK

3.1 Significant Findings

The work during the grant period produced two key findings. They are:

1. The extension of the approoximate aggregation results to decomposed

classes that contain multiple trapping states. (See section 2.2.)

2. The development of the modified algorithm that accounts for

interclass transitions from transient states with long holding

times. (See sections 2.3 and 2.4 and Appendix A.)

The first of these findings is significant because it implies that

approximate aggregation can be applied to a broad range of semimarkov

I reliability models of fault tolerant systems. The second finding is

significant because the modified algorithm, while introducing another source

of error, leads to significantly more accurate numerical results for models

that include transient states with very long holding times within the

I decomposed classes.

3.2 Future Work

A proposal has been submitted to AFOSR to continue this work. The focus

of the continuation of the work is to extend the class of models to which

m the modified algorithm can be applied. Also, the proposed effort will begin

m to examine fault tolerant systems from a control system performance

viewpoint, a viewpoint which has been secondary to our reliability

evaluation work. Finally, we will attempt to examine more complex models of

fault tolerant systems.

I
I
I
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FP9 - 6:00
AN APPROXIMATE ALGORITHM FOR EVALUATION OF

SEMI-MARKOV RELIABILITY MODELS

R.Srichander & B.K.Walker

Department of Aerospace Engineering & Engineering Mechanics
University of Cincinnati, Ohio 45221-0070

ABSTRACT computationally simple techniques to

Reliability models of fault tolerant evaluate the reliability of the system
cover a desired mission time. Since such
control systems (FTCS) are described by designs are iterative in nature, it is
semi-Markov models when sequential tests imperative that the computational scheme
are used for failure detection and be as simple as possible. The
identification (FDI). The transient approximate reliability evaluation of
analysis of these semi-Markov chains are semi-Markov models proposed in this
of interest because the steady state paper is designed specifically to
behaviour is trivial. The relatively address the above issue. The results
rare occurence of the failure events derived in the sequel are applied to a
compared to the fast decisions by the representative FTCS architecture and the
FDI tests allow time-scale decomposition approximate results are compared with
of these models. This leads to an aggre- the exact results obtained by solving
gated state model which is approximately numerically for the interval transition
Markovian in character in the limit when numerilly for t ntithe ailre rtesapprachzero Anprobability matrix #'(n).
the failure rates approach zero. An Many methods exist for evaluating
aggregate non-homogeneous Markov model the steady state behaviour of semi-
is considered over the transient period Markov chains (2). However, most FTCS
of interest and an algorithm to compute models contain one or mcre trapping
the transition rates from the aggregated states (such as the system loss state)
states is described. From the aggregated and hence the steady state behaviour is
model, the state probability distribu- trivial and not of interest. In order to
tion of the original semi-Markov model evaluate the reliability of the FTCS
can be derived by a disaggregation step. over the time period of interest, the

1. interval transition probability matrix
. INRODUCTION (n) of the transient semi-Markov model

Sfault-tolerant system architecture must be computed [2]. The computation of

is described by a redundant set of 0(n) involves convolution sums and henceI components and a redundancy management is memory and computation intensive

(RM) algorithm to reconfigure the system i3,4). The time step 'n' over which (n)

when failures occur. These failures typ- must be te sten ver which 0n

ically occur F_ a relatively slow rate must be evaluated is often very large in

compared to the RM decision events. The an absolute sense but short in

RM decisions are made based on FDI tests comparison with the mean time between
on output signals of interest. Since the failures (MTBF) of the components.

FDI ests operte i a nisyOther schemes for transient analysis
FDI tests operate in a noisy based on time-scale decomposition of
environment, to keep the decision errors original model into fault-handling and

low (typically of order 102 to 10 - per fault-occurence sub-models have been
test) these tests are often sequential proposed [5,6]. In (5] techniques are
in nature. Such sequential tests have described for multi-processor systems
non-exponential holding times before a where FDI tests are single sample tests
decision is made. This gives rise to that give rise to Markov models. In [6)
semi-Markov models for the FTCS the presence of non-exponential sojourn
reliability models (1). times in the states are considered and

A semi-Markov chain is characterised an extended stochastic Petri Net model
by a discrete set of states and an is used for the fault-handling behaviour
arbitrary distribution of the holding or while a non-homogeneous Markov chain is
sojourn tine for each transition. The used for possibly non-Poisson fault-
semi-Markov chain specialises to a occurence behaviour. However, the
Markov chain when the holding times are presence of false alarms in developing
geometrically and identically distribut- the fault handling sub-models is not
ed for all transitions exiting a taken into consideration.
particular state. In the technique proposed here we

In any FTCS design the designer must consider only constant failure rates but
choose the thresholds for the FDI tests, arbitrary sojourn times in the various
These thresholds govern the probability states and also take into consideration
of false alarms (Pfa) and the the probability of false alarms.

probability of missed detection (P) for nThe paper is organised as follows.
t iin section 2, the previous work in this

each execution of the test. To area and existing limit theorems for
investigate whether the thresholds are semi-Markov chains are discussed. In
acceptable, one needs efficient but section 3, an algorithm for approximat-

2
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ing the transient behaviour of the
original model is developed. Section 4 E= E k  keKjl,2,..,R (1)
describes the application of the k=1 k I
proposed technique to a two component Let r (i ) e t
redundant system architecture that uses kr he sojourn time of the
sequential tests for failure detection. semi-Markov chain in class Ek when it

2. BACKGROUND starts from state iE k and moves to
Earlier results have been based on class Er where rak. Suppose the follow-

Korolyuk's limit theorem for semi-Markov ing two conditions hold for the semi-
chains [7), which approximates an Markov chain E:
aggregated state model by a homogeneous
Markov chain. The original semi-Markov 1. The elements of the core matrix
model is decomposed into various classes sequence gij(n) I i,jeE specifying the
where each class contains a group of

states characterised by an identical semi-Markov chain depend as follows on
number of failures. For instance, class the small parameter c:
1 contains all states with no failures, C C
class 2 contains all states with one g j(n) = pij h. * (2)
failure, etc. The inter-class transiti- i ij
ons take place in a slow time-scale at a where h. .(n) is the holding time mass
rate of order c, the failure rate of the

components. It has been shown that the function for a transition from state i

aggregate class-to-class transitions to state j and h ij(0)=O. The P.i can be
have exponential sojourn times when the Tl s i
embedded Markov chain in each class for expanded in a Taylor series about c=.
c=O is ergodic [7]. In [8), the invari- Retaining terms that are linear in c:
ant distribution in each class of the (k)_(k)
aggregate model is used to derive class- c _ Cq1 j+O(c) ii -,jE k
to-class transition rates. One difficul- P(3 )( ) (3)
ty with such a technique for FTCS is cqif IE an
that, for systems that lack on-line

repair capability, many of the states in The embedded Markov chain for c=O obeys
each class are transient. When the the usual Markov chain properties:
original semi-Markov model probability (k)= !k),
distribution vector is recovered, the and p. [,1]; V kEM (4)
estimates for the transient states are JrEI
zero [4]. These states may have large
holding times, which in the original Hk)
model may be of the order of the mission Here cqij ,ijeE; I a p biby
time, and hence approximating their which the Markov chain defined by Pij

probabilities by zero may not be valid. ei-I
Futhermore, in some cases, occupation of is defective if the c-dependent transi-

these states is the only means by which tions are taken into account, and cqk)
some of the interclass transitions can
occur. In these cases, class probabili- icek, JE k are c-dependent out of class
ties can also be considerably in error. transition probabilities.

Another drawback of the technique in T hensition edro abicities.
[8) is that the approximation is valid 2. The embedded Markov chains defined
only if the embedded Markov chain in by the matrices Pi) iJE Vk v kM are

each class is ergodic. This means that k
each class must contain exactly one ergodic with stationary distribution
irreducible closed subset of positive {n(k) liCE V kEM
persistent aperiodic states (9]. Many is k
FTCS architectures give rise to non- Then:
ergodic classes when the time-scale
decomposition is used. A modified algor- lim Pr rkr'tl=Tkr l-exp(-Akt/T )  (5)
ithm is presented in [4) that relaxes C 0
this condition for some of the classes, where:

In section 3, we present an algori- ! R(k)(kr)
thm that gives good approximations for ICE IS i

state probability distributions of 7kr" (k) gk) (6)
semi-Markov models and also relaxes I is I

ergodicity condition for all classes. k

First, we summarize the results in 7() (ic)
(8] and introduce notation used in the ICE k )s I
later sections. (7)

2.1 Limit Theorem For Semi-Markov Chains ik n (k'7YT) (7)
Let the set E of states of the L1CE Is i

semi-Markov chain be expressible as a
union of disjoint classes:
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Here: step-size for the algorithm that we will
(kr) (8) discuss later. Let 'im' be the desired

2 sq.. (8) time step at which the reliability of
rz the system is to be evaluated. We

qk sub-divide m into N intervals each of
E (k) (9) size M/N. We refer to the time interval

2Eij M/N as the step-size of the algorithm.
Notice that if the holding time in

T(k) S (k) - (10) transient states in each class are very) E p) TiJ i0small compared to the time interval m,
F P E then the approximation in (4] of using
W constant Ak over the entire interval is

ij E[ n h ij (n)  (11) valid. The violation of this assumption
n=0 in most FTCS models is the motivation

For proof, we refer the reader to [4]. behind our modified algorithm.If we consider a discrete state As discussed above, to incorporate a
semi-Markov chain with time-varying transition rate we need to

probability transition matrix [p~j(t)], evaluate the probability distribution in
i,jEE, and holding time cumulative each class at various time steps for the

distribution functions F. (t/c) depend- case c=0. In trying to do this, we are
i) faced with the difficulty that the vari-

ing on the srall parameter c, then iden- ous classes can be semi-Markov and hence
tical results can be derived (4). We now this probability distribution can depend
proceed to derive our algorithm for upon the time at which the class-to-
approximating the state probability vec- class transitions occur, which is not
tor of the original semi-Markov model. known. Apart from this, solution of

semi-Markov models in each class is not
attractive even though solution of such3. MODIFIED ALGORITHM reduced order models is computaticnally

An interesting aspect of many FTCS fail.A niern prxmtowithout on-line repair capability is feasible. An engineering approximation

wtht on-inereairapabitis to overcome this drawback is to solve
that the inter-class transitions take the reduced order semi-Markov model for
place in an hierarchical manner with class 1 and then compute the c-dependant
transitions from each class leading to a transition probabilities to class 2 to
more degraded class, with the last class determine the probability distribution
a trapping class. This implies that: in this class. Making use of the assumed

q(kr) =qk) hierarchical nature of the FTCS model,
2 V icE if k->r (12) we then proceed to compute the distribu-

and, tions in other classes in the same
1 if k->r manner once the probability distribution

Tkr =  0 otherwise (13) in the previous classes is known.
The algorithm to compute the approx-where k->r implies that there exist imate probability distribution vector at

transitions from class k to class r. te des i t distribution veow.

In [4] the invariant distribution in the desired time step m is given below.

each class is used to compute the inter- 3.1 Aggregation step

class transition rates X It is clear Let nm/N be the step-size of the
k ' algorithm and let k/n=l,2,...,N. Let

from the results in (4] that the transi- (')(k) be the probability of occupying
tion rates from the classes ultimately nI th
converge to this after the invariant the ith state within class 1 when c=0.
distribution in each class is establish- As pointed out earlier, this can be
ed, but may be different over a transi- obtained by solving the transient semi-
ent period that can be quite large. Markov model of class 1. The approximate
Hence, it is intuitively clear that if probability distribution in other
we are in a position to characterise a classes are computed as follows.
time varying Ak for the transitions, we For keS* n,2n,...,NnI and v=l,2,...,R-l
can get better approximations for the 1
results. One way to achieve this is to V_ (k)=E 7n.V(k)qjj - ;ie 1 4)

define a time-varying Ak(k) that depends i ( JE V ( l ji V-1

on the probability distribution over the !V.1) vnk/ S V2k
transient period in each class so that Ci (k)-j (k)/ - (k) (15)
out of class transitions from the trans- V

ient states are given due importance. (V.1) (V.:) (V. )

This will give rise to a non-homogeneous C1  (k)=C1  (k-n)+ E -. (k-n)*

Markov chain for the aggregate model. To JV-1
reduce the complexity of solving a
non-homogeneous Markov chain, we assume (pV)ji'Ci (k)-C. (k-n) (16)
transition rates are stepwise constant
over the desired time interval.

We first define the notion of
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(k) = (k))(k) (17) two level stage where both instruments
S (k)C I are operational, two one-sided sequenti-Vl 1 al ratio detection tests (SRDT) are used

th to detect a failure [i]. If the SRDTs
where (pv) ji is (j,i) element of the simultaneously arrive at a decision, the

[p (V,)]m/N test is reset. Depending on whether SRDT
matrix ji and the initial 1 or SRDT 2 arrives at a decision, an

conditions are: isolation option of either 1 or 2 is
triggered. In either option, two sequen-

(V+) (0)=0 tial probability ratio tests (SPRT) are
i 0)used to arrive at an isolation decision
V.1)(0)=0 (19) or an alarm rejection. Once an instrum-

i1 ent is declared faulty, the FDI tests
The new transition rates of the non- are discontinued. To simplify the calcu-
homogeneous Markov chain are determined lation of the exact results required foras follows: comparison, it is assumed that tests are

n reset after five time samples, which
X n(k)=.5 • X (k)+L (M) ;keS & veM (20) reduces the number of terms in the

numerical convolution sums to bewhere A (k) is evaluated as in (7) with evaluated to a maximum of five.

7(k) replaced by nW)(k). Notice that This strategy gives rise to a model
iS I with nine states:
for v*l, we need not store r(V) (k) Vk if 1. Two instruments available, none
we compute at each step, A The failed, no detection alarm present,

w (k) VveM. SRDTs operating. (2/0/0)
averaging done in equation (20) gives a 2. Two instruments available, none
simple heuristic algorithm to account failed, one SRDT detection alarm
for transitions from transient states present, SPRTs operating. (2/0/D)
during the mission time of interest. The 3. One instrument available, one
probability transition matrix at the eliminated due to false isolation [FDI
desired time step 'in is then determined discontinued]. (IG/FI)
from, 4. Two instruments available, one

P(m)=exp(A *c*n) (21) failed, correct detection alarm
triggered, SPRTs operating. (2/F/C)

where, 5. Two instruments available, one
failed, detection alarm present for

A4= it (22) wrong pair, SPRTs operating. (2/F/W)
k=I 6. Two instruments available, one

Here, AI is the transition rate matrix failed, no detection alarms present,

of the Markov chain (23, given by, SRDTs operating. (2/F/O)
7. One good instrument available, one

A =A(k)*(F-I )  (23) faulty instrument isolated [FDI
where A(k) is a diagonal matrix with discontinued). (IG/F)
e n n 

8 . System loss due to one failure and
elements XV(k), r=[,vr] and I is the one false isolation. (SLIF/FI)

identity matrix. 9. System loss due to two failures.
3.2 Disaggregation step (SL/2F)

From the approximate probability The state transition diagram for this
transition matrix P(m) the probability model is shown in Fig. 1. The thick
distribution vector of the aggregate lines indicate fast transitions whilemodel at the desired time step can be the dashed lines indicate slow transi-
determined from the known initial tions. When behavioural decomposition of
condition. We denote its elements by the nine state model is done, it breaks
p (in), leM. The state probability up into three classes with the inter-
distribution of the original model are class transitions taking place in a slow
approximated at the disaggregation step time-scale. Class 1 comprises states 1,
as follows: 2, and 3 (1 & 2 transient), class 2

states 4,5,6,7 & 8 (4,5 & 6 transient),
j((m)=p, (m)*T")(m) ;I EM & VJE (24) and class 3 state 9. Class 2 contains

two trapping states for c=0 and hence isTI", ( M)  t(M)/ (M) (25) a non-ergodic class. The decision time

mass functions for the SRDTs were

where 11(m) are the elements of the assumed to give Pfa- 04 7 and those of

probability distribution vector of the SPRTs to give Pfa- 04 7 and Pm-.0 2 . The

original semi-Markov chain, holding time mass functions h ij(n) are

computed from the core matrix elements4. NUMERICAL EXAMPLE

The proposed technique is applied to gC (n) which are derived as indicated in
stwo component redundant system that [ T matrices Lpij], [qij], and

uses sequential tests for FDI. At the (3]. The ai
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[ij ] were derived for two cases: not asymptotic. Hence, an optimum choice
LJ for the step-size is not clear. A goodcase(l): c - 5x10 5  choice depends on the mission time of

case(2): C = 5x10-8  interest, and the step-size can be large
The matrices for case(2) are given in for large mission times. One rule of
table I truncated to 4 decimal places. thumb is to choose n=50 to 100. This

We define normalized error between gave good approximations in most cases
the exact and approximate class investigated in this work.
probabilities as follows:

(V) - 5. CONCLUSION
Normalized error exact - approx (26) An algorithm for approximate evalua-

()) tion of the state probability vector of
exact a semi-Markov process governed by widely

(V) different transition rates has been
where 7eact is the exact probability presented. The method was used to

distribution in class veM calculated evaluate the reliability of a represen-
numerically. The normalized error for tative FTCS architecture and the superi-
different class probabilities using the ority of the scheme over that in [4] has
above algorithn for both cases consider- been demonstrated. Also, the scheme is
ed is shown in Fig. 2-7. We notice that applicable to systems that contain
the normalized error in all the classes classes with more than one recurrent
is less than 0.1 (except in one case) chain when the behavioural decomposition
at the desired time step of interest and is used. It is noticed that the
the error decreases as the step-size approximation is better when the tire
decreases. scales are distinct and the step-size cf

A comparison of the exact state the algorithm is small. The sensitivity
probabilities at the desired time step of the scheme to the time scale
with the approximate probabilities deri- separation and order of the failure rate
ved from (i) the algorithm presented c remains to be investigated.
here and (ii) the algorithm given in [8] The primary contribution of the
is shown in table 2. A modified version paper is the extension to mcre general
of the algorithm presented in [4] to classes of systems that cannot be handl-
treat non-ergodic classes is used to ed by the scheme in [4,8] and better
derive the approximate probabilities in approximation of the transient state
case (ii). probabilities of the original model that
4 urmight have large holding times.4.1 Discussion of results
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Table 1

0.9087 0.0913 0.0 0.0 0.0 0.0 0.0 0.0 0".0
0.9067 0.0039 0.0894 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
= ij = 0.0 0.0 0.0 0.0478 0.0 0.0181 0.9332 0.0009 0.0

0.0 0.0 0.0 0.0 0.0039 0.9067 0.0447 0.0447 0.0
0.0 0.0 0.0 0.9519 0.0199 0.0282 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

9.0018 0.5400 0.0 0.0913 0.0913 9.4192 0.0 0.0 0.0-
5.4293 0.0271 0.5449 2.5000 2.5000 0.9067 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0689 0.0 0.0232 1.1869 0.0013 1.5980
0.0 0.0 0.0 0.0 0.0082 1.6453 0.0436 0.0436 1.5951
0.0 0.0 0.0 1.6481 0.0189 0.0918 0.0 0.0 1.9370
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.9989 2.8341 0.0 2.8341 2.8341 2.9623 0.0 0.0 0.0
3.7424 4.2362 3.6921 3.0 3.0 3.7424 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0
ij= 0.0 0.0 0.0 3.7270 0.0 3.5445 3.7294 3.4850 2.4646

0.0 0.0 0.0 0.0 4.2362 3.7424 3.6921 3.6921 2.4721
0.0 0.0 0.0 2.8977 1.9723 4.2688 0.0 0.0 2.0206
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0
0.0 0.0 0.' 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 2
Comparison of exact and approximate probabilities

Time step Exact results Approx. results Approx. results
and c (state 1 to 9) using step-size=50 using scheme (41
10,000 0.000027684938 0.000028037752 0

-8 0.000009194938 0.000008243412 0
c=5*10 0.999432770000 0.999434580306 0.999500124979

0.000000000047 0.000000000021 0
0.000000000003 0.000000000021 0
0.000000000156 0.000000000241 0
0.000061669460 0.000054278419 0
0.000468653400 0.000474833582 0.000499875021
0.000000028905 0.000000026245 0

15,000 0.000027582208 0.000027927991 0

0.000009187481 0.000008233990 0
c=5*10 0.999183050000 0.999184825377 0.999250281179

0.000000000057 0.000000000020 0
0.000000000155 0.000000010020 0
0.00000000053 0.00000000026 0
0.000061654051 0.000053300697 00.000718480390 0.000725668978 0.000749718820
0.000000044321 0.0000000426890

I10,000 0.000033414812 0.0000165188060...

0.000835702550 0.000016518806 0C=5"10 -  0.588035090000 0.588829863265 0.606530659712
0.000006652044 0.000000015147 0
0.000000329155 0.0000000151470

0.000003095837 0.000000177613 0

0.036292407000 0.039965861579 0
0.353017460000 0.349653693105 0.393436934028
0.021775854000 0.021528998622 0
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