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SLEPIAN MODELS AND REGRESSION APPROXIMATIONS
IN CROSSING AND eXTREME VALUE THIEEORY

Georg Lindgren Igor Rychlik
Department of Mathematical Statistics Department of Statistics
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Box 118 FORT COLLINS ('O 80523
S—221 00 LUND USA
Sweden

Abstract

In crossing theory for stochastic processes the distribution of quantities such as distances
between level crossings, maximum height of an excursion between level crossings, ampli-
tude and wavelength, etc., can only be written in the form of infinite—dimensional inte-
grals, which are difficult to evaluate numerically. A Slepian model is an explicit random
function representation of the process after a level crossing and it consists of one regression
term and one residual process. The regression approximation of a crossing variable is
defined as the corresponding variable in the regression term of the Slepian model, and its
distribution can be evaluated numerically as a finite—dimensional integral.

This paper reviews the use and structure of the Slepian model and the regression
method and shows how they can be used to obtain good numerical approximations to
various crossing variables. It gives a detailed account of the regression method for Gaussian
processes with auxilliary variables chosen in a recursive way. It also presents a package of
computer programs for the numerical calculations, and gives numerical examples on
excursion lengths as well as wavelength and amplitude distributions. Further examples deal

with an engineering "jump—and—bump" problem, and excursions for a \2—process.
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Slepian models and regression approximations
in crossing and extreme value theory

by

Georg Lindgren! Igor Rychlik?

Univ of Lund, Sweden!? and Colorado State Univ, Fort Collins, 11SA2

1. INTRODUCTION

In the physical world, a random function is often described as a sequence of local maxima
or minima, constituting a series of random waves. In fact, not only the visual impression of
the process, but also many technologically important implications in such ficlds as metal
fatigue caused by random vibrations, failure caused by excess load on a construction, etc.,
depend on the character of the process as a random wave form. The basic objects in this
theory are level crossings and local extremes.

A Slepian model is a random function representation of the conditional behaviour of
a stochastic process after events defined by level or curve crossings. In general, a Slepian
model contains one regression term with random coefficients which describe the dependence
on initial conditions such as the slope at the crossing, the value of the process at a pre-
determined point, etc, and one residual term, which describes the deviations from the path
set out by the initial conditions.

In crossing theory there are many variables of great practical interest which are very
difficult to analyse, such as the distance between level crossings, maximum height of an
excursion between two level crossings, etc. The distribution of these quantities can usually
be written only in the form of infinite—dimensional integrals and there is therefore a large
need for good numerical approximations. A regression approzimation of a crossing variable
is defined as the corresponding variable in the regression term of the Slepian model. Its
distribution can often be found explicitly, or expressed as a finite—dimensional integral,

which can be evaluated explicitly.




The model was first introduced by Slepian (1963) to deseribe the behaviour of a
stationary Gaussian process after a zero crossing. The term Slepian model was introduced
by Lindgren (1977). Ditlevsen (1985a) gives a review of different engineering applications,
and Ditlevsen (1985b), (1986), and (1988) contain further applications.

The regression approximation based on the Slepian model was first used by Lind-
gren & Rychlik (1982) in connection with the analysis of random waves. It has been used to
find practically useful upper and lower bounds for random wave characteristics such as
wave length and amplitude and related quantities often used in reliablility, ocean engine-
ering, structural and mechanical engineering, and other fields of techinology; sce e.g.
Rychlik (1988, 1989a).

A further important use of the Slepian model is that of asymptotic expansions. After
a crossing of a very high level many processes take on an almost deterministic form, which
can be found from the leading terms in a Taylor expansion; see Lindgren (1983, 1934b,
1984c), Ditlevsen & Lindgren (1988).

Most of the work on Slepian models and regression approximations in crossing
theory has been directed towards Gaussian processes or to functions of such processes.
However, the Slepian model is not limited to Gaussian processcs even if its structure may
not be as explicit for non—Gaussian processes. The y2—process is a simple example of a
non—Gaussian process for which the Slepian model is analytically tractable; see Aronowich
& Adler (1985), (1986), and Lindgren (1989).

In this paper we shall give a review of tiie use and structure of the Slepian model in
crossing theory and how it can be used together with the regression approximation to find
good approximations to notoriously difficult distributions such as wavelength and ampli-
tude, waiting—times between crossings of constant and moving batricrs and other quanti-
ties.

Section 2 of this paper contains the basic form of Slepian models after level crossings
and local extremes and the simple regression approximations for the length of an excursion
and for the wave length and amplitude after a local maximum. In Section 3 we give mathe-

matical theorems about the interpretation of Slepian models as weak limits of conditional




S

distributions given an upcrossing in the Kac & Slepian horizontal window sense (sce Kac &
Slepian (1959)), and as empirical limits in the observed series of level crossings.

Section 4 describes the regression approximation for excursion length as well as for
wave length and amplitude, first in a the simple case with fixed regression variables, and
then in a more complicated situation where the regression variables are chosen in a recur-
sive way. In Section 5, finally, we apply the theory to an engineering example, chosen from
structural mechanics, and to the level crossing distances in the y2—process. Numerical

examples, based on a library of FORTRAN subroutines, are also presented in this section.

2. INTRODUCTORY EXAMPLES

As first examples of Slepian models and regression approximations we shall describe the
behaviour of a stationary Gaussian process after upcrossings of a fixed level and after local
maxima.

Suppose £(t) is a stationary Gaussian process with mean zero and continuously
differentiable sample paths. When needed we shall assume also the sécond derivative to

exist. Let the covariance function be r(t) = E(&(s)-&(s+t)) with spectral density R(t),

i.e.
@ . Accession For . /
r(t) = e 1
(t) _OIO xp(iwt)R(w) dw, TS GRALT —d (1)
_ DTIC TAB a
and write Unannounced a

Justification — — |

Ao = V(&(t)) = r(0) = R(w) dw,

g —s

By MK 7%
Distribution/ :

T \
A2 = V(E'(t) = —"(0) = | w R(w) dw, | _Aveilability Codes
—w

T [Avail aad/or

‘Dist Speclal

e = VEW) =V0) = | W *R(w) dw,

- v

for the spectral moments, whenever they exist.

For any fixed level u we say that a u—upcrossing occurs at time to if




§(to) = u, §'(to) > 0, (:

[§%]
—

and we write N(u; T) for the number of u—upcrossings in the interval [0,T]. Then the
mean number of upcrossings is given by Rice’s formula, (see Leadbetter et al. 1983), which

states

4 ]

E(N(u;T)) =T- | yf ) y) dy =
(N(u;T)) (I)yf(O),f(O)(“Y) y

- T. Bl e ot _
T fg(o)(U) E((£'(0)) " | £(0)=u),
where z7 = max(0,z). In the normal case this specializes to
E(N(u;T)) = T-(27) " (A2/ 2o)/ Zexp(=u2/2)0),
since then £(0) and £'(0) are independent and normal with mean zero and variances Ag
and Ag, respectively.
We shall also need a formula for the expected number of marked upcrossings, i.e.
crossings which satisfy some additional condition, specified by aset A. Let #(t) bea

random vector which is jointly stationary with £(t), and write N(u,A; T) for the number

of u—upcrossings by £(t), 0<t<T, which satisfy 75(t+-) € A. Then

E(N(u,A; T)) = T-:)Ioyfé(o),g.(m(u,y)-l’(n(d € A | £(0)=u, £'(0)=y) dy

\

= T-fg(gy() E((£(0) T 1{n(-)eA} | €(0)=u); (3)
see Leadbetter et al. (1983).
We shall have use for some formulas for the conditional mean and covariances for
£(t) given value and derivatives at a specified point. Since Cov(&'(s),&(s+t)) = —r'(t),
Cov(£"(s),&(s+t)) = r"(t), and Cov(&"(s),£&'(s+t)) = r'"'(t), one has
E(&(s+t)| &(s)=u, €'(s)=y) = ur(t)/ Ao — yr'(t)/Aa, (4)
E(&(s+t)]&(s)=u, &'(s)=y, £"(s)=2) =
= uA(t) + yB(t) + zC(t), (5)

Cov(&(s+ty),£(s+t2) | &(s)=u, £'(s)=y) =
= r{tag—ty) = r(t)r(t2)/ Ao — ' (L)' (ta)/ Aay (6)
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COV(E(S+tn),§(S+te)I€(S)=u, '(s)=y, £"(s)=2) =
= r(te—t,) — r(ty)r //\o—l' ti)r'(ty /Ao—]) t1)b(ta), (7)

where

b(t) = CovLE(s+1), €' su§(s €'(s)) _ (1) +(ho/Ao)r(t)

2
(s)1€(s),€"(s) / VWS LIPY

DEFINITION 1: (Standard process) In the sequel, we shall illustrate the regression

approximation by means of a stationary Gaussian low frequency white noise process £(t),

with covariance function

o) = sin th
t
and spectral density, which is constant over (—y/3, V3),

R(w) = 1/2y3 for |w| < 3.

We shall call such a process a "standard process". It has V(£(t)) = V(£'(t)) = 1, and
V(£"(t)) = 1.8. u!

EXAMPLE 1: (Slepian model after u—upcrossings.) Let the process £(t), t>0, have upcros-
sings of the level u at t; <ty < ..., and consider the process a fixed time t after any one
of these upcrossings, ti, say. For different ty—points, £(tx+t) takes on different values and
thus behaves like the realization of a random sequence. The value of £(ty+t) depends to

some extent on £(ty)=u and on (the unobserved) £'(ty). This dependence can be expressed

through the regression function, (cf. (4)),

E(£(tk+t) | &(ti)=u, £(tx)=y) = ur(t)/ Ao — yr'(t)/ Aa,

while the rest of the variation is described by the residual process

Aftft) = &(ti+t) = B(&(tk+t) | £(tk), €'(th)).
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considering t as a paramcter, A(t|ty) becomes a realization of a random process, which is

Gaussian with mean zero and a covariance function which, by (6), s equal to

C(ty, ta) = r(ta—ty) = r(t)r(ta)/ Ao — r'(ty)r'(t2)/ A2 (3)

Thus we can write
E(ti+t) = E(E(tk+t) | €(tk), €'(tk)) + At]ty) =
= €(ti)-r(t)/ Ao — &' (ti)-r'(t)/ A2 + A(t]ty). (9)

In formula (9) we could have replaced £(ti) by u, but we have chosen to retain it
in order to indicate the dependence on the starting point. The derivative £'(ty) has still to
be specified, and this is the tricky part of the Slepian model, since £'(t;), £'(ta), ... do not
form a stationary sequence. HHowever, in the long run, the empirical distribution of £'(ty),

taken over all ty, k=1,2,... converges to a Rayleigh distribution with density

fe78,,(¥) = A2'y exp(—y2/24a), y > 0. o

Here erg stands for ergodic, or long run, distribution, meaning that it is the limit of the

empirical distribution of &'(ty), i.e. for an ergodic process,

\I{f () dy = 1 #{te [0,T]; €' (t1)<Y}
4 =1lim .
0 éftk) i T-w #{tk€[0,T]}

To describe the long run properties of £(tx+t) as ty runs through the set of all

u—upcrossings, we therefore only have to replace in (9), &£(tx) by u, and the derivative
€'(tk) by a Raylcigh—distributed random variable 75 with density given by (10), and
A(t|ty) by an independent non—stationary Gaussian process A(t) with mean zero and co-

variance function C(s,t) given by (8), thereby obtaining a process
Eu(t) = ur(t)/ Ao — qr'(t)/ A2 + A(t). (11)

This is the Slepian model for £(t) at time t after an upcrossing of the level u.
One should think of £,(t) as a stochastic generator, which, by repeatedly drawing reali-
zations of 7 and A(t), describes the long run behaviour of &(tx+t) for k= 1,2, ... For

example, £,'(0) = ur'(0)/ Ao — nr"(0)/ A2 + A'(0) = 5 is distributed as £'(ty), k =1, 2, ...
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EXAMPLE 2: (Slepian model after local maximum.) Suppose £(t), t>0 has twice contin-
uously differentiable sample paths and let it have local maxima at t; <ty < .... This is
similar to Exampel 1, but now £'(t) has its zero downcrossings at ty, and we want to
describe £(ty+t) for different ti. One way of doing this is to let £(ty+t) depend on the

height and curvature at the maximum at t through the regression
E(&(ti+t) | £(t)=n, £'(ti)=0, §"(t\)=2) =
=u-A(t) + 0-B(t) + z-C(t).
Defining An(t|tk) = &(tx+t) — E(&(te+t) | E(tk),€'(th),€" (th)), we can write
E(tk+t) = &(tk)-A(t) + €"(tk) - C(t) + Anlt]ty)

in analogy with (9). Both &(tx) and €"(tk) at the maximum are random quantities with

a long run distribution which turns out to have the density (see Lindgren, 1970),

et €M) =

= const-(—z) exp{— ———l—q-(/\022+2/\3112+/\4l12)}, 2<0. (12)
2(AoAs—A13)

Now, let &, and (n be random variables with joint density (12), and let Ap(t)
be a non—stationary Gaussian process, independent of (&n, (n), with mean zero and with
covariance function Cp(s,t) given by (7). Thus, €n, Cm, and Ap(+) describe &(ty), £"(ty),
and Ap(-|tx) as tx runs through the set of all local maxima.

The Slepian model for £(-) near local maxima is then defined as

€max(t) = EnA(t) + (nC(t) + An(t). (13)

EXAMPLE 1 (contd.): (Regression approximation for length of an excursion above u.)

Let u > 0 be a fixed level, and use model (11), £,(t) = ur(t)/Ao — pr'(t)/ A2 + A(L), to
describe the behaviour of £(ty+t) after u—upcrossings. Let T > 0 be the time of the first

downcrossing of the level u for £,(t), i.e. the length of the excursion above u that
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started at time 0. It can also be defined as the smallest t > 0 for which £,(t) = u. This
equation can be solved for 7, giving
u(1=r('T) / Ao )-A(T)
t'(T)/ A

n=-

provided r'(T) # 0.
However, this equation is of no use when we want to find the distribution of T,

since A(t) is a random process. Now, consider only the regression term in £,(t), which we

shall denote by £5(t),
€u(t) = ur{t)/ Ao — 7' (t)/ As,

and define T' to be the length of the excursion above u by fﬁ(t), which means that, i.a.,
(T = ur(Tr)/)\o - nr'(Tr)/Ag = . (14)

Again, solving for 7, we obtain 7 as a function of T" only. Denoting this function by q,
u(1-r(t) / Ao)
r()/Ae

q(t) = -
we have

u(1 (TH)/ Ao)

n=q(T") = - -
r'(T")/A2

(Here we need u#0, since if u=0 the distribution of T' is concentrated at the first zero
of r'(t).)

Now, there is a simple relation between the densitics of 7 and I,

(a(t))- 1 J(t)] - 1(t), (15)

fTr(t) = f’l

where I(t) is an indicator function,

1 if ur(s)/Ao—q(t)r'(s)/A2 > u for all s, 0<s<t,
I(t) = {

0 otherwise,

and J(t) is the Jacobian of the transformation, i.e.

(1=r(t)/Ao)r"(t)
J(t)=<iﬁ§£2=u-{xg/,\o+xg~ '(‘(;._) b
)




s -

Inserting the Rayleigh density (10), we obtain

[ 1) = 22 a(0) exp(=a(t)*/2Xe) [J(0)] 1) (16)

this is called the regression approzimation of zero order for the density of T.

To facilitate generalizations we shall introduce the function
Euls) = "€u(s) | €u(t)=u" = ur(s)/Xo — a(t)r'(s)/ Az
obtained by replacing 7 by q(t), to make §£(t) = u. Writing (14) as
G(Tr)n =u- ur(Tr)//\o,
one can then write the Jacobian in the general form

!
Jt) = - & bt 9lsey .

(17)
det G(t) ﬂ

1.00 A

0.50 o

Figure 1: Density fr.(t) of zero order regression approximation for length of an excursion

above u for a standard process £(t);u =0, 1, 2, 3. Q

EXAMPLE 2 (contd.): (Regression approximation for wavelength and amplitude.) We

shall seek the distribution of the wavelength T and amplitude H after a local maximum,
i.e. the horizontal and vertieal distances between a maximum and the following minimum,

Defined in terms of the model function €pax(t) = €nA(t) + (nC(t) + An(t), the wave




length T > 0 is the time of the first zero upcrossing by €rax(t), while H = £nax(0) —
fmax(T)-
The regression approximation of T, H is defined as the corresponding quantities
Tr, H' in the regression term E,ﬂax(t) = EnA(t) + (nC(t) of £nax(t). Using A(0)=1,
C(0)=0, one has
EnA'(T') + ¢aC'(T") =0, (18)
H' = {£aA(0) + (nC(0)} — {£nA(T") + (aC(T")} =
= £n: (1=A(T") = ¢a- C(T"), (19)
which can be solved for &n,(n. To write the solution in a form that can be generalized to
more complicated problems, define
1-A(t) C(t)
A'(t) C'(t)

G(t) =

and write equations (18) and (19) as

G(T") (bn Gn) " = (H" O)T.
If det G(Tr) # 0, this has the general solution
)T

(én )T = G(TH ™ (HF )T (20)

Written explicitly, this states that
én = H'-p(THa(T"),
(o= H'q(T),
where
p(t) = — C'(t)/A'(t),
q(t) = — A'(t)/{(1-A(1))C'(t) — A'(t)C() }.
(The only reason for writing the functions in this form is that the density of TF, HT then
can be written in a form which is familiar in engineering literature.)

The Jacobian of the transformation (20) can be expressed by means of the function
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Eun(s)' = "€max(s)' | Enax(t)'=0, Emax(0)—Enax(t)=h" =

= hp(t)qlt)A'(s) + hg(t)C'(s) = h{p(t)q(t)A'(s) + q(t)C'(s)}

obtained by replacing &n, ¢n by the solution (20), to make T'=t, H'=h. Then, in analogy
with (17),
0c €hu(s)')o_

J(t) = =t ' (t)g(t)%
det G(t)

With density of &, ¢m given by (12), this finally gives the following density for TF, H',

which shall be called the "zero order approximation" of fT H

f,l,r‘“r(t”h) = e, (w(t)a(t), ha(t) [I(Lh)]-1(th) =

= const-I(t,h)'hglq(t)z}p'(t)| .

2
exp |- ? h2q(t)? (T, /m* {((r/T ) p(0)+1)% + i:g}] (21)

1/2 is a measure

where 'l‘m = 77(/\f_>/)x4)l/“Z is the mean wavelength, and € = (1—/\%/)\0/\4)
of the spectral width of the process. Further, I(t,h) is the indicator function which is
equal Lo one if &4(s)' < 0 forall's, 0 < s < t, and zero otherwise. Note that if h < 0,

then f{h(s)' > 0 for small s > 0, which implies that I(t,h) =0 for h < 0.

S
»—h ]
L]
L]
4 .
]
- e
L]
st 2
n
b= .'\
L]
2+ e
» ;‘
L}
1rF e
i t
0 1 L ] L L
0 1 S 6

~e

Figure 2: Level curves and perspectiv view of the density f’[‘r Hr(t,h) of zero order

regression approximation of wavelength and amplitude for standard process £(t). )
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The regression approximations described in Examples 1 and 2 are not very accurate,
as approximations to the true excursion and wave distributions. However, they can be im-
proved considerably by including some extra information into the regression term, like the
value of the process or the derivative at some predefined time after the original crossing.

This is illustrated in the following example.

EXAMPLE 3: (Regression approximation of wavelength and amplitude with supplemen-

tary information.) Consider the model Enax(t) = &nA(t) + (nC(t) + An(t) after a local
maximum, presented in Example 2. Let s; be a fixed timepoint, write X; = Ap, (sy), and

define the new residual
Ay(t) = An(t) = E(An(t) | X1) = An(t) — Xiby(t),
where by(t) is a deterministic function. Thus,
€max(t) = €nA(t) + (nC(t) + Xiby(t) + Au(t), (22)

. . . 2 .
where X; is normal with mean zero and some variance a7 = V(Anp'(s1)), and A(t) is a
non-stationary Gaussian process, the random variables (&p,(n), X1, and the process Ay(-)

being independent.
We shall approximate the distribution of wavelength T and amplitude H by

simple functions of (&n,{m) and X;. To do this, write H = My—M,, where
My = €nax(0), M| = &nax(T).

The regression part of (22) is
Enax(t) = €nA(t) + (nC(t) + Xiby(t).

Define the first order regression approrimation T as the wavelength of Erax(t), i.e. take

Tf to be the first t such that
EnA'(T]) + (aC'(TY) + Xiby'(T]) = 0,

and define M{) = £nax(0), M| = £fax(T1), respectively. (Note that A(0)=1, C(0)=0,
by(0)=0, which implies M) = £&n.) Then, H = Mg — MJ.
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Thus, we have replaced the three variables T, M()’ I\ll by the approximating T,
M(r), M;, which are connected to &p, ¢m, & through the following system of equations,
Mg = én
M = &aA(TD) + GaC(TT) + Xiby(T1),
0 = £nA'(T1) + (uC'(TD) + Xiby'(T1).
Writing
1 0 0
G(t) = | A(t) C1) (1)
A'(t) C'(t) by'(t)

b

M=(M(r) M{ 0, X=(tn Ca X))

k]

we get the relations
M=G(T)-X, X=G(Th) LM,
and finally

= . . 9
fMB,M{,Tf(mO’mPt) ffm,cm,xl(u,z,x) |J(t,m0,ml)| I(t,h,x), (23)
where (u,z,x)T = G(t)~1

In (23),

-(m(),ml,O)T are functions of (t,mO,ml) and h= m, —my.

f{m,Cmsxl(u’z’X) = fém’cm(uaz)'fxl(x)v
where the first density is given by (12) and fxl(x) is a normal density. T'he Jacobian
J(t,mo,ml) is given by

_g‘s {Ehx( S)'ls=t _
det G(t)

J(t,mgm,) = det G(t) "1+ (uA"(t)+2C" (t)+xb," (1)),

where as before {{hx(s)' denotes the process f,ﬂax(s)' with w,z,x inserted to make Tr=t,
M5=m0, Mf=ml. The indicator function I(t,h,x) in (23) is equal to one if ffhx(s)' <0
for all 8,0 <8 < t, and zero otherwise.

Finally, the marginal density of ’I‘r,Hr can be obtained from (23) by numerical

integration of x over theset {x; I{t,h,x) = 1}. The accuracy in the approximation
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depends on the choice of s;, and there are many possible suggestions where to put it; see

Section 4 for further details, and numerical examples of approximations of higher order.

0
3. SLEPTAN MODELS AS WEAR LIMITS
In Section 2 we have presented two basic Slepian models for a stationary Gaussian process
£(t) after level crossings and local maxima, respectively,
Eu(t) = ur(t)/ Ao — nr'(t)/Aa + A(t), (11)
max(t) = EnA(L) + CuC(t) + An(t). (13

We have also given some intuitive interpretations of how they describe the hehaviour of
£(tx+t) when ty is an upcrossing of a fixed level u, or a local maximum, respectively.

These intuitive interpretations can be made precise in two different directions. One
is by the horizontal window conditioning principle, the other is the ergodic frequency inter
pretation. With the horizontal window conditioning, £,(t) is defined as the limit (in distri-
bution) as h -0 of £(s+t) conditioned on the event that £(s) has a u—upcrossing some-
where in the horizontal window [ty—h, ti]. It was introduced by Kac & Slepian (1959), who
also showed the connection with the frequency interpretation.

Both the horizontal window and the ergodic interpretation can be made in the sense
of distributional convergence in a space of sufficiently smooth functions. T'his means that
also distributions of variables such as excursion length, height of exceedances, wave length
and amplitude, obtained from the Slepian model, can be interpreted in the horizontal win-
dow conditioning and in the ergodic frequency sense, provided the topology is chosen in an
appropriate way. Such problems have been dealt with by i.a. Lamperti (1965), Lindgren
(1977), Wilson (1983, 1986, 1988), Rusakov & Seleznjev (1988), and Seleznjev (1989a, b).
See also Leadbetter et al. (1983, Ch. 10) for an introduction.

Suppose £(t) has sample paths which are continuous functions (with probability

one). Even if not absolutely needed for most of our results, we shall also require the sample
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paths to be continuously differentiable. A sufficient condition for this is that the process is

separable and the covariance function —r"(t) of the derivative has an expansion
1] —
—"(t) = Ay + o(|log |t]] ) as t -0,

for some constant a > 1; sce Cramér & Leadbetter (1967). (In Remark 3.1 we comment on
what happens when the derivative is assumed to exist only in quadratic mean.)
Define (C!, #') as the space of continuously differentiable functions on the real

line, with metric

supltlSrlx'(t)—y'(tH

)

d(x, y) = [x(0)-y(0)] + £ 27"
r=1 1 + sup|t|9|x'(t)-y'(t)|

ie. X,~Y a3 n- o means that xn(()) - y(0) and xl'l(t,) - y'(t) uniformly on all
bounded intervals. Further, let (Clll, iﬁ’l‘l) denote the subspace of (C!, #1), consisting of
functions such that x(0)=u, and write, for >0, B_=[0,7], and B__=[-70]. We
consider £(t) as a process defined on the space (C!, #1), with £(t; x) = x(t); e.g. £(tx+-)
i, with probability one, and element of Clll. We also use the same notation for functionals
defined on (C!, #1) and the corresponding random variables.

Let, for any interval B,
N(u; B) = #{tx € B},
be the number of u—upcrossings, that fall in B. Similarly, for any set A € ‘6’111, let
N(u,A; B) = #{tx € B; £(tk+-) € A},

be the number of u—upcrossings in B for which the sample function starting at ty
satisfies the condition given by the set A. These definitions generalize the definitions of
N(u; T) and N(u,A; T) in Section 2.

We shall give some examples of relevant sets A. The first example describes the

length of an excursion. Let 7 be the length of the excursion above u starting at ty, i.e.
T, = inf{t > 0; &(ty+t) = u},

and, for x € Clll, let
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7 = inf{t > 0; x(t) = u}.

Then, for Ap = {xeCl; 7 <T},

N(u,AT; B) = #{tx € B; 7« < T}

is the number of excursions, starting in B, with length less than T.

As a second example we consider the height of an excursion above u. With M =

{x€Cl sup x(1)<ml,
0<t<r

N(u,M_; B)=#{tx € B; sup £(tx+t) <m}
m 0<t< Ty

is the number of excursions in B which do not excced m.
We can now define two different distributions on the space ((‘,lll, 6’l'l). First, let Pu

be the Palm distribution for £(-) near u—upcrossings, defined by

P,(A) = E(N(u,A; By))/E(N(u; By)).

(Note that here, by stationarity, B, can be replaced by any interval of length one.) Second,

define Pu T o be the empirical distribution of £(-) near u—upcrossings, i.e. (for T large

enough to make N(u; BT) > 0),

P, 1(A) = N(u,A; By)/N(u; By),

i.e. Pu T 8ives equal weight 1/n to each of the n = N(u; B.r) functions £(tx+-)

starting at tq, .., tg.

THEOREM 3.1: The Slepian model £,(t) = ur(t)/Ao — nr'(t)/ A2 + A(t) has distribution

given by Pu considered as an element in (Cl'|, is’“l).

Proof: The finite—dimensional distributions of £,(t) are given by those of Py. This
follows from the general formula (3) for the expected number of marked crossings. One has
only to take n(t) = (é(t+sy),..., £(t+syn)). Since the finite—dimensional distributions deter-

mine Py, and £, has continuously differentiable sample paths, the thcorem follows. o
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THEQREM 3.2: If £ is an ergodic process, then, with probability one, Pu T converges

weakly to Pu in (Cnlx’ ifl'l) as T - w.

Proof: The theorem states that, with probability one, the empirical probability measure
over the realizations of £(tyx+t), k=1,2,...,in (Clll, Kl'l) converges weakly towards Pu as
T - . It follows from the the ergodic theorem, (see Cramér & Leadbetter, 1967), that, for

each A€ 8‘[11, with probability one,
TV N(uA; Bop) = E(N(w,A; By)),

T—l 'N(U; BT) - E(N(U, Bl))a

which shows that P“ T(A) - P“(A), with probability one. Since (C‘ll, if’lll) is separable

with the metric d, it follows from Billingsley (1968), that, with probability one, Pu T(A) -

Pu(A) for every A € . a

THEOREM 3.3: The conditional distribution of {£(-) | N(u; B_)>0} converges weakly

to P, in (Clll, iflll) as h| 0.

Proof: The finite dimensional conditional distributions of {&(s1),...,&(sm) | N(u;B_h) > 0}

converge to P as hlo,ie
P(£(s) < ¥j, j=1,..m | N(u; B_y)) > 0} =

P(N(u;B_h)>0 and £(sj) <yj, ji=1,...m}

= -

P(N(u;B)>0)

-

E(N(u,A; B))
= P(A)), (24)

E(N(u; By)) y
where

Ay = {x€ Clll; x(sj) < yj, j=1,...,m}.

To prove (24), let to be the last u—upcrossing of £(t) before 0, so that to > —h if and

only if N(u;B_h) > 0. Then replace the event
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{N(u;B_h) >0 and &(sj) < yj, j=1,....m}
by

{to > —h and &(to+s;) < yj, j=1,....m}.

The error will be of small order. Then (24) is a consequence of the general result, for
stationary point processes v, that h_lP(u(Bh) > 0) = E(¢(B;)) as h- 0, applied to the
point processes of u—upcrossings {tx} and to the thinned point processes of u—upcrossings,
which satisfy the extra condition &(ty+s;) < y;, j=1,...,m.

To show the full weak convergence on (Clll, iﬁ’lll) we need the tightness of the

conditional distributions of £(0) and of the continuity modulus of ¢',

wy(€, 8 = sup  [€(s)=€(1)]

|s-t|<é

s,teB
given that N(u;B_h) > 0. In fact, P(|£(0)| > K | N(u;B_h) >0)-0 as h-0 forall
K > u, so that £(0) is tight.

Further we have to show the conditional tightness of wg (&',6), i.e. that, for each
r

e>0,r=1,2,..,

lim lim P{wg (¢',6) > ¢ | N(y;B_,) >0} =0.
540 h-0 = Dr h

One can use the same technique as ahove, considering the point process Ns of u-

upcrossings ty such that

wBr_*_l(tk)({"&) 2 €,

where BH_l(tk) is the sphere of radius r+1 and center tk. Then
P{wBr(g',é) >¢e | NwB_;) >0} <P{Ng(B_,) 20| N(u;B_) > 0}
which tends to E(Ns(Bl))/E(N(u;Bl)) as h - 0. Here, N'é(Bl) < N(u;Bl) and

N3(Bl) -+ 0, with probability one, as 6 - 0, which proves the tightness. s]
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Remark 3.1: If £ has continuous sample paths with mean square derivatives, one can
define the model £, as an element in the space (C,, %,) of continuous functions (with
x(0) = u), with metric for uniform convergence on bounded intervals and the corresponding
statements to Theorems 3.1 and 3.2 hold. However, variables like excursion length and
height after a u—upcrossing are examples of variables which are continuous on the space

(Clll, iflll) but not on the simpler space (Cy, €u). a)

4. REGRESSION APPROXIMATIONS

4.1 Regression decomposition

Assume &(-), n(-) is a pair of smooth processes defined on the same probability space,
and let T be the first zero crossing of £. Suppose that we are interested in the joint

density of the crossing time T for £ and the valueof 5 at T,i.e.

(T,H) = (T(§), 7(T)), | (25)

which are sometimes called marked ezit time and mark, respectively. In this section, we
shall illustrate the general regression approximation method, by constructing a sequence of
approximations to the joint density of T and H.

The regression method is based on a decomposition of the processes £(t) ,n(t) into
linear regression terms and independent residual processes. More precisely, let ¢ =
((1,...,Cn), n>1, be a vector of regressors from the linear space spanned by &(-), n(-) and
let the joint density of Cpeees ¢n be a smooth function. Suppose that the processes £ and

n can be decomposed as follows,

n
£(s) = bo(s) +.21 Cibi(s) + AI(S),
1=

n
n(s) = Co(s) +_21 Cici(s) + AQ(S)»
i=

where the functions b, and c, are defined explicitly, and A, A, are zero mean

Gaussian residual processes, independent of (¢ 1""‘Cn)' Furthermore, we shall assume that
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Var((i) = 1, for all i, which only a matter of scaling. I'he conditional expectations of the

(&(8),n(s))-processes, given ¢ = ((;,...,¢, ), are given by

n

E(&(s)1¢) = b(s) + £ Giby(s) = £'(s),

n
E(n(5)[€) = c,(s) +~21 ¢¢;(s) = 0'(s).
1=

In Example 1 in Section 2 we had only one process,
Eu(t) —u =ur(t)/do —u—nr'(t)/Aa + A(t),
which is of the form (26) with n=1, {; = r)/\/(r))l/2 and

bO(t) =ur(t)/Ao —u,

Example 2 involves two processes,
fu'(t) = €mA'(t) + Cmcl(t) + A'(.t),
§u(t) = fmA(t) + Cmc(t‘) + A(t')a

and is of the form (26) with n = 2, ¢ = €n/V(éa) /2, a2 = Ca/V(Cn)!/2, and

by (1) = A'(1)- V()2 b,(1) = C(0)- V(G /2,
¢,(t) = At)-V(£a)/?, ey(t) = C(1)- V() /2,
Al(t) = A'(t), A2(t) = A(t).

We shall now study the general model (26) in more detail in order to approximate
the distribution of wave—length and amplitude, i.e. T, H. The regression approximation of
(T,H) is defined as the corresponding variables in the regression functions (€500, i.e.
they are obtained by replacing in (26) the processes (£,7) by the regression curves. We

shall denote the regression approximation of (T,H) by (TR HD, i.e.




(THT) = (T(&"), (1), (28)

As has been shown in the introductory examples, the general structure of Slepian
models for the Gaussian processes is the decomposition (26). Although most of our appli-
cations of the regression method is in connection with Slepian models, it is not limited to
the Slepian models and Gaussian residuals. However, since we require that all finitedi-
mensional distributions of the residual processes AI, A'Z are given in explicit form, the
residual processes are usually asumed to be Gaussian or functions of Gaussian vector
processes; see Rychlik (1987d, 1989b). In addition, in Section 5.2, we shall present Slepian
models for the x2—process. In that case, Slepian models will be defined by more compli-
cated decompositions (functions of the lincar decomposition (26)). The regression method
can still be used for approximation of the (T,H)—distributions and it is defined as the
corresponding variables in the nonlinear regressions obtained by replacing the residual
processes by zero.

Finally, the results presented in this section can be easily extended to more compli-
cated marked crossing problems, when £ and 7 in (26) are vector valued processes, i.e.

T = (Ty,...,Tk) is a vector of the first k zero crossings of £; see Rychlik (1987b, 1988).

4.2 Simple regression approximation

We now turn to the evaluation of the density of (’l"', Hr). Obviously, ™ and 1Y are
functions of ((1,...,Cn) alone. However, since we are interested in the density of (Tr, Hh,
we need an inverse mapping that expresses (Cl, C._,) as a function of (TT, HT, 43,...,4‘1]),
leaving (C3""’Cn) unaffected. This can be done, using the implicit aefinition of T, i.e.

r n
by(T") +.§

1 ¢by (T = 0. (29)

The required variable transformation can be written as follows,




Cyby(TT) + Goby(T') = =by(T") = £ ¢iby(T"),

n )
6164 (TT) + oep(1h) = HT — ¢ (T") —ii‘Bgici(T‘ ).
The linear equation system (30) has a unique solution (Cl, ¢,) for T'=t if the

determinant of the following matrix is not equal to zero,

[l)l(t) h.,(t)]
G(t) = - (31)
¢ (t) cy(t)

As in Examples 1 and 2, we can then solve (30) and obtain (g’l, ¢,) as a function of

(Tr,Hr, (3,...,(n). Denoting this function by (ql’ q.z), ie.

[ql(t,h,XB,...,Xn)] _ G(t)_l-[ —b(t)—xgbg(t)—..=x b, (t) (32)

q2(t,h,x3,...,xn) h—cO(t)—x3c3(L)—...——xncn(t)

the conditional density of (T7, 11f | (3,...,(“) can be obtained by a simple variable
transformation, given in Lemma 4.1 below.

Before we state the lemma, we shall introduce two important functions, §fhx(s) and
Tunx(s), defined by "€'(s)| € (1)=0, ' (t)=h, Ca,...,Ca=x" and "5(s)| € (t)=0, 7 (t)=h,

(3,...,{n=x", respectively, i.e. for a fixed (t,h,x) = (t,h,x3,...,xa),

flt'hx(s) = bO(S) + ql(t,h,x)b](s)+q2(t,h,x)b2(s) +§_} xihi(s)

(33)

n
Nehx(8) = ¢4(s) + q (L,h,x)e; (5)+q,(th,x)co(s) + %
1=

For any continuously differentiable function f, let I(t;f) be an indicator function,

defined equal to one if f(s) has no zero crossings in the interval (0,t) and zero otherwise,
ie.
1 if f(s) >0 or {(s) <0 foralls, 0<s<t,

1(t:f) = [ (31)

0 otherwise.
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LLEMMA 4.1: Let (Tr, H") be the regression approximation of (I, I1), defined by (28). If
the determinant det G(t) # 0, the conditional density of Tr.llrl CayeenCnoat (thx) =
(t,h|x3,...,xn) is given by
— . r . - ’
f(t,hl)() - I(t;fthx) I'I(t‘vhax)| f<|7C2| Csn.cn(ql(t‘,hvx)? QQ(t‘*hﬂ)\)Ik)’ (35)
where fCl,Cel CoCa is the conditional density of (;,{2{(3,...,{a and the functions qi, qa

are defined by (32). The Jacobian is given by

d el (5]
det G(t)

S=t

J(t,h,x) = —

(36)

where {{hx(s) is defined by (33) and the indicator function I(t;{fhx) is given by (34).

The marginal density of ('TF, H") can be obtained by multiplying the conditional
density (35) by the density of (s,...,(n and integrating the x—variables, i.e. by computing
E(f(t,h] €3,.-.,Cn)).

The Jacobian J(t,h,x) is written in the form (36) to indicate the explicit
dependence of the Tr,Hr—density on the derivative ({hx(t)', i.e on the derivative of the
regression Er at the zero crossing at time t, when the mark 7* takes the value h.

The density of T',H" is related to the marked zero crossin intensity through the
y g g

following alternative formula:
fTr,Hr(tvh) = E(f(t"h‘CSCH)) =

= BN €0=0, 0" (=0 gqiqy ey (37)

where I(t;fr) is defined by (34). The proof of formula (37) is based on the observation

that the conditional density (£'(t),n7(t)|¢(3...Ca) is given by

_ -1
Fer(t),m(t)] G o OBIX) = 1det GO ey, (0 (LRX)ay (LX) ).
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4.3 An explicit formula for density of (T.I)

It is instructive to write the true density of T,IT in a form similar to formula (35), based
on the regression approximation. To obtain this form, just introduce the residual processes
A1 and A, into the functions ;s 9y and the Jacobian J, (36), defined in L.emma 4.1.

More precisely, define new q—functions q, and a Jacobian J as follows,

q,{t,h,xq....x Q) _ =b (t)=x, b ()—..—x b (t)=A (1)
(_l 3 n = G(t) ]'l 0 373 nn 1 (38)
q.z(t,h,x3,...,xn,A) h—co(t)—x3c3(t)-...—xncn(t)—-AQ(t)
d
enx (8)]
T(thxA,) = -8 et (39)
det G(t)
where A(s,t) = (Al(s), A2(t)) and the function &nx(s) is defined by
Eunx(3) = by(s) + Ty (Lhx, A (8)4T,(Lhx,A)by(s)
n
+ ¥ x.h.(s)+ Al(s). (140)
i=3 '

Then the true conditional density of (T,H | C?""’Cn) can be written as an expec-
tation of the density (35) over all sample paths of A =(A1,./_\.,), with the modified q— and

J—functions, i.e.
b H|Gnnn ol BX) = B 4,1t |T(thx,A )] -

F ol oo WIXA), ﬁ_z(t,h,x,AHx)], (41)

where I(t;-) is defined by (34).
The density of (T,H) can be written in the same form as (37) of (T".HD), by

replacing the regressions ﬁr, nr by the original processes £, n, i.e.

fT,H(t,h) = E(I(t;€) | €'(t) || &(t)=0, U(t)=h)f£(t)’n(t)(0vh)- (42)

Observe that formula (42) holds for a broader class of processes, which contains more gene-

ral nonlinear decompositions; see Durhin (1987), Rychlik (1987¢). However, for the purpose

fr
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of approximation and numerical calculation, the explicit formula (41), based on the
decomposition (26), is more useful than formula (12).

The expectation (41) is difficult to evaluate exactly, since the indicator I(t;€ )
depends on the whole realization of &y, i-e. on AI( -). Nevertheless, the formula is the
basis for improvement of the accuracy of the regression approximations of the (T,H)-
density, by approximation of the residual processes Al’ A.z, by simpler processes Al’ 1&2,
which are functions of a finite number of random variables Y = (Yl""’Yk)’ say, defined
on the same probability space as Al, A.z. The (A] ,A.Z)-processes can be chosen in many
different ways, e.g. as cosine polynomials, splines etc. In the next subsection we shall use

regression curves.

4.4 More complicated approximations

Let Y = (Yl,...,Yk) be a random vector defined on the residual processes Al’ A,. The
general formula for the regression approximation (Tr,,le\,) of the (T, H)-density is
obtained by replacing, in (41), the A]— and A,-residual processes by their conditional

expectations, given Y,i.e. by A = (AI,AQ),
A (Y)(s) = E(A(s)]Y), Ay(Y)(s) = E(Ay(s)]Y). (43)

More precisely, the regressions AI,A:2 in (43) define a new decomposition of the (&,7)-

processes by splitting the residuals A[,A,, i.c.
() = €(5) + A (Y)(s) + A, (Y)(s),
18) = 77(5) + Ay(Y)(5) + Ag(Y)(s),
where, for i=1,2,
ALY Y )(8) = A(s) = E(A(s)] Y ..Y)). (44)

The regression approximations T{(, le\, are defined as

(TE, HE) = (T(E7C) + A,(V)()), 7°(TE) + A, (Y)I(T])).
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The conditional density fk(t,hlx,y) of (’I‘L,IIU ¢,Y) can be obtained in a similar

way as in Lemma 4.1. The explicit formula can be written as follows. With

q (t,h,x,y) _1 [ —balt)=x3ba(t)—..—x b (t)—A (y)(t)
[1 }=G(t) 1_[ 0 373 n’'n 1 (45)
Go(t,h,x,y) h—cq(t)=xgeq(t)—..—x e (t)=Ay(y)(t)
d.r
Ethxy (5)]
J(t,hxy) = - ds> Y =L (46)
det, G(t)
and fEhxy(s) and nlt.hxy(s) defined by
Ethxy(5) = by(s) + qy(t,h,x,y)b, (8)+q,(t.hx,y)by(s) (47a)
n .
+ X xibi(s) + AI(Y)(S)»
i=3
Ult.hxy(s) = CO(S) + QI(t":llaX’y)cl(S)+qf_‘)(tvh7an)C2(s) (47b)
n .
+ % xiCi(S) + A,(y)(s),
i=3 =
the conditional density fX(t,h|x,y) of (TELHE|¢Y) is equal to
(L Ixy) = I(t€5hxy) - [ (6hxy) |
f<1<2| <3-__<n(ql(tahax»Y)a qu(t»haxay)lx)' (48)

(Obhserve that the Y—variables are independent of ()

The density of the simplest regression approximation, formula (35), corresponds to
the choice k=0, i.e. there are no extra regressors at all besides ¢. Thus the approximating
variables will be denoted as Tr,H(r) and the conditional density f(t,h|x), formula (35),
will be denoted by f2(t,h]x).

The regressors Yl""’Yk can be choosen with great freedom to contain simple but
efficient information about (T,H). One of the main features of the structure of approxi-
mation (48) is that it can easily be improved by just adding more regressors in a recursive
way. In the following subscction we present a recursive procedure of choosing the regressors

Yl""’Yk’ suitable for inplementation in a recursive programming language.
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4.5 A recursive procedure for choosing the regressors Ylu“Yk

The regressors Yl""’Yk should be chosen in such a way that the conditional density of
(Tlr(,le( | ¢) is a good approximation to the exact formula for the density (41) of (T, H),
with as few regressors as possible. Consequently, strategies of choosing the Y,-variables are
usually quite complicated and can depend both on the properties of the fnx-, and 7tpx-
functions and on the residual processes A = (AI’AQ)‘ We shall now present a class of re-
gression approximations (Tlr\,, le\,) for the (T,H)-distribution, based on recursive selection
of regressors Y..

Assume that we have designed a strategy to select a unique variable Y, defined as
a function of the residuals, A(s,t) = (Al(s),A.z(t)). More precisely, assume that we have
been given a zero-mean Gaussian process A, with a covariance Tp = (rA,’rAg’rL\.,,Ag)’
and deterministic functions f = (fl’f'z)’ corresponding to the functions ffhx, n{hx, and
assume further, that we have defined a functional, Proc, on the sample paths of A = w,
with f as the parameter, such that the regressor Y] is defined by Yl(w) = Proc(w ; ).

The same procedure, Proc, can then be used to define further regressors Y.z, v Y

. ’k,
provided it has the following structure:

(a) Y1=Pr0c(A,f) is a Gaussian random variable,
(b) the regression curves A(Yl)(s,t) in (43) can be evaluated explicitly,

(c) for any real Ypr the residual processes Al(y])(s)\ A.z(yl)(s) in (44) are
zero-mean jointly Gaussian processcs, with explicitly defined covariance
function rA|Y|=y|'

Then, the regressors Yl’ ""Yk can be defined recursively:

(i) Y, = Proc(4; &inx, Mihx),

(i)  for any value y = (yl""’yk—l) of the regressors Yl""‘Yk—l’
Yk = PrOC(A(y), f{hxy, ﬂlt‘hxy)a

where A(y)(s) = (Al(s)-—E(Al(s)|Yl...Yk_l), AZ(S)_E(AQ(SHYl"'Yk—l)) are the

residual processes (44) and E{..xy, 1)'{.,,(,, are defined by (7).




We turn now to the problem of choosing the procedure Proc(-). Many different al-
gorithms can be proposed and we shall classify them into two main categories. The first
one, which will be called deterministic procedures, selects Yl from the linear space span-
ned by A, independently of the properties of £§py, M hx. Consequently, the conditional co-

variances rAWn Yi=y do not depend on y. As examples, we give the simple procedure

Pl‘OCl(A; fll:hxﬂlll‘hx):
Choose leal(sl), where S1» 0<s1<t, is a fixed point

such that Var(/_\.l(sl))z SUDG cs et Var(Al(s)),

and the more complicated algorithm

PrOCQ(A; flt.hxmlt‘hx)i
Choose Y1=Al(sl), where s, 0<s <t, is fixed point

such that SUPG gt Var(Al(s)|Al(sl)) is minimized.

The second class of procedures for choosing the first regressor Y, will be called
stochastic procedures, and here rAIYl---Yk=y depends explicitly on y. This happens
when one allows Yl to depend on {{hx, Tnx. AD example of a stochastic procedure, used

in Rychlik (1987d, 1989b), is the following algorithm:

Procy(4; Exhx:Mihx):
Choose leAl(sl), where 81 0<sl<t, is a fixed point
such that, if £ihx(0)>0, P(£inx(s;) > 0) is minimized,
otherwise, i.e. if £nx(0)<0, P(f{hx(sl) < 0)is

minimized.

The difference between a stochastic and a determinstic procedure is that in the
stochastic procedure the regressors Yl""’Yk’ depend on the sample path of the residual
processes Al’ AQ, leading to more accurate approximations.

Finally, we give a recursive formula for the conditional density (Tlr\,,lllz | Cqrees§ )

n
defined by recursive selection of the regressors Y = (Yl,...,\’k). Obviously, using the
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conditional density fk(t,h|x,y ), given by (48), of T Ilr | ¢,Y), we obtain the

(Tlr(,le\,| ¢)-density in the form of a k—dimensional integral,

*(t,h]x) = Ey(f*(th[x,Y)), (49)
which has to be evaluated numerically. Since the regressors Y are choosen in a recursive
way, the value of the conditional density fk(t,hlx) depends only on the functional Proc,

and the starting values A, Ethx, Tinx. We shall express this dependence explicitly by the

. k o k N .
notation fPfOC(A;él;hx,n{hx)(t’hlx)' The recursive formula for {"(t,h|x) is then obtained

by writing the integration in (49) in iterated form, i.e.

k i Koy
fme(A;6{'”’7){“)“,11|x) = | E\’g...\’k(f (t,h]x,y,Y2...Y)) le(y) dy

Ifkl

Proc(A]Y;=y; fthxyanthxy t’hlx) le(y) dy.

The main advantage of the recursive representation of the conditional density of

(Tlr(,H‘r(l ¢) is that it can be easily implemented in a computer program, in particular when

the programming language allows recursive functions.

4.6 _Bounds for the T .H—density

In some applications, one needs exact bounds of the approximations error. In the following
we shall briefly present upper and lower bounds for the (T,H)—density, based on regression
approximations.

Let (t,h,x) be a fixed vector for which bounds for the conditional density of
T,H| C3""’<n are required. Suppose that Al(t) = A.z(t) = Ai(t) = 0, a.s. This seems at
first to be a strong assumption, but can easily be attained by inclusion of Al(t), Ag(t),
Ai(t) in the vector ((1,...,Cn). (Observe that this was not required when the regression

approximations of T,H were defined.) Consequently, formula (41) for the density of

T, H| (3,...,(n simplifies to
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D H| GV = By ['(t;fmx)] d(hx)] -
oGl Gann Gal N (BIX), ay(tlx) ). (50)

Assume that from knowledge of the values (t,h,x), we can determine whether the
first crossing of &inx, defined by (40), is an up- or a down-crossing, i.e we assume that

(£(0),£'(0)) is included in CpoeaCyye Suppose that the first zerocrossing of &y is an

upcrossing, and hence the expectation in (50) is the following probability,
EAl{](t;fmx)} = P(£&wnx(s) < 0 for all s, 0<s<t). (51)

Observe that &:hx(s) is a continuously differentiable Gaussian process. In Rychlik (1987d,
1989b) we have proposed a recursive procedure, similar to the regression approximation, to

bound probabilities of type (51).

4.6 _Numerical examples

In this section we shall illustrate higher order approximations to the excursion length
distribution in Example 1 and to the wavelength and amplitude density of Examples 2
and 3. Computer programs for the algorithms will be presented in the next section, where
also details about the approximations can be found.

First consider the excursion length distribution for a standard process. Figure 3,a—d,
shows excursion length distributions after upcrossings of levels u = 0, 1, 2, 3, calculated
with k = 1, 2,3 extra regressors. For comparison, the figures also show the simple
approximations with k = 0. As seen, it is necessary to use extra information in order to
catch the bimodal distribution after a zero upcrossing. For higher levels even the simple
approximation gives reasonable results, and in fact for u = 2, 3 the curves for k =1,2,3

coincide.
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Figure 3: Regression approximations according to forinula (49) to excursion length density

after upcrossing of a level u for a standard process; (a) u=0, (b) u=l1, (c) u=2, (d) u=3. |

The order of approximation is k =0, 1, 2, 1.

As a second example we show the higher order approximations to the wavelength
and amplitude distributions considered in Examples 2 and 3. As can be seen from Figure 4,
(a)—(c) higher order approximations are smoother, in particular at the left, smaller end of
the distribution. The zero order approximation, shown in Figure 2, has a cut off point at

t ~ 4, to the left of which it is zero.
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4.7 Computer programs

The numerical examples presented in this paper have been evaluated by means of a library
of computer programs, CROSSREG, which contains the regression approximations for the

following densities:

EXCREG: excursion time above the level u for the Slepian model §“(t); Example 1;
WAMPREG: wavelength and amplitude after local maximum; Example 2;

JUMPREG: length of jump for a car travelling on a random road; Example 5.1;
CHIREG: excursion tie above the level \12 for the Slepian model for the \Q—procoss;

Section 5.2, formula (62), n = 2.

The programs are implemented in FORTRAN 77 and have been run on a PC/AT and also

on a2 MicroVAXII.

Using the library one can evaluate both the simple regression approximations,

without any additional regressors, Section 4.2, and the more complicated approximations

discussed in Section 4.4. The additional regressors 'Y = (Yl""’Yk) are sclected recur-
sively, using a sligthly modified stochastic procedure of the type Procy; see Section 4.5.
The main modification lies in the introduction of a stopping criterion, which allows us to
use different numbers of regressors for different sample paths of the residual process. The
stopping criterion testy whether, for given values of ¢ and y = (yl,...,yk), l‘h(f, conditional
density of the regression approximation, fT{ | Y(t|y) is sufficiently close to the conditional
density leY(t|y) of the true T. This stopping rule reduces the necessary amount of
numerical computations drastically.

The programs can be used on a PC/AT, with a reasonable computation time, for as
many as four additional regressors. As can be seen in the examples in this paper, this is
enough to compute very accurate approximations for a large class of processes of practical
interest. In addition, in order to speed up computations, we have designed a numerical
integration algorithm, specially well suited for the regression approximation. A more

complete description of the programs will be given elsewhere.
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5. _APPLICATIONS

5.1 Random vibration of mechanical structures

Stochastic processes and linear filtering theory is often used to describe the behaviour of
mechanical structures, such as bridges, high towers, aeroplane wings, car suspensions, etc,
subjected to external random forces. Loads created by the environment, such as wind and
wave forces, are described as stochastic processes, while the structure itself is described in
terms of lincar or non—linear transfer functions. Processes of interest are forces and dis-
placements within the structure, and the crossing and extremal properties of these are of
great importance for the reliability of the structure. Examples of important quantities are
high peak values, length of excursions above high levels, and period and wave analysis.
Most models used to describe random vibration are high dimensional, and the exter-
nal forces even form a continuous random field, as for example the wind over the whole
extension of a long bridge. We shall here present a simplified example with only one forcing
process and a transfer function with a simple non—linearity, which contains many of the

characteristic features of a random mechanical system.

Example 5.1 ("Jumps and bumps"; Lindgren (1981)) Consider the movements of a car
travelling with constant speed on a rough road, considered as a locally stationary stochastic
process. ‘The suspension system of the car should guarantee safe roadholding and high ride
comfort. The roadholding depends on the forces between wheel and road and the ride
comfort mainly on the acceleration forces on the driver and passengers. An undesirable
event occurs when the force between a wheel and ground is less than a required level. In an
extreme case, a wheel can even leave the ground for a short while — it jurmps and bumps.
We shall describe the jump—and—bump situation by means of a Slepian model and use the
regression technique to derive the distribution of the length of the flight starting at the
jump.

"To simplify the analysis we shall consider a one—wheeled car with mass m which

drives with constant speed v on a randomly profiled road. The suspension system consists
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of a linear gpring with length P, stiffness k, and damping coefficient c¢. (A four-wheeled
can be treated similarly as a multivariate system; see Jogréus (1936).) Let Y(t) denote
the height of the road above a zero reference level at time t, and let X(t) be the extension
of the spring from its unloaded position. (Then Y(t) = Yo(vt) where Yo(s) denotes the

road elevation at distance s from the starting point.)

If the wheel has no mass, the following differential equation governs the movements

of the car as long as no jumps occur,
m(X"(t) + Y"(t)) + ¢X'(t) + kX(t) = —gm (52)

where g = 9.81 m/s? is the acceleration of gravity. This implies that E(X(t)) = —gm/k.

As long as no jumps occur, the vertical acceleration of the car is
X"(t) + Y'(t) = — g —m (eX'(t) + kX(1)),
but if the wheel is not permanently attached to the ground, this acceleration can never be
less than —g. Therefore a jump occurs every time the normal force

N(t) = cX'(t) + kX(t) (53)

(which has mean —gm) has an upcrossing of the zero level. Then an excursion starts,
during which the movements of the car and spring are purely deterministic.

If tx denotes the time of a jump, the spring expands exponentially during the jump

according to the equation

X(tk+t) = X(tx) exp(—kt/c), (51)

while the car follows the parabolic curve
9
PO + X(tk) + Y(t) + t(X"(te)+Y'(ty)) —gt™/2. (55)

The road level Y(tg+t) is of course not affected by the jump, but the fact that a
jump did occur at ty affects its distribution, so we need the conditional distribution of
Y(tx+t) given that a jump has occurred.

We now assume, as is often done in technical literature, that the road profile Y(t)
is a Gaussian process, which is stationary at lcast locally. This means that, if no jumps

were allowed to occur and the wheel was in permanent contact with the ground, also the
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normal force N(t) and the spring extension X(t) would be Gaussian processes. One could
then use the theory in previous chapters to describe the crossings and extremal properties
of N(t) and X(t). However, if jumps may occur, the Gaussian character of the process is
destroyed, but if jumps are rare, one could think of the process as being renormalized after
each jump, and use the Slepian model based on normal theory to describe the local be-
haviour near jumps. The assumptions that jumps occur unfrequently is a realistic assump-
tion for real cars.

In this example, we shall assume that jumps do not occur at all and that X(t) is
always defined by equation (52), and we nall consider equations (51) and (55) as fictitious
excursions, to be described by Slepian models.

We assume that Y(t) = Yy(vt) is a stationary Gaussian process with mean zero

and (speed dependent) covariance function Ty possessing spectral density
-1
RY(w) =v RYo(w/v),

where RY is the spectral density for the road. We let X(t) be the stationary (Gaussian)
o

solution of equation (52), rewritten as
mX"(t) + cX'(t) + k(X(t)+gm/k) = —mY"(t), (52")

and write N(t) = cX'(t)+kX(t). All covariance properties of the involved processes can

then be derived from RY(w) and the transfer function H(w) of the system (52'),

2
H(w) = mw 5 (56)
k + icw— mw”

We need the following variance and covariances for the involved processes,
ry(t) = [ e“* Ry(w) du,
rn y(t) = Cov(N(0), Y(1)) =  e™* mu? {H(w)+1} Ry (w) dw,
rnr y(t) = Cov(N'(0), Y(t)) = J € " miw? {H(w)+1} Ry(w) dw,

and
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9 . 9
al‘\‘I =/ m‘zw4 |H(w)+1]~ RY(w) dw,

) 9
01%. = m"wﬁ |H(w)+1|~ RY(w) dw.

Now, let ty, k =1, 2, ... be the times of zero upcrossings for the process N(t), i.e.
the potential jump times, and consider the movements of spring and car during the ficti-
tious flights, as defined by (54) and (55). The Slepian model for Y(ty+t) after a zero
upcrossing by N(tk) consists of a regression term on N(ty)=0, and N'(tx) which, being a
derivative at a level upcrossing in a stationary Gaussian process, has a Rayleigh

distribution with density
— 92, 9
zaN.2 exp(-z“/?a&.), z> 0. (57)

Let ¢ be a Rayleigh variable with density (57). The direct model for Y(tx+t) is
then

Y*(t) = b*(t) + (Obz‘)(t) + A*(t), (58)
where, with E(N(0)) = —gm,

b*(t) + zob(";(t) = E(Y(t) | N(0)=0, N'(0)=z0).
Further, the Gaussian residual process A*(t) is independent of ( o and has mean zero
and covariance function given by the conditional covariance function of Y(t) given N(0)
and N'(0). However, if we want to describe the extension of the flight starting at tx we
need also the joint distribution of the derivative N'(ty), the starting values in (54) and
(55) and the residual process in (58).

We first introduce some notation. Define the random vectors v = (N(0), N'(O))T,

7= (X(0)+Y(0), X'(0)+Y'(0), X(O))T and note that (v, ) has a 5—dimensional normal

distribution with mean

7
[ U] = (-gma Ov —gm/k’ 0’ _gm/k)T
”7r

and covariance matrix




2
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The conditional distribution of 7|v=(0,z) is therefore tri-variate normal with mean

—gm/k + M0, Ty x+y 0% x+y
0 —2 APX =A+2zB
+ gmo Un,x 'ty + z Un'an',x gyt T z+B, say,
—gm/k + 8May, I x UIITUH',X

and covariance matrix

_ gl
E_Ex )

T “mSvSvr
To get starting values for X, Y, X', Y' in (54) and (55), let (o be a Rayleigh
variable, with density (57), and let ¢ = (), (s, (3)T be a 3—dimensional normal variable,
independent of (o, with mean zero and covariance matrix E. Then the starting values

(X(t)+Y (1), X' (6)+Y'(tw), X(t)) T are distributed as
A+ (B+¢. (59)

The complete Slepian model for Y(tx+t) is now

3
Road(t) = b(t) + _)30 ¢ibi(t) + A(t), (60)
J:

where the regression is defined as

3
b(v) + 2 Gbi(t) = E(Y(1) | v = (0,60) T, 7= A+CoB+C),
J:

and the residual A(t) is independent of ((o, {1, (2, (3) and has the covariance function

rA(s, t) = Cov(Y(s),Y(t) | v, ).
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Equations (54) and (55) then give the following expressions for the length of the

spring, height of the car, and height of the wheel during a flight,
Spring(t) = (a3+ (obs+(3)-exp(—kt/c),
Car(t) = P_ + (ar+Gobi+1) + t(aotGobat-Ga) — gt%/2,
Wheel(t) = Car(t) — Po — Spring(t).
Combining these with the road model (60), we get the height of the wheel above road as
Height(t) = Wheel(t) — Road(t) =

= (a1+Cob1+¢1) + t(aa+(obat+(2) — gt2/‘2 — (a3+Cobs+(3) exp(—kt/c) —
3
=b(t) = X (bi(t) — At) =
j=0

= {a1+a2t—gt2/2—ag-exp(—kt/c)—b(t)} + Co{by+bat—bz-exp(—kt/c)=bo(t)} +
+ G{1-bi(t)} + Ca{t—ba(t)} — Ca{exp(—kt/c)+bs(t)} — A(t).

This model process is of the form (26), containing one deterministic function, four random
coefficient functions, and one Gaussian residual.

We now consider the first time the wheel hits the ground after a jump, i.e. the first
zero (down)crossing of Height(t), and we want to find its distribution using the method of
Section 4. One then has to observe that Height(t) alrcady contains four random coceffi-
cients, which have to be conditioned on. Further, to get good accuracy in the approxi-
mation one may have to condition on some values of the residual A(L), thus increasing the
number of regressors to a point where the computation time becomes prohibitive.

It is therefore more efficient to slightly reformulate the model, including the three
normal coefficients (;,(2,{3 into the residual, and write the model as the sum of one deter-

minstic function, one Rayleigh term and one Gaussian residual,

Height(t) = {a|+agt—gt2/2—a3-exp(—kt/c)—b(t)} +
+ Cof{bi+bat—bzexp(—kt/c)—bo(t)} + A°(t), (61)

where now A%(t) is nonstationary Gaussian with a covariance function given by r, and
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the covariances between (j, (2, (3. This will permit the computer algorithm to pick as
regressors those values of Ao(t) which contribute the most to the distribution of the first
zero crossing. Note that (61) is of the same simple form as the original Slepian model (11).
The following numerical example shows the regression approximation for the time of
first zero of Height(t) when the Gaussian road process Yos) is of the standard form with

spectral density
Ry (@) = 00/2/3 for |w| < 3.
Yo Y

( : ais is rather different from real road spectra (see Lindgren (1981) for references) but is
chosen here as a standard process.) Further k = 0.64 N/m, ¢ = 0.08 Ns/m, and m =

0.01 kg. We have chosen two different speed values, v = 2 m/s, 4 m/s. With 0\2[ = (.5, the
jump intensity, i.e. the mean number of zero upcrossings per time unit for N(t), is 0.035

and 0.85, respectively.

-
0 10.00

Figure 5: Regression approximations to jump length density for v=2 and v=4;

(——— k=0, *—*—* k=2)

With a model of the form (61), the regression approximation of the time for the first
zero are shown in Figure 5 for the two v-values. For v = 2 m/s it suffices to use one extra

regressor, while for v = 4 m/s one needs two in order to find the characteristic details of

|




the distribution. As seen, the speed is important; for v =4 m/s the distribution of jump
length has two tops, while it is unimodal for low speed. This can be explained by the

periodicity of the road profile. For v = 4 m/s, the wheel can jump over the first hill and

hit the second.

. . . . . 2
5.2 Regression approximations for crossings in the y “—processes

2 . .
A x“—process is the sum of squares of Gaussian processes,

n s
(1) = £z,
1=

where Zl(t), ey Zn(t) are independent, with mean zero and variance one. In the general

xz—process, Zi(s) and Zk(t) need not be independent fcr i # k, s # t, but in order to keep
. . 2 -

complexity down, we shall here consider only x~—processes with independent components

with common covariance function r(t). Let A, = V(Z{(t)) = —r"(0). (The envelope of a

Gaussian process is a simple example of a ,\'Q-process with dependent components; see

Ditlevsen & Lindgren (1988), and Lindgren (1989) for details on the Slepian model.)

X

The Slepian model for x“(-) after upcrossings of a level u’ was studied by

Aronowich & Adler (1986). In the following simple form, given by Lindgren (1989),
Y () = (by(t)=¢ by ()+4, (1) + g (Gb (V+4(t)?
ut T TN Py 1 o inl i

(1 is a standard Raylecigh variable, (,, ..., Cn are independent standard Gaussian vari-
ables and the residual processes Ai are independent zero mean Gaussian with covariance
function given by (8). Note that here are ony two types of b—functions, given by
by(t) = ur(t),
1/2
by(t) = r'()/AL/2.
Suppose we are interested in the length T of an excursion above u2 by the x“‘)—

process X2(t), i.e. of the first T for which Y:(T) =u2 In order to put the problem in

the general setting of Scction 4, we introduce the process




£1) = Y (t)-u® =

= (by()=¢; by (+A (1) + B (¢hy (D+A,(1) — v (62)

1=2

it

As in Section 4, the regression method is based on a decomposition of £(t) into a re-
gression term and independent residual processes, but here the decomposition is not linear
as in equation (26) but quadratic, which leads to mixed terms of the form ¢;jAj(s).

However, the most important common property of (26) and (62) is that in both
cases, the é—process is defined by a mapping of ¢ = ((l, vy (n) and A(t) = (Al(t), vy
An(t)), i.e. &(t) = F(t, ¢, A(t)). Under some additional assumptions on I, one can gene-
ralise the results of Section 4, to cover this more complicated situation; see Rychlik (1987b,
1989b).

Like in Section 4, the regression approximation of T is defined as the correspon-
ding variables in the regression functions Ek’ obtained by replacing in (62), the residual

processes A by the regressions A on some additional explanatory vectors Y' (Y'

-
k),1.e

€L(1) = (by(t)=¢ b (1)+A, (1)) +2 <<,b1m+A( N?-u?, (63)
where

A1) = E(A(1)] Y. (61)

In general, the number of regressors in the vector Yi may depend on i, i.e. k-—-ki.
However, in our examples the residual processcs Ai are independent and identically
distributed, and we choose the same function to define the regressors for each residual, i.e.
Y= Y(Ai( -)). This choice leads to independent and identically distributed regressions
(64). In addition, since the first squared process in (62) is exactly the same as the Slepian
model (11), we can use the same procedure to select vl = Y(A,(: )) as we used in Section

4.6 for the distribution of excursion length distribution.

We shall denote the regression approximation of T by TI\’ i.e. Tlr\ = T({lr(). Since

Ai are Gaussian processes, the regressors Y' can be choosen using the same methods as in

Section 4.5.
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We begin with the true density of T. As before, using the implicit definition of T,
we find a transformation which represents one of ¢;'s as a function of T, the remaining (,'j's

and the residual processes, Aj, i.c.

2

(bo(T)=¢,by (T)+A (T))* +

(¢by(T)+4,(T)* —u® = . (65)

R

i=2

Since ¢, has a larger variance than the other {.—variables, we solve (65) for ¢,. Assumin
1 i 1 g

bl(t) # 0, then, for T = t, ((.)...Cn) =x and A = w, we have

(x;by W+ 2 —bo(1) = w (V)b (1) = aytxw)  (66)

-

or

2 I 2,1/2 -
¢ = ({u” = X (xb 0+ ()7} /2 = by() = w (/D) (1) = q (txw).  (67)
i=2
Similarily to (39), the Jacobians Ji' i=1,2, of the transformations Qi (66, 67), are

obtained by the implicit function theorem for evaluation of 6(1/81‘, viz.

d ,i
{ xu(s)
J'i(t,x,w) =— ds>t | 2L , (68)

(-1 )i{u2—2?=2(xibl(t)+wi(t))2} 1/le(t)

where the function {im“(s) is defined by "£(s)|€(t)=0, (a,...,(n=x, A=w", i.e.

Il ==

Eim,(S)=(bo(s)—qi(t,x,w)bl(s)wl(s))2+ (Xib1(8)+wi(s))2—l12. (69)

i=2
Then the true conditional density of (T} C.,,...,C") can be written as an expectation
over all sample paths of A = (AI""’An)’ of the density (T| g‘.,,...,g‘n,A), which is defined

by the variable transformation (66, 67), i.e.

2 .
T o a8 = iEIEA[I(t:E:m)' lJi(t,X»A)lqi(t,x,A)exp{—0.5qi(t,x,A)2}], (70)

since Cl i3 a Rayleigh variable independent of (3, ..., (n. The indicator function I(t;-) is

defined by (34), i.e.
1 if f(s) >0 forall s, 0<s<t,
1(t:f) = l (71)

0 otherwise .

Once again, the density of T can be written in the "marked crossing" form, see (42), i.e.
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[p(t) = BV | 60=0)-T,)(0)

The expectation in (70) is difficult to evaluate exactly, since the indicator I(t;§,,,)

depends on the whole realization of ¢, i.e.on A.

Finally, the conditional density of the regression approximation T;;] (2,...,(n is ob-

tained by replacing in (70) the residual processes A = (Al,...,An) by their regressions

A=(A

C

l,...,A“) as in (63). In the simplest case, k=0, the residuals Ai are replaced by

onstant functions equal to zero. Then the expectation in (70) disappears, leading to an

explicit density, viz.

2 .
f'l‘(r)l Ca C"(t|x) = _Sll(t;f:xo)' |Ji(t,x,0)|qi(t,x,O)cxp{—O.Sqi(t,x,0)2}]. (72)
5. i
1.00 120 }
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Figure 6: Regression approximation of excursion length density after a u—upcrossing for

\2—process, the sum of squares of two standard normal processes; (a) u = 2, (b) u = 3;

k=0( ).

Jk=1(*"—%),k=3(




— 45—

REFERENCES

Aronowich, M. & Adler, R. (1985). Behaviour of y2—prncesses at extiema. Adv. Appl.
Probab. 17, 280—297.

Aronowich, M. & Adler, R. (1986). Extrema and level crossing of y2—processes. Adv.
Appl. Probab. 18, 901-920.

Aronowich, M. & Adler, R. (1988). Sample path behaviour of 12 surfaces at extrema. Adv.
Appl. Probab. 20, 719-738.

Billingsley, P. (1968). Convergence of probability measures. Wiley, New York.

Cramér, H. & Leadbetter, M.R. (1967). Stationary and related stochastic processes.
Wiley, New York.

Ditlevsen, O. (1985a). Survey on applications of Slepian model processes in structural
reliability. Proc. ICOSSAR '85, Eds.: I. Konishi, A. H.—S. Ang, M. Shinozuka,
TASSAR Japan, Vol. 1, 241-250.

Ditlevsen, O. (1985b). Fatigue model for elastic bars in turbulent wind. J. Wind Engng.
Industrial Aerodynamics, 18, 27-52.

Ditlevsen, O. (1986). Elasto—plastic oscillator with Gaussian excitation. J. Engng.
Mechanics, 112, 386—406.

Ditlevsen, O. (1988). Gaussian excited elasto—plastic oscillator with rare visits to plastic
domain. Proc. Res. Workshop on Stochastic Mechanics, Eds. O. Ditlevsen & S.
Krenk, DTH, Denmark, 106—130.

Ditlevsen, O. & Lindgren, G. (1988). Empty envelope excursions in stationary Gaussian
processes. J. Sound and Vibration, 122, 571-587.

Durbin, J. (1985). The first—passage density of continuous Gaussian process to a general
boundary. J. Appl. Prob. 22, 99-122.

Jogréus, C. (1986). Slepian models applied to a non—linear dynamic system.

Univ. of Lund, Statist. Res. Report 1986:6, 1-20.

Kac, M. & Slepian, D. (1959). Large excursions of Gaussian processes. Ann. Math. Statist.

30, 1215—1228.




— 46 —

Lamperti, J. (1965). On limit theorems for Gaussian processes. Ann. Math. Statist. 36,
304-310.

Leadbetter, M.R., Lindgren, G. & Rootzén, . (1933). Extremes and related properties of
random sequences and processes. Springer—Verlag, New York.

Lindgren, G. (1970). Some properties of a normal process near a local maximum. Ann.
Math. Statist. 41, 1870—1883.

Lindgren, G. (1972). Wave—length and amplitude in Gaussian noise. Adv. Appl. Prob. 4,
81—-108.

Lindgren, G. (1977). Functional limits of empirical distributions in crossing theory.
Stoch. Processes Appl. 5, 143—149.

Lindgren, G. (1981). Jumps and bumps on random roads. J. Sound and Vibration 78,
383-395.

Lindgren, G. (1983). On the shape and duration of FM~—clicks. IEEE Trans. Inform.
Theory, IT—-29, 536—543.

Lindgren, G. (1984a). Use and structure of Slepian model processes for prediction and
detection in crossing and extreme value theory. Proc. NATO ASI on Statistical
Extremes and Applications, Vimeiro 1983. Reidel Publ. Co, 261-284.

Lindgren, G. (1984b). A note on the extremal properties of the Morison equation. Ocean
Engng. 11, 543-548. |

Lindgren, G. (1984c). On the shape and duration of clicks in modulated FM transmission.
IEEE Trans. Inform. Theory, IT-30, 728-735.

Lindgren, G. (1989). Slepian models for y2—processes with dependent components with
application to envelope upcrossings. J. Appl. Probab. 26, 36—49.

Lindgren, G. & Rootzén, H. (1987). Extreme values: theory and technical applications.
Scand. J. Statist. 13, 241-279.

Lindgren, G. & Rychlik, I. (1982). Wave characteristic distributions for Gaussian waves —

wave—length, amplitude, and steepness. Ocean. Engng. 9, 411—432.




—47 =

Lindgren, G. & Rychlik, I. (1987). Rain Flow Cycle distributions for fatigne life prediction
under Gaussian load processes. Fatigue Fract. Engng Mater. Struct. Vol. 10, No. 3,
251-260.

Longuet—Higgins, M.S. (1983). On the joint distribution of wave periods and amplitudes
in a random wave field. Proc. R. Soc. Lond., A 389, 241-258.

Rice, J.R. & Beer, F.P. (1965). On the distribution of rises and falls in a continuous
random process. J. Basic Engineering, ASME, Ser. D), 87, 398—1041.

Rice, S.0. (1944), (1945). Mathematical analysis of random noise. Bell Syst. Tech. J. 23,
pp. 282-332, 24, 46—156.

Rusakov, A.A. & Seleznjev, O.V. (1988). On weak convergence of functionals on random
processes with continuously differentiable sample functions. Theory of Random
Processes, 15, 85—90.

Rychlik, I. (1987a). Regression approximations of wavelength and amplitude distributions.
Adv. Appl. Prob. 19, 396—430.

Rychlik, I. (1987b). Joint distribution of successive zero crossing distances for stationary
Gaussian processes. J. Appl. Probab. 24, 378-385.

Rychlik, I. (1987¢). A note on Durbin’s formula for the first—passage density. Statistics &
Probability Letters 5, 425—428.

Rychlik, I. (1987d). New bounds for the first passage, wave—length and amplitude
densities. Univ. Lund Stat. Res. Rep. 1987:9, 1-19. Accepted for publication in
Stoch. Processes Appl.

Rychlik, I. (1988). Rain flow cycle distribution for ergodic load processes. STAM J. Appl.
Math., Vol. 48, 662—679.

Rychlik, I. (1989a). On the distribution of random waves and cycles. Springer Lecture
Notes in Statistics, No 51, Extreme Value Theory, 100—113.

Rychlik, 1. (1989b). Two barriers problem for continuously differentiable processes.

Dept. of Statistics, University of North Carolina, Chapel Hill, Technical Report No.
277, 1-30.




Seleznjev, O.V. (1989a). On weak convergence of probability measures on functional space
Ck[0,w]. Univ. of Lund, Statist. Res. Report 1989:4, 1-8.

Seleznjev, O.V. (1989h). On weak convergence of sequence of continuously differentiable
random fields. Univ. of Lund, Statist. Res. Report 1989:5, 1-9.

Slepian, D. (1963). On the zeros of Gaussian noise. In Time Series Analysis, Ed. M.
Rosenblatt, Wiley, New York, 104—115.

Wilson, R. (1983). A study of model random fields. Thesis. University of New South
Wales.

Wilson, R. (1986). Weak convergence of probability measures in spaces of smooth
functions. Stoch. Proc. Appl. 23, 333-337.

Wilson, R. (1988). Model fields in crossing theory: a weak convergence perspective. Adv.
Appl. Probab. 20, 756—774.

Wilson, R. & Adler, R. (1982). The structure of Gaussian fields near a level crossing.

Adv. Appl. Probab. 14, 543-565.




‘06 "we[ ‘A109yl aN[BA JW3IIX3 pue
8uyssol1d uj suojlwwixosdde uoyssaa8a1 pue sjapow ueidals ‘NIIYoAY ‘1 pue uaa8puil ‘9

‘06 ‘uef ‘Apnis D}i15wodB

® :sewj3 [BOO] JO 20ULISIXD Y3 UQ ‘21d QT PUB ZI[A0IOH [ ‘uosiapuy ‘Wl

‘68 "19%0
‘§9]1498 PWj3 9uOZO of1aydsolvIIS U] UOIIB[I1I0D >ipoitad "PANY K pue pIajjwoolg ‘d

‘68 "3100 'Bullaljlj JESUI] U UOTIBWIISI 193auresey ‘JVN(Ig Y pue andueiiiey "o

g82

‘082

N7x4

‘68 "390 ‘SIA91S JO poyrew
ayxs £q siajauwesud panyewa oouds 310qQIIH JO uojIWISY raomies ‘Y puw Induejirey "D

‘68
300 ‘se@ssao0ad 2[qe}IuadjIIp A[SNONUTILOD J10J wo[qosd JojJivq-0m1 YL NIIYIAY T -

(uvo3IPI43851Q) 68
‘3130 ‘sessadoad dj1seYd0Is jo syesdaiuy Bujimuyjisa J03 suBisap a(duweg ‘juuayuag ‘)

‘68 190 ‘SNIND|ED [PUOISUMWIP 93IFJUIJUY JO Kioayi @sjou IJYs y ‘®pIH ‘1

‘68 -idag ‘reiSaju]
wewukey 9yl pue Bujress ‘swioj-d ‘soeyd snoauaBowoy canduerirey "o pue uosiyol ‘x°D

‘68 “31deg 'suolavoljdde
Yija suolienba [B[IUIISIJIp D1ISTYD0IS [BUOISUAIP R JUTJUL ‘anduejiiey "9

‘68 -1deg ‘sed3a1u} Judly a(dji|nm 10j UOLINTID aouapuadapul ue ug ‘Basquartey 0
‘68 ‘1deg ‘s[eiBe1U] I[qEIS I[qNOp PUE $I[ISITIS-{] ‘rooqufiN [ -
‘68 "1das 'sa[qEIJIBA I[qEIs DjJIdumis JO IDUBIIEA [BUCTITPUO) ‘SlUBQUED S pue NN A

‘68
-8ny ‘uojieaBaiuj djaseysols diiinu ujy sass53201d jujod jo sasn awog ‘Bisquairey 0 -

‘68 aunf ‘sawil
fujddors padaeu 103 uojieiusssidal jeiBliuy ue pue s8ueyd awll wopuey “fisquariey O -

‘68 aun{ ‘sassad0id peiB[21100 A[[EOIpotIad isouwye jO K109y UOTIB[III0) “pPINY ‘H -
‘68 ABY ‘'S9INFTIW WOPUBI pUR UOIIVIDOSSY ‘suBAl ‘S

‘68 '3dy ‘sassadoxd
ojiseyoolrs 3o sjesBaiuy Bujrwwiis? 1oy suByisep Bujjdwes °“sjuequwe) S PUB Juuagquag "N -

‘68 ‘iady ‘sejeBujiles panjea adeds 11aqIIH pUR
510109a wopuel j1uapuadap AMean J0j sSWIIOI] uoylrewixolddy ‘ddyiiyd ‘a4 pue priuoy °Q -

‘68 -ady ‘saef Lijr11quqoad 03
uoljenydde ue Yiia wiojsUeld UOPEY ISIAAUL Y31 jo A3 JNUTIUODUCU Y] ‘jlog-aakey "3

(uor1v323581q) "68 “ady ‘siejawesed panjea adeds 113qIIH JO UOTITWIISd UD ‘JBNIIG ¥

‘68 ‘ady ‘suojav(aiiod aajajsod
pue £K1}Djuciouow DJiseydols Ul sanbjuysal uojienbs voisSNiFIQ "331d 7 PUC 18QIIY ']

-1eadde 03 ' jouy 231D1S0ANINK [ 68 "ddV ‘spial} wopuel Lieuojiwas
1aj0wered-0M1 3O K102y UOFIDIPaad Y3 UQ ‘TWIIN ‘H PUE wmiy "DV Induejiiey D -

- seadde 01 ‘686l ‘12§ ‘Souoy ‘yIDN [ 47wy "68 "2dy ‘'SUIQQOY 'H joO yJoa Araee
swos Yilm UOTIDSULOD s3] pue Bujjdwes [eaie uj poylaw p148 suly vy ‘Jindueyyiey "9

‘68 "4dy 'sisA[eUR D11SEYD031S PUR II]INO4 JBIUFT ‘FIPNOY D

-Jeadde 03 “s$2]ISVYD0IS
‘68 -Jdy 'Bupdaijlj Jauapy Alcuopievis-uou pue suy3 j108[® UOJ3IVZ]I0IDR] *JIPNOH D

‘68 "4dy ‘Bujiai(lj JEAUTTUOU U] wRI0IY) ITWI] [BIIUID Y ‘Jlop-d3fey "3

‘8.2

‘9.2

R:774

g 2r4

‘€2

‘T2

‘0Lz

TR

192

1%

‘95¢




