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SLEPIAN MODELS AND REGRIESSION APPROXIMATIONS
IN CROSSING AND EXTRlWNE VALUE TIIOIY

Georg Lindgren Igor Rychlik
Department of Mathematical Statistics I)epartment of Statistics
University of Lund Colorado State University
Box 118 FORTF COLLIINS CO 80523
S-221 00 LUNI) ISA
Sweden

Abstract

In crossing theory for stochastic processes the distribution of quantities such as distances

between level crossings, maximum height of an excursion between level crossings, ampli-

tude and wavelength, etc., can only be written in the form of infinite-dimensional inte-

grals, which are difficult to evaluate numerically. A Slepian model is an explicit random

function representation of the process after a level crossing and it, consists of one regression

term and one residual process. The regression approximation of a crossing variable is

defined as the corresponding variable in the regression term of the Slepian model, and its

distribution can be evaluated numerically as a finite-dimensional integral.

This paper reviews the use and structure of the Slepian model and the regression

method and shows how they can be used to obtain good numerical approximations to

various crossing variables. It gives a detailed account of the regression method for Gaussian

processes with auxilliary variables chosen in a recursive way. It also presents a package of

computer programs for the numerical calculations, and gives nuiniricu exaunl)es on

excursion lengths as well as wavelength and amplitude distributions. Further examples deal

with an engineering "jump-and-bunip" problem, and excursions for a \ 2-)ro(CSS.
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Slepian models and regression approximations

in crossing and extreme value theory

by

Georg Lindgren' Igor Rychlik 2

Univ of Lund, Swedenl 2 and Colorado State iUniv, Fort, Collins, liSA 2

1. INTRODUCTION

In the physical world, a random function is often described as a sequence of local maxima

or minima, constituting a series of random waves. In fact, not only the visual impression of

the process, but also many technologically important implications in such fields as metal

fatigue caused by random vibrations, failure caused by excess load on a construction, etc.,

depend on the character of the process as a random wave form. The basic objects in this

theory are level crossings and local extremes.

A Slepian model is a random function representation of the conditional behaviour of

a stochastic process after events defined by level or curve crossings. In general, a Slepian

model contains one regression term with random coefficients which describe the dependence

on initial conditions such as the slope at the crossing, the value of the process at a pre-

determined point, etc, and one residual term, wvhich describes the deviations from the path

set out by the initial conditions.

In crossing theory there are many variables of great practical interest which are very

difficult to analyse, such as the distance between level crossings, maximum height of an

excursion between two level crossings, etc. The distribution of these quantities can usually

be written only in the form of infinite-dimensional integrals and there is therefore a large

need for good numerical approximations. A regression approximation of a crossing variable

is defined as the corresponding variable in the regression term of the Slepian model. Its

distribution can often be found explicitly, or expressed as a finite-dimensional integral,

which can be evaluated explicitly.
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The model was first, int rodluced by Slepian (1963) to descrih e the behaviolur lof a

stationary Gaussian process after a zero crossing. The term Slepian model was introduced

by Lindgren (1977). Ditlevsen (1985a) gives a review of different engineering applications,

and Ditlevsen (1985b), (1986), and (1988) contain further applications.

The regression approximatioi based on the Slepian mi odel was first. usel by Ini1d-

gren & Rychlik (1982) in connection with the analysis of random waves. It has been used to

find practically useful upper and lower bounds for random wave characteristics such as

wave length and amplitude and related quantities often used in reliablility, ocean engine-

ering, structural and mechanical engineering, and other fields of technology; see e.g.

Rychlik (1988, 1989a).

A further important use of the Slepian model is that of asymptotic expansions. After

a crossing of a very high level many processes take on an almost deterministic form, which

can be found from the leading terms in a Taylor expansion; see Lindgren (1983, 1984b,

1984c), Ditlevsen & Lindgren (1988).

Most of the work on Slepian models and regression al)l)roximatnions in crossing

theory has been directed towards Gaussian processes or to functions of such processes.

However, the Slepian model is not limited to Gaussian processes even if its structure may

not be as explicit for non-Gaussian processes. The X2 -process is a simple example of a

non-Gaussian process for which the Slepian model is analytically tractable; see Aronowich

& Adler (1985), (1986), and Lindgren (1989).

In this paper we shall give a review of the use and structure of the Slepian model in

crossing theory and how it can be used together with the regression approximation to find

good approximations to notoriously difficult distributions such as wavelength and ampli-

tude, waiting-times between crossings of constant and moving barriers and other quianti-

ties.

Section 2 of this paper contains the basic form of Slepian models after level crossings

and local extremes and the simple regression approximations for the length of an excursion

and for the wave length and amplitude after a local maximum. In Section 3 we give mathe-

matical theorems about the interpretation of Slepian models as weak limits of conditional
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distributions given an upcrossiig iii the Kac & Slepiaii horizontal wifdow, sense (see Kac &

Slepian (1959)), and as empirical limits in the observed series of level crossings.

Section 4 describes the regression approximation for excursion leiigtli as well as for

wave length and amplitude, first in a the simple case with fixed regression variables, and

then in a more complicated situation where the regression variables are chosen in a recur-

sive way. In Section 5, finally, we apply the theory to an engineering example, chosen from

structural mechanics, and to the level crossing distances in the X2-process. Numerical

examples, based on a library of FORTRAN subroutines, are also presented in this section.

2. INTRODUCTORY EXAMPLES

As first examples of Slepian models and regression approximations we shall describe the

behaviour of a stationary Gaussian process after upcrossings of a fixed level and after local

maxima.

Suppose (t) is a stationary Gaussian process with mean zero and continuously

differentiable sample paths. When needed we shall assume also the sdcond derivative to

exist. Let the covariance function be r(t) = E( (s). (s+t)) with spectral density R(t),

i.e.

0o Accession For' /
r(t) = J exp(iwt)R(w) dw, (1)--vo NKTIS MRA&IM

DTIC TAB 0i
and write Unannounced L-

justification
oo

Ao =V( (t)) =r(O) R f (w) d1w, Jsiiai

Distribution/

A2 = V('(t)) =-r"(0) = f WR(W) d, Availability Codes

-Dist Special

A4 - V("(t) = rV(0) = 4R( d,

for the spectral moments, whenever they exist.

For any fixed level u we say that a u-upcrossing occurs at, time to if
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(to) = u, '(to) > 0, (2)

and we write N(u; T) for the nl der of u-ulpcrossings in the interval [0,T]. Thein the

mean number of upcrossings is given by Rice's formula, (see Leadbetter Pt al. 1983), which

states

00E(N(u;T)) = TJ. yf V)() (u~y) dy=

=T • f (0) (u).- E(( '(O))+ I M()=u1),

where z+ = max(O,z). In the normal case this specializes to

E(N(u;T)) = T (27r) - 1 (A2 /Ao) 1/2exp(-2/2Ao),

since then (O) and '(O) are independent and normal with mean zero and variances Ao

and A2, respectively.

We shall also need a formula for the expected number of marked upcrossings, i.e.

crossings which satisfy some additional condition, specified by a set A. Let q/(t) be a

random vector which is jointly stationary with (t), and write N(u,A; T) for the number

of u-upcrossings by (t), O<t<T, which satisfy iq(t+.) E A. Then

E(N(u,A; T)) = T. J yf (u,y)-P(E(.) E A I (O)=u, '(0)=y) dy

ST.f(0)(u).E(( '(0))+q. ()A} )=u); (3)

see Leadbetter et al. (1983).

We shall have use for some formulas for the conditional mean and covariances for

a(t) given value and derivatives at a specified point. Since Cov('(s),(s+t)) = -r'(t),

Cov(s"(s),4(s+t)) = r"(t), and Cov( "(s),'(s+t)) = r"(t), one has

E( (s+t) I(s)=u, '(s)=y) = ur(t)/Ao - yr'(t)/A2., (4)

E( (s+t) I(s)=u, '(s)=y, "(s)=z) =

= uA(t) + yB(t) + zC(t), (5)

Cov((s+t 1),~(s+t 2 )J (s)=u, '(s)=y) =

= r(t 2-t,) - r(t 1)r(t,)/Ao - r'(tl)r'(t2 )/A2, (6)
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Cov( (s+t 1 ), (s+t 2) I (s)=u, '(s)=y, "(s)=z)

= r(t 2-tt) - r(tl)r(t 2)/Ao - r'(ti)r'(t2 )/A-2 - )(t1 )b(t 2 ), (7)

where

b(t) - Cov( (s+t), "(s) I(s), '(s)) = r"(t)+(A2 /Ao)r(t)
v(_" (s) I Vs)' V (s))I/A /. 4 -A /A o

DEFINITION 1: (Standard process) In the sequel, we shall illustrate the regression

approximation by means of a stationary Gaussian low frequency white noise process (t),

with covariance function

r(t) = s t3
t

and spectral density, which is constant over (- 1, 13),

R(w) = 1/213 for Ijw <13.

We shall call such a process a "standard process". It has V( (t)) = V( '(t)) = 1, and

V( "(t)) = 1.8. 0

EXAMPLE 1: (Slepian model after u-upcrossings.) Let the process (t), t>O, have upcros-

sings of the level i at t1 < t2 < ... , amA consider tw process a fixed I.niei, t aftcr alny one

of these upcrossings, tk, say. For different tk-points, (tk+t) takes on different values and

thus behaves like the realization of a random sequence. The value of V(tk+t) depends to

some extent on (tk)=u and on (the unobserved) '(tk). This dependence can be expressed

through the regression function, (cf. (4)),

E( (tk+t) I (tk)=11, '(tk)=y) = ur(t)/Xo- yr'(t)/A2,

while the rest of the variation is described by the residual process

A(t ItO) = (tk+t) - E( (tk+t) I V(tk, '(tk)).
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considering t as a parameter, A(L I tk) becomes a realization of a ranidomi process, wvhich is

Gaussian with mean zero and a covariance function which, by (6), s equal to

C(t 1, t2 ) 1. r4 2-ti) - r(t,)r-(t2 ,)/Ao - r'(t.1 )r1( t)/A. (8

Thus we can write

= V(tk) -r( t)/A0 - C'(tk) -r'(t )/A, + A( t Itk). (9)

In formula (9) we could have replaced VCtk) by u, but we have chosen to retain it

in order to indicate the dependence on the starting point. The derivative '(tk) has still to

be specified, and this is the tricky part of the Slepian model, since '(t1) j (), ... do not

form a stationary sequence. flowever, in the long rim, thle empirical (listribtition of '(tk),

taken over all tk, k=1I,2.... converges to a Rayleigh dlist ribuition with denisity

fe1
t)()= A2y exp(-y2 /2A2), Y > 0. (10)

Here erg stands for ergodic, or long run, (listrilbiition, meaning that it is thle limit of tile

empirical distribution of '(tk), i.e. for an ergodic process,

Y (y y=Iim#{tkE [ 0,T]; ~'(tk-) Y}

0 T--, dy co7 r #{t kE[O,TI}

To describe the long run properties of Vtk+t) as tk runs through the set of all

u-upcrossings, we therefore only have to replace in (9), V(tk by ii, and the derivative

' (tk) by a lRayleiglu-dist rilbutel ra ndorn variable q, with di(ensi ty gi vein b y (10), andu

A(t I tk) by an independent non-stationary Gaussian process A(t) with mean zero and co-

variance function C(s,t) given by (8), thereby obtaining a process

j)= ur(t)/Ao - qr'(t)/A 2 + A(t). (1

This is the Slepian model for (t) at time t after an upcrossing of the level li.

One should think of j1 t,) as a stochastic generator, which, by repeatedly driawinlg reali-

zations of q~ and A~(t), describes thle long run behaviour of (tk+t) for k = 1, 2, ... For

example, u'(O) = ur'(0)IAo - iqr"(0)/A 2 + A'(0) = q is distributed as '(tk), k = 1, 2,
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EXAMPLE 2: (Slepian model after local maximun.) Suppose (t), t O has twice contin-

uously differentiable sample paths and let it have local maxima at t1 < t2 < .... This is

similar to Exampel 1, but now '(t) has its zero downcrossings at I k, aild we want to

describe (tk+t) for different tk. One way of doing this is to let (tk+t) depend on the

height and curvature at the maximum at tk through te regression

E( (tk+t) I (t0)=u, '(tk)=O, V"(tL)=Z) =

= u.A(t) + 0.B(t) + z.C(t).

Defining Am(tltk) = V(tk+t) - E( (tk+t)l I(tk), '(tk), "(tk)), we can write

(tk+t) = &(tk).A(t) + "(tk).C(t) + Am(tftk)

in analogy with (9). Both (tk) and "(tk) at the maximum are random quantities with

a long run distribution which turns out to have the density (see Lindgren, 1970),

ergtk), "(tk)(UZ) =

9 9)

= const-(--z) exp{ -(Aoz +2A,uz+A 4u-)}, z < 0 . (12)
2(AoA 4-A?%)

Now, let . and (. be random variables with joint density (12), and let Am(t)

be a non-stationary Gaussian process, independent of (em, ("), with mean zero and with

covariance function Cm(s,t) given by (7). Thus, m, (., and A,( " ) describe (t 0,, "(t),

and Am(. I tk) as tk runs through the set of all local maxima.

The Slepian model for ( .) near local maxima is then (lefinedl as

max(t) = mA(t) + (mC(t) + Am(t). (13)

0

EXAMPLE 1 (contd.): (Regression approximation for length of an excursion above ii.)

Let u > 0 be a fixed level, and use model (11), p1 (t) = ur(t)/Ao - qir'(t)/A 2 + A(t), to

describe the behaviour of &(tk+t) after u-upcrossings. Let T > 0 be the time of the first

downcrossing of the level u for u(t), i.e. the length of the excursion above u that



started at time 0. It can also be defined as the smallest t > 0 for which u(t) = 1. This

equation can be solved for q, giving

u(l-r(T) / A0 )-A('T)

r' (T)/A2

provided r'(T) # 0.

However, this equation is of no use when we want to find the (listribution of T,

since A(t) is a random process. Now, consider only the regression term in ,,(t), which we

shall denote by r(t),

(t) = ur(t)/Ao - 7r'(t)/A 2,

and define T to be the length of the excursion above ii by {r(t), which means that, i.a.,

ru(Tr) = ur(Tr)/A0 - 1r'(Tr)/A, = 11. (1 4)

Again, solving for q7, we obtain 1l as a function of Tr only. Denoting this function by q,

u(l-r(t) / Ao)
q(t)tA

we have

=(Tr) u(1-r ( Tr) / Ao)

r'(Tr)/A2

(Here we need u#0, since if u=O the distribution of Tr is concentrated at the first zero

of r'(t).)

Now, there is a simple relation between the (enisities of 71 an(l Tr,

f ,r(t) = f (q(t))" I J(t) .- (t), (15)

where I(t) is an indicator function,

{ 1 if u r (s)/Ao - q(t)r'(s)/A2 > u for all s, O<s<t,
0 otherwise,

and J(t) is the Jacobian of the transformation, i.e.

(1-r(t)/Ao)r"(t)J(t) = = i. {A,/\o + A2 .2
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Inserting the Rayleigh density (10), we obtain

ftr ( t ) = \2 (l(t) exp(--(l(t)2 /2A2)• I J(t)I I1(t); (16)

this is called the regression approximation of zero order for the density of T.

To facilitate geiieralizaLions we shall introduce the function

Crt(s) = "6(s) I 6r(t)=u" = ur(s)/Ao - q(t)r(s)/A 2

obt ained by replacing 7 by q(t), to make r(t) = u. Writing (14) as

G(. r)i - u - ur(Tr)/AO,

one can then write the .Jacobian in the general form

(IJ( t) s- ut( S)]s= t  (7

det G(t)

1 50

U=3

too0 u=2

0.50 / /
/

000 1.00 200 3 0.

Figure 1: Density fTr(t) of zero order regression approximation for length of an excursion

above u for a standard process (t); u = 0, 1, 2, 3. o

EXAMPILE 2 (cold.): (Regression approximation for wavelength and amplitude.) We

shall seek the distribution of the wavelength T and amplitude H after a local maximum,

i.e. the horizon tal a 111d xI' a (list a(ices l)(Awen a naximumn and the following mini tumn.

Defined in terms of the model function max(t) = GA(t) + (,mC(t) + Am(t), the wave
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length T > 0 is the time of the first zero upcrossing by ax(t), while 11 = max(0) -

max(T).

The regression approximation of T, II is defined as the ('orrespoliig qnawtities

Tr, Hr in the regression term rax(t) = mA(t) + (mC(t) of Gmax(t). Using A(0)=I,

C(0)=O, one has

mA'(Tr) + (mC'(Tr) = 0, (18)

Hr = {(mA(0) + (mC(0)} - {mA(Tr) + (mC(Tr)} -

= m.(lA(Tr)) - (m-.C(Tr), (19)

which can be solved for sm,(m. To write the solution in a form that can be generalized to

more complicated problemis, define

l-A(t) C(t)1
Ct A' (t) C'I(t)l

and write equations (18) and (19) as

G(Tr) (m ( m)T = (Hr 0 )T

If det G(Tr) # 0, this has the general solution

(m m) T =G(Tr) - 1 (H r 0 )T (20)

Written explicitly, this states that

6m = 11r. p(Tr)q(Tr),

where M = Hrq(Tr),

where

p(t) = -C'(t)/A(t),

q(t) =- A'(t)/{(l-A(t))C'(t)- A(t)C(t)).

(The only reason for writing the functions in this form is that the density of Tr, ,r then

can be written in a form which is familiar in engineering literature.)

The Jacobian of the transformation (20) can be expressed by means of the function
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r () rt xS , r r ,,

= "ax(S)' I Max(t)=0, Max(0 )-Hax(t)=h"

= hp(t)q(t)A'(s) + hq(t)C'(s) = h{p(t)q(t)A'(s) + q(t)C'(s)}

obtained by replacing {r, (m by the solution (20), to make Tr=t , Hr =h. Then, in analogy

with (17),

(I r(S 0,(s)'ls=t9
.=(t) = - 0 = hp'(t)(t(t).

d(et ((t)

With density of m, (m given by (12), this finally gives the following density for Tr, Hr

which shall be called the "zero order approximation" of fT,H:

f T r11 r t,h) = f hMl( (I(t)q(t), hq(t)) .J(t,h) l(t,h)

= const. I(t,h).h 2 iq(t) 3p'(t) I •

exp {-1 2 iq(t) 2 (Tnm7r) 4 {((r/Tm)2 p(t)+1)2 + 1- }, (21)24

where Tm = 7r(A 2/A 4)1/2 is the mean wavelength, and c = (1-A2/AoA 4)1 /2 is a measure

of the spectral width of the process. Further, I(t,h) is the indicator function which is

equal to one if tj,(s)' < 0 for all s, 0 < s < t, and zero otherwise. Note that if h < 0,

then ;th(s)' > 0 for small s > 0, which implies that l(t,h)= 0 for h < 0.

5

-h

4

3 I

sls,

2

0 

-

O0 1 2 3 4 5 6 " " " "

Figure 2: Level curves and l)erspectiv view of the density f'r, 1 r(t~h) of zero order

regression approximation of wavelength and amplitude for standard process (t). o
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The regression approximations described in Examples 1 and 2 are not very accurate,

as approximations to the true excursion and wave (list ributions. However, they can be im-

proved considerably by includling some extra information into the regression term, like the

value of the process or the derivative at some predefined time after the original crossing.

This is illustrated in the following example.

EXAMPLE 3: (Regression approximation of wavelength and amplitude with supplemen-

tary information.) Consider the model max(t) = mA(t) + (mC(t) + Am(t) after a local

maximum, presented in Example 2. Let si be a fixed timepoint, write X, = Am (si), and

define the new residual

AI(t) = Am(t) - E(Am(t) I XI) = Am(t) - Xibi(t),

where bi(t) is a deterministic function. Thus,

Grax(t) = mA(t) + (mC(t) + Xjb(t) + A1(t), (22)

9
where X, is normal with mean zero and some variance a'f = V(Am'(Si)), and A,(t) is a

non-stationary Gaussian process, the random variables ('m,(m), X 1, and the process A,(.)

being independent.

We shall approximate the distribution of wavelength T and amplitude H by

simple functions of (Cm,(m) and X1. To do this, write H = M0-M 1 , where

M 0 = max(O), NI1 = ,ax(T).

The regression part of (22) is

rax(t) = mA(t) + (mC(t) + Xibi(t).

rrDefine the first order regression approximation T1 as the wavelength of rax(t), i.e. take

Tr to be the first t such that

mA'(T ) + (mC'(T r) + Xb 1'(T[) = 0,

and define M 0 = rax(0), M, ax(T), respectively. (Note that A(O>1, C(0)0,

bl(0)=0, which implies M 0 = r m.) Then, Hr = r
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Thus, we have replaced the thre varialfles T, M, N1 by the approxi lat ing Tr,

MN, Mr1, which are connected to (m, 4m, (i through the following system of equations,

M = ,

NI= mA(T r ) + (,,C(T r ) + X Ih,('Fr),

0 = mA'(T r ) + (mC'(T r ) + X,b,'(Tr).

Writing

1 0 0.

G(t)= A(t) C(t) b(t)

A'(t) C'(t) bil(t),
rNr0)1, )T

M = (M r  , X=(G (M X011

we get the relations

M = G(Tr).X, X =G(TI)-.M,

and finally

fjr,,Mr, r (m0'mplt) = f-' m'Xl(UzX) I J(t,m0 ,ml) l(t,h,x), (23)

where (u,z,x)T = G(t) - 1 . (m0,ml,0)T are functions of (t,m 0,rni) and i = m0 - mi1 .

In (23),

f m,(m,Xi(U,Z,X) = f m .M (UZ)'fx(X),

where the first density is given by (12) and fx,(x) is a normal density. The .lacobian

J(t,m0 ,ml) is given by
d r s'stJ(t,mo ml) = - h s)'15 .t = det G(t) - . (uA ' (t)+zC"(t)+xbj"(t)),

det G(t)
r 

r=\
where as before thx(S)' denotes the process rax(S)' with u,z,x inserted to make Tr =t,

M0=m 0 ,r Mr=m1 . The indicator function l(t,h,x) in (23) is equal to one if rhx(s)' < 0

for all s, 0 < s < t, and zero otherwise.

Finally, the marginal density of Trttr can be obtained from (23) by numerical

integration of x over the set {x; l(t,h,x) = 1 }. The accuracy in the approximation



depends on the choice of si, and there are many possible suggestions where to put it; see

Section 4 for further details, and numerical examples of approximations of higher order.

0

3. SLEPIAN MODELS AS WEAK LIMITS

In Section 2 we have presented two basic Slepian models for a stationary Gaussian process

(t) after level crossings and local maxima, respectively,

u(t) = ur(t)/Ao - qr'(t)/A 2 + -A(t), (1)

max(t) = ,,A(t) + (mC(t) + Am(t). (1:1)

We have also given some intuitive interpretations of how they describe the behaviour of

(tk+t) when tk is an upcrossing of a fixed level u, or a local maximnu, respectively.

These intuitive interpretations can be made precise in two different directions. One

is by the horizontal window conditioning principle, the other is the ergodic frequency inter-

pretation. With the horizontal window conditioning, (t) is defined as the limit (in distri-

bution) as h -, 0 of a(s+t) conditioned on the event that a(s) has a u-upcrossing some-

where in the horizontal window [tk-h, tk]. It was introduced by Kac & Slepian (1959), who

also showed the connection with the frequency interpretation.

Both the horizontal window and the ergodic interpretation can be made in the sense

of distributional convergence in a space of sufficiently smooth functions. This means that

also distributions of variables such as excursion length, height of exceedances, wave length

and amplitude, obtained from the Slepian model, can be interpreted in the horizontal win-

dow conditioning and in the ergodic frequency sense, provided the topology is chosen in an

appropriate way. Such problems have been dealt with by i.a. Lamperti (1965), Lindgren

(1977), Wilson (1983, 1986, 1988), Rusakov & Selezn.lev (1988), and Seleznjev (1989a, b).

See also Leadbetter et al. (1983, Ch. 10) for an introduction.

Suppose a(t) has sample paths which are continuous functions (with probability

one). Even if not absolutely needed for most of our results, we shall also require the sample
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paths to be continuously differentiable. A sufficient con(lition for this is that the process is

separable and the covariance function -r"(t) of the (lerivalive has all expansion

-r"(t) = A2 + o( og it I I
- ) as t -0,

for some constant a > 1; see Cram6r Q Leadbetter (1967). (In Remark 3.1 we comment on

what happens when the derivative is assumed to exist only in quadratic mean.)

Define (Cl, VI) as the space of continuously differentiable functions on the real

line, with metric
00 r pIt rIx t Y't

d(x,y)= x(0)-y(0)1 + E 2-r s___t_-_rX__t)-y'(t__
r=1 1 + Sil)tI(rIX'(t)-y'(t)

i.e. Xn y as n -, o means that x -(0) y(0) and x 1(t,) y'(t) uniformly on all

bounded intervals. Further, let (C,', ifi,) denote the subspace of (Cl, 61), consisting of

functions such that x(0)=u, and write, for r>O, B T = [0,T], and I_- = [-r,0]. \Ve

consider (t) as a process defined on the space (Cl, e), with (t; x) = x(t); e.g. (tk+.)

is, with probability one, and element of C I. \Ve also use the same notation for functionals

defined on (Cl, $1) and the corresponding random variables.

Let, for any interval B,

N(u; B) = #{tk E B},

be the number of u-upcrossings, that fall in B. Similarly, for any set A E WII, let

N(u,A; B) = #{tk E B; (tk+.) E A),

be the number of u-upcrossings in B for which the sample function starting at t k

satisfies the condition given by the set A. These definitions generalize the definitions of

N(u; T) and N(u,A; T) in Section 2.

We shall give some examples of relevant sets A. The first example describes the

length of an excursion. Let rk be the length of the excursion above ii starting at tk, i.e.

Tk = inf{t > 0; ((tk+t) = "I,

and, for xE C', let



- 16-

r = inf{t > 0; x(t) = u}.

Then, for AT = {x E CI; T < T},

N(u,AT; B) = #{tk E B; 7k < T}

is the number of excursions, starting in B, with length less than T.

As a second example we consider the height of an excursion above u. With NI =

Ix ECI; sup x(t) < mI,{x u O<t<r

N(u,M ; B) = #{tkiE B; sup (tk+t) m}
05t<Tk

is the number of excursions in B which do not exceed m.

We can now lefine two differet (listributions on the space (( i, l). First, let PF

be the Palm distribution for ( ') near u-upcrossings, defined by

Pu (A) = E(N(u,A; Bi))/E(N(u; B1 )).

(Note that here, by stationarity, B1 can be replaced by any interval of length one.) Second,

define Pu,T to be the empirical distribution of (.) near u-upcrossings, i.e. (for T large

enough to make N(u; BT ) > 0),

Pu,T(A) = N(u,A; BT)/N(u; BT),

i.e. Pu,T gives equal weight 1/n to each of the n = N(u; BT) functions (tk+')

starting at ti, .., tn.

THEOREM 3.1: The Slepian model s (t) = ur(t)/Ao - iqr'(t)/A2_ + A(t) has distribution

given by Pu considered as an element in (C I, '1I).

Proof: The finite-dimensional distributions of su(t) are given by those of Pu. This

follows from the general formula (3) for the expected number of marked crossings. One has

only to take n(t) = (M(t+s1 ),..., V(t+sn)). Since the finite-dimensional distributions deter-

mine P,, and u has continuously differentiable sample paths, the theorem follows. o
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TIHEOREM 3.2: If € is an ergodic process, theii, with probability one, Pu, converges

weakly to Pu in (CII, ' 11) as T- oo.

Proof: The theorem states that, with probability one, the empirical probability measure

over the realizations of (tk+t), k=1,2,..., in (C I, 6l) converges weakly towards Pu as

T - o . It follows from the the ergodic theorem, (see Cramer & Leadbetter, 1967), that, for

each AE 'u, with probability one,

T- 1 N(u,A; BT ) -, E(N(u,A; 11)),

T - 1 .N(u; BT) -. E(N(u; 131)),

which shows that Pu T(A) -* Pu(A), with probability one. Since (C 1 , le') is separable

with the metric d, it follows from Billingsley (1968), that, with probability one, Pu,T(A) -.

Pu(A) for every A E 1 1.  0

THEOREM 3.3: The conditional distribution of { (.) I N(u; B_h)>O} converges weakly

to Pu in (C 1 ,$' 1) as ht0.

Proof: The finite dimensional conditional distributions of { (si),...,(sm) I N(u;B_ h ) > 0}

converge to Pu as h 1 0, i.e.

P( (sj) < yj, j=l,...,m I N(u; B_11 ) > 0) -

P(N(u;B_h)> 0 and (sj ) <yi, j-l,...,m}
-4

P(N(u;B_h1)>0)

E(N(u,A y; B 1))
S P(A), (24)

E(N(u; BI)) y

where

A = {x E C I; x(s i ) < yj, j=l,...,m}.
y 1

To prove (24), let to be the last u-upcrossing of (t) before 0, so that to > -h if and

only if N(u;B_h ) > 0. Then replace the event
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{N(u;Bh) > 0 and (sj) < yj, j=l,...,m}

by

{to > -h and (to+si) < yj, j=l,...,ni}.

The error will be of sinall order. Then (24) is a consequence of the general result, for

stationary point processes v, that h-P(v(B h) > 0) - E(v(B1 )) as h - 0, applied to the

point processes of u-upcrossings {tk} and to the thinned point processes of u-upcrossings,

which satisfy the extra condition (tk+sj) < yi, j=1,...,m.

To show the full weak convergence on (C 1, el) ve need the tightness of the

conditional distributions of (O) and of the continuity modulus of ',

w1i1( ', h) = Sill) I (s)- '(t)]
js-t I<b
s,tEB

given that N(u;B_h ) > 0. In fact, P( I (0) I > K I N(u;11_ ) > 0) - 0 as h -0 for all

K > u, so that (0) is tight.

Further we have to show the conditional tightness of WBr( ',6 ), i.e. that, for each

E >0, r= 1, 2,...

lim I im P{WBr( ',b) > F I N(u;B_h) > 0} = 0.
b-0 h-.0

One can use the same technique as above, considering the point process N, of u-

upcrossings tk such that

U)B , I tk , b) > E,

where Br+l(tk) is the sphere of radius r+l and center tk. Then

P{Wr( ',bf) > E I N(u;B~ h > 1< P{N'(B_h1) ? 0 1 N(u;Bh ) >0

which tends to E(N,(B1 ))/E(N(u;B 1 )) as h - 0. Here, N,(B1 ) S N(u;B1) and

N,(B1 ) -4 0, with probability one, as b - 0, which proves the tightness. o
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Remark 3.1: If has continuous sample paths with mean square derivatives, one can

define the model ,, as an element in the space (C, ,) of continuous functions (with

x(O) = u), with metric for uniform convergence on bounded intervals and the corresponding

statements to Theorems 3.1 and 3.2 hold. However, variables like excursion length and

height after a u-upcrossing are examples of variables which are continuous on the space

(C 1 , ifI ) but not on the simpler space (Ce, ) o

4. REGRESSION APPROXIMATIONS

4.1 Regression decomposition

Assume (.), q(.) is a pair of smooth processes defined on the same probability space,

and let T be the first zero crossing of . Suppose that we are interested in the joint

density of the crossing time T for and the value of ij at T, i.e.

(T,H) = (T( ), r(T)), (25)

which are sometimes called marked exit time and mark, respectively. In this section, we

shall illustrate the general regression approximation method, by constructing a sequence of

approximations to the joint density of T and If.

The regression method is based on a decomposition of the processes (t) ,qj(t) into

linear regression terms and independent residual processes. More precisely, let ( =

( n), n>1, be a vector of regressors from the linear space spanned by (. ), q(. ) and

let the joint density of (11'"" (n be a smooth function. Suppose that the processes c and

qi can be decomposed as follows,

n
(s) = b0 (s) + F, (ibi(s) + Al(S),

i=l (26)

n
1(s) = c0 (s) + ici(s) + A2 (s),

i=l

where the functions bi and ci are defined explicitly, and A 1, A, are zero mean

Gaussian residual processes, independent of ( Furthermore, we shall assume that
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Var((i) = 1, for all i, which only a matter of scaling. The conditional expectations of the

( (s),77(s))-processes, given = ((1,..., n), are given by

n

E( (s)I ) = b0 (s) + E ( ibi(s) = cr(s)(i= 1 (27)

n
E(1(s)I¢) =c 0(s) + E (ici(s) ir(s).

i=1

In Example 1 in Section 2 we had only one process,

-t)-u = ur(t)/Ao - u - qr'(t)/A 2 + A(t),

which is of the form (26) with n = 1, (1 = i/V(q?) 1/ 2 and

b0 (t) = ur(t)/Ao - ti,

b, (t) =-r'(t)/A,,. V( q)l2

A(t) =A(t).

Example 2 involves two processes,

U(t)= mA'(t) + (mC'(t) + A'(t),

t) = smA(t) + (mC(t) + A(t),

and is of the form (26) with n = 2, (1 = m/V( m)1/ 2 , (2 = (m/V((m) 1 / 2 , and

b0 (t) = c0(t) = 0,

blI(t ) = A'(t,).-V( ,,) 1/ 2  I).,(t) 0 4 (' -(, V((, ,) / 2

cl(t) = A(t).V( m)1 2  c)(t) C(t).V(4m) 1/ 2

AIM = A'(t), 2(t) =A(t).

We shall now study the general model (26) in more (let ail in order to approximate

the distribution of wave-length and amplitude, i.e. T, H. The regression approximation of

rr
(T,H) is defined as the corresponding variables in the regression functions (r , I[), i.e.

they are obtained by replacing in (26) the processes ( ,7r) by the regression curves. We

shall denote the regression approximation of (T,H) by (T r,lI r), i.e.
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(Trlr) = (T(r), r(r- (28)

As has been shown in the introductory examples, the general st ructure of Slepian

models for the Gaussian processes is the decomposition (26). Although most of our appli-

cations of the regression method is in connection with Slepian models, it is not limited to

the Slepian models and Gaussian residuals. However, since we require that all finite-di-

mensional distributions of the residual processes A1 , A9 are given in explicit form, the

residual processes are usually asumed to be Gaussian or functions of Gaussian vector

processes; see Rychlik (1987d, 19891)). In addition, in Section 5.2, we shall present Slepian
9

models for the X--process. In that case, Slepian models will be defined by more compli-

cated decompositions (functions of the linear decomposition (26)). The regression method

can still be used for approximation of the (T,H)-distributions and it is defined as the

corresponding variables in the nonlinear regressions obtained by replacing the residual

processes by zero.

Finally, the results presented in this section can be easily extended to more compli-

cated marked crossing problems, when and 77 in (26) are vector valued processes, i.e.

T = (TI,...,T,) is a vector of the first k zero crossings of o; see Rychlik (1987b, 1988).

4.2 Simple regression approximation

We now turn to the evaluation of the density of (Tr, 
11r). Obviously, ' r and IIr are

functions of ((P ... ,(n) alone. However, since we are interested in the density of (T r , Hr),

we need an inverse mapping that expresses ( 2) as a function of (T r, r ,

rleaving ((3,...,I(n) unaffected. This can be done, using the implicit (oefinition of Tr , i.e.

b0(Tr) + n rb(Tr ) = 0. (29)

i=1

The required variable transformation can be written as follows,
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n
{lbl(Tr) + .)b.)(Tr) = -b 0 (Tr) -V E

- ( -=3 (30)

1c1 (Tr) + = , r Tr)
i=3

The linear equation system (30) has a unique solution ( , 2) for Tr=t if the

determinant of the following matrix is not equal to zero,

GM= ")(t .,)t (31)
Lcl(t) c,(t)J

As in Examples I and 2, we can then solve (30) and obtain ( 1 c2) as a function of

r r(T ,H 1 3,...,n). Denoting this function by (q1 , q2 ), i.e.

L, q(t,h,x 3,..., 1 x F-b(t)-x3 b3(t)-'..-x,,b,,(t)j(2
q2,(t,h,x 3,...,xn)l [h-co(t)-x 3 c3(t)-...-xn cn(t)(

the conditional density of (Tr, Ir , ) can be obtaine( by a simpI)le varialle

transformation, given in Lemma 4.1 below.

rBefore we state the lemma, we shall introduce two important functions, sthx(s) and

rthx(S), defined by "Ir(s r(t)=0,r(t)=h, adx "a.(s) I r(t)=O ,r(t)=1

(3,...,,n-x", respectively, i.e. for a fixed (t,h,x) = (t,h,x 3,...,Xn),

rhx(s)-- b0 (s) + ql(t,h,x)bl(s)+q2(t,h,x)b2(s) + - x

i=3

(33)
n

nthx(S) = C0 (s) + ql(t,h,x)cl(s)+q2(t,h,x)c2(s) + E xici(s).
i=3

For any continuously differentiable function f, let I(t;f) be an indicator function,

defined equal to one if f(s) has no zero crossings in the interval (0,t) and zero otherwise,

i.e.

1 if f(s) >0 or f(s) <0 for alls, 0<s<t,
I(t;f) = o(31)

0 otherwise.
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LEMMA 4.1: Let (T r, 11 r) be the regression approximation of (T, 11), defined by (28). If

the determinant det G(t) # 0, the conditional density of Tr, 1r .  at, (t,h x) =

(t,h I X3,...,Xn) is given by

f(t,h Ix) = I(t;rhx)" I.J(thx) I f1,, 21 (3 .(n (q (th x), q'2 (t'h'x) Ix), (35)

where f (1,( 21 (3..n is the conditional density of I,'23,. and the functions qt, q2

are defined by (32). The .Jacobian is given by

d r

J(t,h,x) = - s t (36)
(let G(t)

where rthx(s) is defined by (33) and the indicator function I(t;Etrhx) is given by (34).

The marginal density of (Tr, ir) can be obtained by multiplying the conditional

density (35) by the density of (3,...,(, and integrating the x-variables, i.e. by computing

E(f(t,h 1 (3,-40).

The Jacobian J(t,h,x) is written in the form (36) to indicate the explicit
dependence of the Tr,,lr-density on the derivative rh'x(t)' i.e on the derivative of the

ra the ontedrvaieorh
regression r at the zero crossing at time t, when the mark r takes the value h.

The density of Tr,IIr is related to the marked zero crossing intensity through the

following alternative formula:

fTrLtr(t, h ) = E(f(t,h 1...n =

= E(I(t;,r) I r(t), r(t)=O, r1r(t)=h)fCr(t),,r(t)(0,h), (37)

where I(t; r ) is defined by (34). The proof of formula (37) is based on the observation

that the conditional density ((r(t),,r(t) (3 ... n is given by

fr(t),qrqt) 1s... n (0,hx) = Idet G (t) f(t,,x),q(thx)Ix).
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4.3 An explicit formula for density of (TII

It is instructive to write the true density of T,lI ini a form similar to formula (35), based

on the regression approximation. To obtain this form, just introduce the residual processes

A1 and A 2 into the functions q,, q., and the Jacobian J, (36), defined in Lemma 4.1.

More precisely, define new q-functions q, and a Jacobian I" as follows,

[ -I ( t h 'x 3 " "Ix 11 A )l = G (t )- I [- I ( t )- x cl '3( t) .. x.c ( t) -A (t )j (3 8 )
q2 (t,h,x 3,...,IXn),A)l = h-c 0(t)-x3c3(t)-...-Xnen(t)-A2(t)I

d sthx ( S)1~
J(t,h,x,A1 ) = , (39)

(let G(t)

where A(s,t) = (Al(s), A,(t)) and the function tlx(s) is defined by

Gthix(S) = b0 (s) + qj(t'hix'A)bl(s)+q2(t'h'xA)l)(s)

n
+ V xibi(s) + A((S ) 0)

i=3

Then the true conditional density of (T,II I (3,".'(n) can be written as an expec-

tation of the density (35) over all sample paths of A =(A 1 ,A 2 ), with the modified q- and

3-functions, i.e.

fT [ 1 3,..,(n(thx) = EA I,A 2 [l(t; thx)" IJ(thxA i ) I

(• 0 f (3 3... (n(q-1 (tlh'xA), q.2(t'h'xA) I x) , (41)

where I(t;.) is defined by (34).

The density of (T,H) can be written in the same form as (37) of (T r,H r), by

r rreplacing the regressions r, qr by the original processes , q, i.e.

fT,H(t,h) =E(I(t; ) I '(t)l I I (t)=0, q/(t)=h)fsc(t),rqlt)(0,h). (42)

Observe that formula (42) holds for a broader class of processes, which contains more gene-

ral nonlinear decompositions; see Durbin (1987), Rychlik (1987c). lowever, for the purpose
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of approximation and numerical calculation, the explicit formula (.11), based on the

decomposition (26), is more useful than formula (42).

Tie expectation (41 ) is (ifficult to evaluate exactly, sintee the I i(licator I(t; thx)

depends on the whole realization of thx, i.e. on AI(.). Nevertheless, the formula is the

basis for improvement of the accuracy of the regression approximations of the (T,II)-

density, by approximation of the residual processes A1 , A2, by simpler processes A 1 , A2,

which are functions of a finite number of random variables Y = (Y1'...,Yk, say, defined

on the same probability space as A l , A2 . The (A 1 ,A,)-processes can be chosen in many

different ways, e.g. as cosine polynomials, splines etc. In the next subsection we shall use

regression curves.

4.4 More complicated approximations

Let Y = (Y1,...,Yk) be a random vector defined on the residual processes A,, A,. Tlhe

general formula for the regression approximation (T kH k of the (T, H)-density is

obtained by replacing, in (41), the A1 - and A9 -residual processes by their conditional

expectations, given Y, i.e. by A = (A1,A2),

AI(Y)(s) = E(AI(s)IY), A2 (Y)(s) = E(A 2 (s)IY). (43)

More precisely, the regressions A1 ,A 2 in (43) define a new decomposition of the ( ,r/)-

processes by splitting the residuals 1 ,A2 , i.e.

(s) = r(s) + AI(Y)(s) + AI(Y)(s),

77(s) r (s) + A,(Y)(s) + A,(Y)(s),

where, for i=1,2,

Ai(Yl...Yk)(S) = Ai(s) - E(Ai(s) IY1...Yk). (44)

The regression approximations T r, H r are defined as

(T', Hr) = {T( r(.) + A (Y)(.)), r(T .)+ A (Y)(Tr)).

k k k k
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-rI . all be ohlailled ill a Simiilar

Tile conditional (Iclsil,y fk(tl I x,y) of (T k!f kI (,Y) (I

way as in Lemma 4.1. The explicit formula can be written as follows. With

q l ( t ' h ' x ' y )  G(t)-I. -bo(t)-x3 3(t)-'"-xnbn(t)-A (Y)(t)
q2(t,h,x,y) I h-c 0(t )-x 3 c3(t )-...-x n cn(t )-/A-(y )(t )I

d r" xy (S)]sj

J(t,h,x,y)= - S't , (.16)
(et, ((t)

and thxy(S) and 7?thxy(s) defined by

thxy(S) = b0(s) + q,(t,h,x,y)bl(s)+q 2 (t,h,x,y)b.)(s) (47a)

n

+ E xibi(s) + Al(Y)(S),i=3

?7thxy(S) = c0 (s) + ql(t,i,x,y)cl(s)+q2(t,h,x,y)c2(s) (47b)

n
+ E, xici(s) + A.)(y)(s),
i=3

the conditional density fk(t,h I x,y) of (T.,IIr I (,Y) is equal to
fk

fk(t,hIx,y) = I(t; dthxy) • IJ(t,h,x,y)l

f(( 1 (3 .(n(q,(thxy), q2(thxy) Ix). (48)

(Observe that the Y-variables are independent of (.)

The density of the simplest regression approximation, formula (35), corresponds to

the choice k=O, i.e. there are no extra regressors at all besides (. Thus the approximating

variables will be denoted as T0,II 0 and the conditional density f(t,h Ix), formula (35),

will be denoted by 16(t,h Ix).

The regressors YI...,Yk can be choosen with great freedom to contain simple but

efficient information about (T,1I). One of the main features of the structure of approxi-

mation (48) is that it can easily be improved by just adding more regressors in a recursive

way. In the following subsection we present a recursive procedure of choosiiig the regressors

Y1I...,Yk, suitable for inplementation in a recursive programming language.



-27 -

4.5 A recursive procedtire for choosing the regressors YIN

The regressors Y1,...,Yk should be chosen in such a way that, the conditional density of

(TkrH' r ) is a good approximation to the exact formula for the density (41) of (T, 11),

with as few regressors as possible. Consequently, strategies of choosing the Y.-variables are

r rusually quite complicated and can depend both on the properties of the rthx-, and qthx-

functions and on the residual processes A = (A 1 ,A2 ). Ve shall now present a class of re-

gression approximations (T r Hr for the (T,I)-distribution, based on recursive selection

of regressors Yi"

Assume that we have designed a strategy to select a unique variable Y1, defined as

a function of the residuals, A(s,t) = (A,(s),A2(t)). More precisely, assume that we have

been given a zero-mean Gaussian process A, with a covariance rA = (rA,rA,rA

r rhx
and deterministic functions f = (f',f2), corresponding to the functions and

assume further, that we have defined a functional, Proc, on the sample paths of A = U),

with f as the parameter, such that the regressor YI is defined by Yl(w) = Proc(w; f).

The same procedure, Proc, can then be used to define further regressors Y2 ' "'"Yk'

provided it has the following structure:

(a) Y 1 =Proc(A,f) is a Gaussian random variable,

(b) the regression curves A(Y 1 )(s,t) in (43) can be evaluated explicitly,

(c) for any real y,, the residual processes A I (y I )(s), A2 (y l )(s) in (4-1) are

zero-mean jointly Gaussian processes, with explicitly defined covariance

function rA yi=yi

Then, the regressors Y I ""'Yk can be defined recursively:

(i) Y1 - Proc(A; thx, qlthx),

(ii) for any value y = (yl, ... ,Yk-) of the regressors Y '-'k-l'

Y= Proc(A(y); thxy, txy),

where A(y)(s) = (AI(s)-E(Ai(s)IYl...Yk- i
) , A.2 (s)-E(A2 (s)I Y I... 'k- )) are the

residual processes (44) and iixy, iliixy are defined by (17).
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We turn now to the problem of choosing the procedure Proc(. ). Many different al-

gorithms can be proposed and we shall classify them into two main categories. The first

one, which will be called deterministic procedures, selects Y1 from the linear space span-

r rned by A, independently of the properties of thx, 7rljx. Consequently, the conditional co-

variances rA y...yk=y do not depend on y. As examples, we give the simple procedure

Ic(A; rhx,/t Ix):PrOClA r 0r0

Choose YI=Al(sl), where s,, O<sl<t, is a fixed point

such that Var(Al(sl))= suip0<s<t Var(Al(s)),

and the more complicated algorithm

Procq(A; thx,07thx):

Choose YI=Al(s,), where s,, O<s,<t, is a fixed point

such that sup 0 <s<t Var(Al(s) I A, (s,)) is minimized.

The second class of procedures for choosing the first regressor YI' will be called

stochastic procedures, and here rA I 'yt... yk =y depends explicitly on y. This happens

when one allows to depend on thx An example of a stochastic procedure, used

in Rychlik (1987d, 1989b), is the following algorithm:

Proc( thx, thx):Po3(A;r r

Choose YI=A1 (sl), where s,, O<sl<t, is a fixed point

such that, if thx(O)>O, P({thx(S1 ) > 0) is minimized,

otherwise, i.e. if rhx(0)<0, P({rhx(sl) < 0) is

minimized.

The difference between a stochastic and a determinstic procedure is that in the

stochastic procedure the regressors Y ... Yk, depend on the sample path of the residual

processes A1 , A,, leading to more accurate approximations.

Finally, we give a recursive formula for the conditional density (Tr,II I

defined by recursive selection of the regressors Y = (Yl...,'Yk)" Obviously, using the
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conditional density fk(t,h I x,y), given by (48), of (T r,l, I ,Y), we obtain the

(Tk H )-density in the form of a k-dimensional integral,

fk(t,h Ix) = Ey(fk(t,h I x,Y)), (49)

which has to be evaluated numerically. Since the regressors Y are choosen in a recursive

way, the value of the conditional density fk(t,h Ix) depends only on the functional Proc,

r rand the starting values A, thx, rlthx. 'We shall express this (ependence explicitly by the

notation fr r. r (t,hIx). The recursive formula for fk(t,h Ix) is then obtainedPrc A thx,qthx)

by writing the integration in (49) in iterated form, i.e.

fk r r (t,h Ix) E (fk(tll I x,y,Y2...Yk)) f (y) dyProc ;thx17thx) Y2 E ... Yk( k Yl()d

f k1 oc(ryy;hxy,rhry) (t,h Ix) fy(y) dy.

The main advantage of the recursive representation of the conditional density of

(Tr,Hr ) is that it can be easily implemented in a computer program, in particular when

the programming language allows recursive functions.

4.6 Bounds for the T--density

In some applications, one needs exact bounds of the approximations error. In the following

we shall briefly present tipper and lower bounds for the (T,ll)-lensity, based on regression

approximations.

Let (t,h,x) be a fixed vector for which bounds for the conditional density of

T,HI 3,...,I(n are required. Suppose that Al(t) = A.2(t) = Ai(t) = 0, a.s. This seems at

first to be a strong assumption, but can easily be attained by inclusion of Al(t), A2)(t),

All(t) in the vector ((P,..., 1n). (Observe that this was not required when the regression

approximations of T,II were defined.) Consequently, formula (41) for the density of

T,HI 1(3,...,(n simplifies to
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tT,1 , (= E Ai[l(t; tIx)] • I J(t ,h,x) I

f (1, (2[ 16 ... n(qlI(t ' h 'x )' (j' ( t"1h 'X) IX)"  (50)

Assume that from knowledge of the values (t,h,x), we can determine whether the

first crossing of sthx, defined by (40), is an up- or a down-crossing, i.e we assume that

( (0), '(0)) is included in " Suppose that the first zerocrossing of thx is an

upcrossing, and hence the expectation in (50) is the following probability,

E A{l(t; thx)} = P( thx(S) < 0 for all s, 0<s<t). (51)

Observe that thx(S) is a continuously differentiable Gaussian process. In Rychlik (1987d,

1989b) we have proposed a recursive procedure, similar to the regression approximation, to

bound probabilities of type (51).

4.6 Numerical examnles

In this section we shall illustrate higher order approximations to the excursion length

distribution in Example 1 and to the wavelength and amplitude density of Examples 2

and 3. Computer programs for the algorithms will be presented in the next section, where

also details about the approximations can be found.

First consider the excursion length distribution for a standard process. Figure 3,a-fi,

shows excursion length distributions after upcrossings of levels u = 0, 1, 2, 3, calculated

with k = 1, 2, 3 extra regressors. For comparison, the figures also show the simple

approximations with k = 0. As seen, it is necessary to use extra information in order to

catch the bimodal distribution after a zero upcrossing. For higher levels even the simple

approximation gives reasonable results, and in fact for u = 2, 3 the curves for k = 1, 2, 3

coincide.
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Figture 3: Regression approximations according to formula (49) to excursion length density

after upcrossing of a level u [or a standard process; (a) u=O, (b) u=I, (c) u=2, (d) u=3.

The order of approxitilatiuit is k = Ii, I, 2, 3.

As a second example we show the higher order approximations to the wavelength

and amplitude distributions considered in Examples 2 and 3. As can be seen from Figure 4,

(a)-(c) higher order approximations are smoother, in particular at the left, smaller end of

the distribution. The zero order approximation, shown in Figure 2, has a cut off point at

t = 4, to the left of which it is zero.
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4.7 Computer programs

The numerical examples presented in this paper have been evaluated l)y ineans of a library

of computer programs, CROSSREG, which contains the regression a)proximations for the

following densities:

EXCREG: excursion time above the level u for the Slepian model p1 (t); Example 1;

WAMPREG: wavelength and amplitude after local maximum; Example 2;

JUMPREG: length of jump for a car travelling on a random road; Example 5.1;

CHIREG: excursion time above the level u for the Slepian model for the X--process;

Section 5.2, formula (62), n = 2.

The programs are impleniiited iii FI'FRAN 77 and have 1een run oti a PC/AT arid also

on a MicroVAXIlI.

Using the library one can evaluate both the simple regression approximations,

without any additional regressors, Section 4.2, and the more complicated approximations

discussed in Section 4.4. The additional regressors Y = (YI,...,Yk) are selected recur-

sively, using a sligthly modified stochastic procedure of the type Proc3; see Section 4.5.

The main modification lies in the introduction of a stopping criterion, which allows us to

use different numbers of regressors for different sample paths of the residual process. The

stopping criterion tests whether, for given values of t anl y = (YI .Y) the ('Olditional

density of the regression approximation, f rIy(t I y) is sufficiently close to the conditional

density fT y(t I y) of the true T. This stopping rule reduces the necessary amount of

numerical computations drastically.

The programs can be used on a PC/AT, with a reasonable computation time, for as

many as four additional regressors. As can be seen in the examples in this paper, this is

enough to compute very accurate approximations for a large class of processes of practical

interest. In addition, in order to speed up computations, we have designed a numerical

integration algorithm, specially well suited for the regression approximation. A more

complete description of the programs will be given elsewhere.
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5. A P1ICI(,ATIN()NS

5.1 Random vibration of mechanical structures

Stochastic processes and linear filtering theory is often used to describe the behaviour of

mechanical structures, such as bridges, high towers, aeroplane wings, car suspensions, etc,

subjected to external random forces. Loads created by the environment, such as wind and

wave forces, are described as stochastic processes, while the structure itself is described in

terms of linear or non-linear transfer functions. Processes of interest are forces and dis-

placements within the structure, and the crossing and extrenial properties of these are of

greal, itllp)orl,alI(e for th te reliability of the structure. Examples of important quantities are

high peak values, length of excursions above high levels, and period and wave analysis.

Most mo(lels used to describe random vibration are high dimensional, and the exter-

nal forces even form a continuous random field, as for example the wind over the whole

extension of a long bridge. We shall here present a simplified example with only one forcing

process and a transfer function with a simple non-linearity, which contains many of the

characteristic features of a random mechanical system.

Examnle 5.1 ("Jumps and bumps"; Lindgren (1981)) Consider the movements of a car

travelling with constant speed on a rough road, considered as a locally stationary stochastic

proccss. The suspension system of the car should guarantee safe roadholding and high ride

comfort. The roadholding depends on the forces between wheel and road and the ride

comfort mainly on the acceleration forces on the driver and passengers. An undesirable

event occurs when the force between a wheel and ground is less than a required level. In an

extreme case, a wheel can even leave the ground for a short while - it jumps and bumps.

We shall describe the jump-and-bump situation by means of a Slepian model and use the

regression technique to derive the distribution of the length of the flight starting at the

jump.

'To simplify the analysis we shall consider a one-wheeled car with mass in which

drives with constant speed v on a randomly profiled road. The suspension system consists
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of a linear spring with length Po' stiffness k, and damping coefficient c. (A four-wheeled

can be treated similarly as a multivariate system; see ,Jogr6iis (1986).) Let Y(t) denote

the height of the road above a zero reference level at time t, and let X(t) be the extension

of the spring from its unloaded position. (Then Y(t) = Yo(vt) where Y0 (s) denotes the

road elevation at distance s from the starting point.)

If the wheel has no mass, the following differential equation governs the movements

of the car as long as no jumps occur,

m(X"(t) + Y"(t)) + cX'(t) + kX(t) = -gim (52)

where g = 9.81 m/s 2 is the acceleration of gravity. This implies that E(X(t)) = -gm/k.

As long as no jumps occiur, the vertical accelerat ion of Ihe car is

X"(t) + Y"(t) = - g - m- (cX'(t) + kX(t)),

but if the wheel is not permanently attached to the ground, this acceleration can never he

less than -g. Therefore a jump occurs every time the normal force

N(t) = cX'(t) + kX(t) (53)

(which has mean -gm) has an upcrossing of the zero level. Then an excursion starts,

during which the movements of the car and spring are purely deterministic.

If tk denotes the time of a jump, the spring expands exponentially during the jump

according to the equation

X(tk+t) = X(tk) exp(-kt/c), (5.1)

while the car follows the parabolic curve

P0 + X(tk) + Y(tk) + t(X'(tk)+Y'(tk)) - gt2/2. (55)

The road level Y(tk+t) is of course 1ot affected by the jhuiuip, but the fact Ihat, a

jump did occur at tk affects its distribution, so we need the conditional distribution of

Y(tk+t) given that a jump has occurred.

We now assume, as is often done in technical literature, that the road profile Y(t)

is a Gaussian process, which is stationary at least locally. This means that, if no jumps

were allowed to occur and the wheel was in permanent contact with the ground, also the
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normal force N(t) and the spring extension X(t) would be Gaussian processes. One could

then use the theory in previous chapters to describe the crossings and extremal properties

of N(t) and X(t). Iowever, if jumps may occur, the Gaussian character of the process is

destroyed, but if jumps are rare, one could think of the process as being renormalized after

each jump, and use the Slepian model based on normal theory to describe the local be-

haviour near jumps. The assumptions that jumps occur unfrequently is a realistic assump-

tion for real cars.

In this example, we shall assume that jumps (1o not occur at all and that X(t) is

always defined by equation (52), and we nall consider equations (54) and (55) as fictitious

excursions, to be described by Slepian models.

We assume that Y(t) = Yo(vt) is a stationary Gaussian process wit i inean zero

and (speed dependent) covariance function ry possessing spectral density

RY(w) = vRyo(w/v),

where R is the spectral density for the road. We let X(t) be the stationary (Gaussian)

solution of equation (52), rewritten as

mX"(t) + cX'(t) + k(X(t)+gm/k) - mY"(t), (52')

and write N(t) = cX'(t)+kX(t). All covariance properties of the involved processes can

then be derived from Ry(w) and the transfer function 11(w) of the system (52'),

(w) = mw(56)

k + icw- mw-

We need the following variance and covariances for the involved processes,

ry(t) = i e i u Ry(w) dw,

rN1y(t) = Cov(N(O), Y(t)) =f e-f mw2 {11(w)+l} ( w) dw,

rN,,y(t) = Cov(N'(0), Y(t)) = i e- i c t miw 3 {H(w)+l} Ry(w) dw,

and
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2 m2w4 1R(w) dw,

2 6
aN = I m** 6 II(w)+l Ry(w) dw.

Now, let tk, k = 1, 2, ... be the times of zero upcrossings for the process N(t), i.e.

the potential jump times, and consider the movements of spring and car during the ficti-

tious flights, as defined by (54) and (55). The Slepian model for Y(tk+t) after a zero

upcrossing by N(tk) consists of a regression term on N(tk)=O, and N'(tk) which, being a

derivative at a level upcrossing in a stationary Gaussian process, has a Rayleigh

distribution with density

Z-2 exp(-z9/2a 1 ), z > 0. (57)

Let (o be a Rayleigh variable with density (57). The direct model for Y(tk+t) is

then

Y*(t) = b*(t) + (obo(t) + A*(t), (58)
0

where, with E(N(O)) = -gm,

b*(t) + zobo(t) = E(Y(t) I N(O)=0, N'(O)=zo).

Further, the Gaussian residual process A*(t) is independent of (o and has mean zero

and covariance function given by the conditional covariance function of Y(t) given N(0)

and N'(0). However, if we want to describe the extension of the flight starting at tk we

need also the joint distribution of the derivative N'(tk), the starting values in (5-1) and

(55) and the residual process in (58).

We first introduce some notation. Define the random vectors v, = (N(0), N'(0))

Ti" = (X(O)+Y(0), X'(0)+Y'(0), X(0)) and note that (v,, 7r) has a 5--dimensional normal

distribution with mean

AV = (-g mi 0, -gm/k, 0, - gm /k)T

and covariance matrix
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n n,x+y n, x+y n,x

0n ° 11 1 , X + y on I ' I + y I 0n ' x,
Err Er7r- 1n, x+y n , x+y nx+Yx x+y,x

arn,x'+y' 0 nI',x'+y 0 x axI+y'x

an X Til a 'x a" a,nx n x x+y ,x +y x xx

The conditional distribution of 7r v=(0,z) is therefore tri-variate normal with mean

_9 -)

0 +gmn 0 n,x'+y' +z. nOxnIx+I +y A + z.B, say,
-92-

-gm/k + gma n a or arIan ,,

and covariance matrix

E =r E r E wtT
TT 7rtvLv v7r*

To get starting values for X, Y, X', Y' in (5-1) and (55), let (o be a Rayleigh

variable, with density (57), and let ( = (6 , (3) T be a 3-dimensional normal variable,

independent of (o, with mean zero and covariance matrix E. Then the starting values

(X(tk)+Y(tk), X'(tk)+Y'(tk), X(tk))T are distributed as

A + (oB + ( . (59)

The complete Slepian model for Y(tk+t) is now

3
Road(t) = b(t) + E (jbj(t) + A(t), (60)

j=0

where the regression is defined as

3T
b(t) + E (ibj(t) = E{Y(t) I v = (0,(o) , 7r =A+on+(},

j=0

and the residual A(t) is independent of ((o, (1 , (3) and has the covariance function

rA(s, t) = Cov(Y(s),Y(t) I v, r).
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Equations (54) and (55) then give the following ex)ressions for the length of the

spring, height of the car, and height of the wheel during a flight,

Spring(t) = (a3+(ob 3+ 3)"exp(-kt/c),

Car(t) = P0 + (ai+(obl+( 1) + t(a 2.+(0o)2+( 2) - gt 2/2,

Wheel(t) = Car(t) - P0 - Spring(t).

Combining these with the road model (60), we get the height of the wheel al)ove road as

Height(t) = Wheel(t) - Road(t) =

= (al+(obl+() + t(a 2-- ob2+ 2 ) - gt2 /2 - (a 3 +(o|) 3 -( 3 ) exp(-kt/c) -

3
b(t) - F, cb(t)-AX(t) =

j=0

= {al+a2t-gt 2/2-a3.exp(-kt/c)-b(t)} + (o{bl+b..,t-i)3.exp(-kt/c)-bo(t)} +

+ ( 1{1-b 1(t)} + ( 2 {t-b 2(t)} - ( 3{exp(-kt/c)+b 3(t)}- A(t-

This model process is of the form (26), containing one deterministic function, four random

coefficient functions, and one Gaussian residual.

We now consider the first time the wheel hits the ground after a jump, i.e. the first

zero (down)crossing of Height(t), and we want to find its distribution using the method of

Section 4. One then has to observe that lleight(t) already contains four random coeffi-

cients, which have to be conditioned on. Further, to get good accuracy in the approxi-

mation one may have to condition on some values of the residual A(t), thus increasing the

number of regressors to a point where the computation time becomes prohibitive.

It is therefore more efficient to slightly reformulate the model, including the three

normal coefficients (1,0,0 into the residual, and write the model as the sum of one deter-

minstic function, one Rayleigh term and one Gaussian residual,

Height(t) = {a,+a2t-gt/2-a3.exp(-kt/c)-b(t)} +

+ (o{bj+b 2t-b 3exp(-kt/c)-bo(t)} + A°(t), (61)

where now A°(t) is nonstationary Gaussian with a covariance function given by rA and
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the covariances between (1, (2, (3. This will permit the computer algorithm to pick as

regressors those values of A°(t) which contribute the most to the distribution of the first

zero crossing. Note that (61) is of the same simple form as the original Slepian model (11).

The following numerical example shows the regression approximation for the time of

first zero of Ileight(t) when the Gaussian road process Yo(s) is of the standard form with

spectral density

R(w) = ay/2V4J for Iwi < i.

S ds is rather different from real road spectra (see Lindgren (1981) for references) but is

chosen here as a standard process.) Further k = 0.64 N/m, c = 0.08 Ns/m, and m =
0.01 kg. We have chosen two different speed values, v = 2 /s, 4 m/s. With 2 "- 0.5,th0the

jump intensity, i.e. the mean number of zero upcrossings per time unit for N(t), is 0.035

and 0.85, respectively.

0 80

v=2

040

v=4

0.20 /

o 2.00 4.00 6.00 8oo 0.oo

Figure 5: Regression approximations to jump length density for v=2 and v=4;

( k=0, * *-* k=2)

With a nmodel of the formi (61), the regression approximation of the time for the first

zero are sliowi ini 'igure 5 for the two v-values. For v = 2 mi/s it suffices to use one extra

regressor, while for v = 4 rn/s one needs two in order to find the characteristic details of
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the distribution. As seen, tile speed is important; for v = 4 in/s the distril)ution of jump

length has two tops, while it is unimodal for low speed. This can be explained by the

periodicity of the road profile. For v = 4 m/s, the wheel can jump over the first hill and

hit the second.

5.2 Regression approxirmations for crossings in the 12-nrocesses

A X -process is the sum of squares of Gaussian processes,

n
Xt) = E ZVO)

i=l

where Zl(t), ..., Zn(t) are independent, with mean zero and variance one. In the general

Xy2-process, Zi(s) and Zk(t) need not be independent fcr i I k, s j t, but in order to keep
9

complexity down, we shall here consider only X -- processes with independent components

with common covariance function r(t). Let A9 = V(Z!(t)) = -r"(0). (The envelope of a

Gaussian process is a simple example of a k 2-process with dependent components; see
Ditlevsen & Lindgren (1988), and Lindgren (1989) for details on the Slepian model.)

The Slepian model for X2(.) after upcrossings of a level u2 was studied by

Aronowich & Adler (1986). In the following simple form, given by Lindgren (1989),

Y (t) = (b0 (t)-(clb(t)+Al(t))2 + E bl(t)+Ai(t))
l=2)

(I is a standard Rayleigh variable, ( n " ., are independelt standard Glatissian vari-

ables and the residual processes A i are independent zero mean Gaussian with covariance

function given by (8). Note that here are ony two types of b-functions, given by

b0(t) = ur(t),

bl(t) = r'(t)/A 1/2

22
Suppose we are interested in the length T of an excursion above u2 by the X-

process X2 (t), i.e. of the first T for which Y+u(T) = u2. In order to put the problem in

the general setting of Section 4, we introduce the process
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(t) = Y+(t)-u

(b 0(t)-(lbl(t)+Al(t)) + E. (t)+A.(t)) 62)
=2

As in Section 4, the regression method is based on a decomposition of s(t) into a re-

gression term and independent residual processes, but here the decomlposit ion is not linear

as in equation (26) but quadratic, which leads to mixed terms of the form (i-Aj(s).

However, the most important common property of (26) and (62) is that in both

cases, the i-process is defined by a mapping of ( = ((', ... , (n) and A(t) = (Al(t),

An(t)), i.e. (t) = F(t, (, A(t)). Under some additional assumptions on F, one can gene-

ralise the results of Section 4, to cover this more complicated situation; see Rychlik (1987b,

1989b).

Like in Section 4, the regression approximation of T is defined as the correspon-

ding variables in the regression functions tr, obtained by replacing in (62), the residual

processes A i by the regressions Ai on some additional explanatory vectors Y= (Y

Yik), i.e
'(t) = (b0(t)-(qb1 (t)+Aj(t))2 + F ((ibl(t)+Ai(t))- -u, (63)

where

Ai(t) = E(Ai(t) I Y'). (6.1)

In general, the number of regressors in the vector Yi may depend on i, i.e. k=k i.

However, in our examples the residual processes A i are in(e)en(lent and identically

distributed, and we choose the same function to define the regressors for each residual, i.e.

y = Y(Ai(.)). This choice leads to independent and identically distributed regressions

(64). In addition, since the first squared process in (62) is exactly the same as the Slepian

model (11), we can use the same procedure to select Y = Y(Al(.)) as we used in Section

4.6 for the distribution of excursion length distribution.

We shall denote the regression approximation of T by T , i.e. Tr = T( r). Since

A i are Gaussian processes, the regressors Yi can be choosen using the same methods as in

Section 4.5.
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We begin with the true density of T. As before, using the implicit definition of T,

we find a transformation which represents one of i's as a function of T, the remaining (j's

and the residual processeb, Aj, i.C.

2 n )
(b0(T)-(+bl(T)+AI(T)) +iE ((ibl(T)+Ai(T)) -u-=. (65)

Since (I has a larger variance than the other (i-variables, we solve (65) for (I. Assuming

bl(t) #0, then, for T = t, (. )=x and A= w,wehave

2 _ n )2 1/2 _
= (-{u2 - (x }b()+w(t)) bo(t) - wi(t))/bj(t) = q.,(t,x,w) (66)

or

S({ 2 - (X ibl(t)+w0i(t)) 2 }l 2 -b 0(t) - wl(t))/Il(t) = q1 (t,x,w). (67)i=2

Similarily to (39), the Jacobians Ji, i=1,2, of the transformations qi' (66, 67), are

obtained by the implicit function theorem for evaluation of 0" 1/ 0T, viz.

d i
)'(t,x,w) = _ 2, (68)

(-) 1u-i=2 (x ibI (t)+w ()2 1/bl (t)

where the function st(s) is defined by "x,(s) (t)=0, , A=w", i.e.

i (b0 (s)_qi(t,x,W)b(s)+W(s))
2  n

)= (+ E (xibl(s)+wi(s))2 - u. (69)
i=2

Then the true conditional density of (TI ) can be written as an expectation

over all sample paths of A = (A',...,An), of the density (T A), which is defined

by the variable transformation (66, 67), i.e.

2 i 2

fT1 (2... x= (n'=lEA I tx" It(tx, exi(t,x,) I (t,x,A) (70)

since (I is a Rayleigh variable independent of (2, ... , (n. The indicator function 1(t;.) is

defined by (34), i.e.

1 if f(s) >0 for all s, 0<s<t,

I(t;f) = (71)
0 otherwisee

Once again, the density of T can be written in the "marked crossing" form, see (42), i.e.
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fT(t) = E(I(t; ) I () I (t)=0)' f(t)(0).

The expectation in (70) is difficult to evaluate exactly, since the indicator I(t; tx")

depends on the whole realization of , i.e. on A.

Finally, the conditional density of the regression approximation T (2, n is ob-

tained by replacing in (70) the residual processes A = (A1,.. An) by their regressions

A =(AI,...,A) as iii (63). In the simplest case, k=0, the residuals A i are replaced by

constant functions equal to zero. Then the expectation in (70) disappears, leading to an

eXl)licit dCnsity, viz.
'22

f 1r1 (((tx) = - l(t; ×o). IJ(t,x,0)Iqi(t,x,0)exp(-O.5qi(t,x, 0 ]. (72)
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Figure 6: Regression approximation of excursion length density after a u-upcrossing for

X -process, the sum of squares of two standard normal processes; (a) u = 2, (b) u = 3;

k =0( -. ), k= I(* *)k= 3( )
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