
DIC FILE COPY
NAVAL POSTGRADUATE SCHOOL

Monterey, California

00 1 STATes

II
!p

"GADVk

THESIS

THREE-DIMENSIONAL ROUTE PLANNING
FOR A CRUISE MISSILE

FOR MINIMAL DETECTION BY OBSERVER

by

Lawrence R. Wrenn IIM

June 1989

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited

I

3102 26 196

Unclassified
Securitv Classification of this page

REPORT DOCUMENTATION PAGE
is Report Security Classification lb Restrictive Markings

UNCLASSIFIED
2& Security Classification Authority 3 Distribution Availability of Report

2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6& Name of Performing Organization 6b Office Symbol 7a Name of Monitoring OrganizationI(if Applicable)
Naval Postgraduate School i 52 Naval Postgraduate School

6c Address (city, state, and ZIP code) 7b Addres (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Fuadingponsorig Organization 8b Office Symbol 9 Procurement Instument Identification Number

(If Applicable)

8c Address (city, state, and ZIP code) 10 Source of Fumdint Numbers
Pk Emm Nambe Props No TILNo 1 Wek Unit Aum No

11 Title (Include Security Classification)

THREE-DIMENSIONAL ROUTE PLANNING FOR A CRUISE MISSILE FOR MINIMAL DETECTION BY OBSERVERS
12 Personal Author(s)

Wrenn, Lawrence R. IH
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count

Master's Thesis From To June 1989 [221
16 Supplementary Notation 'Me views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)
Field Group Subgroup Artificial Intelligence; LISP; Three-dimensional Search, Path Planning.

Route Planning, Search.

19 Abstract (continue on reverse if necessary and identify by block number

We present an algorithm for finding optimal thriet-dimensional paths above polyhedral models of
terrain using a technique we refer to as "random-ray". Contiguous sequences of homogeneous airspace
volumes are generated using constraints of probability-of-detection and aerodynamic-flight models.
The flight costs are calculated as in actual mission planning using time, distance, airspeed, and fuel
flow. We then try semi-random directions (rays) from the starting point, turning in accordance with
Snell's Law at maneuver points (points between volumes). If we ever do not enter the previously
specified next volume, we make random adjustments to the ray (in, out, up, or down) with respect to
the center of the facet between the two volumes, until either the path will enter the correct next
volume or we determine it is impossible. The performance ofomt random-ray technique is an
improvement over an earlier approach using local optimization. We have also implemented a movable
display on a graphics workstation, to allow the user the ability to view the terrain and paths from any
angle. -J

20 Distribution/Availability of Abstract 21 Abstract Security Classification
R unclassified/unlimited urne a repor DTICuser UNCLASSIFED

22a Name of Responsible Individual 22b Telephone (include Area code) 22c Office Symbol
Prof. Neil C. Rowe (408) 646-2462 Code 52Rp

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page
All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

Three-Dimensional Route Planning for A Cruise Missile
For Minimal Detection By Observers

by

Lawrence R. Wrenn III
Major, United States Marine Corps

B.S., Virginia Military Institute, 1976

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Author: -

Lawrence R. Wrenn III

Approved by: 9 (-

Neil C. Rowe, Thesis Advisor

Q huh-7 LSn der

Robert B. McGhee, Chairman
Department of Computer Science

Dean of Information and Policy Sciences

ii

ABSTRACT

We present an algorithm for finding optimal three-dimensional paths above

polyhedral models of terrain using a technique we refer to as "random-ray".

Contiguous sequences of homogeneous airspace volumes are generated using

constraints of probability-of-detection and aerodynamic-flight models. The flight

costs are calculated as in actual mission planning using time, distance, airspeed, and

fuel flow. We then try semi-random directions (rays) from the starting point,

turning in accordance with Snell's Law at maneuver points (points between

volumes). If we ever do not enter the previously specified next volume, we make

random adjustments to the ray (in, out, up, or down) with respect to the center of

the facet between the two volumes, until either the path will enter the correct next

volume or we determine it is impossible. The performance of our random-ray

technique is an improvement over an earlier approach using local optimization. We

have also implemented a movable display on a graphics workstation, to allow the

user the ability to view the terrain and paths from any angle.

Accession For

N TIS C.A
DTIC T.

By -

Avi~i 1!, i.v Codes

iiii

TABLE OF CONTENTS

I. INTRODUCTION 1

II. BACKGROUND 4

A. FLIGHT PLANNING PROGRAMS 4

1. OPARS 4

2. Calculator Aided Performance Planning System 5

3. Others .. 6

B. THREE-DIMENSIONAL PATH PLANNING 6

1. Division Of Search Space 6

2. Path Planning Algorithm 7

3. Optimization of Paths 8

C. WORK IN COMPUTER GRAPHICS DISPLAYS 8

Ill. APPLICATION AND ASSUMPTIONS 9

A. REAL WORLD PROBLEMS 9

B. AIRCRAFT REALISM 10

1. Physical Characteristics 10

IV. IMPLEMENTATION 16

A. OVERVIEW 16

1. System Requirements 16

2. Main Program Parts 16

3. O utput D ata 18

4. Contributions of Others 18

5. Data Structures 20

6. Deviations From Total Path-Planning 20

iv

B. NEW PATH-PLANNING METHODS 20

1. Initial Path-Planning 20

2. Aircraft Data 22

3. Random Ray Optimization 23

C. DISPLAY 34

1. System Requirements 34

2. Input Files 34

3. Program Display 34

4. Display Program Parts 35

5. Data Structures 39

6. Program Components 39

a. System Setup 39

b. File Input 39

c. Display Terrain 40

d. Control Inputs 40

V. RESULTS .. 42

A. PATH PLANNING 42

1. Aircraft Realism 42

2. Resultant Paths 42

B. D ISPLAY 53

1. Terrain M odels 53

2. Viewpoint and Perspective 60

VI. CONCLUSIONS 61

A. DISCUSSION 61

B. KNOWN PROBLEMS 62

C. RECOMMENDATIONS 63

LIST OF REFERENCES 64

V

APPENDIX A .. 66

APPENDIX B ... 190

INITIAL DISTRIBUTION LIST 214

vi

. INTRODUCTION

Prior planning has always been the key to success of any military mission.

With advance notice, all possibilities can be thoroughly examined and the best

possible choices made. Unfortunately, time is often at such a premium in last-

minute strike planning that all avenues of attack are not fully exploited.

Furthermore, in today's changing world we are continually confronted by changes in

policy, strategy and assets. A domino effect from upper echelons causes constant

turmoil in preplanned strike packages. A faster, more efficient way of route

planning, and systems that can detect the enemy's weakest avenues of approach are

needed. Such systems could also be used to identify our own deficiencies and

allow for reinforcements.

Our work at the Naval Postgraduate School (NPS) has led to new methods of

path planning using artificial intelligence that are more suited for near-real-time path

planning. This new approach, combined with proven algorithms from artificial

intelligence about searching through sets of possible solutions to find particular "best

solutions", has allowed faster results to certain path-planning problems than was

previously possible. A program of this type could greatly aid aircrews in their

mission planning, or add flexibility to path-planning for cruise missiles. Once in

general use, where basic data is already loaded, paths can be planned by inputting

the start and goal points and how many paths we wish to consider and the computer

program, suitably optimized, should be able to give us answers within minutes for

many interesting problems. Considering that it takes an average of two days to

fully plan manually a single route into hostile territory, this is a great savings. The

computer does not forget special considerations under pressure and it can give us all

possible solutions, not just the obvious ones.

Several programs have come close to what we are looking for but have fallen

short for various reasons. Flight planning programs while giving accurate flight

information have no graphics display of actual terrain and no path planning.

Theoretical development of three-dimensional path planning has occurred recently

but nothing is available for true aircraft models when the searching to reduce the

probability of detection. Much work has been done with terrain displays at NPS

but none include path planning or aircraft realism.

Our approach is to implement all the ideas of the last paragraph into one

system. We have extended David Lewis's thesis [Ref. 1] to include aircraft realism

in the cost analysis for the search algorithm, and used a new technique for

optimization we refer to as "random- ray optimization". Additional work was done

on visualization of the search algorithm and graphic display of the final results.

The remaining sections of this thesis describe the work mentioned above.

Chapter II is a brief overview of previous work, including a description of other

programs available. For a more through understanding it is suggested that David

Lewis's thesis [Ref. 11 be reviewed. Chapter III discusses assumptions made about

our aircraft (a pseudo-cruise-missile), while Chapter IV is the detailed account of

algorithms implemented. The results of the implementation are given in Chapter V,

2

and finally in Chapter VI we discuss conclusions, known problems, and

recommendations for further study.

H. BACKGROUND

A. FLIGHT PLANNING PROGRAMS

Flight planning is just one small part of an overall mission plan. The full

mission plan may contain other items such as target coordination, secondary targets,

and route planning. Route planning is related to flight planning in that the route

must be known in order to compute fuels and attack times to complete flight

planning.

1. OPARS

Optimal Path Aircraft Routing System (OPARS) and similar flight

planning programs are used extensively by the military, particularly for long haul

type aircraft such as C-5's, C-141's and C-130's.[Ref. 2] OPARS has flight

characteristics for the appropriate aircraft available and receives input from Fleet

Numerical Oceanography Center in Monterey, California on items such as forecast

winds and temperatures. The program can plan flights from point to point where the

points are known points such as TACAN stations or fixes with known latitude and

longitude, giving priority to fuel consumption and avoidance of high winds. The

algorithm used for OPARS is a depth-first search which generates a series of

possible paths, and from this series, the best path is chosen.

OPARS is a prior-planning tool that gives information from the latest

available data with the output accurate enough to be used in-flight as a check

4

against how far ahead or behind schedule the aircraft is. It is predominately a high-

altitude tool, and uses known points as discussed in the previous paragraph to plan

to. Our goal is to evolve something that uses points that it defines and can be used

at low altitude for detection avoidance.

2. Calculator Aided Performance Planning System

Special-purpose hand-held calculators have been used for flight planning

for tactical aircraft such as E-2C's, E-2B's and A-6's [Ref. 3] and [Ref. 4]. Prior

planning done on these small devices is much simpler and less error-prone then

using graphical charts [Ref. 5]. They can be used in the actual aircraft when a

change in plan is desired or required because of some emergency. The data

contained in these machines is extremely accurate and is a compilation of the data

contained in the NATOPS Flight Manual'. While some of this information is

contained in the pocket version of the NATOPS carried in the aircraft, it is not

complete.

The main problem with this device is that data entry is no trivial matter

(twenty or thirty steps on a number key pad). There is no way to store the input in

flight planning, and if there is a change, go back in and change a few items. You

must also know where you are going and how you are going to get there. But part

of these programs are usable in our program, the flight data formulas. These

'NATOPS is the Naval Air Training and Operating Procedures Standardization
Program which contains vital information for the safe and emergency operation of military
aircraft.

5

formulas were coded in the flight characteristics section of our program and used by

the cost and evaluation section of the search algorithms.

3. Others

Since 1984, low cost and improved performance of microcomputers have

made it practical to develop computer-aided mission-planning-tools for use at the

squadron level [Ref. 6]. Some have used the flight data from NATOPS, [Ref. 6],

and others have required input of fuel consumptions at every stage of the flight.

Most have the ability to store and change the mission plan, but all require that the

route be known beforehand.

B. THREE-DIMENSIONAL PATH PLANNING

1. Division Of Search Space

The speed at which any computer can solve a search problem is

dependent on the search algorithm used and the size of the search space. If we

were to divide a cube of side one thousand into cubes of side ten, we would have

one million cubes to search through to find a connected path from some start cube

to a goal cube. If we were to make our cubes larger to side twenty five, the search

space is reduced to sixty four thousand blocks. This is a large reduction in size of

the search space but it is still large. The complexity of a search problem is directly

proportional to the search space when it comes to allocating time and space

resources for a simple non-heuristic search [Ref. 7].

6

But the search space need not be subdivided uniformly. Earlier work

[Ref. 1] used the physical features of polyhedrally-modeled terrain for the first

division of the airspace. We will refer to these divisions of airspace as volumes as

they are bounded on all sides and each will have a homogeneous property of some

visibility constant. Vertical planes were constructed above all ridges forming

convex volumes so that from any point in a volume every other point is visible.

Once observer data is added to the problem, these convex volumes are further

divided into visibility volumes by passing planes from the observer through the

peaks of all ridges. Each resulting volume has an associated probability of

detection from each observer that it is visible to. If one volume is visible to

several observers, its probability of detection is calculated assuming probabilistic

independence.

2. Path Planning Algorithm

An A* search is used to produce a connected path from center-of-volume

to center-of-volume in [Ref 11. The A* search was chosen to find good sequences

of volumes likely to enclose the optimal path because A* allows the use of an

agenda, an evaluation function, and a cost function. The [Ref. 1] program used a

cost function that took into account climb, dive, and amount of turn, all multiplied

by some function of the probability of detection. The evaluation function was

calculated in a similar manner.

We still considered this method of search the best, but we made

modifications to the cost and evaluation functions. These functions have been

7

altered to reflect True Air Speed (TAS) of the missile, weight, Fuel Flow (FF) and

time spent in a particular region. This was done to ensure a more realistic

aerodynamic model rather then the simple percentages used in [Ref. 1] and to allow

for specific aircraft data to be encoded at a later date.

3. Optimization of Paths

Once the volume sequences are found in the program of [Ref. 1), initial

paths are generated from center-of-facet to center-of-facet of the polyhedron through

the search space. This means that the paths may go a considerable distance out of

their way if only a comer of the volume need be passed through. [Ref. 1] used a

modification to Snell's Law to move the facet intersection points to try to minimize

the error in the Snell's Law equation. This is repeatedly applied to a path until the

desired tolerance is obtained. The problem encountered was that the process would

get stuck on local optimization. This happens at irregular intervals and can

therefore not be anticipated and corrected.

C. WORK IN COMPUTER GRAPHICS DISPLAYS

Recent work at NPS has explored the use of graphic displays to present real

terrain from elevation data. One of the most recent of these reads in the terrain

data base and allows the user to select a segment of this for a three-dimensional

view of the terrain from various platforms such as jeeps, trucks, tanks and even a

missile [Ref. 8]. Control inputs for the missile are via dials for altitude, speed and

direction. This would be good for output from our program, but this software at

present does not display the missile path nor is there any intelligent path planning.

8

IM. APPLICATION AND ASSUMPTIONS

A. REAL WORLD PROBLEMS

Flight planning is a tedious, calculation-intensive and error-prone process.

Many hours of planning can be wiped away by a simple change in commands from

higher authority or new intelligence data on the location of a missile or radar site.

Some target areas are so saturated with defenses that there exists no good way to

attack, only the least hazardous. In these situations it is difficult for any human to

rationally plan a route into a target he knows he may never come out of. Likewise,

when planning for the cruise missile to destroy a site that will open a path that is

critical for other aircraft to take, it is essential that the path chosen for this missile

is survivable.

This type of planning can become an overpowering task. For this and many

other reasons, U.S. Naval Instructions require that aircrews be given the opportunity

for eight hours of rest prior to flying. In some cases this is not possible, so

anything that will help lighten the workload is a big plus. Powerful computer

programs can help with the mass of calculations required for the single flight of an

aircraft or cruise missile. A program of this type can be used in the strategy

planning room at the Wing or Battle Group level, or by the individual pilot at the

squadron level.

9

Higher headquarters are constantly playing "what if' games in contingency

planning. Furthermore, every time there is a change in situation, planners must

review all the preplanned strikes to ensure that they have covered all the changes in

targets, defenses and missions that need to be addressed. Similarly, commanders

must review our own defensive posture to ensure we have not left any open

passages.

When it comes time for an actual conflict similar problems will be

encountered. The need for computer simplicity and accuracy is essential. The

computer can cut calculations to a fraction of the time and present many more path-

planning options than could be produced by several human planners.

B. AIRCRAFT REALISM

In order to keep this thesis unclassified, no attempt was made to obtain any

classified documentation on the cruise missile. It is important however to

understand what information is needed so that appropriate substitutions could be

made for actual flight data at a later date.

1. Physical Characteristics

The model of the cruise missile we used was a variant of the Tomahawk.

It measures approximately 20 feet with a wing span of 8 feet 7 inches and has a

diameter of 21 inches.[Ref. 9] The missile, with a full fuel load of 900 lbs

(approximately 120 gallons), weights 2525 lbs.[Ref. 101 The engine used is a

turbofan developed by Williams Research Corporation and has a designation of

10

F107-WR-100. This engine can produce a static thrust of 430 lbs at sea level and

has a specific fuel consumption of 0.7 lb/lb-hr.[Ref. 11]

All the articles read on the cruise missile indicate that the planned cruise

speed is around 450 kts. This can be increased or decreased depending on the

importance of achieving minimum detection or increasing range. The speed we will

assume in this program is 450 kts. As shown in Figure 3-1, the turn characteristics

are such that the missile will lead a turn by an amount sufficient to arrive wings

level on an outbound course directly between the turn point and the next

point.[Ref. 12] This turn has a radius of 5 um and is accomplished in 1G flight so

as to not bleed any excess energy or require any radical power changes.

Fuel consumption data TABLE 3-1. Cruise Missile Weight vs Fuel
Flow

versus vehicle weight is listed in

column form in Table 3-1 and Missile Fuel Fuel
Weight Remaining Flow
2525 1225 350

shown in graphic form in 2275 975 325
2025 725 300

Figure 3-2. The data was 1775 475 285
1775 475 285

derived from graphs modeled 1525 225 275

after the cruise performance

charts for the Grumman A-6 aircraft, [Ref. 13]. This data is for straight and level

flight assuming an average fuel flow of 270 lb/hr which will maintain the required

450 kts. Equation 3-1 gives the computation for fuel remaining (X) against fuel

flow.

Fuel Flow = -1.6e-10 * X4 + 4.3733e-7 * X3 -

3.566e-4 * X2 + 0.1530066 * X + 254.05494 (3-1)

11

Turn Point 1 Turn Point 2

Complete Turn

5 nm Radius of Turn

Flight Path

Start Turn

Inbound Path

Figure 3-1. Cruise Missile Turn Characteristics

12

\ -~

o, \

w ' _ _ - ---- - - - -

LL "

J 0

- - 0 k.

Ln

in

U- L

0

LL 0

Cspuvsnot±j)

Cs i) 6u! u! uWtj i anl=

Figure 3-2. Cruise Missile Weight vs Fuel Flow

13

At this rate the 900 lbs of useable fuel will allow a maximum distance of 1500 rnm.

The formula for equation (3-I) and (3-2) were obtained by using selected points of

graphs and using a polynomial curve approximation of degree four and three

[Ref. 14].

For climbs and dives we use a different set of formulas modeled after

aerodynamic theory from [Ref. 15] and personal experience. For a climb up to 20

degrees and a dive of less then 10 degrees we assume the missile adjusts power to

maintain 450 kts. The fuel flow for this power adjustment is given by the equation

Fuel Flow = 0.01628787 * X3 +

0.1037878 * X2 + 21.40909 * X + 300 (3-2)

where X is the angle of climb and is depicted graphically in Figure 3-3. For dives

steeper then -10 degrees the missile will increase speed and when it returns to level

flight the engine will remain at idle until such time that the aircraft decelerates to

450 kts. For a climb greater then 20 degrees the rate at which airspeed will be lost

is

Loss Rate = 3kts/(climb degrees - 20)/min (3-3)

and the rate at which this airspeed can be recovered is

Recovery Rate = 50kts/min (3-4)

which if the speed is decreased to 200 kts it will require 5 minutes to accelerate

back to 450 kts.

14

-j(

<0 .

Zc c

> 0

100

0 <J
i -- I

LL

0 0 0 a 0 0 0

0 0 0 0 0 0 0 0 0 0
mn M r, CD In i- M ci

Figure 3-3. Fuel Flow vs Angle of Climb

15

IV. IMPLEMENTATION

A. OVERVIEW

1. System Requirements

The path-planning part of the thesis was implemented on a Texas

Instrument (TI) Explorer IH LISP machine with 16 megabytes of memory and 60

megabytes of virtual memory. The code is written in Common LISP and makes

extensive use of the LISP Flavor System. The program forerunner of D. Lewis,

[Ref. 1], was written in LISP because of the advantages in speed, numerical

accuracy and sophisticated data-structure management, and we have continued with

LISP for these same masons [Ref. 1:64]. Since the project was started there have

been two upgrades in the operating system with no problems or re-coding required.

The program will also run on a TI Explorer I LISP machine if sufficient memory is

available but at a large increase in execution time.

2. Main Program Parts

The program can be broken into three main sections (Figure 4-1): terrain

input and processing, observer input and processing, and path planning and

optimization. The first two sections have not changed from [Ref. 1:771 and will not

be discussed here. The final section has significant differences, due particularly to

the use of a quite different technique, "random-ray optimization". It also has one

16

User Input Program StructureDipaOton

..

Function: S......

* 1

* ~Find. Viiilt LOS

andnve Conec Volumes

OFumnction

Start anVGaoPltsVluemahelnnn

Oflu~a nle: Pats Oe eri

.............

Figure~------- ---Blc-Dara-fPrgam Srutr

Path Pann1n

new display option which allows the user to observe the best agenda item as it is

being changed by the A* search.

3. Output Data

As in [Ref. 1], the paths our program finds arn made up of linear pieces

beginning with the volume that contains the start point and ending with the volume

that contains the goal point. This path is further defined by the individual facets

connecting the volumes and the turn points on the facets that when connected will

form a path from the start point to the goal point.

The path can be the input of functions that will give specific data about

it such as length, travel time, visibility along each line segment, amount of fuel

used for each segment, and total fuel used. From this data paths can be compared,

and determinations made as to which path is best suited for the particular mission.

A sample of this output is given in Table 4-1.

4. Contributions of Others

The code written by Lewis has been used extensively.[Ref. 1] Little or

no changes have been made to [Ref. 1] code up through the path planning section.

The section of code for the A* search is still used intact but the cost and evaluation

functions have been completely rewritten. For some paths there are no random-ray

solutions so [Ref. 11 code for optimization of a path was left intact. This gives us

a way to handle all situations.

A set of moving picture display functions developed by Dr. Sehung

Kwak were added to give the ability to visualize the A* search as it

18

TABLE 4-1. Sample "Jet Log" Type Output

> (path-data ' Ipath00321)
Leg Total Leg Total Leg Fuel Vol PD Leg

Point Time Time Dist Dist Fuel Remain PD Cost Cost
(10.0 0.0 300.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -

(469.23077 300.0 601.53845)
73.1 73.1 548.5 548.5 367.0 1133.0 0.070 512.0 879.0

(111.53846 500.0 346.92307)
54.6 127.8 409.8 958.3 272.1 860.9 0.070 382.5 654.6

(111.53846 462.5 287.30768)
5.0 132.8 37.5 995.8 24.7 836.2 0.070 35.0 59.7

(586.53845 567.5 262.3077)
64.9 197.6 486.5 1482.3 324.2 512.0 0.000 0.0 324.2

(700.0 700.0 380.0)
23.3 220.9 174.4 1656.8 116.8 395.1 0.000 0.0 116.8

(420.0 852.5 505.0)
42.5 263.4 318.8 1975.6 213.1 182.0 0.000 0.0 213.1

(990.0 990.0 990.0)
78.2 341.6 586.3 2561.9 393.1 -211.1 0.070 547.3 940.3

Total cost of this path - 3187.8
minimum PD cost - 0.0
maximum PD cost - 547.3
average PD cost - 9.3
3187.7761878875613d0
> (path-data ' Ipath00341)

Leg Total Leg Total Leg Fuel Vol PD Leg
Point Time Time Dist Dist Fuel Remain PD Cost Cost
(10.0 0.0 300.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -

(70.92308 300.0 328.15384)
40.8 40.8 306.1 306.1 204.2 1295.8 0.070 285.7 489.9

(73.65098 310.91418 325.41046)
1.5 42.3 11.2 317.4 7.5 1288.3 0.070 10.5 18.0

(276.87296 412.58145 300.40717)
30.3 72.6 227.2 544.6 151.4 1136.9 0.070 212.1 363.5

(586.53845 567.5 262.3077)
46.2 118.8 346.3 890.9 230.7 906.3 0.000 0.0 230.7

(509.11267 700.0 375.13834)
20.5 139.2 153.5 1044.3 102.8 803.4 0.000 0.0 102.8

(104.55399 1000.0 500.9108)
67.2 206.4 503.7 1548.0 336.3 467.1 0.000 0.0 336.3

(990.0 990.0 990.0)
118.1 324.5 885.5 2433.5 592.5 -125.4 0.070 826.5 1419.0

Total cost of this path - 2960.2
minimum PD cost - 0.0
maximum PD cost - 826.5
average PD cost - 9.1
2960.188312228768d0

progressed.[Ref. 16] This code originally written to display one graphics window

and one moving object was altered to display several windows and multiple objects.

19

5. Data Structures

The data structures have not changed in any area except for the agenda

in path planning. The agenda now contains the fuel remaining at each turn point so

the next leg's fuel flow can be calculated, and the last airspeed must be retained so

we know where to start our calculations for time and distance.

6. Deviations From Total Path-Planning

It was initially intended to include all aspects of path-planning in our

new path-planning method but due to time-constraints and the complexity of the

problem planning around obstacles, except for the minor cases, was left out.

Obstacle-traversal by paths would have required additional algorithms in the A*

search and the optimization phase that would allow the paths to be sectioned, thus

complicating matters.

B. NEW PATH-PLANNING METHODS

1. Initial Path-Planning

Path planning begins by initializing the start and goal point with INIT-

POINT. These points are passed to the search function A-STAR-SEARCH or A-

STAR-SEARCH-M. An additional switch has been added to these two functions

and if set to true, the best path on the agenda will be displayed as the search

progresses, Figure 4-2. The two upper and lower left displays clear each time a

new path is made and the fourth displays all lines as they are generated. The final

display will show all the final paths from start to goal.

20

Path-over-cjroundi 11op-uieu

Al~ternate-vieku 'Top-view H~o Reset of Paths

Figure 4-2. Search Display

21

The cost function consists of two parts, a probability of detection (PD)

cost and the cost of fuel used to get from one point to another. The PD cost is

calculated using

PDcost = probability-of-detection * time-in-volumes * 100 (4-1)

where the extra 100 is multiplied in to weight the PDcost to an amount comparable

to the basic cost. This causes a short stay in a volume of high probability of

detection to be preferred over a long stay in a volume of medium probability of

detection. It also forces the searcher to look for volumes with zero probability of

detection. The fuel-burned cost is related to the distance flown and how much

climbing and diving is done, as discussed in the previous chapter. Because of

nonlinear aerodynamics, a missile or aircraft does not gain back the fuel it lost in a

climb if it descends back to the same level [Ref. 17]. For this reason, paths that

remain at a constant altitude are preferred.

The evaluation function is a calculation of the fuel cost from our current

location directly to our goal point ignoring obstacles. No attempt was made to add

in a PD cost as we do not know what volumes we will be going through or the

time we will spend in them.

2. Aircraft Data

% The cost and evaluation functions receive all of their input on aircraft

data from the aircraft control module. Inputs to this module include the distance

traveled (not just ground distance), the climb angle, the fuel remaining, and current

airspeed. The program limits the fuel flow to an idle setting of 80 lb/hr which is

22

the setting in a ten degree dive and a maximum of 900 lb/hr at maximum power.

The module returns the fuel burned on that leg, fuel remaining and new airspeed.

3. Random Ray Optimization

The random-ray technique is applied to the best connected sequences of

volumes from start to goal that were found by the A* search. This technique for a

particular volume sequence can be broken into three parts: finding a path into the

final volume, adjusting the path as close to the goal point as possible, and

calculating additional path details. The last part is required because due to the

number of lines and points generated during the adjustment phase, minimal data is

kept for each.

To start, a line, a "random-ray", is passed from the start point to the goal

point. This ray is examined to determine if it passes into the specified second

volume via the connecting facet (the plane connecting the two volumes). If it does

not, a guess adjustment is made to the ray using an adjustment vector calculated

from the actual intersect point on the extended facet to the center of the facet

(Figure 4-3). The adjustment vector is multiplied by an adjustment factor (initially

125) and then added to the end point of the ray to obtain a new random-ray.

These adjustments are continued, each time dividing the adjustment factor by five if

the distance we are missing the facet by is increasing, until the path intersects the

facet. We then calculate the outbound ray using Snell's Law (described below) and

find the next line segment in the path.

23

Plane Intersect Point Adjustment Vector

Plane

Random Ray

Figure 4-3. Adjustment Vector Determination

24

Calculations are made at each facet to find the outbound line that meets

the criterion of Snell's Law. Formulas were developed for a known inbound ray to

the facet, the plane that the facet lies in, and the amount of bending the ray must

do according to Snell's Law (Figure 4-4). Assume the equation of the plane

containing the facet is

Ax + By + Cz + 1 =0 (4-1)

where (A B C) is the vector normal to the plane. Using the point of intersection of

our inbound ray and (A B C) (the vector normal), we generate a line perpendicular

to the facet. Once two lines are obtaied we can generate a plane, equation (4-2),

contaning both.

A2x + B2Y + C2z + 1 = 0 (4-2)

We know the unit direction vector (i1 J, k,) of the inbound line and are trying to

find the unit direction vector (i2 j2 k2) of the outbound line. We have then three

equations in these three unknowns:

A2 (i2) + B2(J2) + C2 (k2) = 0 (4-3)

(il)(i2) + 01)0 2) + (kl)(k2) = sin(theta2 - theta,) (4-4)

i22 + j22 + k2 2 = 1 (4-5)

Theta1 is given and is the angle between the inbound ray and the facet normal

(Figure 4-4). Theta2 can be calculated using equation (4-6) where PDI and PD2

are the respective volume's probability of detection.

Theta2 = arcsin(PD1 * (sin Theta 1) / PD2) (4-6)

We can solve in terms of any one of i2, j2, or k2 and substitute this into equation

(4-5), which is easily solved using the quadratic formula. As it turns out, we need

25

Material #1 Material #2

Probability of Detection - I Probabilizy of Detection - 2

PD1 PD2

Li - Continued

/ L2 - Outbound Ray

N
r
m
a

Theta 1

LI - Inbound Ray

Facet Plane

Figure 4-4. Snell's law

26

all three of (i2 j2 k2) to avoid a possible divide-by-zero error. We also want to

avoid complex roots; if the square root of a negative number is about to be taken,

we check to see if that number is approximately zero, and make it zero. If

however these two errors can not be avoided, the program is terminated indicating

that no random-ray solution is possible.

Once we have found the outbound ray and know the point of intersection

with the next facet plane, we can construct the outbound line segment. This ray

can be adjusted to hit within the facet as with the first ray. If this adjustment

causes the ray to miss any of the previous facets, the adjustment is thrown out and

a new guess is made. This is done for every successive facet of the volume

sequence, until we intersect the facet connected to the final volume. Now our

target has changed; we are now shooting for a point in space rather then a window.

The adjustment technique remains the same except we make adjustments in smaller

increments. Figure 4-5 shows the path generated by connecting the centers of the

facets of the volumes found by the A* search, and a straight-line path from start to

goal. Figure 4-6 and Figure 4-7 show adjustments needed to enter the goal volume

and Figure 4-8 shows adjustment onto the goal point. An analogy of all of this is

adjusting artillery fire onto a target, the only difference being that we do not know

adjustment sensitivity, which varies dramatically.

27

Goal Point
Straight Line Path Facet #5

(Does Not Abey Snell's Law
Nor Intersect Facet #5)

Facet #4

FFacet #

Faacet #3

Facet #1

/ --- Original Facet to Facet Path
(Does Not Obey Snell's Law)

Start Point

Figure 4-5. Original Path to Goal and Line-Of-Sight Path

28

Goal Point

Straight Line Path Facet #5
(Does Not Abey Snell's Law

Nor Intersect Facet #5)

Facet #4

Second Attempt
/4 - Path

Facet #3 (missed facet #5)

Facet #1

First Attempt
Path

(missed second
facet to left)

Start Point

Figure 4-6. First Ray Adjustment

29

Goal Point 03

Facet #5

Facet #4

Second Attempt
Path

Facet #3 (missed facet #5)

Facet #2

Facet #1

Third Attempt
Path

(hit last facet but missed goal)

Start Point

Figure 4-7. Ray Adjustment Into Final Volume

30

Goal Point

Facet #5

Facet #4

Fourth and Final
Attempt Path

Facet #3

Facet #2

Facet #1

-Third Attempt

(hit last facet but missed goal)

Start Point

Figure 4-8. Final Random-Ray Adjustment Onto Goal Point

31

One problem encountered during the adjustment through the facets is

depicted in Figure 4-9. The problem arises when passing from a high to a low

probability-of-detection where a reflection can occur. Table 4-2 shows the allowable

angle deviation from the
TABLE 4-2. Tolerance to Avoid Reflectionnormal to the facet that an ____________________

First Second Maximum Maximum
inbound line to a facet can Vl oueAgeo nl f

Volume Volume Angle off Angle off
PD PD Facet (rad) Facet (deg)

have and still pass through 0.010 0.010 1.5708 90.0000
0.015 0.010 0.7297 41.8103

the facet according to Snell's 0.020 0.010 0.5236 30.0000
0.025 0.010 0.4115 23.5782
0.030 0.010 0.3398 19.4712

Law. If an adjustment of the 0.035 0.010 0.2898 16.6016

0.040 0.010 0.2527 14.4775
inbound ray puts its angle 0.045 0.010 0.2241 12.8396

0.050 0.010 0.2014 11.5370

deviation from the normal 0.055 0.010 0.1828 10.4757
0.060 0.010 0.1674 9.5941
0.065 0.010 0.1545 8.8499

outside this tolerance, our 0.070 0.010 0.1433 8.2132
0.075 0.010 0.1337 7.6623

adjustment algorithm will not 0.080 0.010 0.1253 7.1808
0.085 0.010 0.1179 6.7563
0.090 0.010 0.1113 6.3794

work. A different approach 0.095 0.010 0.1055 6.0423

was taken so that once the

facet had been intersected,

but a reflection resulted, we change the adjustment vector to adjust to the projection

of the last turn point on the facet.

When the random ray that hits the goal point has been found, it is passed

with the original path to the REVISE-PATH module, to fill in details of the new

path starting with this random-ray. This process is completed by making the Snell's

Law adjustment at each successive facet until the goal is reached. The points of

32

£

V1 V2
Start Point Tolerance Cone

/Random Ray
(mi sed facet)

Adjustment
\ \-\ Vector

Goal Point
V4 V3

Projection of Start-
Facet Centers Point on the Facet

Volume Sequence for Path is - V1, V4, V3

Figure 4-9. Over-Shoot Corrections

33

intersection of lines and facets are used to construct the new lines to the goal and

both replace the old lines and points in the original path.

C. DISPLAY

1. System Requirements

The system used to implement a display was the Silicon Graphics IRIS

4D/70GT with eight megabytes of memory. The features of this machine such as

drawing routines implemented in hardware, hidden-line removal, and lighting and

shading routines made it an ideal choice. The machine is UNIX-based with the

program written in C.

2. Input Files

The program reads in two files with the first being the terrain data (as in

Table 4-3), and the second being a concatenation of all the paths you wish to

display (as in Table 4-4). The paths must include the probability of detection along

each segment.

3. Program Display

The purpose of this part of the program was to visualize the terrain and

the paths created. The full screen is used to display the terrain and the paths drawn

over it (Figure 4-10). The ground is drawn as a series of polygons with the

variance in color produced by the lighting built into the IRIS. This reflected light

is a function of the angle between the polygon's normal vector and the light source

using Lambert's Cosine Law [Ref. 18]. The paths are colored according to their

34

TABLE 4-3. Example Terrain Data
TABLE 4-4. Example Path Data

7
3 4
4 0 300 -1000
8 0 300 010.00 300.00 -0.00 0.70 350 500 -300

469.23 601.54 -300.00 0.70 350 500 -1000
420.00 668.00 -700.00 0.70 4
990.00 990.00 -990.00 0.70 1000 30 0
10.00 300.00 -0.00 0.70 650 500 -300

306.97 509.09 -300.00 0.70 350 500 -300
702.92 787.87 -700.00 0.70 0 300 0
990.00 990.00 -990.00 0.70 4

10.00 300.00 -0.00 0.70 650 500 -1000
38.25 297.16 -81.26 0.70 650 500 -300

175.07 303.45 -300.00 0.70 1000 300 0
261.58 307.29 -437.44 0.70 1000 300 -1000
300.05 309.00 -498.56 0.00 4
331.59 391.86 -700.00 0.00 350 500 -300
390.88 438.18 -700.00 0.00
990.00 990.00 -990.00 0.70 475 300 -400

475 300 -1000
350 500 -1000

probability of detection along each line
350 500 -300
650 500 -300

segment, varying from yellow to red as low to 5500 -400
525 300 -400

high probability. The dial controls, 475 300 -400
4

Figure 4-11, allow for rotation (Dial 0), tilt 525 300 -400
650 500 -300

(Dial 1), and zoom (Dial 2) of the model. 650 500 -1000
525 300 -1000
4

Additional controls including EXIT are 4
475 300 -400

provided by the mouse system. 525 300 -400
525 300 -1000
475 300 -1000

4. Display Program Parts

The program can be broken into four main parts as shown in

Figure 4-12. The first two sections, once completed, are never repeated. The

second two sections are continuously updated and interact with each other to cause

35

Figure 4-10. Full Screen D~isplay

36

2 3D (DI I LI

IZoom

Rotaion lZ

Figure 4-11. IRIS Control Box

37

Setup input

S Initialize Windows
* *

Initialize Lights/Material

Rese All [Input Paths

Accumulative-
Matrices

Display !Adjustments

* S

D~raw Terrain~ Ch eck for D~ial Changes I

: Draw Paths
: , djust Matrices

Figure 4-12. Block Diagram of Craphi'c Display Program

38

the changes in the display. This program was written for the course Computer

Graphics, where many of the routines were given in class or in examples.

5. Data Structures

Two separate data structures was used for the terrain and the paths. The

terrain is read in as a series of polygons defined by their three-dimensional vertices.

The paths are read in as a series of three dimensional points with a probability of

detection associated with each. These items are stored in array form and are

adjusted and displayed each time the viewing angle or position changes.

6. Program Components

a. System Setup

All of the following are initialized: global variables, the IRIS

window system, material and lighting models, and dial and menu controls. This

allows the window system to be opened and cleared, and sets all the colors for the

polygons and properties of the lighting models. Movement of the objects is

facilitated by the use of accumulative matrices, so these are initially set to a unit

matrix.

b. File Input

The two files are read in and processed one at a time. The terrain

file is read in two parts: the base, which is read for all terrain, and the ground,

which is unique to each area. As each is completed, the viormal vectors are

39

computed and the colors and lighting properties are assigned to each polygon. Once

the terrain is complete, the paths are read in with no calculations required.

c. Display Terrain

The initial data is displayed as it was input, with all the colors and

lighting adjusted. At this point no other inputs have been received so the

accumulative matrices are still in unit form and do not effect the terrain displayed.

Subsequent displays will be altered by the matrices as adjusted by dial inputs.

d Control Inputs

The inputs from the three dials are read and queued for alteration of

the accumulative matrices. Dial zero allows you to rotate the terrain display left

and right as shown in Figure 4-13. This rotation is about the center vertical axis

(Y on the IRIS and Z on the TI Explorer). Each rotation is from the last displayed

position and is not dependent on the dial's actual position. In other words, you can

continuously rotate in one direction without reaching a stopping point. Dial one

changes your eye position from ground level to a position directly above the terrain.

This dial does have limitations as shown in Figure 4-13. The last input is zoom,

on dial two. This increases or decreases the size of the picture. With this you

must be careful because you can be looking at the terrain from inside of it, and this

can be confusing.

40

Y-Axis Rotation
360 deg.

Eye Movement
90 deg.

Zoom

Figure 4-13. Graphic Display Limits

41

V. RESULTS

A. PATH PLANNING

1. Aircraft Realism

The A* search at this point does make its decisions based on true aircraft

aerodynamics. The cost function relies heavily on the amount of fuel burned and

how the missile will react to a path that will climb for a great deal of time. The

processing of this data did not significantly increase the processing time in the

[REF. 1] A* search. It is important to note that contemporary cruise missiles can

store only a limited number of turn points, so if these are kept to a minimum, the

better off we are.

2. Resultant Paths

Table 5-1 shows that random-ray optimization does indeed produce a

more direct path from start to goal. Table 5-2 shows time required to obtain

optimized paths with variable number of volumes, and Table 5-3 shows how many

single optimizations had to be run on a path to obtain the same results (within

limits) as the random-ray optimization.

42

Table 5.1. Random-Ray Paths vs Original Paths

Terrain Old-Path Distance Time New-Path Distance Time

T-27 0003 999.7 133.3 0008 599.9 80.0

T-21 0019 894.1 119.1 0020 815.0 108.7

T-27 0004 1481.9 198.1 0009 1012.2 135.0

T-27 0023 1591.1 212.1 0052 1393.0 185.7

TABLE 5-2. Run-Time to obtain Random-Ray Paths vs Old Optimized Paths

No of Volumes Run Time(sec) Run Time(sec)
Terrain In Path Random-Ray Old-Optimize

T-27 5 107 8
T-21 5 239 42
T-25 11 270 *
T-21 5 165 40
T-27 4 7 4

• - Would not optimize

Table 5-3. Comparison of Old Optimize vs Random-Ray

Random-Ray Number of Cost After
Terrain Path Cost Optimizations Old-Optimize

T-27 881.4 3 981.5
T-21 647.2 6 683.7
T-25 983.7 3* *
T-21 659.1 6 675.2
T-27 1303.2 3 1303.3

• - Started to diverge after 3rd optimization run

43

Figure 5-1 through 5-3 show the original path and the optimized path

(the optimized path is the straighter of the two) with Table 5-4 through 5-6 giving

the corresponding data on each. Figure 5-4 and Table 5-7 show that the results

obtained by the computer can be improved on but not by much.

44

Figure 5-. Original vs Random-Ray Optimized Paths

45

TABLE S.4. Original and Random-Ray Path Data

> (path-data 'ipathOO031)
Leg Total Leg Total Leg Fuel Vol PD Leg

Point Time Time Dist Dist Fuel Remain PD Cost Cost
(10.0 400.0 910.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -
(420.0 700.0 668.0)

67.7 67.7 508.0 508.0 337.6 1162.4 0.020 135.5 473.1
(420.0 852.5 505.0)

20.3 88.1 152.5 660.5 100.9 1061.5 0.020 40.7 141.6
(110.0 990.0 450.0)

45.2 133.3 339.1 999.7 225.8 835.6 0.000 0.0 225.8
Total cost of this path - 840.5
minimum PD cost - 0.0
maximum PD cost - 135.5
average PD cost - 6.3

840.5207
> (path-data ' IpathOO081)

Leg Total Leg Total Leg Fuel Vol PD Leg
Point Time Time Dist Dist Fuel Remain PD Cost Cost
(10.0 400.0 910.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -
(71.3271 700.0 622.3257)

40.8 40.8 306.2 306.2 202.8 1297.2 0.020 81.7 284.5
(107.56799 877.03156 452.3262)

24.1 64.9 180.7 486.9 119.7 1177.4 0.020 48.2 167.9
(110.0 990.0 450.0)

15.1 80.0 113.0 599.9 75.3 1102.1 0.000 0.0 75.3
Total cost of this path - 527.7
minimum PD cost - 0.0
maximum PD cost - 81.7
average PD cost - 6.6

527.7141
> (dribble)

46

Figure 5-2. Original vs Random-R. Optimized Paths

47

TABLE 5-5. Original and Random-Ray Path Data

> (path-data ' ipathOO191)
Leg Total Leg Total Leg Fuel Vol PD Leg

Point Time Time Dist Dist Fuel Remain PD Cost Cost
(500.0 200.0 600.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -

(500.0 300.0 700.0)
13.3 13.3 100.0 100.0 67.1 1432.9 0.015 20.0 87.1

(500.0 700.0 700.0)
53.3 66.7 400.0 500.0 266.7 1166.2 0.015 80.0 346.7

(500.0 850.0 500.67114)
20.0 86.7 150.0 650.0 99.1 1067.1 0.015 30.0 129.1

(300.0 990.0 440.0)
32.6 119.2 244.1 894.1 162.5 904.6 0.000 0.0 162.5

Total cost of this path - 725.4
minimum PD cost - 0.0
maximum PD cost - 80.0
average PD cost - 6.1

725.37067

> (path-data ' path0020)
Leg Total Leg Total Leg Fuel Vol PD Leg

Point Time Time Dist Dist Fuel Remain PD Cost Cost
(500.0 200.0 600.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -
(474.61185 305.07764 563.2685)

14.4 14.4 108.1 108.1 71.9 1428.1 0.015 21.6 93.5
(384.7632 676.95264 433.27493)

51.0 65.4 382.6 490.7 254.5 1173.6 0.015 76.5 331.0
(377.15268 708'35095 422.09427)

4.3 69.7 32.3 523.0 21.5 1152.1 0.015 6.5 27.9
(300.0 990.0 440.0)

38.9 108.7 292.0 815,0 194.8 957.4 0.000 0.0 194.8
Total cost of this path - 647.2
minimum PD cost - 0.0
maximum PD cost - 76.5
average PD cost - 6.0

647.21844
> (dribble)

48

4 Figure 5-3. Original vs Random-Ray Optimized Paths

49

TABLE 5-6. Original and Random-Ray Path Data

> (path-data ' path00231)
Leg Total Leg Total Leg Fuel Vol PD Leg

Point Time Time Dist Dist Fuel Remain PD Cost Cost
(10.0 0.0 300.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -

(469.23077 300.0 601.53845)
73.1 73.1 548.5 548.5 367.0 1133.0 0.020 146.3 513.3

(420.0 700.0 668.0)
53.7 126.9 403.0 951.6 269.0 864.0 0.020 107.5 376.4

(990.0 990.0 990.0)
85.3 212.1 639.5 1591.1 427.8 436.2 0.020 170.5 598.3

Total cost of this path - 1488.1
minimum PD cost - 107.5
maximum PD cost - 170.5
average PD cost - 7.0

1488.1104

> (path-data ' path0052i)
Leg Total Leg Total Leg Fuel Vol PD Leg

Point Time Time Dist Dist Fuel Remain PD Cost Cost
(10.0 0.0 300.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -

(306.9697 300.0 509.0909)
56.3 56.3 422.1 422.1 282.4 1217.6 0.020 112.6 394.9

(702.92303 700.0 787.8744)
75.0 131.3 562.8 985.0 376.5 841.2 0.020 150.1 526.6

(990.0 990.0 990.0)
54.4 185.7 408.1 1393.0 272.9 568.2 0.020 108.8 381.8

Total cost of this path - 1303.2
minimum PD cost - 108.8
maximum PD cost - 150.1
average PD cost - 7.0

1303.2467

> (dribble)

50

E| D

Figure 5-4. Computer Optimized vs User Optimized

51

TABLE S-7. Computer Optimized vs User Optimized

> (path-data 'IpathOO291)
Leg Total Leg Total Leg Fuel Vol PD Leg

Point Time Time Dist Dist Fuel Remain PD Cost Cost
(410.0 10.0 900.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -

(550.05664 300.0 633.2163)
42.9 42.9 322.0 322.0 213.5 1286.5 0.020 85.9 299.4

(660.2497 528.16956 423.31775)
33.8 76.7 253.4 575.4 168.0 1118.5 0.020 67.6 235.6

(741.65796 700.0 411.26544)
25.4 102.1 190.1 765.6 126.7 991.8 0.000 0.0 126.7

(900.0 990.0 300.0)
44.1 146.1 330.4 1096.0 219.8 772.0 0.000 0.0 219.8

Total cost of this path - 881.4
minimum PD cost - 0.0
maximum PD cost - 85.9
average PD cost - 6.0

881.4159
> (path-data ' IpathOO37i)

Leg Total Leg Total Leg Fuel Vol PD Leg
Point Time Time Dist Dist Fuel Remain PD Cost Cost
(410.0 10.0 900.0)

0.0 0.0 0.0 0.0 0.0 1500 - - -
(556.0 300.0 601.0)

43.3 43.3 324.1 324.7 215.1 1284.9 0.020 86.6 301.7
(650.91486 491.0918 406.6197)

28.4 71.7 213.4 538.0 141.4 1143.5 0.020 56.9 198.3
(754.3238 700.0 353.66742)

31.1 102.8 233.1 771.1 155.2 988.4 0.000 0.0 155.2
(900.0 990.0 300.0)

43.3 146.1 324.5 1095.7 216.1 772.2 0.000 0.0 216.1
Total cost of this path - 871.2
minimum PD cost - 0.0
maximum PD cost - 86.6
average PD cost - 6.0

871.23987
> (dribble)

52

B. DISPLAY

1. Terrain Models

Because transparent three-dimensional line drawings of terrain are

acceptable only to the trained eye, a display that uses solid figures and hidden line

removal is much preferred. Figure 5-5 through 5-7 show the contrast in

understandability of the line drawings versus graphic depiction. As the models

become even more complex the need for better displays increases. Figure 5-8

through 5-10 show how adding multiple paths has little effect on the readability.

53

Figre -5.Lin I~~awngvs Graphic isplay

5-4

I /

/ --. ~---------- -

Figure 5-6. Line Drawing vs Graphic Display

55

Figure 5-7. Line Drawing vs Graphic Display

56(

<57

I ~-------------------.-.----~--.----------------__________________
_________ ____________

(%T~RT>

.1
/ - x

/

I

I,,- *~

7 ~-YX / I -~*1~
/ -- "-'S~f'-;7 N

N / ~
I I

1~~' /Li ""'N-S

(I

-....... ,,...---.--*

_____ A
__

Fi~IIr? 5-9. I ir~e 1)v~iwhig ~ Craphic I)kplay NItzIti.PatIi~

58

Figure 5-10. Line Drawing vs G~raphic Display (Multi-Path)

59

2. Viewpoint and Perspective

Using the graphics display we are able to place ourself at the location of

the observer and see what he might see (Figure 5-11) or view the path from any

angle, as shown previously. This is a great advantage when making the final

decision on which path is best.

Figure 5-11. View From Observer Position

60

I

VI. CONCLUSIONS

A. DISCUSSION

All goals set at the beginning of this project have been met: to modify [Ref.

1] to include a more aerodynamic model, to graphically display our model, and to

implement a new optimization technique. The flight characteristics of most Navy

aircraft can be modeled and encoded in the aircraft section of the program. This

data can be extracted from the various NATOPS manuals for the aircraft or obtained

from Naval Labs.

The graphic display was developed to confirm that a three-dimensional display

was possible and was useful in showing the optimality of our best path. The

jetcard type printouts are helpful for the actual figures such as time and fuel used,

but to get a full feeling of the path, the graphic display is a must.

The advantage of our method of optimization is the speed at which a solution

can be obtained. As shown in Chapter V, the random-ray method eliminates the

vast majority of paths to explore and optimize. The optimization is obtained in one

pass so no further calculations are required to see if a better path exists. If no

random-ray optimization path exists, we are no worst off then we were to begin

with, so we can use the approach of [Ref. 1] to optimize each path individually.

61

B. KNOWN PROBLEMS

There is no treatment of the paths around obstacles by the random-ray

technique. Choices need to be made as to how to detour around objects. Presently,

if Snell's Law cannot bend the path to avoid the object, it says no path is available.

The observers we have modeled have unlimited line-of-sight capabilities, not

affected by the range limitations. Such details can be added to the program as well

as adjustments for diffusion, diffraction, and refraction.

No attempt was made to allow for weighting of optimization criteria. The

main criteria can remain minimal detection, but a choice can be made whether to

maximize fuel utilization or time. Items such as aircraft speed, altitude and fuel

load can also be weighted.

The graphic display runs separately and addresses only our limited models of

terrain. The program needs to be expanded to allow altering the paths displayed

while the program is running, and to display larger areas of terrain and real terrain

data such as in [Ref. 8].

Elements that affect aircraft and aircrew performance have not been included.

Items like temperature, winds and severe weather could be included as properties of

each volume. Variations in altitude and speed, for changes in visibility conditions,

terrain type (mountainous, hilly or flat), and aircrew ability need to be addressed.

As discussed in chapter IV, Snell's Law is very susceptible to reflection if the

danger (probability-of-detection) varies much from volume to volume. This can be

avoided by standardizing the values for probability-of-detection so that the maximum

62

is no more then 0.05. Note that a volume that is not visible is automatically given

a value of 0.01 to avoid a division-by-zero error.

C. RECOMMENDATIONS

Execution time is going to be significant no matter what machine the program

is implemented on. If we can store the results of the division of airspace into

volumes, we can do only once the initial processing, the most time-intensive phase,

and use the stored data from then on. Because of the way labels are generated by

the TI Explorer for the objects we use (points, lines, facets, volumes, and so on,),

we are limited to 9999 of each type. When random-ray optimization is run, many

labels generated are not used more then once, which depletes the list after only a

limited number of paths have been tested. This should be fixed.

Another optimization technique which can be implemented is to restrict the set

of directions before the selection of the random ray. This was demonstrated in two

dimensions by Ron Ross [Ref. 19]. To do this, find the range of all possible rays

that will pass through the first window from the start point. As these rays pass

through the window, apply Snell's Law and see which of these pass through the

second window. The rays not passing through the second window can now be

eliminated from the original set of directions. This can be continued until the goal

is reached or until no rays pass through the next window.

63

LIST OF REFERENCES

1. Lewis, David H., Optimal Three-Dimensional Path Planning Using Visibility
Constraints, Master's Thesis, Naval Postgraduate School, Monterey, California,
December 1988.

2. Naval Oceanography Command, Aviators Guide to OPARS Flight Planning, by
John P. Garthner, June 1987.

3. Naval Postgraduate School Report NPS67-82-003, HP-41CV Flight
Performance Advisory System (FPAS) for the E-2C, E2-B, and C-2 Aircraft, by
Dennis R. Ferrell, June 1977.

4. Campbell, Richard W., and Champney, Robert K., The A-6E/HP-4)CV pocket
Sized Flight Performance Advisory System, unpublished, Naval Postgraduate
School, Monterey, California, December 1981.

5. Hargrave, Douglas F., Development of the A-6E/A-6E TRAM/KA-6D NATOPS
Calculator Aided Performance Planning System (NCAPPS), Master's Thesis,
Naval Postgraduate School, Monterey, California, December 1983.

6. Nutter, Christopher G., Development of Flight Performance Algorithms and a
Tactical Computer Aided Mission Planning System For The A-7E Aircraft,
Master's Thesis, Naval Postgraduate School, Monterey, California, September
1986.

7. Rowe, Neil C., Artificial Intelligence Through Prolog, Prentice-Hall, Inc., 1988.

8. Fichten, Mark A., and Jennings, David H., Meaningful Real-Time Graphics
Workstation Performance Measurements, Master's Thesis, Naval Postgraduate
School, Monterey, California, December 1988.

9. Huisken, R., The Origin of the Strategic Cruise Missile, pp. 3-12, Praeger
Publishers, 1981.

10. Tsipis, K., "Cruise Missiles," Scientific America, v. 236, pp. 20-29, February
1977.

11. Lan, C. E., and Roskam, J., Airplane Aerodynamics and Performance, p. 201,
Roskam Aviation and Engineering Corporation, 1981.

64

12. Naval Surface Weapons Center, NSWC TR 84-399, Tomahawk Land-Attack
Cruise Missile Navigation, Guidance, and Flight Control, by T. R. Pepitone
and C. A. Phillips, July 1985.

13. NATOPS Flight Manual, Navy Model A-6E TRAMIKA-6D Aircraft, NAVAIR

01-85ADF-1, U. S. Navy, February 1986.

14. CRC Standard Mathematical Tables, 28" ed., p.522, CRC Press, Inc., 1988.

15. Aerodynamics for Naval Aviators, NAVAIR 00-80T-80, U. S. Navy, January
1965.

16. Kwak, Sehung, unpublished LISP graphics moving display program, January
1989.

17. Hurt, H. H., Aerodynamics for Naval Aviators, NAVAIR 00-80T-80, U.S.
Government Printing Office, January 1965.

18. Hearn, Donald, and Baker, M. Pauline, Computer Graphics, Prentice-Hall, Inc.,
1986.

19. Ross, Ron, Planning Minimum Energy Paths in an Off-Road Environment with
Anisotropic Traversal Cost and Motion Constraint, Ph.D. Dissertation, Naval
Postgraduate School, Monterey, California, June 1989.

65

APPENDIX A

This Appendix contains a listing of the following files:
aircraft-controls.isp camera.lisp
common-functions.lisp improved-camera.lisp
intercept.lisp kinematics.lisp
path-data.lisp path-optimization.lisp
path-planning.lisp setup.lisp
visibility.lisp volume-functions.lisp
test-cases.lisp test.lisp

Instructions for running programs:

1. Input terrain with: (set-up I 't27-ridges-shadow) or (set-up 2 '310-full-ridge)

depending on the form of the terrain file (type 1 or 2).

2. Initialize the observers with (init-observer '(10 500 250) '0.02).

3. Type (set-up-2) to divide volumes by visibility.

4. Do search with:

(a-star-search (init-point '(0 0 200)) (init-point '(0 1000 200)) 'nil 't))

or

(a-star-search-m (init-point '(0 0 200)) (init-point '(0 1000 200)) 'nil 5 't))

5. Optimize a path with: (optimize-path '/path0O02/) or (random-ray-optimize

'(/pathO002/)).

6. To see the data on a path type (path-data '/pathOO02/).

7. To send the data on a path to a file for the IRIS type (path-for-iris

'/pathO002/).

66

-*- Mode:Conunon-Lisp; Base:10 -*-

; AIRCRAFT CONTROL L.R. WUNN 6 Mar 89

Contains the functions nessesary to aircraft performance. Can be altered
; depending on the type aircraft needed and its performance spec. The
; current aircraft is a fictional model with the following spec:

gross wt. 2525 lbs. [include full fuel]
desired cruise speed 450 Kts
Fuel Flow (FF) Straight and level avg. 300 Iba/hour

; limits on climb/dive with out gaining or loosing speed:
-10 deg FF - 80 lbs
20 deg FF - 900 lbs

*** ******** ** ****** **** **** ** ************ ************************ **** ***

Aircraft controle routines

takes as input the actual distance aircraft will travel
(not ground distance]

climb angle in degrees, fuel - what you start with,
TAS - start with.

(defun fuel-burned (distance climb-angle fuel TAS)
(let ((FF '0)
(original-TAS TAS)
(climb-angle (rational climb-angle))
(fuel-used)
(time '0))
(cond ((LT climb-angle -10) ;climb angle less than 10 deg

(setf climb-angle '-10)
(setf *TAS* '450)
(setf time (* (/ distance tas) 60))
(setf FF 80)
(setf *fuel* (- fuel (* FF (/ time 60))))
(setf fuel-used (* FF (U time 60)))
fuel-used)
((GT climb-angle 20) ;climb angle greater

; than 20 deg
(setf TAS (get-new-TAS distance climb-angle TAS))
(setf time (U distance (U (U (+ original-TAS TAS) 2) 60)))
(setf FF 900)
(setf *fuel* (- fuel (* FF (/ time 60))))
(setf fuel-used (* FF (/ time 60)))
fuel-used)
(t ;climb angle >- -10 and <- 20
(setf *TAS* '450)
(setf time (* (U distance tas) 60))
(setf FF (+ 300

(* 21.409090 climb-angle)
(* .1037878 (expt climb-angle 2))
(* .01628787 (expt climb-angle 3))))

(setf *fuel* (- fuel (* FT (/ time 60))))
(setf fuel-used (* FF (/ time 60)))
fuel-used)

67

; using decal rate of 3kta/degree>20/iin find the new TAS
;will return new-TAB or will stop if TAB goes below 0 and return neg number

(defun get-new-TAB (diet climb-angle TAB)
(do* ((old-time '0 new-time)
(original-TAS TAB)
(TAB TAB New-TAB)
(new-time U/ dist (/ original-TAB 60))

(/ dint (/ (1 (+ original-TAB new-TAS) 2) 60)))
(new-TAB (- original-TAB (* (* 3 (- climb-angle 20)) new-time))

(- original-TAB (* (* 3 (- climb-angle 20)) new-time))))
((or (LT (- new-time old-time) '0.05) (LT new-TAB '0)) new-tan)))

(defun ti (climb-angle) ;Test function used to
test fuel-used function

(let((distance '450)
(fuel *fuel*)
(tas *tam*)
(time '0)
(fuel-used '0))

(princ distance) (terpri)
(princ climb-angle) (terpri)
(princ fuel) (terpri)
(princ time) (terpri)
(princ fuel-used) (terpri) (terpri)
(setf fuel-used (fuel-burned distance climb-angle fuel TAB))
(princ distance) (terpri)
(princ climb-angle) (terpri)
(princ fuel) (terpri)
(princ time) (terpri)
(princ fuel-used) (terpri) (terpri)

68

Mode: LISP; Syntax: Conwuon-lisp--

;;FLAVORS FOR 3-D DISPLAY OF VOLUMES ;Written by Dr Sehung Evak
;for CS4452

;;THESIS D.H. Lewis 19 May 198

(doff lavor Graphic
(node-list
polygon-list
transformed-node-list
H-matrix)
(0

:inittable-instanc*-variables
:aettable-instance-variables
:gettable-instance-varisblea
outside-accessible-instance-variables)

(defmethod (Graphic :translate-and-euler-angle-transform)
(x y z azimuth elevation roll)

(lot ()
(setf H-matrix

(homogeneous-transform azimuth elevation roll x y z))
(setf transformed-node-list

(mapcar #' (lambda (node-location)
(post-multiply H-matrix node-location))

node-list))))

(defmethod (graphic :get-node-polygon-list) C
(list transformed-node-list polygon-list))

(defmethod (graphic :initialize) ()
(setf node-list (send self :make-node-list))
(setf polygon-list (send self :make-polygon-list))
(setf transformed-node-list node-list)
(setf H-matrix (unit-matrix 4)))

(defmethod (graphic :get-transformed-node-list) C
transformed-node-list)

:;CAMERA FLAVOR AND METHODS TO USE GRAPHIC FLAVOR

;Written by Dr Sehung Kwak
;for CS4452

;;THESIS D.H. Lewis 10 May 1988

(def flavor camera
(H-matrix
image-distance
previous-point
camerwindow
scale)

C)i~l-ntac-aibe
inittable-instance-variables

outside-accessible-instance-variables)

69

(defmethod (camera :initialize)
0)

(sotf H-matrix (unit-matrix 4))
(setf image-distance *im~age-distance*)
(setf scale *scale*)
(setf *camerwindow*
(tv:make-window 'tv:window

.blinker-p nil
:position *window-upper-left-corner*
* inside-width *window-.width*
* inside-height *window-height*
: name "VOLUME WINDOW"
.savo-bits t
.expose-p t)))

(d~fmethod (camera :initialize-B) ;for advanced functions
(window-stat.)

(setf H-matrix (unit-matrix 4))
(setf image-distance *image-distanc**)
(setf scale *scale*)
(setf *camerwindow*
(tv:make-window 'tv:window

.blinker-p nil
:position (list (first window-stats)

(second window-stats))
* inside-width (third window-stats)
* inside-height (fourth window-stats)
:name (fifth window-stats)
:save-bits t
:expose-p t)))

(defmethod (camera :move)
(x y z azimuth elevation roll)

(setf H-matrix (matrix-inverse
(homogeneous-transform azimuth elevation roll x y z))))

(dofmethod (camera :take-picture)
(solid-object)

(let* ((node-polygon-list
(send (oval solid-object) :get-node-polygon-list))

(node-vector (send self :convert-list-of-lists-to-vector
(first node-polygon-list)))

(polygon-list (second node-polygon-list)))
(send *camerwindow* :refresh) ;don't need for multiple shots

(dolist (polygon polygon-list)
(send self :draw-polygon polygon node-vector))))

(defmethod (camera :draw-polygon)
(polygon node-vector)

(let ((first-point (first polygon))
(rest-points (cdr polygon)))
(send self :move-pen (elt node-vector first-point))
(dolist (point rest-points)

(send self :draw-line (elt node-vector point)))
(send self :draw-line (elt node-vector first-point))))

70

(defmethod (camera :move-pen)
(point)

(setf previous-point (send self :screen-transform point)))

(defmethod (camera :draw-line)
(next-point)

(let ((current-point (aend self :screen-tranaform next-point)))
(send self :draw-line-on-screen previous-point current-point)
(setf previous-point current-point)))

(defmethod (camera :draw-line-on-screen)
(from-point to-point)

(send *camerwindow* :drav-line
(first from-point) (second from-point)
(first to-point) (second to-point)
thickness))

(defmethod (camera :convert-list-of-lists-to-vector)
(list-cf-i ists)

(oval (cons 'vector
(napcar '(lambda (component-list)

(cons 'list component-list))
list-of-lists))))

(defmethod (camera :screen-transform)
(point)

(let* ((point-on-camerspace
(post-multiply
H-matrix point))

(x (first point-on-camerspace))
(y (second point-on-camerspace))
(z (third point-on-camerspace)))
(cond ((equal 0.0 z) (setf z 0.00001))

Wt)
(list (+ (round (* scale (/('image-distance x) (-z))))

U/ *window..width* 2))
U- (*window..height* 2)
(round (* scale (/ (* image-distance y) (- z))))))))

(defmethod (camera :kill-camera-window)

(send *camerwindow* :kill))

(defun take-picture (Camera List-of-objects)
(send (oval Camera) :initialize)
(send (eval Camera) :move '2000 '2000 '2000 '0 '0.5 '0.75)
(loop for V in List-of-objects
do (send (eval V) :initialize)
do (send (eval V) :translate-and-euler-angle-transform '-2500

'-2000 '-2000 '0.6 '0.6 '-0.1)
do (send (eval Camera) :take-picture V)))

71

;advanced camera functiona D.H. Lewis

(defvar *window-wjdth* 700)
(defvar *window-height* 400)
(defvar *windovw-pper-left-corer* '(10 10))
(defvar *scale* 5)
(defvar *image-distance* 120)
(defvar *thickness* '5) ;line thickness, in pixels

(defvar *ideal*)
(defvar *low-left-front*)
(defvar *high-left-front*)
(defvar *lov-right-froat*)
(defvar *right-aide*)
(defvar *1eft-rear-3/4*)
(defvar *top*)
(defvar *display-xtats*)
(defvar *nikon-l*)
(defvar *nikon-2*)
(defvar *nikon-3*)
(defvar *nikon-.4*)
(defvar *nikon-5*)
(defvar *nikon-6*)
(defvar *list-of-camcras*)
(defvar *window..stats*)

(defun make-cameras ()
(setf *nikon-l* (make-instance 'camera))
(setf *nikon..2* (make-instance 'camera))
(setf *nikon-3* (make-instance 'camera))
(setf *nikon-4* (make-instance 'camera))
(setf *nikon-5* (make-instance 'camera))
(setf *list..of-cameras*

(*nikon.4* *nikon-2* *nikon-3* *nikon..4* *nikon-5*))
(setf
ideal
'(7500.0 3500.0 6200.0 2.0 0.0 0.9800 -500.0 -500.0 200.0 0.0 0.0 0.0))

(set f
low-left-front
'(100.0 200.0 4000.0 0.0 0.50 1.0 1.0 1.0 -1.5 0.0 0.0 0.0))

(set f
*high..left -front *

' (3725.0 -11900.0 5950.0 0.25 0.10 1.17 -500.0 -500.0 200.0 0.0 0.0 0.0))
(qetf
*low-right..front *

' (100.0 100.0 4000.0 0.0 0.5 1.5 1.0 1.0 1.0 0.0 0.0 0.0))
(.etf

right..side
'(00.0 -4000.0 1500.0 0.0 0.0 01.40 -500.0 -500.0 200.0 0.0 0.0 0.0))

(4,etf
*left..rear-3/4 *

' (-500.0 0.0 4000.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0))
(qetf

*op *

'ni 0.0 0.0 4000.0 0.0 0.0 0.0 -500.0 -500.0 200.0 0.0 0.0 0.0))

72

-MAIN FOUR WINDOW DISPLAY --------------------

(defun display () ;ex. (display)
(setf *window-stats* ' ('nil

(10 20 700 400 "air-volumes" 20 140)
(10 440 200 200 "top-view: ground" 7 60)
(260 440 200 200 "same-view: ground" 20 60)
(510 440 200 200 "full-view: ground" 15 60)))

(setf *display-stats* (list 'nil
high-left-front
top
high-left-front
ideal))

(let ((air-volumes 'nil)
(ground-volumes 'nil)
(objects 'nil))
(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (eval V)))

(setf ground-volumes (adjoin V ground-volumes)))
(t (setf air-volumes (adjoin V air-volumes)))))

(loop for Obs in (universe-observers *universe*)
do (setf ground-volumes (adjoin Obs ground-volumes))
do (setf air-volumes (adjoin Obs air-volumes)))

(setf
objects
(list 'nil air-volumes ground-volumes ground-volumes ground-volumes))

(loop for N in '(1 2 3 4)
do (take-picture-4 (nth N *list-of-cameras*)

(nth N *window-stats*)
(nth N objects)
(nth N *display-stats*))))

'nil)

----------- ---DISPLAY GROUND IN (2 WINDOWS)--------------------------------

(defun display-ground () ;ex. (display-ground)
(setf *window-stats* '('nil

(10 20 600 380 "Path-over-ground" 15 140)
(10 420 600 290 "Alternate-view " 20 140)
('nil)
('nil)))

(setf *display-stats* (list 'nil
ideal
high-left-front

'nil ;*top*
'nil)) ;*right-side*))

(let ((objects 'nil)
(ground-volumes 'nil))
(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (eval V)))

(setf ground-volumes (adjoin V ground-volumes)))))
(setf ground-volumes
(append (universe-observers *universe*) ground-volumes))

(setf objects (list 'nil

ground-volumes
ground-volumes
'nil
'nil))

(loop for N in ' (1 2
do (take-picture-4 (nth N *list-of-cameras*)

(nth N *window-stats*)

73

(nth N objects)
(nth N *display-stata*)f)

'nil)

---------DISPLAY VISIBLE AIR VOLUMES (3 WINDOWS)----------------------

(defun display-visible (observer) ;ex. (display-visible 'I observ*OOO2 j)
(setf *window-stats* '('nil

(10 20 700 400 "visible-ai-volumos" 20 140)
'nil
(260 440 200 200 "same-view-ground" 20 60)
(510 440 200 200 "full-view-ground" 15 60)))

(setf *display-stata* (list 'nil
*high-left-tront *
'nil
*high-left-front *
ideal))

(let ((visible-volumes 'nil)
(ground-volumes 'nil)
(objects 'nil))
(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (oval V)))

(setf ground-volumes (adjoin V ground-volumes))
(setf visible-volumes (adjoin V visible-volumes)))

((member-p observer (volume-visibility (oval V)))
(setf visible-volumes (adjoin V visible-volumes)))))

(loop for Obs in (universe-observers *universe*)
do (setf ground-volumes (adjoin Obs ground-volumes))
do (3stf visible-volumes (adjoin Obs visible-volumes)))

(setf objects (list 'nil visible-volumes
'nil ground-volumes ground-volumes))

(loop for N in ' (l 3 4)
do (take-picture-4 (nth N *list-of-cameras*)

(nth N *window-stats*)
(nth N objects)
(nth N *display-state*)')))

'nil)

---------DISPLAY NON VISIBLE AIR VOLUMES (3 WINDOWS) --------

(defun display-not-visible (observer)
;ex. (display-not-visible 'Iobserv*00o2l)

(setf *window.stats* ' ('nil
(10 20 700 400 "non-visible-air-volumes" 20 140)
'nil
(260 440 200 200 "same-view-ground" 20 60)
(510 440 200 200 "full-view-ground" 15 60)))

(setf *display-stats* (list 'nil
*high-.left-.front *
'nil
*high-left-front *
ideal))

(let ((invisible-volumes 'nil)
(ground-volumes 'nil)
(objects 'nil))

74

(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (oval V)))

(setf ground-volumes (adjoin V ground-volumes))
(setf invisible-volumes (adjoin V invisible-volumes)))

((not (member-p observer (volume-visibility (oval V))))
(setf invisible-volumes (adjoin V invisible-volumes)))))

(loop for Obs in (universe-observers *universe*)
do (setf ground-volumes (adjoin Obs ground-volumes))
do (setf invisible-volumes (adjoin Obs invisible-volumes)))

(setf objects (list 'nil invisible-volumes
'nil ground-volumes ground-volumes))

(loop for N in '(1 3 4)
do (take-picture-4 (nth N *list-of-cameras*)

(nth N *window-stats*)
(nth N objects)
(nth N *display-stats*))))

'nil)

-DISPLAY SELECTED VOLUMES AND THE GROUND (2 WINDOWS)

(defun display-volumes (list-of-volumes)
;ex. (display-volumes ' (Ivolume0001[volume0012I Ivolume00151))

(setf *window-stats* ' ('nil
(10 20 350 300 "desired-volumes" 17 140)
'nil
(510 440 200 200 "full-view-ground" 20 60)
'nil))

(setf *display-stats* (list 'nil
high-left-front
'nil
high-left-front
'nil))

(let ((objects 'nil)
(ground-volumes 'nil))
(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (eval V)))

(setf ground-volumes (adjoin V ground-volumes)))))
(loop for Obs in (universe-observers *universe*)

do (setf ground-volumes (adjoin Obs ground-volumes)))
(setf objects (list 'nil

list-of-volumes
'nil
ground-volumes
'nil))

(loop for N in ' (1 3)
do (take-picture-4 (nth N *list-of-cameras*)

(nth N *window-stats*)
(nth N objects)
(nth N *display-stats*))))

'nil)

75

----------DISPLAY PATH AND GROOND (3 WINDOWS)------------------------

(defun display-path (path-name) ;ex. (display-path 'Ipath00021)
(setf *window-stats* 'V(nil

(10 20 600 380 "Path-over-ground" 15 140)
(10 420 600 290 "Alternate-view " 20 140)
(618 200 200 200 "Top-view" 7 60)
(618 420 200 200 "Low-side view' 7 60)))

(setf *djsplay-atats* (list 'nil
* ideal *
*high-left-front *
*top *

right-side))
(let ((objects 'nil)

(ground-volumes 'nil))
(loop for V in (universe-volumes *univera**)

do (cond ((equal 'ground (volume-com'position (oval V)))
(aetf ground-volumes (adjoin V ground-volumes))));

(setf ground-volumes (append (universe-observers *universe*)
groun 1-volumes))

(setf objects (list 'nil
(adjoin path-name ground-volumes)
(adjoin path-name ground-volumes)
(adjoin path-name ground-volumes)
(adjoin path-name ground-volumes)))

(loop for N in ' (l 2 3 4)
do (take-picture-4 (nth N *list-of-cameras*)

(nth N *window-state*)
(nth N objects)
(nth N *display-9tats*))))

'nil)

(defun display-paths (list-of-paths)
;ex. (display-paths ' ()path00021 lpathOO11))

(setf *window-stats* '('nil
(10 20 600 380 "Paths-over-ground" 15 140)
(10 420 600 290 "Alternate-view " 20 140)
(618 200 200 200 "Top-view" 7 60)

(setf *display-stats* (list 'nil
(6842i 0020dLe-ieaiw"7*0)

*high-left-front *
* top*
right-side))

(let ((objects 'nil)
(ground-volumes 'nil))
(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (eval V)))

(setf ground-volumes (adjoin V ground-volumes)))))
(setf ground-volumes (append (universe-observers *universe*)

ground-volumes))
(setf objects (list 'nil

(append list-of-paths ground-volumes)
(append list-of-paths ground-volumes)
(append list-of-paths ground-volumes)
(append list-of-paths ground-volumes)))

(loop for N in ' (1 2 3 4)
do (take-picture-4 (nth N *list-of-cameras*)

(nth N *window-stats*)
(nth N objects)
(nth N *display-stats*))))

nil)

76

----SIMPLE CAMERA ORDERS FOR A PICTURE (MANUAL CONTROL)

(defun take-picture-3
(List-of-objects x y z az roll rot ox oy oz oaz oroll orot)

(let ((Camera '*nikon*))
(send (eval Camera) :initialize)
(send (oval Camera) :move x y z az roll rot
(loop for V in List-of-objects
do (send (oval V) :initialize)
do (send

(oval V)
:translate-and-auler-angle-transform ox oy oz oaz oroll orot)

do (send (oval Camera) :take-picture V))))

----- ADVANCED CAMERA ORDERS FOR A PICTURE (SEMI-AUTOMATIC CONTROL)

(defun take-picture-4 (Camera Window-stats List-of-objects view-stats)
(cond ((or (null view-stats)

* (null list-of-objects))
(return-from take-picture-4 'nil)))

(setf *window-width* (third window-stats))
(setf *window-height* (fourth window-stats))
(setf *scale* (sixth window-stats))
(setf *image-distance* (seventh window-stats))
(send (eval Camera) :initialize-B Window-stats)
(send (eval Camera) :move (first view-stats) 7 x

(second view-stats)
(third view-stats) z
(fourth view-stats) ; azimuth
(fifth view-stats) roll
(sixth view-stats)) ; rotation

(loop for V in List-of-objects
do (send (eval V) :initialize)
do (send

(eval V)
:translate-and-euler-angle-transform
(nth 6 view-stats)
(nth 7 view-stats)
(nth 8 view-stats)
(nth 9 view-stats)
(nth 10 view-stats)
(nth 11 view-stats))

do (send (eval Camera) :take-picture V)
do (let ((object-type (string-trim '"10123456789 " V)))

(cond ((string-equal object-type '"observer")
(let* ((obs-point

(first (send
(eval V) :get-transformed-node-list)))

(screen-point (send
(oval Camera)
:screen-transform obs-point)))

(send (eval (camera-*camerwindow* (oval Camera)))
:set-cursorpos (- (first screen-point) '30)
(- (second screen-point) '5))
(send (oval (camera-*camerwindow* (eval Camera)))

:display-lozenged-string '"obs")))
((string-equal object-type '"path")

77

(let* ((start-point
(first (send (oval V)

:get-transformed-node-list)))
(ond-point

(first (last
(send
(ovai V)
:get-transformed-node-list))))

(screen-start-point
(send (eval Camera)

:screen-transform start-point))
(screen-end-point

(send (oval Camera)
:screen-transform end-point)))

(cond ((< '50000 (* *window-width* *window-.height*))
(send
(oval (camera-*camerwindow* (oval Camera)))
set-oursorpos
((first screen-start-point) '43)
((second screen-start-point) '5))

(send
(eval (camera-*camerwindow* (oval Camera)))
:display-lozenged-atring '"start")
(send
(oval (camera-*camerwindow* (oval Camera)))
set-curs orpos
(+ (first screen-end-point) '3)
((second screen-end-point) '5))

(send (oval (camera-*caznerwindow*
(eval Camera)))

:display-lozenged-string "'"end")))))))))

78

Mode:Common-Lisp; Base:10 -*-

COMMON FUNCTIONS

This file consists of all common functions used by most of the
; files of the 3-D path planning software. Function vary from the
; very general (convenience) functions, to very detailed, special
; purpose functions (which happen to be called from two seperate
; files). Functions are grouped by categories of Simle functions,
; Point functions, Vector functions, Line functions, Plane functions,
; Facet functions, Volume functions, property list functions,
; detailed (special purpose) functions, and finally, printing functions.

; D.H.Lewis/Thesis 07 AUG 88
; Modified
; L.R.Wrenn 08 Apr 89

D I RE C TORY OF FUNCTIONS

SIMPLE: MEMBER-P POINTS: AVERAGE-OF-POINTS
EQUAL-P FIND-POINT
EQUAL-ZERO-P AVERAGE-POINT
DISTANCE
MERGE-JOIN-LIST
FIRST-NON-ZERO VECTORS: SOLVE-FOR-T
EQUAL-ERROR VECTOR-ADD-WITH-T
LT, GT, GE, LE

LINES: MAKE-LINE PLANES: MAKE-A-PLANE
LINE-CROSS-PRODUCT MAKE-A-NORMALIZED-PLANE
FIND-COMMON-POINT MAKE-VERTICAL-PLANE
ANGLE-BETWEEN-LINES MAKE-Z-PLANE
FIND-MID-POINT MAKE-X-PLANE

MAKE-Y-PLANE
FACETS: FIND-COMMON-FACET SUBS-POINT-INTO-EQUATION

MEAN-POINT-IN-A-FACET SUBS-LINE-INTO-PLANE-EQUATION
MEAN-POINT-IN-A-FACET-2
INFO-ON-FACETS
INSIDE-FACET-P

VOLUMES: INTERSECT-ALL-PLANES-WITH-VOLUMES
INTERSECT-ALL-PLANES-WITH-VOLUMES-2

PROPERTY LISTS: RESET-POINT-PROPERTY-LISTS

DETAILED FUNCTIONS: MINIMUM-DISTANCE
LOCATE-POINT-AIR

LOCATE-POINT
POINT-IN-VOLUME-P
POINT-CHECK-P

LINES-STRATTLE-FACETS-P

SPEED-DEMON

79

PRINTING FUNCTIONS: DUMP-VOLUMES
DUMP-PATH
PRINT-POINTS
PRINT-VECTORS
PRINT-LINES
PRINT-FACETS
PRINT-VOLUMES

(defvar *precision* 10.0025)
(defvar *precision-2* '0.25)

---------- SIMPLE FUNCTIONS ---------------

(defun member-p (item list) ; T or nil member
(not (null (member item list))))

(defun equal-p (listi list2) ; are two lists equal?
(cond ((equal (lengt.h histi) (length list2))

(apply 'and (mapcar 'equal listi list2)))))

(defun equal-zero-p (A) ; is A equal to zero?
(cond ((equal (* '1.0 A) '0.0)

(return-from equal-zero-p It)))
'nil)

(defun t2 (p1 p2)
(distance-z pl p2))

;used to convert Z-coord from 10'9 of feet to NM
(seatq *conversion-matrix* '((1 0 0) (0 1 0) (0 0 0.0016458195))

(defun distance (P1 P2) ,distance between two
points

(let* ((P1 (car (matrix-multiply (list (send (eval P1) :list-format))
conversion.-matrix)))

(P2 (car (matrix-multiply (list (send (eval P2) :list-format))
conversion-matrix)))

(difference (mapcar I- P1 P2)))
(sqrt (apply I+ (mapcar "~ difference difference)))))

(defun distance-Z (P1 P2) ; vertical distance between two points

(let* ((PI (car (matrix-multiply (list (send (eval P1) :list-format))
conversion-matrix)))

(P2 (car (matrix-multiply (list (send (eval P2) :list-format))
conversion-matrix))))

(- (third p2) (third P1))))

(defun climb-angle (PI P2)
(let ((dist-total (distance P1 P2))
(dist-Z (distance-Z P1 P2)))

(I180 P1) (asin (/ dist-z dist-total)))))

80

(defun merge-join-list (Listl List2) ; join the two lists to make
(let ((lengthl (length listl)) ; one long list
(length2 (length list2))
(templist 'nil))
(cond ((>- lengthl length2)

(setf templist listl)
(loop for I in list2
do (setf templist (adjoin I templist))))

(t (setf templist list2)
(loop for I in listi
do (setf templist (adjoin I templist)))))

templist))

(defun first-non-zero (List) ; find the first non-zero element in a simple
list

; if none found, return "-1".
(cond ((not (equal-zero-p (first List)))

(first List))
((not (equal-zero-p (second List)))
(second List))

((not (equal-zero-p (third List)))
(third List))
(t (- 1))))

(defun equal-error (A B) ; equal within an allowed level of
error

(let ((error 'nil))
(cond ((equal A B) ; simple equal

(return-from equal-error 't))
((equal (* 'l.0 A) ; floating point equal

('1.0 B))
(return-from equal-error 't))

((or (equal-zero-p B) ; divide by zero check
(equal-zero-p A))

(setf error '1.0))
((> A B) ; find absolute error between terms
(setf error (abs (/ (- A B) B))))

(t (setf error (abs (I (- A B) A)))))
(<= error *precision*))) ; check with allowed precision

(defun equal-error-2 (A B) , equal within an allowed level of
error

(let ((error 'nil))
(cond ((equal A B) ; simple equal

(return-from equal-error-2 't))
((equal (* '1.0 A) ; floating point equal

(C '1.0 B))
(return-from equal-error-2 't))

((or (equal-zero-p B) ; divide by zero check
(equal-zero-p A))

(setf error '1.0))
((> A B) ; find absolute error between terms
(setf error (abs (I (- A B) B))))

(t (setf error (abs (/ (- A B) A)))))
(<- error *precision-2*))) , check with allowed precision

(defun LT (A B)
(and (not (equal-error A B))

(< A B)))

(defun GT (A B)

81

(and (not (equal-error A B))
(> A B)))

82

(defun LE (A B)
(not (GT A B)))

(defun GE (A B)
(not (LT A B)))

------------ --- MANIPULATE POINTS---------------

(defun average-of-points (list-of-points)
(map 'list ' (lambda (a b) (/ a b)) (mean-point-in-facet-2 list-of-points)

(make-list 3 -initial-element
(length list-of-points))))

(defun find-point (X Y Z List-of-points) ; find all points in list which match
(let ((result List-of-points) ; one or more of specified values.

values
(values (list X Y Z))) ; of 'nil will be ignored. returns a list.
(loop for Pass in (List 0 1 2)
do (cond ((not (equal 'nil (nth Pass values)))

(let ((intermediate-result 'nil))
(loop for P in result
do (cond ((equal-error (nth Pass values)

(nth Pass (send (oval P) :list-format)))
(setf intermediate-result

(adjoin P intermediate-result)))))
(setf result intermediate-result)))))

result))

(defun average-points (Ptl Pt2) ; find the point 1/2 way between two points
(map 'list '/ (map 'list '+ (send (eval Ptl) :list-format)

(send (oval Pt2) :list-format))
(make-list 3 :initial-element '2)))

-----------MAKE OR MANIPULATE VECTORS-----------

(defun solve-for-t (Plane Line Denom)
(/ (- (fourth Plane) (apply '+ (map 'list * Plane

(send (eval(Line-segment-position-vector
(eval Line))) :list-format)))) Denom))

(defun vector-add-with-t (DV PV Ti) add a direction vector (*T) to a
position vector

(map 'list '+ (send (eval PV) :list-format)
(map 'list #'(lambda (A) (* A Ti)) (send (eval DV)

.list-format))

; ------------- MAKE OR MANIPULATE LINES------------

(defun make-line (Pointl Point2)
(init-line (init-vector '*origin* Pointl)

(init-vector Pointl Point2)))

(defun 'ine-cross-product (L1 L2) ; take the cross product of direction vectors
(cross-product (send (oval (line-segment-direction-vector (oval Li)))

:list-format)
(send (eval (line-segment-direction-vector (oval L2)))

:list-format)))

83

(defun find-common-point (Li L2) ; returns the value of a common
point,

(loop for m in (send (oval Li) :endpoints) ; if one exists.
do (loop for n in (send (oval L2) :endpoints)

when (equal m n)
do (return-from find-comuon-point ml)))

'nil)

(defun angle-between-lines (LI L2) ; find the smallest angle between two
lines

; return NIL for unusual problems

(let* ((normal-vector (line-cross-product Li L2))
(normal-vector-length (sqrt (abs (+ (* (first normal-vector)

(first normal-vector))
(* (second normal-vector)

(second normal-vector))
(* (third normal-vector)

(third normal-vector)))))))
(cond ((equal-zero-p normal-vector-length)

(return-from angle-between-lines 'nil))
((or (equal-zero-p (send (oval LI) :length))

(equal-zero-p (send (eval L2) :length)))
(return-from angle-between-lines 'nil)))

(- *PI* (&sin (normal-vector-length (* (send (oval Li) :length)
(send (eval L2) :length)))))))

(defun find-mid-point (Line)
(send (eval Line) :midpoint))

-----------.MAKE OR MANIPULATE PLANES-------------

(defun make-a-plane (point line) ; define a plane given a point and a line
(let* ((Obs-line (init-line (init-vector '*origin* point)

(init-vector point
(first (send (eval line) :endpoints)))))

(plane (make-a-normalized-plane Obs-line line)))
(init-plane plane)))

(defun make-a-normalized-plane (LI L2) ; make a plane equation with
Ao - -1,0,1; first coef is

positive
(let ((un-normalized (line-cross-product Li L2)) ; normal vector to plane
(common-point (find-common-point Li L2))

a point in the plane
(Ao 'nil) ; constant in plane equation
(normalized 'ni') ; in standard form
(setf un-norrr .zed (map 'list 'rationalize un-normalized))
(cond ((null common-point)

(setf common-point (send (oval (send (oval Li) :start-point))
:list-format)))

(t (setf common-point (send (oval common-point) :list-format))))
(setf Ao (apply '+ (mapcar '* common-point un-normalized)))
(cond ((equal-zero-p Ao)

(setf normalized
(map 'list '/ un-normalized (make-list 3 :initial-element

(first-non-zero un-normalized))))
(setf normalized (reverse (append (list '0) (reverse normalized)))))

84

(t (setf normalized
(map 'list 'I/ un-normalized (make-list 3 :initial-element Ao)))
(setf normalized (reverse (append (list '1) (reverse normalized))))))

(cond ((GT '0.0 (first-non-zero normalized))
(map 'list I* (make-list 4 :initial-element (- 1)) normalized))

(t 't))
(setf normalized (map 'list 'rationalize normalized))
normalized)) ; return the coeffs for the plane

(defun make-vertical-plane (Line)
(let* ((line-endpoints (send (eval Line) :endpoints))

(Ptl (map 'list '+ '(0 0 10)
(send (eval (first line-endpoints)) :list-format)))

(LI (make-line (init-point Ptl) (second line-endpoints)))
(L2 (make-line (init-point Ptl) (first line-endpoints))))
(init-plane (make-a-normalized-plane Ll L2))))

(defun make-z-plane (point)
(nit-plane (make-a-normalized-plane

(make-line (init-point
(map 'list '+ (send (eval point) :list-format)

'(10 0 0)))
point)

(make-line (init-point
(map 'list '+ (send (eval point) list-format)

'(0 10 0)))
point))))

(defun make-y-plane (point)
(init-plane (make-a-normalized-plane

(make-line (init-point
(map 'list '+ (send (eval point) :list-format)

'(0 0 10)))
point)

(make-line (init-point
(map 'list '+ (send (eval point) list-format)

,(0 10 0)))
point))))

(defun make-x-plane (point)
(init-plane (make-a-normalized-plane

(make-line (init-point
(map 'list '+ (send (eval point) :list-format)

'(10 0 0)))
point)

(make-line (init-point
(map 'list '+ (send (eval point) list-format)

'(0 0 10)))
point))))

(defun subs-point-into-equation (Plane Point)
(apply '+ (map 'list "* (send (eval Point) :list-format) Plane)))

85

(defun subs-line-into-plane-equation (Line Plane) ; TRUE if lines lie in
plane

(let* ((endpoints (send (eval Line) zendpoints))
(point-Aos (list (send (eval plane)

:subs-point-into-plane (first endpoints))
(send (oval plane)

:subs-point-into-plane (second endpoints)))))

(apply 'and
(map 'list #'equal-error

point-Aos
(make-list 2 :initial-element

(fourth (send (eval plane) :list-coeff)))))))

------------- -MANIPULATE FACETS-----------------

(defun find-common-facet (Vl V2) ; find the first facet that two volumes have
in

; common. Use the assumption that common
facets

; will have same name first, else they will

have
; the same plane equation.

(let ((common-facet (first (intersection (volume-facets (eval Vl))
(volume-facets (eval V2))))))

(cond ((not (null common-facet))
(return-from find-common-facet common-facet))

((not (null (facet-connects (eval (first (volume-facets (eval Vl)))))))

(loop for Fi in (volume-facets (eval Vl))
do (cond ((member-p V2 (second (facet-connects (oval Fl))))

(return-from find-common-facet Fl)))))
(t (loop for Fl in (volume-facets (eval Vi))

do (loop for F2 in (volume-facets (eval V2))
do (cond ((send (eval Fl) :test-equal F2)

(return-from find-common-facet F2))))))))
'nil)

(defun mean-point-in-facet (Facet)
(map 'list '(lambda (a b) (/ a b)) (mean-point-in-facet-2 (send (eval Facet)

:points))
(make-list 3 :initial-element
(length (send (oval Facet) :points)))))

(defun mean-point-in-facet-2 (Points)
(cond ((null Points) '(0 0 0))
(t (map 'list '+ (send (eval (first Points)) :list-format)

(mean-point-in-facet-2 (rest Points))))))

(defun info-on-facets (list-of-facets) find all points and lines in a list
of facets

(let ((lines 'nil)
(points 'nil))
(loop for F in list-of-facets
do (let ()
(setf lines (append (facet-edges (oval F)) lines))
(setf points (append (send (oval F) :points) points))))

(setf lines (remove-duplicates lines))
(setf lines (remove 'nil lines))
(setf points (remove-duplicates points))
(setf points (remove 'nil points))
(list points lines)))

86

(defun inside-facet-p (point facet) ; return T iff point is inside
(let ((horizontal-plane (make-z-plane point)) ; a convex facet
(vertical-y-plane (make-y-plane point))
(vertical-x-plane (make-x-plane point))
(vertical-Ao-x 'nil)
(vertical-Ao-y 'nil)
(left-points 'nil)
(right-points 'nil)
(edge-points 'nil))

; intercept all edges with horizontal plane,
; plane interception points in left or right
; half, based upon relationship with vertical

plane

(serf vertical-Ao-x (fourth (send (eval vertical-x-plane) :list-coeff)))
(setf vertical-Ao-y (fourth (send (oval vertical-y-plane) :list-coeff)))
(loop for L in (facet-edges (eval Facet))
do (let ((I (find-intercept-point horizontal-plane L))

(I-Ao-x 'nil)
(I-Ao-y 'nil))

(cond ((not (equal 'nil I))
(setf I-Ao-y (send (eval vertical-y-plane) :subs-point-into-plane

i)
(setf I-Ao-x (send (eval vertical-x-plane) :subs-point-into-plane

I))
(cond ((LT vertical-Ao-x I-Ao-x)

(setf right-points (adjoin I right-points)))
((GT vertical-Ao-x I-Ao-x)
(setf left-points (adjoin I left-points)))

(t (setf edge-points (adjoin I edge-points))))
(cond ((LT vertical-Ao-y I-Ao-y)

(setf right-points (adjoin I right-points)))
((GT vertical-Ao-y I-Ao-y)
(setf left-points (adjoin I left-points)))

(t (setf edge-points (adjoin I edge-points))))))))

; test for inclusion by nr of intercept points

(cond ((or (not (evenp (length left-points))) ; if either one odd, then
point

(not (evenp (length right-points)))) is in facet
(return-from inside-facet-p 't))

(t (return-from inside-facet-p 'nil)))))

------------MAKE OR MANIPULATE VOLUMES-----------

(defun intersect-all-planes-with-volumes (list-of-planes List-of-volumes)
; intersectal all planes given with all volumes given,
; including resultant volumes from earlier intersections.
; requires input of volumes as: ((volume) (volume) ...)
; resultant volume list is the same format.

(let ((old-list-of-error-planes 'nil)
(result-volumes

(intersect-all-planes-with-volumes-2 List-of-planes List-of-volumes)))
(loop repeat '1
do (let ()
(terpri) (terpri)
(princ " Re-doing error intercepts: ')
(prinl *list-of-error-planes*) (terpri)

87

(setf old-list-of-error-planes *list-of..error-planes*)
(setf *list-of-error-planes* 'nil)
(setf result-volumes (intersect-all-planes-with-volumes-2

old-list-of-error-planes
result-volumes))))

result-volumes))

(defun intersect-all-planes-with-volumes-2 (List-of-planes List-of-volumes)
;do all the work for intersect-all-planes-with-volumes

(let ((templist 'U)))
(cond ((null list-of-planes) list-of-volumes)
(t (loop for V in List-of-volumes

do (let ((emp 'nil))
(setf temp (intersect (car V)

(send (oval (car list-of-plane))
:ljat-ooeff)))

(cond ((equal '1 (length temp))
(push temp templist))

(t (push (list (first temp)) templist)
(push (list (second temp)) templist)))))

(intersect-all-planes-with-volumes-2 (cdr list-of-planes) templist)))))

-------PROPERTY LIST MANIPULATIONS -----------

(defun reset-point-property-lists (Volume)
(loop for P in (volume-points (eval Volume))
do (setf (get P 'lines) 'nil)
do (setf (get P 'planes) 'nil)
do (setf (get P 'distance) 'nil)))

------------ MANIPULATE GLOBAL COUNTERS-------------

(defun speed-demon (
(terpri) (terpri) delete *list-of-?????* lists

to
(princ "******SPEED-DEMON-INVOKED*******") ;speed processing. best if
(terpri) (terpri) ;used witi- fttatic universe

methods
(setf *list-of-vectora* 'n~il) if contents of old lists

still needed
(setf *list..of-lines* 'nil)
(setf *list-of-points* 'nil)
(setf *list-of-planes* 'nil)
(make-null -vector)
(make-origin))

------ --MORE SPECIFIC STUFF---------------

(defun minimum-distance (lines start-point)
(let ((best-line (first lines)))

(cond ((< '1 (length lines))
(loop for L in (rest lines)
do (cond ((> (get (send (eval L) :other-end start-point)

'distance)
(get (send (eval best-line) :other-end start-point)

'distance))
(setf best-line L))))))

best-line))

88

FIND THE VOLUME(S) CONTAINING A GIVEN POINT

(defun locate-point (point)

; return the one, two, or more volumes which contain the point.
; multiple volumes are possible if point is on facet or vertex
; of a volume

(let ((list-of-possible-volumes (universe-volumes *universe*))
(reject-volumes 'nil)
(x-plane (make-x-plane point))
(y-plane (make-y-plane point))
(z-plane (make-z-plane point)))

; loop through planes which define point,
; removing volumes which do not intersect the planes.
; point is located in volume(s) which are left

(loop for P1 in (list x-plane y-plane z-plane)

do (let ()

; loop through (modified) list of candiate volumes

(loop for V in list-of-possible-volumes
do (let ((first-point-Ao (send (eval P1) :subs-point-into-plane

(first (volume-points (eval V)))))

(Ao (fourth (send (eval PI) :list-coeff))))

; see if volume strattles plane

(cond ((not (equal-error first-point-Ao Ao))
(cond ((point-check-p P1 first-point-Ao Ao V)

(setf reject-volumes (adjoin V reject-volumes))))))))

remove rejected volumes from possible location of points

(loop for V in reject-volumes
do (setf list-of-possible-volumes (zemove V list-of-possible-volumes)))

(setf reject-volumes 'nil)))

select actual location of point from final list
of volumes

(loop for V in list-of-possible-volumes not so good
do (let ((lines 'nil))
(loop for F in (volume-facets (eval V))
do (setf (get F 'center) (init-point (mean-point-in-facet F)))
do (setf lines (adjoin (make-line Point (get F 'center)) lines)))

(cond ((lines-strattle-facets-p Lines V)
(setf list-of-possible-volumes (remove V

list-of-possible-volumes))))))

list-of-possible-volumes))

89

(defun locate-point-air (point)
; return the one, two, or more air volumes which contain the point.
; multiple volumes are possible if point is on facet or vertex
; of a volume. Same as locate-point function, except that ground
; volumes are removed

(let ((list-of-possible-volumes (universe-volumes *universe*))
(reject-volumes 'nil)
(x-plane (make-x-plane point))
(y-plane (make-y-plane point))
(z-plane (make-z-plane point)))

; loop through planes which define point,
; removing volumes which do not intersect the planes.
; point is located in volume(s) which are left

(loop for P1 in (list x-plane y-plane z-plane)
do (let ()

: loop through (modified) list of candiate volumes

(loop for V in list-of-possible-volumes
do (let ((first-point-Ao (send (eval P1) :subs-point-into-plane

(first (volume-points (oval V)))))

(Ao (fourth (send (eval P1) :list-coeff))))

; see if volume strattles plane

(cond ((not (equal-error first-point-Ao Ao))
(cond ((point-check-p P1 first-point-Ao Ao V)

(setf reject-volumes (adjoin V reject-volumes))))))))

remove rejected volumes from possible location of points

(loop for V in reject-volumes
do (setf list-of-possible-volumes (remove V list-of-possible-volumes)))

(setf reject-volumes 'nil)))

select actual location of point from final list
of volumes

(loop for V in list-of-possible-volumes not so good
do (let ((lines 'nil))
(loop for F in (volume-facets (oval V))
do (setf (get F 'center) (init-point (mean-point-in-facet F)))
do (setf lines (adjoin (make-line Point (get F 'center)) lines)))

(cond ((lines-strattle-facets-p Lines V)
(setf list-of-possible-volumes (remove V

list-of-possible-volumes))))))

remove ground volumes from list

(loop for V in list-of-possible-volumes
do (cond ((equal 'ground (volume-composition (eval V)))

(setf list-of-possible-volumes (remove V list-of-possible-volumes)))))

list-of-possible-volumes))

90

(defun point-in-volume-p (point volume) ; return T iff the point is inside the
volume v return NIL otherwise

code is modified version of
locate-point-air

(let ((list-of-possible-volumes (list volume))
(reject-volumes 'nil)
(x-plane (make-x-plane point))
(y-plane (make-y-plane point))
(z-plane (make-z-plane point)))

; see if point is a vertex, or in a facet of the volume

(cond ((member-p point (volume-points (eval volume)))
(return-from point-in-volume-p 't)))

(loop for F in (volume-facets (oval volume))
do (cond ((inside-facet-p point F)

(return-from point-in-volume-p 't))))

; loop through planes which define point,
; removing volumes which do not intersect the planes.
; point is located in volume(s) which are left

(loop for P1 in (list x-plane y-plane z-plane)
do (let ()

loop through (modified) list of candiate volumes

(loop for V in list-of-possible-volumes
do (let ((first-point-Ao (send (eval P1) :subs-point-into-plane

(first (volume-points (oval V)))))

(Ao (fourth (send (eval P1) :list-coeff))))

; see if volume strattles plane

(cond ((not (equal-error first-point-Ao Ao))
(cond ((point-check-p P1 first-point-Ao Ao V)

(setf reject-volumes (adjoin V reject-volumes))))))))

remove rejected volumes from possible location of points

(loop for V in reject-volumes
do (setf list-of-possible-volumes (remove V list-of-possible-volumes)))

(setf reject-volumes 'nil)))

(cond ((null list-of-possible-volumes) exit condition
(return-from point-in-volume-p 'nil)))

't))

(defun point-check-p (Plane Basis-point-Ao Ao Volume)
(loop for P in (rest (volume-points (oval Volume)))
do (let ((next-point-Ao (send (eval Plane) :subs-point-into-plane P)))
(cond ((equal next-point-Ao Ao)

(return-from point-check-p 'nil))
((or (and (GT Ao Next-point-Ao)

(LT Ao basis-point-Ao))
(and (LT Ao Next-point-Ao)

(GT Ao basis-point-Ao)))
(return-from point-check-p 'nil)))))

't)

91

-- 9IVM_

(defun lines-strattl*-facets-p (Lines Volume)
(loop for L in Lines
do (loop f or F in (volume-facets (oval Volume))
do (cond ((send (oval L) sstrattlo-plsne-p F)

(return-from lines-strattle-faoets-p 't))M)

'- - - - -- - - - --il)-- - - - -- - - - -- - - -

;PRINT GOOD-TO-KNOW INFO CONCENNING THE STATE
;OF THE *UNIVERSPE* INTO A DISK FILE

(defun dump-volumes (list-of-volumes)
(setq *output..stream* (open "oxp3:loviarun2" :direction :output))
(print "sending data to file (r=n2)...")
(loop for V in List-of-volumes

do (let (
(terpri *output-stream*) (terpri *output-stream*) (terpri *output-stream*)
(print-volumes (list V))
(terpri *output-.stream*)
(print-points (volume-points (oval V)))
(terpri *output..stream*)
(print-lines (volume-edges (oval V)))
(terpri *output..stram*)
(print-facets (volume-facets (oval V)))))

(terpri *output-.atream*) (terpri *output -stream*) (terpri *Output-stream*)
(close *output-atream*)
(print "Done.") 'nil)

(defun dump-path (path-name)
(setq *output-stream* (open "exp3:lewis;path-dump" :direction :output))
(print "sending path data to file (path-dump) . .. 11)
(terpri *output-stream*) (terpri *output-stream*) (terpri *output-.stream*)
(print-path path-name)
(terpri *output-stram*)
(print-points (path-points (oval path-name)))
(terpri *output-stran*)
(print-lines (path-lines (oval path-name)))
(terpri *output-stream*)
(print-facets (path-facets (oval path-name)))
(terpri *output-stream*) (terpri *output-stream*) (terpri *output-stream*)
(close *output-stream*)
(print "Done.")

'nil)

92

;;; 20 May 1988

;;; PRINT FLAVOR
FUNCTIONS

(defun print-points (List)

(cond ((null List))
(t (terpri *output-xtr*9m*)

(prinl "name: " *output-stream*)
(prinl (car List) *output-stream*)

(send (oval (car List)) :print)

(print-points (cdr List)))))

(defun print-vectors (List)

(cond ((null List))

(t (torpri *output-stream*)
(prinl "name: " *output-stream*)

(prinl (car List) *output-stream*)

(send (oval (car List)) :print)

(print-vectors (cdr List)))))

(defun print-lines (List)

(cond ((null List))
(t (terpri *output-stream*)

(prinl "name:" *output-stream*)
(prinl (car List) *output-stream*)

(send (oval (car List)) :print)

(print-lines (cdx List)))))

(defun print-facets (List)

(cond ((null List))
(t (terpri *output-stream*)

(prinl "name:" *output-stream*)

(prinl (car List) *output-stream*)

(send (eval (car List)) :print)

(print-facets (cdr List)))))

(defun print-volumes (List)

(cond ((null List))

(t (terpri *output-stream*)
(prinl "name:" *output-stream*)

(prinl (car List) *output-stream*)

(send (eval (car List)) :print)

(print-volumes (cdr List)))))

93

(defun print-path (name)
(terpri *output.stream*)
(princ "name: 11 *output-stream*) (prini name *output-stream*)
(prino "start-point: " *output-stram*)
(prini (path-start-point (oval namie)) *output-stream*)
(terpri *output-stream*)
(princ "end-point: "*output-a.tream*)
(prini (path-end-point (oval name)) *output-stram*)
(terpri *output-a.tream*)
(prina "volumes: "*output-stream*)
(prini (path-volumes (oval name)) *output-stream*)
(terpri *output-stream*)
(prina "facets: "*output-stream*)
(prini (path-facets (oval name)) *output-stream*)
(terpri *output-.stram*)
(princ "lines: "*output-mtream*)
(prini (path-lines (oval name)) *output-stream*)
(terpri *output-stream*)
(princ "points: "*output-stream*)
(prini (path-points (oval name)) *output-stream*)
(terpri *output-stream*)
(princ "length: "*output-stxeam*)
(prinl (path-length (oval name)) *output-stroam*)
(terpri *output-.stream*)
(princ "total K values: ff*output-.stream*)
(prini (path-total-K (eval name)) *output-stream*)
(terpri *output-stream*)
(princ "maximum detect ion probability: I'*output..stram*)
(prini (path-max-detection-probability (oval name)) *output-stream*)
(terpri *output-stream*)
(princ "average detection probability: "*output-otream*)
(prini (path-ave-detection-probability (oval name)) *output-.stream*)
(terpri *output-.stream*))

94

Mode: LISP; Syntax: Conmmon-lisp; Package: USER--

;; MOVIE-CAMERA FLAVORS AND METHODS ;W~ritten by Dr Sehung Kwak
;Mod for speed by Mark Kindi

THESIS L.R. MRUM 12 Mar 1989

;; Additions and Mods for Thesis and CS-4313

Improved-Movie-Camera

FLAVORS AND METHODS

FLAVOR:.............................. Movie-camera

METHODS: :initialize ;set-up for movie-camera
*:ijdtialize-B ;set-up for movie-camera used by advanced functions

:move ; sets H-matrix for movie-camera
:show ;displays an object using movie-camera

NOTE: clear-scene removed to show multi-objects
:clear-scene ;refreshes (clears) the non-visible

window of movie-camera
:make-visible ;does bitblt of back-window to front-window
:draw-line ;draws line to back-window

*:kill ;removes both windows
:screen-transform ;transforms real-world

list-of-points to screen-coords
:display-label ;allows for labeling of objects on the screen

D IR E CTO0RY O F F U NC TIO NS

make-movie-cameras
reset-window-stats
movie-ground
movie-ground-path
3how-path-4 ;does not reset windows only adds path and ground
show-movie-4

(def flavor movie-camera
(H-matrix image-distance previous-point scale

movie-display-window *movie-window* *movio-window-array*)

initable-instance-variables)

95

(defmothod (movie-CAMerA :initialize)

(setf R-matrix '((1 0 0 0) (0 1 0 0) (0 0 1 0) (0 0 0 1)
(setf image-distance *image-diatance*
(setf scale *scale*)
(sotf *movie-display-window*
(tv:make-winclow ' tv:window

:blinker-p nil
:position *movie-window-position*
:inside-width *movie-window-insido-width*
:inxide-height *mvie-w.indow-inside-.hoight*
:name "movie-display-window"
:Save-bits t
:exposs-p t))

(setf *movie-window*
(tv:make-window 'tv:window

:blinker-p nil
:position *movio-vindow-position*
:inside-width *movie-window-inid..width*
:inside-height *mvie-vindow-.inside-height*

: name I"movie-windov"
:save-bits t
:expose-p nil))

(setf *movie-window-array*
(send *movie..windov* :bit-array)))

(defmothod (movie-camera :initialize-S) ;for advanced functions
(window-stats)

(setf H-matrix ' ((1 00 0) (0 1 0 0) (0 0 1 0) (0 0 0 1))
(setf image-distance *jimage-distance*)
(setf scale *scale*)
(setf *movie-display-window*
(tv:make-window 'tv:window

:blinker-p nil
:position (list (first window-stats)

(second window-stats))
%ins ide-width (third window-stats)
inside-height (fourth window-stats)
:name (fifth window-stats)
:Save-bits t
:expose-p t))

(setf *movie-window*
(tv:make-window 'tv:wjndow

:blinker-p nil
:position (list (first window-stats)

(second window-stats))
inside-width (third window-stats)
inside-height (fourth window-stats)
:name (fifth window-stats)
:sav*-bits t
:expose-p nil))

(setf *movio-window-array*
(send *movio-window* :bit-array)))

(defmethod (movie-camera :move)
(x y z azimuth elevation roll)

(setf H-matrix (matrix-inverse
(homogeneous-transform azimuth elevation roll x y z))))

96

(dofmethod (movie-camera :show)
(solid-object)

(let* ((node-polygon-list (send solid-object :get-node-polygon-list))
Iscreen-vector (send self :screen-transform (first node-polygon-list)))

(polygon-list (second node-polygon-list)))
;(sen4 self :clear-scene) not needed for multi object picture
(dolist (polygon polygon-list)

(send self :draw-polygon polygon screen-vector))
(send self :make-visible)))

(defmethod (movie-camera :clear-scene)

(tv: sheet-force-access (*movie-windov*)
(send *movie-.window* :refresh)))

(defmethod (movie-camera :drav-polygon)
(polygon screen-vector)

(let ((first-point (first polygon))
(rest-points (cdr polygon)?)
(setf previous-point (elt screen-vector first-point))
(dolist (point rest-points)

(send self :draw-line (elt screen-vector point)))
(if (> (length polygon) 2)

(send self :draw-line (elt screen-vector first-point))))

(defmethod (movie-camera :make-visible)
0)

(send *movie-display-window* :bitblt
tv alu-seta
movie-window-.inside-width
movie-windowinside.height
movie-window-array
2 2 0 0))

(defmethod (movie-camera :draw-line)
(next-point)

(let ((current-point next-point))
(tv: sheet-force-access (*movie-window*)

(send *movie-window* :draw-line
(first previous-point) (second previous-point)
(first current-point) (second current-point)

(setf previous-point current-point)))

(defmethod (movie-camera :kill)

(sn () e-ipa-ino*:il
(send *moviedipywindow* ill)

97

(dofmethod (movie-camera :screen-transform)
(node-vector)

(do* ((point-list node-vector (cdx point-list))
(camera-point nil)
(point nil)
(z nil)

(screen-vector nil)
',(null point-list) screen-vector)
(astf point (car point-list))
(motf camera-point (post-multiply H-matrix point))
(setf z (* -1 (third camera-point)))
(cond ((equal 0.0 z) (setf z 0.00001))
(t)

(setf screen-vector (append screen-vector (list (list
(+ (round (* scale (* (image-distance

(first camra-point)) :)))
(I movie-window-insid.-width* 2))

U-(*movie-vindow-inside-height* 2)
(round (* scale (* (image-distance

(second camera-point)) z))))))))))

(defmethod (movie-camera :display-label) ;allows for the addition
;of labels to display

MV
(let ((object-type (string-trim '"10123456789 11 V)))
(cond ((string-equal object-type '"observer")

(let* ((obs-point (first (send (eval V) :get-transformed-node-list)))
(screen-point (car(send self

:screen-transform (list obs-point)))))
(tv sheet-force-access (5movie-window*)

(send Itmovie-windowl' :set-cursorpos
((first screen-point) '30)
((second screen-point) '5))

(send "movie-window'l :display-lozenged-string '"obs")

((string-equal object-type "'"path")
(let* ((start-point (first (send (eval V)

:get-transformed-node-list)))
(end-point (first (last (send (eval V)

:get-transformed-node-list))))
(screen-start-point (car (send self :screen-transform

(list start-point))))
(screen-end-point (car (send self :screen-transform

(list end-point)
(tv~sheet-force-access (*movie-window*)

(cond ((< '10000 (* *movie-window-inside-width*
movie-window-inside-height))

(send *movie-window* :set-cursorpos
((first screen-start-point) '43)
((second screen-start-point) '5))

(send *movie-window* :display-lozonged-string 'start")
(send *movie-windowl :set-cursorpos

(+ (first screen-end-point) '3)
(- (second screen-end-point) '5))

(send *movie-window*
:display-lozenged-string '"end")))))?)

(send self :mak*-visible))

98

_ _- - - - - -- - - - - - -- - - - ----- -- - -- - - -- ----- ---

;advanced movie-camera functions L. R. WRENN

;All items coammented out here are also defined in camera

(defvar *movie-windo..iide..1idth* 300)
(defvar *movio-window-insido-height* 300)
(defvar *movie-window-.positiofl* '(10 10))
;(defvar *scale* 10)
; (defvar *image-distsanco* 20)
;(defvar *thickness* '5) line thickness, in pixels

;(defvar *ideal*)
; (defvar *low..loft-front*)
; (defvar *high-left-front*)
; (defvar *low-right-front*)
p (defvar *right-sido*)
; (defvar *left-rear-3/4*)
;(defvar *top*)
; (defvar *display-stats*)
(defvar *rca-1*)
(defvar *rca-2*)
(defvar *rca-3*)
(defvar *rca-4*)
(defvar *rca-5*)
(defvar *rca-6*)
(defvar *list-of-vcrs*)
; (defvar *window-stats*)

(defun make-movie-cameras (
(setf *rca-l* (make-instance 'movie-camera))
(setf *rca-2* (make-instance 'movie-camera))
(setf *rca-3* (make-instance 'movie-camera))
(setf *rca-4* (make-instance 'movie-camera))
(setf *rca-5* (make-instance 'movie-camexa))
(setf *iist-of-vcrs* '(ral *rca-2* *rce-3* *rca-4* *rca-5*))
(setf *ideal* ' (7500.0 3500.0 6200.0 2.0 0.0 0.9900 -500.0 -500.0 200.0 0.0

0.0 0.0))
;(setf *low-left..front* '(100.0 200.0 4000.0 0.0 0.50 1.0 1.0 1.0 -1.5 0.0 0.0

0.0))
(setf *high..left..front* ' (3500.0 -11900.0 5700.0 0.26 0.10 1.17

-500.0 -500.0 200.0 0.0 0.0 0.0))
(setf *low..right-front* ' (100.0 100.0 4000.0 0.0 0.5 1.5 1.0 1.0 1.0 0.0 0.0

0.0))
(setf *right..side* '(00.0 -4000.0 1500.0 0.0 0.0 01.40

-500.0 -500.0 200.0 0.0 0.0 0.0))
(setf *left-rar-.3/4* '(-500.0 0.0 4000.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0

0.0))
(setf *top* '(0.0 0.0 4000.0 0.0 0.0 0.0 -500.0 -500.0 200.0 0.0 0.0 0.0))

'nil)

(defun reset-window-stats (window-stats) ;used to move from one window to
another

(setf *movie-window-insido-width* (third window-stats))
(setf *movio-window-inside-height* (fourth window-stats))
(setf *scale* (sixth window-stats))
(setf *image-distanc~e* (seventh winidow-stats)))

99

-DISPLAY GROUND IN (4 WINDOWS)

(defun movie-ground () ;initializes and displays the ground in 4 views for
paths

(setf *window-stats* ' ('nil
(10 10 400 380 "Path-over-ground" 15 140)
(10 410 400 290 "Alternate-view " 20 140)
(420 10 300 380 "Top-view" 5 140)
(420 410 300 290 "Top-view No Reset of Paths" 5 140)))

(setf *display-stats* (list 'nil
ideal

high-left-front
top

top))

(let ((objects 'nil)
(ground-volumes 'nil))
(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (eval V)))

(setf ground-volumes (adjoin V ground-volumes)))))
(setf ground-volumes (append (universe-observers *universe*)

ground-volumes))
(setf objects (list 'nil

ground-volumes
ground-volumes
ground-volumes
ground-volumes))

(loop for N in '(1 2 3 4)
do (show-movie-4 (nth N *list-of-vcrs*)

(nth N *window-stats*)
(nth N objects)
(nth N *display-stats*))))

'nil)

(defun movie-ground-path (path-name) ; displays the ground and
path just like camera

(setf *window-stats* ' ('nil
(10 10 400 380 "Path-over-ground" 15 140)
(10 410 400 290 "Alternate-view " 20 140)
(420 10 300 380 "Top-view" 5 140)
(420 410 300 290 "Low-side view" 5 140)))

(setf *display-stats* (list 'nil
ideal
high-left-front
top

right-side))

(let ((objects 'nil)
(ground-volumes 'nil))
(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (eval V)))

(setf ground-volumes (adjoin V ground-volumes)))))
(setf ground-volumes (append (universe-observers *universe*)

ground-volumes))
(setf objects (list 'nil

(append grcund-volumes (list path-name))
(append ground-volumes (list path-name))
(append ground-volumes (list path-name))
(append ground-volumes (list path-name))))

100

(loop for N in '(1 2 3 4
do (show-movie-4 (nth N *list-of-vcrs*)

(nth N *window-stats*)
(nth N objects)
(nth N *display-stats*))))

'nil)

; display-movie-path used by search routines to display the
; the search as it is on going. Helpful when altering

parameters
; and observing their effect. Note: It is a center of volume to
; center of volume display.

(defun display-movie-path (agenda start-point ground-volumes)
(let ((current-best-path)
(temp-best-path 'nil)
(temp-path-volumes 'nil)
(temp-goal-volume 'nil))

(princ "----New Agenda Sent to Movie-camera---") (terpri)
(setf current-best-path (car agenda))
(setf temp-goal-volume (car (agenda-item-path

(eval current-best-path))))

(setf temp-path-volumes (reverse (agenda-item-path
(eval current-best-path))))

(setf temp-best-path (init-new-path start-point
(volume-arithmetic-center
(eval temp-goal-volume))
temp-path-volumes
,nil
'nil

'nil
'nil

'nil))
(make-center-to-center-path temp-best-path)
(calc-path-and-stats temp-best-path)
(send (eval temp-best-path) :initialize)
(loop for N in ' (1 2 3 4)

do (cond ((not (equal N 4))
(send (eval (nth N *list-of-VCRs*))

:clear-scene)))
do (show-path-4 (nth N *list-of-VCRs*)

(nth N *window-stats*)
temp-best-path
(first ground-volumes)
(nth N *display-stats*))

do (cond ((not (equal N 4))

(send (eval (nth N *list-of-VCRs*))
:display-label temp-best-path))))))

101

;---ADVANCED MOVIE-CAMERA ORDERS FOR A PICTURE (SEMI-AUTOMATIC
CONTROL) --------

(defun show-path-4 (VCR Window-stato path ground view-state)
(reset-window-stats Window-stats)
(send (oval path) :trarilat-and-ouler-angle-transform (nth 6 view-stata)

(nth 7 view-stats)
(nth 8 view-stats)
(nth 9 view-stats)
(nth 10 view-stats)
(nth 11 view-stats))

(send (oval VCR) :show (oval ground))
(send (oval VCR) :show (oval path)))

102

-*- Mode:Lisp; Syntax: Common-lisp -
S************* ****** ********** ******** ** ***

FUNCTIONS TO INTERCEPT A VOLUME WITH A PLANE D.H.LEWIS 27May88

--

;These functions intercept planes with volumes and lines with planes. Multiple

tests are performed to ensure proper construction of new volumes. Facets are

; rebuilt each time.

; Main functions: INTERSECT (VOLUME PLANE)
FIND-INTERCEPT-POINT (PLANE LINE)

; Other functions: GET-INTERCEPT-POINT (PLANE LINE T-INTERCEPT)
PUT-LINE-IN-CORRECT-HALF (LINE PLANE)
PUSH-ENDPOINTS (LINE VOLUME)

bMAKE-NEW-DIVIDING-LINES (VOLUME OLDPOINTS NEW-POINTS)
NEW-VALID-LINE (POINT1 POINT2 VOLUME)

* IN-FACET-P (POINT1 POINT2 FACET)
OUTSIDE-VOLUME (LINE VOLUME)
DENOM-IN-INTERCEPT (PLANE LINE)
GET-INTERCEPT-POINT-2 (LINE T-INTERCEPT)

(defvar *lines-in-intercept-plane* 'nil)
(defvar *large-integer* '1e4)
(defvar *list-of-error-planes* 'nil) ; used to correct errors in
interceptions

(defun intersect (Volume Plane)
(let ((old-precision *precision*)
(bad-euler-flag 't)
(new-volumel 'nil)
(new-volume2 'nil)
(facet-planes 'nil)
(intercept-plane 'nil))
(terpri) (princ "intersecting: ") (prinl (list Volume Plane))
(princ " --- Result: ")
(setf *lines-in-ititercept-plane* 'nil)
(cond ((bad-intersect-preconditions-p Volume Plane); check for degenerate

conditions
(return-from intersect (list volume))))

(setf intercept-plane (nit-plane Plane))
(loop for F in (volume-facets (eval Volume)) ; get all planes used
do (setf facet-planes (adjoin (init-plane (send (eval F) :list-coeff))

facet-planes)))
(setf facet-planes (adjoin intercept-plane facet-planes))
(setf facet-planes (remove-duplicates facet-planes))
(loop until (or (not bad-euler-flag) (> *precision* (* '5 old-precision)))
do (let ()

clear standard volumes before use (or reuse)
and set common values

(send *above* :clear)
(setf (volume-visibility *above*) (volume-visibility (eval Volume)))

(setf (volume-composition *above*) (volume-composition (eval
Volume)))

(send *below* :clear)
(setf (volume-visibility *below*) (volume-visibility (oval Volume)))

1
i 103

(setf (volume-composition *below*) (volume-composition (oval

Volu e)))conduct
intercept

(let ((List-of-new-points 'nil)
(list-of-old-points 'nil))
(loop for P in (volume-points (oval Volume))
do (setf (get P 'lines) 'nil))

;intersect each line of volume
(loop for Line in (Volume-Edges (oval Volume))
do (let ((new-point (find-intercept-point intercept-plane

Line)))
(oond ((equal new-point 'nil)

(cond ((not (subs-line-into-plane-equation Line
intercept-plane))

(put-line-in-correct-half
Line
(first (send (oval Line) :endpoints))
intercept-plane))))

((member-p new-point (Volume-points (oval Volume)))
(pushnew new-point list-of-old-points)
(put-line-in-correct-half Line new-point intercept-plane))

(t (pushnew new-point List-of-new-points)
(place-intercept-point Plane Line New-point)))))

(make-new-dividing-lines Volume Li st-of-new-points
list-of-old-points))

(cond ((not (simple-volume-test-p)) ; check degenerate cases
(setf *precision* old-precision)
(return-from intersect (list volume))))

;build new facets in bost way possible

(cond ((not *not-convex-volumes*) ; do convex facets
(make-facets facet-planes *above*) ;quick facet builder
(make-facets facet-planes *below*)
(cond ((not (check-eulers-relation-p))

(setf (volume-facets *ab~ove*) 'nil)
(setf (volume-facets *below*) 'nil)
(make-all-facets *abov**) ;slow facet builder
(make-all-facets *below*))))

(t (make-all-facets *above*) ;do non-convex facets
(make-all-facets *below*)))

(cond ((null (intersection (volume-facae *above*)
(volume-facets *below*)))

(force-facet plane)))

(cond ((not (check-eulers-relation-p))
(setf *precision* (* *Precision* '2.0)))

(t (setf bad-euler-flag 'nil)))))

(cond ((not bad-euler-flag)
(setf new-volumel (make-volume-name)) ;give legitimate names to new

(astf now-volume2 (make-volume-name)) ;volumes
(send *above* :mske-equal new-volumel)
(send *below* :make-equal now-volume2)
(push new-volumel *list-of-volumos*)
(push now-volume2 *list-of-volumes*)
(metf *Precision* old-precision)
(prini (intersection (volume-facets (eval new-volumel))

104

(volume-facets (oval nev-volume2))))

(return-from intersect (list new-volumel new-volume2))) ;return

new volumes
(t (setf *precision* old-precision)

(setf *list-of-error-planes*
(adjoin intercept-plane *list-of-*rror-planes*))

(return-from intersect (list Volume))))))

(defun subs-point-into-plane (Pt Plane)
(send (oval Plane) :subs-point-into-plane Pt))

(defun bad-intersect-preconditione-p (Volume Plane) ; test for null plane (0 0
0 0)

;and facet intercept if

convex
(cond ((equal *zero-vector* (map 'list '* plane *one..vector*))

(princ "nil (early 1)")
(return-from bad-intersect-preoonditions-p 't))

((not *not-convex-volumes*)
(loop for F in (volume-facets (eval Volume))
do (cond ((send (oval F) :text-equal (mnit-plane Plane))

(princ "nil (early 2)")
(return-from bad-intersect-preconditions-p 't)))))

?nil)

(defun find-intercept-point (plane line) ; find intercept point of plane and
line

;segment, if it exists, return NIL
; if not exist

(let ((denom (rationalize (denom-in-intercept plane line)))
(t-intercept 'nil)
(I-point 'nil))
(cond ((not (equal-zero-p denom))

(setf t-intercept (rationalize (solve-for-t
(send (eval plane) :list-coeff)
live
denom))

(setf I-point (get-intercept-point-2 line t-intercept)f)
I-point))

(defun denom-in-intercept (plane line) ; find the denominator in intercept
equation

(apply '+ (map 'list 1* (send (oval plane) :list-cooff)
(map 'list 'rationalize

(send (oval (line-segment-direction-vector
(oval line))) :list-format)))))

(defun get-intercept-point-2 (line t-intercept)
return the name of a valid intercept

point

(I-list 'nil))
(cond ((not (or (GT t-intercept (line-segment-t-max (oval line)))

(LT t-intercept '0.0)))
(setf I-list (vector-add-with-t

(line-segment-direction-vector (oval line))
(line-segment-position-vector (oval line))
t-intercopt))

(setf I (mnit-point I-list))))
I))

105

(defun place-intercept-point (Plane Line 1) ; divide old line at I, build new
lines

(let ((Li 'nil) ; and put each in right resultant
volume

(M2 'nil))
(setf (get I 'lines) Line)
(pushnew I (volume-points *above*))
(pushnew I (volume-points *below*))
(setf Li (make-line I (first (send (oval Line) :endpoints)f)
(setf L2 (make-line I (second (send (oval Line) sondpoints))))
(setf (line-segment-characteristics (oval Li)) ;ridge is still a

ridge
(line-aegment-characteristics (oval Line)))

(setf (line-segment-characteristics (oval L2))
(line-sagment-charaoteriatios (oval Line)))

(cond M(T (fourth Plane) ; which volume to put now line Li?
(subs-point-into-equation Plane

(car (send (oval Line) :endpoints

(pushnew Li (volume-edges *above*))
(push-endpoints Li v*abv**))

((GT (fourth Plane)
(subs-point-into-equation Plane

(car (send (eval Line) :endpoints

(pushnew Li (volume-edges *below*))
(push-endpoints Li '*below*))

(t))
(cond ((LT (fourth Plane) ;Which volume to put new line L2?

(subs-point-into-equation Plane
(cadr (send (eval Line) :endpoints

(pushnew L2 (volume-edges *above*))
(push-endpoints L2 '*above*))

((GT (fourth Plane)
(subs-point-into-equation Plane

(cadz (send (eval Line) :endpoints

(pushnew L2 (volume-edges *below*))
(push-endpoints L2 '*below*)))))

(defun put-line-in-correct-half (Line Point Plane) ;put a preexisting volume
line

into the correct resultant
volume

(let ((Plane-Ao (fourth (send (oval Plane) :list-coeff)))
(other-point (send (eval Line) :other-end Point)))
(cond ((GT (send (eval Plane) :subs-point-into-plane other-point)

Plane-Ao)
(pushnew Line (volume-edges *above*))
(push-endpoints Line '*above*))

(t (pushnew Line (volume-edges *below*))
(push-endpoints Line '*below*)))))

(defun push-endpoints (Line Volume)
(pushnew (first (send (oval Line) tondpointa)) (volume-points (eval Volume)))
(pushnew (second (send (oval Line) :endpoints)) (volume-points (oval

Volume))))

106

(defun make-new-dividing-linoo (Volume List-now-points List-old-points)
(loop for Pl in List-new-points ; handle case whore no pro-ozitant points

involved
do (loop for P2 in List-now-points

do (cond ((not (equal 11 P2))
(new-valid-line P1 P2 Volume))))

(loop for Pi in List-old-points ; add proexitant lines and points
do (loop for P2 in List-old-points ;to now volumes
do (cond ((not (equal P1 P2))

(new-valid-line P1 P2 Volume) ;make new connecting lines
;then find old ones

(loop for Line in (volume-edges (oval Volume))
do (let ((endpointl (first (send (oval Line) :endpoints)))

(ondpoint2 (second (send (oval Line) :endpoints))))
(oond ((and (or (equal 11 endpointl)

(equal P1 ondpoint2))
(or (equal P2 *ndpointl)

(equal P2 ondpoint,2)))
(push-endpoints Line *sbove*)
(push-endpoints Lin* *be low*)
(pushnew Line (volume-edges *abv**))

(pushnew Line (volume-edges *below*))
(pushnew Line *lines-in-intorcept-plane*)))))))))

(loop for P-new in List-new-points :add new lines connecting old and new
do (loop for P-old in List-old-points ;points to new volumes

do (new-valid-line P-new P-old Volume))))

(defun new-valid-line
(PI P2 Volume) ;make a new (and valid) line between Pi and P2

pwhich lies inside (or along an edge) of Volume
(loop for Fl in (volume-facets (oval Volume))

do (cond ((in-facet-p P1 P2 Fl)
(let ((Line (make-line P1 P2)))
(cond ((not (outside-volume Line Volume))

(push-endpoints Line *above*)
(push-endpoints Line *IDelow*)

(pushnew Line (volume-edges *above*))
(pushnew Line (volume-edges *below*))

(pushnew Line *lines-in-intercept-plane*))))))))

(defun simple-volume-test-p ()
(cond ((or (or (> '3 (length (volume-points *above*)))

(> '3 (length (volume-points *below*))))
(or (> '5 (length (volume-edges *above*)))

(> '5 (length (volume-edges *below*)))))
(princ "nil (late I)")
(return-from simple-volume-test-p 'nil))

't)

(defun check-eulers-relation-p (
(cond ((or (not (equal '2 (+ (length (volume-points *above*))

(length (volume-facets *above*))
('0 (length (volume-edges *above*))))))

(not (equal '2 (4 (length (volume-points *below*))
(length (volume-facets *below*))

('0 (length (volume-edges *below*)))))))
(princ " Violated Euler. relation ") (prini *precision*)
(terpri) ;(dump-volumes (list *5 above* '*below*))
(princ")
(return-from check-oulors-relation-p 'nil)))

ft)

107

(defun make-facets (planes volume)
(loop for P in planes ; clear plane properties
do (setf (get P 'edges) 'nil))

(loop for P in planes ; find which lines lie in which planes
do (loop for E in (volume-edges (oval Volume))
do (cond ((subs-line-into-plane-equation E P)

(setf (got P 'edges) (adjoin Z (get P 'edges)))))))

(loop for P in planes ; build legitimate facets
do (cond ((and (not (null (get P 'edges)))

(<- '3 (length (get P 'edges))))
(setf (volume-facets (oval Volume))

(adjoin (init-facet-2 (list (get P 'edges) P))
(volume-facets (oval Volume)))))))

(loop for P in planes ; clear plane properties
do (setf (get P 'edges) 'nil)))

(defun force-facet (Plane) ; force a facet to exist, if all else fails
(let* ((lines-in-facet *lines-in-intercept-plane*)

(forced-facet (init-facet-2 (list lines-in-facet (init-plane Plane)))))
(setf (volume-facets *above*) (adjoin forced-facet (volume-facets *above*)))
(setf (volume-facets *below*) (adjoin forced-facet (volume-facets *below*)))
(princ " Forced ")))

(defun in-facet-p (Pl P2 F) ; return T iff points P1 and P2 are inside facet F

(cond ((and (or (member-p (get P1 'lines) (facet-edges (oval F)))
(member-p Pl (send (oval F) :points)))

(or (member-p (get P2 'lines) (facet-edges (oval F)))
(member-p P2 (send (oval F) :points))))

(return-from in-facet-p 't))
(t (return-from in-facet-p 'nil))))

(defun outside-volume (Line Volume) ; return T iff line is outside the volume
; do only if dealing with ground volumes or
; non-convex air volumes

(cond ((or *not-convex-volumes*
(equal 'ground (volume-composition (oval volume))))

(let ((mid-point (init-point (send (oval line) :midpoint))))
(cond ((point-in-volume-p mid-point volume)

(return-from outside-volume 'nil))
(t (return-from outside-volume 't)))))

(t (return-from outside-volume 'nil))))

108

rotation and translation code cs4452 17may88

(defun tranapoase (A)
(cond ((null (cdr A)) (mapcar 'list (car A)))
(t (mapoar 'cons (car A) (transpose (cdr A))))))

(defun dot-product (x y) ;A vector in a list of numerical atoms.
(apply '+ (mapcor I* x y))) ;A matrix is a list of vector* representing

(defun cross-product (x y)
(list (- (* (cadr x) (caddr y)) (* (caddr x) (cadr y)))

(((caddr x) (car y)) (C(car x) (caddr y)))
((car x) (cadr y)) (C(cadx x) (car y)))))

(defun post-multiply (M x) ~ the rows of the matrix.
(cond ((null (cdr M)) (list (dot-product (car M) x)))

(t (cons (dot-product (car M) x) (post-multiply (cdr M) x)))))
(defun pro-multiply (x M)

(poat-multiply (transpose M) x))
(defun matrix-multiply (A B)

(cond ((null (cdr A)) (list (pro-multiply (car A) B)))
(t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B)))))

(defun cycle-left (L) (mapcar 'row-cycle-left L))
(def un row-cycle-left (R) (append (cdr R) (list (car R))))
(defun cycle-up (M) (append (cdr M) (list (car M))))
(defun unit-vector (one-column length)

(do ((n length (1- n))
(R nil (cons (cond ((- one-column n) 1) (t 0)) R)))

((zerop n) R)))

(defun concat-matrix (A B)
(cond ((null A) B)
(t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun augment (A) (concat-matrix A (unit-matrix (length A))))
(defun normalize-row (R) (scalar-multiply (/ 1.0 (car R)) R))
(defun scalar-multiply (a x)

(cond ((null x) nil)
(t (cons (* a (car x)) (scalar-multiply a (cdr x))))))

(defon solve-first-column (H)
(do* ((l M (cdr Li))

ML2 (normalize-row (car M)))
(L3 (list L2) (cons (vector-add (car Li)

(scalar-multiply (-(caar Li)) L2)) L3)))
((null (cdr Ll)) (reverse L3)f)

(defun vector-add (x y) (mapcar '+ x y))
(defun first-n (n R)

(cond ((zerop n) nil)
(t (cons (car R) (first-n (1- n) (cdr R~))))))

(defun square-car (M)
(do ((in (length H))

(Li H (cdr Li))
(L2 nil (cons (first-n mn (car LM) L2))

((null Li) (reverse L2))))
(setq A ' ((l 1 1) (2 1 2) (3 2 3)))
(setq B '((l 1 2) (1 2 3) (2 3 1)))
(defun n~cdr (n L) (cond ((zerop n) L) (t (cdr (ncdr (1- n) L)))))
(defun ncar (n L) (cond ((zerop n) nil)

(t (cons (car L) (ncar (1- n) (cdr L))))))
(defun niax-car-firat (n L)

(append (max-car-first (ncar n L)) (ncdr n L)))

109

(defun matrix-inverse (M)
(do ((Hl (max-car-first (augment M))

(cond ((null Ml) nil)
(t (nmax-car-first n (cycle-left (cycle-up ml))))))

(n (1- (length M)) (1- n)))
((or (minusp n) (null M (cond ((null Ml) nil) (t (square-car Ml))))
(setq Ml (cond ((zerop (ouar Ml)) nil) (t (solve-firat-column ml))))))

(defun max-car-first (L)
(cond ((null (odr L)) L)

(t (if (> (&be (oaar L)) (&be (oaar (max-oar-first (odr L))))) L
(append (max-oar-first (cdr L)) (list (car L)))))))

(defun dh-matrix (coarotate sinrotate oostwist sintwist length translate)
(list (list cosrotate (- (* oostwist sinrotate))

(* sintwist sinrotate) (* length cosrotate))
(list sinrotate (* coatwist cosrotate)

(- (* sintvist cosrotate)) (* length sinrotate))
(list 0. sintwist costwist translate) (list 0. 0. 0. 1.)))

(defun homogeneous-transform (azimuth elevation roll x y z)
(rotation-and-translation (sin azimuth) (cos azimuth) (sin elevation)
(coo elevation) (sin roll) (con roll) x y z))

(defun rotation-and-translation (spsi opal ath cth aphi ophi x y z)
(list (list (* cpsi cth) (- (* cpsi ath aphi) (* spsi ophi))

(+ (* opsi sth cphi) (* spsi sphi)) x)
(list (5apsi cth) (+ (* cpsi ophi) (* *psi ath *phi))

(* (*psi sth cphi) (5 psi aphi)) y)
(list (-sth) (* cth sphi) (5 th ophi) z)
(list 0. 0. 0. 1.)))

(defun A01 (dl)
(dh-matrix 0 1 0 1 0 dl))

(defun A12 (d2)
(dh-matrix 0 1 0 1 0 d2))

(defun A23 (d3)
(dh-rnatrix 0 1 0 1 0 d3))

(defmacro A03 (dl d2 d3)
'(chain-multiply '((AOl ,dl) (A12 ,d2) (A23 ,d3))))

(defun A34 (theta4)
(dh-matrix (coo theta4) (sin theta4) 0 1 0 0))

(defun A45 (theta5)
(dh-matrix (coo theta5) (sin theta5) 0 1 0 0))

(defun A56 (theta6)
(dh-matrix (coo theta6) (sin theta6) 0 1 0 0))

(defmacxo A36 (thetad theta5 theta6)
'(chain-multiply I((A34 ,theta4) (A45 ,thet&5) (A56 ,thetafl)))

(defun A06 (dl d2 d3 theta4 theta5 thota6)
(matrix-multiply (A03 dl d2 d3) (A36 theta4 theta5 theta6l))

(setq A6body '((0 0 1 0) (l 0 0 0) (0 1 0 0) (0 0 0 1)))
(defun homogeneous-tx snsforml (azimuth elevation roll x y z)
(matrix-multiply (A06 z x y (+ azimuth pi) (- elevation (/ pi 2))

(+ roll pi)) A6body))
(setq B6body '((1 0 0 0) (0 0 -1 0) (0 1 0 0) (0 0 0 1)))
(defun homogneous-transform2 (azimuth elevation roll x y z)
(matrix-multiply (A06 z x y azimuth elevation roll) B6body)

changes: D.H.Lewis 17 May 88

110

(defun unit-matrix ML

(loop for A. from L downto I

collect (loop for j from L downto 1

when (equal i J)
collect 1

*lse collect 0

finally)
finally))

(defun chain-multiply (L) -utpy(vl(is) oa scn

(cond ((equal (length L) 2) (matrix-utpy(al
fitL) (ol(ecn

Lf))
(t (aetq temp (matrix-multiply (oval (first

L) (oval (second L))))

(chain-multiply (push 'temp (cddr L))f))

-*- Mode:Common-Lisp; Base:10

PATH-DATA L.R. WRENN 31 May 89

The data for a path is printed out in jet-card form.

FUNCTION LIST

;; MAIN: PATH-DATA :prints out jetcard type information about a path
PATH-FOR-IRIS :sends the information needed to display a path

on the IRIS to a file of "pathname.dat"

,;; SUPPORT FUNCTIONS

distance-XY
real-to-integer
convert-number-to-string
convert-string-to-integer
find-period-index
get-leftside-of-real
get-rightside-of-real
convert-string-to-real

(defun path-data (path) ;prints a jet-card and outputs the
; total cost of a path

(let* ((point-list (path-points (eval path)))
(min-PD-cost '1000000)
(max-PD-cost '0))
(terpri)
(princ Leg Total Leg Total Leg Fuel Vol PD

Leg")
(terpri)
(princ "Point Time Time Dist Dist Fuel Remain PD Cost

Cost")
(terpri)
(princ (send (oval (car point-list)) :list-format-real)) (terpri)
(princ " 0.0 0.0 0.0 0.0 0.0 1500

(terpri)
(do* ((start-point (car point-list) (car point-list))
(point-list (cdr point-list) (cdr point-list))
(volume-list (path-volumes (eval path)) (cdr volume-list))
(next-point (car point-list) (car point-list))
(leg-dist (distance-XY start-point next-point)

(distance-XY start-point next-point))
(total-dist leg-dist (+ leg-diet total-diet))
(leg-time (U (distance start-point next-point) (/ 450 60))

(/ (distance start-point next-point) (/ 450 60)))
(total-time leg-time (+ leg-time total-time))

112

(leg-fuel (fuel-burned (distance start-point
next-point)

(climb-angle start-point
next-point)

'1500
'450)

(fuel-burned (distance start-point
next-point)

(climb-angle start-point
next-point)

Fuel-remaining
'450))

(fuel-remaining (- 1500 leg-fuel)(- fuel-remaining leg-fuel))
(PD (volume-probability-of-detection (oval (car volume-list)))

(volume-probability-of-dotection (oval (car volume-list))))
(PD-cost (* 100 PD leg-time)(* 100 PD leg-tim))
(leg-cost (+ leg-fuel PD-cost) (+ leg-fuel PD-cost))
(total-cost leg-cost (+ leg-coat total-coat))
(min-PD-cost (cond ((< PD-cost mn-PD-cost)

PD-coat)
(t min-PD-coat))

(cond((< PD-cost min-PD-cost)
PD-cost)
(t min-PD-cost)))

(max-PD-cost (cond((> PD-cost max-PD-cost)
PD-cost)
(t max-PD-cost))

(cond((> PD-cost max-PD-coot)
PD-cost)
(t max-PD-cost))))

((null (second point-list))
(princ (send (oval next-point) :list-format-real)) (terpri) (princ

,,)
(princ (format nil "~7,lF" leg-time))
(princ (format nil "-7, lF" total-time))
(princ (format nil "-7,F" leg-dist))
(princ (format nil "-7,IF" total-dist))
(princ (format nil "-7,lF" leg-fuel))
(princ (format nil "-7,lF" fuel-remaining))
(princ (format nil "-6,3F" PD))
(princ (format nil "-7,1F" PD-cost))
(princ (format nil "-7,1F" leg-cost)) (terpri)
(princ "Total cost of this path - ")
(princ (format nil "-7, 1F" total-cost)) (terpri)
(princ "minimum PD cost - ")
(princ (format nil "-7,1F" min-PD-cost)) (terpri)
(princ "maximum PD cost - ")
(princ (format nil "-7, IF" max-PD-cost)) (terpri)
(princ "average PD cost - ")
(princ (format nil "-7,lF" (/ total-coat total-time)))(terpri)
(terpri) total-cost)
(princ (send (oval next-point) :list-format-real)) (terpri) (princ "

(princ (format nil "-7,1F" leg-time))
(princ (format nil "-7,XF" total-time))
(princ (format nil "-7,1F" leg-dist))
(princ (format nil "-7,lF" total-dist))
(princ (format nil "-7,1F" leg-fuel))
(princ (format nil "-7,1F" fuel-remaining))
(princ (format nil "-6,3F" PD))
(prino (format nil "-7,1F" PD-cost))
(princ (format nil "-7,1F" leg-cost))
(terpri))))

113

(defun distance-XY (ptl pt2) ; finds the ground distance
;between two points

(sqrt (+ (-(point-X-coord (oval ptl)) (point-X-coord (oval pt2)))
C(point-X-coord (oval ptl)) (point-X-coord (oval pt2)f)

(((point-y-coord (oval ptl)) (point-y-coord (oval pt2)))
((point-y-ooord (oval ptl)) (point-y-coord (oval pt2)))))))

(defun path-for-IRIS (path) ;makes a file of the points of a path for
; us* on IRIS Graphic Display

(aetq *output-strean* (open (string-append "exp3:wrennthesis;"
(symbol-name path)
".dat") :direction :output))

(print "sending path data to file ('path-name' .dat)...")
(let* ((point-list (path-points (oval path)))

(start-point-list (send (eval (car point-list)) thast-format-real))
(list-length (length point-list))
(volume-list (path-volumes (oval path))))
(terpri)
(pribc list-length *output-stream*) (terpri *output..stream*)
(princ (format nil "-8,2F" (first start-point-list)) *output-stream*)
(princ (format nil "-8,2F" (third start-point-list)) *output-stream*)
princ (format nil "I-8,2F" (* -1.0 (second start-point-list)))

output..strean)
(princ (format nil 11-7,3F" (volume-probability-of-detection

(oval (car volume-list)))) *output.stream*)
(terpri *output..stream*)

(do* ((point-list (cdr point-list) (cdr point-list))
(start-point-list (send (oval (car point-list)) :list-format-real)

(send (eval (car point-list)) :list-format-real))

(volume-list (path-volumes (oval path)) (cdr volume-list))
(PD (volume-probability-of-detection (oval (car volume-list)))

(volume-probability-of-detection (oval (car volume-list)))))
((null (second point-list))
(princ (format nil "-8,2F" (first start-point-list)) *output-stream*)
(princ (format nil "-8,2F" (third start-point-list)) *output-stram*)
(princ (format nil "-8,2F"

(* -1.0 (second start-point-list))) *output-stream*)
(princ (format nil "-7,3F"'

(volume-probability-of-detection
(oval (car volume-list)))) *output-stream*)

(terpri *output-stream*) PD)
(princ (format nil "-8,2F" (first start-point-list)) *output-stream*)
(princ (format nil "-8, 2F" (third start-point-list)) *output-stram*)
(princ (format nil 11-8,2F"

(* -1.0 (second start-point-list))) *output..stream*)
(princ (format nil 11-7,3F" (volume-probability-of-detection

(oval (car volume-list)))) *output-stram*)
(terpri *output-stream*))

(close *output-stream*)
(print "Done.")
'nil)

(defun real-to-integer (realnum) ;returns integer part of real number
(gt-leftside-of-real (convert-numbr-to-string realnum)))

114

(defun convert-number-to-string (n)
(princ-to-string n))

(defun convert-string-to-integer (str &optional (radix 10))
(do ((j 0 (+ j 1))

(n 0 (+ (* n radix) (digit-char-p (char str j) radix))))
((- j (length str)) n)))

(defun find-period-index (str)
(catch 'exit

(dotimes (x (length str) nil)
(if (equal (char str x) (char "." 0))

(throw 'exit x)))))

(defun get-leftaide-of-real (str &optional (radix 10))
(do ((j 0 (1+ j))
(n 0 (+ (* n radix) (digit-char-p (char atr j) radix))))

((or (null (digit-char-p (char str j) radix)) (- j (length str))) n)))

(defun get-rightside-of-real (str &optional (radix 10))
(do ((index (1+ (fiznd-period-index str)) (1+ index))

(factor 0.10 (* factor 0.10))
(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))

((= index (length str)) n)))

(defun convert-string-to-real (str &optional (radix 10))
(+ (float (get-leftside-of-real str radix)) (get-rightside-of-real str

radix)))

115

*~Mode:Common-Liep; BasetlO-0

PATH-OPTIMIZATION L.R. WRENN 6 Mar 89

The optimization code optimizes the initial A* path according
;to anells law criteria.

THESIS L.R.WRENN 15 JUNE 1989

MAIN FUNCTIONS: RANDO-RAY-OPTIMIZE
RANDOt-RAY-OPT2
REVISE-PATH

SUPPORT FUNCTIONS:
ADJUST-PATH- INTO-LAST-VOLUME
ADJUST-PATH- INTO-LAST-VOLUME-2
REFINE-LINE-TO-GOAL
ADJUST-VECTOR
REVISE-PATH-2
CONNECT-POINTS
GET-VECTOR-AND-FACTOR
SWITCH-ADJUSTMENTS
ADJUST-POINT

* NORMAL-LINE
MAKE-A PATH-PLANE
ANGLE-BETWEEN-LINE-FACETN
ANGLE-BETWEEN-LINES-SMALLEST
FIND-SNELLS-ANGLE

* FIND-OUTBOUND-VECTOR
F IND-OUTBOUND-VECTOR-2
Fl ND-OUTBOtJND-VECTOR-3
SOLVE-QUADRATIC
FIND-OUTBOUND-LINE-2
F IND-POINT-FROM-COEF-AND-POINT
MAKE-UNIT-LINE
PARALLEL-LINES
FINE-INTERCEPT-POINT-EXTENDED
GET- INTERCEPT-POINT-2-EXTENDED
NORMALIZE-VECTOR

* GET-ADGUSTMENT-VECTORS

CHEC-FACET-LIST-AGAINST-SNELLS-LAW

(defvar *reflectance*)

116

(defun random-ray-optimize (path-list) ;Takes a list of paths are try.
; random ray optimization on them
; returns a list of paths that worked

; or nil corresponding to those that
; did not.

ex. (random-ray-optimization '(IpathOO061
Ipath00111))

(let ((new-paths))
(do* ((old-path-list path-list (cdr old-path-list))
(current-path (car old-path-list)(car old-path-list))
(random-ray-worked (random-ray-opt2 current-path)

(random-ray-opt2 current-path))

(new-path-list (cond ((null random-ray-worked)
(list nil))
(t (list (revise-path current-path

random-ray-worked))))
(cond ((null random-ray-worked)

(cons 'nil new-path-list))
(t (cons (revise-path current-path

random-ray-worked)
new-path-list)))))

((null (cdr old-path-list))
(setf new-paths (reverse new-path-list))))

(terpri)
(princ "Old Paths - New Paths") (terpri)
(do ((old-path (car path-list) (car path-list))
(new-path (car new-paths) (car new-paths))
(path-list (cdr path-list) (cdr path-list))
(new-paths (cdr new-paths) (cdr new-paths)))

((null path-list) (princ old-path) (princ . ..
(princ new-path) (terpri) new-paths)
(princ old-path) (princ .. ") (princ new-path) (terpri))

new-paths))

117

(defun random-ray-opt2 (path) ; Takes a path and checks to see if it is
; possible to pass a random ray through
; the volumes obeying Snell's Law at all

facets. Will return a line if it can
; or 'nil if it cannot.
; ex. (random-ray-opt2 'IpathO0061)

(setf *reflectance* 5)
(let* ((line-to-goal (make-line (path-start-point (eval path))

(path-and-point (eval path))))
(facet-list (path-facets (oval path)))
(volume-list (path-volumes (eval path))))
(do* ((IP

(find-intercept-point-extended (car facet-list)
line-to-goal)

(find-intercept-point-extended (car facet-list)
line-to-goal)))

((point-in-volume-P IP (car volume-list))
(setf line-to-goal (make-line

(path-start-point (oval path))
(find-intercept-point-extended (car facet-list)

line-to-goal))))
(setf line-to-goal (make-line (path-start-point (eval path))

(init-point
(average-points
IP
(facet-center

(oval (car facet-list))))))))
(cond ((not (null (check-facet-list-against-anells-law

line-to-goal facet-list volume-list)))
(terpri) (princ "A random solution has been found into the goal volume")
(terpri) (princ "The line to start the path is -

(princ line-to-goal)(terpri)
(refine-line-to-goal line-to-goal path))

(t
(setf line-to-goal (adjust-path-into-last-volume

line-to-goal facet-list volume-list))
(cond ((null line-to-goal)

(terpri)
(princ "There is no solution to the random ray optimization")
(terpri) (princ "Try one of the other optimizations") (terpri)
(return-from random-ray-opt2 'nil)))

(terpri)
(princ "A random solution has been found into the goal volume")
(terpri)
(princ " by adjusting the line to goal. The line to start the path is -

(princ line-to-goal) (terpri)
(princ "the line in the last volume is -

(princ (check-facet-list-against-snells-law
line-to-goal facet-list volume-list))(terpri)

(refine-line-to-goal line-to-goal path))

118

(defun adjust-path-into-last-volume ;This function in called
(line-to-goal facet-list volume-list) ; recurisively to find an

; adjustable line to the final
; volume of a path. Returns
p the line or 'nil

(let* ((line-out-of-last-facet)
(IP)
(adjustment-vectors)
(miss-distance 999999.0))
(cond ((not(null (cdr facet-list)))

(setf line-to-goal (adjust-path-into-last-volume
line-to-goal
(but-last facet-list)
(but-last volume-list)))))

(terpri) (princ "In check-line-with-adjustments") (terpri)
(princ "facets - ")(princ facet-list) (terpri)
(princ "volumes - ") (princ volume-list) (terpri)
(princ "line-to-goal - ")(prino line-to-goal) (terpri)

(cond ((null line-to-goal)
(return-from adjust-path-into-last-volume 'nil)))

(cond ((null (cdr facet-list))
(setf line-out-of-last-facet line-to-goal))

(t(setf line-out-of-last-facet (check-facet-list-against-snells-law
line-to-goal
(but-last facet-list)
(but-last volume-list)))))

(cond ((null line-out-of-last-facet)
(return-from adjust-path-into-last-volume 'nil)))

(setf IP (find-intercept-point-extended (car (last facet-list))
line-out-of-last-facet))

(princ "The intercept point is - ") (princ IP) (terpri)
(cond ((and (point-in-volume-P IP (car (last volume-list)))

(check-facet-list-against-snells-law
line-to-goal
facet-list
volume-list))

(return-from adjust-path-into-last-volume line-to-goal))
(t (setf adjustment-vectors (get-adjustment-vectors

IP
(car (last facet-list))))

(setf miss-distance (distance
IP
(facet-center

(eval (car (last facet-list))))))))

(princ "The adjustment-vectors and miss-distance is - ") (terpri)
(princ adjustment-vectors)(terpri)(princ miss-distance)(terpri)

(setf line-to-goal (adjust-path-into-last-volume-2
line-to-goal
IP
miss-distance
facet-list
volume-list
adjustment-vectors
line-out-of-last-facet))

line-to-goal))

119

(defun adjust-path-into-last-volume-2 (line-to-goal
IP
miss-distance
facet-list
volume-list
adjustment-vectors
line-out-of-last-facet)

;this is the actual section that does the adjustments
;This do* will be exited with a valid new line-to-goal and
; line-out-of-last-facet or will exit with 'nil causing no path to be found

(do* ((new-line-to-goal line-to-goal)
(adjustment-factor '125)
(adjust-tmp)
(IP-2 IP)
(old-reflection 'nil)

(IP-90deg 'nil)
(reflected 'nil)
(new-miss-distance miss-distance)
(adjustment-list '("in" "down" "out" "up" "change")

(cond (reflected
(cond ((<- old-reflection *reflectance*)

(setf adjust-temp
(switch-adjustments
adjustment-list adjustment-factor))

(setf adjustment-factor (cadr adjust-temp))
(car adjust-temp))

(t (setf old-reflection *reflectance*)
adjustment-list)))

((< miss-distance new-miss-distance)
(setf adjust-temp

(switch-adjustments
adjustment-list adjustment-factor))

(setf adjustment-factor (cadr adjust-temp))
(car adjust-temp))
(t
(setf miss-distance new-miss-distance)
adjustment-list))))

;exit condition
((and (point-in-volume-P IP (car (last volume-list)))
(not (null(check-facet-list-against-snells-law

new-line-to-goal
facet-list
volume-list}))

(setf line-to-goal new-line-to-goal))

(terpri)

(cond((< adjustment-factor '1)
(return-from adjust-path-into-last-volume-2 'nil)))

120

(cond ((and(null (but-last facet-list)) ;is there only one facet and
;is IP on it

(point-in-volume-P IP (car (last volume-list))))
(princ "adjustment hit facet but reflected in first volume ") (terpri)
(cond (reflected

(setf reflected 't)
(setf adjustment-list '("in" "down" "out" "up" "change"))
(setf adjustmnt-factor '125)))

(cond((null old-reflection)
(setf old-reflection *reflectance*)))

(princ "*reflectance* - ") (print *reflectance*) (terpri)
(princ "old-reflection - ")(princ old-reflection)(terpri)
(cond((< *reflectance* old-roflection)

(setf line-to-goal new-line-to-goal)
(setf IP IP-2))))

((point-in-volume-P IP (car (last volume-list)))
(terpri)
(princ "We have an intersect point but it will not go through") (terpri)
(cond (reflected

(setf reflected 't)
(setf adjustment-list '("in" "down" "out" "up" "change"))
(setf adjustment-factor '125)))

(cond((null old-reflection)
(setf old-reflection *reflectance*)))

(setf IP-9Odeg
(find-intercept-point-extended
(car(last facet-list))
(make-unit-line (send (eval line-out-of-last-facet)

:start-point)
(normal-line IP

(car (last facet-list))))))
(setf miss-distance (distance IP

IP-9Odeg))

(setf new-line-to-goal (make-line
(vector-start-point

(eval (line-segment-direction-vector

(oval line-to-goal))))
(adjust-point

(vector-end-point
(eval (line-segment-direction-vector

(eval line-to-goal))))
(car (get-vector-and-factor

adjustment-vectors
adjustment-list
adjustment-factor))

(cadr (get-vector-and-factor

adjustment-vectors
adjustment-list
adjustment-factor)))))

121

(cond((null (but-last facet-list))
(princ "adjustment missed everything out of first facet adjustments made

(terpri)
(setf new-line-to-goal (make-line (send (eval line-to-goal)

:start-point)
(facet-center

(oval (car (last facet-list))))))
(setf IP-2 (find-intercept-point-extended (car (last facet-list))

new-line-to-goal))
(setf new-miss-distance (distance

IP-2
(facet-center

(eval(car facet-list)))))
(cond((end (null reflected)(< new-miss-distance miss-distance))

(setf line-to-goal new-line-to-goal)
(setf IP IP-2))))

;we missed the last facet-see if we
;missed the next to the last

((null (check-fact-list-against-snells-aw
new-line-to-goal
(but-last facet-list)
(but-last volume-list)))

(princ "adjustment missed everything ") (terpri)

(setf new-miss-distance (+ 1 miss-distance)))

(t (setf line-out-of-last-facet (check-facet-list-against-snells-law
new-line-to-goal
(but-last facet-list)
(but-last volume-list)))

(princ "adjustment may be ok") (terpri)
(setf IP-2 (find-intercept-point-extended (car (last facet-list))

line-out-of-last-facet))
(setf new-miss-distance (distance

IP-2
(cond (reflected IP-9Odeg)

(t (facet-center
(eval(car

(last facet-list))))))))

(cond((and (null reflected) (< new-miss-distance miss-distance))
(setf line-to-goal new-line-to-goal)
(setf IP IP-2)))))

line-to-goal)

122

(defun refine-line-to-goal (line path) ;this function will adjust the
;line as clos, to the actual
;goal as it can and report the results
Returns the beat line

(terpri) (prino "In refine-line-to-goal ")
(terpri) (princ "The path we are optimizing is - ") (princ path) (terpri)
(let* ((facet-list (path-facets (oval path)))

(volume-list (path-volume. (oval pathM)
(start-point (path-start-point (eval path)))
(line-to-goal line)
(adjustment-vector)
(adjuatment-factor '125)
(angle pi)
(check-line (check-facet-list-against-snells-law

line-to-goal
facet-list
volume-list)))

(princ "check-line looks like - ")(princ check-line) (terpri)
(do* ((line-out-of-last-facet (chok-faoet-list-against-snella-law

line-to-goal
facet- list
volume-list)

(check-facet-list-againat-snells-law
new-line-to-goal
facet-list
volume-list))

(line-facet-to-goal (make-line
(send (oval line-out-of-last-facet) :start-point)
(path-end-point (eval path)))

(make-line
(send (eval line-out-of-last-facet) :start-point)
(path-end-point (oval path))))

(dist-facet-to-goal (send (eval line-facet-to-goal) :length)
(distance (send

(oval line-out-of-last-facet)
start-point)

(path-end-point (oval path))))
(new-line-to-goal line-to-goal)
(new-angle (angle-between-lines-smallest line-facet-to-goal

line-out-of-last-facet)
(angle-between-lines-smallest line-facet-to-goal

line-out-of-last-facet)))
(<new-angle '0.0025) line-to-goal)
(terpri)
(princ "point in last volume we are trying to adjust
(princ (send

(oval (adjust-point
(send (oval line-out-of-last-facet) :start-point)
(normalize-vector (send

(oval1
(line-segment-direction-vector

(oval line-out-of-last-facet)))
:list-format))

dist-facet-to-gos 1))
:list-format-real)) (terpri)

123

(setf adjustment-veoctor
(list (normalize-vector

(append
(send
(oval (line-segment-direotion-veotor

(oval
(make-line

(adjust-point
(send
(oval line-out-of-last-facet)
:start-point)
(normalize-vector(send

(oval
(line-seaent-direction-vector

(oval line-out-of-last-facet)))
:list-format))

dist-faoet-to-goal)
(path-end-point (oval path))

:list-format)
'(0)))))

(princ "the adjustment-vector is - ")(princ adjustment-vector) (terpri)
(print "the adjustment-factor is - ")(print adjustment-factor) (terpri)
(setf now-line-to-goal (make-line

start-point
;(vector-start-point

; (oval (line-segment-direction-vector
; (eval new-line-to-goal))))

(adjust-point
(vector-end-point

(oval (line-segment-direction-vector
(oval line-to-goal))))

(car (get-vector-and-factor
adjustment-vector
'("in")
adjustment-factor))

(cadr (get-vector-and-factor
adjustment-vector
'("in")

adjustment-factor)))))
(princ "check of new line - ")
(princ (check-facet-list-against-snells-law

new-line-to-goal
facet-list
volume-list))(terpri)

(cond ((null (check-facet-list-against-snells-law
new-line-to-goal
facet-list
volume-list))

(princ "new line did not meet anells law")(terpri)
(setf adjustment-factor (/ adjustment-factor 5))
(setf new-line-to-goal line-to-goal))

(t (cond ((< new-angle angle)
(setf angle new-angle)
(setf line-to-goal now-line-to-goal))

(t (setf new-line-to-goal line-to-goal)
(setf adjustment-factor (/ adjustment-factor 5))))))

(cond ((< adjustment-factor '0.008)
(princ "Adjusted as close as possible but still missed goal") (terpri)
(princ "Miss angle in radians is - ") (princ angle) (terpri)
(return-from refine-line-to-goal new-line-to-goal))))

line))

124

(defun revise-path (path line) ;Takes the old path and the now random ray
; line and makes a new path out of then.
; Returns new path name

(let ((line-list)
(now-path)
(path-list (revise-path-2 line

(path-facets (eval path))
(path-volumes (oval path))
(list (path-start-point (oval path))))))

(setf path-list (reverse (cons (path-end-point (oval path))
path-list)))

(setf line-list (connect-points path-list))
(setf new-path (init-new-path (path-start-point (eval path))

(path-end-point (oval path))
(path-volumes (oval path))
(path-facets (oval path))
lino-list
path-list
'nil
'nil))

(calc-path-and-stats new-path)
new-path))

(defun revise-path-2 ;Called recursively to revise the old
; path to a goal with the rardom ray

(line facet-list volume-list point-list)
(cond ((not (null ((-dr facet-list)))

(setf point-list (revise-path-2 line
(but-last facet-list)
(but-last volume-list)
point-list))))

(setf point-list (cons (send (eval (check-facet-list-against-snells-law
line
facet-list
volume-list))

:start-point)
point-list))

point-list)

(defun connect-points (points-list) ;Connects a list of points and
; returns the list of lines

(do* ((current-point (car points-list) (car new-points-list))
(new-points-list (cdr points-list) (cdr new-points-list))
(line-list (list (make-line current-point (car new-points-list)))

(cons (make-line current-point (car new-points-list))
line-list)))

((null (cdr new-points-list))(reverse line-list))))

(defun but-last (listL) ;returns all but the last item in the list
(reverse (cdr (reverse listL))))

125

(defun get -vector-and- factor (ad justment -vectors
curr-adj-liat
curr-adj)

(lot ((return-list))
(cond ((equal "ina" (car curr-adj-list))

(setf return-list
(list (car adjustment-vectors)

curr-adj)))
((equal "up" (car curr-adj-list))
(aetf return-list

(list (cadr adjustment-vectors)
curr-adj)))

((equal "out" (car curr-adj-liat))
(setf return-list

(list (car adjustmont-vectors)
(* 1-1 curr-adj))))

((equal "down" (car curr-adj-list))
(setf return-list

(list (cadr adjustment-vectors)
(* -1 curr-adj)))))

return-list))

(defun switch-adjustments (curr-adj-list curr-adj)
(aetf curr-adj-list (append (cdr curr-adj-list) (list (car curr-adj-list))))
(cond ((equal "change" (car curr-adj-list))

(setf curr-adj UI curr-adj 5))
(setf curr-adj-list (append (cdr curr-adj-list)

(list (car curr-adj-list))))))
(list curr-adj-list curr-adj))

(defun adjust-point fr, : vector factor)
(mit-point

(map 'list '+ (P-nd (oval point) :liat-format)
(scalar-multip-y
factor
vector))))

(defun normal-line (point facet) ;makes normal of facet into a line at point
(let* ((end-point-normal-line

(mnit-point (map 'list 1+ (send (eval Point) :list-format)
(map 'list '* '(100 100 100)

(send (oval facet) !list-cooff-3)))))
(N-line (make-line Point end-point-normal-line)))
N-line))

(defun make-a-path-plane (Line-l Facet) ; makes a plane containing the
;normal of a plane and some
;line not in that plane but
;that intersects it. If line

; is perpendicular to the plane
;it will be a vertical plane.

(let* ((point-intersect (find-intercept-point facet line-i))
(line-N (normal-line point-intersect facet))
(.nd-point-on-normal-line

(vector-end-point (oval
(line-segment-direction-vector (oval line-N))))))

(cond ((parallel-lines line-N line-l)
(return-from make-a-path-plane (make-vertical-plan. line-l)))

(t (make-a-plane end-point-on-normal-line line-i)))))

126

(defun angle-between-Iine-facetN (line-i facet) ; finds the angle between
;line-i and the normal
;of plane, line-i and plane
must intersect
;0 is perpendicular to plane

(let* ((point-intersect (find-intercept-point facet line-i))
(line-N (normal-line point-intersect facet))
(angle 'nil))
(cond ((parallel-lines line-N line-i)

(return-from angle-between-line-f acetN '0))
(t (setf angle (angle-between-linea line-N line-i))))

(cond ((GT angle *P12*)
(setf angle (- *PI* angle))))

angle))

(defun angle-between-line-smallest (Li L2)
(let ((angle (angle-between-lines Li L2)))

(cond ((GT angle *P12*)
(setf angle (- *Pl* angle))))

angle))

(defun find-snells-angle (Line-i Facet Cost-i Cost-2)
Finds outbound snells angle assuming

*Coat-i * sin(theta-l) -Cost-2*
sin (theta-2)

*where theta-x is the angle between line
and

*the normal to the plane
Line-i MUST intersect Facet(let* ((heta-i (angle-between-lint-fac*tN line-i facet))

(theta-2 'nil)
(temp))
(cond ((zerop Cost-i)

(Setf cost-i '.0iM) ; forces going from 0% to 99% to be within(cond ((zerop Cost-2) ; 112 a degree on perpendicular to plane(setf cost-2 1.01))) ; e. shortest path out of volume
(cond ((zerop theta-i)

(return-from find-snells-angle '0))
((equal Cost-i Cost-2)
(return-from find-snells-angle theta-i))

(t (setf temp (/ (* Cost-i (sin theta-i)) Cost-2))
(terpri) (princ temp) (terpri)
(cond ((> temp '1.0)

(terpri)
(astf *reflectance* temp)
(Princ "Reflection inside volume by Snell's Law")
(terpri)
(return-from find-snells-angle '"reflect"))

(t (setf theta-2 (asin temp))))))
theta-2))

127

(defun find-outbound-vector (H)
(let* ((equl (car M))

(equ2 (cadr M))
(A12 (first equl))
(812 (second equl))
(C12 (third equl))
(dl (first equ2))
(el (second equ2))
(f1 (third equ2))
(K0 (fourth equ2))
(testi (- (* C12 el)

(* B12 fl)))

(11)
(K2)
(13)
(K4)
(quad-equ)
(d21)
(d22))
(cond ((or (< (abs testi) '0.00001)

(zerop C12)) (princ "aborted process - division by zero")
(terpri) (princ "Trying find-outbound-vector-2") (terpri)
(return-from find-outbound-vector (find-outbound-vector-2 M))))

(setf K1 /(KO C12) testl))
(setf R2 ((-(* A12 fl) (* C12 dl)) testl))
(setf K3 ((*B12 Kl) (- C12)))

(setf K4 (U (+ A12 (* B12 K2)) (- C12)))
(setf quad-equ (list (+ 1 (* 12 K2) (* 4 K4))

(+ (* 2 K1 K2) (* 2 K3 K4))
(+ - (* K K) K3 K3))))

(setf d22 (car (solve-quadratic quad-equ)))
Isetf d22 (cadr (solve-quadratic quad-equ)))

(cond ((complexp d21)(princ "aborted process - complex numbers")
(terpri) (princ "Trying find-outbound-vector-2") (terpri)
(return-from find-outbound-vector (find-outbound-vector-2 M))))

(list (cond ((complexp d21) (list nil))
(t (list d21 (+ K1 (* K2 d21)) (+ K3 (M 14 d21)))))

(cond ((complexp d22) (list nil))
(t (list d22 (+ K1 (* K2 d22)) (+ K3 (* K4 d22))))))

(defun find-outbound-vector-2 (M)
(let* ((oqul (car M))

(equ2 (cadr M))
(A12 (first equl))
(812 (secor4 equl))
(M12 (third~pul))
(dl (first equ2))
(el (second equ2))
(fl (third equ2))
(K0 (fourth equ2))
(testl (- (* B12 dl)

(A 12 el)))

(IK2)

(13)
(14)
(quad-equ)
(f21)

128

Uf22))
(cond ((or (< (abs testi) '0.00001)

(zerop 912)) (prino "aborted process - division by zero")
(terpri) (princ "Trying find-outbound-vector-3") (terpri)
(return-from find-outbound-vector-2 (find-outbound-vector-3 M))))

(setf 11 U, KO B012) testi))
(setf K2 (/ ((* C12 el) (* B12 fl)) testl))
(setf K3 U (*A12 K1) (- B12)))
(setf K4 (/ (+ C12 (* A12 K2)) (- B12)))
(setf quad-equ (list (+ 1 (* K2 12) (* K4 K4))

(+ (* 2 11 K2) (C2 K3 K4))

(setf f2l (car (solve-quadratic quad-equ)))
(setf f22 (cadr (solve-quadratic quad-equ)))

(cond ((complexp f2l) (princ "aborted process - complex numbers")
(terpri) (princ "Trying find-outbound-vector-3"1)(terpri)
(return-from find-outbound-vector-2 (find-outbound-vector-3 M))))

(list (cond ((complexp f2l) (list nil))
(t (list (+ 11 (* K2 f2l)) (+ 13 K* 4 f2l)) f21)))

(cond ((complexp f22) (list nil))
(t (list (+ K1 (* 12 f22)) (+ K3 KC 4 f22)) f22))))

(defun find-outbound-vector-3 (M)
(let* ((equl (car M))

(equ2 (cadr M))
(A12 (first equl))
(B12 (second equl))
(C12 (third equl))
(dl (first equ2))
(.1 (second equ2))
(fl (third equ2))
(KO (fourth equ2))

(C12 dl)))

(K2)
(K3)
(M4)
(quad-equ)
(e21)
(e22))I
(cond ((or (< (abe- testi) '0.00001)

(zerop A12)) (princ "aborted process -division by zero")
(terpri) (princ "Nothing else to try"l)(terpri)
(return-from find-outbound-vector-3 '"div-by-zero"l)))

(setf 12 (/ ((* B12 dl) (* A12 el)) testi))
(setf 13 U/(C12 K1) (- A12)))
(setf M4 (/ (+ B12 (* C12 12)) (- A12)))
(setf quad-equ (list (+ 1 (* K2 12) (* F4 K4))

(+ ~2 K1 12) (C2 13 14))

(setf .21 (car (solve-quadratic quad-equ)))
(setf e22 (cadr (solve-quadratic quad-equ)))

(cond ((complexp .21) (princ "aborted process - complex numbers")

129

(terpri) (princ "Nothing else to try"l)(terpri)
(return-from find-outbound-voctor-3 '((nil) (nil))))

(list (cond ((coniplexp .21) (list nil))
(t (list (+ K3 (* K4 e2l)) .21 (+ Ri (K2 .21)))))

(cond ((complexp *22) (list nil))
(t (list (+ K3 (* K4 .22)) e22 (+ Xl (*K2 e22))))))

(defun solve-quadratic (QE)
(let ((intermediate-sqrt-term ((second QE) (second QR))

(* 4 (first QE) (third QE))))
(sqrterm '0))
(cond ((and (>- iitermediate-sqrt-term '-0.1)

(< intermediate-sqrt-tern '0))
; (terpri)
; (princ "** SQUAR.E ROOT OF SMALL NEGATIVE NUMBER ABOUT TO BE TAKEN **~

; (terpri)
; (princ "**** NUMBER CHIANGED TO ZERO TO AVOID COMPLEX NUMBER ****') (terpri)

(setf intermediate-sqrt-term '0)))
(setf sqrterm (sqrt intermediate-sqrt-trm))
(list (I(+ (- (second QE)) sqrterm) (* 2 (first QE)))

(1(-(second QE)) aqrterm)(* 2 (first QE))))))

(defun find-outbound-line-2 (Line Facet Cost-i Cost-2)
;Finds outbound line from a Facet using
;snells law and solving for three equations
Line-i MUST intersect Facet
check to make sure line-i is
not perpenduclar to facet

(let* ((point-intersect (find-intercept-point facet line))
(line-i (make-unit-line point-intersect line))
(theta-in (angle-between-line-facetN line-i facet))
(theta-out (find-sneils-angle Line Facet Cost-i Cost-2))
(path-plane (make-a-path-plane Line Facet))
(equation-la (reverse (cons

'0
(cdr

(reverse (send (eval path-plane)
list-coeff))))

plane Ax + By + Cz =Ao
(equation-i (normalize-vector equation-ia))
(equation-2)
(Two-equations)
(two-vectors)
(angle-of-new-line-with-normal-i 'nil)
(angle-of-new-line-with-normal-2 'nil))
(cond ((equal "reflect" theta-out)

(return-from find-outbound-line-2 theta-out))
((zerop theta-out)
(return-from find-outbound-line-2

(make-line
point-intersect
(in it-point
(map 'list '+ (send (eval point-intersect) :iist-format)

(scalar-multiply
10
(send

(eval (line-segjment-direction-vector (eval line-i)
:list-format))))))))

130

(setf equation-2 (append
(send
(oval (line-segment-direction-vector (eval line-i)))
list-format)

(list (cos (- theta-in theta-out)))))
(setf Two-equations (list equation-i oquation-2))

(setf two-vectors (find-outbound-vector Two-equations))

(cond ((null(caar two-vectors))
(setf angle-of-new-line-with-normal-l nil)
(setf angle-of-new-line-with-normal-2 nil))

(t (setf angle-of-new-line-with-normal-l

(angle-betwoen-line-faotN
(make-line
point-intersect
(find-point-from-coef-and-point
point-intersect
(car two-vectors))

facet))
(setf angle-of-new-line-with-normal-2

(angle-between-line-facetN
(make-line

point -intersect
(find-point-from-coef-and-point
point-intersect
(cadr two-vectors)))

facet))))
(cond ((and (null angle-of-new-line-with-normal-l)

(null angle-of-new-line-with-normal-2))
(princ "solution to outbound line is complex - aborted") (terpri)
(return-from find-outbound-line-2 'complex")))

(cond ((<- (abs (- angle-of-new-line-with-normal-i theta-out))
(abs (- angle-of-new-line-with-normal-2 theta-out)))

(return-from find-outbound-line-2
(make-line
point-intersect
(find-point-from-coef-and-point
point-intersect
(car two-vectors)))))

(t (return-from find-outbound-line-2
(make-line

point-intersect
(find-point-from-coef-and-point

point-intersect
(cadr two-vectors))))))))

(defun find-point-from-coef-and-point (point coef) ;finds a point on a line
;with coef i, J, k and point.

(let* ((end-point-line

(init-point (map 'list I+ (send (eval Point) :liat-formet)

coef))
end-point-line))

131

(defun make-unit-line (point line) ;makes a unit line from a point
; parallel t(, line

(let* ((unit-vector (send (oval (line-segment-direction-vector (oval line)))
:unit-vector))

(point-coord (send (oval point) :list-format)))

(make-line point
(init-point
(list (+ (first unit-voctor)(first point-ooord))

(+ (second unit-vector)(second point-coord))
(+ (third unit-vector)(third point-coord)))))))

(defun parallel-lines (line-i line-2) ; returns 't if parallel, nil if not
(lot ((Til (vector-i (eval (line-segment-direction-vector (eval line-i)))))
(Ti2 (vector-i (eval (line-segment-direction-vector (oval line-2)))))
(Tjl (vector-j (eval (line-segment-direction-vector (oval line-i)))))
(Tj2 (vector-j (oval (line-segment-direction-vector (oval line-2)))))
(Tkl (vector-k (oval (line-segment-direction-vector (oval line-i)))))
(Tk2 (vector-k (eval (line-segment-direction-voctor (oval line-2)))))
(Tval 'nil))
(cond ((and (not (zerop Til)) (not (zerop Ti2)))

(setf Tval (/ Til Ti2)))
((and (not (zerop Tjl)) (not (zerop Tj2)))
(setf Tval (/ Tjl Tj2)))

((and (not (zerop Tkl)) (not (zerop Tk2)))
(setf Tval (/ Tkl Tk2)))
(t (return-from parallel-lines 'nil)))

(cond ((and (equal Til (* Tval Ti2))
(equal Tjl (* Tval Tj2))
(equal Tkl (* Tval Tk2)))

(return-from parallel-lines 't))
(t 'nil))))

(defun find-intercept-point-extended (plane line) ; find intercept point of a
; plane and line segment
; extended to reach the plane,

if it exists.
return NIL if not exist

(let ((denom (rationalize (denom-in-intercept plane line)))
(t-intercept 'nil)
(I-point 'nil))
(cond ((not (equal-zero-p denom))

(setf t-intercept (rationalize (solve-for-t
(send (oval plane) :list-coeff)
line
denom)))

(setf I-point (get-intercept-point-2-extended line t-intercept))))
I-point))

(defun get-intercept-point-2-extended (line t-intercept)
; return the name of a valid intercept
; point without checking that intercept

; point is on the actual line segment
(let ((I 'nil)

(I-list 'nil))
(cond (t (setf I-list (vector-add-with-t

(line-segment-direction-vector (oval line))
(line-segment-position-vector (oval line))
t-intercept))

(setf I (nit-point I-list))))
I))

132

i-a

(defun normalize-vector (vector)
;takes a vector i j k ... and normalizes these three
; by dividing each by sqrt(ii + jj + kk)

(let* ((i (first vector))
(j (second vector))
(k (third vector))
(X (cdddr vector))
(denomonator (sqrt (+ (* i j)(* j J)(* k k)))))
(cons (/ i denomonator)(cons (/ j denomonator)(cons (/ k denomonator)

X)M)))

(defun get-adjustment-vectors (point facet) ;returns unit vectors
; 1 - point to center of facet and
; 2 - 90 deg off and in facet

(let* ((line-N (make-unit-line point
(normal-line point facet)))

(line-p (make-unit-line point
(make-line point

(facet-center
(eval facet)))))

(equation-i (append
(send
(eval (line-segment-direction-vector (eval line-N)))
:list-format)
(o))

(equation-2 (append
(send
(eval (line-segment-direction-vector (eval line-p)))
:list-format)
(O)))

(Two-equations (list equation-1 equation-2))
(two-vectors))
(setf two-vectors(find-outbound-vector Two-equations))
(cond ((null (caaL two-vectors))

(princ "Adjustment vectors returns complex roots") (terpri)
(return-from get-adjustment-vectors "complex"))
(t (list (send

(eval (line-segment-direction-vector (eval line-N)))
:list-format)

(car two-vectors))))))

(defun check-facet-list-against-snells-law (line facet-list volume-list)

(do*((start-point
(vector-start-point (oval (line-segment-direction-vector (eval line))))
(vector-start-point (eval (line-segment-direction-vector (eval line)))))

(point (cond((Y'ull (find-intercept-point-extended (car facet-list) line))
(return-from check-facet-list-against-snells-law 'nil))

(t (find-intercept-point-extended (car facet-list) line)))
(cond((null (find-intercept-point-extended (car facet-list) line))

(return-from check-facet-list-against-snells-law 'nil))
(t (find-intercept-point-extended (car facet-list) line))))

(test-1 (cond((point-in-volume-P point (car volume-list)) 't)
(t (return-from check-facet-list-against-snells-law 'nil)))

(cond((point-in-volume-P point (car volume-list)) 't)
(t (return-from check-facet-list-against-snells-law 'nil))))

133

(line (find-outbound-line-2 (make-line start-point point)
(car facet-list)
(volume-probability-of-detection
(eval (car volume-list)))
(volume-probability-of-detection
(eval (cadr volume-list))))

(find-outbound-line-2 (make-line start-point point)
(car facet-list)
(volume-probability-of-detoction
(oval (car volume-list)))
(volume-probability-of-detection
(oval (cadr volume-list)))))

(volume-list (cdr volume-list)(cdr volume-list))
(facet-list (cdr facet-list) (odr facet-list)))

((and (null facet-list)
(not (or (null line)

(equal "complex" line)
(equal "reflect" line)
(equal "div-by-zero" line)))) line)

(cond((or (null line)
(equal "complex" line)
(equal "reflect" line)
(equal "div-by-zero" line))

(return-from check-facet-list-against-snells-law 'nil)))))

134

-*- Mode:Common-Lisp, Base:lO _

PATH PLANNING D.H. Lewis 25 Aug 88

Modified L.R. WRENN 6 Mar 89

Contains the flavors, methods, and functions nessesary to conduct path
; planning. Divided into three main sections; Flavors, A-star
; path planning, and path optimization.
; The flavors section provides the essential path and agenda item flavors,
; and their associated method and support functions.
; The A* search section conducts an a* search of the volumes, minimizing
; cost and visibility, and creates an initial path.
; Finally, the optimization code optimizes the initial A* path according
; to snells law criteria. This section may create one or several paths

MAIN FUNCTIONS:
A-STAR-SEARCH
A-STAR-SEARCH-M

; OTHER FUNCTIONS:
MAKE-PATH-NAME
INIT-NEW-PATH
MAKE-AGENDA-ITEM-NAME
INIT-AGENDA-ITEM
PUT-SUCCESSORS-ON-AGENDA
AGENDA-SORT-P
GOAL-ON-AGENDA-P
REMOVE-GOAL
FIND-PATH
PRINT-AGENDA
EVALUATION-FUNCTION
COST-FUNCTION
EVAL-TURN-COST
PROJECT-XY
FIND-PREVIOUS-VOLUME

; EVAL-CLIMB-DIVE
* CALC-PATH-AND-STATS

FIND-INTERMEDIATE-FACETS
MAKE-FACET-TO-FACET-PATH

OPTIMIZE PATH FUNCTIONS:
OPTIMIZE-PATH
OPTIMIZE-POINT-ON-FACET

; OPTIMIZE-K-ON-LINE
FIND-EDGE-POINTS-OF-FACET
AGENDA-SORT-ON-K
FIND-SNELLS-CONSTANT

(defvar *PD-threshold* '0.0) ; maximum desirable probability of
detection
(defvar *PD-modifier* '10.0) ; affects effect of PD on path planning
(defvar *PI* '3.14159)

(defvar *path-counter* '0) ; path name variables
(defvar *list-of-pathe* 'nil) ; location of all instanciated paths
(defvar *agenda-counter* '0) ; agenda instanciations

135

(defvar *Turn45* '10.0) ; cost for turn of 45 degrees or less
(defvar *Turn9O* '50.0) ; coat for turn between 45 and 90 degrees

* (defvar *BigTurn* '5000.0) cost for turns greater than 90 degrees

(defvar *Shallow-Climb* '1.20) ;ratio modifier for a shallow climb
(defvar *Steop-Climfb* '1.60) ;ratio modifier for a ateep climb
(defvar *Dive* '0.80) ;ratio modifier for any diva
(defvar PtI) pused by :make-polygon-liat
(defvar Pt2) pused by :make-polygon-list

(defvar *Start-fuel* '1225) pFuel aircraft will start with
(defvar *Start-TAS* '450) pTrue Air Speed that the missile will
start with
(defvar *Fuel*) pgloble used to pass fuel remaining
between functions
(defvar *TPJ*) pgloble used to pass current TAS between
functions

FLA VO0R S, M ET HOD S , A ND F U NC TIO NS

PATH FLAVOR

(def flavor path
(start-point

end-point ;goal
volume. ; general path "corridor"
facets ; "windows" in cooridor
lines a pecific path to follow
points ;turn points in path
length ;of current line.
total-K ; sum of deviations from anells law for path
max-detect ion-probability
ave-detection-probability) ; average of entire path corridor
(graphic)

:gettable-instance-variables
settable-inatance-variables
:inittable-instance-variables
:outside-accessible-instance-variables)

---- --- METHODS FOR PATHS-----------------------

(defmethod (path :length) () pfind the total length of the path
(let ((val ' 0.0))

(cond ((null length)
(loop for L in lines
do (aetf val (4. val (aend (oval L) :length))))

(.etf length val)))
length))

(defmethod (path :max-detection-probability) ();find the highest PD on the
path

(let ((maximum (volume-probability-of-detection (oval (first volume.)))))
(loop for V in (rest volume.)
do (cond ((< maximum (volume-probability-of-detection (oval V)))

(aetf maximum (volume-probability-of-detection (oval V))))))
(.etf max-detection-probability maximum)))

136

(defmethod (path :av*-detection-probability) 4);find the weighted average of
the PD's

(let ((weighted-sum '0.0))
(loop for Counter from 0 to (1- (length volumes))

do (setf weighted-sum
(+ weighted-sum

4(send (oval (nth Counter lines)) :length)
(volume-probability-of-dtctiol (oval (nth Counter

Volumes)))))
(setf ave-detection-probability UI weighted-sum

(send self :length)))
ave-detection-probability))

(defmethod (path :make-node-list) () ;used by graphic mumi-flavor to
draw

(loop for P in points
collect (reverse (append (list '1) (reverse (mend (oval P)

:list-format))))))

(defmethod (path :make-polygon-list) ();used by graphic mumi-flavor to
draw

(loop for L in lines
do (setf Ptl (car (send (eval L) :endpoint-list)))
do (setf Pt2 (cadr (send (eval L) :endpoint-list)))

collect (list (position-if '(lambda (A) (equal A Ptl)) node-list)
(position-if '(lambda (A) (equal A Pt2)) node-list))))

-------- ----- PATH NAMES----------------------

(defun make-path-name () ; make a new name for a path
(gensym (incf *path-counter*))
(intern (gensym "path")))

(defun mnit-new-path (start end volumes facets lines points length K) ;make a
new path

(let ((name (make-p~th-name)))
(set name (make-instance 'path

:start-point start
:end-point end
:volumes volumes
:facets facets
:lines lines
:points points
:length length
:totai-K K
:max-dtection-probability 'nil
:ave-detection-probability 'nil))

(push name *list-of-paths*)
name))

137

AGENDA-ITEM FLAVOR

(dot flavor agenda-item
(volume
cost

"valuation
path
fuel
TAB)

s gettable-instance-variables
:settable-instance-variables
:inittabl. -instance-variables
:outside-accessible-iastaflce-variablOs)

---------- AGENDA-ITEM NAMES-------------------

(defun make-agenda-item-name (
(genaym (matf *agenda-counter*))
(intern (gensym "agenda")))

(defun init-agenda-item (volume cost evaluation path fuel TAS)

(let ((name (make-agenda-item-name)))
(set name (make-instance 'agenda-item

:volume volume
:cost cost
:evaluation evaluation
:path path
:fuel fuel
:TAS TAS))

name))

S E A R C H E S

A* Search

(defun A-star-search (Start-point End-point Trace-flag Camera-flag)
(let* ((start-volume (first (locate-point-air start-point)))

(goal-volume (first (locate-point-air end-point)))
(successor-volumes (volume-connected-to (oval start-volume)))
(path-volumes 'nil)
(agenda 'nil)
(best-path)
(ground-volumes 'nil))

(terpri) (terpri)
(princ ">>>Begin A-star Search") (terpri) (terpri)
(princ " Start Volume: ")(prini start-volume) (terpri)
(princ " Goal Volume: ")(prinl goal-volume) (terpri) (terpri)

138

(cond (trace-flag
(terpri) (princ "Search trace selected. Top five and bottom five items")
(terpri) (princ "on seach agenda will be printed.") (terpri) (terpri))

(t (terpri)))
(cond (Camera-flag

(terpri) (princ "Display the search as it progresses has been selected")
(terpri) (princ "reduce and move the lisp listener window to")
(terpri) (princ "the right 1/4 of the screen. press <RETURN> when done")
(wait-for-keyboard-input) (terpri) (terpri)
(movie-ground)
(loop for V in (universe-volumes *universe*)

do (cond ((equal 'ground (volume-composition (eval V)))
(setf ground-volumes (adjoin V ground-volumes))))))

(t (terpri)))
(princ "Search")

; initalize the search agenda
(setf *fuel* *Start-fuel*) ; init *fuel* for new path
(setf *TAS* *Start-TAS*) ; init *TAS* for new path
(setf agenda (put-successors-on-agenda

start-volume ; end of last path
successor-volumes ; successors to be added
(init-cost start-volume

start-point
trace-flag) ; cost

(list start-volume) ; path to date
end-point ; goal
agenda)) ; agenda to be changed

; SEARCH along best agenda item for all possible paths
; until get to the goal along one of the paths

(loop until (goal-on-agenda-p goal-volume agenda)
do (princ ".")

do (cond (trace-flag
(princ ------------- New Agenda --------------------

(print-agenda agenda)))
do (cond (camera-flag

(display-movie-path agenda start-point ground-volumes)))

do (let* ((best-successor-volume (first agenda))
(successors-to-best (volume-connected-to (eval (agenda-item-volume

(eval best-successor-volume))))))
(setf successors-to-best (remove 'EDGE successors-to-best))
(loop for V in (rest (agenda-item-path (eval best-successor-volume)))
do (setf successors-to-best (remove V successors-to-best)))

(setf agenda (remove best-successor-volume agenda))
;set *fuel* and *tas* from

best-successor-volume
(setf *fuel* (agenda-item-fuel (eval best-successor-volume)))
(setf *TAS* (agenda-item-tas (eval best-successor-volume)))
(setf agenda (put-successors-on-agenda

(agenda-item-volume (eval best-successor-volume))
successors-to-best
(agenda-item-cost (eval best-successor-volume))
(agenda-item-path (eval best-successor-volume))
end-point
agenda))))

SEARCH COMPLETED!

139

find lines and points in search

(cond (camera-flag
(display-movie-path agenda start-point ground-volume.)))

(satf path-volumes (reverse (find-path goal-volume agenda)))
;got resultant path

(setf best-path (mnit-new-path start-point
and-point
path-volumes
,nil
'nil
'nil
'nil
'nil))

(princ "Completed") (terpri) (terpri)

(make-facet-to-facet-path best-path) ; mnake initial guess at optimal path
(calc-path-and-stats best-path) ; fill out rest of path flavor data
(cond (camra-flag

(send (oval best-path) :initialize)
(loop for N in '(1 2 3 4)

do (cond ((not (equal N 4))
(send (oval (nth N *list-of-VCRs*)) :clear-scene)))

do (show-path-4 (nth N *list-of-VCR9*)
(nth N *vindow..stats*)
bost-path
(first ground-volumes)
(nth N *display..tats*))

do (cond ((not (equal N 4))
(send (oval (nth N *list-of-VCR&*))

:display-label best-path))))))

best-path))

140

* A* Search with multiple solutions

(defun A-star-search-M (Start-point End-point Trace-flag paths Camera-flag)

(let* ((start-volume (first (locate-point-air start-point)))
(goal-volume (first (locate-point-air end-point)))
(successor-volumes (volume-connected-to (oval start-volume)))
(path-volumes 'nil)
(agenda 'nil)
(paths-found)
(ground-volumes 'nil))

(terpri)
(princ ">>>>Begin A-star Search") (terpri) (terpri)
(princ " Start Volume: ") (prinl start-volume) (terpri)
(princ " Goal Volume: ") (prinl goal-volume) (terpri) (terpri)
(cond (trace-flag

(terpri)
(princ "Search trace selected. Top five and bottom five items")
(terpri) (princ "on seach agenda will be printed.") (terpri) (terpri))

(t (terpri)))
(cond (Camera-flag

(terpri)
(princ "Display the search as it progresses has been selected")
(terpri) (princ "reduce and move the lisp listener window to")
(terpri)
(princ "the right 1/4 of the screen. press <RETURN> when done")
(wait-for-keyboard-input) (terpri) (terpri)
(movie-ground)
(loop for V in (universe-volumes *universe*)

do (cond ((equal 'ground (volume-composition (eval V)))
(setf ground-volumes (adjoin V ground-volumes))))))

(t (terpri)))

; initalize the search agenda

(setf *fuel* *Start-fuel*) ; init *fuel* for new path
(setf *TAS* *Start-TAS*) ; init *TAS* for new path
(setf agenda (put-successors-on-agenda

start-volume ; end of last path
successor-volumes ; successors to be added
(init-cost start-volume

start-point
trace-flag) ; cost

(list start-volume) ; path to date
end-point ; goal
agenda)) ; agenda to be changed

; SEARCH along best agenda item for all possible paths
; until get to the goal along one of the paths

(loop repeat paths ; find top several paths
do (terpri)
do (princ "Search")
do (loop until (goal-on-agenda-p goal-volume agenda)

same loop as single search
do (princ ".")
do (cond (trace-flag

(princ --------------- New Agenda --------------------)
(print-agenda agenda)))

141

do (cond (camera-flag
(display-movie-path agenda start-point ground-volumes)))

do (let* ((best-suOcessor-volume (first agenda))
(successors-tO-best (volume-oonnoted-to

(oval (agenda-itemo-volume
(oval beat-suooessor-volune))))))

(setf successors-to-best (remove 'EDGE successors-to-best))
(loop for V in (rest

(agenda- item-path
(best-successor-volumfe)))

do (aotf successors-to-best (remove V successors-to-keat)))
(setf agenda (remove best-successor-volume agenda))
(setf agenda (put-successors-on-agenda

(ogenda-item-volume
(eval best-successor-volume))

successors-to-best
(agenda-item-cost
(oval best-successor-volume))

(agenda-item-path
(oval best-suocessor-volume))

end-point
agenda)

do (cond (cartera-f lag
(display-movie-path agenda start-point ground-volumes)))

(setf path-volumes (reverse (find-path goal-volume agenda)))
(setf agenda (remove-goal goal-volume agenda))
(setf paths-found (adjoin (mnit-new-path start-point

end-point
path-volumes
'nil
'nil
'nil
'nil
'nil)

paths-found))

(princ "Completed") (terpri) (terpri)
(make-fact-to-facet-path (first paths-found))
(calco-path-and-stats (first paths-found))
(cond (camera-flag

(send (eval (first paths-found)) :initialize)
(loop for N in '(1 2 3 4)

do (cond ((not (equal N 4))
(send (eval (nth N *list-of-VCR9*)) :clear-scene)))

do (show-path-4 (nth N *list-of-VCRs*)
(nth N *window-state*)
(first paths-found)
(first ground-volumes)
(nth N *display-stats*))

do (cond ((not (equal N 4))
(send (eval (nth N *list-of-VCR9*))

:display-labe*l (first paths-found)))))

142

(cond (camera-flag t
(loop for N in '(1 2 3 4)

do (cond ((not (equal N 4))
(send (oval (nth N *list-of-VCRs*)) :clear-scene))))

(loop for P in paths-found
do (send (oval P) :initialize)
do (loop for N in '(1 2 3 4)

do (show-path-4 (nth N *list-of-VCRs*)
(nth N *window-stats*)
P
(first ground-volumes)
(nth N *display-stats*))

do (cond ((not (equal N 4))
(send (oval (nth N *list-of-VCRs*))

:display-label (first paths-found))))))))

paths-found))

Search utility functions

-agenda manipulations -------

; for A-STAR search
(defun put-successors-on-agenda (prod-volume

successor-volumes
cost ; cost so far
path ; volumes
goal
agenda)

(lco>p for V in successor-volumes
do (setf agenda (adjoin

(init-agenda-item V ; name
(+ cost (cost-function V path))
(evaluation-function prod-volume

V
path

* goal)
(adjoin V path) ; path
fuel ; altered during cost-function
TAS) ; altered during cost-function

agenda)))
(stable-sort agenda #'agenda-sort-p))

(defun agenda-sort-p (A B)
(cond ((LT (+ (agenda-item-cost (oval A))

(agenda-item-evaluation (eval A)))
(+ (agenda-item-cost (oval B))

(agenda-item-evaluation (oval B))))
(return-from agenda-sort-p 't)))

'nil)

(defun goal-on-agenda-p (goal agenda) ; return T iff goal volume is on the
agenda

(loop for A in agenda
do (cond ((equal goal (agenda-item-volume (oval A)))

(return-from goal-on-agenda-p 'T))))
'nil)

143

(defun remove-goal (goal agenda)
(loop for A in agenda
do (cond ((equal goal (agenda-item-volume (oval A)))

(return-from remove-goal (remove A agenda)))))
'nil)

(defun find-path (goal agenda) ; get the path once the goal is found
(loop for A in agenda
do (cond ((equal goal (agenda-item-volume (eval A)))

(return-from find-path (agenda-item-path (eval A)))))))

(defun print-agenda (agenda) ; print agenda and some/all items on the
agenda

(terpri) (pprint agenda) (terpri)
(cond ((>- 10 (length agenda))

(princ "Entire agenda: ") (terpri) ; print whole agenda if short
(loop for I in agenda

do (terpri)
do (describe I)))

(t (princ "First five in agenda: ") (terpri) ; do first five and last five
(loop for Count in ' (0 1 2 3 4) ; if long
do (describe (nth count agenda))
do (terpri))

(terpri) (princ "Last five on agenda: ") (terpri)
(loop for Count in '(6 5 4 3 2 1)
do (describe (nth (- (length agenda) Count) agenda))
do (terpri))))

(terpri) (terpri))

----- evaluation and cost functions ------

(defun evaluation-function (VP VS path-volumes Goal)
(let (;(turn-modifier (eval-turn-cost VP VS path-volumes))
;(altitude-modifier (oval-climb-dive VP VS))
(PD-modifier '1.0) ;(* *PD-modifier*

,(- (volume-probability-of-detection (eval VS))
; *PD-threshold*))))

(basis-distance (distance (volume-arithmetic-center (eval VS)) Goal)))
(setf PD-modifier basis-distance)))

(defun init-cost (VStart start-point trace-flag)
(let ((PD-modifier (* 100

(volume-probability-of-detection (oval VStart))
(U (distance start-point

(volume-arithmetic-center (eval VStart)))
(U 450 60))))

(basis-cost (fuel-burned (distance
(volume-arithmetic-center (eval VStart))

start-point)
(climb-angle start-point

(volume-arithmetic-center (oval VStart)))
fuel
TAS)))

(cond (trace-flag
(terpri) (princ "The initial cost of the search from the")
(terpri) (princ "start point to the volume it is in center is")
(terpri) (princ (+ PD-modifier basis-cost))))

(+ PD-modifier basis-cost)))

144

(defun cost-function (VS path-volumes)
(let (;(altitude-modifier (eval-climb-dive (first path-volumes) VS))
(turn-modifier (eval-turn-cost (first path-volumes) VS path-volumes))
(PD-modifier (PD-cost (first path-volumes)

(volume-arithmetic-center (oval (first path-volumes)))
VS
(volume-arithmetic-center (oval VS))))

(basis-cost (fuel-burned (distance (volume-arithmetic-center (oval VS))
(volume-arithmetic-onter (oval (first

path-volumes))))
(climb-angle (volume-arithmetic-conter (oval (first

path-volumes)))
(volume-arithmetic-center (oval VS)))

fuel
TAS)))

(+ turn-modifier PD-modifier basis-cost)))

(defun PD-cost (VP VP-point VS VS-point)
(let* ((common-facet (find-common-facet VP VS))

(straight-_ine (make-line VP-point VS-point))
(intercept-point (find-intercept-point common-facet straight-line)))
(+ (* 100
(volume-pobability-of-detection (eval VP))
(/ (distance VP-point intercept-point)

(/ 450 60)))
(* 100

(volume-probability-of-detection (eval VS))
(I (distance VS-point intercept-point)

(/ 450 60))))))

(defun oval-turn-cost (VP VS Path-volumes)
(let ((projected-VP-center (project-xy (volume-arithmetic-center (eval VP))))
(projected-VS-center (project-xy (volume-arithmetic-center (oval VS))))
(previous-volume (find-previous-volume VP Path-volumes))
(projected-vol-center 'nil)
(path 'nil)
(new-path 'nil)
(angle-of-turn 'nil))

(cond ((equal VP previous-volume) ; no previous path ?
(return-from eval-turn-cost '1.0))

(t (setf projected-vol-center (project-xy
(volume-arithmetic-center (eval previous-volume))))

(saetf path (make-line projected-vol-center projected-VP-center))
(setf new-path (make-line projected-VP-center projected-VS-center))
(setf angle-of-turn (angle-between-lines path new-path))
(cond ((GT angle-of-turn (/ *PI* '2.0))

(return-from oval-turn-cost (* (- angle-of-turn 90) 2))))))
turn > 90

Turn45)) ; turn <- 90

(defun project-xy (Point)
(let ((point-coords (send (eval Point) :list-format)))

(nit-point (list (first point-coords) (second point-coords) '0.0))))

(defun find-previous-volume (VP path-volume)
(let ((position-VP (position VP path-volume)))

(cond ((> I (length path-volume))
(return-from find-previous-volume (elt (1+ position-VP)

path-volume)))
(t (return-from find-previous-volume (first path-volume))))))

145

(defun oval-climb-dive (VP VS)
(let* ((inter-facet (find-commvon-facet VP VS))

(intorfacet-: (third (mean-point-in-facet intor-faoet)))
(path-: (third

(send (oval (volum.-arithmetic-conter (oval VP))) :list-format))))
(cond ((and (LT path-: (* interfacet-: '1.10))

(GT path-: (* interfacet-: '0.90)))
(return-from eval-cliab-dive '1.0)) ;level flight

((GT path-: interfacet-%)
(return-from oval-climb-dive *Div**)) ;dive

(t (loop for P in (send (oval inter-facet) :points)
do (cond ((> path-: (third (send (oval P) :list-format)))

;shallow climb
(return-from oval-climb-dive *Shallow-.Climb*))))))

Steep-Climb)) ; steep climb

-- general functions in support of path planning-------

(defun Calc-path-and-stats (path) ;used to find support info on a now
path

(send (oval path) :length)

;determine probability limits

(send (oval path) :max-detection-probability)
(send (oval path) :ave-detection-probability)
(princ ">>>Path Statistics:") (terpri) (terpri)
(princ " Maximum detection probability: I')
(prini (path-max-detection-probability (oval path)))
(terpri)
(princ " Average detection probability: "

(prini (path-ave-detection-probability (oval path)))
(terpri)
(princ " Total length of path.-'
(prinI (path-length (oval path)))
(terpri)
(princ "Total number of maneuvers: ") (prinl

(- (length (path-points (oval path))) '2))
(terpri) (terpri)
(princ ">>>Path: ") (prinl path) (terpri) (terpri)

'nil)

(defun find-intermediate-faccts (path) ;find all the facets along
;the path

(let ((previous-volume (first (path-volumes (oval path))))
(facets 'nil))
(loop for V in (rest (path-volumes (oval path)))
do (setf facets (adjoin (find-coimmon-facet previous-volume V) facets))
do (setf previous-volume V))

(reverse facets)))

(dofun make-center-to-center-path Jpath)
(let ((last-point (path-start-point (oval path)))
(points (path-start-point (oval path)))
(lines 'nil))
(setf (path-facets (oval path)) (find-intermediate-facets path))
(loop for V in (path-volumes (oval path))

146

do (let ((next-point (volume-arithmetic-conter (oval V))))
(setf lines (adjoin (make-line last-point next-point) lines))
(setf points (adjoin next-point points))
(setf last-point next-point)))

(push (make-line last-point (path-end-point (oval path))) lines)
(push (path-end-point (oval path)) points)
(setf (path-lines (oval path)) (rovers* lines))
(setf (path-points (oval path))
(adjoin (path-start-point (oval path)) (reverse points)))))

(defun make-fact-to-facot-path (path)
(let ((last-point (path-start-point (oval path)))
(points (path-start-point (oval path)))
(lines 'nil))

(setf (path-facets (oval path)) (find-intermediate-faceto path))
(loop for F in (path-facets (oval path))
do (let ((next-point (init-point (mean-point-in-facet F))))
(setf lines (adjoin (make-line last-point next-point) lines))
(setf points (adjoin next-point points))
(setf last-point next-point)))

(push (make-line last-point (path-end-point (oval path))) lines)
I (push (path-end-point (oval path)) points)

(setf (path-lines (oval path)) (reverse lines))
(setf (path-points (eval path))
(adjoin (path-start-point (oval path)) (reverse points)))))

(defun get-keyboard-input ()
(send *terminal-io* :tyi-no-hang))

(defun wait-for-keyboard-input)
(send *terminal-io* :tyi))

147

PATH OPTIMIZATION

;;; OPTIMIZE PATH ACCORDING TO SNELL'S LAW. D.H. LEWIS 10/11/88

;; Develop an expression for shell's constant at each facet along the
;;the path, and than minimize it with respect to the facets before
;;and after the facet concerned. Sum all constants along the path
;;to determine the not amount of deviation from shell's law. Repeat

until total constant minimized.

(dofvar *P12* (/ *PI* '2.0))
(defvar *search-increment* '10)

;--------- -MAIN PATH OPTIMIZATION FUNCTION --------------------

(defun optimize-path (path)
(let ((new-path-points (list (path-start-point (eval path))))
(new-path-lines 'nil)
(new-path-length '0.0)
(new-path 'nil)
(last-point 'nil) ; dumny for building path lines
(total-K '0.0)) ; total deviation from smell's law

; optimize path point for each facet in turn,
; appending new points onto new-point list as
; they are created

(terpri) (terpri)
(princ "Optimizing path ") (prinl path) (princ ":") (terpri) (terpri)
(loop for Facet-nr from '1 to (length (path-facets (eval path)))
do (let ()
(princ "Optimizing at facet number ")

(prinl facet-nr) (princ " ") (prinl (nth (1- facet-nr) (path-facets
(eval path))))

(terpri))
do (let ((prey-point 'nil)

(next-point (nth (1+ facet-nr) (path-points (eval path))))
(path-point (nth facet-nr (path-points (eval path))))
(new-point 'nil)
(facet (nth (1- facet-nr) (path-facets (eval path))))
(Ni (+ '1 (volume-probability-of-detection

(eval (nth (1- facet-nr) (path-volumes (eval path)))))))
(N2 (+ '1 (volume-probability-of-detection

(oval (nth facet-nr (path-volumes (eval path))))))))

; use "best" previous point estimate

(cond ((> facet-nr '1)
(setf prey-point (first new-path-points)))

(t (setf prey-point (nth (1- facet-nr) (path-points (oval path))))))

(pprint (list '"initial- " facet-nr prey-point path-point next-point
facet N N2))

148

(setf new-point (optimize-point-on-faoet prey-point
next-point
facet
path-point
Ni
V2))

(pprint (list '"new path point: " new-point (get new-point 'K)))
(setf new-path-points (adjoin new-point new-path-pointo))
(setf total-K (+ total-K (get new-point 'K)))))

; add goal to new points, draw new path

(setf new-path-points (adjoin (car (last (path-points (eval Path))))
new-path-points))

(setf new-path-points (reverse new-path-points))
(setf last-point (first new-path-points))
(loop for P in (rest new-path-points)
do (let ()
(setf new-path-lines (adjoin (make-line last-point P) new-path-lines))
(setf new-path-length (+ (send (eval (first new-path-lines)) :length)

new-path-length))
(setf last-point P)))

(setf new-path-lines (reverse new-path-lines))

; build the new path with optimized path data

(terpri) (terpri)
(princ "Optimization completed") (terpri)
(setf new-path(init-new-path (path-start-point (oval path))

(path-end-point (eval path))
(path-volumes (eval path))
(path-facets (eval path))
new-path-lines
new-path-points
new-path-length

total-K))
(calc-path-and-stats new-path)
new-path))

-- FIND THE BEST POINT ON THE FACET ------------------

(defun optimize-point-on-facet (prey-point next-point facet path-point Ni N2)

Find the point on the facet with the lowest
snell's constant (K).

(let* ((straight-path-line (make-line prey-point next-point))
(straight-path-point (find-intercept-point facet straight-path-line))
(path-K-line (make-line path-point straight-path-point))
(path-plane (make-a-plane prey-point path-K-line))
(list-of-points (find-edge-points-of-facet path-plane facet)))
(pprint list-of-points)
(pprint (list facet straight-path-point))

(setf (get straight-path-point 'K) (find-snels-constant
straight-path-point
(make-line straight-path-point prev-point)
(make-line stiaight-path-point next-point)
facet
Ni
N2))

149

do special oases first

(cond ((inside-facet-p straight-path-point facet)
(cond ((equal '0.0 (* '1.0 (get straight-path-point 'K)))

(return-from optimize-point-on-faoet straight-path-point))
(t (setf list-of-points (adjoin straight-path-point

list-of-points)))))
(t (setf list-of-points (adjoin path-point list-of-points))))

: (pprint (list list-of-points (length list-of-points)))
(cond ((< '1 (length liot-of-points))

(setf path-point (optimize-K-on-line list-of-points
prey-point
next-point
facet
Ni
N2)))

(t (setf (get path-point 'K) (find-snells-constant Path-point
(make-line Path-point prev-point)
(make-line Path-point next-point)
facet
N1
N2))))

path-point))

(defun optimize-K-on-line (agenda prey-point next-point facet Nl N2)
(let ((lowest-K-point 'nil)
(best-line 'nil)
(mid-point 'nil))
(pprint (list '"Optimize: " agenda))

(loop for P in agenda
do (setf (get P 'K) (find-snells-constant P

(make-line P prev-point)
(make-line P next-point)
facet
Ni
N2)))

(setf agenda (stable-sort agenda #'agenda-sort-on-K))
(setf lowest-K-point (first agenda))
(pprint (list '"Sorted optimize: " agenda lowest-K-point))

(loop repeat '3
do (let ()
(setf best-line (make-line (first agenda) (second agenda)))
(setf mid-point (init-point (send (eval best-line) :midpoint)))
(setf (get mid-point 'K) (find-snells-constant mid-point

(make-line mid-point prey-point)
(make-line mid-point next-point)
facet
N1
N2))

(setf agenda
(stable-sort (list (first agenda) (second agenda) mid-point)

*'agenda-sort-on-K))
(pprint agenda)
(pprint (list (first agenda) (get (first agenda) 'K)))

(first agenda)))

150

(defun find-odge-Pointo-f -facet (plane facet)
(let ((intercept-points 'nil))

(loop for E in (facet-edges (oval facet))
do (let ((intercept-point (find-intercept-point plane 2)))
(cond ((not (null intercept-point))

(setf intercept-points (adjoin intercept-point
intercept-points))))))

intercept-points))

(defun agenda-sort-on-K (A B) :sort by increasing absolute value of K
property

(< (as (get A 'K)) (abs (got B 'K))))

--------- FIND SHILLS CONSTAN4T----------

(defun find-snells-constant (Point Line-i Line-2 Facet Hi N2)
find snells constant at a boundary, i.e.:

K - Hi * sin(theta-i) - N2 * sin(theta-2)

note: returns NIL if anything would "blow this up"

(let* ((end-point-normal-line
(mnit-point (map 'list '+ (send (oval Point) :list-format)

(map 'list '* '(100 100 i00)
(send (oval facet) :list-coeff-3)))))

(normal-line (make-line Point end-point-normal-line))
(perpendicular-plane

(make-a-plane
(mnit-point (list '0 '0 (third (send (oval point) :list-format))))
normal-line))

(line-joining-points (mke-line (send (oval line-i) :end-point)
(send (oval line-2) :end-point)))

(default 1100)
(theta-i (angle-between-lines Line-i normal-line))
(theta-2 (angle-between-linies Line-2 normal-line)))
(cond ((and (nk (null Theta-i))

(not (nu- theta-2)))
(setf theta-i tabs (realpart theta-i)))
(setf theta-2 (abs (realpart theta-2)))

(cond ((< *P12* theta-i)
(setf theta-i (- *PI* theta-i))))

(cond ((< *PI2* theta-2)
(aetf theta-2 (- *PT* theta-2l)

(cond ((> theta-i (realpart (asin (/ N2 Ni)))) critical angle?
(setf theta-2 *P12*)))

(cond ((send (oval line-joining-points) :strattle-plane-p
perpendicular-plane)

(return- from
find-snells-constant (-('H (sin theta-i))

(* N42 (sin theta-2)))))
(t (return-from

find-snells-constant (Nl~H (sin theta-i))
N*12 (~(* '2 *PI*)

(sin theta-i)))))))))
default))

151

.. *.Mode: Lisp ;Syntax : Commnon-lisp--

M MAI N CON T ROL F UN CTIO N S

; Theoe functions perform overall control of the static construction
;phase of the code. They include the initial input control loops (for
;both input methods, and the control loop f or the visibility region

; construction phase of the static construction. The initial set-up
;functions are first, followed by the middle phase set-up functions, large

; scale control functions, and finally, the actual input methods themselves.

THESIS D. R. LEWIS 20 OCT 8

ROUTINE TO INPUT A DATA STRE.AM AND CONSTRUCT THE VOLUME(S)

; THESIS/CS4452 D.H. LEWIS 15 MAY 88

Builds the standard static flavors (Universe, above, below, and cameras),
;opens and reads input file, and carries the static phase through making
air volumes convex.

MA~9IN FUNCTIONS: SET-UP (METHOD FILE)
SET-UP-2

OTHER FUNCTIONS: INITIALIZE-VOLUME
MAIKE-VOLUME-WITH-FACET-DATA
DPRCREASSING-SORT-ON-X-P

* DECREASING-SORT-ON-Y-P
PRINT-HZADER-l

(defvar *Universe*) ;location of names for all flavors used in
static

construction
(defvar *above*) ;standaxd volumes used by intercept functions
(defvar *below*)
(defvar *input-stream*) ; system name for non-standard input file
(defvar *output-stream*) ; system name for non-standard output file
(detvar *maxaltitude* '1000) ; maximum altitude in Input Method 2
(defvar *min..altitude* '0) ; minimum altitude for Input Method 2
(defvar *not..convex-volumea*) ; flag variable for Input Method 2 which tells

;which facet building function(s) to use

(defvar *original-input.volumes* 'nil) psave various "states"
(defvar *convex-volumes* 'nil)
(defvar *final..visibility.rgions* 'nil)

152

--- -- --- -- --INITIA.L SETUP -- - - - - -

(defun set-up (Method File)
(print-header-i)
(make-origin) ;make favorite constants
(make-null-vector)
(setf *above* (make-instance 'volume))
(setf *below* (make-instance 'volume))
(setf *not-convex-volumoa* It)
(setf *done-making-.new-.visibilityvolume5.flag* 'nil)
(metf *precision* '0.0025)
(setf *large-integer* '1e4)
(setf *list-of-error-planes* 'il
(princ ">Constants Initialized") (terpri)
(make-cameras) ;create camera
(princ ">Camera built") (terpri)
(make-movie-cameras) ;create movie camera
(princ ">M4ovie Camera built") (terpri)
(setf *Universe* (make-instance 'Universe ;create universe for

volumes
.Volumes '(

:observers ')))
(princ ">Universe created; reading data file") (terpri) (terpri)
(setq *input-stream* (open File :direction :input))

;select and use input method

(cond ((equal '1 Method) ; volume oriented input method
(do ((data (read *input-stream* nil 'done) ; read all volumes into

universe
(setf data (read *input-stream* nil 'done))))

((atom data))
(push (mnit-volume data) (universe-volumes *Universe*))
(princ ">>> Volume created: ")
(prini (car *list-.of.volumes*))
(princ " Composition: ")
(prini (volume-composition (eval (car *list-of-volumes*)))) (terpri)
(make-all-facets (car *list..of-.volumes*))) ;make all facets for new

volume
(loop for V in (universe-volumes *universe*)
do (setf (volume-visibility (eval V)) 'nil))) ;remove ambiant

visibility

((equal '2 Method) ;facet oriented input method
(do ((data (read *input-stream* nil 'done) ; read all volumes into universe

(setf data (read *input-stream* nil 'done))))
((atom data))

(loop for terrain-segment in data ;go through each volume segment
do (setf (universe-volumes *universe*)

(append (mak-volume-with-facet-data terrain-segment)
(universe-volumes *universe*))))))

(t (terpri) (princ "Error: Method not implemented")
(return-from set-up 'Done)))

(close *input-stream*) (terpri)
(princ ">Creation complete.") (terpri) (terpri)
(setf *original-inpiut-volumes* (universe-volumes *universe*))

complete initial setup functions

153

(find-all-ridges)
(terpri)
(make-convex-volumes)
(setf *not-.convex..voiuzes* 'nil)
(setf *convexvolumsx* (universe-volumes *universe*))
(terpri) (terpri) (princ "Enter observer data now: 11) (terpri) (terpri))

(defun print-header-i C

(terpri)
(terpri)
(princ **********************************)

(terpri)
(princ "* Volume Creation and Display V1.1 '~

(terpri)
(prino t*********************************c

(terpri)
(terpri))

------------------- INPUT METHOD ONE--------------------------------------

(defun initialize-volume (Volume Data) ; expects data as:
(cond , (line line line) where lines

are
((null Data) Volume) , (point point) where points are;

(x y z).
((x y Z) (x y z)) ((x y Z) (x y

Z))
(t (create-new-line Volume (init-point (caar Data)) (mnit-point (cadar

Data)))
(Initialize-volume Volume (cdr Data)))))

(defun create-new-line, (Volume ptl pt2) ;put points and lines into volume
instance

(pushnew ptl (volume-points (oval Volume)))
(pushnew pt2 (volume-points (eval Volume)))
(pushnew (init-Line (mnit-vector '*origin* ptl) (mnit-vector ptl pt2))

(volume-Edges (oval Volume))))

---------------- INPUT METHOD TWO---------------------------------------

(defun make-volume-with-facet-data (data); construct a volume from a formatted
list of data where format is:
(facet facet facet...)

(let ((terrain-facets (build-terrain data))
(terrain-box (make-instance 'bounding-box)) ; used to find limits of data

;points
(ground-volume (mnit-volume (list (list 'ground 'nil))))
(air-volume (mnit-volume (list (list fair 'nil))))
(points-and-lines 'nil))

;find all lines and points in terrain facets

(setf points-and-lines (info-on-facets terrain-facets))

154

assign values to air and ground volumes

(setf (volume-composition (oval ground-volume)) 'ground) : sot
composition

(setf (volume-composition (oval air-volume)) 'air)
(setf (volume-facets (oval ground-volume)) terrain-facets) ; put terrain

facets
(setf (volume-facets (oval air-volume)) terrain-facets)

; construct top/bottom and sides of ground and air
volumes

(send terrain-box :construct-bounding-box (first points-and-lines))
(let ((point-i (first (find-point (bounding-box-max-x terrain-box);corners

of terrain
(bounding-box-min-y terrain-box)
'nil

(first points-and-lines))))
(point-2 (first (find-point (bounding-box-max-s terrain-box)

(bounding-box-max-y terrain-box)
'nil
(first points-and-lines))))

(point-3 (first (find-point (bounding-box-min-x terrain-box)
(bounding-box-max-y terrain-box)
'nil

(first points-and-lines))))
(point-4 (first (find-point (bounding-box-min-x terrain-box)

(bounding-box-min-y terrain-box)
'nil
(first points-and-lines))))

(points-41 (stable-sort (find-point 'nil ; edges of terrain
(bounding-box-min-y terrain-box)
'nil

(first points-and-lines))
#' decreasing-sort-x-p))

(points-12 (stable-sort (find-point (bounding-box-max-x terrain-box)
'nil
'nil

(first points-and-lines))
#'decreasing-sort-y-p))

(points-23 (stable-sort (find-point 'nil
(bounding-box-max-y terrain-box)
'nil

(first points-and-lines))
#'decreasing-sort-x-p))

(points-34 (stable-sort (find-point (bounding-box-min-x terrain-box)
Pnil
'nil

(first points-and-lines))
#'decreasing-sort-y-p))

(top-points 'nil) ; top and bottom
(bottom-points 'nil)) ; points

(loop for P in (list point-1 point-2 point-3 point-4) ; find top points
do (setf top-points (adjoin (init-point (list

(first

(send (oval P) :list-format))
(second
(send (oval P) :list-format))
max-altitude))

top-points)))
(setf top-points (reverse top-points))

155

(setf (volume-facets (oval air-volume)) ; make top facet
(adjoin (make-a-facet top-points)

(volume-facets (oval air-volume))))

(setf (volume-facets (oval air-volume)) ; make top aides
(adjoin (build-side-facet (fourth top-points) ; and put in volume

(first top-points)
points-41)

(volume-facets (oval air-volume})))
(setf (volume-facets (oval air-volume))
(adjoin (build-aide-facot (first top-points)

(second top-points)
points-12)

(volume-facets (oval air-volume))))
(setf (volume-facets (oval air-volume))
(adjoin (build-side-facet (third top-points)

(second top-points)
points-23)

(volume-facets (oval air-volume))))
(setf (volume-facets (oval air-volume))
(adjoin (build-side-facet (fourth top-points)

(third top-points)
points-34)

(volume-facets (oval air-volume))))

(loop for P in (list point-1 point-2 point-3 point-4) ;find bottom points
do (setf bottom-points (adjoin (init-point (list

(first (send (oval P) :list-format))
(second (send (oval P) :list-format))
min-altitude))

bottom-points)))

(setf bottom-points (reverse bottom-points))
(setf (volume-facets (eval ground-volume)) ; make bottom facet
(adjoin (make-a-facet bottom-points)

(volume-facets (eval ground-volume))))

(setf (volume-facets (oval ground-volume)) ; make bottom sides
(adjoin (build-side-facet (fourth bottom-points) ; and put in volume

(first bottom-points)
points-41)

(volume-facets (oval ground-volume))))
(setf (volume-facets (eval ground-volume))
(adjoin (build-side-facet (first bottom-points)

(second bottom-points)
points-12)

(volume-facets (oval ground-volume))))
(setf (volume-facets (oval ground-volume))
(adjoin (build-side-facet (third bottom-points)

(second bottom-points)
points-23)

(volume-facets (oval ground-volume))))
(setf (volume-facets (eval ground-volume))
(adjoin (build-side-facet (fourth bottom-points)

(third bottom-points)
points-34)

(volume-facet. (oval ground-volume)))))

; complete information on volumes

(setf points-and-lines (info-on-facets (volume-facets (oval air-volume))))
(setf (volume-points (oval air-volume)) (first points-and-lines))
(setf (volume-edges (oval air-volume)) (second points-and-lines))

156

h-

(3etf points-and-lines (info-on-facets
(volume-facets (oval ground-volume))))

(setf (volume-points (oval ground-volume)) (first points-and-lines))
(setf (volume-edges (oval ground-volume)) (second points-and-lines))
(loop for V in (list air-volume ground-volume)
do (let ()
(terpri) (princ ">>> Volume Created: "

(prinl V) (princ 'I Composition: ")
(prini (volume-composition (oval V)))))

(list air-volume ground-volume)))

(defun decreasing-sort-x-p (A B)
(cond ((> (first (send (eval A) tlist-format))

(first (send (eval B) :list-format))))))

(defun decreasing-sort-y-p (A B)
(cond ((> (second (send (oval A) :list-format))

(second (send (oval B) :list-format))))))

CO0M P LE TE S TA T IC P HAS E

Functions here complete the static phase of construction of the visibility
regions.

MAIN FUNCTIONS: SET-UP-2

(defun set-up-2 () ;finish initial setup (after observers created)
(lot ((observers (universe-observers *universe*)))

(terpri) (terpri)
(princ---------------- PRE-PROCESS VISIBILITY INFORMATION --------------
(terpri) (terpri)
(loop for Obs in observers ;divide up universe by visibilities
do (make-visibility-regions Obs))

(terpri) (terpri)
(princ "Numeric errors: "9) (prinl *list-of-errorplanes*)
(terpri) (terpri)
(send *universe* :save-static-items)
(setf *final..visibility-regions* (universe-volumes *universe*))
(setf *done-making-new-visibility-volumes-flag* It) ;speed c:hings up
(loop for Obs in observers ;find who can see what
do (speed-demon)
do (determine-visibility Obs))

(terpri) (terpri)
(princ "Determine Probability of Detection for visibility volumes")
(terpri)
(loop for V in (universe-volumes *universe*) calc prob of detection for
do (probabilities-assuming-independence-or V)) ; each volume

(terpri) (terpri)
(speed-demon)
(connect-volumes) bidvsblt rp
(terpri)))

;bidvsblt rp

157

-*- Mode:Common-Lisp; Base:10 -*-

V I S I B I L I T Y AND R I D G E S

;;; This file contains both the visibility determination code
;;; and the ridge creation and initial air-volume "convexizing"
;;; code. The visibility code is first, followed by the ridge
;;; code.

;;; THESIS D.H. Lewis 10/11/86

;;; VISIBILITY REGIONS D.H. Lewis 10 Aug 88

Contains the Observer flavor; code for creating and
;;; manipulating observer data; code for making visibility
;;; visibility regions; code for determining the visibility of
;;; visibility volumes; and finally code for finding the probability
;;; of detection for the visibility volumes.

;;; Main functions: MAKE-VISIBILITY-REGIONS (OBSERVER)
DETERMINE-VISIBILITY (OBSERVER)
INIT-OBSERVER (COORDINATES EFFECTIVNESS)
CONNECT-VOLUMES ()

DETERMINE-VISIBILITY-1
DETERMINE-VISIBILITY-2

Other functions: MAKE-OBSERVER-NAME
COLINEAR-P

FIND-T
PROBABILITIES-ASSUMING-INDEPENDENCE-OR

PROBABILITIES-ASSUMING-INDEPENDENCE-AND
CLEAR-VISIBILITY
MATCH-FACET-WITH-ANOTHER-VOLUME

SHOW-CONNECTIVITY
CLEAR-CONNECTIVITY

CONNECTIVITY-METRIC
FINE-IF-VISIBILITY-LINE-BLOCKED-P

SET-ARITHMETIC-CENTERS
SET-ZERO-PD

**-ALSO CONTAINS RIDGE FUNCTIONS

(defvar *list-of-observers* 'nil)
(defvar *observer-counter* '0)

FLAVORS USED TO CREATE OR MANIPULATE VISIBILITY REGIONS

(defflavor Observer
(Effectivness

Position)
(graphic) ; for display

:gettable-instance-variables
:settable-instance-variables

:inittable-instance-variables
:outside-accessible-instance-variables)

158

-------------- METHODS FOR OBSERVERS------------------

(defmethod (observer :make-node-list) (0
(list (reverse (append (list '1) (reverse (send (oval position)

:list-format))))))

(defmethod (observer :make-polygon-list) ()
'((0 O)))

;----------- FUNCTIONS FOR OBSERVERS-----------------

(defun make-observer-name ()
(gensym (incf *observer-counter*))
(intern (gensym "observer")))

b (defun init-observer (coord effectivness)

(let* ((temp (make-observer-name))
(position (init-point coord))
(volume-location (locate-point-air position)))

;which air volumes contain obs?
(cond ((null volume-location) ;make sure not underground

(terpri)
(princ "Invalid location for observer (underground)") (terpri)
(return-from init-observer 'nil)))

(set temp (make-instance 'Observer
:Effectivness effectivness
:Position position))

(pushnew temp *list-of-observers*)
(setf (universe-observers *universe*) (adjoin temp

(universe-observers *universe*)))
tamp))

Determine all observer planes, and make visibility regions

(defun make-visibility-regions (observer)
(let ((ground-volumes 'nil)
(air-volumes 'nil)
(ridges 'nil)
(planes 'nil)
(result-volume-list 'nil))

; find all air,ground volumes, visible ridges
(terpri) (terpri)
(princ "making visibility regions for: ")
(prinl observer) (terpri) (terpri)
(loop for V in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-composition (eval V)))

(setf groun,l-volumes (adjoin V ground-volumes))
(loop for L in (volume-edges (eval V))
do (cond ((equal 'ridge (line-segment-characteristics (eval L)))

(cond ((not (colinear-p
(observer-position (eval observer))

L))
(setf ridges (adjoin L ridges))))))))

(t (setf air-volumes (adjoin (list V) air-volumes))
(setf (universe-volumes *universe*)

(remove V (universe-volumes *universe*))))))

; make all visibility limiting planes
(loop for R in ridges

159

do (setf planes
(adjoin (make-a-plane (observer-position (oval Observer)) R)

planes)))
; intersect all air volumes with planes

(princ "Air volumes: ") (prinl air-volumes) (terpri)
(princ "Limiting planes of visibility: ") (prinl planes) (terpri) (terpri)
(setf result-volume-list (intersect-all-planes-with-volumes planes

, air-volumes))

(loop for V in
result-volume-list

do (push (car V) (universe-volumes *universe*))))

(send *universe* :save-static-items) : save the state of the static model
(universe-volumes *universe*))

(defun colinear-p (point line)
(let ((tx (find-t '0 point line)) p find x,y,z t parameters
(ty (find-t '1 point line))

h (tz (find-t '2 point line))
(t-list 'nil)
(t-list-reduced 'nil))
(setf t-list (substitute '0.0 'nil (list tx ty tz)))
(setf t-list-reduced (remove 'nil (list tx ty tz)))
(cond ((equal '1 (length t-list-reduced))

(return-from colinear-p
(apply 'and (mapcar 'equal-error (send (oval point) :list-format-real)

(send (oval line) :backsubs t-list)))))
((equal '2 (length t-list-reduced))
(return-from colinear-p (apply 'equal-error t-list-reduced)))

(t (return-from colinear-p (and (equal-error tx ty)
(equal-error tx tz)))))))

(defun find-t (nr point line)
(let ((denom (nth nr (send (oval (line-segment-direction-vector

(oval line))) :list-format)))

(numerator (- (nth nr (send (eval point) :list-format))
(nth nr (send (eval (line-segment-position-vector

(eval line))) :list-format)))))

(cond ((equal-zero-p denom)
(return-from find-t 'nil))

(t (return-from find-t (/ numerator denom))))))

Determine visibility of visibility regions

(defun determine-visibility (observer)
(determine-visibility-i observer))

(defun determine-visibility-i (observer)

; determine the visibility status (yes or no)
; of all air volumes w/ respect to a sigle

observer
; using a fast method

(terpri) (terpri)
(princ "Visibility determination for: ") (prinl observer)

(terpri) (terpri)
(let ((ground-volumes 'nil)
(air-volumes 'nil)
(ground-facets 'nil)
(volumes-containing-observer
(locate-point-air (observer-position (eval observer)))))

160

M

; find all air,ground volumes, and ground facets
; make bounding boxes for ground facets

(set-arithmetic-centers)
(loop for V in volumes-containing-observer
do (princ " ")
do (prinl V)
do (princ " visible")
do (terpri))

(loop for V in (universe-volumes *universe*)
do (cond ((equal 'air (volume-composition (oval V)))

(cond ((not (member-p V volumes-containing-observer))
(setf air-volumes (adjoin V air-volumes)))))

(t (setf ground-volumes (adjoin V ground-volumes))
(loop for F in (volume-facets (oval V))

do (setf ground-facets (adjoin F ground-facets))))))

; build bounding box for ground facets

(loop for F in ground-facets
do (send (eval F) :construct-bounding-box (send (oval F) :points)))

; determine visibility of all air volumes
; containg the observer

(loop for V in volumes-containing-observer
do (setf (volume-visibility (oval V))

(adjoin observer (volume-visibility (oval V)))))

; determine visibility of remainder of air volumes
; by seeing if visibility line intersects a ground
; facet

(loop for V in air-volumes
do (let ((visibility-line (make-line (observer-position (eval observer))

(volume-arithmetic-center (eval V))))
(blocked-flag 'nil))

(loop for F In ground-facets
do (let ((facet-plane (nit-plane (send (eval F) :list-coeffl))

(I 'nil))
(cond ((subs-line-into-plane-equation visibility-line

facet-plane))
((not blocked-flag)
(cond ((send (eval visibility-line) :strattle-plane-p

facet-plane)
(setf I (find-intercept-point facet-plane

visibility-line))
(cond ((send (oval F) :inside-bounding-box-p I)

(cond ((inside-facet-p I F)
(princ " .) (prinl V)

(princ " not visible") (terpri)

(setf blocked-flag 't)))))))))))
(cond ((not blocked-flag)

(princ " ") (prinl V) (princ " visible") (terpri)
(setf (volume-visibility (oval V))

(adjoin observer (volume-visibility (eval V))))))))
(terpri)

'nil))

161

(defun determine-visibility-2 (observer)
; determine the visibility status (yea or no)
; of all air volumes w/ respect to a sigle observer
; using a slow method

(terpri) (terpri)
(princ "Visibility determination for: ") (prLnl observer)
(terpri) (terpri)
(lot ((ground-volumes 'nil)
(air-volumes 'nil)
(ground-facets 'nil)
(volumes-containing-observer

(locate-point-air (observer-position (oval observer)))))
(set-arithmetic-centers)

; determine visibility of all air volumes
; containg the observer

(loop for V in volumes-containing-observer
do (setf (volume-visibility (oval V))

Jadjoin observer (volume-visibility (oval V)))))
(loop for V in volumes-containing-observer
do (princ" ")
do (prinl V)
do (princ " visible")
do (terpri))

; find who rest of volumes are, and make list
; of blocking ground facets. Remove all
; vertical ground facets.

(loop for V in (universe-volumes *universe*)
do (cond ((equal 'air (volume-composition (eval V)))

(cond ((not (member-p V volumes-containing-observer))
(setf air-volumes (adjoin V air-volumes)))))

(t (setf ground-volumes (adjoin V ground-volumes))
(loop for F in (volume-facets (oval V))
do (cond ((and (member-p '0 (send (eval F) :list-coeff-3))

(> 2 (length (remove
'0

(send (eval F) :list-coeff-3))))))
(t (setf ground-facets (adjoin F ground-facets))))))))

(setf ground-facets (remove-duplicates ground-facets))
(loop for F in ground-facets
do (send (eval F) :construct-bounding-box (send (eval F) :points)))

; determine visibility of remainder of air volumes
; by seeing if visibility line intersects a ground
; facet

(loop for V in air-volumes
do (let ((visibility-line (make-line (observer-position (oval observer))

(volume-arithmetic-center (oval V)))))
(cond ((find-if-visibility-line-blocked-p visibility-line

ground-facets
ground-volumes)

(princ " .) (prinl V)
(princ " not visible") (terpri))

(t (princ .. ") (prinl V) (princ " visible") (terpri)

(setf (volume-visibility (oval V))
(adjoin observer (volume-visibility (eval V))))))))

'nil))

162

(defun find-if-visibility-line-blooked-p (visibility-line
ground-facets

ground-volumem)
(loop for F in ground-facets
do (let ((intercept-point (find-intercept-point

(init-plane (send (oval F) :list-coeff))
visibility-line))

(location-volumes 'nil))
(cond ((null intercept-point)

(roturn-from find-if-visibility-line-blocked-p 'nil))
((not (send (oval F) :inside-bounding-box-p intorcept-point))
(return-from find-if-visibility-line-bloked-p 't))
(t (setf location-volumes (locate-point intercept-point))
(loop for V in ground-volumes

do (cond ((member-p V location-volumes)
(return-from find-if-visibility-line-blocked-p 't))))

(return-from find-if-visibility-lino-blocked-p 'nil))))))

(defun probabilities-assuming-independence-or (volume)
; set volume probability of detection using an
; assaumption of indepedence between observers,

; and an "or" combination technique
(let ((temp '1.0))

(terpri)
(prinl volume) (princ " has P.D.:
(cond ((not (null (volume-visibility (eval volume))))

(loop for Obs in (volume-visibility (oval volume))
do (setf temp (* temp (- '1.0 (observer-effectivness (oval Obs))))l)

(setf (volume-probability-of-detection (oval volume)) (- '1.0 temp))
(prinl (- '1.0 temp)))

(t (setf (volume-probability-of-detection (eval volume)) '0.0)
(prinl '0.0)))))

(defun probabilities-assuming-independence-and (volume)
; set volume probability of detection using an
; asssumption of indepedence between observers,

and
an "and" combination technique

(let ((temp '1.0))
(terpri)
(prinl volume) (princ " has P.D.: ")
(cond ((not (null (volume-visibility (oval volume))))

(loop for Obs in (volume-visibility (oval volume))
do (setf temp (* temp (observer-effectivness (oval Obs)))))

(setf (volume-probability-of-detection (eval volume)) temp)
(prinl temp))

(t (setf (volume-probability-of-detection (oval volume)) '0.0)
(prinl '0.0)))))

(defun set-arithmetic-centers ()
(loop for V in (universe-volumes *universe*)
do (setf (volume-arithmetic-center (eval V)) (send (oval V)

:find-arithmetic-center))))

(defun clear-visibility () ; clear out observer visibility
info

(loop for V in (universe-volumes *universe*)
do (setf (volume-probability-of-detection (oval V)) 'nil)
do (setf (volume-visibility (eval V)) 'nil))

'Done)

163
4

(defun set-zero-PD (; set all air volume PD's to
zero

(loop for V in (universe-volumes *universe*)
do (cond ((equal 'air (volume-composition (oval V)))

(saetf (volume-probability-of-detection (oval V)) '0.0))))
'done)

; COrNECTIVITY

; Connectivity between volumes

(defun Connect-volumes () ; connect all air volumes by facets.
(let ((volumes (universe-volumes *universe*)))
(terpri)
(terpri) (princ "Connecting volumes:") (terpri) (terpri)
(loop for V in volumes
do (prinl V)
do (princ " Connected to: ")
do (setf (volume-connected-to (eval V)) 'nil)
do (cond ((equal 'air (volume-composition (eval V)))

(loop for F in (volume-facets (eval V))
do (send (eval F) :find-facet-center)
do (send (eval F) :add-volume-to-left-connects V)
do (let ((match (match-facet-with-another-volume F V)))

(cond ((and
(not (null match))
(not (equal 'ground (volume-composition (eval

match))))
(send (eval F) :add-volume-to-right-connects match))

((null match)
(let* ((volumes (locate-point-air

(facet-center (eval F)))))
(loop for Connect-vol in (remove V volumes)
do (send (eval F)

:add-volume-to-right-connects Connect-vol)

(loop for F in (volume-facets (eval V))
do (stf (volume-connected-to (eval V))

(append (second (facet-connects (eval F)))
(volume-connected-to (eval V)))))

(stf (volume-connected-to (eval V))
(remove-duplicates (volume-connected-to (oval V))))

(setf (volume-connected-to (oval V))
(remove 'nil (volume-connected-to (oval V))))

(se, f (volume-connected-to (oval V))
(remove V (volume-connected-to (eval V?)))

(lc.p for V2 in (volume-connected-to (oval V)) ; remove ground volumes
do (cond ((equal 'ground (volume-composition (eval V2)))

(setf (volume-connected-to (eval V))
(remove V2 (volume-connected-to (oval V)))))))

(prinl (volume-connected-to (oval V)))
(terpri))

(terpri)))

164

(defun match-facet-with-another-volume (Facet Volume)
; return the name of the unique facet which is

shared
; between two volumes, else return NIL. Volume is

; assumed to contain facet
(let ((volumes (universe-volumes *universe*)))

(loop for V in volumes
do (cond ((not (equal V Volume))

(cond ((member-p Facet (volume-facets (eval V)))
(return-from match-facet-with-another-volume V))
((or (member-p V (second (facet-connects (oval Facet))))

(member-p V (first (facet-connects (oval Facet)))))
(return-from match-facet-with-another-volume V))))))

'nil))

(defun show-connectivity () ; show how volumes connect
(terpri)
(loop for V in (universe-volumes *universe*)
do (let ()
(terpri) (prinl V)
(princ " <-> ")
(prinl (volume-connected-to (eval V))))))

(defun clear-connectivity () ; clear state of
connectivity

(loop for V in (universe-volumes *universe*)
do (setf (volume-connected-to (eval V)) 'nil))

'done)

(defun connectivity-metric ()
(terpri)
(loop for V in (universe-volumes *universe*)
do (prinl V)
do (princ ": Connections: ")
do (prinl (length (volume-connected-to (eval V))))
do (princ " Facets: ")

do (prinl (length (volume-facets (eval V))))
do (cond ((or (equal (length (volume-connected-to (oval V)))

(1- (length (volume-facets (eval V)))))
(equal (length (volume-connected-to (eval V)))

(length (volume-facets (eval V))))))
(t (princ -- possible error")))

do (terpri)))

165

RIDGE CREATION AND MANIPULATION FUNCTIONS
;; D.H. LEWIS 22May89

;1; Functions to find, make, and manipulate ridge lines.

;;- Main functions: FIND-ALL-RIDGES ()
LINE-IS-A-RIDGE-P (LINE VOLME)
;AKE-CONVEX-VOLUMES ()

;;" Other functions: FIND-FACETS-WHICH-COUNTAIN-EDGE
PUT-FACET-ON-CORRECT-SIDE
FIND-OVERLAPPING-FACETS
FIND-HIGHEST-FACET
RIDGE-LENGTH-SORT

---- Make ridges---

(defun find-all-ridges () ; look for line-segments which are ridges
(terpri) (terpri)
(princ "Find all ridges in ground terrain: ") (terpri) (terpri)
(loop for Volume in (universe-volumes *universe*)
do (cond ((equal 'ground (volume-coposition (eval Volume)))

(loop for E in (Volume-edges (eva] Volume))
do (princ "Ridge check, line: ")

do (prinl E)
do (cond ((line-is-a-ridge-p E Volume)

(setf (line-segment-characteristics (eval E))
'ridge)

(princ " -- Ridge")

(terpri))
(t (setf (line-segment-characteristics (eval E))

'nil)

(terpri))))))))

(defun line-is-a-ridge-p (Line Volume) ; T if line is a ridge
(let ((Facets (find-faceta-which-contain-edge Line Volume))
(Edge-vertical-plane (make-vertical-plane Line))
(Right-side-facets 'nil)
(Highest-right-side-facet 'nil)
(Left-side-facets 'nil)
(Highest-left-side-facet 'nil)
(Vertical-facets 'nil)
(Overlapping-facets 'nil))

; divide facets into left and right halves based
on spacial relationship of middle point

; with vertical plane of Line

(loop for F in facets
do (setf (get F 'center) (nit-point (mean-point-in-facet F)))
do (setf (get F 'opposite-points) 'nil)
do (let ((side (put-facet-on-correct-side F Edgt-vertical-plane)))
(cond ((not (null (first side)))

(setf Left-side-facets (adjoin (first side) Left-side-facets)))

((not (null (second side)))
(setf Vertical-facets (adjoin (second side) Vertical-facets)))

166

((not (null (third side)))
(setf Right-side-faceto (adjoin (third side)

Right-side-facets))))))

; do not consider vertical facets in any manner

(cond ((not (null Vertical-facets))
(return-from Line-io-a-ridge-p 'nil)))

; handle overlapping facets by creating a new facet center
; composed of average of facet points on correct side of
; possible ridge line

(cond ((or (null Left-side-facets)
(null Right-side-facets))

(cond ((null Left-side-facets)
(setf Overlapping-facets

(find-overlapping-facets Edge-vertical-plane
Right-side-facets))

(loop for F in Overlapping-facets
do (setf Right-side-facets (remove F Right-side-facets))))

((null Right-side-faceta)
(setf Overlapping-facets

(find-overlapping-facets Edge-vertical-plane
Left-side-facets))

(loop for F in Overlapping-facets
do (setf Left-side-facets (remove F Left-aide-facets)))))

(cond ((null Overlapping-facets) ; have an internal facet
(return-from line-is-a-ridge-p 'nil)))

(loop for F in Overlapping-facets
do (setf (get F 'center) (init-point (average-of-points

(get F 'opposite-points))))
do (let ((side (put-facet-on-correct-side F Edge-vertical-plane)))

(cond ((not (null (first side)))
(setf Left-side-facets

(adjoin (first side) Left-side-facets)))
((not (null (second side)))
(setf Vertical-facets

(adjoin (second side) Vertical-facets)))
((not (null (third aide)))
(setf Right-side-facets

(adjoin (third side) Right-side-facets))))))))
; reduce lists of left- and right- facets to one facet
; per side, based upon z-value of mean point of facet
(cond ((< 1 (length Left-side-facets))

(setf Highest-left-side-facet (find-highest-facet Left-side-facets)))
(t (setf Highest-left-side-facet (first Left-side-facets))))
(cond ((< 1 (length Right-side-facets))
(setf Highest-right-aide-facet (find-highest-facet Right-side-facets)))

(t (setf Highest-right-side-facet (first Right-side-facets))))
; find if line in a ridge by subs right side mean value
; into left-side plane equation. If resultant Z value
; is greater than right-aide mean value z-value, have
; a ridge, else not

(let* ((point (send (eval (get Highest-right-side-facet 'center))
:list-format))

,z-right-point-into-left-plane
(send (eval Highest-left-side-facet)

:find-z-given-xy (first point) (second point))))
(cond ((> z-right-point-into-left-plans (third point))

(return-from line-is-a-ridge-p 't))
(t (return-from line-ia-a-ridge-p 'nil))))))

167

(defun find-faceto-which-contain-edge (Edge Volume)
(let ((temp 'nil))

(loop for F in (volume-facets (oval Volume))
do (cond ((member-p Edge (facet-edges (oval F)))

(setf temp (adjoin F tomp)))))
temp))

(defun put-facet-on-correct-side (Facet Plane
(let* ((Ao (fourth (send (oval plane) :list-cooff)))

(Ao-Point (subs-point-into-equation (send (oval plans) :list-coeff-3)
(got Facet 'center)))

(Left 'nil)
(Vertical 'nil)
(Right 'nil))
(cond ((GT Ao Ao-point)

(pushnew Facet Left))
((LT Ao Ac-point)
(pushnow Facet Right))
(t (pushnew Facet Vertical)))

(list (first Left) (first Vertical) (first Right))))

(defun find-overlapping-facets (Vertical-plane Facets)
(let* ((Line-Ao (fourth (send (oval vertical-plane) :list-coeff)))

(Facet-center-Ac 'nil)
(overlapping-facets 'nil))
(loop for F in Facets
do (setf facet-center-Ac (send (oval Vertical-plan)

:subs-point-into-plane
(got F 'center)))

do (loop for P in (send (oval F) :points)
do (let ((Point-Ac

(send (oval Vertical-plane) :subs-point-into-plane P)))
(cond ((or (and (GT Line-Ao Point-Ao)

(LT Line-Ac Facet-center-Ao))
(and (LT Line-Ao Point-Ao)

(GT Line-Ac Facet-venter-Ao)))
(setf overlapping-facets (adjoin F overlapping-facets))
(setf (get F 'opposite-points)

(adjoin P (get F 'opposite-points))))))))
overlapping-facets))

(defun find-highest-facet (List-of-facets)
(let ((highest-z (third

(send (oval (get (first list-of-facets) 'center)) :list-format)))
(highest-facet (first List-of-facets)))
(loop for F in (rest List-of-facets)

do (let ((z (third (send (eval (got F 'center)) :list-format))))
(cond ((GT z highest-z)

(setf highest-z z)
(setf highest-facet F)))))

highest-facet))

;---Use ridges to make convex air volumes ---

168

(defun make-convex-volumes ; intersect all vertical planes from ridge

(let ((air-volume-list '()) ; line-segments with all volume(s).
(volume-list 'nil) ; Makes all air volumes convex,
(ridge-list 'nil) ; guarenteed.
(plane-list 'nil))

(terpri) (terpri)
(princ "Making air volumes convex:")
(terpri) (terpri)

; separate all air and ground volumes
; and find ridge lines

(loop for V in (Universe-volumes *universe*)
do (cond ((equal 'air (volume-composition (eval V)))

(setf air-volume-list (adjoin (list V) air-volume-list))
(loop for E in (volume-edges (eval V))

do (cond ((equal 'ridge
(line-segment-characteristics (eval E)))

(setf ridge-list (adjoin E ridge-list)))))
(setf (,iniverse-volumes *universe*)

(remove V (universe-volumes *universe*))))))

; reduce list of ridge lines, and construct vertical planes
; for them. ridges are sorted by length, longest first

(setf ridge-list (remove-duplicates ridge-list))
(setf ridge-list (remove 'nil ridge-list))
(setf ridge-list (stable-sort ridge-list #'ridge-length-sort))
(loop for R in ridge-list
do (setf plane-list (adjoin (make-vertical-plane R) plane-list)))

(setf plane-list (reverse plane-list))
(princ "Air volumes: ") (prinl air-volume-list) (terpri)
(princ "Ridge planes: ") (prinl plane-list) (terpri) (terpri)

; intersect all ridge planes with all air volumes

(setf volume-list (intersect-all-planes-with-volumes plane-list
air-volume-list))

update universe with new volumes created

(loop for V in volume-list
do (push (car V) (universe-volumes *universe*)))

(universe-volumes *universe*)))

(defun ridge-length-sort (A B) ;return T iff A > B
(> (send (eval A) :length)

(send (eval B) :length)))

169

a; *Mode: LISP; syntaxc: Commnon-lisp--

,;D.H. Lewis CS4452/THISIS 5May98

FLAVORS AND METHODS

FLAVOR:........................ Point

METHODS: :LIST-FORHAT ; give the x,y and z values as a
three-tuple

*:LIST-FORM4AT-REAL ; same, in real number format
:LIST-FOHRg.T-4 ; give agraphics 4-tuple "(x y z1)
:PRINT ; print info on point

FLAVOR:........................ Vector

*METHODS: :LENGTH ,calculate length of vector
:UNI4T-VECTOR ;return the coeff of the unit vector
:ENDPOINTS ,give the names of the endpoints of the

vector
*:LIST-FORMAT ; give the coeffs of the vector as a

3-tuple
:LIsT-FORMAT-REAL ; same, execept with real numbers

* :PRINT ,print coeff values to output file

FLAVOR:........................ Line-segment

METHODS: :ENDPOINTS ; Return the endpoints of the line-segment
:ENDPOINT-LIST ; Return endpoints as explicit 4-tuples
:OTHER-END (ENDPOINT) ; Given one endpoint, return the other

-.START-POINT ; Return the start point of the
line-segment

:END-POINT "end point '

:LENGTH ; Find and return the length of the
line-segment

:BACKSUBS (T-LIST) ; Subsitute the (Tx Ty Tz) list into
the line equation

:MID-POIT ; Find the mid point of the line-segment
:STRATTLE-PLANE-P (PLANE) ;do the endpoints of the line-segment

lie on opposite sides of the plane?
:PRINT

*FLAVOR:......................... Plane

b1ETHODS: :TEST-EQUAL (PLANE) ;Do two planes have the same coeffs?
:LIST-COEFF ;List 4-tuple (X Y Z Ao) for plane
:LIST-COEFF-3 ;List 3-tuple (X Y Z) for plane

* :SUBS-POINT-INTO-PLANE (POINT) ; Get Ao coeff from X, Y, Z values of
point

:FIND-Z-GIVEN-XY (X Y) ;Return Z value of point in plane
:FIND-Y-GIVEN-XZ (X Z) X ". X1 '1 11

* :FIND-X-GIVEN-YZ (Y Z) " y " " "

:PRINT

*FLAVOR:........................ Bounding-box

170

METHODS: :CONSTROCT-BOUNDING-BOX (POINTS) ; Build a 3-D limits for list of
points

:INSIDE-BOUNDING-BOX (POINT) ; Is the point inside the limits?

FLAVOR:....................... Facet

METHODS: :POINTS
:PRINT

FLAVOR:....................... volume

METHODS: :MAKE-EQUAL
-CLEAR
:FIND-ARITHMETIC-CENTER
:MAKE-NODE-LIST
:MAKE-POLYGON-LIST

* :PRINT

FL.AVOR:....................... Universe

METHODS: :SAVE-STATIC-ITEMS
:REVERT-STATIC-ITEMS

OTHER FUNCTIONS: MAKE-ORIGIN INIT-POINT
MAKE-NULL-VECTOR INIT-NEW-POINT
MAKE-POINT-NAME INIT-VECOTR
MAKE-LINE-NAME INIT-NEW-VECTOR
MAKE-VECTOR-NAME INIT-LINE
HAKE-FACET-NAME INIT-NEW-LINE
MAKE-PLANE-NAME INIT-PLA4E
MAKE-VOLUME-NAME INIT-NEW-PLANE
MAKE-ALL-FACETS INIT-VOLUME
MAKE-NEW-FACET INIT-FACET-2
MAKE-A-FACET

FIND-OR-MAKE-LINE
OLD-LINE-DV
INITIALIZE-SEARCH
SEARCH-TO-MAKE-FACET
BUILD-SIDE-FACET
BUILD-TERRAIN

(defvar *origin*)
(defvar *null..vector*)
(defvar *one-vector* '(1.0 1.0 1.0 1.0))
(defvar *one-vector-3* '(1.0 1.0 1.0))
(defvar *zero-voctor* '(0.0 0.0 0.0 0.0))
(defvar *zero-voctor-3* '(0.0 0.0 0.0))
(defvar *max-counter-value* '9999)
(defvar *dorne-making-new-vjsibility..volumes-flag* 'nil)

(defvar *list-of-points* 'nil)
(defvar *points-counter* '0)
(defvar *minimuin-points-counter* '0)

(defvar *list-of-vectora* 'nil)
(defvar *vectors-counter* '0)
(defvar *minimum-voctors-counter* '0)

(defvar *ljst-of-ljnes* 'nil)

171

(defvar *lines-counter* '0)
(defvar *minimum-lines-counter* '0)

(defvar *list-of-planes* 'nil)
(defvar *planes-counter* '0)
(defvar *mjnimumplanes-counter* '0)

(defvar *list-of-faceta* 1)
(defvar *facets-counter* '0)
(defvar *minimum-facets-counter* '0)

(defvar *list-of-volumes* 1
(defvar *volumes-counter* '0)
(defvar *mjnimum-volumes-counter* '0)

;--POINT--

(doff lavor point
(x-coord
y-coord
z -coord)

0)
gettable-instance-variables
settable-instance-variables
inittable-instance-variables
outside-accessible-instance-variables)

(defmethod (point :Li~t-format) () ;return a 3-tuple "(X Y Z).,
(list x-coord y-coord z-coord))

(defmethod (point :List-format-real) 0) ; return a real valued 3-tuple
(map 'list 1* (list x-coord y-coord z-coord)

(make-list 3 :initial-element '1.0)))

(defmethod (point :List-format-4) () ; return list in graphics format
(list x-coord y-coord z-coord '1))

(defmethod (point :print) ()
(pprint (list x-coord y-coord z-coord) *output-stream*))

---- VECTOR--

(defflavor vector
(i

j
k
Start -point
End-point)

()tal-ntac-aibe
gsettable-instance-variables
:seittable-instance-variables

:outside-accessible-instance-variables)

(defmethod (vector :length) () ;Calculate the length of a vector
(sqrt (abs (+ (*i) (* j j) (* k k)))))

172

(defmethod (vector :unit-vector) () ; make a unit vector from a vector
(let ((vector-length (send self :length)))

(cond ((equal-zero-p vector-length) '(0.0 0.0 0.0))
(t (map 'list 'I/ (send self :list-format)
(make-list 3 :initial-element vector-length))))))

(defmethod (vector :endpoints) () ; find the endpoints of the vector
(list Start-point End-point))

(defmethod (vector :list-format () ; return the values of the
; vector as a 3-tuple

(list i j k))

(defmethod (vector :list-format-real) () ; return a real valued 3-tuple
(map 'list '* (list i j k) (make-list 3 :initial-element '1.0)))

(defmethod (vector :print) ()
(pprint (list i j k Start-point End-point) *output-stream*))

;-------- LINE SEGMENT -------

(defflavor line-segment : position vector can point to either end of
(t-max ; direction vector, direction vector can point
position-vector ; in either direction between endpoints
direction-vector
characteristics) ; ridge, valle- etc
()
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables

:outside-accessible-instance-variables)

(defmethod (line-segment :endpoints) () ;get endpoints of the line segment
(send (eval direction-vector) :endpoints))

(defmethod (line-segment :endpoint-list) () get endpoints in graphics format
(list (send (eval (car (send self :endpoints))) :list-format-4)

(send (eval (cadr (send self :endpoints))) :list-format-4)))

(defmethod (line-segment :other-end) (endpoint)
; find the endpoint of the line-segment
opposite of the given endpoint

(let ((line-endpoints (send self :endpoints)))
(cond ((equal endpoint (first line-endpoints))

(second line-endpoints))
(t (first line-endpoints)))))

(defmethod (line-segment :start-point) C)
; what is the start point of the line-segment?

(vector-start-point (eval direction-vector)))

(defmethod (line-segment :end-point) ()
; what is the end point of the line segment?

(vector-end-point (eval direction-vector)))

(defmethod (line-segment :length) () how long is the line-segment?
(send (eval direction-vector) :length))

(defmethod (line-segment :backsubs) (t-list) ; subs a list of t-parameters
back into the line equation to get

; the (x y z) coord of the point
(mapcar '+ (send (eval poiition-vector) :list-format-real)

173

(send (oval direct ion-vect or) : liot-format -real))))

(defmethod (line-segment :midpoint) 0)
(let ((t-half (/ t-max '2.0)))

(send self :backsubs (list t-half t-half t-half))))

(defmethod (line-segment :strattle-plane-p) (plane)
; return T if f the endpoints of self
;are on opposite aides of the given

plane
(let ((Ao-l (send (oval plane) :point-into-equation

(first (send self :endpointafl)
(Ao-2 (send (oval plane) :point-into-equation

(second (send self :endpoints))))
b (Ao (fourth (send (eval plane) :list-cooff))))

(cond ((or (equal-error Ao Ao-1)
(equal-error Ao Ao-2))

'nil)
((or (and (GE Ao-l Aol

(ME Ao-2 Ao))
(and (ME Ao-l Ao)

(GE Ao-2 Ao))

(defmethod (line-segment :print) (
(pprint t-max *output-streai*)
(pprint (list position-vector (send (oval position-vector) :list-format)

(send (oval position-vector) :endpoints)) *output-stream*)
(pprint (list direct-ion-vector (send (eval direction-vector) :list-format)

(send (oval direction-vector) :endpoints)) *cutput..stream*)
(pprint (send self :endpoints) *output-stream*)
(pprint characteristics *output-stream*))

----- PLANE -------

(def flavor plane uses equation of plane:
(a-coef
b-coef aX +bY +cZ -Ao
c-coef
Ao) ;for comparisions, equation is generally

(1 ; normalized, so Ao-.-l,4l or 0.
.gettable-instance-variables ; NOTE: first non-zero coeff will ALWAYS

be a
.settable-instance-variables ; positive number. Avoids direction

ambiguity
inittable-instance-variables
outside-accessible-instance-variables)

(defmethod (plane :test-equal) (F2) ; test plane for equality by comparing
;coefficients, or comparing the cooLffa
;of the unit normal vectors

(let ((Vi (mnit-vector '*origin* (mnit-point (send self :list-coeff-3))))
(V2 (mnit-vector '*origin* (mnit-point (send (oval F2) :list-coeff-3)f))
(or (apply 'and

tmap ''.A*equal-error
(send self :list-coeff)
(send (eval F2) :list-coeff)))

(apply land
(map 'list #'equal-error

(send (eval Vl) :unit-vector)
(send (eval V2) :unit-vector))))))

174

(defmothod (plane :list-coeff) ();list plane coefficents as a 4-tuple
(list a-coef b-coef c-coot Ao)) ;(includes the PAo constant term)

(dofmothod (plane :list-coeff-3) 0 ;list only the x,y,z coefficents
(list a-coef b-coot c-coef))

(defmethod (plane :subs-point-into-plane) (Pt) ; subs a point into the planar
; equation, returns result.

(apply '+ (map 'list 1* (send self -:list-coeff-3)
(send (oval Pt) :list-formatf))

(detmethod (plane :point-into-equation) (Point) ;subs point into plane
equation

same as above

(apply '+ (map 'list 1* (send (oval point) :list-fornat)
(send self :list-coot f-3))))

(defmethod (plane :find-x-given-yz) (y z) ;find the x value of a point given
the

(cond ((equal-zero-p a-coot) '0) ;y and z coordinates of a point, for
;the plane under consideration

(t ((-Ao (+ (* b-coot y) (* c-coot z))) a-coot))))

(detmethod (plane :tind-y-given-xz) (x z) ;find the y value of a point given
the

(cond ((equal-zero-p b-coot) '0) ;x and z coordinates of a point, for
;the plane under consideration

(t ((-Ao (+ (* a-coot x) (* c-coot z))) b-coot))))

(detmethod (plane :tind-z-given-xy) (x y) ;find the z value of a point given
the

(cond ((equal-zero-p c-coot) '0) ;x and y coordinates of a point, for
;the plane under consideration

(t UI (- Ac (+ (* a-coef x) (* b-coot y))) c-coef))))

(detnethod (plane :print) 0)
(pprint (soend self :list-coeft) *output-stream*))

------BOUN~DING BOX ---------

(dettlavor Bounding-box ;generalized bounding box flavor
(nax-x
min-x
max-y
min-y
max-z
min-z)

()tal-ntac-aibe
* gettable-instance-variables
:isettable-instance-variables

* outside-accessible-instance-variables
* required-methods)

175

(defmethod. (bounding-box :construct-bounding-box) (points)
;build bounding box for
;a list of points

(let* ((first-point (send (oval (first points)) :list-format))
(x (first first-point))
(y (second first-point))
(z (third first-point)))
(setf max-x X)
(setf mim-x x)
(setf max-y y)
(setf min-y y)
(Botf max-z Z)
(sotf zin-Z Z)
(loop for P in (rest points)
do (lot* ((next-point (send (oval P) :list-format))

(new-x (first next-point))
(new-y (second next-point))
(new-: (third next-point)))

(cond ((GT new-x max-x)
(setf max-x new-x))

((LT new-x min-x)
(setf min-x new-x)))

(cond ((GT new-y max-y)
(setf max-y new-y))

((LT new-y min-y)
(setf min-y new-y)))

(cond ((GT new-z max-z)
(setf max-: new-z))

((LT new-: mnm-z)
(3etf min-z new-z)f)f))

(defmethod (bounding-box :inside-bounding-box-p) (point)
;return T if point is inside
;bounding box, NIL otherwise

(let ((p (map 'list I* (send (oval point) :list-format) '(1.0 1.0 1.0))))
(cond ((and (and (GE max-x (first p))

(LE min-x (first p)))
(and (GE max-y (second p))

(LE min-y (second p)))
(and (GE max-: (third p))

(LE min-z (third p))))

(t 'nil))))

------- FACET -------

(def flavor facet
(edges ;list of all edges bounding facet
center ;location of center of facet
connects) ;volumes which facet connects "((Vl. .Vn)

(V2. .Vm))"
(plane ;mixin flavors
bounding-box)
gottable-instance-variablea
sottable-instance-variables
tinittable-instanc*-varikbles
:outside-accessible-inatance-variables
required-methods)

176

(defmethod (facet :points) () ; return all verticies of facet
(let ((temp 'nil))

(loop for E in Edges
do (setf temp (append temp (send (eval E) :endpoints))))

(delete-duplicates temp)))

(defmethod (facet tfind-facet-center) () ; find the average of all the vertices
of the facet.

(let* ((points (send self :points))
(temp-sum (send (eval (first points)) :list-format))
(nr-points (length points)))
(loop for P in (rest points)
do (setf temp-sum (map 'list '+ temp-sum

(send (eval P) :list-format))))
(setf (facet-center self)
(init-point (map 'list 'I/ temp-sum (make-list 3 :initial-element

nr-points))))
(facet-center self)))

(defmthod (facet :add-volume-to-left-connects) (V) ; add a volume to the left
list

; of the connects variable
(cond ((null (facet-connects self))

(setf (facet-connects self) (list (list V))))
((not (member-p V (first (facet-connects self))))
(setf (first (facet-connects self)) (adjoin V (first (facet-connects

self)))))))

(defmethod (facet :add-volume-to-right-connects) (V) ; add a volume to the right
list

of the connects
variable

(cond ((equal 'I (length (facet-connects self)))
(setf (facet-connects self) (list (first (facet-connects self)) (list V))))
((not (member-p V (second (facet-connects self))))
(setf (second (facet-connects self))

(adjoin V (second (facet-connects self)))))))

(defmethod (facet :print) ()
(pprin. (list edges center connects (send self :list-coeff)) *output-stream*))

------.VOLUME ----

(defflavor volume
(Visibility ; visible observers
Probability-of-detection ; sum of PD for observers
Composition ; ground, air, etc
Points ; all vertices of the volume
Edges ; all line-segmento of the volume
Facets ; all surfaces of the volume
Arithmetic-center ; numeric average of the points
connected-to) adjacent volumes
(Graphic) ; for 3-D projection
:gettable-instance-variables
:settable-instance-variables
:inittable-instan,e-variables
:outside-accessible-instance-variables
:required-methods)

177

(dofmethod (volume :make-equal) (new-volume-name)
; make a new volume with same

instances
(let ((temp new-volume-name)) ; as self

(set temp (make-instance 'volume
:Visibility Visibility
:Probability-of-detection Probability-of-detection
:Composition Composition
:Points Points
:Edges Edges
:Facets Facets
:arithmetic-center Arithmetic-center
:connected-to Connected-to))))

(defmethod (volume :clear) (1 : clear out old values of an existing volumes
(setf Visibility 'nil)
(setf Probability-of-detection 'nil)
(setf Composition 'nil)
(setf Points 'nil)
(setf Edges 'nil)
(setf Facets 'nil)
(setf Arithmetic-center 'nil)
(setf Connected-to 'nil))

(defmethod (volume :find-arithmetic-center) ()
; find the average of all the
iof the volume. do not change values

in the volume

(let ((temp-sum (send (eval (first Points)) :list-format))
(nr-points (length Points)))
(loop for P in (rest Points)
do (setf temp-sum (map 'list '+ temp-sum

(send (eval P) :list-format))))

(init-point (map 'list 'I/ tamp-sum
(make-list 3 :initial-element nr-points)))))

(defmethod (volume :make-node-list) ()
; make a list of absolute point coords in

graphic
(loop for P in points ; format (eg 4 element list)

; used in GRAPHICS.
collect (reverse (append (list '1)

(reverse (send (eval P) :list-format))))))

(defmethod (volume :make-polygon-list) ()
;index point values to points in node

list
(loop for L in edges ; used in GRAPHICS
do (setf Ptl (car (send (eval L) :endpoint-list)))
do (setf Pt2 (cadr (send (eval L) :endpoint-list)))

collect (list (position-if '(lambda (A) (equal A Ptl)) node-list)
(position-if ' (lambda (A) (equal A Pt2)) node-list))))

(defmethod (volume :print) ()
(ppr.nt (list Visibility Probability-of-detection Composition Points Edges

Facets
arithmetic-center connected-to) *output-strerm*))

178

----UNIVERSE --

(defflavor Universe ;space of all volumes
(Volumes
Observers ; observers located within the defined

universe
static-vectors ; save the state of the lines, points and
static-vector-counter ; vectors used to build the static visibility
static-lines ;model
static-lines-counter
static-points
static-points-counter)

0)
gettable- instance-variables
:settable-instance-variables
inittable-instance-variablos

:outside-accessible-instance-variables)

(defmethod (universe :save-static-items) C) ;save state of static
universe

(setf static-vectors *list-of-vectors*)
(aetf *minimum-vectors-counter* *vectors.-ceunter*)
(setf static-lines *list..of-lines*)
(setf *minimum-lines-counter* *lines-.counter*)
(setf static-points *list..of-pointg*)
(setf *minimum-points-counter* *points-counter*)
(setf *minimum-planes-counter* *planes..counter*)
(setf *minimum-facets-counter* *facets-counter*)
(setf *minimum-voltumes-counter* *volumo3-counter*))

;;FUNCTIONS TO INITIALIZE; GET NAMES OF OBJECTS AND MAKE NAMES GLOBAL

(defun make-origin (),names of special points
and

(gensym (incf *points-counter*)) other unique flavors.
(setf *origin* (make-instance 'point

:x-coord '0
:y-coord '0
:z-coord '0))

(pushnew '*origin* *list-of-points*))

(defun make-null-vector ()
(gensym (incf *vectors-counter*))
(setf *null..vector* (make-instance 'vector

:i '0
:j '0
:k '0
:Start-point '*oriain*
:End-point '*origin*))

(push '*null-vector* *list-of-vectors*))

179

(defun make-point-name ; produce variable names "on the fly"
(cond ((> *peinta-counter* (1- *maxcounter-vlue*))

(setf *points-counter* *minJinum-poiflts-counter*)))
(gensym (incf *points..counter*))
(intern (gensym "point")))

(defun make-line-name ()
(cond ((> *lines-counter* (1- *mx-counter-valuo*))

(set? *lines-counter* *mlnimumlines-counter*)))
(genaym (incf *lines-counter*))
(intern (qensym "line")))

(defun make-vector-name 0)
(cond ((> *vectors-counter* (1- *max..ounter-value*))

(sotf *vectors-coljnter* *gmniumveotors-counter*)))
(gensym (incf *vectors-counter*))
(intern (gensym "vector")))

(defun make-facet-name J)
(cond ((> *facets-counter* (1- *max-cunter-value*))

(setf *facets-counter* *minimum-facetscounter*)))
(gensym (incf *faceta..counter*))
(intern (genoym, "facet")))

(defun make-plane-name (U
(cond ((> *planea-counter* (1- *max-.countor-value*))

(setf *planes-counter* *minimumplanes..counter*)))
(gensym (incf *planea-counter*))
(intern (gensym "plane")))

(defun make-volume-name ()
(cond ((> *volJmes-counter* (1- *max-counter-value*))

(setf *volumes-counter* *minimum-voluios-counter*)))
(gensym (incf *volumea-counter*))
(intern (gensym "volume")))

;;FLAVOR INSTANTIATION FUNCTIONS

;;Note: all of therse functions will atop keeping lists of previously
created instantiationa after flag
done-.making-nev-visibility-.volumes-flag is act to T

----- HAKE A POINT --------

(defun mnit-point (Liat-of-values) :see if point already exists
(nonrecursive)

(cond ((and (not (null *list-of-pointa*))
(no' doemkn-o-iiilt-oue-lg)

(loop fc- P in *list-of-points*
do (cond ((apply 'and

(map 'list *'equal-error
(map 'list 'rationalize list-of-values)

(*end (oval P) :list-format))'
(return-from init-point P)))f)

(mnit-new-point list-of-values))

180

(defun mnit-new-point (List-of-values)
(let ((temp (make-point-name)))

foot temp (nmake-inatance 'point
:x-coord (rationalize (first List-of-values))
:y-coord. (rationalize (second List-of-values))
:z-coord (rationalize (third List-of-values))))

(push temp *liot-of-points*)
tamp))

-----MAK.E A VECTOR -------

(defun mnit-vector (Start-point End-point) ;check to ass, if vector already
built

(cond ((not *done-makingnev-visibility.volumes-flag*)
(loop for V in *list-of-vectors*

do (cond ((equal (send (oval V) :endpoints)
(list Start-point End-point))
(return-from mnit-vector V))))))

(mnit-new-vector Start-point End-point))

(defun init-new-vector (Sp Ep)
(let ((tamp (make-vector-name)))

(set temp
(make-instance 'vector

.i (-(point-x-coord (oval Ep)) (point-x-coord (oval Spf)
:j (-(point-y-coord (oval Ep)) (point-y-coord (eval Sp)))
:k ((point-z-coord (oval Ep)) (poizit-z-coord (oval Sp)))
.Start-point Sp
.End-point Ep))

(push temp *list-of-.vectora*)
temp))

-----MAKE A LINE SEGMENT -------

(defun mnit-line (Position-vector Direction-vector)
;valid construction for a line???

(cond ((and (equal (vector-Start-point (oval Position-vector)) '*origin*)
(member-p (vector-end-point (oval Position-vector))

(send (oval Direction-vector) :endpoints)))
(Find-or-make-line Position-vector Direction-vector))

(t (terpri)
(princ "Error invalid vectors: "

(prini (list position-vector direction-vector)) (terpri))))

(defun Find-or-make-line (Pv Dv) ;check to see if line already
built

(cond ((not *dn-aignwvsbiiyvlmmfe*
(loop for L in *list-of-lines*

do (cond ((and (member-p (vector-end-point (oval Pv))
(send (oval (old-line-Dy L)) :endpoints))

(or (equal (send (oval Dv) :endpoirits)
(send (oval (old-line-Dy L)) :endpoints))

(equal (send (oval Dv, :endpoints)
(tireverse
(send (oval (old-line-Dy L)) :endpoints)))))

(return-from find-or-make-line L))))))
(mit-new-line Pv Dv))

181

(defun init-new-line (Pv Dv)
(let ((tamp (make-line-name)))

(set temp (make-instance 'line-segment
:t-max '1
:Position-vector Pv
:Direction-vector Dv
:characteristics 'nil))

(push temp *list-of-lines*)
temp))

(defun old-line-Dy (Line)
(line-segment-Direction-vector (eval Line)))

-- MAKE A PLANE ---------

(defun init-plane (List-of-values) ; see if plane already exists
(nonrecursive)

(cond ((and (not (null *list-of-planes*))
(not *done-making-nw-visibility-volumes-flag*))

(loop for P in *list-of-planes*
do (cond ((or (equal (send (eval P) :list-coeff)

list-of-values)
(apply 'and (map 'list #'equal-error

(send (eval P) :list-coeff)
list-of-values)))

(return-from init-plane P))))))
(init-new-plane list-of-values))

(defun init-new-plane (List-of-values)
(let ((temp (make-plane-name)))

(set temp (make-instance 'plane
:a-coef (rationalize (first list-of-values))
:b-coof (rationalize (second list-of-values))
:c-coef (rationalize (third list-of-values))
:Ao (fourth list-of-values)))

(push temp *list-of-planes*)
temp))

- MAKE ALL FACETS------------------------------

Used by intercept routines to rebuild volume facets.

*** W A R N I N G ***

Note: Facets MST be convex and MST NOT be adjacent to
facets in the same volume with the same plane equation

Used by input method 1 and by all intercept routines

(defun make-all-facets (Volume)
(reset-point-property-lists Volume)

; initialize point 'lines property list

(loop for L in (Volume-edges (eval Volume))
do (let* ((endpoints (send (eval L) :ondpoinits))

(first-point (first eridpoints))
(second-point (second endpoints)))

(setf (get first-point 'lines) (adjoin L (get first-point 'lines)))

182

(setf (get second-point 'lines) (adjoin L (get second-point 'lines)))))
; build all facets from points

(loop for P in (volume-points (oval Volume)) ; make all facets possible
do (loop for L in (get P 'lines)
do (let* ((other-end-L (send (eval L) :other-end P)))

(initialize-search Volume P (list L) (List other-end-L P)))))

(reset-point-property-lists Volume))

(defun initialize-search (Volume Goal old-lines old-points)
(let ((point2 (first old-points))
(Line (first old-lines))
(search-result 'nil)
(facet-name 'nil))
(loop for L in (get point2 'lines)
do (cond ((and (not (equal L Line))

(not (equal Goal (,end (eval L) :other-end point2))))
(let ((plane (init-plane (make-a-normalized-plane L Line))))

(cond ((not (member-p plane (get Goal 'planes)))
(setf (get Goal 'planes) (adjoin plane (get Goal 'planes)))
(setf search-result (search-to-make-facet Goal

plane
(list L Line)
(pushnew (send (eval L) :other-end point2)

old-points)
'nil
'nil))

(cond ((<= '3 (length (first search-result)))
(setf facet-name (init-facet-2 search-result)))
(t (setf facet-name 'nil)))

(cond ((not (null facet-name))
(setf (volume-facets (eval Volume))

(adjoin facet-name (volume-facets (eval
Volume))))

(defun search-to-make-facet (Goal
Facet-plane
old-lines
old-points
rejected-points ;
rejected-lines) ;

(let ((current-point (first old-points))
(last-line (first old-lines))
(Line 'nil)
(possible-paths 'nil))
(loop for candidate-line in (get current-point 'lines)

do (let ((othei-end-cand-line
(send (eval candidate-line) :other-end current-point)))
(cond ((apply 'and (list (not (member-p candidate-line old-lines))

(not (member-p candidate-line rejected-lines))
(not (member-p other-end-cand-line

rejected-points))))
(cond ((not (member-p other-end-cand-line old-points))

(cond ((send (oval facet-plane) -test-equal
(make-a-plane other-end-cand-line

(first old-lires)))
(setf (get other-end-cand-line 'distance)

(distance Goal other-end-cand-line))
(setf possible-paths

(adjoin candidate-line possible-paths)))
(t (pushnew candidate-line rejected-lines))))

183

((equal other-end-cand-line Goal)
(loop for P in (adjoin other-end-cand-line old-points)
do (setf (get P 'planes)

(adjoin Facet-plane (get P 'planes))))
(return-from search-to-make-facet (list

(adjoin candidate-line
old-lines)

facet-plane)))
(t (pushnew candidate-line rejected-lines))))

(t (pushnew candidate-line rejected-lines)))))
(cond ((not (null possible-paths))

(setf Line (minimum-distance possible-paths current-point))
(push Line old-lines)
(pushnew (send (eval Line) :other-end current-point) old-points))

(t (pushnew last-line rejected-line) ; remove last line, current
point

(pushnew current-point rejected-points) ; and retrace steps (backtrack)
(setf old-lines (rest old-lines))
(setf old-points (rest old-points))
(cond ((> 2 (length old-lines)) ; backtracked too far?

(return-from search-to-make-facet 'nil)))))
(search-to-make-facet Goal Facet-plane old-lines old-points

rejected-points rejected-lines)))

(defun init-facet-2 (properties) ; Check to see if already built facet
(cond ((not (null properties)) ; else return name of new facet, or nil.

(let* ((edges (first properties))
(plane (second properties))
(test-plane (map 'list 'abs

(map 'list I* (send (eval plane) :list-coeff)
one-vector)))

(equal-flag 't))
(cond ((equal-p test-plane *zero-vector*) ; remove artifact facets

(return-from init-facet-2 'nil)))
(cond ((not (null *list-of-facets*))

(loop for F in *list-of-facets* ; see if already exists
do (cond ((equal (length edges)

(length (facet-edges (eval F))))
(setf equal-flag 't)
(loop for E in edges
do (cond ((not (member-p E (fact -edges (eval F))))

(setf equal-flag 'nil))))
(cond (equal-flag

(return-from init-facet-2 F))))))))
(make-new-facet edges plane)))

(t (return-from init-facet-2 'nil))))

(defun make-new-facet (list-of-edges plane)
(let ((plane-equation (send (eval Plane) :list-coeff))
(temp (make-facet-name)))
(set temp (make-instance 'facet

:Edges list-of-edges
:center 'nil
:connects 'nil
:a-coef (first Plane-equation)
:b-coef (second Plane-equation)
:c-coef 'third Plane-equation)
:Ao (fourth Plane-equation)))

(push temp *list-of-facets*)
temp))

184

; --- MAKE A FACET FROM INPUT .. .-

; Used by input method 2 (only)

(defun make-a-facet (points) ; build a facet from a list of point names

(let ((first-point (first points))
(start-point (first points))
(lines 'nil)
(plane-of-facet 'nil))
(loop for End-point in (rest points) : construct edge* of facet
do (let ()
(setf lines (adjoin (make-line Start-point End-point) lines))
(setf Start-point Znd-point)))

(setf lines (adjoin (make-line Start-point First-point) lines))

(setf Plane-of-facet (init-plane (make-a-normalized-plane (first lines)
(second lines))))

(make-new-facet lines plane-of-facet))) ; return now facet name

(defun build-side-facet (Ptl Pt2 Side-points) ; make a facet w/disjoint list of
points

(make-a-facet (append (list Ptl Pt2) Side-points)))

(defun build-terrain (data) ; build facets with raw facet data, where data
; is in format (point point point ...)
; and the points are in format (x y z)
; return a list of all facets built

(let ((list-of-facets 'nil))
(loop for Facets in Data ; each list within data is a facet
do (let ((points (map 'list #'init-point Facets)))
(setf list-of-facets (adjoin (make-a-facet points) list-of-facets))))

list-of-facets))

------------------------------ MAKE A VOLUME---------------------------

(defun init-volume (data)
(let ((temp (make-volume-name))
(volume-data (pop data)))
(set temp (make-instance 'volume

:Visibility (second volume-data)
:Probability-of-detection 'nil
:Composition (first volume-data)
:Points ' ()
:Edges ' ()
:Facets ' ()
:arithmetic-center 'nil
:connected-to 'nil))

(push temp *list-of-volumes*)
(Initialize-volume temp data)
temp)) ; return name of volume created

185

CO0N S T RU CTIO0N U TIL I TY F U NCTIO N S

(defun sample-2-l 0)
(set-up 1 1"t27-ridges-shadow")
(init-observer ' (500 50 200) '0.02)
(set-up-2)
(pprint (length (universe-volumes *universe*)))

b (a-star-search (mnit-point '(0 0 200)) (init-point '(0 1000 200)) 'nil 'nil))

(defun sample-4-2 ()
(set-up 2 '"t310-full-ridge")
(mit-observer ' (10 500 250) '0.75)
(mit-observer ' (990 500 250) '0.50)
(set-up-2)
(pprint (length (universe-volumes *universe*)))
(a-star-search (mnit-point 1(500 10 400)) (mnit-point ' (500 990 400)) 'nil

'nil))

(defun sample-5-i) one obs in central valley
(set-up 1 1't25-ridge-box")
(mnit-observer ' (0 500 200) '0.02)
(set-up-2)
(pprint (length (universe-volumes *universe*)))
(a-star-search (mnit-point '(10 10 500)) (mnit-point '(10 990 225)) 'nil

'nil))

(defun sample-5-2 ();one obs in central valley, one on side
(set-up 1 't25-ridge-box")
(mnit-observer ' (0 500 200) '0.75)
(mnit-observer ' (50 50 250) '0.75)
(set-up-2)
(pprint (length (universe-volumes *universe*)))
(a-star-search-n (mit-point '(10 10 500)) (mnit-point '(10 990 225)) 'nil '10

'nil))

(defun sample-6-1 ();single observer on one side of central
valley

(set-up 2 ''t320-double-peak")
(mnit-observer '(10 500 225) '0.02)
(set -up-2)
(pprint (length (universe-volumes *universe*)))
(a-star-search (mnit-point ' (500 10 250)) (mnit-point ' (500 990 250)) 'nil

'nil))

(defun sample-6-2 ();one each on each side of the peaks
(sot-up 2 "'t320-double-peak')
(mnit-observer ' (10 250 250) '0.75)
(mnit-observer ' (990 750 250) '0.75)
(set-up-2)
(pprint (length (universe-volumes *universe*))
(s-star-search (mnit-point '(500 10 250)) (mnit-point '(500 990 250)) 'nil

'nil))

186

(defun semple-7-l 1
(met-up 2 1"t360-2-peak-2-ridge")
(knit-observer ' (100 800 250) '0.75)
(set-up-2)
(pprint (length (universe-volumes *universe*)))
(a-star-search (knit-point '(10 10 300)) (mnit-point '(990 990 300)) 'nil

'nil))

(defun sample-a-i C
(net-up 2 '"t350-six-peaks")
(mnit-observer ' (100 800 250) '0.75)
(set-up-2)
(pprint (length (universe-volumes *unverse*)))
(&atar-search (knit-point ' (10 10 300)) (knit-point ' (500 990 300)) 'nil

'nil))

(defun sample-final-paths (
(let ((goal (knit-point '(10 990 225)))
(lkst-of-start-points 'nil))
(loop for C from 10 upto 990 by 200
do (setf list-of-start-points (adjoin (mnit-point (list C 110 '600))

list-of-start-points)))
(loop for S in (reverse list-of-start-points)

do (speed-demon)
do (a-star-search S Goal 'nil'nil))

(display-paths *list-of-paths*)))

(defun sample-9-l () ; one obs in central valley
(set-up I1'"t21-ridge-Y")
(init-observer ' (99U 500 200) '0.0150)
(set-up-2)
(pprint (length (universe-volumes *universe*)))
(a-star-search (mnit-point '(10 10 410)) (knit-point '(10 990 410)) 'nil

'nil))

187

Mode:Common-Lisp; Base:10--

(d~fvar testvar)

(defun TS ()

(a-star-search (mnit-point '(0 0 200)) (init-point '(0 1000 200)) 'nil It))

(defun TSl (

(a-star-search (mnit-point '(0 0 200)) (init-point '(0 1000 200)) 't 'nil))

(defuh TS2 0)
b (a-star-search-H (mnit-point '(0 0 200)) (mnit-point '(0 1000 200)) It 5

'nil))

t (defun TS3 C
(a-star-search-H (mnit-point '(0 0 200)) (mnit-point '(0 1000 200)) 'nil 10

'nil))

(defun TS4 (0
(a-star-search-H (mnit-point '(0 0 200)) (mnit-point '(0 1000 200)) 'nil 5

It))

(defun TS5 () ;used with box-canyon or t-27-ridge-shadow
(a-star-search-H (mnit-point '(510 0 800)) (mit-point '(500 1000 900)) 'nil 5

It))

(defun TS6 () ;used with box-canyon
(setf testvar (a-star-search-M (mnit-point ' (900 0 300)) (mnit-point '(990

1000 250)) 'nil 5 't)))

(defun TS7 () ;used with or t-27-ridge-shadow
(setf testvar(a-star-search-H (mnit-point ' (0 310 210)) (mnit-point ' (1000 750

300)) 'nil 5 It)))

(defun TS8 () ;used with or t-27-ridge-shadow
(a-star-search-H (mnit-point ' (10 0 300)) (mnit-point ' (990 990 990)) 'nil 5

It))

(defun TS9 () ;used with or t-27-ridge-shadow
(a-star-search-H (mnit-point '(900 10 910)) (mnit-point '(1000 750 300)) 'nil

5 It))

(defun TS340-1 C
(a-star-search (mnit-point '(950 0 210)) (mnit-point '(990 1000 550)) 'nil

'nil))

(defun to-speed (path-list)
(let ((timel)
(time2))
(setf timel (time))
(ranidom-ray-optimize path-list)
(setf time2 (time))
(princ "this is timel - ") (princ timel) (terpri)
(princ "this is time2 - ") (princ time2) (terpri)
(princ "the difference is - ") (princ (- time2 timel)) (terpri)))

(defun ta-speed-old-opt (path number-of-optimizations)
(let ((timel)

188

(time?))
(setf timel (time))
(do* ((new-path (optimize-path path) (optimize-path new-path))
(count (- number-of-optimizations M)- count 1f)

((zerop count) (princ path) (path-data new-path)))
(setf time? (time))
(princ "this is timel - ") (princ timel) (terpri)
(princ "this is time2 - "1)(princ time?) (terpri)
(princ "the difference is - ")(princ (- time? timel)) (terpri)))

(defun TS25-1 ()
(setf testvar (a-star-search-n (mnit-point '(950 0 510))

(mit-point ' (990 1000 550))
'nil
5

(defun TS10 (
(setf testvar
(a-star-search-n (mnit-point ' (10 400 910)) (mnit-point ' (110 990 450)) 'nil

5 'nil)))

(defun TS11 () ;used with or t-27-ridge-shadow
(setf testvar(a-star-search-M (mnit-point '(0 0 990)) (mnit-point '(1000 750

300)) 'nil 5 Itf)

(defun TS12 () ;used with t-27 for user adjustment
(a-star-search-M (mit-point '(410 10 900)) (mnit-point '(900 990 300)) 'nil 5

It))

(defun user-adj (point)
(let* ((P1 (mit-point point))

(line (make-line (mnit-point '(410 10 900)) Pl))
(path (revise-path 'IpathOOO6I line))
(path-data ' IpathOOOEI)
(princ path)
(path-data path)
(path-for-iris path)))

(defun TS13 0) ;used with t-27 for user adjustment
(a-star-search-M (mnit-point ' (00 10 450)) (mnit-point ' (990 900 250)) 'nil 5

It))

(defun TS14 (
(a-star-search (mnit-point '(500 200 600)) (mnit-point '(300 990 440)) 'nil

'nil))

189

APPENDIX B

This Appendix contains a listing of the following files:
ppgh.c
rotate.h
lightdef.c
lightdef.h
Makefile

Instructions for use of graphics program:

1. Load all the above files along with basel.dat, groundl.dat, and pathl.dat in

one directory on the graphic workstations.

2. Type make<cr>.

3. Type ppgh<cr>.

4. Open the window with the mouse and observe the paths and terrain.

5. To exit click on the right mouse button and select "exit".

190

/* this is an IRIS-4D Program */

/* this is file ppgh.c short for path planning graphics
This program is used in conjunction with data files created
by a LISP Optimal Path Planning Program

It is an alteration of program rotate2.c with z-buffering and rgbmode
with polygon removal and lighting routines...

5/

#include "gl.h"
#include "device.h"
*include "math.h"
*include "rotate.h"
#include "stdio.h"
#include "lightdefs.h" /* got the material/light/lighting model defe */

#define NEARDEPTH OxO0000 /* presently set for the 4D/GT */
#define FARDEPTH Ox7ffff

#define NEARCLIPPING 10.0 /* near clipping plane is at -10.0 */
#define FARCLIPPING 6000.0 /* far clipping plane is at -6000.0 */

#define CUBEX 500.0 /* location of the cube */
#define CUBEY 300.0 /* actually the center */
#define CUBEZ -500.0 /* of our terrain model */
#define CUBESIZE 100.0

#define VIEWX 500.0 /* initial location of the viewpoint */
#define VIEWY 500.0
define VIEWZ 2000.0

#define REFX CUBEX /* reference point we are looking towards */
#define REFY CUBEY
#define REFZ CUBEZ

#define PI 3.1416
#define MAXPOINTS 5

float viewx - 500.0; /* location of the viewpoint */
float viewy - 300.0;
float viewz - 1000.0;
float vall;
float viewingdistance - 1500.0; /* initial distance from center of obj */
float viewingangle - 0.0; /* angle in YZ plane at which obj is viewed */

int radius,valO;
int sans - 10;

typedef struct threedobj I
int numpts;
float pointIMAXPOINTS] 3];
float normal(3]

struct threedobj base[20], ground[100];

191

int nunibasepts, numgroundpts;

int numberofpaths; /* this is the number of paths in the file max in 10 '
mnt numberofwaypointl(lO] /* this is the max num of vaypointa for the
fltpath*/
float waypointallo] [100] E4L /*array for storing the flt path*/

long xwinsiz*, ywinsize

main()

/* popup menu's name

int mainmenu;

mnt thread, twod, help; /* window numbers *

mnt hititem; /* variable holding hit name

short val, valsave; /* value returned from the event queue *
char filename[20];
int i,j;

/* initialize the IRIS system *
initialize (6threed, &twod),

1* initialize the material definitions *
initializematerials 0;

/* initialize the light definitions 5

/* initialize the lighting model '

1* reset dials *
setdial0 0;
setdiall(0;

setdial2(;
/* make the popup menus 5

mainmenu - makethemenus();

/* set all the accumulative matrices to unit matrices ~
resetallaccumulativematrices 0;

/* go get the polygons thst make up the base 5

strcpy(filename, "basel-dat");
inputstructure (base, &nuznbasepts, filename);

/* compute the normals for the base 5/

calculatenormal(base,numbasepts, 500.0, 0.0, -500.0);

192

#ifdef TRACE
/* print out the input *
for (i-0; i<numbasepts; i++)

priritf ("number of points -%d\n",base [±3.numpts);
printf ("normal for Wd is %If %if %lf \n",i,baseli).normall0],

bane(i] .normal[l),
base(i] .normal[2]);

for (J-0; J<baseli].numpts; J++)

printf("point*(%d (0]=%.f points[%dflJ'%.f points(%dl (2]m-.f\n",
J,base~i] .point[j] [0],
J,baseli] .pointijJ (1],
J,bame (i].point~j] [23);

#endif
/* input the ground data *
atrcpy (filename, "groundi .dat");
inputstructure (ground, &numgroundpts, filename);
calculatenormal(ground,numgroundpts, 500.0, -5000.0, -500.0);

#ifdef TRACE
for (i-0; i<numgroundpts; i++)

printf("nuniber of points -%d\n",ground(i] .nuznpts);
printf ("normal for %d is %If %lf %If \n",i,

ground(iJ .normal(0],
groundli] .normal(l],
groundfl].normal[23 ;,

for (j=0; j<groundli).numpts; J++)

printf("'pointsC%d]C0]-%.f points[%d]l]l-%.f points[,%d]H2]-%.f\n'",
j,groundiij.pointtj] 10],
j,ground[iJ.point[j] [1],
J,groundl.point~j] [2]);

#endif

1* get the input for the flight path *
input linearray 0;

*ifdef TRACE
printf ("this is the set input from the file\n");
for(i-0; i<numberofwaypoints; i++)

printf("i- %d x- %f y- %f z- %f percentdeteotion- %f\n",
i,waypointsli] (0],waypointu[i] (1],
waypointafi] [2], waypoints(i] (3]);

*endif

193

while (TRUE)

/* do we have something on the event queue?/
if (qtest 0)

switch (qread (&val))

case MENUBUTTON:

if (Val - 1)

/we must be in MSINGLE mode to do popup menusl!I
mode(KSINGLE);

/* which popup selection do we want? *
hititem - dopup(mainmenu);

/* put us back into MVIEWING mode *
nunode (MVIEWING);

/* do something with the popup hit *
processmenuhit (hit item),

break,

case DIALO:

valO - (int) ((val / sens));
if (valsave < val)

ry - va10 * YROTAMOUNT;

if (valsave > val)
ry = valO * YROTAMOUNT;

buildmovingviewingmatrix(viewx, viewy, viewz, REFX,REFY,REFZ);

ry - 0;
setdial0 0;

1* valsave - val;*/
break;

came DIALl:

viewingangle - val/sens;
viewy - (float)sin((double)(viewingangle * PI / 190.0))*
viewingdistance + REFY;
viewz - (float)cos((double)(viewingangle * PI / 180.0))*
viewingdistance + REFZ;

break;

194

case DIAL2:

viewingdistance - (float)val * 10;
viewy r (float)sin((double)(viewingangle * PI / 180.0))*
viewibgdiatance + REFY;
viewz - (float)cos((double)(viewingangle * PI / 180.0))*
viewingdistance + REFZ;

#ifdef TRACE
printf("val is %d viewingdist is %f viewy is %f viewz is %f\n\n",

val,viewingdistance,viewy, viawz);
#endif

break;

case REDRAW:

reshapeviewport();

break;

default:

break;

/* end switch on event queue item */

/* endif qtest() */

/* draw the background color */
RGBcolor(150,150,150); /* grey */
clear();

/* turn on Z-buffering */
zbuffer(TRUE);

/* clear the z-buffer */
zclear();

/* put up the non-moving viewing matrix for the meter */
buildnonmovingviewingmatrix(VIEWX, VIEWY, VIEWZ,REFX,REFY, REFZ);

/* display the number of frames per second
(0.0,40.0,-20.0) is the loc of the meter in world coords.
15.0 is the radius to use for the meter.
40.0 is maximum frames per second.
Note: this measures actual CPU time used by your

process and other users on the system will
make the output meter view strange.

*/
zbuffer(FALSE);
lmbind(LMODEL, 0); /* turn off lighting model */

zbuffer(TRUE);
lmbind(LMODEL,MYMODEL); /* turn my lighting back on

195

/* put up the moving viewing matrix.
The input arguments are the center point for the object
we want to move and the reference point in the scene.
We need this guy so we can always rotate around
the screen frame of reference.

buildmovingviewingmatrix (viewx, viewy, viewz, RZFX, REFY, REFZ):

/* draw the base */
lmbind(MATERIAL, DIRT);
drawobject (base, numbasepts);

/* draw the ground */
lmbind (MATERIAL, GRASS2);
drawobjeot (ground, numgroundpts);

/*draw path *
drawpatho;

/* turn z-buffering off *
zbuffer(FALSE);

/* change the buffers ... *
swapbuffers():

initialize (threed, twod)
mnt *thread, *twod; 1* for display window and controles window *

mnt xorigin, yorigin;
1* set up the preferred aspect ratio *
keepaspect (XGAXSCREEN+1, YMAXSCREEN+l);

/* open main window *
winopen ("main");
/* get the size of main ~
getsize (&xwinsize, &ywinsize);
printf("x= %ld y- %ld \n",xwinsize, ywinsize);

getorigin (&xorigin, &yorigin);
printf("x= %ld y= %ld \n",xorigin, yorigin);

/* set the size of the path window */
prefposition(xorigin, xorigin + xwinsize,

yorigin, yorigin + ywinsize);

/* open a window for the program *
*threed - winopen("path");

/* make a title */
wintitle("Path Planning");

1* put the IRIS into double buffer mode *
doublebuffer 0;

/* put the iris into rgb mode *
RGBmode 0;

196

/* configure the IRIS (means use the above command settings) *
gconfigo;
1* met the depth for z-buffering only for GT*/
lstdepth (NEARfEP TN,FA.DEP TH);

/* queue the redraw device *
qdevice (REDRAW);

/* queue the menubutton *
qdevice (MENUBUTTON),

/* queue up dials *
qdevice (DIALO);
qdevice (DIALl);
qdevice (DIAL2);

/* turn the cursor on
ourson 0;

/* select gouraud shading *
/* only works on the 4D*/
shademodel (GOURAUD) ;

/* turn on the new projection matrix mode ~
mne(MVIEWING);

1* this routine resets/initalized the dial 0 *
setdial0 ()

setvaluator (DIALO,
(0*ens),
(-360 * sens),

qeeo360 * sens));

/* this routine resets/initalized the dial 1 ~
setdiall ()

setvaluator (DIALI,
(0*sens),
0 *sans),

89 *sens));
qreset 0;

/* this routine resets/initalized the dial 2 ~
setdial2 ()

setvaluator (DIAL2,
(int) (viewingdistance/sens),
(0),

qreset 0;

197

/* this routine performs all the menu construction calls *

int makethemenuso)

int topmenu; /* top level menu's nlame ~
int rotmenu; /* rotate menu
mnt transmenu; /* trans menu
int scalemenu; /* scale menu

/* define the low level menus first ~
rotmenu - nevpup 0;
addtopup(rotmenu, "Rotate Menu %t")
addtopup(rotmenu,"+X %x2 IOX %x3 i-X %x4")
addtopup(rotmenu,"+Y %x5 O Y %x6 i-Y %x7")
addtopup(rotmenu,"+Z %xS IOZ %x9 I-Z %xlO)

transmenu - newpupo;
addtopup(transmenu, "Tranalate Menu %t")
addtopup~transmenu,"+X %x12 IOX %x13 I -X %x14)

addtopup(transmenu,"+Y %x15 O Y %xl6 I-Y %xl7)

addtopup(transmenu,"+Z %x18 IOZ %x19 i-Z %x20)

scalemenu = newpupo;
addtopup(scalemenu,"Scale Menu %t)

addtopup(scalemenu,'+X %x22 I OX %x23 i-X %x24)

addtopup(scalemenu,'+Y %x25 IOY %x26 I-Y %x27")
addtopup(scalemenu,"+Z %x28 IOZ %x29 I-Z %x30)

/* build the top level menu *
topmenu - defpup("Roll Off Side %t I Rotate %xl %m ITranslate %xll %m

Scale %x21 %m I Reset %x31 I Exit %x32 11,
rotmenu, tranamenu, scalemenu);

/* return the name of this menu
return (topmenu);

198

/* this routine builds the moving viewing matrix each time through
the display loop...

P' - P . T(to origin) . S(acc) . R(x acc) . R(y acc) . R(z ace)
. T(to ace. loc) . T(baok to specified center) . perspective() *1

buildmovingviewingmatrix (vx, vy, vz, refx, refy, refz)

float vx,vy, vz; /* view point */
float refx,refy,refz; /* ref point we are looking towards */

{
/* Build the accumulative rotation matrices */
loadmatrix(rxacc); /* get the accumulative rotation */
rotate(rx,'x'); /* concatenate on the now rotation (if any) */
getmatrix(rxacc); /* we now have a new accumulative...

loadmatrix(ryacc); /* get the accumulative rotation */
rotate(ry,'y'); /* concatenate on the new rotation (if any) *1
getmatrix(ryacc); /* we now have a new accumulative... */

loadmatrix(rzacc); /* get the accumulative rotation */
rotate(rz,'z'); /* concatenate on the new rotation (if any) */
getmatrix(rzacc); /* we now have a new accumulative...

/* Build the accumulative translation matrix */

loadmatrix(transacc); /* get the accumulative translation */
translate(tx,ty,tz); /* concatenate on the new translation */
getmatrix(transacc); /* we now have a new accumulative translation */

/* Build the accumulative scale matrix */
loadmatrix(scaleacc); /* get the accumulative scale */
scale(sx,sy,sz); /* concatenate on the new scale */
getmatrix(scaleacc); /* we now have the new accumulative scale */

/* in mmode(MVIEWING), we must add a load of a unit matrix */
loadunit);

/* put up the proj-ction and viewing matrix */
projectionandviewingmatrix(vx, vy, vz,refx, refy, refz);

/* translate center of box back to original location */
translate(refx, refy, retz);

/* translate the object to the location specified
by the accumulative translation...

*/
multmatrix(transacc);

multmatrix(rzacc); /* z accumulative matrix */

multmatrix(ryacc); /* y accumulative matrix */

multmatrix(rxacc); /* x accumulative matrix */

multmatrix(scaleacc); /* accumulative scale matrix */

/* translate center of box to the origin */
translate(-refx,-refy,-refz);

199

/* for objects that are in the same coordinate system but aren't moving
with the continuous rotations/translations/soalings, we use this

routine ... */

buildnonmovingviewingmatrix(vx, vy, vz,refx, refy, refz)

float vx,vy,vz; /* view point */
float refx,refy,refz; /* reference point we are looking towards */

/* we must call loadunit before we get the projection
and viewing stuff...

loadunit(1

/* just call the perspective + viewing matrices */
projectionandviewiigmatrix(vx,vy,vvzrefx, refy, refz);

/* put up the projection and viewing matrix */

projectionandviewingmatrix(vx, vy, vz,refx, refy, refz)

float vx,vy,vz; /* view point */
float refx,refy,refz; /* reference point */

/* perspective projection 3D for the world coord sys *
/* the near and far values are distances from the viewer

to the near and far clipping planes.
We are at (vx,vy,vz) and looking towards
the center point of the object..
(towards (refx,refy,refz)).*/

perspective(450,1.00,NEARCLIPPING,FARCLIPPING);

lookat(vx,vy,vz,refx,refy,refz,0);

200

1* process the popup menu selection *
procesamenuhit (hititem)

mnt hititem; 1* item hit on the popup menus

switch (hititem)

case ROTATE:
break;

case PLUS)CROT:
rx - XROTAMOUNT;
break,

case ZEROXROT:
rx - 0;
break;

case MINUSXROT:
rx)M XOTAMOJNT;
break,

case PLUSYROT: r RTMUT

break;
case ZEROYROT:

ry - 0;
break;

case MIt4USYROT:
ry =-YROTAMOUNT;

break;

case PLUSZROT:
rz -ZROTAMOUNT;
break;

case ZEROZROT:
rz = 0;
break;

case MINUSZROT:
rz =-ZROTAHOUNT;

break;

case TRANSLATE:
break;

case PLUSXTRAN4S:
tx = XTRANSAMOUNT;
break;

case ZEROXTRANS:
tx-O;
break;

case MINUSXTRANS:
tx- -XTRASAM4OUNT;
break;

case PLtJSYTRANS:
ty-YTRAN4SAMOUNT;
break;

case ZEROYTRANS:
tyO0.0;
break;

came MINUSYTRANS:
ty- YTRANSAMOUNT;
break;

201

case PLUSATRANS:
tz-ZTRANSAMOUNT;
break;

came ZEROZTRANS:
tz-0.0;
break;

case MINUSZTRANS:
tz- -ZTRASAMOUNT;
break;

case SCALE:
break;

case PLUSXSCALE:
ax - POSSCALEAMOUNT;
break;

case ZEROXSCALE:
ox - 1.0;

break;
case MINUSXSCALE:

sx - NEGSCALEAMOUNT;
break;

case PLUSYSCALE:
my - POSSCALEAMOUNT;
break;

case ZEROYSCALE:
By - 1.0;

break;
case MINUSYSCALE:

sy - NEGSCALEAMOUNT;
break;

case PLUSZSCALE:
sz = POSSCALEAMOUNT;
break;

case ZEROZSCALE:
mz - 1.0;

break;
case MINUSZSCALE:

sz - NEGSCALEAMOUNT;
break;

case RESET:
/* zap all values...
resetallaccumulativematrices();

break;

case EXIT:
exit(0);
break;

default:

break;

/* end switch */

202

/* the following routine saet all accumulative matrices to unit matrices */

reaetallaccumulativomatrices ()

unit(transacc); /* sat the trana accumulative */

unit(rxacc); /* aet the x rotation accumulative */
unit(ryacc); /* set the y rotation accumulative 5/

unit(rzacc); /* aet the z rotation accumulative */

unit(scaleacc); /* aet the scale accumulative */

/* reast all the ON values to off...
rx - 0;
ry - 0;
rz - 0;

tx = 0.0;
ty - 0.0;

tz - 0.0;

ax = 1.0;

ay = 1.0;
sz - 1.0;

/* the following routine loads a unit matrix into the input array */

unit (m)

Matrix m;

static Matrix un - { 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 };

long i,j;

/* copy the matrix elements... */
for(i=0; i < 4; i-i+1)

for(j=0; j < 4; j=j+l)

m[i] [j]-un[i] [j];

/* this routine loads a unit matrix onto the top of the stack 5/

loadunit ()

static Matrix un - { 1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 };

/* load the matrix 5/

loadmatrix(un);

203

/* This section read* in the data arrays base and ground *
inputstruc--turC (baa., numpolygons, filenam)

struct. threedobj bass[];

int *numpolygofls;
char filename[2Ol;

FILE *inpfl;
int i, j;
mnt polygons;
inpf 1 - fopen(filnameb, "r");

facanf(inpf 1, "%d", numpolygons):

for (i-0; i<*numpolygols; i++)

fecanf(ilpf 1, "%d", &ibase(i] .nuinpts);

for (J-0; J<baseli].lumpts; J++)

facanf (inpf 1, "%f%f%f",
6(base(i].pOilt[j] (0]),

A(base(i].poilt~j][1]) ,
&(basetiJ .point(jl [2]));

*idef TRACE
printf("points(%d (O3-%.f pointst%d] (1]-%.f points[%d] (2j]%.f\n',

j,base(iJ.poinltjjj[0],
j,baseji] .pointlj] [1),
j,base[i].poinltjj [2));

#endif

fclose (inpf:1);

204

/* Computes normal for polygon and reorders polygon points to
counterclockwise if given in clockwise order. ax,ay,az must
be an interior point of polygon in order to orient the normal
vector in correct location. */

calculatenormal(xyz, numpts, ax,ay,az)
struct threedobj xyzjl;
int numpts; /* number of polygons in the xyz array */
float ax,ay,az; /* interior point of the whole object. */

float txyz[MAXPOINTS][31; /* ton coord hold */
long h,i,j; /* loop tews */
long ncoords; /* looping for each polygon */
int npolyoriento; /* direction test function 5/

float vl[3],v2(3]; /* vectors used to compute the polygon's normal 5/

float normalmag; /* normal's magnitude */
float lightmag; /* magnitude of the light vector 5/

float normal[31; /* tempory storage for normal */
float vlmag,v2mag;
double vecmago;

for (h-0; h<nunpts; h++)

#ifdef TRACE
printf("\nlorient xyz[] [0-2]\n");
for (i=0; i<ncoords; i++)

printf(" xyz[%d] %f %f %f\n",i,xyz[i](O],xyz[i][l],xyz[i][2]);
printf(" ax,ay,az %f %f %f\n",axay,az);

#endif
/* check the number of coords in the input array */
if(xyz[h].numpts > MAXPOINTS)

printf("LIGHTORIENT: too many coords passed to me! = %d\n",ncoords);
exit(l);

/* orient the polygon so that its CCW with respect to the interior point */
/* this section removed tempory. will replace next quarter

if(npoly-orient(ncoords,xyz,ax,ay,az) -- 1)

/ / the polygon is clockwise, reverse it. 5/

/* for(i-0; i < ncoords; i-i+l)

for(j-0; j < 3; j-j+l)

txyz[i][j] - xyz[ncoords-i-1]Cj];

for(i-0; i < ncoords; ++i)

for (J-0; j < 3; ++j)

xyzli][jj - txyzi] [j];

#ifdef TRACE
printf("lorient pts reversed\n");
for (i-0; i<ncoords; i++)

printf(" xyz[%d] %f %f %f\n",i,xyz[i] [0,xyz[i] [l],xyz[i] [2]);
#endif

/

205

/* the coordinates are ordered counterclockwise in array xyz '

/* compute the normal vector for the polygon using the first 3 vertices *

1* compute the first vector to use in the computation *
vl[O] - xyz~h].point(2H10] - xyz[h].point(I1HOI;
vill - xyz(hI .point(2] (11 - xyz[h] .point[i] (11;
vi[21 - xyz[h] .point[2] (2] - xyzlh] .point[1] (2];

/ * compute the second vector to use in comput ing the normal /
v2(0) - xyz~h] .point(01 (0] - xyzlhbpoint(l1 [0];
v2(l] - xyz(h].point(0] 1]1 - xyz~h] .point(l] 11];
v2[2) - xyztl).pointIO] 12] - zyzlh] .pointtl] 12];

/* the normal is vi x v2 */
normal[O] - vilJl*v2t2] - vl(21*v2[l];
normalfi] - vl(2J*v2(O] - vl(Q]*v2(2];
normal[2) - vl(QJ*v2(l] - vl[1]*v2(O];

*ifdef TRACE
printf("'lorient normal before ma; div %f %f %f\n",normal(O],

normalil],normal(21);
#endif

normalmag - (float) (vocmag) ((double) (normal (O), (double) (normal(2 1),
(double) (normal (21));

xyz~h] .normal[O] - normal! 0] /normalmag;
xyz(h].normal(l] - normalil] normalmag;
xyz (h] .normal (2] - normal (2] normalmag;

*ifdef TRACE
printf('lorient normal %f %f %f\n",normal(O],normal[l],normal[21);

*endif

11* end of for h

1* this procedure computes the vector mag for use of making the unit vector*/
double vecmag (x, y,z)
float x,y,Z;

double tl,t2,t3,t4,t5;

tl ((double) (x)) * ((double) (x)),
t2 - ((double) (y)) * ((double) (y)):
t3 - ((double) (z)) * ((double) (z));
t4 - tl + t2 + t3;
t5 - sqrt(t4);

*ifdef TRACE
printf("vecmag tl,t2,t3,t4 %f %f %f %f\n",tl,t2,t3,t4);
printf("vecmag x,y,z,mag %f %f %f %f\n",x,y,z,t5);

#endif

return (t5);

206

/* this drawn the object that is passed in
drawobject (object, numpolygons)

struct threedobj object[C];
int numpolygons;

int h,i,j ; /* loop temps *
for (h-0; h<numpolygons; h++)

normal (object (hi .normal);
pmv(objectth].point(0] (0],object[hJ-point[0] (l],object[h].point(0] [2]);
for (i-1; i<objectlh].nwupts; i++)

pdr(object [hi .point~i] (0],
object (hi.pointlii (1],
object [hi .point(i] [2]);

pclos 0;

/* This section reads in the path of the missile to be displayed 5

inputlinearrayo(

FILE *inpf;
mnt i, j;
inpf - fopen('pathl.dat', "r");
fscanf (inpf, "%d", &numberofpaths);

for (i-0; i<numberofpaths; i++)
4fscanf(inpf, "%d",&numberofwaypointati]);

for (j=0;j<numberofpaths; j++)

for (i=0;i<numberofwaypointstji ;i++)

fscanf(inpf, "%f%f%f%f",
&waypointa~ji (i[0i,&waypointsj [ii [1,
&waypoints[j] [ii [2],&waypoints[j] [ii(3]);

fclose (inpf);

/* draw the path of the missile with color shading for % observation 5

drawpath()

int i-0, j, redtint;

for (j=0; j<numberofpaths; j++)

redtint = (int) (255-255*waypointsj [01(3]);
RGBcolor(255,redtint,45);
move(waypoints[ji (0] [Oi,waypoints[ji [0] (1],waypointaj [0] [2]);
linewidth (3);
for(i-1; i<numberofwaypoints [j] ;i++)

redtint - (int) (255-255*waypointsj] Ci][3]);
RG~color (255, redtint, 45);
draw(waypointsijJ [ii (0],waypoints(j] [ii[li,waypointsj [i] [2]);

linewidth(3);

207

/* this is file rotate.h

It is the include file for program rotate.c
This file holds the defines and the global variables
for programs:
rotate. c
rotate2.c

*/

/* defines for the menu definition routine */

#define ROTATE 1

#define PLUSXROT 2
#define ZEROXROT 3
#define MINUSXROT 4

#define PLUSYROT 5
#define ZEROYROT 6
#define MINUSYROT 7

#define PLUSZROT 8
#define ZEROZROT 9
#define MINUSZROT 10

#define TRANSLATE 11

#define PLUSXTRANS 12
#define ZEROXTRANS 13
#define MINUSXTRANS 14

#define PLUSYTRANS 15
#define ZEROYTRANS 16
#define MINUSYTRANS 17

#define PLUSZTRANS 18
#define ZEROZTRANS 19
#define MINUSZTRANS 20

#define SCALE 21

#define PLUSXSCALE 22
#define ZEROXSCALE 23
#define MINUSXSCALE 24

#define PLUSYSCALE 25
#define ZEROYSCALE 26
#define MINUSYSCALE 27

#define PLUSZSCALE 28
#define ZEROZSCALE 29
#define MINUSZSCALE 30

#define RESET 31

#define EXIT 32

208

/* the following defines are the amounts concatenated
each frame if the matrix concatenation is selected
as ON

define XROTAMOUNT 25 / 2.5 degrees of rotation each picture
#define YROTAMOUNT 25 /* 2.5 degrees of rotation each picture */
#define ZROTAMOUNT 25 /* 2.5 degrees of rotation each picture */

#define XTRANSAMOUNT 5.0; /* 5 unite of translation in the x direction
#define YTRANSAMOUNT 5.0; /* 5 units of translation in the y direction */
#define ZTRANSAMOUNT 5.0; /* 5 units of translation in the z direction */

#define NEGSCALEAMOUNT 0.99; /* 0.99 scale each frame if ON */
#define POSSCALEAMOUNT 1.01; /* 1.01 scale each frame if ON '/

/* the following variables are set when the particular matrix
concatenation is turned ON. Otherwise they are zero...

a

static float tx; /* translation on in the x direction */
static float ty; /* translation on in the y direction */
static float tz; /* translation on in the z direction */

static short rx; /* rotation on in the x direction */
static short ry; /* rotation on in the y direction */
static short rz; /* rotation on in the z direction */

static float sx; /* scale on in the x direction */
static float sy; /* scale on in the y direction */
static float sz; /* scale on in the z direction */

/* some globally defined matrices for the viewing matrix computation */

static Matrix transacc; /* accumulative translation matrix '/

static Matrix rxacc; /* accumulative x rotation matrix */
static Matrix ryacc; /* accumulative y rotation matrix */
static Matrix rzacc; /* accumulative z rotation matrix */

static Matrix scaleacc; /* accumulative scale matrix */

209

/* this is file lightdefs.c

These routines define the materials/lights/lighting models needed..

*includ., "gl.h"

*include "lightdefsa.h"

/* set up all the materials *

initializematerials ()

/* make the definition calls for the materials *

/* make the def a for the terrain *
lmdef (DEFMATERIAL, DIRT, 19, dirt);
lmdef(DEFMATERIAL, GPASS1, 19, gramal);
lmdef(DEFHATERIAL,GRASS2, 19, grass2);
lmdef (DEFl4ATERIAL, GRASS3, 19, graas3);

/* make the material for where the light isn~
lmdef (DEFMATERIAL, LIGHTMATERIAL, 19, lightmaterial);

/* this routine sets up the light for the see

initializelights (I

/* define the light *
lmdef (DEFLIGHT, MYLIGHT, 14, light);
/* turn this light on '
lmbind(LIGHTO,MYLIGHT);

/* define the lighting model *

initializelmodel ()

1* define the lighting model *
lmdef (DEFLMODEL,WfrIODEL, 10, lmodel);
/* turn on the mod, l */
lmbind (LMODEL, MYMODEL);

/* the following routine calls routine normal() with 3 arga *

xyznormal(x,y, z)
float x,y,z; /* input normal vector *

float tmp[3]; 1* array to hold the normal *

tmp[0] - X
tmpIl] - Y
tmp[2) - z

normal (tmp);

210

/* this is file lightdefs.h
it is the file containing the material/light/lighting model defa*/

#define MYSHININESS 10.0 /* my value for E(ms) */
#define LIGHTMATERIAL 9

static float lightmaterial[] -

EMISSION, 1.0, 1.0, 1.0,
AMBIENT, 0.0, 0.0, 0.0,
DIFFUSE, 0.0, 0.0, 0.0,
SPECULAR, 0.0, 0.0, 0.0,
SHININESS, 0.0,
LMNULL

/* set up the light defs for the program */

#define MYLIGHT 10

#define LIGHTX 200.0 /* loc of the light */
#define LIGHTY 100.0
#define LIGHTZ -350.0

static float light[] -
AMBIENT, 0.2, 0.20, 0.20,
LCOLOR, 1.0, 1.0, 1.0,
POSITION, 0.0, 0.707106, 0.707106, 0.0,
LMULL

/* define the lighting model */

#define MYMODEL 11

static float lmodel] =
AMBIENT, 0.20, 0.20, 0.20,
LOCALVIEWER, 0.0,
ATTENUATION, 1.0, 0.0000,
LMNULL

211

/* setup terrain definitions *

#def ine DIRT 12

static float dirti]
EMISSION, 0.0, 0.0, 0.0,
AMBIENT, 0.47, 0.31, 0.0,
DIFFUSE, 0.47, 0.31, 0.0,
SPRCULAR, 0.0, 0.0, 0.0,
SHIN4INESS, 0.0,

#define GRASSI 13

static float grassl[]
EMISSION, 0.0, 0.0, 0.0,
AMBIENT, 0.325, 0.775, 0.0,
DIFFUSE, 0.345, 0.775, 0.0,
SPECULAR, 0., 0.0, 0.0,
SHININESS, 0.0,

#def ine GRASS2 14
LNL

static float grass2f]
EMISSION, 0.0, 0.0, 0.0,
AMBIENT, 0.2549, 0.61, 0.0,
DIFFUSE, 0.2549, 0.61, 0.0,
SPECULAR, 0.0 ,0.0 , 0).0,
SHININESS, 0.0,
IMNULL

*define GRASS3 15

static float graas3(]

EMISSION, 0.0, 0.0, 0.0,
AMBIENT, 0.0, 0.1, 0.1,
DIFFUSE, 0.2549, 0.41, 0.0,
SPECULAR, 0.2549, 0.41, 0.0,
SHININESS, 10.0,
LMNULL

212

/* This is the Makefile for ppgh.o *
CFLAGS -

ALL - ppgh

all: $(ALL)

clean:
nti -f *.

delete:
rm -f *.o $(ALL)

ppgh: ppgh.o rotate.h lightdefs.h iightdefs.o
cc -o ppgh ppgh.o lightdefs-o -Zg $(CFLAGS)

ppgh.o: lightdoes.h

lightdefs.o: lightdefs.h

213

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Cruise Missiles Project (PMA 281) 2
Naval Air Systems Command Headquarters
Washington, DC 20361-1014

4. Neil C. Rowe, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

5. LT David H. Lewis
Commanding Officer
Naval Surface Force Pacific
Readiness Support Group
San Diego, Box 124
Naval Station
San Diego, California 92136-5126

6. Maj. Lawrence R. Wrenn 2
Commanding Officer
Marine Corps Tactical System Support Activity
Camp Pendleton, California 92055

7. Commandant of the Marine Corps
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20360-0001

214

