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ABSTRACT OF THESIS

TROPICAL CYCLONE TRACK PREDICTABILITY AND THE ADJOINT METHOD

OF DATA ASSIMILATION

9IA this ettlywe explore a new method to improve hurricane track forecasts. This is

done by modifying the model's initial conditions using the adjoint method developed by

Talagrand and Courtier (1987). The idea is to run the model forward using the governing

equation, and then run the model backwards using the adjoint equation. The result of the

forward integration is the distance function, and the result of the backward integration

is the gradient of the distance function, where the distance function is a scalar measure

of the distance between the observed and model hurricane track. The gradient of the

distance function is used in a minimization scheme that modifies the initial conditions.

These new initial conditions produce a model track closer to the observed track.

Like Talagrand and Courtier, we derive the adjoint method using the spectral non-

divergent vorticity equation. However, to eliminate computational error, here we use the

Adams-Bashforth time integration scheme instead of the leapfrog method. Experiments

were run using the nondivergent barotropic model to indicate how the adjoint method can

improve hurricane track forecasts.\ First, the model was integrated forward using slightly

different vortices and their results compared. The results show that small changes in the

vortex produce large changes in the vortex track. This indicates that there is important

information in the vortex track itself, and that the adjoint method can be very useful in

improving the track forecast. Then, we ran experiments that showed that the vortex

• . ... .. '
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track is very sensitive to changes in the vortex structure. These experiments show that

subtle modification of the vortex using the adjoint method can improve hurricane track

predictions.

Bruce W. Thompson
Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado 80523
Summer 1989
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Chapter 1

INTRODUCTION

Tropical cyclones are the most significant, and intensely studied phenomena in the

tropics. The strong wind, intense convection, and heavy rains associated with these storms

cover hundreds of square miles. Naturally, because of the tremendous destructive forces

associated with tropical storms, meteorologists concentrated on forecasting their move-

ment. A background of the predictive methods to forecast hurricane movement (Simpson

and Riehl, 1981) is discussed below.

1.1 Review of hurricane prediction models

Before the development of dynamic prediction models, hurricane movement was re-

garded as the response of a vortex to a steering current. So forecasts were made by

identifying the steering current and determining how this current and future changes in

this current would modify the future track of the system. This process is still pursued by

forecasters to test the credibility of model results.

In the 1940's, Grady Norton used the wind direction and speed at the top of the

hurricane as an index to the movement of the vortex. However, it was not known to what

degree the circulation within the vortex influenced the displacement of the center, so this

did not provide sufficiently accurate forecasts.

One of the earliest models to provide objective predictions of movement was proposed

by H. Riehl in 1956. Riehl considered the best available index to steering the hurricane was

the geostrophic flow of the environment at the level of nondivergence (4-6 kin). He com-

puted zonal and meridional components of geostrophic wind from 500 mb analyses using a

rectangular grid superimposed on the vortex. This data was used as input to a regression

based upon historic storm cases to obtain the westward and northward components of
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displacement for the ensuing 24 hour period. The method worked quite well in a research

environment, but operationally it suffered from subjectivity of hurried hand-analyses for

the 500 mb surface.

During the late 1950's and early 1960's, the search for methods less sensitive to

subjective analysis led to the use of statistical screening procedures to select predictors

from the surface charts. This produced a model that, although it took no cognizance

of the upper-level circulation, displayed good skill with westward-moving hurricanes and

blazed the trail for the development of a hierarchy of similar but more powerful models for

use at the National Hurricane Center. These incorporated the best conceptual features of

the Riehl model and the early screening models. The application of these models, none of

which included dynamic and energy processes, was primarily responsible for a significant

increase in forecast skills at the National Hurricane Center in the 1960's.

During this same time period the first attempts at predicting tropical cyclone tracks

using dynamical models were made (e.g., Sasaki, 1955; Kasahara, 1957). Because of the

limited computational resources it was necessary to use simple barotropic models and

to treat the small-scale vortex circulation separately from the larger-scale flow. In the

1960's the computing power increased and it was no longer necessary to treat the vortex

separately (e.g., Birchfield, 1960; Sanders and Burpee, 1968).

The first completely objective procedure for predicting hurricane movement, using

machine analyses of current weather data, was developed for use at the National Hurricane

Center in 1964 and is known as NHC-64. This model employed predictors obtained from

analyses of circulations at 1000, 700, and 500 mb over a large synoptic-scale domain. The

predictors are based upon statistical screening of data from historical hurricane cases.

1.2 Current prediction models

Currently, there are three classes of models used for predicting hurricane movement:

1) statistical analog models, 2) dynamic analog models, and 3) pure dynamical models.

The first draws upon the climatology of hurricane tracks and of persistence of movement

to produce a most-probable displacement of the center. The output is a function of initial
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position, past movement, and calendar time of occurrence. But, the computation does

not take into account the environment or its influences on the hurricane. The second

class extracts from historical cases the dynamical properties of the near or the large-

scale environment that correlate with some aspect of hurricane movement. These are

combined in a multiple regression statement as analogs to the migration of the vortex.

The third class, not concerned with history, combines basic principles of fluid motion.

the thermodynamics of an ideal gas, and the application of conservation relationships to

predict the behavior and movement of the vortex.

The first two classes suffer from incomplete hurricane climatology, especially with

regard to the cases with critical changes in movement and strength. Dynamical models

encounter at least three kinds of problems. The first, and probably the most important.

is that of initialization. Due to the lack of data in the tropics the description of the

initial state of the atmosphere when computations begin, especially the description of the

processes in the vigorous inner core of the vortex, may not be very good. Second. while

the environment can be described adequately with a grid spacing at 300 km. the active

vortex, especially approaching the region of maximum winds, may require a grid spacing

of 5-10 km. Thus, higher horizontal resolution is needed to describe what is going on in the

inner core of the hurricane. Currently, a horizontal resolution of 5 to 10 km is too costly

in time and resources to be used. Finally, an adequate parameterization of the heating

generated by cumulus convection has not been obtained. The current models used by the

National Hurricane Center are described below, (Neumann and Pelissier. 1981).

1.2.1 HU.RAN

HURRAN (HURRicane ANalog) is a statistical analog model which uses the current

position, direction, and speed of movement of the system for the preceding 12 hours to

compute a track. Drawing upon past hurricane tracks, the model computes the most

probable track for a 72 hour period based on the movement of historic hurricanes that

occurred at the same time of the year and whose positions and motion vectors were similar

to the present case. The principle shortcoming of HURRAN and other analog methods is
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limited usefulness during highly anomalous movements, since too few analogs are available

for computing tracks on such occasions.

1.2.2 CLIPER

The CLIPER (CLImatology and PERsistence) model was intended as a backup for

HURRAN when the latter failed to provide a forecast because of insufficient analogs.

However, CLIPER consistently outperforms HURRAN, particularly on recurving storms.

This method draws its predictors solely from climatology and persistence (of past motion).

So the CLIPER has the advantage of always providing a forecast, even under anomalous

situations.

1.2.3 NHC67 and NHC72

These two models are similar in concept, and updated versions of the NHC64 model

previously discussed. The basic difference between these models and the CLIPER model

is the additional use of current and 24 hour old 1000, 700, and 500 mb geopotential height

data to modify a preliminary forecast based only on climatology and persistence. Although

NHC67 and NHC72 use similar methodology, there are important structural differences

that lead to different performance characteristics in an operational environment, one of

which is more explicit use of climatology and persistence in the form of direct input from

the CLIPER model by NHC72.

1.2.4 NHC73

In the early 1970's, a large number of Atlantic storms with anomalous motion char-

acteristics highlighted the inherent inability of the NHC67 and NHC72 models to forecast

such motion with acceptable accuracy. This stimulated the development of the statistical-

dynamical NHC73 model that incorporates more recent numerical prognoses. Predictors

entering the NHC73 model included 1) the output from the CLIPER model; 2) current

1000, 700, ard 500 mb gridded analyses; and 3) 24, 36, and 48 hour geopotential height

prognoses from the NMC primitive equation model.
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1.2.5 SANBAR

The first operationally successful dynamical model was devel, ed at MIT by Fred

Sanders and Robert Burpee. This barotropic model, known as SANBAR, computes

pressure-weighted mean winds for the layer 1000 to 100 mb, from which stream functions

are generated and used as inputs to the predictive model. In the initialization process,

the vortex is replaced with an ideal vortex modified to provide initial steering that is

consistent with the observed motion of the system.

1.2.6 MFM

The baroclinic Moveable Fine Mesh (MFM) model was first operational in 1976.

The physics of this model is generally the same as other primitive equation (PE) models

now in operation. However, one of its unique characteristics is the ability of the grid to

follow the storms as they move during a forecast. The MFM model also has much finer

resolution in both the horizontal and vertical, then other PE models. The horizontal

resolution is 60 km, and there are 10 layers in the vertical. Because of the computer time

needed, it is necessary to make the total areal coverage much smaller than other existing

operational models. Also, because of the observational and computational limitations, an

axisymmetric vortex that is qualitatively similar to the hurricane is used.

Even though many numerical models have been developed over the years to forecast

tropical cyclone motion, the official forecasts remain somewhat subjective. Because of

deficiencies in the initialization, parameterization, and the knowledge of the interactions

between the storm and its environment, all of the National Hurricane Center models are

used just to provide guidance in forecasting the storm track. A study done by Neumann

and Pelissier (1980) concluded that none of the models can be singled out as clearly

superior or inferior, with significant mean forecast errors ranging from around 50 n mi at

12 hours to 350-400 n mi at 72 hours. This study also indicated that certain models are

better in certain areas and situations. For example, although the NHC73 model performs

well for storms initially located poleward of 24.50 north, the model performance south

of this latitude is rather poor. The HURRAN model performance is the opposite. with
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better forecasts south of 24.50 north, while only NHC73's 72 hour forecast is better than

that of climatology and persistence. Although each model has different characteristics,

the key point is that none of the models provide forecasts of the desired accuracy. One

way that may improve tropical cyclone motion forecasts by dynamical models, is the use

of the following method.

1.3 The adjoint method

Suppose we are trying to make a tropical cyclone motion forecast using a dynamical

model. The dynamical model could be of any level of complexity-from the nondiver-

gent barotropic model, through the divergent barotropic model, to the fully three dimen-

sional primitive equations with parameterized moist physics. In this case the nondivergent

barotropic model is used. No matter how simple or complex the model, we are faced with

the problem of the model initialization based on sparse observations. Observations in the

tropical cyclone are often totally lacking, and thus the vortex is essentially unresolved.

We are fortunate if there are even enough observations to adequately define the larger

scale "steering flow." Under such circumstances, initialization often involves insertion of a

"bogus vortex." The dynamical model sometimes moves this vortex in a direction and at

a speed quite different from the observed vortex. The track forecast might be improved

by changing certain structure parameters of the bogus vortex, e.g. its size, strength, or

tangential asymmetry. However, such procedures remain somewhat arbitrary.

The procedure described in the preceding paragraph makes no use of mass, wind,

or track data prior to the initialization time. Now, let us look at the problem using the

concept of four dimensional data assimilation, and, in particular, the adjoint method,

which results in specifying complete initial conditions at a given instant from observations

distributed in space and time. Suppose we have acquired (over the time interval to _<

t < tp) large-scale wind and temperature data from scattered island radiosonde stations

and a sequence of tropical cyclone position fixes from satellite data. If we are forecasting

with the nondivergent barotropic model we only need to consider the vorticity field. Then

assume that the cyclone tracks can be somehow converted to "vorticity observations" so



7

that we have (ob(x,y,t) for to t < tp, where x is the east direction and y is the north

direction on a beta plane. A model forecast from time to with initial conditions (O(x, y)

produces the field ((x,y, t). Let J be the integral (spatial and temporal) measure of the

squared difference between ((x, y, t) and Cobs(x, y, t), which is expressed as

t1  L L

2 = O (C(x, y,t) - y, t))dxdydt (1.1)

Since (,,b,(x, y, t) is known and ((x, y, t) is determined from Co(x, y) by model integration,

the "distance function" J depends only on C0(x, y). How can we vary the Co(x, y) field to

make J as small as possible? Stated differently, how can we massage the data at to in order

to make the model track fit closely with the observed track over the interval to S t < tp?

If we could do this we would have a model field close to the observed field over the interval

to _ t < tp, and intuition would suggest that continuation of this model solution past tp

would give a pretty good track. At the very least, the model vortex should be going the

right direction and speed at tp.

Let us try to minimize J in a naive and brute force fashion. Consider a discretized

model with N 2 degrees of freedom (N by N points, say, where N = 256). Thus (o(x, y) is

represented by a vector Co of length N 2 . Let VCoJ denote the gradient of J with respect

to each element of (o, which means V( 0J is a vector of length N 2 . The first element of

V(0J tells us how the distance function J would change if we modified the initial condition

at the first point of the grid, and so on through all the points of the grid. Thus, if we

know VC0J, we can make simultaneous, subtle modifications of (o at all points in order to

reduce J. We conclude that the knowledge of V( J might give us considerable power to

improve track forecasts. The brute force method of determining V( 0J consists of making

a forecast using Co as the initial condition, followed by N 2 more forecasts with Co slightly

modified in turn at each grid point; each of the N 2 forecasts is compared to the original

forecast and the associated change in J calculated. Unfortunately, the apparent necessity

of making thousands of model runs would probably render the forecast untimely (what's

additionally troublesome is that the above procedure has to be iterated)

Here comes the adjoint method to the rescue. The adjoint method can give us V 0 J

in a time equivalent to only a few model runs. This is a powerful result, and here is all
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we need to do. Derive the tangent linear equation, which in this case is the nondivergent

barotropic vorticity equation linearized about the present model solution ((x, y, t). Then

find the adjoint of the tangent linear equation. Finally, run the original nonlinear model

forward in time from to to tp, followed by a backward integration from tp to to using

the adjoint equation. If this is done in the proper fashion, the output is V( 0 J, which can

be used to modify (o and give a better track simulation. The (o field can be iteratively

modified in this same fashion. Since the adjoint model takes about the same computer

time as the forecast model, each iteration is roughly equivalent to two forecast runs, and

a typical five iteration procedure is equivalent to ten forecast runs.

Although the adjoint method should improve the track forecasts of dynamical models.

there are still errors associated with this method. First of all, there are errors with the

models themselves, since they can not accurately represent the real atmosphere. In this

study we are using a very simple model, the nondivergent barotropic model, which is not

very realistic. The errors associated with this model and errors associated with temporal

and spatial differencing will discussed in chapter 2 and 3. However, the most significant

error, one which was mentioned earlier, is that of initialization. One thing the adjoint

method will not improve is errors in the location of the storm center. With the use of

satellite data there are errors in the position of the storm center, thus, the speed and

direction of the observed storm track could be in error. This is an error that all models

encounter and can not be eliminated. There can also be errors associated with the adjoint

method which will be discussed later in chapter 2.

The description of the nondivergent barotropic model is in Chapter 2, which includes

a discussion on how the adjoint method is integrated into the basic model. The adjoint

method and the descent algorithm used in this method are also described in Chapter

2. In Chapter 3, we derive the solution to the nondivergent vorticity equation and the

adjoint equation using the Galerkin method and the Adams-Bashforth time differencing

scheme. The results from the nondivergent barotropic model using the adjoint method

are presented in Chapter 4. The model is run with an axisymmetric initial vortex on a

0-plane.



Chapter 2

NONDIVERGENT BAROTROPIC MODEL

2.1 Model description

The governing equation for this model as described in DeMaria (1985) is the conser-

vation of absolute vorticity on a midlatitude 0-plane which can be written as

S+ + =0, (2.1)

where C is the vertical component of the relative vorticity, u and v the eastward and

northward components of the nondivergent wind, and 0 the northward gradient of the

Coriolis parameter. In (2.1), C can be related to the horizontal wind components by

introducing a stre;.mfunction 0 where

02 022.2)

0¢9 0
U= - (2.3)

Equations (2.1)-(2.3) were solved using a spectral method with Fourier basis functions

on a doubly-periodic domain. For this purpose, the dependent variables are expanded in

double Fourier series, and substituted into (2.1)- (2.3) and the adjoint of the linearized

version of (2.1). The standard Galerkin procedure is then applied which gives equations

for the time dependent series amplitudes. The spectral form of (2.1) and its adjoint

are solved using the second order Adams-Bashforth time differencing scheme. A more

detailed description of these numerical methods are in sections 3.1 and 3.2. The model

was truncated at wavenumber 47 in the x and y directions on a 4000 km square domain.

The shortest wave in the model then has a wavelength of about 85 km.
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The model uses an axisymmetric modified exponential vortex defined by
=Vn12(f /rm)(24

V = Vm + (r/rm)2) exp[-a(r/rm)b], (2.4)

where V is the tangential wind, r the radial distance from the vortex center, Vm the

approximate maximum tangential wind (exact for a = 0), and rm the approximate radius

of the maximum wind. The exponential factor in equation (2.4) is added so that V decays

rapidly with r at large radii. The initial values of V, and r.. are 30 ms- 1 and 80 km,

respectively, with a = 10 - 6 , and b = 6. DeMaria used these parameters because they

result in a tangential wind profile which lies between the observed profiles for large and

small hurricanes. The large scale flow superimposed on this vortex is a zonal flow with a

maximum speed of 10 ms- 1 which represents the tropical, and sub-tropical wind field.

The adjoint method can be inserted into the nondivergent barotropic model in the

following way. The original model is first run forward from 0-12 hours, with the output

saved at times when observations are available. At 12 hours the adjoint subroutine is

called and the adjoint of the linearized vorticity equation is run backwards from 12-0

hours, using the output saved in the forward run. The result of this procedure is the

gradient of the distance function, which is then used in a descent algorithm to modify

the initial values. If the gradient of the distance function is sufficiently small, the initial

conditions will no longer be modified, and the model will continue forward from 12 to 60

hours. Otherwise, the new initial conditions will be used to calculate a new value of the

gradient of the distance function. A flowchart of this process is shown in Fig 2.1.

2.2 The adjoint method

The purpose of the adjoint method is to find a solution of an assimilating model which

minimizes a given scalar function measuring the "distance " between a model solution

and the available observations. This is accomplished by using the adjoint method to

compute the gradient of the distance function with respect to the initial conditions. The

model is integrated forward in time, where observations are available. This is followed
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by a backwards integration using the adjoint equation. The results of successive forward-

backward integrations are gradients of the distance function, which are introduced into a

descent algoritnm in order to determine the initial conditions which define the minimizing

model solution.

In order to do this, the local "tangent" linear equations are used to compute the

evolution of the forecast error covariances. The tangent linear equations, given an initial

perturbation imposed on a model solution, describe the temporal evolution of the per-

turbation to the second order in perturbation amplitude. The problem with the tangent

linear equation is the ability to describe the short-term evolution of the forecast error

which is at the same time simple enough to be usable in operational practice and accurate

enough to improve the quality of present assimilation algorithms.

Instead of performing successive analyses in the course of one integration of the assimi-

lating model, each individual observation being used once without feedback, an alternative

approach is used. This is to adjust globally, one model solution to the complete set of

available observations. The big advantage is that of exact consistency between dynamics

of the model and the final results of assimilation. Then repeat the integrations and correct

the model so there is convergence towards the solution, which is compatible to a certain

accuracy with the observations.

A more systematic and rigorous approach for globally adjusting one nonlinear model

solution to a set of observations distributed in time is the following:

1. Define the scalar function which measures the distance between the solution and the

obiervations.

2. Try to determine the particular solution which minimizes that scalar function. This

is a constrained variational problem where the unknowns must minimize a given

scalar function while verifying a given set of constraints.

If one notes that a solution of the model is uniquely defined by the corresponding

initial state at a given time, the variational problem considered above can be stated in the

following terms: find the initial state such that the corresponding model solution minimizes

nn MMWMIMI
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the scalar function measuring the distance to the observations. The numerical dimensions

of the problem are greatly reduced since the minimization process is now performed on the

initial state only, and no longer on the whole temporal history of the model. To express

the relationship between the variations of the initial state and the corresponding variations

of the distance function in a usable form, requires the computation of the gradient of the

distance function with respect to the parameters which define the initial state. A possible

way to determine this gradient is to perturb in turn all components of the initial state

and, for each perturbation, to integrate explicitly the model equations and to compute

the corresponding variation of the distance function. But the high numerical cost of this

approach probably makes this impractical.

A more practical approach to this problem is using techniques of "optimal control"

or more specifically the "adjoint equations" of the assimilating model (Lions 1971). The

theory of optimal control deals with the general problem of how the output parameters of

a complicated numerical process can be controlled by acting on the input parameters of

the process. Among the various tools of optimal control, the adjoint of the local tangent

linear equations provide an efficient way for numerically computing the local gradient of a

complicated compound function of a set of arguments. In the context of variational data

assimilation, the adjoint of the local tangent linear equations of the assimilating model can

be used for computing the gradient of the distance function with respect to the model's

initial conditions. This gradient is then used for performing a "descent step" in the space

of initial conditions, and the process is iterated until some satisfactory approximation of

the initial conditions, which minimizes the distance function has been obtained.

2.3 General principle of adjoint theory

There are two properties of a Hilbert space that are used in this theory. A more

detailed description of Hilbert space is not needed in the derivation of this theory, but can

be found in Reed and Simon (1980).

(i) Let E be a Hilbert space, with inner product denoted by (,), and v -- J(v), a

differential scalar function defined on C. At any point in e the differential 6J of J
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can be expressed as

6J = (VJ, v), (2.5)

where VJ is the gradient of J with respect to v.

(ii) Let L be a continuous linear operator from E into C. There exists a unique continuous

linear operator L* also mapping C into E, with the property that

(v, Lu) = (L*v, u). (2.6)

L* is called the adjoint operator of L. In numerical models u and v are both vectors,

and the matrix which represents L* is the transpose of the matrix which represents

L.

The adjoint theory can be used in numerical models in the following way. Consider

a differentiable function u - v = Q(u), where u will denote the initial conditions from

which a numerical model of the atmospheric flow is integrated, and v denotes the time

sequence of successive model states produced by the integration. The scalar function

J(v) will be the scalar function which measures the distance between v and the available

observations, assumed to be distributed over a time interval [to, tp]. The model evolution

equation is written as
dxT = F(x), (2.7)
dt

where the state vector x belongs to a Hilbert space E whose inner product is denoted by

(,), and F is a regular function on C. The initial condition x(to) = u defines a unique

solution x(t) to (2.7). The tangent linear equation at x(t) can be expressed as

dbx
--y = F'(t)6x, (2.8)

where FP(t) is the linear operator obtained by diffr' entiating F with respect to x. and 6x

the perturbation of x. The adjoint of equation (2.8) is

dbx'
dt - F'(t)x', (2.9)
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whose variable ix' is the adjoint of the perturbation of x and also belongs to E. Also

F"(t) is the adjoint of F(t). The distance function J will be taken as

PJ E HpCxp), (2.10)
p=o

where Hp(xp) is a scalar measuring the distance between the model and the observations

available at time tp. In what follows, we shall express Hp(xp) as

Hp(xp) = 1(x(tP) - i(tp), x(tP) - i(tp)), (2.11)

where x(tp) is the model's solution at time tp, and k(tp) are observations at time tP. Now,

the first order variation of J can be expressed as

P
U = (VxHp, xp), (2.12)

p=o

where 6x(t) is the first-order variation of x(t) resulting from a perturbation bu of u and

the gradient of Hp(xp) is

VxHp = x(tp) - k(tp). (2.13)

The variation of 6x(t) is obtained from bu by integrating (2.8) relative to the solution

x(t). Since (2.8) is linear, the solution at a given time depends linearly on the initial

conditions, and can be expressed as

bx(t) = R(t,to)bu, (2.14)

where R(t, to) is a well defined linear operator, called the resolvent of (2.8) between times

to and t. The resolvent R(t, t') is defined more generally for any two times t and t' lying

between to and tp and possesses the following two properties:

R(t, t) = I for any t, (2.15)

where I is the identity operator on E; and

a7R(t, t') = F'(t)R(t, t), (2.16)

for any t and t'. Equation (2.12) can now be rewritten as

M!M M!
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P

6J = (VxH(tp),R(tp,to)bu). (2.17)
p=O

Using (2.6), this equation can be expressed as

P

bJ = Z(R(tp, to)VxH(tp), bu), (2.18)
p=O

where R*(t, to) is the adjoint of R(t, to). From this, VuJ can be shown as

P

VuJ = E R-(tp, to)VxH(tp). (2.19)
p=o

The adjoint equation (2.9) is also linear, and we denote S(t', t) as its resolvent between

times t and t'. For any two solutions 6x(t) and 6x'(t) of the tangent linear and adjoint

equations, (2.8) and (2.9) respectively, the inner product (6x(t), 6x'(t)) is constant with

time since

( (F(t)bx(t), bx'(t)) - x, F'-(t)bx'(t)) 0. (2.20)

Let y and y' be any two elements of C. Starting from the initial condition y at time t,

the solution of the tangent linear equation (2.8) at time t' can be expressed as R(t', t)y.

Similarly, the solution of the adjoint equation (2.9), starting from y' at time t', can be

expressed as S(t, t')y' at time t. From this we can write the inner products as

(R(t', t)y,y') = (y, S(t, t')y'), (2.21)

which shows that S(t,t') is the adjoint of R(t',t). So now we can express (2.19) as

P

VuJ = E S(to, tp)VxH(tp). (2.22)
p=O

Next we consider the inhomogeneous adjoint equation

d6x'
-d - F'*(t)6'x + VxH(t). (2.23)
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Using the properties of the resolvent, equations (2.15) and (2.16), the solution of (2.23)

defined by the condition 6x'(tp) = 0 is

P
6x'(t) = S(t, p)VH(rp). (2.24)

P~o

Comparing equations (2.22) and (2.24) shows that the gradient of the distance function

VuJ, is equal to the solution at time to of the inhomogeneous adjoint equation, bx'(to). In

summary, the gradient VuJ can be obtained, for given initial condition u, by performing

the following operations:

(i) Starting from u at time to, integrate the basic evolution equation (2.7) from to to

tp. Store the computed values of x(t), from to S t < tp.

(ii) Starting from bx'(tp) = 0, integrate the inhomogeneous adjoint equation (2.23)

backwards in time from tp to to, the operator F'*(t) and the gradient VxH(t) being

determined at each time t, from the values x(t) computed in the direct integration

of (2.1). The final value bx'(to) is the required gradient VuJ.

2.4 Descent algorithms

Once the gradient of the distance function has been found, a descent algorithm can

be used to reduce the distance function to a minimum. Successive estimates u, of Urai

are obtained through descent steps of the form

u,+1 = u, - AnD,, (2.25)

where, for each n, D, is the descent direction determined from the successive gradients

VuJ(U,),VuJ(un,_), ... , and An is an appropriate scalar. Three classical descent algo-

rithms, which can be used in numerical experiments, are the steepest descent algorithm

(in which Dn = VuJ(un) for any n), the conjugate gradient algorithm, and the quasi-

Newton or variable metric algorithm. These are described in Gill (1982), Ralston (1965),

and Conte (1981). The third is a combination of the conjugate gradient algorithm and

of the very efficient, but memory-expensive, quasi-Newton algorithm (Buckley and Le Nir

1983). These descent algorithms are different in the minimization process, the descent
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direction in which to perform the next step, and in the length of the descent step. Theory

shows that the numerical efficiency of these three algorithms increases in the order above.

The algorithm used depends on the problem considered.

The steepest descent algorithm is the basic method for finding an extremum, in this

case finding the minimum. The basic idea is as follows. Given an approximation u, to

the umin, look for the minimum nearest to u,n along the straight line through u, in the

direction of -VuJ(u,,). That is, set

u,+1 = u, - AnVuJ(un), (2.26)

and take the next approximation to the U.in to be u,+1.

The method of steepest descent guarantees a decrease in the function value, but the

convergence may be very slow. An example of the slow convergence of the steepest descent

method is the possibility of shuffling ineffectually back and forth searching for a minimum

in a narrow valley.

Using the direction of t1. gradient seems to be a very logical thing to do. But if

we choose the directiop more carefully we can theoretically guarantee convergence in a

finite number of steps. In this case the conjugate-gradient method is used. This method

generates directions of search without storing a matrix, so is an advantage when the matrix

is very large as in this case. The basic idea of this method is to use the steepest descent

direction, VuJ(u,) plus the pervious search directions, which are denoted by the vectors

pj, j = 0,...,n - 1.
n-1

pn = -VuJ(un) - ,jpj, (2.27)
j=O

where Bj is a function of how the gradient changes. It can be shown that the conjugate

gradient is not an infinite but a finite iterative method. In actual computation using the

conjugate gradient method does not lead to the exact solution because of accumulated

roundoff.

The most efficient of these methods is a combination of the conjugate gradient and

quasi-Newton algorithms. The quasi-Newton method has a form

un+1 = un - (f'(u,,))-f(un), (2.28)
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with the matrix f'(u,) the Jacobian matrix for f at u,,. This algorithm is more efficient

but requires much more storage, n2 storage locations, compared to 7n storage location for

the conjugate gradient algorithm. By combining these, an alogrithm can be obtained with

good convergence properties and low storage requirements. The quasi-Newton method will

be implemented first until storage becomes limited, then the conjugate gradient method

will be used. Ideally, the method which combines the quasi-Newton and the conjugate-

gramient method should be used.

2.5 Comments on the adjoint method

So what is an adjoint equation? It iL uot a backward integration of the basic dynami-

cal equations. The quantities produced at a given time t by an adjoint integration are not

physical fields at time t, but partial derivatives of the function J with respect to the initial

physical fields. The difference between an adjoint integration and a backward integration

of the basic dynamical equations becomes significant when the basic equations contain

diffusive or dissipation terms, whose backward integration is usually, from a mathematical

point of view, an ill-posed problem. Wherever the integration of the basic equation is

well-posed only for integration into the future, the integration of the corresponding ad-

joint equation will be well-posed only for integration into the past. A stability argument

developed by Talagrand (1981a) shows that a sufficient condition for convergence for a

forward-backward assimilation model developed by Morel (1971), is that the linearized

perturbation equation be antisymmetric. In this paper's notation, this condition means

F'-(t) = -F(t). An antisymmetric equation is identical with its adjoint, so that integrat-

ing the full equation backwards in time is the same thing as integrating the adjoint. It

clearly appears that using the adjoint equation is the mathematically proper and rigorous

way to achieve the original goal which was heuristically assigned to forward-backward

assimilation, namely adjusting a model to observations distributed in time.

Courtier and Talagrand (1987) applied the adjoint method data to assimilation and

some interesting results were found. In those experiments the height and wind fields were

reconstructed even in areas which are void of data, and the process was able to infer the
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large-scale fields. This property of the adjoint method is particularly valuable in tropics

where observations are sparse. One process through which information is propagated and

fields are adjusted to the observations is advection by the flow. Since one model solution

is adjusted over the model area to the data available over a period of time, there is not

only downstream advection into the future as in one-way assimilation procedures (Ghil,

1981), but also upstream advection into the past.

In Courtier and Talagrand's study of the variations of the model fields in the course of

the minimization process shows that, when starting from a state of rest, the first descent

step reconstructs the latitudinal gradient of geopotential and the corresponding zonal

wind. In the following ten or so steps, structures are progressively built up over data-rich

areas and their immediate vicinity with no associated modification of the fields elsewhere.

From that time on, continuation of the minimization process modifies the fields only over

data-poor areas, with no further significant decrease of the distance function. Their study

also showed that small-scale noise developed especially in the data-poor areas. What

happens is that the minimization process (marginally) decreases the distance function

by creating unrealistic noise, especially in data-poor areas, where this noise can develop

freely. Some of their results show that, everything else being the same, the ar.mount of

noise is reduced when the length of the assimilation period is increased. It is probable

that the noise could be reduced to an acceptable level if observations were more numerous

in space and time (Cox, 1984), which could be a problem in our case, since there is little

data available in the tropics.

One possible way of avoiding or reducing the small-scale noise could be to interrupt

the minimization before noise starts appearing. Another possibility is to add a penalty

term measuring the amount of small-scale noise in the fields to the distance function. The

presence of such a term will limit the amount of noise in the adjusted fields. In Courtier

and Talagrand's experiments this additional term was

N 1

L = AZ1 + l2  (2.29)

where A is equal to 5 x 10- 4m2 and the summation extends over all harmonics resolved

by the model. This equation is added to the distance function and reduces the amount of
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noise. This may not be the best method to avoid unrealistic noise, but it is clear that the

addition of a penalty term is an efficient way of limiting the amount of noise.

2.6 Adjoint method for the nondivergent barotropic model

Using this method, the derivation for the nondivergent barotropic vorticity equation

proceeds as follows. First, the tangent linear equation is derived by linearizing the nondi-

vergent barotropic vorticity equation about the present solution. Then, the adjoint of the

tangent linear equation is derived. By integrating the original nonlinear model forward in

time from to to tp, and then backwards in time from tp to to using the adjoint equation,

we get VC0 J. The gradient of the distance function, VC0J, is then used to modify the

initial vorticity (0 and give a better track simulation.

2.6.1 Derivation of the adjoint of the vorticity equation

The model simulates nondivergent barotropic motion on a beta plane, which is ex-

pressed through the vorticity equation

+V2 9(V' V + f = 0, (2.30)O(zy)

where V7 is the stream function, V2
0 is the relative vorticity, and 0 is the meridional

change of the coriolis parameter df/dy and 0(, )/r9(z, y) is the Jacobian. This is similar

to equation (2.7). If i and 7P + 60 are two solutions to equation (2.30), the equation for

b p is

0V2b =(V2, + V 260 +f,0 + 6V)) 9(V 2V + f, V)
O(x,y) - (X,y) (2.31)

If we linearize about the solution 0, equation (2.31) reduces to

0 V 2 o = O(V 2 ¢ + f'6?) + 9(V 2 bV, ) (2.32)
O(x,y) '(Xjy)

This is the tangent linear equation analogous to (2.8). We now define the inner product

of two vorticity fields C and (' as

(V 2 , ,V) = 2 JJ VO- V",'dxdy, (2.33)
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where the domain of integration is (0, L) in both directions. Also note that the Laplacian

operator is self-adjoint, i.e.

(4', V21') = (V 24', V"). (2.34)

The Jacobian has, for any three scalar fields a, b, c, the following useful property

(a,b) y O(b, c) dxdy. (2.35)

at19(, Y) j ~,Y

Taking the inner product of (2.32) with V 261#" we obtain

a V261p, = K (V2 4'+f,6) , V 26 1 )+ (a 21 1#) (V261). (2.36)

Let us now consider each of the terms in (2.36). The first term can be written

(jV261, V2b4I I V16,0, IV264'i) (2.37)

Making use of (2.35) we can rewrite the second term in (2.36) as

Kq (V2 ,+ f, 64') v2 4  I Ila (61p, V20+ f) 6vl"dxdy

~ ff 4'O(V21p + f, 6V) - V261/, a (6/, V2 10 + f)\
-0 60' :,x

=-1 i'(x, Y) d 0x(  t(x,y) "
(2.38)

Again making use of (2.35) the last term in (2.36) can be rewritten as

,° (v 261 ' tp) ) 1i a (v 2bo# ' V) 6-O'adxay

J(x, Y) 'pT' = - (X, y)
1J (#' dxdy _ (6,1) /" (2.39)

., O(x,,Y) 9(,)

Using (2.37)-(2.39) we can rewrite (2.36) as

(Vbp 26 ,~ V6V' (VVA + fb/) + KV260,Vq29 OV11 (2.40)

From (2.40) we get

9v20( 42',4' ) g0(V 2 V) + f, 6 ") (2.41)
= - + o(-X'Y) ((x,.Y)
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which is the adjoint of (2.32), and analogous with (2.9). Now, the inhomogeneous adjoint

equation can be expressed as

V26,= V ( 6  ') + Oq(V2 1p + ) + ((t) - (t), (2.44)

O(x, Y) a(z, Y)

where contributions from C(t) - C(t) occur only when observation are available. The

procedure to solve for V( 0 J is the same as shown in section 2.3 using spatial differencing

(spectral method) and time differencing (Adams-Bashforth method), which are discussed

in more detail in sections 3.1 and 3.2.



Chapter 3

SPATIAL AND TIME DIFFERENCING

3.1 Spatial differencing scheme

Although most tropical models have used finite difference methods to solve the model's

governing equations, a spectral method is used here. This is due to the many computa-

tional advantages over finite difference methods that spectral methods have, including

much greater accuracy per degree of freedom, reduction of computational dispersion, and

elimination of nonlinear instability (DeMaria, 1983, and Gottlieb and Orszag, 1977).

There are three different spectral methods known as the Galerkin, tau, and collocation

methods. For each of these methods, the spatial dependence of the dependent variables is

expanded in a finite series of some appropriate basis functions. The governing equations

are then used to give a system of equations for the series amplitudes. The differences

between these methods are the way in which boundary conditions are treated, and the

way the equations for the series amplitudes are determined.

For the Galerkin method the basis functions are chosen so that they satisfy the same

boundary conditions as the dependent variables, and are orthogonal with respect to some

inner product. The equations for the time dependent series amplitudes are then found

by substituting the series expansions into the governing equations and taking the inner

product of each equation with each of the basis functions.

The tau method is a variation of the Galerkin method where the basis functions

are still orthogonal, but are not required to satisfy the boundary conditions individually.

Instead, extra degrees of freedom are added in such a way that the series as a whole

satisfies the boundary conditions. With the exception of the extra terms in the series

expansions, the time dependent series amplitudes are determined in the same way as the

Galerkin method.
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For the collocation or pseudospectral method, the equations for the time dependent

series amplitudes are determined by substituting the series expansions into the governing

equations and then forcing the eqdations to be satisfied exactly on a set of grid points

(collocation points), where the number of collocation points is chosen to be equal to

the number of terms in the series expansions. For collocation, the equations are solved

in physical space, while for the Galerkin and tau methods, the equations are solved in

spectral space. In this study the Galerkin method is used, because of its simplicity and

accuracy. With the Galerkin method, the Fourier components are eigenfunctions of the

linear operators which appear in the governing equations, so the linear terms have a very

simple form in spectral space. Also, with the Galerkin method no aliasing errors are

produced because the equations are solved in spectral space. The collocation method,

however, produces aliasing errors since the equations are solved in physical space.

For this case the appropriate basis functions are Fourier components. This reduces the

need for the use of implicit time differencing since the Fourier components have uniform

resolution over the domain. It turns out that when Fourier components are used as basis

functions, semi-implicit time differencing can be implemented quite easily since the Fourier

components are the eigenfunctions of the linear operators which appear. It is not necessary

to solve a linear system at each time step since all the series amplitudes which appear in

the linear terms are decoupled.

Because of the nonlinear terms in this problem a double Fourier transform is used to

transfer the nonlinear terms into physical space, calculate these terms using grid points

and then transfer the terms back to spectral space.

In this section the Galerkin method is applied to the governing equations to give an

approximate solution. First the nondivergent barotropic vorticity equation will be solved.

followed by the adjoint equation derived in chapter 2. The nondivergent vorticity equation

can be expressed as
0 ( -0 (3.1)T.t 09 (Xz, y)
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which if expanded, noting that df/dy = /3, -Oap/Oy = u and 90/Ox - v, where u and v

are the zonal and meridional wind components, is

a( + PLO = F(x, y), (3.2)

where

F(x, y ) + (3.3)

To transform the equation a double Fourier transform is used where the Fourier transform

of an unknown function such as O(z,y,t) is denoted as 0,,(y,t), and the transform of

ibm(y,t) is denoted as 7m,n(t). These transforms can be written as

1(Y't) = 1IOL(x,y,t)e-ikxdx, (3.4)

1fo
km,n(t) = 1 Om (y, t)e-Itdy, (3.5)

where k = 2rm/L and I = 2rn/L. The truncated inverses of these transforms are

N

,0.(y,t)= O 1,J,n(t)etl, (3.6)
n=-N

M

(X,y,t) - E tm(y,t)e' t . (3.7)
m=-M

Equations (3.4) and (3.5) take a function in physical space, O(x, y, t) and transform it to

spectral space, 0 ,,,.(t). Equations (3.6) and (3.7) transform a function in spectral space

back into physical space.

Before proceeding here are some useful operational properties

IfOL 9?(x'Y' t) e-ickdx = ikZm(y, t), (3.8)
L ax

1 fL O m(y, t) e-iYdy = ilbm,n(t). (3.9)

Letting u( = A and v( = B, (3.2) can be expressed as

0 ,0._ 0 [ OA. OB 1
+ PO [A + !B (3.10)

The transform of (3.10) in the x-direction is

0( + /3ikOm = - ikAm + - -j. (3.11)

• ~a ay II
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Now transform (3.11) in the y-direction

Ot +/3ikkm,n= [ikAm,n + ilBm,n]. (3.12)
'9t

Using the double Fourier transform, u,n, Umm, and vm,n are the following

( m,. = -(k 2 + 12)Om,n, (3.13)

Un,n - --ilm,n, (3.14)

Vm,n = ikOb,n. (3.15)

Plugging these into equation (3.12) and rearranging, we get

) ikm,n + J2  (3.16)
at Vk + 12 

=  k2 + 12F,n

where

Fm,n = - [ikAmn + ilB,,n]. (3.17)

To solve (3.16) the following steps are performed.

1. Compute the wind components and relative vorticity at points on the transform

grid:
M N

u(Xi,Y,) = - e ,
ik

i 1 il*,n,ne i '  (3.18)
M=- M [=- N

M=-M [=NIM N

((xi, yj) = - m eikxl [ (k2 + 12) lme"t1, (3.20)
rM=-M [=-N I

2. Compute the relative vorticity fluxes at points on the transform grid and then do a

Fourier transform in the x and y directions:

A(xi,yj) = u(x.,yj)((zi,yj), (3.21)

B(xi,yj) = v(xi,yj)( (xi,yj). (3.22)
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Now using these flux equations (3.21) and (3.22)

1 3M+I 3N+I
A,, (3M + 1)(3N + 1) E E= A(xi,y)e-i(kxi+'y'), (3.23)

i=--1 j=l

1 3M+1 3N+I
Bm,n =: E B (Xi,yje(il~ (3.24)

(3M + 1)(3N + 1) i= (=3

where a 3M + 1 and 3N + 1 point trapezoidal quadrature is used in the transformed

space. The reason for this is it can be shown that at least this many points are

needed to insure that the model is free of aliasing error.

3. Compute F .,,, where F,,n = - [ikAm,,, + ilBm,n].

The adjoint equation discussed in chapter 2 can be written as

a , = 2 O( 6 ', I) +(( + f, 60') (3.25)
"t- O(X,y) +  O(x,y)

Expanding the first term on the right side of (3.2), and using -Ork/Oy = u and 1/Ox = V,

we obtain

V2 WV _V 2 0(u6v') + ±(v66')]. (3.26)

Expanding t'..; last term on the right side of (3.25), and noting that -19 /Y/Oy =

bu', Ob/Ox = 6V and df/dy = 3, we obtain

0(( + f,6 b') [ + ] Oobv (3.27)

O(x,y) =(9)j - 193

Now, let u6,I = C, v6gY = D, 6u'( = G and 6v'C = H, and we get a simplified equation

similar to (3.10)
a , b [0±' =Vy 2C[ 0 +(V2C + G) + (V2D+ H)] (3.28)

From here we can solve (3.28) in the same fashion as the nondivergent vorticity equation.

First, transform (3.28) in the x-direction

(6()+ /ikbiP, [ik(Cm + Gm) + +(V2Dm + Hm)] (3.29)

Now transform in the y-direction

0 (6( .-(,64,,,,,) + I3ik,n,, = - [ik(V Cm,n + G,,) + il(V2D,n, + H.,)j]. (3.30)

OtI
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Along with equations (3.13)-(3.15), 6(,4n,4u ,,, v' , and V2 need to be found using a

double Fourier transform

b( =- -(k 2 + 12)6 p , (3.31)

unn = -il6k',n, (3.32)

mv,n, = ikbiP'm,n, (.3

V 2 = -(k 2 + 12). (3.34)

Using these equations, (3.30) can be rewritten as

9 ( , ( ikO 't3, 1 (3.35)
-(6 k k +1 2 / - k + 12Er(335

where

Em,n = ikf-(k 2 + 12 )Cm,n + Gm,n] + il[-(k2 + 12)Dm,n + Hm,n] (3.36)

As before, the terms in (3.36) are transformed into physical space, calcR ated, and then

transformed back into spectral space.

1. Along with equations (3.18)-(3.20), 6u', bv' and 6b'need to be computed at points

on the transform grid:

SNl
bu'(xi, yj) e - ei x i lmm,ne -I , (3.37)

M=-M [n=-N

M N
6v'(Xi, Yi) = eikxi ik6b,?eP' 1 uj , (3.38)

m=-M n=- N

M N

'(xyJ) = m,
n e ly  (3.39)

r=-M [=-N I

2. Compute the fluxes at points on the transform grid and then do a Fourier transform

in the x and y directions:

C(X, yj) = u(xi, yj)6b'(Xi, yj), (3.40)

D(xi, yj) = v(xi, yj)bO'(xi, yj), (3.41)

G(xi, yj) = 6u'(xi, yj)((xi, yi), (3.42)

! I ! |W
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H(xi,yj) = 6v'(x1 ,y j )((xjyi). (3.43)

Using these flux equations (3.40)-(3.43)

1 3M+1 3N+1

Cn'n (3M 1)(3N+1) E C(xiyj)ei(kx+tY'), (3.44)
(M---1 j=1

1 3M+I 3N+lV,n, = E3 E )3 +i D(xi' yj)e-ik:+Y' (3.45)
(3M+1)(3N+ =1 j-1

1 3M+1 3N+1

Gmn (3M + 1)(3+ 1) G(zi, y)e (3.46)
(3M 1)3N +1) =1 j=1

1 3M+l 3N+l

Hm,n = (3M + 1)(3N + 1) E H(xiyj)e-i(kxi+'v)" (3.47)
(3M 1)3N 1)=1 j=1

3. Compute Em,n, where Em,n = ik[-(k2 +12 )Cm,n + Gm,n] + il[-(k2 +12 )Dm,n + Hm,n].

The Fourier series is truncated with a maximum wavenumber of M and N in the

x and y directions respectively. While in the transformed space the truncated Fourier

series maximum wavenumbers are 3M and 3N. From the theory of numerical quadrature

(Krylov, 1962) it can be shown that 3M + 1 and 3N + 1 point trapezoidal quadratures are

exact if the integrand is a truncated Fourier series with a maximum wavenumber less than

or equal to 3M or 3N. Thus the nonlinear terms are evaluated exactly when transformed

from physical to spectral space, so no aliasing error is introduced. This prevents nonlinear

instability of the type described by Phillips (1959).

To reduce the computation time the model uses Fast Fourier Transform (FFT) rou-

tines written for the Cray computer by Temperton (1983a,b,c). DeMaria (1983) showed

that transforming a variable from spectral to physical and back to spectral space can be

evaluated about 13 times faster when the FFT algorithms are used. Since most of the

computing time is used for the transforms, the use of the FFT algorithms greatly increases

the efficiency of the model.

EI
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3.2 Time differencing scheme

In choosing a time differencing scheme, the accuracy, stability, and difficulties of

programming must all be considered. Schemes can be divided into one-step and multi-

step methods. In one-step schemes the solution at a given time step depends only upon

the single state of the system at the preceding time step. Multi-step methods require the

knowledge of more than one of the previous states. The multi-step methods generally.

have higher order accuracy but often produce nonphysical parasitic components of the

solution. The one-step methods do not produce parasitic solution components, but must

use smaller time steps to match the accuracy of the multi-step methods.

Talagrand and Courtier used a forward step, followed by the leapfrog time differenc-

ing scheme. However, the leapfrog scheme is a multi-step method that will produce a

computational mode that is not damped with time. To avoid this problem we are using

the second order Adams-Bashforth time differencing scheme. Starting from the initial

conditions u = xo at time to, numerical integration of (2.7) with the Adams-Bashforth

time differencing scheme, initialized by a forward step, produces the following sequence of

estimates xP for x(t) at times tP = to + pat, p = 1,2,...:

xj = xo + AtF(xo) (forward step), (3.48)

xp+l = xp + AtF xp) - 1 AtF(xp-1 ) p >_ 1. (3.49)

The Adams-Bashforth time differencing scheme shown above is in the form used for a

forward integration. However, some work needs to be done to derive the time differencing

scheme for integrating backwards using the adjoint equation. So, the idea here is to

find the adjoint of the Adams-Bashforth time differencing scheme and the adjoint of the

forward step.

To do this the discretized analogue of the distance function (2.10) is needed,

P
J= LHp(Xp), (3.50)

p=o
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where Hp(xp) is expressed in (2.11), for each time step p. The first-order variation of J

(2.12) is
P

bJ = E(VxHp, bxp). (3.51)
P=O

Using equations (3.48) and (3.49),we can express the Adams-Bashforth time differencing

scheme for the tangent linear equation as

bx1 = (I + zAtF )bxo, (3.52)

3 1 ,
bxp+i = bxp + AtF'bxp - AtFP_1xp_1 p _ 1, (3.53)

where I is the identity operator of E, a Hilbert space, and FP is the derivative of F with

respect to x, taken at point xp. Introducing, for p 1 1, the following vector in E2

6 bxP-1 ) (3.54)b~p xp "

Equations (3.52) and (3.53) can be expressed as

byl = Tobxo, (3.55)

bYP+1 = TPbY5, P - 1, (3.56)

where To is the operator from £ into 62 represented by the block matrix

To = ( I+ AtF )' (3.57)

and Tp is, for p >_ 1, the operator from C2 into itself represented by the matrix( 0 (358
-AtFI I+ 'AtF ) (3.58)

We denote by P the projection operator from 62 onto S, and is expressed in matrix form

as

P = (0 I). (3.59)

With this notation bxp (p > 1) is equal to

bxp = PTp-1 ... T06xo. (3.60)
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Carrying this expression into equation (3.51) and taking adjoints leads to

P

b6J E TO ... .T;.1 P*VHp, bxo) + (VxHO, bxO), (3.61)
p=O

from this the gradient of J with respect to x0 is equal to

P

VxoJ = ,(To... TvlPVxHp)+ VxHo. (3.62)
p=O

The adjoints Tp; T; and P* are represented by the transposes of the corresponding matrices

(3.57), (3.58), and (3.59), i.e.,

To= (I I + AtF *), (3.63)

-I + At' -1 (364)

(o) (3.65)

Now, we would like to expand (3.62) into the discretized adjoint of the Adams-Bashforth

time differencing scheme. To do this we need to first define the following, Vp = 0 and

Wp = 6xp. Noting that VxHp = 6xp and using the expressions for WP, V, and Wp, the

first term on the right side of (3.62) can be represented as

To ... T;lP*VxHp = T ... T;-I (Vw, (3.66)

Now, using (3.64) we obtain

TA T P*VXHP = TO*.. (3.67)
tV, + (1 + AtF , (3.67) bcm

Letting -Zl2tFp'- 2W,- = VP 1 and V + (I+ 2 AtFp'l)Wp = Wp- 1 , (3.67) becomes

To ... T;,lP*VxHp = T . .. T;_2 (p-',), (3.68)

this is continued to the Euler step

To ... T;IP*Vx H p = T;( V, ) = (I I + AtF*)(l,) = V, + (I + AtFo')Wi. (3.69)

So, from this we get the following equations

1 "W
VP,, 1=-A tf _2 4, (3.70)

I Ii II I I2
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WP_, = V + (I + 3AtF*)Wp,(3.71)

from p = M, M - 1,..., 2, with M being the backward time steps. Equations (3.70) and

(3.71) are the adjoint of the Adams-Bashforth time differencing scheme, with the adjoint

of the Euler step represented by (3.69). Specifically, the x we are referring to is C and the

gradient of the distance function is VCJ, so the equations used are the following

P
V¢0J = -(T; .. .T;_,P'cp) + b'o, (3.72)

p=1

where

6(p = ((p - p) = VCHp. (3.73)

Now letting VM = 0 and WM = 6 CM, where b(M = SCp, we get

vP_ = - tFp_2WP, (3.74)

wp_ = 6P1 + VP + (I + 3AtFjI)WP, (3.75)

for p = M, M - 1,...,2. Contributions from b(p-1 only occur when when observations

are available. The Euler step is expressed as

Wo = 6(o + V + (I + AtF *)W, (3.76)

and from this we get

VC0 J = Wo. (3.77)

The gradient of the distance function is what we are looking for. A descent algorithm can

be applied to V0J to modify the initial conditions and improve the forecast.



Chapter 4

EXPERIMENTS WITH THE NONDIVERGENT BAROTROPIC MODEL.

In this chapter, numerical results from the forward integration of the nondivergent

barotropic model are shown. This is a preliminary study showing the errors in the track

forecast that result with this dynamical model without the use of the adjoint method. The

motivation for this is to show how important the previous track of a tropical cyclone can

be in forecasting its movement, and why the ajoint method is useful. The experiments

use the nondivergent barotropic model described in section 2.1, with a large scale zonal

wind profile shown in Fig. 4.1. This zonal wind profile is specified as

u = Usin(27 (4.1)

where U is the maximum large scale wind and is equal to 10ms - 1. The zonal wind given

by (4.1) corresponds to a single sine wave in the north-south direction, with easterlies in

the southern half of the domain and westerlies in the northern half of the domain. As

described in section 2.1, the model is truncated at wavenumber 47 with no dispersive term

present. Several experiments are discussed which indicate how useful the adjoint method

is. The first study compares, a so called observed vortex track, with a model vortex track.

This is done by starting the model runs at the same place with the structure of the vortices

slightly different. The second experiment is designed to test the sensitivity of model track

to changes in the vortex structure. The third experiment shows an example of what the

track of the model might be if the adjoint method was used.

4.1 Experiment I.

The first experiment proceeds in the following way. At the initial time, the bogus

vortex described by (2.4) is located at x = 2500 kin, and y = 1500 km. The model is
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integrated forward 12 hours, and the results are used as the observed initial conditions.

The vortex at 12 hours is slightly different in structure to original bogus vortex. At this

same position, x = 2195 kin, y = 1516 kin, another model run is started using the bogus

vortex. This second run we denote as the model integration. The observed and the model

runs are integrated forward 48 hours, and their results are compared. The results and

interpretation of these results are discussed in the next section.

4.1.1 Results

Starting at the initial conditions, we compare the observed and model vorticity and

wind fields at the initial conditions in Figs. 4.2-4.5. These figures show no significant

difference between the observed and model conditions. The maximum normalized vorticity

for the observed field is 26.9, compared to 27.1 for the model field, with the southern part

of the observed vortex slightly distorted. While there appears to be no difference between

the initial observed and model wind fields. Looking more closely at the model and observed

vortices, Fig. 4.6 shows the average vorticity at different distances from the center of the

vortex, for both the observed and model cases at the initial time. The only noticeable

difference in Fig. 4.6 is at a radius of 20 km or smaller. Looking at the percentage

difference of vorticity between the two vortices, Fig 4.7, we see that the difference is

around 1.0% except at the larger radii, where the difference is a maximum of 10.37.

where the positive values indicate that the model's vorticity is larger then the observed

vorticity. The larger percentage differences at the larger radii can be misleading. Since

the values of the vorticity get small as the radius get larger, small changes in the vorticity

produce large percentage differences. The small differences in the initial conditions result

in a hurricane track difference shown in Fig. 4.8. This figure shows that the model track

does not curve as far northward as the observed track, and with a slightly faster average

speed, 6.31ms - I compared to 6.09ms - 1 . The mean forecast error, Fig. 4.9, shows a linear

relationship with time after, with an error of 159 km at 48 hours.

What is the cause of the error in the track forecast? If we look at the 48 hour

observed and model vorticity and wind fields, Figs. 4.10-4.13., there is little difference in

the wind fields, however the vorticity fields show a great deal of difference in the normalized
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maximum vorticity. Looking at the observed and model radial profiles and differences in

these profiles, Figs. 4.14 and 4.15, it is evident that Figs. 4.10 and 4.11 do not show

a realistic comparison. This is because the figures use grid point values to produce the

vorticity fields, and the maximum values of vorticity could be located between these grid

points. The actual difference between the two vortices is only noticeable at radial distances

further than 100 kin, Figs. 4.14 and 4.15. Again the percentage difference at the larger

radii reflect the small values of the vorticity. However, by 48 hours the difference at radii

greater than 100 km is more significant, but the structure of the two vortices is still fairly

close. These results are expected, since with the nondivergent barotropic model there is

no development or dissipation of vorticity, only advection. The small differences between

the initial vortices indicates that subtle changes in vortex and vorticity field produce

significant changes in the track. This indicates that, the track itself contains important

information on the vortex. This suggests that the adjoint method can be very useful in

forecasting hurricane motion, since by this method, the model track is modified to fit the

observed track. So with the adjoint method, the information contained in the observed

track is used to forecast the hurricane motion.

4.2 Experiment II.

In this experiment we test the sensitivity of the vortex track to changes in the vortex

structure. Again the initial vortex used in all the runs is the one described in section

(2.1). We compared the model track in experiment I. and two other model tracks started

at different times, with the observed track in experiment I. Again we start the observed

run at x = 2500 km and y = 1500 km, and run the model for 66 hours. We use the results

from the first experiment, where the model run started at x = 2195, y = 1516, which is

the position of the observed vortex at 12 hours. Another model run was started at the

position the observed vortex is located at 6 hours. This run represents a model vortex

whose structure is closer to the observed vortex than the model vortex in experiment I.

The third model run started at the position where the observed vortex is located at 18

hours, and represents a vortex whose structure is not as close to the observed vortex as

the model vortex in experiment I, see Fig 4.16.
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4.2.1 Results

The comparison of the observed and model vorticity fields at 6 hours is shown in Figs.

4.17 and 4.18. Again, with the exception of some distortion in the observed vortex, the

figures look similar. There is little difference in the radial profiles, and in the difference

in the average radial vorticity, Figs. 4.19 and 4.20. In Fig 4.20, as before, the largest

percentage differences are away from the hurricanes inner core. These differences are, in

general, less than in the first experiment, with the largest value being 6.1% at 180 km. The

18 hour observed and model vorticity fields, Figs. 4.21 and 4.22, have the same maximum

value, but the observed vortex is more distorted than the observed vortices for the 6 and

12 hours. The radial profiles and differences in radial vorticity, Figs. 4.23 and 4.24, are

similar to the other runs, with the maximum value of the difference in vorticity being

13.5%. We compare the difference in the average radial vorticity for all three runs, Fig.

4.25. Here we see that the structure of the vortex for the model run started at 6 hours is

closer to observed vortex, followed by the 12 hour run, and finally the 18 hour run. So,

how does this difference in affect the hurricane track? We would assume that the vortex

track of the 6 hour run would be closer to the observed track. While the track of the 18

hour run would have the largest mean forecast error, and this is true. Figs. 4.26, 4.27,

and 4.28 show the 6 hour track, the 18 hour track, and 6, 12, and 18 mean forecast error

respectively. The mean forecast error track error of these tracks, Fig 4.28, shows that, as

the differences between the observed and model vortices become larger, the track's mean

forecast error becomes larger, with the mean forecast error at 48 hours for the 6, 12, and

18 hours being 80.5, 159.3, and 258.2 km, respectively. This seems obvious, but recall

that the percentage difference between the observed and model vortices did not change

much for these three cases. Also these changes in difference were mainly at radii outside

the inner core of the hurricane, where the values of the vorticity is very small. So, we

can conclude that small changes in the structure of the vortex at larger radii, produce

significant changes in the hurricane track. This means, to force the model track to be the

same as the observed track, the adjoint method would need to make subtle changes to the

outer regions of the vortex.
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4.3 Experiment III.

To give an indication of how much the adjoint method will improve the track forecast,

we do the following experiment. To simulate the track that the adjoint model would have,

we use the 48 hour vortex tracks from the first experiment and make some assumptions.

The observed and model track are the ones shown in Fig. 4.8. Remember that using

the adjoint method forces the model track to follow the observed track from time to to

tj, where tj is the initial time shown in Fig. 4.8, and to is, lets say, tj - 12 hours. Now

we assume that the model using the adjoint method will follow the observed track for a

certain amount of time after to before starting to deviate. This is a reasonable assumption,

since the vortex track of the adjoint model at t1 is going the same direction and speed as

the observed vortex. We also assume that the difference between the vortex of the adjoint

model and the observed model at the time of deviation, t2 , is similar to the difference

between the model and observed vortices at the initial time to. So, we assume that the

mean forecast error with respect to time is the same for the model and adjoint model.

In other words, the mean forecast error for the model at 12 hours after the initial time

t1, is equal to the mean forecast error of the adjoint model at 12 hours after t2. Again

this assumption seems reasonable since in order to force the adjoint model track to be the

same as the observed track, the vortex of the adjoint model is modified. And, in order

to have similar tracks, we would expect the observed and adjoint vortices to be similar.

This modification should make the track of the adjoint vortex to be more like the observed

track

4.3.1 Results

We run two cases to show the possible improvement of the mean forecast error by

using the adjoint method. In the first case, the adjoint model track is the same as the

observed track for 6 hours after the initial time t1 . Figure 4.29 compares the vortex track

of the adjoint model with the tracks of the model and observed vortices, for this case.

The mean forecast error for the model and adjoint model is shown in Fig. 4.30. The

mean forecast error is approximately 25 km less throughout the time period when the
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adjoint model track follows the observed track for 6 hours. In the second case the adjoint

model track does not deviate from the observed track until 12 hours after the initial

time ti. The vortex tracks and the mean forecast errors are shown in Figs. 4.31 and

4.32, respectively. In this case the improvement in the mean forecast error by the adjoint

model is, as expected, better than the first case. By 48 hours the mean forecast error for

the adjoint model is 107 km compared to 159 km for the model, which is about a 33%

reduction in the mean forecast error. Although these results do not use the adjoint model,

they do give us an indication of how much the adjoint method will improve hurricane

track forecasts. And from these results and the results in the first two experiments, we

can see that the use of the adjoint method in hurricane track forecasts should be studied

in more detail.
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Figure 4.1: The large scale wind profile, with a maximum wind of 10 ms. The wind profile
is specified by the equation u = 10 sin(-k), and corresponds to a single sine wave in the
north-south direction, with easterlies in the southern half of the domain and westerlies in
the northern half of the domain.
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Figure 4.2: The normalized vorticity field at 12 hours for the model run started at x =

2500 kin, y = 1500 km. We denote this as the initial observed vorticity field, with the
vortex center at z = 2195 kin, y = 1516 kin.
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Figure 4.3: The initial normalized vorticity field for the model run, with the vortex cen-
tered at z = 2195 km, y = 1516 km.
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Figure 4.4: The wind field at 12 hours for the model run started at x =2500 km, y
1500 kin, denoted as the initial observed wind field. This corresponds to Fig. 4.2.
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Figure 4.6: The radial profile of the vortices at the initial time. This figure compares
average radial vorticity of the observed and model vortices.
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Figure 4.8: The observed and model 48 hour vortex tracks.
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Chapter 5

SUMMARY AND CONCLUSIONS

In this study, we have explored the use of the adjoint method to improve hurricane

track forecasts. This is done by successive forward-backward integrations using the adjoint

method, which modify the model's initial conditions. The result of each forward-backward

integration is the gradient of the distance function, where the distance function is related to

the scalar which measures the distance between the observed and model forecast hurricane

track. The gradient of the distance function is then used in a minimization scheme which

will modify the initial conditions. These new initial conditions will produce a model track

closer to the observed track.

The adjoint method developed by Talagrand and Courtier (1987), was derived in this

study using the nondivergent barotropic model. Both the nondivergent vorticity equation

and the adjoint equation are solved on a 0-plane using the spectral method and the Adams-

Bashforth time differencing scheme. In chapter 2 the theory of the adjoint method and the

nondivergent model are described. The adjoint equation of the nondivergent barotropic

model is also derived in chapter 2. In the study by Talagrand and Courtier (1987),

the adjoint equation is derived from the nondivergent vorticity equation using spherical

coordinates. But here we derive the adjoint equation using the nondivergent vorticitv

equation on a/3-plane. A stability argument developed by Talagra.id (1981a), discussed in

chapter 2, showed that the adjoint method is the proper approach for a forward-backward

assimilation. Also discussed in this chapter are minimization schemes which can be used

to reduce the distance function, and in turn modify the initial conditions.

In chapter 3 the nondivergent vorticity equation and the adjoint equation are dis-

cretized in space and time, using the spectral method and the Adams-Bashforth scheme.
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respectively. The spectral method is used because of its simplicity and accuracy. The

Fourier-Gahprkin method used here does not produce aliasing error, and the linear terms

of the equations have a very simple form in spectral space. However, as discussed in De-

Maria (1983), there are disadvantages in using this method. First is the need to assume

periodicity in both the east-west and north-south directions. Periodicity in the north-

south direction is not appropriate to use on an equatorial -plane since the governing

equation contains operators which are nut periodic for this case. The periodic boundary

cond;tions also make it difficult to use real data for initial conditions. So, it is doubtful if

this method could be used in an operational model. The time differencing scheme used in

this study is different from the one used by Talagrand and Courtier. In their derivation the

leapfrog method was used, while we used the Adams-Bashforth method in our derivation.

We use the Adams-Bashforth method because this method eliminates the computational

mode that is sometimes troublesome in the leapfrog method.

In chapter 4 we ran experiments using the nondivergent model to indicate how the

adjoint method can improve hurricane track forecasts. First, the model was integrated

forward using slightly different initial vortices started from the same position. Tthe results

from this experiment show that small changes in the vortex structure, produce large

changes in hurricane track. This indicates that there is important information in the

vortex track itself, and that the adjoint equation could be very useful in improving the

track forecast. In the second experiment, we test how sensitive the hurricane track is to

changes in the vortex structure. We compared the model track in the first experiment with

two model tracks started at the positions where the observed track was at 6 hours and 18

hours. These slightly different vortices produce expected results. A greater difference in

the vortex structure produced a larger mean forecast error in the hurricane track. These

experiments show that the vortex structure strongly influences the hurricane track, and

also indicates that the adjoint method can be very powerful in improving the hurricane

track forecast.

Althoagh the adjoint method shows promise, there are problems with it. First. the

derivation of the adjoint equatoii is complicated, and would become much more so for
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more complicated, realistic models. Also for several reasons the adjoint method consumes

much more computer time than the original model. One reason is because the forward-

backward integrations are required in the adjoint method. Again, as the complexity of

the model increases, the amount of computer time required for each forward-backward

integration should significantly increase. The amount of computer time also increases

using the descent algorithm. The descent algorithm may also, depending on the one

used, take up large amounts of memory also. However, in the future, with the continuing

advances in the speed and amount of memory of computers, these problems can be reduced.

This study was to show how useful the adjoint method can be in forecasting hurricane

tracks. From here there are many possibilities for further study - first, running this

model with the adjoint mett _, and studying the improvement in the forecast hurricane

tracks. From here, more complicated and realistic models using the adjoint method can

be developed. This step might involve the use of Chebyshev spectral methods, instead

of the double Fourier series used here. For limited-area models, Chebyshev polynomials

are capable of handling general boundary conditions that the double Fourier method

can not (Fulton and Schubert, 1987). Another possibilities could include using spherical

coordinates, and vertically layered models, such as the one described by DeMaria (19S3).

Also different time differencing schemes, such as the fourth-order Runge-Kutta method.

might be studied. Also studies should be done to determine the best way to reduce the

noise developed using the adjoint method, which was discussed in chapter 2. Is a penalty

term the best way to do this? And if so, what is the best one to use? Another question

is how to integrate actual observations into the adjoint method. The use of this method

is new and very promising, and should be studied in the future.

$ $ |
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