
z-Tr CO

YP}.: A} ?,"c: 7 July 1989

•] -cc . ,you rev i w. e.. ,,, ch c- d _o ub" ic r . , - c " r:'i or to
b"!tn ,.nt to DT2C .

2 t ply by odo scm er, To CI 1 ,, L

L IiKEST A. ,iAYGOOD, sz Iz, USA ' 1 Atch

Ex ecutive Occ- er _hSIS 89-041

Civilian Institution Programs COCKRLL

1S-t Ld, .A1 TPA 0 8 FEB 1990

TO: CI

ApprovedAJ_ is_- or pub ia release.

Log Number: 89-10-87

'.HARRIT'D MULTRIEq--CaPt, USAF

Director, Office.-of -PubliC Affairs

DTIC" '; ELECTE I "
...... FEB-221990

I 2. -" , S• '

. :, :-..-,...;,..., .:

SEC TYCLASIFICATION OF TI AGE

REPORT DOCUMENTATION PAGE Oo. 070ov "

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
,I APPROVED FOR PUBLIC RELEASE;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/CI/CIA- 89-041

60. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT MIIV O (f appikabe) AFIT/CIA

ALABW AT TUSCAILC0SMA
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45433-6583

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicable)

I ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK MORK UNITELEMENT NO. NO. NO. CCESSION NO.

11. TITLE (Include Security Cassification) (UNCLASSIFIED)
A Parallel Architecture for Real-Thme Simlation

12. PERSONAL AUTHOR(S)

Clayton Dale Cckrell
138. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1 5. PAGE COUNT

T.: , FROM _ TO 1989 65
16. SUPPLEMENTARY NOTATION AFLRUVEL) r'UR UBTC L, E IAW AFR 190-1

ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer, Civilian Institution ProGrams

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necesty and /bnt by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on revene if necetary and dntfy by block number)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
13UNCLASSFIED/UNLIMITED 0 SAME AS RPT. -- DTIC USERS UNCLASSIFIED

22. AM O RSOSBEIDVDA 22b. TELEPHONE (Include Area Cd)22c. OFFICE SYMBOL
ERNESTA. HAYGOOD, lst Lt, USAF (513) 255-2259 AFIT/CI

DD Form 1473, JUN 86 Prevous edtionm are obsolte. SECURITY CLASSIFICATION OF THIS PAGE

AFIT/CI "OVERPRINT"

4/1
* AUTHOR: Clayton Dale Cockrell

TITLE: A Parallel Architecture for Real-Time Simulation

RANK: lLt

BRANCH OF SERVICE: Air Force

COMPLETION DATE: 1989

NUMBER OF PAGES: 65

DEGREE: MSEE

INSTITUTION: University of Alabama at Tuscaloosa, Alabama

Accession For

NTIS GRA&I
DTIC TAB
Unannounced [1
Justifloat io

Distribut i on/

Availability Codes

Avail and/or G ot
Diot Special

90 02 .9

ABSTRACT

This thesis is concerned with the development of a very fast and

highly efficient parallel computer architecture for real-time

simulation of continuous systems. Currently, several parallel

processing systems exist that may be capable of executing a complex

simulation in real-time. These systems are examined and the pros and

cons of each system discussed. The thesis then introduces a custom-

designed parallel architecture based upon The University of Alabama's

OPERA architecture. Each component of this system is discussed and

rationale presented for its selection.

The problem selected, real-time simulation of the Space Shuttle

Main Engine for the test and evaluation of the proposed architecture,

is explored, identifying the areas where parallelism can be exploited

and parallel processing applied. Results from the test and

evaluation phase are presented and compared with the results of the

same problem that has been processed on a uniprocessor system. (

AUTHOR: Clayton Dale Cockrell

TITLE: A Parallel Architecture for Real-Time Simulation

RANK: lLt

BRANCH OF SERVICE: Air Force

COMPLETION DATE: 1989

NUMBER OF PAGES: 65

DEGREE: MSEE

INSTITUTION: University of Alabama at Tuscaloosa, Alabama

ABSTRACT

This thesis is concerned with the development of a very fast and

highly efficient parallel computer architecture for real-time

simulation of continuous systems. Currently, several parallel

processing systems exist that may be capable of executing a complex

simulationi in real-time. These systems are examined and the pros and

cons of each system discussed. The thesis then introduces a custom-

designed parallel architecture based upon The University of Alabama's

OPERA architecture. Each component of this system is discussed and

rationale presented for its selection.

The problem selected, real-time simulation of the Space Shuttle

Main Engine for the test and evaluation of the proposed architecture,

is explored, identifying the areas where parallelism can be exploited

and parallel processing applied. Results from the test and

evaluation phase are presented and compared with the results of the

same problem that has been processed on a uniprocessor system.

THE UNIVERSITY OF ALABAMA
THE GRADUATE SCHOOL

oe' oF TICEAN March 31, 1989

Mr. Clayton Dale Cockrell
c/o Dr. Jon G. Bredeson
The University of Alabama
Tuscaloosa, Alabama 35487

Dear Mr. Cockrell:

This is to inform you that your thesis has been approved.
May I congratulate you on the completion of this requirement for
your degree program and wish you success in your future
professional endeavors.

Sincerely,

AiflmH. Maciln

Dean

WHM/kn

cc: Dr. Jon G. Bredeson

ROSE ADMINISTRATION BUILDING/(205) 348-5921 /SOX 870118. TUSCALOOSA. ALABAMA 35487-01I18

GRADUATE $fTHOOL
UNIVERSITY OF ALABAMA

UNIVERSITY, ALABAMA

TO THE DEAN OF THE GRADUATE SCHOOL:

We, the undersigned, report that as a committee we have examined

NAME: Clayton D. Cockrell STUDENT NO.: 423-78-6913

upon the work done in the subjects assigned, namely:

Major Electrical Engineering

Thesis "A Parallel Architecture for Real-Time Simulation"

and find that h is attainments (are such that he may be

recommended for the degree of Master of Science in Electrical Engineering

I dissent from the foregoing report.

Date -February 27. 1989

A PARALLEL ARCE[TCTURE FOR REAL-TIME SDILATION

by

CLAYTON DALE COCKRULL

A THESIS

Submitted in partial fulfillment of the requirments
for the degree of Master of Science in

the Department of Electrical Engineering
in the Graduate School of
The University of Alabama

Tuscaloosa, Alabama

1989

£ I

Submitted by Clayton Dale Cockrell in partial fulfillment of the

requirements for the degree of Master of Science specializing in

Electrical Engineering.

Accepted on behalf of the Faculty of the Graduate School by the

thesis committee:

*Dr(VJoseh Neko

r. ame E.D~ geon

Dr. Chester C. Carroll"

Department HeadDate~Jo G.2 " Bredeson

Date W)-L

__Dean, Graduate
Dr. William H. Macmillan School

Date

LIST OF A BEVIATIONS

ACSL Advanced Continuous Simulation Language

CCV Coolant Control Valve

CIU Communication Interface Unit

CPU Central Processing Unit

DOD Department of Defense

ET External Tank

FNCOOL Fixed Nozzle Cooling

FPU Floating Point Unit

FPV Fuel Preburner Valve

HPFP High Pressure Fuel Pump

HPFT High Pressure Fuel Turbine

HPOP High Pressure Oxidizer Pump

HPOT High Pressure Oxidizer Turbine

IU Integer Unit

LH2 Liquid Hydrogen

L02 Liquid Oxygen

LPFT Low Pressure Fuel Turbine

LPOT Low Pressure Oxidizer Turbine

MCCOOL Main Chamber Cooling

MIMD Multiple-Instruction Multiple-Data

MOV Main Oxidizer Valve

MPV Main Fuel Valve

NASA National Aeronautics and Space Administration

iii

OPERA Optimally Parallel Environment for Real-Time Applications

OPV Oxidizer Preburner Valve

PE Processing Element

RISC Reduced Instruction Set Computer

SIMD Single-Instruction Multiple-Data

SSME Space Shuttle Main Engine

VLSI Very Large Scale Integrated Circuits

iv

I am dedicating this thesis to my wife, Konnie Cockrell, and my

children, Clay, Lisa, and Lori. Their patience, understanding, and

encouragement made the successful completion of this thesis possible.

I would like to express my deepest appreciation to Dr.

Chester C. Carroll for providing technical support and guidance

throughout my graduate program at The University of Alabama and for

agreeing to be my graduate advisor and chairperson of my thesis

committee.

I would also like to thank Dr. James E. Dudgeon and Dr. Joseph

Neggers for agreeing to be members of my thesis committee, for taking

the time and effort necessary to review this manuscript, and for

providing helpful comments concerning its content.

v

TABLE OF C0 TMrUS

Chapter Page

LIST OF ATIONS .. iii

Ao e........... o s...............................v

LIST OF TABLE viii

LIST OF FIGURES ... ix

ABSTRAC... ... x

1. IT UCTIN 1

2. A PARALLEL ACIRITECTIJURZ FOREAL-TIM SINULATION 3

2.1 The Overall Architecture 4

2.2 The Host/Allocator 6

2.3 The Processing Elements 7

2.3.1 Available Technology 9

2.3.2 The SPARC Chip 9

2.3.3 The NCube Chip 10

2.3.4 Comparsion .. 11

2.4 Memory .. 13

2.5 Communications 13

2.5.1 Tokens .. 13

2.5.2 Cluster Configuration 15

2.6 Output Unit 15

3. AR''TErIE S TST AND EVALUATION: SDWUL&TIN OF = SPACK
SMIr AIN MGu (SI1R) 18

3.1 SSME Simulation Background 18

vi

3.2 The Space Shuttle Main Engine 20

3.2.1 Primary Fuel/Oxidizer Flow 21

3.2.2 Feedback Drive/Control System 23

3.3 SSME Mathematical Model 25

3.3.1 Decomposition of Equations into Task Blocks 26

3.3.2 Task Graph .. 29

3.4 Verification of Performance 35

4 DEIGN CONSIDERATIONS 38

4.1 Questions 38

4.2 Parallel versus Sequential 39

4.3 System Architecture 40

4.3.1 SIMD versus MIMD 40

4.3.2 Shared or Local Memory 40

4.3.3 Power of the Processing Elements 41

4.3.4 Load Distribution 42

4.3.5 Idle Time ... 43

4.3.6 Comunications 43

5 CONCLUSION .. 47

WKW~ jn = e.. ee

APPENDIX A: SSH6 N&T TICAL NOEL 51

vii

LIST OF TAR=]

Table Page

3.1 Task Dependency Chart 31

3.2 Task Dependency Chart 34

viii

LIST 01 FIGURS

Figure Page

2.1 Block Diagram of the Overall Arch itecture 4

2.2 Overall Configuration 5

2.3 Major Functional Blocks of a HCube Processor 12

2.4 Token Fields ... 14

2.5 Interclustr Ccmications Path 16

3.1 SNI Primary Fuel/Oxidizer Flow 22

3.2 Feedback Drive System 24

3.3 Subsystem Flow Diagram 27

3.4 Task Graph for the HPFP/T Subsystem 33

4.1 Camunication Paths in an Order Three Hypercube 46

ix

ADSTNAC!

This thesis is concerned with the development of a very fast and

highly efficient parallel computer architecture for real-time

simulation of continuous systems. Currently, several parallel

processing systems exist that may be capable of executing a complex

simulation in real-time. These systems are examined and the pros and

cons of each system discussed. The thesis then introduces a custom-

designed parallel architecture based upon The University of Alabama's

OPERA architecture. Each component of this system is discussed and

rationale presented for its selection.

The problem selected, real-time simulation of the Space Shuttle

Main Engine for the test and evaluation of the proposed architecture,

is explored, identifying the areas where parallelism can be exploited

and parallel processing applied. Results from the test and

evaluation phase are presented and compared with the results of the

same problem that has been processed on a uniprocessor system.

x

CHAPru 1

Advancements in simulations have long been driven by the

Department of Defense (DOD), the United States Space Program

(directed by the National Aeronautics and Space Administration

[NASA]), and their related contractors. The use of actual equipment

to test new aircraft, missiles, or space boosters is not only

prohibitive from a cost standpoint, but also from a safety point of

view. Large complex simulations have been accomplished using analog

or hybrid computers in the past; however, due to recent advancements

in very large scale integrated circuits (VLSI), high-speed

microprocessors, parallel processing techniques, and lower prices,

digital computers are being used for many simulations. In the past,

attempts to use digital computers concentrated on increasing the

raw speed of the processing element and its associated hardware, a

method which not only increases the expense of such a system but its

complexity as well. Any additional increase in speed is very small

compared to the increase in system price and complexity. The

architecture proposed in this thesis includes increasing the speed of

the processing element and use of more processing elements in an

efficient parallel processing scheme.

1

2

The remainder of this thesis is organized in the following

manner. Chapter 2 describes the proposed architecture for real-time

simulations. The overall system is divided into three subsystems:

host/allocator, processing elements, and input/output. Each

subsystem is described and several alternatives to the present

methods are introduced. Chapter 3 is concerned with the testing of

the proposed architecture. The problem chosen, simulation of the

Space Shuttle's Main Engine, is very large and complex. If the

proposed architecture can process this simulation in real-time, it

may be scaled up or down in size to process any simulation in real-

time. Chapter 4 presents a rationale for each component selection of

the proposed architecture. Some of the items discussed in this

chapter are: shared memory versus local memory; single instruction

multiple data (SIMD) machines versus multiple instruction multiple

data (MIMD) machines; and the architecture of competing communication

schemes.

CHAFPU 2

A PARALLEL AI3 W EFOR BEATL-TI SDWLATION

Today's digital computers can accurately simulate most physical

systems, but such simulations are very complex and require an

excessive amount of time to execute. The simulation thus executes

much more slowly than real-time. The current state of technology has

advanced to the point where implementing a highly parallel computer

system capable of processing most simulations in real-time is now

both technologically and economically feasible. This chapter

provides the design of such a parallel architecture.

Designing an architecture in which several processors work

together in parallel is a logical method of improving the execution

speed of continuous simulation. Each processor in this architecture

would operate on separate portions of the problem to obtain the

overall solution. Such an architecture has the capability of

simulating continuous systems much faster than a totally sequential

architecture, since the performance of parallel architectures is less

affected by the system complexity when compared to a sequential

architecture. As the system becomes more complex, the execution

times of the sequential structures increase.

4

2.1 The Overall Architecture

The overall architecture is shown in Figures 2.1 and 2.2 and is

composed of three units: the host/allocator; execution unit; and

the output unit.

HOST/

ALLOCATOR

EXECUTION UNIT UNI

FIGURE 2. 1 BLOCK DIAGRAM OF THE OVERALL ARCHITECTURE

The host/allocator is responsible for all preprocessing activity

which includes coordinating all input activity and data, executing

the serial portions of the simulation, and allocating tasks to the

individual clusters. Within the clusters, the intracluster allocator

assigns the task to the various processing elements (PE).

The execution stage consists of N clusters with each cluster

containing M processing elements. One PE in each cluster is used

to allocate the task to the remaining PEs in that cluster. The size

5

HOST/
ALLOCATOR CLUSTER #1

JPLOTTER PRINTER I f IPEE

EXTERNA N x N CROSSBARDEVICE tCB, swrrcH
CLUSTERUBPE

F C

ERCL TER #4USE

FIGURE2.2 O EL COI UTERN

6

of the crossbar switch is directly proportional to the number of

processors and clusters; however, the cost of the crossbar switch

determines the size of the overall system, since the price escalates

exponentially with the switch complexity.

The output unit is used to transfer the results from the various

clusters to any number of external devices.

2.2 The ost/Allocator

The host/allocator may be a conventional computer with a single

processing element; however, it would probably be advantageous to

have a host with two to four PEs. The serial sections of the

simulation are normally at the beginning and end of the simulation

process; therefore, if the host contains more than one PE, these

sections may also be executed in parallel. The memory size of the

host is very important, since the entire continuous simulation

program, for each system to be simulated, is stored within it.

During the allocation process, portions of this code are allocated by

the host to the clusters of the system for parallel execution. The

allocation process occurs prior to the actual execution of the

program and is dependent upon the integration algorithm and

allocation scheme chosen [1].

7

The allocation process insures that each cluster receives at

least one state variable (differential equation) to evaluate. All

state variables are assigned their initial values by the host prior

to transferring control to the clusters; however, the host may also

have to calculate a number of integration points prior to

transferring control if the integration algorithm being used is not

self-starting. During the execution of the simulation program, the

host acts as the input/output point for real-time communications to

the outside world.

2.3 The Processing lements

VLSI technology has advanced such that each node, depending on

the amount of memory at each node, may consist of only two to four

chips instead of the current seven to twenty chips used in most

parallel machines [2, 3]. This not only reduces the size of the

overall system but also allows the system to be operated without a

special cooling system, thus reducing the cost of the system.

The processing element used as a node in each of the clusters is

a state-of-the-art 32-bit processor containing an integer unit (IU)

to perform basic processing and a floating point unit (FPU) to

perform floating point calculations in parallel with the integer

unit. Fully integrating the floating point unit with the rest of

8

the processor eliminates most of the handshaking and communications

overhead that is required if two separate chips are used instead of

one. This results in a very large jump in the calculation speed of

the processor. The speedup may be as much as three to six times the

individual chip speed [4].

The integer unit is the basic processing unit at each node, and

it executes all the instructions except the floating point

operations. The IU and FPU operate concurrently. When the FPU

recognizes a floating point instruction, it is placed in a queue

until a floating point register and the required data are available.

The IU continues to execute instructions concurrently.

The PE also contains an instruction/data cache memory of 64k-

bytes. The cache lowers memory access time from approximately 200-

300nS to only 20-50nS [5].

A communication interface unit (CIU) is contained in each PE to

control all the information to and from the node. The CIU takes a

message from its on-chip processing unit, provides any routing

information needed to get that message to the correct destination,

and transmits it over the communication network while the processing

unit continues to execute instructions. The CIU receives all

incoming messages, checks the message (parity check), stores the

message in a buffer until it interrupts the processor, and finally

transfers the message to the processor. The CIU is connected

directly to the processor and local memory via an internal data and

address bus. By integrating the CIU directly into the overall PE

9

chip, it insures very fast communications between the processor and

CIU, eliminates additional chips at each node, and insures fast

communications between nodes.

2.3.1 Available Technology

A very good alternative to designing a new chip is to use an

off-the-shelf design, since it results in not only a faster

construction time but also a lower overall system cost. There are

several off-the-shelf chips currently available that come close to

meeting the above requirements cr exceed these requirements. These

chips include but are not limited to: the Fairchild Clipper; Intel

80386; Sun's SPARC; and, NCube's custom design chip. Of all the

available chips studied, two appear to offer a very good alternative

to designing a new chip: the SPARC and the NCube chip.

2.3.2 The SPARC Chip

The scalable processor architecture (SPARC) is a 32-bit reduced

instruction set (RISC) type processor that provides both an integer

unit and a floating point unit that operate concurrently. The chip

10

also has an instruction/data cache, a memory management unit and

several general and special purpose registers.

The SPARC is supported by about fifty instructions that can be

divided into five basic categories:

1. load and store,
2. arithmetic, logic, and shift,
3. coprocessor operations,
4. control transfer, and
5. read and write control.

The SPARC uses an overlapping window scheme ultilizing six

windows. Each window is composed of twenty-four working registers

and eight global registers [7].

The latest SPARC chip available operates at 50MHz with a 100MHz

chip currently being developed.

2.3.3 The HCube Chip

The NCube Corporation of Beaverton, Oregon, manufactures, a line

of parallel computers ranging from a four processor card that plugs

into an IBM XT to an 1024 node machine. The heart of the NCube

system is the custom-designed NCube node processor.

The NCube node processor provides, on a single VLSI chip, a 32-

bit central processing unit (CPU) that includes an integer and

floating point unit, a memory management unit, and an interprocessor

11

communications control unit. Figure 2.3 shows the major functional

blocks of the chip [6]. The chip contains about 160,000 transistors

and has 68 pins.

The node processor has a full set of arithmetic and logical

operations on 8-, 16-, and 32-bit integers. It also conforms to the

IEEE 754 floating point standard with operations on both 32- and 64-

bit real data. There are 16 32-bit long registers, 13 special

purpose registers, and a set of addressing modes, including support

for vector and matrix operations [8].

2.3.4 Cc sariso

Both the SPARC and NCube chip have the IU and FPU combined on a

single chip, a cache memory, and a memory management unit/communication

controller. The big difference is the speed which the two

processors operate at and the communication structure of the two

chips. A 50MHz SPARC processor is currently available, with a 100HRZ

version promised in the near future. The current NCube processor

operates at 10MHz, but a version eight times as fast is reported to

be in the works.

Both the SPARC and NCube chip meet all the minimum requirements

set forth at the beginning of this chapter. The NCube chip, although

slower than the SPARC chip, has a greater flexibility for parallel

12

11 SERIAL, I/O
CHANNELS

FLOATING ADDRESS INSTRUCTION INTEGER SERIAL

POINT UNIT AND DECODING EXECUTION I/O PORTS
EXECUTION INSTRUCTION AND DMAUNIT UNIT

UNIT CACHE CONTROL

S M~PEMO0RY INTERFACE NI

CLOCK RESET ERROR MEMORY ADDRESS DATA AND
CONTROL BUS ECC BUS

FIGURE 2.3 MAJOR FUNCTIONAL BLOCKS OF A NCUBE PROCESSOR

13

applications than the SPARC chip due to its greater communications

capacity. If the custom design processing element could not be used,

the NCube would be the logical choice followed by the SPARC chip.

2.4 Mmory

Since there may be hundreds or even thousands of nodes in a

parallel computer, their chip count is the most significant part of

the total system chip count. Since the processing portion of each

node has been reduced to one chip, the memory chip or chips is the

next place to try to reduce the overall chip count. By using the

densest memory chips currently available, each node can have a 1M-

byte local memory ultilizing just two chips. This results in each

node in the proposed architecture consisting of only three chips;

therefore, a system with 1024 nodes would consist of only 3072

microchips. The NCube 1024 node system contains 7168 microchips.

2.5 Cammicatims

2.5.1 Tokens

The proposed architecture uses data packets (tokens) for all

14

intracluster and intercluster communications. There are two

different types of tokens, data and instructions, each named after

the type of information it contains. The instruction packets may

contain interrupts, system initiation, procedure calls, or

instructions for running a routine.

Each token contains a minimum of four distinct fields as shown

in Figure 2.4, allowing each PE, cluster, and external device to have

an unique address. The first field identifies to which of the N-

clusters the package is to be routed, while the second field

identifies the PE or external device within that cluster which is the

packet's final destination. The third field contains the specific

instruction/data or the address of the instruction/data, and the

fourth field determines whether the packet is for data or

instructions. Additional fields can be added as the need arises and

can be used for a variety of purposes such as error detection,

health checks of each node or external device, etc. The remainder of

the packet contains the information to be transmitted.

CLUSTER ID I PE ID INSTRUCION/DATA VDS

FIGURE 2.4 TOKEN FIELDS

15

2.5.2 Cluster Cafiguration

Various configurations such as ring, star, and tree topologies

can be used to interconnect the PEs that form the clusters and also

to interconnect the clusters. Every PE is connected to every other

PE in a completely connected system; therefore, in a system with n

PEs, the complete network would require n-square connections [9]. A

completely interconnected system becomes prohibitively expensive and

complex as the number of PEs in a system increases (n becomes

larger); however, it is extremely fast and eliminates all bus

conflicts within the system.

The interconnection scheme chosen for the proposed architecture

uses a star topology with a crossbar switch as the passive center of

the star. The star topology is used for both intracluster and

intercluster communications. The maximum distance a message has to

travel within a cluster is only two communication paths and for

intercluster communications the maximum distance increases to only

four communication paths as shown in Figure 2.5 [9].

2.6 Output Unit

The output unit can be any of a variety of currently available

output devices. These devices maybe CRTs, printers, plotters, etc.

16

FIRST COMMUNICATION PATH (C?)

PE

FIGUR P. ERLSERC MUIAONPT

17

The proposed architecture treats such devices as just another cluster

in the system, allowing for faster and more reliable transfer of data

from the various PEs in the system to these external devices. They

are connected to the system by a separate crossbar switch as shown in

Figure 2.2.

CHAPTER 3

ARCHITECTURK TEST AND EVALUATION: SINULATION OF THE SPACE
SHUrnTL MAIN NIK (SSlK)

The objective of this chapter is to carefully examine the

proposed architecture using the Space Shuttle Main Engine (SSME)

simulation and to evaluate its performance as compared to existing

uniprocessor systems.

One of the main objectives after designing a new computer

architecture is to test it by first emulating the system on an

existing machine and then by actually constructing the system. To

emulate the proposed architecture, an existing parallel computer

with at least 32 nodes would be needed. As of the writing of this

thesis, The University of Alabama does not have such a machine

available; therefore, a complete test and evaluation of the proposed

architecture is not possible at this time.

3.1 SSM Simulation Background

The SSHE is a very powerful but sensitive system which requires

a carefully controlled rapid transfer of mass and energy during the

18

19

first eight minutes of a launch. Real-time simulation of the main

engines is required for a variety of design, test, and evaluation

purposes. These include testing new or redesigned engine

controllers, turbines, and pumps and also evaluating new parameters

and constants in the software designed to control the SSMEs.

Currently the only way of testing the engines in real-time is by

actually firing up the engines on the shuttle or on a test stand.

Earlier successful real-time simulations of the SSME involved

hybrid computers with two or more large-scale analog computers, which

are now obsolete. The full SSME model has not been solved on a

purely digital computer as of the writing of this thesis; however,

the SIMSTAR multiprocessor designed by Electronics Associates,

Incorporated has came closer than any other system. SIMSTAR utilizes

digital, logic, and analog processing to simulate the steady state

performance of the SSHEs, using a programming environment based upon

the Advanced Continuous Simulation Language (ACSL). Although it has

been successful at simulating the steady state performance of the

SSHE, SINSTAR has not been able to simulate the transient model of

the SSME in real-time.

The SSJEs and their related propellant supply system contain

pressures up to 10,000 psia and flows exceeding 1,000 pounds/second

resulting in the natural frequencies of the system exceeding 1

kilohertz [10). An accurate real-time simulation of the SSME over

its full operating range is hard to accomplish because of these high

natural frequencies and it is a tightly coupled, nonlinear system.

20

Parallel processing can achieve the computational rates necessary to

process this large and complex set of equations, resulting in a

real-time simulation.

3.2 The Space Shuttle Main Engine

The Space Shuttle contains three reusable, high-perfrirmance,

liquid-propellant rocket engines with variable thrust t'3at operate

for a total of 480 seconds from launch. The fuel used by the three

main engines is liquid hydrogen (LH2), and the oxidizer is liquid

oxygen (L02). The propellant is carried in separate tanks in the

external tank (ET) and supplied to the main engines under pressure.

The engines can be throttled over a range of 65 to 109 percent of

their rated power level in one-percent increments. This provides for

high thrust at liftoff and a maximum of 3g acceleration during final

ascent [11.]

The engine description is divided into primary propellant flow

paths between the major subsystems, since the physical structure of

the engine is not critical to the simulation [10]. The engine is

subdivided into ten major subsystems through which these flows occur.

The subsystems are:

1. Low-Pressure Fuel Pump/Turbine
2. High-Pressure Fuel Pump/Turbine
3. Low-Pressure Oxidizer Pump/Turbine

21

4. High-Pressure Oxidizer Pump/Turbine
5. Combustion Chamber
6. Fuel Preburner
7. Oxidizer Preburner/Boost Pump
8. Coolant Liner Pressure
9. Fixed Nozzle Cooling
10. Main Chamber Cooling.

Five control valves are provided for throttling each engine:

1. Main Fuel Valve (HFV)
2. Main Oxidizer Valve (MOV)
3. Fuel Preburner Valve (FPV)
4. Oxidizer Preburner Valve (OP1)
5. Coolant Control Valve (CCV).

These valves are controlled by a special control computer designed

and manufactured by Honeywell.

3.2.1 Primary Fuel/Oxidizer Flow

A simplified flow diagram is shown in Figure 3.1. The ET

contains two individual internal tanks for propellant storage. The

lower tank contains a maximum of 385,265 gallons of LH2, and the upper

tank holds a maximum of 143,351 gallons of L02.

Oxidizer from the external tank enters the orbiter's L02

feedline manifold, where it branches into three parallel paths, one to

each engine. The low-pressure oxidizer turbopump (LPOT), the first

component encountered by the oxidizer, raises the oxidizer pressure

from 120 psia to 450 psia. The high-pressure oxidizer turbopump

22

HPOT) then raises the pressure to 5200 psia, after which the flow

splits into several different paths. The main oxidizer path from the

HPOT is to the fuel and oxidizer injectors. With the main engine

operating at 109%, the total oxidizer flow to the preburners is 105

pounds/second, while the primary flow to the oxidizer injector is 855

pounds/second.

LF 2 at 120 psia

LH2 at 30 psia

q--450 psia 20 psla #2 AND #3.0 ps
5200 psia 710.psi--

~OXIDIZER AND
FUEL PREBURNERS

hot gas]
EXTERNAL

TANK

COMBUSON
CHAMBE

FIGURE 3.1: SSME PRIMARY FUEL/OXIDIZER FLOW

23

LH2 from the ET enters the orbiter LH2 feedline manifold, where

it branches into three parallel lines also. The first component the

fuel encounters is the low-pressure fuel turbopump (LPFT), which

raises the fuel pressure from 30 psia to 250 psia. After passing

through the high-pressure fuel turbopump (HPFT), the fuel pressure

reaches 7,100 psia to feed the preburners and fuel injector.

Over the entire engine operating range (65-109%), the oxidizer

to fuel ratio is 6:1. At the 109% power level, this produces a flow

from the combustion chamber of 1,118 pounds/second at a velocity of

7,500 feet second, which results in a thrust of 375,000 pounds at

lift-off.

3.2.2 Feedback Drive/Control System

To maintain this flow, the SSME employs a feedback drive system

utilizing the hot gases produced by the fuel and oxidizer

preburners. This process is shown in Figure 3.2. After the fuel

passes through the high-pressure fuel pump (HPFP), it goes through the

main fuel valve and is divided by the coolant control valve between

the fixed nozzle cooling system and the main chamber cooling system.

The flow of the fuel through these components serves two purposes: it

not only cools the fixed nozzle and the main combustion chamber, but

it also raises the temperature of the fuel, giving it a greater

"02 FUEL
TANK TANK

LPOT LPOP PREBURNE PREBURNER LPFp LF

tom COMUSTIO m FV
MOV(CHAMBER

FIGURE 3.2 FEEDBACK DRIVE SYSTEM

potential energy. The heated fuel now makes its way to the

preburners. The fuel preburner valve (FPV) and the oxidizer

preburner valve (OPV) control the amount of fuel going into the

preburner, thus regulating the combustion and pressure within the

preburners. The hot gas from the preburners is now used to drive the

HPOT and the HPFT. The hot gas pressures in this stream may exceed

25

5,900 psia. After passing through the high-pressure turbines, the

hot hydrogen-rich gas returns to the fuel injector of the main

combustion chamber.

The oxidizer flow from the high-pressure oxidizer pump (HPOP)

splits into three separate paths. One path goes back to drive the

LPOT, while the main flow goes through the NOV to the oxidizer

injector in the combustion chamber. The other stream from the HPOP

goes through the preburner oxidizer pump and splits into a path to

each of the preburners.

The low-pressure fuel turbine and the low-pressure oxidizer

turbine are driven by the output of the HPFT and the HPOT,

respectively. This is also illustrated in Figure 3.2.

3.3 SMath n tical Model

The mathematical model, as supplied by NASA, is composed of 170

equations [121. They consist of 38 differential equations, 3

difference equations, and 129 algebraic/logical equations. There is

a total of 8 input variables, 5 output variables, and 41 state

variables. Appendix A contains a listing of the equations.

These equations mathematically model the propellant flows

through all ten of the major subsystems of the SSME. For most of the

flow paths, the following general form of the equations is used:

26

Pressure

P a kS[SiDWI-DWD Idt

Flow

DW= kDW S I P - Po - C (DW 2)] dt

One subsystem generates a pressure which in turn produces a flow

within the next subsystem. The flow information then loops back to

the first subsystem, thus closing the loop or circuit. For the heat

exchangers, FNCOOL and MCCOOL, the temperatures and densities are

also needed to determine heat flux and gas quality. Enthalpy H3 of

the fuel entering the heat exchangers from the HPYP is needed to

determine the heat transfer [10]. Figure 3.3 is a block diagram of

the SSME model showing the flow of information into each subsystem.

3.3.1 Decmoition of Equations into Task Blocks

The next step after obtaining the mathematical model is the

decomposition of the equations into task blocks. This allows for

efficient load distribution, determination of task execution

sequence, and it also helps determine the total number of processors

needed. To aid in the decomposition process, certain assumptions

27

PS PFID PFI2
T5 P

PF~l PFPDWF2 O

HPFP/T4%w~oPFUE
CHAMBEN R HPODZT

PMFVD T9P

PFD9

DFTIGR PR3SUBSE S FLO DIAGRA

28

have been made:

1. Communication time between processors is considered
negligible as compared with the computation time for
a task.

2. Operating system overhead is negligible as compared
with the computation time for a task.

The model is made up of 170 equations representing the flows

between the 10 major subsystems of the SSME. These equations can be

decomposed into one of four different models, depending on the level

of decomposition:

1. Coarse-grained
2. Medium/Coarse-grained
3. Medium-grained
4. Fine-grained.

The coarse-grained model breaks the equations down into the ten

different subsystems and treats each subsystem as a separate task.

This results in a total of 10 task blocks in the coarse-grained

model.

The medium/coarse-grained model treats each state variable as a

separate task. The equations are therefore broken into a total of 41

task blocks which result in some equations appearing in several

different task blocks. The duplication of the equations in the

different task blocks is unavoidable, since the output of some

equations is used as the input to several other equations.

The medium-grained model treats each equation as a task

resulting in a total of 170 task blocks. The fine-grained model

breaks each equation down into several individual tasks (elementary

29

mathematical operations) with each task taking approximately one

clock cycle to execute.

It is very obvious that the inherent parallelism is the highest

in the fine-grained model and the lowest in the coarse-grained model.

Whenever a problem can be broken down into separate elementary

mathematical operations (add, subtract, multiply, divide, etc.), the

potential parallelism in the system increases and the overall

processing time is minimized if an efficient scheduling of the task

on an appropriate number of processors is achieved. This apparent

increase in parallelism makes the fine-grained model very attractive

if speed is the only consideration; however, the fine-grained model

has some problems because it is broken into these individual

mathematical operations. It is harder to change the equations used

to model a particular subsystem since these equations have been

broken into separate pieces and distributed to separate processing

elements. If the simulation is to be interactive, it would be very

difficult to use the fine-grained model since any changes in the

simulation while it is executing would affect numerous processors

within the system. The medium-grained model does not have these

problems associated with it; it appears that the medium-grained model

can be executed in real-time by using parallel processing.

3.3.2 Task Graph

The medium-grained model contains 170 separate task blocks;

30

most of these blocks are dependent upon a previous block for at least

one of its inputs. In order to determine these dependencies, a

software package developed by Earl Wells was used. To use the

dependency software, the equations have to be broken down, showing

which outputs are used as inputs, which inputs are external to the

equations, and what are the state variables. Listed below is an

example of how the equations were broken down:

Equation Equation Equation
Number Output Inputs
1 OFP1 DIFD2 SF1
2 PFD1 PFS SF1 OFPl
3 TFP1 SF1 OFP1

where DWFD2 is the output from equation 17, SF1 is the output from

equation 6, and PFS is an external input.

The software package goes through and identifies all the

equations that are dependent only on external inputs and/or state

variables. These equations are listed as level-one in the task

dependency chart. The next trip through it identifies all the

equations that are dependent upon the outputs of level-one equations

and external inputs or state variables. These equations form level-

two of the task dependency chart. The third trip identifies all the

equations dependent upon external inputs or state variables and

outputs from levels-one and -two. These equations make up level-three

of the chart. This process continues until all the equations have

been eliminated and assigned to a level in the task dependency chart.

Table 3.1 shows the output of the dependency software. It

divided the 170 equations into 10 different levels of dependency.

31

TABLE 3.1
TASK DEPENDENCY CHART

SHUTTLE MAIN ENGINE MEDIUM-GRAINED MODEL

Level 1 - Number of Task Blocks: 28
EQ17 1Q18 1Q23 EQ36 EQ38 EQ40 EQ42 EQ44 EQ50 EQ55 EQ62 EQ67 EQ83 EQ88
1Q94 EQ99 EQ112 EQ113 EQ117 Q127 EQ134 EQ146 E0148 EQ150 EQ160 EQ163
EQ165 1170

Level 2 - Number of Task Blocks: 33
EQI Q8 EQ13 EQ14 EQ37 1Q39 EQ41 EQ43 EQ45 EQ46 EQ51 EQ52 EQ57 EQ64
EQ89 EQ100 EQ116 EQ123 EQ128 EQ130 EQ135 EQ136 EQ144 EQ147 EQ149
EQ151 1Q152 EQ158 EQ161 EQ164 EQ166 EQ168 EQ169

Level 3 - Number of Task Blocks: 24
EQ2 EQ3 EQ7 EQ16 EQ22 EQ47 EQ56 EQ68 EQ82 EQ84 EQ86 EQ93 EQ95 EQ97
EQ110 EQ120 EQ129 EQ131 E0140 EQ142 EQ145 EQ156 EQ159 EQ167

Level 4 - Number of Task Blocks: 25
Q9 EQ15 EQ24 EQ26 EQ27 EQ48 EQ53 EQ58 EQ63 EQ69 EQ71 EQ72 EQ85 EQ87

EQ96 EQ98 EQ111 EQ114 E.122 EQ124 EQ125 EQ132 EQ141 EQ143 EQ157

Level 5 - Number of Task Blocks: 15
EQ10 EQ28 EQ34 EQ49 EQ54 EQ65 EQ73 EQ79 EQ92 EQ103 EQ115 EQ121 EQ126
EQ133 EQ162

Level 6 - Number of Task Blocks: 12
EQ11 1Q25 EQ29 EQ35 EQ66 EQ70 EQ74 EQ80 EQ109 EQ118 EQ137 EQ153

Level 7 - Number of Task Blocks: 11
EQ12 EQ30 EQ75 EQ81 EQ90 EQ101 EQ104 EQ106 EQ119 EQ138 EQ154

Level 8 - Number of Task Blocks: 11
EQ4 EQ19 EQ31 EQ59 EQ76 EQ91 EQ102 EQ105 EQ107 EQ139 EQ155

Level 9 - Number of Task Blocks: 6
EQ5 EQ20 EQ32 EQ60 EQ77 Q1108

Level 10 - Number of Task Blocks: 5
EQ6 1Q21 1Q33 1E61 SQ78

The number of tasks per level ranges from 5 to 33. The task

dependency chart could be used to determine the number of processors

required for the SSME simulation because the level with the largest

number of tasks identifies the minimum number of processors that

32

would be required. In this particular case that would imply 33

processors, since level-2 of the chart contains 33 separate task

blocks; however, this may not be the optimal number of processors

that could be used.

By using the task dependency chart to create a task (directed)

graph, a better understanding of the equation flow can be achieved

[13]. (The graph will not be included in this thesis due to its size

and complexity.) The nodes (vertices) of the graph will represent

the equations of the medium-grained model. The arcs between the

nodes will represent the data flow (output of an equation) from one

equation to the next. The arrow head on the arcs will point to the

node receiving the data. Figure 3.4 illustrates a task graph for the

HPFP/T subsystem of the SSHE.

The task graph pointed out some equations in the task dependency

chart that could be moved from one level of the chart down to

another. These moves are possible because the outputs of these

equations are not used as inputs in the next lower level; instead,

they are used as inputs two to seven levels down in the task

dependency chart. The rearranged task dependency chart is shown in

Table 3.2. The rearrangement results in five fewer processors being

needed to implement the task dependency chart. Level-four of the new

chart now has the most tasks with 28, where level-3 in the first

chart had the most with 33.

The software used does not contain an error. In scheduling

tasks on a multiprocessor system, the first priority is to get as

33

HIGH PRESSURE FUEL PUMP (HPFP) 14-18 HPF TURBINE 22-33
HPF TURBOPUMP SPEED 19-21

2 THF2 131,145,162,167, XMFV 92 82, 89 91, 105

123.16,6

29

2 tFTr2DA

91 f90, 104N

1 AND 2 -LPF PUMP 34--COOLANT LINER PRESSURE

82--FUEL PREBURNER FUEL FLOW
89--FUEL PREBURNER OXIDIZER FLOW
90. 91, AND 92--FUEL PREBURNER COMBUSTOR
104-MAIN CHAMBER FUEL
105-INJECTOR 123--THRUST CHAMBER
131--MAIN CHAMBER REGENERATIVE COOLING ELEMENT
145--FIXED NOZZLE REGENERATIVE COOLING ELEMENT
162, 167, AND 169--FIXED NOZZLE INLET, DISCHARGE, AND BYPASS

FIGURE 3.4 TASK GRAPH FOR THE HPFP/T SUBSYSTEM

3"

TABLE 3.2
TASK DEPENDENCY CHART

SHUTTLE MAIN ENGINE MEDIUM-GRAINED MODEL

Level 1 - Number of Task Blocks: 21
EQ17 EQ36 EQ38 EQ40 EQ42 EQ44 3Q50 3Q55 EQ62 EQ88 EQ99 EQ113 EQ127
EQ134 EQ146 EQ148 EQ150 EQ160 EQ163 EQ165 EQ170

Level 2 - Number of Task Blocks: 27
EQ1 EQ13 EQ14 EQ37 EQ39 EQ41 EQ43 EQ45 EQ46 EQ51 EQ83 EQ89 EQ94
EQ100 EQ116 EQ130 EQ135 EQ136 EQ144 EQ147 EQ149 EQ151 EQ152 EQ158
EQ161 EQ166 EQ168

Level 3 - Number of Task Blocks: 26
EQ2 EQ7 EQ8 EQ22 EQ47 EQ52 EQ56 EQ68 3Q82 EQ84 EQ86 3Q93 EQ95 EQ97
EQl10 EQ112 EQ120 EQ128 EQ129 EQ131 EQ140 EQ142 EQ145 EQ156 EQ159
EQ167

Level 4 - Number of Task Blocks: 28
EQ9 EQ15 EQ18 EQ23 EQ24 EQ26 EQ27 EQ48 EQ53 EQ63 EQ67 EQ69 EQ71 EQ72
EQ85 EQ87 EQ96 EQ98 EQ1ll EQ114 EQ122 EQ124 EQ125 EQ132 EQ141 EQ143
EQ157 3Q164

Level 5 - Number of Task Blocks: 15
EQ10 EQ28 EQ34 EQ49 EQ54 EQ65 EQ73 EQ79 EQ92 EQ103 EQ1I5 EQI21 EQ126
EQ133 EQ162

Level 6 - Number of Task Blocks: 12
EQ11 EQ25 EQ29 EQ35 EQ66 3Q70 EQ74 EQ80 EQ109 EQ118 EQ137 EQ153

Level 7 - Number of Task Blocks: 15
EQ3 EQ12 EQ16 EQ30 EQ57 EQ64 EQ75 EQ81 EQ90 EQ101 EQ104 EQ106 EQ119
EQ138 EQ154

Level 8 - Number of Task Blocks: 12
EQ4 EQ19 EQ31 EQ59 EQ76 3Q91 EQ102 EQI05 EQ107 SQ117 EQ139 EQI55

Level 9 - Number of Task Blocks: 6
ZQ5 3020 EQ32 3Q60 3Q77 EQI08

Level 10 - Number of Task Blocks: 8
BQ6 EQ21 EQ33 EQ58 EQ61 EQ78 SQ123 SQ169

large a number of tasks executing as fast as possible. This exploits

any parallelism inherit in the system. The software package

35

accomplishes this by using the dependencies of the equations to set

up the task dependency chart. The rearranging of the first chart

does not increase the overall execution time of the system; instead,

it results in a higher utilization rate for the final system.

The SSME mathematical model contains several equations that

involve integration. These equations can be integrated using any one

of several parallel integration techniques that have been developed

over the past few years. These parallel integration algorithms are

considerably faster than the conventional sequential algorithms that

have been used in the past. Some of the most frequently used

parallel integration algorithms are: the Runge-Kutta method, the

Predictor Corrector method, and the Interpolation method.

The speed and accuracy of the integration algorithm used in the

simulation will determine the validity of the overall model. This

thesis does not attempt to identify the algorithm that is best for

this particular application, since nearly any parallel integration

algorithm could be implemented on the proposed architecture.
1

3.4 Verification of Performance

Since the introduction of multiprocessor systems, parameters

have been created to measure the performance of these systems. The

parameter that is used the most is called the speed-up ratio. The

36

speed-up ratio is defined as the ratio of the serial execution time

to the parallel execution time for the same problem:

speed-up = serial time/parallel time.

In calculating the serial and parallel execution times for this

thesis, the actual processing times of the NCube custom design

processor operating at 10MHz are used. The processing times are:

multiply 3.4 microsecond (uS)
divide 6.3 uS
square root 6.3 uS
add 2.9 uS

There were also some processing times that still had to be estimated.

These items and their estimated execution time on an NCube are:

integration fourth-order Runge-Kutta 15.1 uS
noninteger power functions 258.1 uS

To calculate the serial execution time, the execution time for

each primitive mathematical operation in each equation was added

together to give a total execution time for that equation. These

times were then added together for all 170 equations; this resulted

in a total serial execution time of 5,064.1 uS.

The parallel execution time is calculated by first looking at

the task graph and locating the critical path (longest path) in the

graph. The task graph of the medium-grained model shows that the

critical path involves an equation from each of the ten levels,

3T

resulting in a total execution time of 457.7 uS when all the

primitive operations are added together. This gives a theoretical

maximum speed-up of:

speed-up = 5064.1/457.7 =11.06.

Another important parameter used in measuring multiprocessor

performance is the efficiency rate. It is defined as the ratio of

the speed-up to the number of processors used:

efficiency (e) = speed-up/number of processors.

The efficiency rate for the medium-grained model is:

e = 11.06/28 - .395.

The efficiency rate for a uniprocessor system is 1.0 but drops to

.395 when 28 processors are used. This does not mean the

multiprocessor system is not a good design. A lower efficiency rate

is a necessary trade-off if a real-time simulation is to be realized.

A higher speed-up cannot be achieved if fewer than 28

processors are used, since this would increase the number of levels

in the task dependency chart. Neither can a higher speed-up occur if

more than 28 processors are used, since the critical path in the task

graph involves at least one equation from each of the ten levels.

CHAP1= 4

DESIGN CONSIDKRATIGES

Whenever someone introduces a new concept or a new design, the

first question asked by most people is, why did you do it this way?

This chapter attempts to answer some of these whys.

4.1 Questions

The design and development of a parallel processing system

raises several questions that must be answered before proceeding with

the design. These basic questions are:

1. How powerful should each processor be?
2. How should the processing elements communicate

with each other?
3. How should the workload be divided among the

processing elements?
4. How can we be sure no processing element sits idle

waiting for data?
5. What type of memory do we need and how large should

it be?
6. Should the system be a SIND or a MIND system?

The remainder of this chapter is devoted to answering each of

38

39

these questions. The first section discusses why a parallel

architecture was chosen over a sequential architecture.

4.2 Parallel versus Sequential

Simulation is defined in [14] "as a numerical technique for

conducting experiments on a digital computer that involves certain

types of mathematical and logical models that describe the behavior

of a system over extended periods of real time." Simulation

currently is the only method for estimating the performance of a new

system prior to the actual manufacturing of that system. The demand

for real-time simulations is growing at a tremendous rate; this is

mainly because of savings realized by detection of faulty designs

prior to manufacturing the product. The size and complexity of these

simulations are also increasing dramatically, not only because of the

size and complexity of the systems they simulate, but also to the

demand that the simulations be as realistic and accurate as possible.

Sequential computers cannot achieve processing speeds high

enough to run these complex simulations in real time. Charles L.

Seitz said in [15], "Whenever a computer designer has reached for a

level of performance beyond that provided by his contemporary

technology, parallel processing has been his apprentice." This was

not only true in 1984 but continues to be the case today, not

40

because it is necessarily easier to use parallel processing, but

because it is the only way to achieve the processing speeds required

for these applications.

4.3 System Architecture

4.3.1 SIND versus MIND

One of the first tasks is deciding if the system will be a

single-instruction multiple-data (SfID) or a multiple-instruction

multiple-data (MIMD) system. In SIND systems, a single instruction

controls all the processors while they operate on different data.

Although this system is simpler than a MIND system, it is not as

flexible. The SIMD system cannot accommodate multiple independent

users; however, the MIND system can since each processor is

independent of the others and executes its own program [16].

4.3.2 Shared or Local emory

The second decision to be made is between a shared memory system

and a local memory system. In a shared memory system, each processor

41

must access a single large memory bank. This system has many

problems associated with it that are very difficult to overcome. One

problem is that the processor to memory bus is easily saturated when

multiple processors try to access memory at the same time. Another

problem occurs whenever several processors try to access the same

segment of memory at the same time; this results in some type of

hardware or software protocols being added for arbitration. These

conditions result in a bottleneck that tends to slow the overall

processing speed of the entire system. A shared memory system is

also very hard to scale up to a large number of processors due to the

cost and complexity of the switching hardware involved in such a

system.

A local memory system is faster than a shared memory, since the

local memory is located adjacent to the processing elements, thus

eliminating a long data bus or switching network. The local memory

also has no inherent limit on the number of processors in a system,

since there is not any complex hardware associated with the addition

of a few more processing elements.

4.3.3 Power of the Processing 1lnm ts

Whatever processing element is used in tne overall

multiprocessor system, it should be the fastest state-of-the-art

42

processor available at the time that meets the needs of the proposed

architecture. As discussed earlier in Chapter Two, there are several

processing elements currently available that meet the above criteria.

4.3.4 Load Distribution

How to efficiently divide the various tasks among the different

processing elements is a question that has not been answered

completely yet. Research continues on this subject at several major

universities both in Europe and here in the United States. In fact

two graduate students (Jeff Jackson and Michael Whiteside) here at

the University of Alabama are conducting some very promising research

into algorithms that will look at the incidence matrix of a data flow

graph and select an efficient allocation of the task to the available

processing elements.

This thesis does not attempt to allocate the various tasks of

the SSME simulation to the processing elements. The only method

currently available is to allocate the task by dividing the task

graph into clusters that minimize the intercluster communications.

The result is that the task graph is mapped or embedded into the

machine graph or structure [181. At the present time, this process

must be accomplished manually.

43

4.3.5 Idle Tism

Does it really matter if some processing elements sit idle for a

short time waiting for data? That is the question that really needs

to be answered next. The answer depends on the desired objectives of

the total design. Is the objective to design a system with 100% or

near 100% utilization of every processor, or is the objective to

design a very high-speed system obtaining as high an utilization rate

as possible but still meet all the speed requirements? The proposed

architecture places high speed as the first priority while desiring

to achieve as high a utilization rate as possible.

4.3.6 Cmicatias

The most important factor, after processor speed, affecting the

performance of a multiprocessor system is the interprocessor

communications scheme. A multiprocessor system built with the

fastest processors available will still have its overall performance

degraded dramatically unless it has a very efficient communications

scheme. A high-performance efficient communication system insures

that whenever a processor needs to communicate with another processor

that it can do so without any unnecessary delays and by interrupting

only the destination processor.

44

There are many different ways of organizing an efficient

communications system. In [171 it is suggested that, in general,

each processor should have just a very few communications links, a

small interprocessor distance, and a large number of alternate paths

between a pair of processors for fault tolerance. A small

interprocessor distance is a very logical ideal. By keeping the

distance between the processors to a minimum, the propagation delay

between processors that are not nearest neighbors (next to each

other) is also kept to a minimum. If each processor located between

the source and destination processors must be interrupted to

transmit a message, then the suggestion that each processor have only

a very few communication lines makes good sense. If each processor

had more than one or two lines, it would not really serve any useful

purpose, since the processor would have to halt its computation task

each time a message was being passed by it, to it, or from it.

However, if the interprocessor communications are transparent to the

individual processor, as suggested in Chapter Two for the proposed

architecture, then each processor could have six, eight, ten, or more

outside communications links. This would virtually assure that there

would be an open path between any two processors at any given moment

of time.

In [161 it is stated that the middle ground in parallel

architecture belongs to switch-based system while the two extremes

are represented by buses and cubes. The bus architecture has already

been discussed in this chapter and discarded due to the many problems

45

and expense associated with it. The cube architecture has several

advantages to it, along with the switch-based system. Both systems

can support multiple communications lines at each node if the node

processor can accept them. Both systems can have some degree of

fault tolerance built into them. The cube architecture already has

some degree of fault tolerance in it, since each node in a cube has

more than one path to it. The biggest difference between the two

architectures occurs when calculating the interprocessor

communications distance. In the cube architecture this distance

depends upon the order of the cube (a power of 2 representing the

size of the cube). The longest communications path for any order

hypercube is (log2)(N) where N is the order of the cube. For a simple

order 3 node as shown in Figure 4.1, this distance can be as great as

3 communications paths in going from node (0,0,0) to node (1,1,1).

This compares to a maximum of 4 comunications paths that must be

transversed to get to any node in the proposed architecture which is

switch-based. The communications paths for this system are shown in

Figure 2.5.

46

0,1, o0,,

1',, 1,0,1 SECOND CP

0,0,0 001FIRST CP

FIGURE 4.1: COMMUNICATION PATHS IN AN
ORDER THREE HYPERCUBE

CHAPTu 5

CONCLUSIONS

To meet the growing demand for real-time simulations, an

efficient, easy-to-use, inexpensive, flexible parallel architecture

must be developed and made widely available. The development of

such an architecture is a complex, time-consuming process. The

developer must be knowledgeable of not only the hardware and software

available, but also the size of the simulation that will be processed

on the system and the many problems of processing a continuous

simulation in real-time.

To insure a real-time simulation, every available means of using

parallelism must be considered. Most large scale simulation problems

contain functions that may be executed in parallel. With additional

effort many more areas of parallelism can be exploited from these

problems. Then by implementing the simulation with parallel

algorithms more time can be saved.

Finally, the simulation must be mapped to a parallel

architecture that will fully exploit all the parallelism in the

simulation and make full use of all parallel algorithms. The

proposed architecture discussed within this thesis is such an

architecture. It is inexpensive, since it can be designed using off-

47

48

the-shelf hardware; it is easy to use, since nearly any computer can

serve as the front end for programming and input/output purposes. It

is efficient, since it can exploit every little bit of parallelism in

most problems, and it is also flexible, since more processors may be

added at any time in the future as needed.

By combining this proposed architecture with the available

parallel processing techniques, an efficient parallel processing

environment has been created that will perform most continuous

simulations in real time.

[1] C. C. Carroll and Buren Earl Wells, "An Intelligent Processing
Environment for Real-Time Simulation", Bureau of Engineering
Research, Report No. 421-17, The University of Alabama,
Tuscaloosa, Al, May 1988.

[2] iPSC Data Sheet, order number: 280110-001, Intel Scientific
Computers.

[3] NCube Ten-an Overview, NCube Corp.

[4] David Jurasek, William Richardson, and Doran Wilde, "A
Multiprocessor Design in Custom VLSI", VLSI Systems Design, June
1986, pp. 26-30.

[5] Alan Jay Smith, "Cache Memory Design: an Evolving Art", IEEE
Spectrum, Vol. 24, No. 12, December 1987, pp. 40-44.

[6] John P. Hayes, Trevor Mudge, and Quentin F. Stout, "A
Microprocessor-based Hypercube Supercomputer",IEEE Micro,
October 1986, pp. 6-17.

[7] "The SPARC Architecture Manual", Sun Microsystems, Inc., August
1987.

[81 Jacob Barhen and John F. Palmer, "The Hypercube in Robotics and
Machine Intelligence", Computers in Mechanical Engineering, March
1986.

[9] Kai Hwang and Faye A. Briggs, Computer Architecture and Parallel

Processing, New York, New York: McGraw-Hill Book Company Inc.,
1984.

[10] J. Paul Landauer, "Real-Time Simulation of the Space Shuttle Main
Engine on the SIMSTAR Multiprocessor", Simulation Computers
Application Report, Electronics Associates, Inc., February 1988.

[11] Space Shuttle Transportation System, Rockwell International
Corp., January 1984.

[12] Space Shuttle Main Engine Mathematical Model, Revision H, Version
1.3, November 20, 1987.

[131 Claude Berge, Graphs, New York, New York: Elsevier Science
Publishing Company, Inc., 1985.

49

50

[14] William G. Bulgren, Discrete System Simulation, Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1982.

[15] Charles L. Seitz, "Concurrent VLSI Architectures", IEEE
Transactions on Computers, Vol. c-33, No. 12, December 1984, pp.
1247-1265.

[16] John Bond, "Parallel-Processing Concepts Finally Come Together in
Real-Time", Computer Design, June 1, 1987, pp.51 -70 .

[17] Laxmi N. Bhuyan and Dharma P. Agrawal, "Generalized Hypercube and
Hyperbus Structures for a Computer Network", IEEE Transactions on
Computers, Vol. c-33, No. 4, April 1984, pp. 323-333.

[18] Charles L. Seitz, "The Cosmic Cube", Communications of the ACM,
Vol. 28, No. 1, January 1985, pp. 22-33.

APPRIDIX A
SSMIE NATHDITICAL MODEL

SYMBOLS USED IN THE EQUATIONS

* multiply
/ divide

fabs absolute value
sqrt square root
pow power

11 logical OR
dt integral
x temporary variable
xx temporary variable

1. OFP1 - B11*DWFD2/SF1;
2. PFD1l - PFS+B12*SF1*SF1*TPfpl(OFP1);
3. TFP1 - B13*SF1*SF1*TTfpl(OFP1);
4. SFlx = B14*(TFT1-TFP1);
5. SFlxx = SFlx;
6. if (SF1>ePF1H1(TFT1>TBF1 && SF1<ePF1)) dtSFl=SFlxx; else SF1=0;
7. PFT1I = P5-B62*DWFT1*fabs(DWFT1)/p5;
8. CPA =TCp(T5);
9. CP =CPA+B78+(B84*PFT1I+B88*PFT1I*PFT1I)/(max(B126,T5)-B127);

10. DTHFT1 - sqrt(CP*T5*(l-pow(PFI/P5,B117*(B144-1)/B144)));
11. UCFT1 - B15*SF1/DTHPT1;
12. T'FT1l = B16*DWFT1*DTHFT1*TTftl(U_CFT1);
13. DWFT1 = sqrt(B17*p5*(P5-PFI));
14. OFP2 - B18*DWFD2/SF2;
15. PFD2 = PFD1+B19*SF2*SF2*TPfp2(OFP2);
16. TFP2 - B20*SF2*SF2*TTfp2(OFP2);
17. DWFD2 - (DWFN+DWKC+DWFNBP+B119*PMFVD)/Bl1O;
18. A AMFY Tmfv(XHFV);
19. SF2x =B23*(TFT2-TFP2);
20. SF2xx -SF2x;
21. if(SF2>ePF2 :: (TFT2>TBF2 && SF2<ePF2)) dtSF2inSF2xx; else SF2-0;
22. FFP - DWFPOI/(DWFPOI+DWFPF);
23. PRFT2 - pow(PFI/PFPB8);
24. dFT2 - Td(FFP);
25. DWFT2 - B24*PFP*TPR(sqrt(PPI/PFP),1.O)*

(B125+B124*SF2+B123*SF2*SF2)/sqrt(TFP);
26. TF2 - TT(FFP);
27. CPF2 -TCpt(FFP);
28. DTHFT2 - sqrt(CPF2*TF2*(1-pow(PRFT2,,(dFT2-1)/dFT2)));
29. U-CFT2 . B25*SF2/DTHFT2;
30. TFT2 - B26*DWFT2*DTHFT2*T~ft2(UCFT2);

51

52

31. TFT2DA = TFP-B9*(TFT2*SF2)/ (9340. 0*CPF2*DWFT2);
32. TFT2Dx - (TFT2DA-TFT2D)/tFT2DA;
33. dt-TFT2D = TFT2Dx;
34. DWCLIx = B1*(PFD2-PCL-B2*fabs(DWCLI)*DWCLI);
35. dtDWCLI - DWCLIx;
36. DWCLOx = B3*(PCL-PFI-B4*fabs(DWCLO)*DWCLO);
37. dt-DWCLO = DWCLOx;
38. PCLx = B5*(DWCLI-DWCLO);
39. dtPCL = PCLx;
40. OOP1 = B27*(DWMOV+DWOP3)/SO1;
41. PODi = POS+B28*SOl*SO1*TPopl(OOPl);
42. DWOSx = B31*(POT-POS-B32*DWOS);
43. dtDWOS = DWOSx;
44. POSx = B33*(DWOS-DWMOV-DWOP3);
45. dt POS = POSx;
46. TOMi - B34*SO1*SO1*TTopl(OOP1);
47. SOix = B35*(TOT1-T0P1);
48. SOlxx = SOix;
49. if (SO1>ePOl 1: (TOT1>TBOl && SO1<ePOl)) dtSO1-SOlxx; else S010;-
50. QOTi - B38*SO1/DWOTl;
51. TOTi = B36*DWOT1*DWOTl*TTotl(OOT1);
52. ROTi = TRotl(OOT1);
53. DWOTlx = B106*(POD2-POD1-(B37+ROT1)*fabs(DWOT1)*DWOT1);
54. dt_-DWOT1 - DWOTlx;
55. 00P2 = B39*(DWMOV+DWOT1+DWOP3)/S02;
56. POD2 = PODl+B40*S02*S02*TPop2(00P2);
57. TOP2 = B41*S02*S02*TTop2(00P2);
58. POTPR = POD2 - 1000.0;
59. S02x - B42*(TOT2-TOP2-TOP3);
60. SO2xx - SO2x;
61. if (S02>ePO2 :1(TOT2>Th02 && S02<ePO2)) dtS2SO2xx; else S02-0;
62. 00P3 - B43*DWOP3/S02;
63. POD3 - POD2 + B45*S02*S02*TPop3(00P3);
64. TOP3 - B44*S02*S02*TTop3(00P3);
65. DWOP3x - B46*(POD3-PPOS-B104*DW0P3*DWOP3);
66. dt -DWOP3 - DWOP3x;
67. PROT2 - pow(PFI/POP,B55);
68. FOP -DWOPOI/(DWOPOI+DWOPF);
69. dOT2 -Td(POP);
70. DWOT2 -B48*POP*TPR(sqrt(PFI/POP),1.O)*

(B122+B12l*S02+Bl20*S02*S02)/sqrt(TOP);
71. T02 -TT(FOP);
72. CP02 -TCpt(FOP);
73. DTHOT2 - sqrt(CP02*T02*(1-pov(PR0T2,(d0T2-1)IdOT2)));
74. UCOT2 - B47*S02/DTHOT2;
75. TOT2 - B29*DWOT2*DTHOT2*TTot2(ULCOT2);
76. TOT2DA - T0P-B1O*(TOT2*S02)/(9340.0*CPO2*DW0T2);
77. TOT2Dx - (TOT2DA-TOT2D)/tOT2DA;
78. dt-TOT2D - TOT2Dx;

53

79. DWOP2C - sqrt(B115*(POD3-PODl));
80. PPOSx - B49*(DWOP3-DWFPO-DWOPO-DWOP2C);
81. dt PPOS - PPOSx;
82. DWFPF - B5O*(P9-PFP-B51*DWFPF*DWFPF/p9)*STEPTl4E+DWFPF-2*DWFPF*CORR;
83. AAFPV - Tfpv(XFPV);
84. DWFPOx = B52*(PPOS-PFP-B53*DWFPO*DWFPO/

(AAFPV*AAFPV) -B54*DWFP0I*DWFPOI);
85. dt -DWFPO = DWFPOx;
86. WYPOIx = DWFPO-DWFPOI;
87. dt_-WFPOI - WFPOIx;
88. EFPO = TEfpo(WFPOI);
89. DWFPOI = EFPO*DWFPO;
90. PFPx =B56*(DWFPF+DWFPOI-B111*DWFT2);
91. PFP =PFPx;
92. TFP =TF2+Bll2*T9;
93. DWOPF =B57*(P9-POP-B58*DW0PF*DW0PF/p9)*STEPTI4E+DW0PF-2*DW0PF*CORR;
94. AAOPV =Topv(XOPV);
95. DWOPOx =B59*(PPOS-POP-B61*DW0PO*DWOPO/

(A AOPV*A AOPV) -B60*DWOPOI*DWOPOI);
96. dt DWOPO - DWOPOx;-
97. WOPOIx = DWOPO-DWOPOI;
98. dt_-WOPOI - WOPOIx;
99. EOPO - TEopo(WOPOI);
100. DWOPOI = EPO*Di0PO;
101. POPx = B63*(DWOPF+DWOPOI-B107*DWOT2);
102. dtPOP = POPx;
103. TOP =T02+B113*T9;
104. PFIx =B64*(DWFT1+DWOT2+DWFT2-B108*DWFI);
105. dt-PFI =PFIx;
106. DWFIA =B65*PFI*TPR(PC/PFI,0.0)/sqrt(TFI);
107. DWFIx =(DWFIA-DWFI)/tDWFI;
108. dt YDWFI =DWFIx;
109. TFI =B66*TFP+B67*TOP+B68*T5;
110. WOIx =DWHOV-DWOI;
111. dt-WOI - WOIx;
112. A-AHOV - Tmov(XHOV);
113. EOI - TEoi(WOI);
114. DWMOVx = B69*(POD2-PC-B70*DW4OV*DW4OV/ (A AMOV*A AMOV) -B71*DWOI*DWOI);
115. dt-DWMOV - DW?4OVx;
116. DWOI - EOI*DWHOV;
117. PCIES - B114*PC;
118. PCx - B72*(B109*DWFI+DWOI-DWCN);
119. dt PC - PCx;
120. FTC - (DWOI+DWOP3)/(DWOI+DWFI);
121. DWCN - B73*PC/C;
122. C -B128+B129*FTC+B130*FTC*FTC;
123. MR -(DWMOV+DWOP3)/DWFD2;
124. TC -TTc(FTC);
125. SU5x - B77/p5*(DQW15+DQW25+B7*DWHC-H5*DW5);

54

126. dtSU5 - SU5x;
127. P5 - TPH2(SU5,p5);
128. H5 - SU5 + P51(9336.O*p5);
129. DW5 - DWFT1;
130. DWMCx =B75*(PMFVD-P5-B76*fabs(DWMC)*DW4C/p5);
131. dtDWMC . DWKCx;
132. p5x = B77*(DWl4C-DW5);
133. dtyp5 - p5x;
134. T5 = TTH2(SU5,pS);
135. DQW15 - B79*(Bl3l+Bl32*T5)*(TW15-T5)*pow(fabs(DWMC),0.8);
136. DQW25 - B8O*(B131+B132*T5)*(TW25-T5)*pow(fabs(DWfC),O.8);
137. DQTC5 - B81*(TC-TW15)*pow(fabs(DWCN),0.8);
138. TW15x = B82*(DQTC5-DQW15);
139. dtTWiS - TW15x;
140. TW25x - B82*(-DQW25);
141. dtTW25 - TW25x;
142. SU4x - B87/p4*(DQW14+DQW24+B6*DWFN-H4*DW4);
143. dt-SU4 SU4x;
144. DWFNx -B85*(PMFVD-P4-B86*fabs(DWFN)*DWFN);
145. dt-DWFN - DWFNx;
146. P4 - TPH2(SU4,p4);
147. H4 -SU4+P4/(p4*9336.0);
148. p4x - B87*(DWFN-DW4);
149. dt3p4 - p4x;
150. T4 - TH2(SU4,p4);
151. DQW14 - B89*(B131+B132*T4)*(TW14-T4)*pow(fabs(DWFNX,0.8);
152. DQW24 - B90*(B131+B132*T4)*(TW24-T4)*pow(fabs(DWFNX0O.8);
153. DQTC4 -B91*(TC-TW14)*pow(fabs(DWCN),0.8);
154. TW14x - B92*(DQTC4-DQW14);
155. dtTW14 - TW14x;
156. T424x =B93*(-DQW24);
157. dt TW24 - TW24x;
158. D4x -B94*(P4-P9-B95*fabs(DW4)*DW4/p4);
159. dt DW4 - DW4x;
160. P9x - B96*(DW4+DWFNBP-DWOPF-DWPPF);
161. dt-P9 - P9x;
162. PNFVD - PFD2-B22*fabs(DWPD2)*DWFD2/(A-AFV*AAFV);
163. A ACCV - Tccv(XCCV);
164. T9 - B100*P9/p9;
165. p9 - (DWFNBP+DW4)/(DW4/p4+B105*DWFNBP);
166. DWFNBPx - B98*(P?FVD-P9-B99*fabs(DWFNBP)*DWFNP/(AACCV*A-ACCV));
167. dt DWFNBP - DWFNBPx;
168. CORR - (p9old-p9)/p9old;
169. QFFh - (1.0-B133*(TFS-B134))*(B135+B136*DWFD2+B137*SF1);
170. TTFP1 - (TFS-B134)+(E145+B146*SF1+B147*SFI*SF1);

