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ABSTRACT

A locally-implicit scheme for steady-state solution of the thin-layer Navier-

Stokes Equations is simplified by elimination of coefficient matrices. This reduces

both arithmetic computation and computer storage requirements. An added

benefit is the simplification of the algorithm which eases the coding task. The

locally-implicit scheme uses finite-volume spatial discretization, locally-implicit

time integration, Jameson-type artificial dissipation terms and a modified Gauss-

Seidel iteration. The modified method is tested for subsonic and transonic flows

over an RAE 2822 airfoil.

i11



TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .......... ....................... 1

2. LOCALLY-IMPLICIT SCHEME FOR

ONE-DIMENSIONAL MODEL EQUATION ..... ........... 3

2.1 Model Equations ......... ...................... 3

2.2 Euler Implicit Scheme for Model Equation .... ........... 4

2.3 Local Stability Analysis for Model Equation .... .......... 8

3. LOCALLY-IMPLICIT SCHEME FOR

NAVIER-STOKES EQUATIONS ..... ............... ... 14

3.1 Original Locally-Implicit Scheme for Navier-Stokes Equations 14

3.2 Modification of Locally-Implicit Scheme for

Navier-Stokes Equations ....... ............... 19

4. RESULTS ......... .......................... .21

5. CONCLUDING REMARKS ...... .................. ... 30

LIST OF REFERENCES ....... ..................... ... 31

APPENDIXES ........... .......................... 33

APPENDIX 1. DERIVATION OF C,,k . ... ............. ... 34

APPENDIX 2. ADDITIONAL SMOOTHING FACTORS

IN SCHEME ..... ............... .. 41

VITA ........... .............................. .. 45

iv



LIST OF FIGURES

FIGURE PAGE

1. Stability Plot of Modified Locally-Implicit Scheme Applied to

1-D Equation (3), (v = -L) ........ .................. 13

2. Grid for RAE 2822 Airfoil (128 x 32 Cells) ..... ........... 23

3. Resulfs for Case 2 (Mo, = 0.676, a = 2.40 deg., Re = 5.7x106 ) 24

4. Results for Case 4 (Moo = 0.725, c = 2.92 deg., Re = 6.5x106 ) 26

5. Results for Case 5 (Moo = 0.730, a = 3.19 deg., Re = 2.7x10 6 ) 28

v



LIST OF SYMBOLS AND ABBREVIATIONS

a see Equation (2), also speed of sound

A, B Jacobian matrices correspunding to inviscid flux vectors

c see Equation (6)

CFL Courant number

CP pressure coefficient

d artificial dissipation

du correction quantity for Auj [see Equation(8)]

e energy

E, F inviscid flux vectors

g amplification factor

I identity matrix

J Jacobian of metric tensor for coordinate transformation

L any operator

M Mach number

p pressure

Pr Prandtl number

Q vector of dependent, conservation variables

AQ, Au change in the solution per time step

r see Equation(6)

R simplified viscous flux Jacobian (diagonal) matrix

Re Reynolds number

Res residual

RHS right hand side

vi



S viscous flux vector

t time

u general one-dimensional variable, Cartesian velocity component

in x direction

v Cartesian velocity component in y direction

a see Equation (20), also angle of attack (see Table 1)

-t ratio of specific heats

C(2 )  factor used in artificial dissipation

C(4) factor used in artificial dissipation

Csee Equation (20)

K(2) second-difference dissipation constant

r,(4) fourth-difference dissipation constant

Pz dynamic viscosity

v factor used in artificial dissipation, also kinematic viscosity

p density

T time

w relaxation factor

Subscripts

j x-direction

k y-direction

C, q curvilinear coordinates

0o free stream condition

Superscripts

m iteration sweep count

n time level

vii



CHAPTER 1

INTRODUCTION

Though computational fluid dynamics (CFD) has been in existence for less

than three decades, it is already recognized as an increasingly powerful tool for

aerodynamic design of aerospace vehicles1 . Flight test, ground test, and CFD

compliment one another as aerospace vehicle design requirements become more

demanding. Besides being used directly in the design process, CFD also plays an

important role in furthering scientific understanding of complex flow phenomena.

Within the CFD spectrum are various levels of maturity. At one end of the

spectrum are panel codes that solve linear-type flows for which CFD is quite ma-

ture. These codes can readily handle very complicated geometries in reasonable

computer run times. At the other end of the spectrum are the Euler and Navier-

Stokes codes which handle the complex physics of nonlinear-type flow. These

codes currently require substantial computer resources (both memory and time)

and are limited to simple geometries (relative to linear-type flow solvers), but

provide essential physical insight into many classes of flow problems. To make

Euler and Navier-Stokes codes even more useful than they currently are, gains

must be made in several areas such as improvement in speed of convergence;

improvement in handling complex geometry; reduction in numerical diffusion

for flows containing shocks, wakes and vortex structures; and better turbulence

modeling1 . The scheme discussed in this thesis addresses the area of increasing

computational efficiency of algorithms.

Current useful Euler and Navier-Stokes schemes fall into one of two cate-

gories: explicit or implicit methods. MacCormack 2 , in comparing these meth-

ods, points out the need to use an implicit procedure to avoid restricting CFL



numbers to small values. He states that Newton iteration and line Gauss-

Seidel procedures show potential for significantly increasing numerical efficiency.

Chakravarthy' has shown various relaxation procedures for implicit schemes.

Reddy and Jacocks' have precented a locally-implicit scheme for solving the

Euler equations for large problems using a modified Gauss-Seidel relaxation pro-

cedure. They find a CFL number of about ten to be appropriate for their scheme.

Reddy and Nayani5 , and Nayani6 have extended the locally-implicit scheme to

solution of the two-dimensional Navier-Stokes equations. The work presented in

this thesis is a modification to that scheme. The modification results in elimina-

tion of seven four-by-four matrices thereby making the scheme matrix-free. The

modified scheme involves less arithmetic computation and requires less computer

storage. Primary motivation for the work presented in this thesis is to establish

the viability of the matrix-free scheme.

The scheme Nayani presented in his dissertation6 is referred to throughout

this thesis as the "original" scheme. The modification reported in this thesis

is referred to as the "modified" scheme. Nayani's computer code was used as

the starting point for the results presented in this thesis. Parametric studies

of various relaxation parameters with regard to the convergence process and

multigrid acceleration of convergence of the scheme are not addressed here, since

such features would be similar to the original scheme.
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CHAPTER 2

LOCALLY-IMPLICIT SCHEME FOR ONE-DIMENSIONAL

MODEL EQUATION

In this chapter, a model equation is used to describe the locally-implicit

method. It starts with a finite difference scheme based on central differences for

spatial derivatives and Euler implicit time integration. A modified symmetric

Gauss-Seidel iteration is developed for solving the implicit equations at every

time step. The scheme is shown to be unconditionally stable by Fourier stability

analysis.

2.1 Model Equations

Nayani6 has demonstrated the basic locally-implicit scheme and its stability

with the one-dimensional diffusion equation:

'ou a2u5T = 82 (1)

Reddy and Nayani5 have established the unconditional stability of the locally-

implicit scheme for the linearized Burgers equation,

Ou Ou 92u
x 9X a--=V~x (2)

which serves as a model for the Navier-Stokes equations. The coefficient a rep-

resents a convection velocity which is independent of x and can be positive or

negative. The coefficient v represents a generalized diffusion coefficient corre-

sponding to the fluid viscosity or an artificial dissipation coefficient designed

to be effective near shocks (v - t( 2)IaIAx, where C(2) is a second-difference

dissipation constant obtained through numerical experimentation).

3



The following one-dimensional model equation will be used in this thesis to

present the modified locally-implicit scheme and its stability.

au 8u 94u(+ a z --V- x (3)

In Equation (3), v represents an artificial dissipation coefficient designed to

be effective everywhere in the flow, except near shocks (v ; K( 4)IaIAx 3, where

K (4) is a fourth-difference dissipation constant). Artificial dissipation of this type

has been shown by Jameson 7 and others to suppress the non-linear instabilities

which arise in central difference schemes for convection dominated flows.

2.2 Euler Implicit Scheme for Model Equation

Reddy and Nayani5 have analyzed the locally-implicit scheme for Equation

(2) with central difference approximations for the spatial derivatives and Euler

implicit time integration.

u -n+1 n+1 n+ _ 2!+1

+ J +a - 2+ - ++ uj - (4)
At 2Ax Ax 2

The same basic scheme will be demonstrated for Equation (3). As in Equation

(4), the Euler implicit time integration and central spatial difference approxima-

tions for the spatial derivatives are used.

n+~1 nu n+1 n+1 n3147+ 6ufl1 -n 4Uf+1 +
,,F1  -j 4uy++"

-_________ u 1  2 + 6 +- + j-2

A t 2A x -- 
_ A x4

A direct solution of Equation (5) along with its accompanying boundary con-

ditions requires solution of a pentadiagonal system of equations for each time

step. In multidimensions, the matrix is too big for a direct-solution method.

4



Therefore, the locally-implicit method described by Reddy and Nayani5 is used

to obtain an asymptotic steady-state solution of Equation (3).

The delta form of Equation (5) is sought by rewriting Equation (5) with the

use of the following defini: ions for Au, c and r.

U1 - UaAt CFL, r (4)aAt
,Auu +1 -u, c - A X AX 4  A X

Auj + 2(Auj+l - Auj-i)

+ r(Auj+ 2 - 4Auj+I + 6Auj - 4Auj_ 1 + Auj- 2 ) = Res7 (6)

Res7 - -(u7 I - 0 1 ) - r(u7+2 - 4u' 1 + 6u0 - 4u0. 1 + U7 2 ) (7)

Res7 is the residual. A steady-state solution is obtained for Equation (5) by

driving the residual to zero.

In the standard Gauss-Seidel iteration procedure, when sweeping left to

right (j increasing), Auj is solved for by setting Auj+l to zero and using the value

for Auj_ available from the last iteration step. This procedure, however, is not

stable because of the convection terms, even if a symmetric Gauss-Seidel scheme

is used. Therefore, a modified Gauss-Seidel procedure4 that is unconditionally

stable is used which employs an inner iteration. First, denote

duj =- Au~ 
l ) - LAUj(m)

where m is the inner iteration index count and duj is the correction quantity for

Auj in the m' h inner iteration sweep. Substituting this expression for duj into

Equation (6) gives

5



duj + (duj+l - duj-,)

+ r(duj+2 - 4duj+l + 6duj - 4duj-l + duj- 2 ) RHS (8)

RHS = Res - [ m) + (m) Au())

(m) - (m) +6Au(n) - (in) (in)
+ (+- zu+ 1 + -,- -2+

For a left-to-right sweep, the newly computed du's (i.e., duj-l and du.- 2 ) are

brought over to the right-hand side of Equation (8) producing the following

equation.

C

duj + -(duj+) + r(duj+2 - 4duj+l + 6duj) = RHS (9)

RHS = Res' - Lj(Au)

Lj(Au) = u m) + (An(m) -_

2 j+1 l-1
+r(Aum - + 6Au - 4Au(rn+1) +

So far, this development is identical to that shown by Nayani6 for the heat

equation and is the departure point for the present scheme.

The latest available values for uj are denoted by starred quantities as follows.

U! + M) ,+ Aui) + * , , + (m+) (10)3 -- 3j 1 u ,uj+1 - j+l + 1 j~,u- --1 = U! .1- 1

U'_2 and 0 have similar representations. Similarly, in the right-to-left sweep,

starred quantities represent the latest available values also. The terms in the

residual [Equation (7)] can be combined with all the other terms in RHS except
A (M)

Uj , to produce

6



RHS -Au(m) - '(u!

uj+ 2 -4u+ + 6u - 4u- + u*- 2 ) (11)

or

RHS =Res - Au(') (12)

Res* -- +- u-+) - r+ - 4U + 6u - 4u_ 1 + u 2 ) (13)

where Res is the residual computed for the latest values of u.

The left-to-right scheme is given as

dui + C(duj+1 ) + r(duj+2 - 4duj+l + 6duj) = Res -, (14)

If the right-hand side is driven to zero, a time-accurate solution to the discrete

unsteady problem [Equation (5)] for u! + 1 results. The left side of Equation (14)

can be modified to achieve efficiency and convergence of the scheme without

altering the actual solution.

First, approximate duj+2 and dui+l by duj. This gives

(1 + + 3r)du, = Res* - Au (15)
2

Using this approximation, for a right-to-left sweep, Equation (14) is

(1 - c + 3r)duj = Res* - Au ) (16)

This type of symmetric Gauss-Seidel iteration is not stable. The symmetric

Gauss-Seidel iteration is modified by replacing c by Icl and using

7



(1 + + 3r)
2

as the coefficient of duj for both left-to-right and right-to-left sweeps.

For initialization of the inner iteration, set Au (0) = 0. Thus, the modified

scheme is represented by

(1 +2 + 3r)dui = Res* - Au (17)

None of the modifications have jeopardized the ability to obtain time-

accurate solutions to Equation (5). For time accuracy, symmetric sweeps per

time step are performed until the right-hand side of Equation (17) becomes suf-

ficiently close to zero. A symmetric sweep for this one-dimensional case is one

left-to-right sweep followed by one right-to-left sweep. In this thesis, since the

steady-state solution is sought, only one or two symmetric sweeps per time step

are necessary while advancing the solution in time until desired convergence is

obtained (i.e., until Res is driven to zero).

The major advantage of this modification to the scheme is the resulting

reduction in both, arithmetic computation and computer storage requirements.

This fact will become evident in Section 3.2.

2.3 Local Stability Analysis for Model Equation

Local linear stability analyses for this locally-implicit scheme have already

been presented for two of the three model equations of interest. Both, Burgers'

equation5 and the heat diffusion equation 6 have been shown to be uncondition-

ally stable in a local linear sense for all CFL numbers. The stability analysis for

the third model equation of interest [Equation (3)] is presented in this section.

8



The standard Fourier stability analysis is performed on Equation (17) after

expanding Res! from its * notation back to the pure delta form.

(+ L + 3r)du, = RHS (18)

RHS = RHSL-R = Res' - [AU.m) + -C(AUM) - AU(+1),)
(in (in (+1 +1) m

+ (.M) - 4Au,+ + 6Au, _ 4Au -+1) + -u(m+)

or

RHS= RHSR-L = Res' - [u 'i) + (A u+1) - "u _)

r eAu j+l) - (re + 6Auin) - 4Au() + (Aum)I-] zaj+ 2  )-4~ +I -- .U _ j A j-2]

Res= -[C(un - u _1 ) + r(un+2 - 4un+1 + 6u - 4u + u._)]

du, = Au+1 AU m)

One symmetric sweep will be considered in this analysis. For the left-to-

right sweep, m = 0. Recalling that Au 0 ) is set to zero, Equation (18) becomes

+ L + 3r)duj = RHSL-R (19)

RHSL-R = Res '- [c(-Au21)) + r(-4Au' 1) + Au 1)
- 2 (- -4 u _ J-l_2) ]

du, = )-

u = un + Au

un + j = uj + Au2

9



Discrete modal solution of Equation (18) is sought in the form

jn = Vnetj aA = Vneijc, i = V-iT, (=oaAx, 0 < 7r (20)

- V-fe iJ (21)

uj = uj - uj = (V n - Vn)eJC (22)

AU(2) = u + - = (V " 1 - )ei  (23)3uj - u3 (23

Substituting Equations (20)-(22) into Equation (19) and dividing each side of

the resulting equation by e i c and then simplifying gives

T,(V n - V.) = T 2 V" (24)

b= 1+ c+3r
2

T, = b - ( + r(4- e-ic)Ae - ic

T2 = -icSin( - r[2Cos(2() - 8CosC + 6]

The amplification factor g for the scheme is defined by the equation

V -
+ 1  gVn (25)

So, for the left-to-right sweep the amplification factor T is

-= 1+ - (26)
V n  T2 26

For the right-to-left sweep, Equation (18) becomes

(1+ L + 3r)duj = RHSR-L (27)

2

10



RHSR..L = Res! - [z4') + c(c (2) Au 1 ()
R~~s _,. =+ ?- t-"+ - - ,

+ r(Au ( )  + 6AuAu)_- 4+6uA21 + Au

du = AU(2) -A(1)

Equations (20)-(23) are substituted into Equation (27) and each side of the

resulting equation is divided by e'i' and then simplified giving

T-(Vn+ l _ Vn) = T2 V" + T4 (V n' - V n ) (28)

T3 = b + [5 - r(4 - eic)]e'

T 4 =L-Jl 3r -+ r(4 e'C)le-C

After the right-to-left sweep is performed the amplification factor for the scheme

is

g = V 1 + T2- 1) (29)
-V -n73 T3

Substituting Equation (26) into Equation (29) and simplifying gives the scheme

amplification factor as

T21 T4 (30)g l+ T( + T1

The stability requirement is

IgI < 1 (31)

Therefore, to have a stable scheme, the following must be true.

IgI = 1 + (1 + L)1l (32)

11



Figure 1 shows a plot of the modulus of the amplification factor versus the

phase angle for Equation (32). CFL varies from one to 100 and v = 1. As
32

stated at the beginning of this section, the locally-implicit scheme is indeed stable

for the one-dimensional model equation which models the fourth-order numerical

dissipation. From the other stability analyses that have been presented by Reddy

and Nayani5 , and Nayani6 , a CFL number of 10 was chosen. This is a good choice

for this model equation as well.

12
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Figure 1. Stability Plot of Modified Locally-Implicit Scheme Applied
to 1-D Equation (3), (v = -)
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CHAPTER 3

LOCALLY-IMPLICIT SCHEME FOR NAVIER-STOKES EQUATIONS

Nayani gives a detailed derivation of the original scheme in his dissertation 6.

Relevant equations of the scheme are presented in Section 3.1 without rederiva-

tion. The technique he has presented possesses the following salient features:

finite volume spatial descretization, Jameson-type artificial dissipation terms7,

modified Gauss-Seidel inner iteration. For the steady-state solution, he has used

local time integration which varies the time step cell-by-cell in order to maintain

a constant CFL number throughout the computational grid. Multigrid technique

has been used for acceleration of convergence, but that aspect of the code is not

addressed in this thesis. He has applied the scheme to the Navier-Stokes Equa-

tions incorporating the thin-layer approximation and using the Baldwin-Lomax8

turbulence model. The modification to the original scheme (presented in section

3.2) does not change any of the above features.

3.1 Original Locally-Implicit Scheme for Navier-Stokes Equations

Nayani6 starts his development with the Navier-Stokes Equations in nondi-

mensional form for generalized curvilinear coordinates. Then he makes the thin-

layer approximation and simplifies the equations to arrive at

J Q)+ 1(y,7E - x,,F)

+ !(-ytE + xtF) - Re-' =0 (33)

14



where

,Pu E= Pu+p F=

PV Pu P=pv I  puv I v

eu(e +p) L v(e+p)

0

= -1 (77.ml + 77,m2)
I (77.Mn2 +I r7ym 3)

r,,(uml + vM2 + M 4) + ?7y(un 2 + VM 3 + m 5)

mi = (4,77 , - 277Yv, 1)

M 2 = /P(77yu + ivn )

M3 = -(-27.u,, + 47Yv,?)
3

4 Pr(-y - 1 )

M5  P 7yaja 2 )

Pr(y -)

After integrating the Navier-Stokes Equations using a finite-volume ap-

proach, he derives the Euler implicit scheme in delta form using the modified

Gauss-Seidel iteration technique.

.1,k = Q7,k + woutAQj,k (34)

w 0 ,,t is an outer iteration relaxation parameter. AQ is produced from the inner

iteration

"Y+I) - '-Q-"m) + w,,jdQj,k, m - 0,1,2,3 (35)

win is an inner iteration relaxation parameter. m is the sweep number. Four

sweeps (identified as m = 0, 1,2,3) using Equation (35) make up one symmetric

15



sweep for this two-dimensional case. The J,k term is then used as AQj,k in

Equation (34) which is added to Q,k to give the new value Q'+'.

The values for dQj,k are produced from

Cj,k dQj,k = Res7, - Li,k(AQ) (36)

Res% = -[y, 1En - [-yCE n + x Fn] J2

- 2 , k IJ,k-

+ Re(§)j,k++ dj+k d j,k+ (37)+ Re-~")j, k- j-l,k +  j,k- 37

Re is the Reynolds number, d is the artificial dissipation flux of Jameson 7 type

given as follows.

d ji +21, k [(2)
+ ,k A7 [j+ik(Qj+,k - Qj,k)

J+- k 3 Q,-s-1,k + 3 Qj,k - Qj-l,k)]

~~(2) ~( 2 ) MaX(Vj l,k , Vj,k)

(4).. M ax[O, (r(4) _-f )(2)ej+ 2,k - j+ ,d]

where

Pj+l,k - 2 Pj,k + Pj-l,kl

IPj+l,k + 2 pj,k + Pj-I,k

16



d is defined similarly for other indices. C,,k is a diagonal matrix which is defined

from a heuristic derivation (see Appendix 1).

J k )((ii2)+
Ci,k = CFL(" - + )i + 1 +,k(2)

,r 2 CFL)I2[ A-r 2jk

j-1

k+ (2) (2) oJ,k+ (4)(4

+ Ar j+ +2 k j--Lk A7-Ar k+1I

+ k- (2) + 3 _,__+_2_f(4

j++ Ar j,k -Ek~

+ A,"--7- j,k- +2 A7_ j,k- 1

+ Re-l(R,,k+4 + R, (38)

where R is a diagonal matrix derived from the approximation of S (see Ref-

erence 6). Note that Nayani's dissertation 6 contains a misprint for Cj,k [his

Equation (68)]. Equation (38) above reflects the correct Cj,k. The operator Lj,k

of Equation (36) is similar to Lj found in Equation (9) for the one-dimensional

case.

j-Ij-

Lk(AQ) = _j-2,,k f(4) AQ-2,kA+ 2r" +, j+2,k

+ 2k-12(4) ^ . j,k+j (4)
Ar 'j,k-2  .' 7Ik A- - k+ AQ,k+2

+ CLj,kAQjl,k + CBj,,kAQj,k-_ + CCi,kAQ,,k

+ CRj,kAQj+l,k + CTj,kAQj,k+l (39)

where AQ's are the latest available values (i.e., some AQ's are at the sweep

level (m) and some are at the level (m + 1), depending on the particular sweep

direction at the time Equation (39) is being applied). The coefficient matrices

CCi,k, CLj,k, CRj,k, CBj,k, and CTj,k are
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CC,,k [( 7 - x,7 )+ - (,An- ,B j-

+ 1 (yAn+ xB ik. - (-y4A n + Bn jk1

+ Re-'(Rik±1 + 'RJ,k4-) + E

J 1 J-1 J7
+ ,k~ (2) i + 3 ,k (4)Ar ~ ~ (4 E)k2. (2)k..I(0

JJ-1

CA7, =l A- kl 2

+ -4 f (2) _ T1 3 4 _ _ _ .1(0

-J
1  J71k3 ,41 4

CR,,k = !(yA n - x,7B)±Ik j + 21 ()
2 2 72' A_-+'

J7 1  J- 1 J-
,k (4) kI -_1 j k () 1 (,41)(4

Ar J~+2 tr "2 A

CT,k = (-yA + - ,Bn)+ - f(2
2 2 A7 j2k

-3 f (4 f(44)
Ar Ejk12, Ar iEjk A(42)..
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where

OE _OF

The above original scheme is designed to compute the steady-state solution

to the thin-layer Navier-Stokes Equations (33). The solution is obtained when

Resk [Equation (37)] is near enough to zero.

The Lj,k operator reported by Nayani6 is given by Equation (39). His code

contains some additional smoothing factors that do not appear in his disser-

tation. The smoothing factors make the code more robust. For details, see

Appendix 2.

3.2 Modification of Locally-Implicit Scheme for Navier-Stokes Equations

The modification to the original scheme eliminates the need for the coef-

ficient matrices of Equations (40)-(44). By applying the procedure described

in Section 2.2 for the one-dimensional equation to the two-dimensional Navier-

Stokes equations, the resulting scheme becomes

J-1

Cj,k - dQj,k = Resk - -Q,k-k (45)

SQ;,k = Qk - Qjk (46)

Rk = [yE* - x+,F*]:k - ytE* + , k

ReI(S*) 2 2 + d*lj + (47)
S Ij-lk 2j,k-
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All but one of the terms in Li,k(AQ) [Equation (39)] combine with the terms of

Res ,k [Equation (37)] to produce Res ;k, which, analogous to the one-dimensional

scheme, is the residual computed from the most recent values of Q [some values

are at the sweep level (in) and some are at the sweep level (m + 1)].

The main advantage of this formulation of the scheme is the elimination of

the four-by-four coefficient matrices CCj,k, CLj,k, CRj,k, CBj,k, CTj,k [Equa-

tions (40)-(44)] and the four-by-four flux Jacobian matrices A' and B" (note

that A' and B' require significant computer memory since they are stored at

every node). This eliminates all of the four-by-four matrices thereby making

the scheme matrix free. These would be five-by-five matrices for the three-

dimensional Navier-Stokes equations. For a two-dimensional flow problem of

128 x 32 cells, this modification reduces arithmetic computation and memory

storage requirements by approximately 30 percent and 50 percent, respectively.

The task of coding the scheme is simplified as well.
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CHAPTER 4

RESULTS

Three of the test cases Nayani used have been computed using the modified

scheme and are compared with the original scheme and experimental data 9. The

cases are shown in Table 1 below for flow over the RAE 2822 airfoil.

Table 1. Test Cases for Modified Scheme

CASE M" a(deg) Re

2 0.676 2.40 5.7xi0 6

4 0.725 2.92 6.5x10 6

5 0.730 3.19 2.7xi0 6

The grid for the RAE 2822 airfoil is shown in Figure 2. It is exactly the

same grid Nayani6 used. An algebraic turbulence model (eddy viscosity model

developed by Baldwin and Lomax8 ) has been used to obtain effective dynamic

viscosity values at each cell. The results are shown in Figures 3-5.

Static pressure contours for the three cases using the modified scheme are

shown in Figures 3a, 4a, and 5a. The pressure coefficient plots (Figures 3b,

4b, and 5b) show that the original and modified scheme give the same results.

Case-by-case comparisons of convergence behavior for the original and modified

schemes are shown in Figures 3c, 4c, and 5c. Those too are practically identical.

For all the computations, the CFL number has been varied over the first

250 iterations since impulsive-start boundary conditions on the airfoil have been

21



used. For the first 150 iterations, the CFL number is set to one. For the next

100 iterations, it is set to five. For the remaining iterations, the CFL number

is 10. There are alternate ways of starting the solution process, such as gradual

implementation of boundary condilions over a number of time steps instead of

impulsive-start, but such techniques are not demonstrated here.
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CHAPTER 5

CONCLUDING REMARKS

The locally-implicit scheme developed by Reddy and Jacocks 4 which Reddy

and Nayani5 , and Nayani 6 presented for the two dimensional Navier-Stokes equa-

tions has been modified thereby eliminating the need to compute seven four-by-

four coefficient matrices , of which two are stored at every node of the computa-

tional mesh. This more elegant matrix-free representation of the locally-implicit

scheme results in the reduction of both, arithmetic computation and computer

memory storage requirements. For a typical two-dimensional problem having

128 x 32 cells, this reduction amounts to approximately 50 percent and Z 0 per-

cent for memory and arithmetic operations, respectively. An added benefit of

the ir. dification is that it simplifies the task of coding the scheme.

The multi-grid feature described and employed by Nayani6 can be used with

this scheme thereby speeding convergence in the same manner as he demon-

strated with the original scheme.
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APPENDIX 1

DERIVATION OF Cj,k

The derivation of C,,k is accomplished heuristically by comparison of the

two-dimensional case with the one-dimensional case. In this section, that com-

parison will be presented to justify the terms in C,k. Note that C,k simply

multiplies dQj,k. Therefore, approximations in this coefficient will not affect the

accuracy of the results since the terms of Resj,k are never tampered with.

In deriving Equation (36), Nayani6 has shown an earlier st'p tobe

CLi,kAQj-l,k + CRj,kAQj+l,k + CC,,kAQj,k

+ CBj,kAQj,k-1 + CTj,kAQj,k+l
j-1 j,.k (4) 1 4 )

=Res,,k- Ar fj.. 4 k..j..2,k AT j+,j+2,k

j-1j -
j,k-j (4) _,k+ (4)

AT Ejk 1-AQ j k- 2 A f k+ A Q j k + 2  (48)

For wi, = 1, Equation (35) becomes

AQ(m+i) = AQ(m) + dQ

Consider a sweep that is left-to-right and bottom-to-top (i.e., j increasing and

k increasing).

CCj,kdQj,k + CRj,kdQj+i,k + CTi,kdQj,k+l
j-1d -

+ j+ ,k , dQ j +2,k + kf (4) + dQj,k+ 2 = RHS (49)
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RHS = Resk - Lj,k(AQ)

where Resk is shown in Equation (37) and Lj,k(AQ) is

Lj,k(AQ) = CLj,kAQj _I1k + CB, kAQ(k-l + CCj,kAQ M)

+ CRj,kAQj+,k +C
j-jk ( j -__i

+ j- ~,kA QJ,(-+k ",+j ,(4) ^ '
Ar "-,k'h-2 + A'r ij+4 k ' ' i + ,k

j*-1 M-

j,k- f(4) A6-(m+l) +_ f(4) A(

+ , kA21( ) +i jk+ 1 (4)Ar 'j,k-"-i,k-2 + A j,k+2

Equation (49) is analogous to the one-dimensional Equation (9)

c

duj + 2(duj+l) + r(duj+2 - 4dui+x + 6dui) = RHS (9)

RHS = Res' - L,(Au)

Lj(Au) = AU(m) + (Au(m) Au(m+)
j + +1 - j-1J

r(Aum) -4Au.m) + 6Au~m) - 4Au(rml) + Au +l))rAj -/j++ + -- auJ_ 1  + -_2

During the process of sweeping through the flow field, the left-hand side terms

of Equation (49) represent unknowns, while the right-hand side terms represent

known quantities.

The first approximation for the one-dimensional case is

duj+2 t duj+l ;z duj

Similarly, the first approximation for the two-dimensional case is

dQj+2 ,k ; dQj+l , k- dQj,k+ 2 ; dQj,k+l ;. dQ,,k
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In one dimension, Equation (9) becomes

(1+c 3r)du, = RHS (50)
2

In two dimensions, Equation (49) becomes

(coef)dQj,k = RHS (51)

where

J-1 J-1

coef = CCj,k + CRj,k + CTj,k + j+k f(4 f + 1j,k+ (4)
j~l~k AT j,k+.2

The second modification for the inner iteration in one dimension is to replace

c by Icl and for all sweeps maintain the coefficient of duj as

(1 ± + 3r)

The corresponding modification in two dimensions is a series of approximations.

Expanding the coefficient of dQj,k in Equation (51) into all its terms gives

J- 1  J-1

j+f,k (4) + j,k+i (4)coef = CC,k + CRj,k + CTj,k + -- I +
,r ,+j,k AT jk1

= (inviscid terms) + (viscous terms) + (dissipation terms)
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where

(inviscid terms) (~+ I (An- xqBft)j - 1(7An- ,Bn _,k

11 n++)(-yfAnxB' ~+ I- (-yfA~ +x 'jkl

AT

(viscous terms) =Re [(1 - l)R,,k+l + jk1

(dissipation terms) =((2)) ++~ J-J,k (~
2

)

Ar ,+j*,k Ar T

J- 

-__.

(1 + k-3 214 () + +3-1) -4, (
AT 2+, AT ilk 2

______ j ,-~ (4)

AT Arj ~ Ilk

(I +A - 3B)1+4 ,k 1+3 1 _ _.I I

(-y~~AA + ~ +. AT~)k+ ilk4 A ~B)

2 2 A2

Th ivicd ersatth al cl lcaiosar apoxmaey hesm37sa



The spectral radius of the first two terms of the the inviscid terms is taken next.

SpRad[ (yqA " - x,7B')j,k + i(-Yt + x4 Bn)j,k]

1 SpRad(y,An - xn)j,k + -SpRad(-y 4 A" + x Bn)j,k
2 2

2 [IIY1U - X17VI + (X 1 + Y17)'a] + 21- Y4u+ Xevj+ (4+Y y)a]

where u and v are velocities and a is the speed of sound. CFL for the two-

dimensional case is defined as

(velocity)(Atime) [(velocity)(Adi stance)]( Atime)
(iAdistance) (area)

where

[(velocity)(Adistance)] = [1y1u - x1v 1 + (x + y ) a] + [It- yu + x"vI ± (x + y )4 a]

Atime = Ar

J-1area = j,k

At each grid node, a local time step is estimated which keeps the local Courant

number approximately constant. That estimate is given by

Ar= (CFL)(J,)

[IyU - X,7VI + (X2 + y2)a] + [I - yu + XtVI + (X2 + y2)ia]
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The approximation to the inviscid terms with local time-stepping can be rewrit-

ten as

(znviscid terms) ! CFL j I+ I

AT AT

where Ar is the local time step.

To make the viscous terms insensitive to sweep direction, the following ap-

proximation is made.

(viscous terms)= Re-'[(1 - 1)Rj,k+ + Rj,k_ ]

-Re-1(Rj,k+j + Rj,k-)

Finally, to make the dissipation terms insensitive to sweep direction, the

following approximations are made.

(1 -1) _+__ ( 2 )  + _- , (2) 1_ ___+ , (2) + _- ,k (2) r

j J,~~i k, _~ Ar j~ ~ I)Ar j+4,k + A -, Ar +4,k -2T j-2
j-1 j-1 J- 1

( -= + k+ (2) + (2)1 k (2) ,k (2) )
'AT Ejk+4 AT 2k AT j.AT -- k 2

J-3 J- 1  - J- 1
(A+3r3) 2 ,k +.I + (3 - 1)j- (4) J 3 I - k+ ( 'f- I + Ie I)A + AT j- -2 ,_ _- i + AT j,- 2

AE j,kf 2 Ar j,k+ Ar jk

The resulting approximation for the dissipation terms then becomes

j-1 J- 1
lr j+ ,k e(2) .1 - ,k (2) Tr

(dissipation terms) _ !( I + Yr j-E2,)

Ar2+ Ar j-jk

+ -- (2)1 jI± -1 f (2 ) 1)Ar7 j,k+j T4~

+ A e.+ k Ar j-,k
J- 1  J- 1

+f (4) 1+e (4) _)
Ar jk+ + A jk f
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Combining the approximations for the inviscid terms, the viscous terms,

and the dissipation terms gives C,,k.

- 7 .. 1 i J -+ ,1 (

Cjk = CFL( k + )I + 1 ej+f,k (2)

T T 2' Ar j i,k1  J-1 J-1

+j,k+4 (2) ()+r+ (4)I

+ ()jk+,1+ 3 Ar jkI

j- 1  J- 1
j- (2) l3j k-1 (4) I

+ Ar Ejk- + AT j,k-

+ Re-(R,k+.1 + Rj,kJ)] (38)
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APPENDIX 2

ADDITIONAL SMOOTHING FACTORS IN SCHEME

To make the original scheme represented by Equationi (34)-(36) more ro-

bust, additional smoothing factors have been added to the iteration part of the

scheme. They appear in Nayani's original code, but have not been reported on

in his dissertation 6 . These smoothing factors are used in the modified scheme

as well. The purpose of this section is to derive these factors. Note that these

factors affect only the AQ or dQ terms and in no way alter the Resk term, so

accuracy of the scheme is not compromised by this addition.

The thin-layer Navier-Stokes equations in nondimensional form for general-

ized curvilinear coordinates was given in Section 3.1 as

0 -1 0

T(J Q) + 1(y0E- -F)

+-(-yE + x0F)-Re -S O (33)

After spatially integrating Equation (33) using a finite-volume approach, an

Euler implicit scheme is used. The delta form of the equation becomes

j,k +Ag7 
nn>QQ] 

+k

A-..Qk + [(y,, A " -,7B')AQ"] + [(-yAn + xtB")AOQ]

jk+j I k. 1,k
Re -'(ASn)I - Ad 1 21 _ AdJk 7- = Res ' (52)

where
_OE OF

OQQ

and Res7k is given by Equation (37).
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Consider the second term of Equation (52). It is a central difference repre-

sentation for the derivative of the bracketed term.

[(Y7 A  _ ,T")A"]j+j,k a

- B)AQ] -[(y,A - xqB")AQ'] (53)j- ,k a

The derivative in Equation (53) can be split into two parts (dropping the time

level n for convenience)

[(yA- x,?B)AQ] = -[y,AAQ] - -[x,?BLQ (54)

The first term on the right side of Equation (54) will serve as a pattern for

the other derivatives. Instead of using central difference to represent -1t(y,AAQ)

an upwind scheme is used. For an upwind scheme, A is expressed as follows. (B

would be expressed similarly.)

A =A+ +A -

A+ = A + I, A- A-AI (55)
2 ' 2

where IAI is the spectral radius of A times the identity matrix.

IAI = SpRad(A)I, SpRad(A) = lus + a

u is velocity and a is the speed of sound. A+ has non-negative eigenvalues and

A- has non-positive eigenvalues.

The upwind scheme uses backward difference for A+ and forward difference

for A-. The difference form of the derivative in Equation (54) becomes

a(y,AAQ) = -[y,7(A + + A-)AQ]
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S

4

T(y,7AAQ) s- (y,,A+ AQ)j,k - (y,,A+AQ)j-,,k

+ (y,7A-AQ)j+,k - (y,7A-AQ),k (56)

Substituting Equation (55) into Equation (56) gives

1+ ±[(A(A IAI)AQ),k - (y,7(A + IAI)AQ)jl,kl

+ 1[y7A- IAI)LAQ)j,,k - (y, 7(A - IAI)AQ),,k]

I [(yAAQ)j+,k - (yAAQ)j,,k]

- 2[(y,71AIAQ)j+l,k - 2(yIAIAQ)j,k + (y,qIAIAQ)j_,k] (57)

The first bracketed term of Equation (57) is simply the central difference

representation of '9 (y, AAQ), that is

[(y7AhO)j+1, k -(y AiO)j-l,k] = (yrlAAO)l+_'

The second bracketed term of Equation (57) is the additional smoothing that

results from using upwind differencing on the AQ side of Equation (52). It is

the central difference representation for the second derivative for (y,?AAQ), that

is

-1[(y,71AIAQ)j+,k - 2(y, 1 IAILQ)j,k + (y,7jAjAQ)i-j,k = (y,7AAO).,k

where 62 is the central difference operator representing 2.

The pattern is the same for -(x,BAQ), -(-yfAAQ), and -(x4BAQ).

When upwind differencing is accomplished for all of these terms, then Equation

(52) becomes
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Q',k + [(y,,A' - x',B")AQ"] + [(-ytA' + xtB')AQn]
A T It.7jk1,k 1

n A j2
- (fac){6 k [(j+IA"I- x .IBI) Q ],,k + 62 [(-y A"I + xBI)Q"],,}

- Re (ASn) 2 Ad -1 i_ d + = Res7,k (58)
j,k- j- ,k -dj,k-f

The (foc) coefficient before the second differences gives control of the amount

of smoothing that is used. A typical value is (fac) = 0.1. Equation (58) reflects

the equation that Nayani's code6 actually solves, not Equation (52). In the

present modified code also, implicit smoothing terms are used in the iteration

process with (fac) = 0.1.
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