
READ INSTRUCTIONS
kEPOT DOCUMENTATION PAGE BEFORE COMPLETING FORM

0 EOO NuGOVT ACCESSION NO, 7 REcIPIE' T'5 CATALOG NUNSER

4 IL frdSitfo S. TYPE OF REPORT 6 PERIOD COVERED

Optimization of Series Expressions: Memorandum

W Part I: User's Manual for the Series Macro
Package 6. PERFORMING ORG. REPORT MNGER

7, AUTNO10.e) S1. CONTRACT Oft GRANT NUMUERre)

Richard C. Waters IRI-8616644
~~ NOQO14-88-K-0487

O PE~rOquNG ORC;ANILATtON NAME ANO ADDRESS iQ. PROGRAM ELEMENT 00 FT TASK
ARIA A WORK UNIT NLJMSERS

Artificial Intelligence Laboratory
545 Technology Square
Cambridge,_HA__02139 _______________

CONTROLLING OFFICE NAME ANO0 ADDRESS 12. REPORT DATE

C_3Advanced Research Projects Agency December 1989
1400 Wilson Blvd. 13. HUNSER Of PAGES

L .1Arlington, VA 22209 72
J .14I. MONITORING AGENCY NAME 6 ADOOIESS(Ii diffeent from, Contr~eind 011190)' 1S. SECURITY CLASS. (of #im. report)

1.Office of Naval Research UNCLASSIFIED
Information Systems_________________

C. Arlington, VA 22217 Ise. OCCL ASSI FICATION/ DOWN GRADING

16I. DISTRIBUTION STATEMENT (of thle AeDort)

Distribution is unlimited

17. DISTRISUTION STATEMENT (of eff. Abstvoet entered to Sleek 10,i dfI.,I hefrm Ahpool)

DTIC
IS. SUPPLEMENTARY NOTES g E 2 .109

None L

IS. Key WORDS (ConlIeto a fes* od@ of *****stw mn od"Ouirj by block niboe)

Sequences Lisp
Optimization
Program transformation
!'oops
Functional programming

20. ASSTRACT (Cmiee.IU.e an rowoee offE Of 000.@ee7IF ORO #Omtttf6 644111 %1.6 ")

The benefits of programming in a functional style are well known. In par-

ticular, algorithms that are expressed as compositions of functions operating

on series/vectors/streams of data elements are much easier to understand and

modify than equivalent algorithms expressed as loops. Unfortunately, many

programmers hesitate to use series expressions. In part, this is due to the fact

that series expressions are typically implemented very inefficiently. (continued)

DD I JAN73I 1473 EDITION OF 1 NOV es is oSBoLeyE UNC LASS IF IED
S/N1 0,01- 014- $60 1

SECURITY CLASSIFICATION OF THIS PAGE (11%o Dots Inforof

Block 20 continued:
V

A Common Lisp macro package (called Series) has been implemented thatcan evaluate a wide class of series expressions very efficiently by transform-
ing them into iterative loops. When using this class of series expressions,
programmers can obtain the advantages of expressing computations as series
expressions without incurring any run-time overhead.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1082 December 1989

Optimization of Series Expressions:

Part I: User's Manual for the Series Macro Package

by

Richard C. Waters

Abstract

The benefits of programming in a functional style are well known. In par-
ticular, algorithms that are expressed as compositions of functions operating
on series/vectors/streams of data elements are much easier to understand and
modify than equivalent algorithms expressed as loops. Unfortunately, many
programmers hesitate to use series expressions. In part, this is due to the fact
that series expressions are typically implemented very inefficiently.

A Common Lisp macro package (called Series) has been implemented that
can evaluate a wide class of series expressions very efficiently by transform-
ing them into iterative loops. When using this class of series expressions,
programmers can obtain the advantages of expressing computations as series
expressions without incurring any run-time overhead. --_

Copyright @ Massachusetts Institute of Technology, 1989

This report describes research done at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory's artificial intelligence research
has been provided in part by the National Science Foundation under grant IRI-8616644, in part
by the IBM Corporation, in part by the NYNEX Corporation, in part by the Siemens corpora-
tion, in part by the Microelectronics and Computer Technology Corporation, and in part by
the Advanced Research Projects Agency of the Department of Defense under Office of Naval
Research contract N00014-88-K-0487.

The views and conclusions contained in this document are those of the authors, and should
not be interpreted as representing the policies, neither expressed nor implied, of the National
Science Foundation, of the IBM Corporation, of the NYNEX Corporation, of the Siemens corpo-
ration, of the Microelectronics and Computer Technology Corporation, or of the Department
of Defense.

90 02 21 053

Contents

1. All You Need To Know to Get Started 1

Exam ple 5

Setting Up the Series Macro Package 8

2. Basic Reference Manual 10

Restrictions and Definitions of Terms 10

Series 15

Scanners 17

Mapping 21

Truncation 24

Other On-Line Transducers 25

Choosing and Expanding 27

Other Off-Line Transducers 29

Collectors 31
Defining New Series Functions 35

3. Advanced Features 37

Alteration of Values 37

Generators and Gatherers 39

Defining New Off-Line Series Functions 41

Primitives 46

Features That Facilitate Debugging 48

4. Ugly Details 51

Theoretical Difficulties 51

Lack of Integration With Common Lisp 55

5. Bibliography 57

6. Historical Note 58

7. Warning and Error Messages 61

Restriction Violations 62

8. Index of Functions 67

Acknowledgments. The Series macro package has benefited from the suggestions
of a number of people. In particular, A. Meyer, C. Perdue, C. Rich, D. Wile, Y. Feldman,
D. Chapman, Y. Tan, and P. Anagnostopoulos made suggestions that led to significant
improvements.

. 1. All You Need To Know to Get Started

This first section describes everything you need to know to start using the Series
macro package. It then presents a detailed example. The remaining sections are a
comprehensive reference manual. They describe the functions and macros supported by
the Series macro package in full detail. A companion paper [17] gives an overview of
the theory underlying the macro package and compares the macro package with related
systems.

Series combine aspects of sequences (vectors and lists), streams, and loops. Like
sequences, series represent one-dimensional totally-ordered collections of elements. In
addition, the series functions have the same flavor as the sequence functions-namely,
they operate on whole series, rather than extracting elements to be processed by other
functions. For instance, the series expression below computes the sum of the positive
elements in a list.

(collect-sum (choose-if #'plusp (scan '(1 -2 3 -4)))) => 4

Like streams, series can represent unbounded collections of elements and are sup-
ported by lazy evaluation: The ith element of a series is not computed until it is needed.
For instance, the series expression below returns a list of the first five even natural num-
bers and their sum. The call on scan-range returns a series of all the even natural
numbers. However, since no elements beyond the first five are ever used, no elements
beyond the first five are ever computed.

(let ((x (subseries (scan-range :from 0 :by 2) 0 5)))
(values (collect x) (collect-sum x))) =0 (0 2 4 6 8) and 20

Like sequences and unlike streams, the act of accessing the elements of a series does
not alter the series. For instance, both users of x above receive the same elements.

In a loop, a one-dimensional totally-ordered collection of elements can be represented
by the successi e values of a variable. This is extremely efficient, because it avoids the
need to store the elements as a group in any kind of data structure. In most situations , A 't
series expressions achieve this same high level of efficiency, because they are automAti oo J
cally transformed into loops before being evaluated or compiled. For instance, the first '/
expression above is transformed into a loop like the following.

(let ((sum 0))
(dolist i '(1 -2 3 -4) sum) 01
(if (plusp i) (setq sum (+ sum i))) =*- 4 U-

A wide variety of algorithms can be expressed clearly and succinctly using series
expressions. In particular, most of the loops programmers typically write can be replaced
by series expressions that are much easier to understand and modify, and just as efficient.
From this perspective, the key feature of series is that they are supported by a rich set :2
of functions. These functions more or less correspond to the union of the operations
provided by the sequence functions, the loop clauses, and the vector operations of APL.

2 All You Need To Know to Get Started

Unfortunately, some series expressions cannot be transformed into loops. This matters
because, while transformable series expressions are much more efficient than equivalent
expressions involving sequences or streams, non-transformable series expressions are much
less efficient. Whenever a problem comes up that blocks the transformation of a series
expression, a warning message is issued. Based on the information in the message, it is
usually easy to provide an efficient fix for the problem.

Fortunately, most series expressions can be transformed into loops. In particular, pure
expressions (ones that do not store series in variables) can always be transformed. As a
result, the best approach for programmers to take is to simply write series expressions
without worrying about transformability. When problems come up, they can be ignored
(since they cannot lead to the computation of incorrect results) or dealt with on an
individual basis.

The series data type. The Series macro package supports the series data type and
a suite of functions operating on this data type. Series are self-evaluating objects. In
analogy with #(items), the # macro character syntax #Z(items) is provided for writing
literal series. This same syntax is used when series are printed. If *print-length* is
not nil, then long (or unbounded) series are abbreviated using "...", as in the second
example below.

#Z(a (b c) d) =* #Z(a (b c) d)
#Z(a b . #1=(c d . #1)) =>- #Z(a b c d c d ...)

Predefined series functions. The heart of the Series macro package is a set of
several dozen functions that operate on series. (See Section 8 for a quick summary.)
These functions divide naturally into three classes. Scanners produce series without con-
suming any. Transducers compute series from series. Collectors consume series without
producing any.

Predefined scanners include: series which creates an unbounded series indefinitely
repeating a given value, scan which enumerates the elements in an object of type se-
quence, scan-range which enumerates the integers in a range, and scan-plist which
creates a series of the indicators in a property list along with a second series containing
the corresponding values. The first argument of scan specifies the type of sequence to be
scanned. If omitted, the type defaults to list.

(series 'a) :: #Z(a a a ...)
(scan '(a b c)) =: #Z(a b c)
(scan 'vector '#(a b c)) = #Z(a b c)
(scan-range :from I :upto 3) => #Z(1 2 3)
(scan-plist '(a I b 2)) =0- #Z(a b) and #Z(1 2)

Predefined transducers include: positions which returns the positions of the non-null
elements in a series and choose which selects the elements of its second argument that
correspond to non-null elements of its first argument.

(positions #Z(a nil b c nil nil)) =* #Z(O 2 3)
(choose #Z(nil T T nil) #Z(1 2 3 4)) = #Z(2 3)

3

Predefined collectors include: collect which combines the elements of a series into
a sequence, collect-sum which adds up the elements of a series, collect-length which
computes the length of a series, and collect-first which returns the first element of a
series. The first argument of collect specifies the type of the sequence to be produced.
If omitted, the type defaults to list.

(collect *Z(a b c)) (a b c)
(collect 'simple-vector *Z(1 2 3)) * #(1 2 3)
(collect-sum #Z(1 2 3)) =€> 6
(collect-length #Z(a b c)) = 3
(collect-first #Z(a b c)) =* a

Higher-Order series functions. The Series macro package provides a number of
higher-order functions, which support general classes of series operations. For example,
the function (map-fn type function items) supports the generic transduction operation
of mapping a function over a series. The type argument specifies the type of the elements
in the series being created. (When efficient compilation is desired, it is important to use
an informative type such as integer rather than an uninformative type such as T.) Each
element of the output is computed by applying function to the corresponding element of
items.

(map-fn 'integer #'sqrt #Z(4 9 16)) => #Z(2 3 4)

Scanning is supported by (scan-fn type mit step test). The type argument specifies
the type of the elements in the series being created. The function init is called to
obtain the first element of the output. Subsequent elements are obtained by applying
the function step to the previous element. The series consists of the elements up to, but
not including, the first element for which the function test returns non-null.

(scan-fn 'integer *'(lambda) 3) 'I- #'minusp) =; *Z(3 2 1 0)

Collecting (accumulating) is supported by (collect-fn type init function items).
The elements of the series items are combined together using function. The quantity
returned by init is used as an initial seed value for the accumulation. The type argument
specifies the type of the summary value returned.

(collect-fn 'integer #'(lambda () 3) #'+ *Z(1 2 3)) =* 9

Convenient support for mapping. Mapping is by far the most commonly used
series operation. In cognizance of this fact, the Series macro package provides three
mechanisms that make it easy to express particular kinds of mapping. The * macro
character syntax #Mf converts a function f into a transducer that maps f.

(#Msqrt *Z(4 16)) =- (map-fn T S'sqrt #Z(4 16)) => *Z(2 4)

The form mapping can be used to specify the mapping of a complex expression over
one or more series without having to write a literal lambda expression. For example,

4 All You Need To Know to Get Started

(mapping ((x (scan '(2 -2 3))))
(expt (abs x) 3)) = Z(8 8 27)

is the same as

(map-fn T #'(lambda x) (expt (abs x) 3))
(scan '(2 -2 3))) . #Z(8 8 27)

The form iterate is the same as mapping except that the value nil is always returned.

(iterate ((x (scan '(2 -2 3))))
(if (plusp x) (prinl x))) := nil <after printing "23">

To a first approximation, iterate and mapping differ in the same way as mapc and
mapcar. In particular, like mapc, iterate is intended to be used in situations where the
body is being evaluated for side effect rather than for its result. However, due to the
lazy evaluation semantics of series, the difference between iterate and mapping is more
than just a question of efficiency. If mapping is used in a situation where the output is
not used, no computation is performed, because series elements are not computed until
they are used.

User-defined series functions. As shown by the definitions of simplified versions
of collect-sum and mapping below, the standard Lisp forms defun and defmacro can
be used to define new series functions. However, when a series function is defined with
defun, the Series macro package is not capable of optimizing series expressions containing
this new function unless the declaration optimizable-series-function is specified in the
defun. This declaration is not required when using defmacro.

(defun simple-collect-sum (numbers)
(declare (optimizable-series-function))

(collect-fn 'number 8'(lambda () 0) #'+ numbers))
(defmacro simple-mapping (var-value-pair-list &body body)

(let* ((pairs (scan var-value-pair-list))
(arg-list (collect (#Mcar pairs)))
(value-list (collect (#Mcadr pairs))))

'(map-fn T V'(lambda ,arg-list ,Q body) ,Q value-list)))

Benefits. The advantage of series expressions is that they retain most of the virtues
of loop-free, functional programming, while eliminating most of the costs. However,
given the fact that optimization is not always possible, the question naturally arises as
to whether op imization is possible in a wide enough range of situations to be of real
pragmatic benefit.

An informal study [10] was undertaken of the kinds of loops programmers actually
write. This study suggests that approximately 80% of the loops programmers write are
constructed by combining a few common kinds of looping algorithms in a few simple ways.
The Series macro package is designed so that all of these loops can be trivially expressed
as optinizable series expressions. Many more loops can be expressed as optimizable
series expressions with only minor modification.

Example

Moreover, the benefits of using series expressions go beyond replacing individual loops.
A major shift toward using series expressions would be a significant change in the way
programming is done. At the current time, most programs contain one or more loops
and most of the interesting computation in these programs occurs in these loops. This
is quite unfortunate, since loops are generally acknowledged to be one of the hardest
things to understand in any program. If series expressions were used whenever possible,
most programs would not contain any loops. This would be a major step forward in
conciseness, readability, verifiability, and maintainability.

Example
The following example shows what it is like to use series expressions in a realistic

programming context. The example consists of two parts: a pair of functions that convert
between sets represented as lists and sets represented as bits packed into an integer and
a graph algorithm that uses the integer representation of sets.

Bit sets. Small sets can be represented very efficiently as binary integers where each
1 bit in the integer represents an element in the set. Here, sets represented in as binary
integers are referred to as bit sets.

Common Lisp provides a number of bitwise operations on integers, which can be used
to manipulate bit sets. In particular, logior computes the union of two bit sets while
logand computes their intersection.

The functions in Figure 1.1 convert between sets represented as lists and bit sets.
To perform this conversion, a mapping has to be established between bit positions and
potential set elements. This mapping is specified by a universe. A universe is a list of
elements. If a bit set integer b is associated with a universe u, then the ith element in u
is in the set represented by b if and only if the ith bit in b is 1. For example, given the
universe (a b c d e), the integer #bOlll represents the set {a,b,d}. (By Common Lisp
convention, the 0th bit in an integer is the least significant bit.)

Given a bit set and its associated universe, the function bset->list converts the bit
set into a set represented as a list of its elements. It does this by scanning the elements
in the universe along with their positions and constructing a list of the elements which
correspond to ls in the integer representing the bit set. (When no :upto argument is

(defun bset->list (bset universe)
(collect (choose (*Mlogbitp (scan-range :from 0) (series bset))

(scan universe))))

(defun list->bset (items universe)
(collect-fn 'integer #'(lambda) 0) #'logior
(mapping ((item (scan items)))

(ash I (bit-position item universe)))))

(defun bit-position (item universe)
(or (collect-first (positions (tMeq (series item) (scan universe))))

(1- (length (nconc universe (list item))))))

Figure 1.1: Converting between lists and bit sets.

6 ADl You Need To Know to Get Started

(defun collect-logior (bsets) 0
(declare (optimizable-series-function))

(collect-fn 'integer #'(lambda 0 0) V'logior bsets))

(defun collect-logand (bsets)
(declare (optimizable-series-function))

(collect-fn 'integer #'(lambda) -1) #'logand bsets))

Figure 1.2: Operations on series of bit sets.

supplied, scan-range counts up forever.)
The function list->bset converts a set represented as a list of its elements into a bit

set. Its second argument is the universe that is to be associated with the bit set created.
For each element of the list, the function bit-position is called to determine which bit
position should be set to 1. The function ash is used to create an integer with the correct
bit set to 1. The function collect-fn is used to combine the integers corresponding to
the individual elements together into a bit set corresponding to the list.

The function bit-position takes an item and a universe and returns the bit position
corresponding to the item. The function operates in one of two ways depending on
whether or not the item is in the universe. The first line of the function contains a series
expression that determines the position of the item in the universe. If the item is not in
the universe, the expression returns nil. (The function collect-first returns nil if it
is passed a series of length zero.)

If the item is not in the universe, the second line of the function adds the item onto
the end of the universe and returns its position. The extension of the universe is done
by side effect so that it will be permanently recorded in the universe.

Figure 1.2 shows the definition of two collectors that operate on series of bit sets. The
first function computes the union of a series of bit sets, while the second computes their
intersection.

Live variable analysis. As an illustration of the way bit sets might be used, consider
the following. Suppose that in a compiler, program code is being represented as blocks
of straight-line code connected by possibly cyclic control flow. The top part of Figure 1.3
shows the data structure that represents a block of code. Each block has several pieces of
information associated with it. Two of these pieces of information are the blocks that can
branch to the block in question and the blocks it c .n branch to. A program is represented
as a list of blocks that point to each other through these fields.

In addition to control flow information, each structure contains information about
the way variables are accessed. In particular, it records the variables that are written by
the block and the variables that are used by the block (i.e., either read without being
written or read before they are written). An additional field (computed by the function
determine-live discussed below) records the variables that are live at the end of the
block. (A variable is live if it has to be saved, because it can potentially be used by
a following block.) Finally, there is a temporary data field, which is used by functions
(such as determine-live) that perform computations involved with the blocks.

The remainder of Figure 1.3 shows the function determine-live which, given a pro-

Example 7

(defstruct (block (:conc-name nil))
predecessors ;Blocks that can branch to this one.
successors ;Blocks this one can branch to.
written ;Variables written in the block.
used ;Variables read before written in the block.
live ;Variables that must be available at exit.
temp) ;Temporary storage location.

(defun determine-live (program-graph)
(let ((universe (list nil)))

(convert-to-bsets program-graph universe)
(perform-relaxation program-graph)
(convert-from-bsets program-graph universe))

program-graph)

(defstruct (temp-bsets (:conc-name bset-))
used written live)

(defun convert-to-bsets (program-graph universe)
(iterate ((block (scan program-graph)))

(setf (temp block)
(make-temp-bsets

:used (list->bset (used block) universe)
:written (list->bset (written block) universe)
:live 0))))

(defun perform-relaxation (program-graph)
(let ((to-do program-graph))

(loop
(when (null to-do) (return (values)))
(let* ((block (pop to-do))

(estimate (live-estimate block)))
(when (not (- estimate (bset-live (temp block))))

(setf (bset-live (temp block)) estimate)
(iterate ((prey (scan (predecessors block))))
(pushnew prev to-do)))))))

(defun live-estimate (block)
(collect-logior
(mapping ((next (scan (successors block))))

(logior (bset-used (temp next))
(logandc2 (bset-live (temp next))

(bset-written (temp next)))))))

(defun convert-from-bsets (program-graph universe)
(iterate ((block (scan program-graph)))

(setf (live block)
(bsot->list (bset-live (temp block)) universe))

(setf (temp block) nil)))

Figure 1.3: Live variable analysis.

8 All You Need To Know to Get Started

gram represented as a list of blocks, determines the variables that are live in each block.
To perform this computation efficiently, the function uses bit sets. The function oper-
ates in three steps. The first step (convert-to-bsets) looks at each block and sets up
an auxiliary data structure containing bit set representations for the written variables,
the used variables, and an initial guess that there are no live variables. This auxiliary
structure is defined by the third form in Figure 1.3 and is stored in the temp field of the
block. The integer 0 represents an empty bit set.

The second step (perform-relaxation) determines which variables are live. This is
done by relaxation. The initial guess that there are no live variables in any block is
successively improved until the correct answer is obtained.

The third step (convert -from-bsets) operates in the reverse of the first step. Each
block is inspected and the bit set representation of the live variables is converted into a
list, which is stored in the live field of the block.

On each cycle of the loop in perform-relaxation, a block is examined to determine
whether its live set has to be changed. To do this (see the function live-estimate),
the successors of the block are inspected. Each successor needs to have available to it
the variables it uses, plus the variables that are supposed to be live after it, minus the
variables it writes. (The function logandc2 takes the difference of two bit sets.) A new
estimate of the total set of variables needed by the successors as a group is computed by
using collect-logior.

If this new estimate is different from the current estimate of what variables are live,
then the estimate is changed. In addition, if the estimate is changed, perform-relaxation
has to make sure that all of the predecessors of the current block will be examined to see
if the new estimate for the current block requires that their live estimates be changed.
This is done by adding each predecessor onto the list to-do unless it is already there. As
soon as the estimates of liveness stop changing, the computation stops.

Summary. The function determine-live is a particularly good example of the way
series expressions are intended to be used in two ways. First, series expressions are used
in a number of places to express computations which would otherwise be expressed less
clearly as loops or less efficiently as sequence function expressions. Second, the main
relaxation algorithm is expressed as a loop. This is done, because neither optimizable
series expressions (nor Common Lisp sequence function expressions) lend themselves to
expressing the relaxation algorithm. This highlights the fact that series expressions are
not intended to render iterative programs entirely obsolete, but rather to provide a greatly
improved method for expressing the vast majority of loops.

Setting Up the Series Macro Package
The Series macro package was originally developed under version 7 of the Symbolics

Lisp Machine software [19]. However, it is written in standard Common Lisp and has been
tested in several different versions of Common Lisp. To use the Series macro package,
the file containing it has to be loaded. At the MIT Ai Laboratory, XP resides in the file
"b:>lmlib>s.lisp". Compiled versions exist for Symbolics and Lucid (Sun) Common
Lisp.

The source for the Series macro package can be obtained over the INTERNET by using

Setting Up the Series Macro Package 9

FTP. Connection should be made to the TRIX. AI. MIT. EDU machine. Login as 'anonymous'
and copy the files shown below. It is advisable to run the tests in stest. lisp after
compiling the Series macro package for the first time on a new system. A comment at
the beginning of the file describes how to run the tests.

files on TRIX.AI.MIT.EDU, (INTERNET number 128.52.32.6)

/com/ftp/pub/series/s .lisp source code
/com/ftp/pub/series/stest. lisp tests
/com/ftp/pub/series/sdoc .txt brief documentation

As the series macro package is being made available free of charge, it is being dis-
tributed as is, with no warranty of any kind either expressed or implied including, but
not limited to, the implied warranties of merchantability and fitness for a particular pur-
pose, and further including no warranty as to conformity with this manual or any other
literature that may be issued from time to time. In addition, if you wish to use the Series
macro package for anything other than your own experimental use, you will have to get
a license from MIT. Information about obtaining a non-exclusive, royalty-free license can
be obtained by sending a message to "dick@ai.mit. edu".

The functions and forms discussed in this manual are defined in the package "series".
To make these names easily accessible, you must use the package "series". The most
convenient way to do this is to call the function series:: install, which also sets up some
additional features of the series macro package. The examples in this manual assume that
the form (series: :install) has been evaluated.

e series::install fkey (:pkg *package*) (:macro T) (:shadow T) (:remove nil)= T

Calling this function sets up Series for use in the package :pkg. The argument :pkg
can either be a package, a package name, or a symbol whose name is the name of a
package. It defaults to the current package.

The package "series" is used in :pkg. If :macro is not nil, the # macro character
syntax #Z and #M is set up. If :shadow is not nil, the symbols series: :let, series: :let*,
series: :multiple-value-bind, series: :funcall, and series: :defun are shadowing im-
ported into :pkg. These forms are identical to their standard counterparts, except that
they support various features of the Series macro package. When shadowing is not done,
you have to explicitly use series::let, series::let*, and series::multiple-value-
bind when binding series in an expression you want optimized; series: :funcall when
funcalling a series function you want optimized; and series::defun when defining a
series function with the declaration optimizable-series-function.

If :remove is not nil, the effects of having previously installed the Series macro
package are undone. In particular, the package is unused and any shadowing is undone.
However, any changes to the readtable are left in place.

10 Basic Reference Manual

2. Basic Reference Manual

This section (and the following two sections) are organized around descriptions of the
various functions and macros supported by the Series macro package. Each description
begins with a header showing the arguments and results of the function or macro. For
easy reference, the headers are duplicated in Section 8. In Section 8, the headers are in
alphabetical order and show the page where the full description can be found.

In a reference manual like this one, it is advantageous to describe each construct
separately and completely. However, this inevitably leads to presentation problems,
because everything is related to everything else. Therefore, one cannot avoid referring to
things that have not yet been discussed. The reader is encouraged to skip around in the
document and to realize that more than one reading will probably be necessary to gain
a complete understanding of the Series macro package.

Restrictions and Definitions of Terms
Series expressions are transformed into loops by pipelining them-the computation

is converted from a form where entire series are computed one after the other to a
form where the series are incrementally computed in parallel. In the resulting loop,
each individual element is computed just once, used, and then discarded before the next
element is computed. For this pipelining to be possible, four restrictions have to be
satisfied. Before looking at these restrictions, it is useful to consider a related issue.

All series functions are preorder functions. The composition of two series
functions cannot be pipelined unless the destination function consumes series elements
in the same order that the source function produces them. Taken together, the series
functions guarantee that this will always be true, because they all follow the same fixed
processing order. In particular, they are all preorder functions-they process the elements
of their series inputs and outputs in ascending order starting with the first element.
Further, while it is easy for users to define new series functions, it is impossible to define
ones that are not preorder.

It turns out that most series operations can easily be implemented in a preorder
fashion, (the only notable exceptions being reversal and sorting). As a result, little
is lost by outlawing non-preorder functions. If some non-preorder operation has to be
applied to a series, the series can be converted into a list or vector and the operation
applied to this new data structure. (This is inefficient, but no less efficient than what
would be required if non-preorder series functions were supported.)

Series expressions. Before discussing the restrictions on series expressions, it is
useful to define precisely what is meant by the term series expression.

Loosely speaking, a series function is a function that consumes or returns a series.
However, the Series macro package is not capable of looking at an arbitrary function
and determining whether or not it consumes or returns a series. To deal with this,
series functions are precisely defined as being a function that consumes or returns a
series and is either: (1) described in this manual, (2) defined using the declaration
optimizable-series-function, (3) a literal lambda expression appearing as the first ar-

Restrictions and Definitions of Terms 11

gument of a funcall, or (4) a macro that expands into an expression involving (1), (2),
or (3). Everything else is treated as not being a series function no matter what kind of
data objects it consumes or returns.

A series expression is an expression composed of series functions. However, beyond
this, the definition of the term 'series expression' is semantic rather than syntactic in
nature. Given a program, imagine it converted from Lisp code into a data flow graph.
In a data flow graph, functions are represented as boxes, and both control flow and data
flow are represented as arrows between the boxes. Data flow constructs such as let and
setq are converted into patterns of data flow arcs. Control constructs such as if and
loop are converted into patterns of control flow arcs. For example, the expression in the
program below is converted into a graph with a chain of seven nodes corresponding to
the seven function calls.

(defun expression-examp (data)
(abs (collect-sum (scan (cdr (collect-last (choose (scan data))))))))

A series expression is a subgraph of the data flow graph for a program that contains a
group of interacting series functions. More specifically, given a call f on a series function,
the series expression E containing it is defined as follows. E contains f. Every function
using a series created by a function in E is in E. Every function computing a series used
by a function in E is in E. Finally, suppose that two functions g and h are in E and
that there is a data flow path consisting of series and/or non-series data flow arcs from
g to h. Every function touched by this path (be it a series function or not) is in E.

In the example program above, there are two series expressions: one corresponding to
(collect-sum (scan ...)) and the other to (collect-last (choose (scan ...))). Op-
timization is applied to each series expression. The non-series parts of the Lisp code
(e.g., the calls on abs and cdr) are left as-is and are evaluated/compiled in the normal
way. While series functions and non-series functions can freely coexist in a piece of code,
they are rigidly partitioned from each other when optimization is applied.

Static analyzability. For optimization to be possible, Series expressions have to
be statically analyzable. As with most other optimization processes, a series expression
cannot be transformed into a loop at compile time, unless it can be determined at compile
time exactly what computation is being performed. This places a number of relatively
minor limits on what can be written. To start with, the definition of a series function
must appear before its first use. In addition, when using a series function that takes
keyword arguments, the keywords themselves have to be constants rather than being the
values of expressions.

Whenever there is a failure of static analyzability, a warning message is issued and the
containing series expression is left unoptimized. The various limits imposed by the static
analyzability restriction are described in Section 7 in conjunction with the associated
warning messages.

Locality of series. For optimization to be possible, every series created within a
series expression must be used solely inside the expression. (If a series is transmitted out-
side of the expression that creates it, it has to be physically represented as a whole. This
is incompatible with the transformations required to pipeline the creating expression.)

12 Basic Reference Manual

To avoid this problem, series must not be returned as the results of series expressions,
assigned to free variables, assigned to special variables, or stored in data structures. Fur-
ther, optimization is blocked if a series is passed as an argument to an ordinary Lisp
function. Series can only be passed to the series functions defined in this manual and to
new series functions defined using the declaration optimizable-series-function.

Straight-line computation. For optimization to be possible, series expressions
must correspond to straight-line computations. That is to say, the data flow graph
corresponding to the series expression cannot contain any conditional branches or loops.
(Complex control flow is incompatible with pipelining.) Optimization is possible in the
presence of standard straight-line forms such as progn, funcall, setq, lambda, let, let*,
and multiple-value-bind as long as none of the variables bound are special. There is
also no problem with macros as long as they expand into series functions and straight-
line forms. However, optimization is blocked by forms that specify complex control flow
(i.e., conditionals if, cond, etc., looping constructs loop, do, etc., or branching constructs
tagbody, go, catch, etc.).

In the first example below, optimization is blocked, because the if form is inside of
the series expression. However, in the second example, optimization is possible, because
although the if feeds data to the series expression, it is not inside the corresponding
subgraph. The two expressions produce the same value, however, the second one is much
more efficient, because it can be transformed into a loop.

(collect (if flag (scan x) (scan y))) ; Warning 20 signaled.
(collect (scan (if flag x y)))

An obvious direction of future research with regard to the Series macro package is
applying optimization to series expressions containing control flow constructs. There is
little doubt that simple conditionals such as if and cond could be handled. However, it
is not clear whether more complex constructs could be handled in a reasonable way.

Constraint cycles. Even if a series expression satisfies all of the restrictions above,
it may still not be possible to transform the expression into a loop. The sole remaining
problem is that if a series is used in two places, the two uses may place incompatible
constraints on the times at which series elements should be computed.

The series expression below shows a situation where this problem arises. The ex-
pression creates a series x of the elements in a list. It then creates a normalized series
by dividing each element of x by the sum of the elements in x. Finally, the expression
returns the maximum of the normalized elements.

(let ((x (scan '(1 2 5 2)))) ; Warning 21 signaled.
(collect-max (#M/ x (series (collect-sum x))))) = 1/2

The two uses of x in the expression place contradictory constraints on the way
pipelined evaluation must proceed. The function collect-sum requires that all of the
elements of x be produced before the sum can be returned and series requires that its
input be available before it can start producing its output. However, #M/ requires that
the first element of x be available at the same time as the first element of the output of
series. For pipelining to work, this implies that the first element of the output of series

Restrictions and Definitions of Terms 13

(and therefore the output of collect-sum) must be available before the second element
of x is computed. Unfortunately, this is impossible.

The essence of the inconsistency above is the cycle of constraints used in the argument.
This in turn stems from a cycle in the data flow graph underlying the expression (see
Figure 2.1). In Figure 2.1, function calls are represented by boxes and data flow is
represented by arrows. Simple arrows indicate the flow of series values and cross hatched
arrows indicate the flow of non-series values.

s m M l series -

Figure 2.1: A constraint cycle.

Given a data flow graph corresponding to a series expression, a constraint cycle is a
closed loop of data flow arcs that can be traversed in such a way that each arc is traversed
exactly once and no non-series arc is traversed backwards. (Series data flow arcs can be
traversed in either direction.) A constraint cycle is said to pass through an input or
output port when exactly one of the arcs in the cycle touches the port. In Figure 2.1
the data flow arcs touching scan, sum, series, and #M/ form a constraint cycle. Note
that if the output of scan were not a series, this loop would not be a constraint cycle,
because there would be no valid way to traverse it. Also note that while the constraint
cycle passes through all the other ports it touches, it does not pass through the output
of scan.

Whenever a constraint cycle passes through a non-series output, an argument analo-
gous to the one above can be constructed and therefore pipelining is impossible. When
this situation arises, a warning message is issued identifying the problematical port and
the cycle passing through it. For instance, the warning triggered by the example above
states that a constraint cycle passes through the non-series output of collect-sum.

Given this kind of detailed information, it is easy to alleviate the problem. To start
with, every cycle must contain at least one function that has two series data flows leaving
it. At worst, the cycle can be broken by duplicating this function (and any functions
computing series used by it). For instance, the example above can be rewritten as shown
below.

(let ((x (scan '(1 2 5 2)))
(sum (collect-sum (scan '(1 2 5 2)))))

(collect-max (#M/ x (series sum)))) = 1/2

It would be easy enough to automatically apply code copying to break problematical
constraint cycles. However, this is not done for two reasons. First, there is considerable
virtue in maintaining the property that each function in a series expression turns into one
piece of computation in the loop produced. Users can be confident that series expressions
that look simple and efficient actually are simple and efficient. Second, with a little

14 Basic Reference Manual

creativity, constraint problems can often be resolved in ways that are much more efficient
than copying code. In the example above, the conflict can be eliminated efficiently by
interchanging the operation of computing the maximum with the operation of normalizing
an element.

(lot ((x (scan '(1 2 5 2))))
(/ (collect-max x) (collect-sum x))) =* 1/2

The restriction that optimizable series expressions cannot contain constraint cycles
that pass through non-series outputs places limits on the qualitative character of optimiz-
able series expressions. In particular, optimizable series expressions all have the general
form of creating some number of series using scanners, computing various intermediate
series using transducers, and then computing one or more summary results using collec-
tors. The output of a collector cannot be used in the intermediate computation unless it
is the output of a separate subexpression.

It is worthy of note that the last expression above fixes the constraint conflict by
moving the non-series output out of the cycle, rather than by breaking the cycle. This
illustrates the fact that constraint cycles that do not pass through non-series outputs do
not necessarily cause problems. Such constraint cycles cause problems only if they pass
through off-line ports.

On-line and off-line. A series input port or series output port of a series function
is on-line if and only if it is processed in lock step with all the other on-line ports as
follows: The initial element of each on-line input is read, then the initial element of each
on-line output is written, then the second element of each on-line input is read, then the
second element of each on-line output is written, and so on. Ports that are not on-line
are off-line. If all the series ports of a function are on-line, the function is said to be
on-line; otherwise, it is off-line. (The above extends the standard definition of the term
'on-line' (see [1]) so that it applies to individual ports as well as whole functions.)

The prototypical example of an on-line series function is map-tn. Each time it reads
an input element, it applies the mapped function to it and writes an output element. In
contrast, the function positions is not on-line. Since null input elements do not lead to
output elements, it is not possible for positions to write an output element every time
it reads an input element.

For every series function, the documentation below specifies which ports are on-line
and which are off-line. In this regard, it is interesting to note that every function that
has only one series port (i.e., scanners with only one output and collectors with only
one input) are trivially on-line. The only series functions that have off-line ports are
transducers.

If all of the ports a cycle passes through are on-line, the lock step processing of these
ports guarantees that there cannot be any conflicts between the constraints associated
with the cycle. However, passing through an off-line port leads to the same kinds of
problems as passing through a non-series output.

In summary, the fourth and final restriction is that: for optimization to be possible, a
series expression cannot contain a constraint cycle that passes through a non-series output
or an off-line port. Whenever this restriction is violated, a warning message is issued.

Series 15

Violations can be fixed either by breaking the cycle or restructuring the computation so
that the offending port is removed from the cycle.

Series

The Series macro package adds support for a new data type called series to Common
Lisp. Series are similar to lists or vectors in that they are one-dimensional totally-ordered
collections of elements and similar operations can be applied to them. However, series are
also closely related to streams, both because they can contain an unbounded number of
elements and because they are supported using lazy evaluation semantics. In particular,
the jth element of a series is not computed until it is actually used (if ever). As a concrete
example of the lazy evaluation semantics of series, consider the following.

(setq x 0) =: 0
(collect-first (map-fn T P'(lambda (a) (ncf x) (* 3 a))

(scan-range :from 1 :upto 10))) fr 3
x = . 1

The call on scan-range creates a series of ten elements. The map-fn creates another
series of ten elements computed from this series. However, collect-first only uses the
first element of its input. Since the result of map-fn is not used anywhere else, only
the first element of this series is computed. As a result, the function being mapped is
only applied once and x is only incremented once. In the absence of side effects, there
is typically no need to think about the lazy evaluation nature of the support for series.
However, when side effects are involved, this has to be kept in mind.

The above notwithstanding, it is typically better to think of series as being like lists
rather than streams in most situations. The reason for this is that there is a critical
difference between series and streams. Consider the code below. If x contains a stream,
the function g will only see the elements of x that are not used by f. That is to say, if f
reads the first ten elements of x, these elements are gone and the first element seen by g
will be the eleventh.

(let ((x ...))
(f x)
(g x)

In contrast, suppose that x contains a list. The mere act of looking at the elements
of a list does not alter the list. As a result, both f and g see all the elements of x. This
situation is exactly the same when x is a series. If a series is used in several places, all of
the elements of the series are available in each place.

For the convenience of the reader, this documentation uses the following two ortho-
graphic conventions with regard to series. First, the notation Sj is used to designate
the jth element of the series S. As in a list or vector, the first element of a series has
the subscript 0. Second, plural nouns (e.g., items, numbers) are used to represent series
inputs and outputs of functions, while singular nouns (e.g., item, number) are used to
indicate non-series inputs and outputs.

16 Basic Reference Manual

" series &optional (type T)
This type specifier can be used to declare that something is a series value. The type

argument specifies the type of the items in the series.

(let ((x (scan '(1 2 3))))
(declare (type (series integer) x))

(collect-sum x)) =€> 6

" series item-1 ... item-n = items

An unbounded series is created that endlessly repeats the values of the item-i. As
shown in the last example below, the function series is often used to create what is in
effect a constant value to be passed into a series input of a series function. (Like lists,
the same name is used for the name of the type specifier and the name of the primary
constructor function.)

(series 'b 'c) = #Z(b c b c b c ...)
(series 1) 0 #Z(1 1 1 1 1 1 ...)
(#Mlist (series 'a) (scan '(1 2 3))) #Z((a 1) (a 2) (a 3))

" make-series item-1 ... item-n :> items

A bounded series of length n is created containing the items-i.

(make-series 'b 'c) =>- #Z(b c)
(make-series ...) (scan (list ...))

* #Z (item-1 ... item-n) =: items

The # macro character syntax #Z is used to specify a literal series. It must be followed
by a list of items. A series is created that contains these items. As in #(...) (and in
contrast to make-series), the item-i are implicitly quoted. Unlike #(...), which turns
directly into a data object when read in, instances of #z(...) turn into function calls
and therefore should not be quoted. To activate the syntax #Z for input, you must call
(series: : install :macro T). However, whether or not this is done, the #z syntax is used
for printing series.

#Z(a b c) W- #Z(a b c)
W(...) =_ (scan 'C...))

Series of Series. It is possible to create a series whose elements are themselves
series. For instance, given a vector of lists of integers, the expression below creates a
series of series of integers. It then creates a list of the sums of these integers.

(let* ((series-of-lists (scan 'vector '#((I 2 3) (3 4 5))))
(series-of-series (#Mscan series-of-lists)))

(collect (mapping ((integers series-of-series))
(collect-sum integers)))) ; Warning 28 signaled.S(6 12)

Scanners 17

It should be possible to optimize the expression above creating a pair of nested loops.
However, the Series macro package is not capable of optimizing series of series. Rather,
the expression above triggers a warning message (because there is data flow from the as-
sumed non-series value integers to the series input of collect-sum). Only the outermost
level of the series of series is optimized.

An obvious direction of future research with regard to the Series macro package
is applying optimization to series of series. However, it is not obvious whether the
pragmatic benefits would be worth the effort involved. For instance, full optimization
can be obtained in the example above, by merely writing it in the form shown below. The
key difference is that the inner loop is completely contained in the body of the mapping.

(let ((series-of-lists (scan 'vector '*((1 2 3) (3 4 5)))))
(collect (mapping ((list series-of-lists))

(collect-sum (scan list))))) => (6 12)

Scanners

Scanners create series outputs based on non-series inputs. There are two basic kinds
of scanners: ones that create a series based on some formula (e.g., scanning a range
of integers) and ones that create a series containing the elements of an aggregate data
structure (e.g., scanning the elements of a list).

a scan {type} sequence =: elements

Creates a series containing the successive elements of sequence. If sequence is a
list, then it must be a proper list ending in nil. The type argument specifies the type
of sequence to be scanned. This type must be a (not necessarily proper) subtype of
sequence. If omitted, the type defaults to list. Scanning is significantly more efficient
if it can be determined at compile time whether the type is a subtype of list or vector.

(scan '0) =: #Z()
(scan '(a b c)) =* #Z(a b c)
(scan 'string "BAR") => #Z(S\B *\A #\R)
(scan '(simple-vector integer 3) '8(1 2 3)) = Z(1 2 3)

* scan-multiple type sequence-i ... sequence-n =: elements-I ... elements-n

Several sequences can be scanned at once by using several calls on scan. Each call
on scan will test to see when its sequence input runs out of elements and execution will
stop as soon as any of the sequences are exhausted. Although very robust, this approach
to scanning can be a significant source of inefficiency. In situations where it is known in
advance which sequence is the shortest, scan-multiple can be used to obtain the same
results more rapidly.

The function scan-multiple is similar to scan except that two or more sequences
can be scanned at once. If there are n sequence inputs, scan-multiple return- , series
containing the elements of these sequences. It must be the case that none of the -.. i ence
inputs is shorter than the first sequence. All of the output series are the san. length
as the first input sequence. Extra elements in the other input sequences ai-e ignored.

18 Basic Reference Manual

Using scan-multiple is more efficient than using multiple instances of scan, because
scan-multiple only has to check for the first input running out of elements.

If type is of the form (values si ... s,,), then there must be n sequence inputs and
sequence-i must have type si. Otherwise there can be any number of sequence inputs
each of which must have type type.

(multiple-value-bind (data weights)
(scan-multiple 'list '(1 6 3 2 8) '(2 3 3 3 2))

(collect (map-fn T #'* data weights))) 0 (2 18 9 6 16)

e scan-range fkey (:start 0) (:by 1) (:type 'number)
:upto :below :downto :above :length =* numbers

Creates a series of numbers starting with :start (default integer 0) and counting up
by :by (default integer 1). The :type argument (which defaults to number) specifies the
type of numbers produced and must be a subtype of number. The arguments :start and
:by must be of type type.

The last five arguments specify the kind of end test to be used. If :upto is specified,
counting continues only so long as the numbers generated are less than or equal to :upto.
If :below is specified, counting continues only so long as the numbers generated are less
than :below. If :downto is specified, counting continues only so long as the numbers
generated are greater than or equal to :downto. If :above is specified, counting continues
only so long as the numbers generated are greater than :above. If :length is specified,
the series created has length :length. (It must be the case that :length is a non-negative
integer.) If none of the termination arguments are specified, the output has unbounded
length. If more than one termination argument is specified, it is an error.

(scan-range) = #Z(O 1 2 3 4 ...)
(scan-range :upto 4) = Z(O 1 2 3 4)
(scan-range :from I :below 4) =* #Z(1 2 3)
(scan-range :by -3 :downto -4) =0 #Z(O -3)
(scan-range :from 1 :above -4 :by -1) * #Z(1 0 -1 -2 -3)
(scan-range :from 1.5 :by .i :length 3 :type 'float) 0 #Z(1.5 1.6 1.7)

" scan-sublists list =>. sublists

Creates a series containing the successive sublists of list, which must be a proper list
ending in nil.

(scan-sublists '(a b c)) : #Z((a b c) (b c) (c))

" scan-alist alist &optional (test #'eql) = keys values

Scans the entries in an association list, returning two series containing keys and their
associated values. The first element of keys is the key in the first entry in alist, the first
element of values is the value in the first entry, and so on. The alist must be a proper list
ending in nil and each entry in alist must be a cons cell or nil. Like assoc, scan-alist
skips entries that are nil and entries that have the same key as an earlier entry. The
test argument (default eql) is used to determine when two keys are the same.

(scan-alist '((a 1)) (a . 3) (b . 2))) =0- #Z(a b) and #Z(1 2)
(scan-alist nil) = *Z() and #Z()

Scanners 19

scan-plist plist = indicators values

Scans the entries in a property list, returning two series containing indicators and
their associated values. The first element of indicators is the first indicator in plist, the
first element of values is the associated value, and so on. The plist argument must be
a proper list of even length ending in nil. In analogy with the way get works, if an
indicator appears more than once in plist, it (and its value) will only be enumerated the
first time it appears.

(scan-plist '(a I a 3 b 2)) = #Z(a b) and #Z(1 2)
(scan-plist nil) = #Z() and #Z()

* scan-hash table =: keys values
Scans the entries in a hash table, returning two series containing keys and their

associated values. The first element of keys is the key of the first entry, the first element
of values is the value in the first entry, and so on. (There are no guarantees as to the
order in which entries will be scanned.)

(let ((h (make-hash-table)))
(setf (gethash 'color h) 'brown)
(setf (gethash 'name h) 'fred)
(scan-hash h)) * #Z(name color) and #Z(fred brown)

• scan-lists-of-lists lists-of-lists &optional leaf-test =: nodes
The argument lists-of-lists is viewed as an n-ary tree where each internal node is

a non-empty list and the elements of the list are the children of the node. A node is
considered to be a leaf if it is an atom or if it satisfies the predicate leaf-test (if present).
(The predicate can count on only being applied to conses.)

The function scan-lists-of-lists creates a series containing all of the nodes in lists-
of-lists. The nodes are enumerated in preorder (i.e., first the root is output, then the
nodes in the first child of the root are enumerated in full, then the nodes in the second
child of the root are enumerated in full, etc.).

The function scan-lists-of-lists does not assume that the node lists end in nil;
however, it ignores any non-list cdrs. (This behavior increases the utility of scan-lists-
of-lists when it is used to scan Lisp code.) However, scan-lists-of-lists assumes
that lists-of-lists is a tree as opposed to a more general graph. If some node in the input
has more than one parent, then this node (and its descendants) are enumerated more
than once. If the input is cyclic, the output series is unbounded in length.

(scan-lists-of-lists 'c) - #Z(c)
(scan-lists-of-lists '((c) nil)) = #Z(((c) nil) c) c nil)
(scan-lists-of-lists '((c) nil) #'(lambda (e) (atom (car e))))

=* #Z(((c) nil) (c) nil)

* scan-lists-of-lists-fringe lists-of-lists optional leaf-test =t leaves
This is the same as scan-lists-of-lists except that it only scans the leaves of the

tree, skipping all internal nodes. Note that nil is treated as a leaf, rather than as an
internal node with no children.

20 Basic Reference Manual

(scan-lists-of-liste-fringe 'c) =€, #Z(c)
(scan-lists-of-liste-fringe '((c) nil)) :, *Z(c nil)
(scan-lists-of-lists-fringe '((c) nil) V'Clambda (e) (atom (car e))))
= Z(Cc) nil)

" scan-symbols koptional (package *package*) =€, symbols

Creates a series, in no particular order, and possibly containing duplicates, of the
symbols accessible in package (which defaults to the current package).

(scan-symbols) =>- WZfoo bar baz ... zot) <in some order>

" scan-file file-name koptional (reader #'read) =:> items
Opens the file named by the string file-name and applies the function reader to it

repeatedly until the end of the file is reached. The function reader must accept the
standard input-function arguments input-stream, eof-error-p, and eof-value as its argu-
ments. (For instance, reader can be read, read-preserving-white-space, read-line, or
read-char.) If omitted, reader defaults to read. The function scan-file returns a series
of the values returned by reader, up to but not including the value returned when the
end of file is reached. The file is correctly closed, even if an abort occurs. As the basis
for the examples below, suppose that the file "test.lisp" contains "(A) 1".

(scan-file "test.lisp") = #Z((a) 1)
(scan-file "test.lisp" V'read-char) =, #Z(#\(#\A #\) #\space #\)

* scan-fn type init step &optional test =* results-1 ... results-m
The higher-order function scan-fn supports the generic concept of scanning. The

type is a type specifier. The values construct can be used to indicate multiple types;
however, type cannot indicate zero types. If type indicates m types r, ... r,, then
scan-fn returns m series where results-i has the type (series ri). The arguments init,
step, and test are functions.

The init must be of type (function () (values r, ... r,)).
The step must be of type (function (r, ... rm) (values r, ... r,)).
The test (if present) must be of type (function (r1 ... rm) T).
The elements of the results-i are computed as follows:

(values results-i0 ... results-mo) - (funcall init)
-(values results-ij ... results-m) = (funcall step results-l(j_1) ... results-m(j1))

The outputs all have the same length. If there is no test, the outputs have unbounded
length. If there is a test, the outputs consist of the elements up to but not including, the
first elements for which the following is not nil. It is guaranteed that step will not be
applied to the elements that pass the test.

(funcall test results-lj ... results-m)

0

Mapping 21

If init, step, or test have side effects, they can count on being called in the order
indicated by the equations above, with test called just before step on each cycle. However,
due to the lazy evaluation nature of series, these functions will not be called until their
outputs are actually used (if ever). In addition, no assumptions can be made about the
relative order of evaluation of these calls with regard to execution in other parts of a
given series expression.

(scan-fn 'list P'(lambda) '(a b c d)) #'cddr V'null)
=' #Z((a b c d) Cc d))

(scan-fn T #'(lambda 0 '(a b c d)) #'cddr)
=t #Z((a b c d) (c d) nil nil ...)

(let ((list '(a b c)))
(scan-fn '(values T list)

V'(lambda) (values (car list) list))
#'(lambda (element list) (declare (ignore element))

(values (cadr list) (cdr list)))
#'(lambda (element list) (declare (ignore element))

(null list))))
= SZ(a b c) and #Z(Ca b c) (a b) Cc))

If there is no test, then each time an element is output, the function step is applied
to it. Therefore, it is important that other factors in an expression cause termination
before scan-fn computes an element that step cannot be applied to. In this regard, it is
interesting that the following equivalence is almost, but not quite true. The difference is
that including the t*est argument in the call on scan-fn guarantees that step will not be
applied to the element which fails test, while the expression using until-if guarantees
that it will.

(scan-fn T init step test) % (until-if test (scan-fn T init step))

* scan-fn-inclusive type init step test = - results-i ... results-m

The higher-order function scan-fn-inclusive is the same as scan-fn except that the
first set of elements for which test is true is included in the output. As with scan-fn, it
is guaranteed that step will not be applied to the elements for which test is true.

(scan-fn-inclusive 'list #'(lambda C) '(a b c d)) #'cddr #'null)
= #Z((ab c d) (c d) ())

Mapping

By far the most common kind of series operation is mapping. In cognizance of this
fact, four different ways are provided for specifying mapping.

9 map-fn type function sources-1 ... sources-n :; results-1 ... results-m

The higher-order function map-fn supports the generic conce'pi of mapping. The
type is a type specifier, which specifies the type of value(s) returii'I by function. The
values construct can be used to indicate multiple types; however, type cannot indicate

22 Basic Reference Manual

zero values. If type indicates m types ri ... rm, then map-fn returns m series where
results-i has the type (series ri). The argument function is a function. The remaining
arguments (if any) are all series. Suppose that sources-i has the type (series si).

The function must be of type (function (s, ... s,) (values r, ... rm)).
The length of each output is the same as the length of the shortest input. If there

are no bounded series inputs, the outputs are unbounded. The elements of the results-i
are the results of applying function to the corresponding elements of the sources-i.

(values results-I1j ... results-m) - (funcall function sources-ij ... sources-ni)

If function has side effects, it can count on being called first on the sources-io, then on
the sources-i1 , and so on. However, due to the lazy evaluation nature of series, function
will not be called on any group of input elements until the result is actually used (if ever).
In addition, no assumptions can be made about the relative order of evaluation of these
calls with regard to execution in other parts of a given series expression.

(map-fn 'integer #' Z(1 2 3) #Z(4 5)) = Z(5 7)
(map-fn T #'gensym) =:- #Z(#:G003 #:G004 #:005 ...)
(map-fn '(values integer rational) #'floor #Z(1/4 9/5 12/3))
= - W(1 4) and #Z(1/4 4/5 0)

The function map-fn can be used to specify any kind of mapping operation. However,
in practice, it can be cumbersome to use. Three shorthand forms are provided, which
are more convenient in particular common situations.

e #M function =* series-function

Often one wants to map a given named function over one or more series producing a
series of the resulting values. This can be done succinctly by using the # macro character
syntax #M. This readmacro converts a non-series function into a series function by using
mapping. All but the first value returned by function are ignored. The form #Mfunction
can only be used in the function position of a list. To activate the syntax #M, you must
call (series::install :macro T).

(*Mi x y) = (map-fn T *'f x y)
(collect (#Mcar (scan '((a) (b) (c)))) =* (a b c)

e mapping var-value-pair-list &body body =: items

The syntax #Mfunction is only helpful when the computation to be mapped is a named
function. The form mapping is helpful in situations where a more complex computation
needs to be mapped. The syntax of mapping is analogous to let. The var-value-pair-list
specifies zero or more variables that are bound to successive values of series. The value
parts of the pairs must all return series. The body is treated as the body of a lambda
expression that is mapped over the series values. A series of the first values returned by
this lambda expression is returned as the result of mapping. Any kind of declaration can
be used at the beginning of the body, however it should be noted that the variables in
the var-value pairs contain series elements, not series.

Mapping 23

(mapping ((x r) (y s)) ...) (map-fn T *'(lambda x y) ...) r s)
(mapping ((x (scan '(2 -2 3))))

(declare (fixnum x))
(expt (abs x) 3)) = #Z(8 8 27)

The form mapping supports a special syntax that facilitates the use of series functions
that return multiple values. Instead of being a symbol, the variable part of a var-value
pair can be a list of symbols. This list is treated the same way as the first argument to
multiple-value-bind.

(mapping (((i v) (scan-plist '(a 1 b 2))))
(list i v)) :=0 #Z((a 1) (b 2))

iterate var-value-pair-list &body body =: nil

The form iterate is identical to mapping except that the value nil is always returned.

(iterate ...) =_ (progn (collect-last (mapping ...)) nil)
(let ((item (scan '((1) (-2) (3)))))

(iterate ((x (#Mcar item)))
(if (plusp x) (prini)))) -- nil <after printing "13">

To a first approximation, iterate and mapping ditfer in the same way as mapc and
mapcar. In particular, like mapc. itei-ate is intended to be used in situations where the
body is being evaluated for side effect rather than for its result. However, due to the lazy
evaluation semantics of seiies, the difference between iterate and mapping is more than
just a question of efficiency.

If mapcar is used in a situation where the output is not used, time is wasted unnec-
essarily creating the output list. However, if mapping is used in a situation where the
output is not used, no computation is performed, because series elements are not com-
puted until they are used. Thus iterate can be thought of as a declaration that the
indicated computation is to be performed even though the output is not used.

(let ((item (scan '((1) (-2) (3)))))
(mapping ((x (#Mcar item)))
(if (plusp x) (prini x)))

nil) =- nil <without printing any output>

An important use of the forms mapping and iterate is to create series expressions
corresponding to nested loops. For instance, the following expression takes a vector of
lists and produces a list of the sums of the elements in these lists. When optimization is
applied, the series expression in the mapping body becomes a nested loop.

(collect (mapping ((1 (scan 'vector '#((1 2 3) (3 4 5)))))
(collect-sum (scan 1)))) =: (6 12)

0

24 Basic Reference Manual

Truncation

The functions below support the concept of producing a bounded series as opposed
to an unbounded one.

* until bools items-1 ... items-n =- initial-items-i ... initial-items-n

Truncates one or more series of elements based on a series of boolean values. The
outputs consist of the elements of the inputs up to, but not including, the first element
which corresponds to a non-null element of bools. That is to say, initial-items-ii-items-i
and if the first non-null value in bools is the mth, each output has length m. (The effect
of including the mth element in the output can be obtained by using previous as shown
in the last example below.) In addition, the outputs terminate as soon as any input runs
out of elements even if a non-null element of bools has not been encountered.

(until Z(nil nil T nil T) #Z(1 2 -3 4 -S)) =; *Z(1 2)
(until Z(nil nil T nil T) Z(i 2) #Z(a b c)) = Z(1 2) and #Z(a b)
(until (series nil) (scan-range)) = #Z(O 1 2 ...)
(until #Z(nil nil T nil T) (scan-range)) =* #Z(O 1)
(let ((x *Z(I 2 -3 4 -5)))

(until (previous (#Mminusp x)) x)) * #Z(1 2 -3)

* until-if pred items-i ... items-n =€ initial-items-1 ... initial-items-n

This function is the same as until except that it takes a functional argument instead
of a series of boolean values. The function pred is mapped over items-i to obtain a series
of boolean values that control the truncation. The basic relationship between until-if
and until is shown in the last example below.

(until-if #'minusp *Z(1 2 -3 4 -5)) =:= #Z(1 2)
(until-if #'minusp 8Z(I 2) #Z(a b c)) =0 #Z(I 2) and #Z(a b)
(until-if #'minusp (scan-range)) = #Z(O 1 2 ...)
(until-if #'pred items) = (let ((v items)) (until (#Mpred v) v))

e cotruncate items-1 ... items-n :, initial-items-1 ... initial-items-n

The inputs and outputs are all series and the number of outputs is the same as the
number of inputs. Further, the elements of the outputs are exactly the same as the
elements of the inputs. However, the outputs are truncated so that they are all the same
length as the shortest input.

(cotruncate #Z(1 2 -3 4 -5) Z(10)) = #Z(1) and Z(10)
(cotruncate (scan-range) #Z(a b)) = #Z(O 1) and #Z(a b)
(cotruncate #Z(a b) #ZO) =- *Z() and #Z()
(cotruncate ...) _ (until (series nil) ...)

Other On-Line Transducers 25

Other On-Line Transducers

Transducers compute series from series and form the heart of most series expressions.
The ubiquitous transduction operations of mapping and truncating are described above.
This section presents the other predefined transducers that are on-line.

e previous items &optional (default nil) (amount i) =:. shifted-items

Creates a series that is shifted right amount elements. The input amount must be a
positive integer. The shifting is done by inserting amount copies of default before items
and discarding amount elements from the end of items. The output is always the same
length as the input.

(previous *Za b c)) * #Znil a b)
(previous #Z(a b c) 'z) =o #Z(z a b)
(previous #Z(a b c) 'z 2) =. tZ(z z a)
(previous #ZO) = IZ()

The word previous is used as the name for this function, because the function is
typically used to access previous values of a series. An example of previous used in this
way is shown in conjunction with until above. To insert some amount of stuff in front
of a series without losing any of the elements off the end, use catenate.

* latch items &key :after :before :pre :post = masked-items
This function acts like a latch electronic circuit component. Each input element

causes the creation of a corresponding output element. After a specified number of non-
null input elements have been encountered, the latch is triggered and the output mode
is permanently changed.

The :after and :before arguments specify the latch point. The latch point is just
after the :after-th non-null element in items or just before the :before-th non-null
element. If neither :after nor :before is specified, an :after of 1 is assumed. If both
are specified, it is an error.

If a :pre is specified, every element prior to the latch point is replaced by this value.
If a :post is specified, this value is used to replace every element after the latch point.
If neither is specified, a :post of nil is assumed.

(latch #Z(nil c nil d e)) =* #Z(nil c nil nil nil)
(latch #Z(nil c nil d e) :before 2 :pre 'z) = #Z(z z z d e)
(latch #Z(nil c nil d e) :before 2 :post T) = #Z(nil c nil T T)

e collecting-fn type init function sources-1 ... sources-n := results-1 ... results-m
The higher-order function collecting-fn supports the generic concept of an on-line

transducer with internal state. The type is a type specifier, which specifies the type of
value(s) returned by function. The values construct can be used to indicate multiple
types; however, type cannot indicate zero types. If type indicates m types r, ... rm, then
collecting-fn returns m series where result-i has the type (series ri). The arguments
init and function are functions. The remaining arguments (if any) are all series. Suppose
that sources-i has the type (series s,).

26 Basic Reference Manual

The init must be of type (function () (values r ... r,)
The function must be of type

(function (r, ... r,, s, ... sn) (values r, ... r,)).
The length of each output is the same as the length of the shortest input. If there

are no bounded series inputs, the outputs are unbounded. The elements of the results-i
are computed as follows:

(values results-lo... results-mo)
(multiple-value-call function (funcall init) sources-lo ... sources-no)

(values results-ij... results-mj) a
(funcall function results-i(j_l) ... results-m(3..) sources-li ... sources-ni)

If init and/or function have side effects, they can count on being called in the order
indicated by the equations above. However, due to the lazy evaluation nature of series,
these functions will not be called until their outputs are actually used (if ever). In
addition, no assumptions can be made about the relative order of evaluation of these
calls with regard to execution in other parts of a given series expression.

(collecting-fn T V'(lambda) 0) 1+ #Z(1 2 3)) = #Z(1 3 6)
(collecting-fn T V'(lambda) 5) "' Z(1 2 3)) =0 8Z(6 8 11)
(collecting-fn T '(lambda) 0) '+ #Z(1 2) #Z(4 5)) = Z(5 12)
(collecting-fn '(values integer integer)

#'(lambda) (values 0 1))
V'(lambda (sum prod x) (values (+ sum x) (* prod x)))
#Z(1 2 3))

= #Z(1 3 6) and Z(i 2 6)

It is important to remember that when computing the first elements of the output,
function is called with the values returned by nit preceding the first elements of the
series inputs. The order of arguments to collecting-fn is chosen to highlight this fact.

(collecting-fn T t'(lambda) nil) #'cons *z(a b))
= #Z((nil . a) ((nil . a) . b))

(collecting-fn T #'(lambda) nil) #'(lambda (1 x) (cons x 1)) #Z(a b))
= #Z((a) (b a))

The first of the six examples above shows the most common way collecting-fn is
used. In this usage, function takes two arguments returning one and the value returned
by nit is a left identity of function. In this situation, results-io0sources-10 . Sometimes,
this behavior is desired even in situations where function does not have a left identity.
This can be achieved by using an auxiliary flag as shown below. This example computes
a running maximum. The auxiliary flag is used to differentiate the first element of the
input from the rest.

(defun collecting-max (numbers)
(declare (optimizable-series-function))

(values
(collecting-fn '(values number T)

#'(lambda) (values 0 T))
#'(lambda (max first? x)

(values (if first? x (max max x)) nil))
numbers)))

(collecting-max Z(9 4 25 6)) => *Z(9 9 25 25)

Choosing and Expanding 27

The use of an auxiliary flag is not particularly efficient. As a result, it is usually
better to use a left identity of function when possible. The only exception to this is that
if function is expensive to compute, using a flag may promote efficiency by eliminating
one execution of function.

Choosing and Expanding

Choosing and its inverse are particularly important kinds of off-line transducers. (Un-
derlining is used to indicate series inputs and outputs that are off-line.)

e choose bools &optional items =' chosen-items
Chooses elements from a series based on a boolean series. The off-line output consists

of the elements of items that correspond to non-null elements of bools. That is to say, the
jth element of items is in the output if and only if the jth element of bools is non-null.
The order of the elements in chosen-items is the same as the order of the elements in
items. The output terminates as soon as either input runs out of elements. If no items
input is specified, then the non-null elements of bools are themselves returned as the
output of choose.

(choose Z(T nil T nil) #Z(a b c d)) =: *Z(a c)
(choose #Z(a nil b nil)) = #Z(a b)
(choose Znil nil) #Za b)) : #ZC)

(An interesting aspect of choose is that the output series is off-line rather than having
the two input series be off-line. This is done in recognition of the fact that the two input
series are always in synchrony with each other; and having only one off-line port allows
more flexibility then having two off-line ports.)

One might want to select elements out of a series based on their positions in the series
rather than on boolean values. This can be done using mask as shown below.

(choose (mask ZCO 2)) SZ(a b c d)) Z(a c)
(choose (#Mnot (mask #Z(O 2))) (scan-range)) = #Z(i 3 4 S ...)

A key feature of choose in particular, and many off-line transducers in general, is
illustrated by the expression below. In this expression, the choose causes the first scan
to get out of phase with the second scan. As a result, it is important to think of series
expressions as passing around series objects rather than as abbreviations for loops where
things are always happening in lock step. The latter point of view might lead to the idea
that the output of the expression below would be ((a 1) (c 2) (d 4)).

(let ((tag (scan '(a b c d e)))
(x (scan '(-2 2 4 -5))))

(collect (#Mlist tag (choose (#Xplusp x) x)))) = * ((a 1) (b 2) (c 4))

* choose-if pred ite=s =z chosen-items
This function is the same as choose, except that it maps the non-series function pred

over items to obtain a series of boolean values which control the choosing. In addition,
the input is off-line rather than the output. (It turns out that this allows for better
optimization in some situations.) The logical relationship between choose and choose-if
is shown in the last example below.

28 Basic Reference Manual

(choose-if W'plusp #Z(-I 2 -3 4)) =* *Z(2 4)
(choose-if V'identity #Z(a nil nil b nil)) Z(a b)
(choose-if #'pred items) E (let ((v items)) (choose (#Mpred v) v))

" spread gaps items &optional (default nil) =: expanded-items

This function is a quasi-inverse of choose. The off-line output contains the elements
of items spread out by interspersing them with copies of default. If the ith element of
gaps is n (a non-negative integer), then the ith element of items is preceded by n copies
of default. The output stops as soon as either input runs out of elements.

(spread #Z(1 1) #Z(2 4) -1) W tZ(-1 2 -1 4)
(spread Z(O 2 4) Z(a b)) = IZ(a nil nil b)
(spread Z(1) #Z(a b)) = *Z(nil a)

" expand bools items *optional (default nil) =:' expanded-items

This function is second kind of quasi-inverse of choose. The output contains the
elements of the off-line input items spread out into the positions specified by the non-
null elements in bools---i.e., the jth element of items is in the position occupied by the
jth non-null element in bools. The other positions in the output are occupied by default.
The output stops as soon as bools runs out of elements or a non-null element in bools is
encountered for which there is no corresponding element in items.

(expand #Z(nil T nil T T) #Z(a b c)) = #Z(nil a nil b c)
(expand *Z(nil T nil T T) *Z(a)) =0 #Z(nil a nil)
(expand #Z(nil T) #Z(a b c) 'z) => #Z(z a)
(expand #Z(nil T nil T T) #Zo) = #Z(nil)

" split items bools-1 ... bools-n =o items-1 ... i items-n-+1

This function is similar to choose except that instead of producing one restricted
output, it partitions the input series between two or more outputs. This makes it possible
to use both the chosen items and the non-chosen items in later computations.

If there are n boolean inputs then there are n+1 outputs, all of which are off-line.
Each input element is placed in exactly one output series. Suppose that the jth element
of bools-1 is non-null. In this case, the jth element of items will be placed in items-1. On
the other hand, if the jth element of bools-1 is nil, the second boolean input (if any) is
consulted to see whether the input element should be placed in the second output or in a
later outp-It. (As in a cond, each time a boolean element is nil, the next boolean series
is consulted.) If the jth element of every boolean series is nil, then the jth element of
items is placed in items-n+1.

(split #Z(-i -2 3 4) #Z(T T T T)) =: :Z(-1 -2 3 4) and #Z()
(split #Z(-i -2 3 4) #Z(T T nil nil)) =O #Z(-I -2) and Z(3 4)
(split *Z(-1 -2 3 4) #Z(T T nil nil) #Z(nil T nil T))
= #z(-1 -2) and SZ(4) and #Z(3)

o split-if items pred-i ... pred-n * items-i ... items-m items-n +1

This function is the same as split, except that it takes predicates as arguments rather

than boolean series. The predicates are applied to the elements of items to create boolean
values. The relationship between split-if and split is almost but not exactly as shown

below.

Other Off-Line Transducers 29

(split-if items *If *'g) 0 (let (CV items)) (split v (#Mf v) (#Ng v)))

The reason that the equivalence above does not quite hold is that, as in a cond, the
predicates are not applied to individual elements of items unless the resulting value is
needed to determine which output series the element should be placed in (e.g., if the first
predicate returns non-null when given the jth element of items, the second predicate will
not be called). This promotes efficiency and allows earlier predicates to act as guards for
later predicates.

(split-if #Z(1.3 3 2.7 4) #'floatp) =- #Z(1.3 2.7) and #Z(3 4)
(split-if *Z(1.3 3 2.7 4) #Ifloatp *'evenp)

#Z(1.3 2.7) and #Z(4) and #Z(3)

Other Off-Line Transducers
This section describes a number of off-line transducers. (Underlining is used to indi-

cate series inputs and outputs that are off-line.)

* catenate items-! ... itemfs-n =* items

Creates a series by concatenating together two or more off-line input series. The
length of the output is the sum of the lengths of the inputs.

(catenate SZ(b c) SZO SZ(d)) = #Z(b c d)
(catenate #Z0 #Z0) * #Z()

" subseries jtes start &optional below =0 selected-items
Creates a series containing a subseries of the elements in the off-line input items from

start up to, but not including, below. If below is greater than the length of items, output
nevertheless stops as soon as the input runs out of elements. If below is not specified,
the output continues all the way to the end of items. Both of the arguments start and
below must be non-negative integers.

(subseries #Z(a b c d) 1) =: SZ(b c d)
(subseries #Z(a b c d) 1 3) => Z(b c)
(collect (subseries (scan list) x y)) -- (subseq list x y)

" positions b".& = indices
Returns a series of the indices of the non-null elements in the off-line input bools.

(positions #Z(T nil T 44)) =M Z(O 2 3)
(positions *Z(nil nil nil)) = DZ()

" mask monotonic-indices =0* bools
This function is a quasi-inverse of positions. The off-line input monotonic-indices

must be a strictly increasing series of non-negative integers. The output, which is always
unbounded, contains T in the positions specified by monoton ir-indices and nil everywhere
else.

30 Basic Reference Manual

(mask SZC)) * #Z(nil nil ...)
(mask Z(O 2 3)) =* #Z(T nil T T nil nil ...)
(mask (positions #Z(nil a nil b nil))) 0 #Z(nil T nil T nil nil ...)

* mingle items-1 it comparator = items

The output series contains the elements of the two off-line input series. The elements
of items-i appear in the same order that they are read in. Similarly, the elements of
items-2 appear in the same order that they are read in. However, the elements from the
two inputs are stably intermixed under the control of the comparator.

The comparator must accept two arguments and return non-null if and only if its first
argument is strictly less than its second argument (in some appropriate sense). At each
step, the comparator is used to compare the current elements in the two series. If the
current element from items-2 is strictly less than the current element from items-I, the
current element is removed from items-2 and transferred to the output. Otherwise, the
next output element comes from items-1. (If, as in the first example below, the elements
of the individual input series are ordered with respect to comparator, then the result will
also be ordered with respect to comparator.)

(mingle #Z(1 3 7 9) #Z(4 5 8) ;<) . #Z(1 3 4 5 7 8 9)
(mingle W2(1 7 3 9) #Z(4 5 8) 0'<) - #Z(1 4 5 7 3 8 9)

* chunk m {n} ims => items-1 ... items-m

This function has the effect of breaking the off-line input series items into (possibly
overlapping) chunks of width m. Successive chunks are displaced n elements to the right,
in the manner of a moving window. The inputs m and n must both be positive integers.
The input n is optional and defaults to 1. For uses of chunk to be transformed into loops,
the arguments m and n must be constants.

The function chunk produces m output series. The ith chunk is composed of the ith
elements of the m outputs. Suppose that the length of items is 1. The length of each
output is [1 + (1-m)/nJ. The outputs are computed as follows: items-kjfitems(j..+k_,),
j counting from zero and k counting from one.

Note that if I < m, there will be no output elements and if 1-m is not a multiple of n,
the last few input elements will not appear in the output. If m > n, one can guarantee
that the last chunk will contain the last element of items be catenating n-1 copies of an
appropriate padding value to the end of items.

The first example below shows chunk used to compute a moving average. The second
example shows chunk used to convert a property list into an association list.

(mapping (((xi xi+1 xi+2) (chunk 3 #Z(1 5 3 4 5 6))))
((+ xi xi+1 xi+2) 3)) =* #Z(3 4 4 5)

(collect (mapping (((prop val) (chunk 2 2 (scan '(a 2 b 5 c 8)))))
(cons prop valM))) = ((a .2) (b . 5) (c . 8))

Collectors 31

*Collectors
Collectors produce non-series outputs based on series inputs. There are two basic

kinds of collectors: ones that combine the elements of series together into aggregate
data structures (e.g., into a list) and ones that compute some summary value from these
elements (e.g., the sum).

* collect-last items &optional (default nil) =0 item

Returns the last element of items. If items is of zero length, default is returned.

(collect-last SZ(a b c)) = c
(collect-last SZ() 'z) :>- z

" collect-first items &optional (default nil) =0 item
Returns the first element of items. If items is of zero length, default is returned. The

function collect-first only reads the first element of items. This means that none of
the other elements will be computed, unless they are needed for some other purpose.

(collect-first #Z(a b c)) =) a
(collect-first #Z() 'z) =. z

" collect-nth n items &optional (default nil) =- item
Returns the nth element of items. If n is greater than or equal to the length of items,

default is returned. The function collect-nth does not read past the nth element of
items.

.collect-nth I #Z(a b c)) :0- b

(collect-ntch I #Z() Iz) = - z

* collect {type} items =:> sequence

Creates a sequence containing the elements of items. The type argument specifies
the type of sequence to be created. This type must be a proper subtype of sequence.
It omitted, type defaults to list. If the type specifies an explicit length (i.e., of a
vector), items must be short enough to fit in the space allowed. Any extra space is left
uninitialized.

(collect #ZO) =:.)
(collect Z(a b c)) =>- (a b c)
(collect 'string SZ(#\B *\A *\R)) " "BAR"
(collect (#Mf (scan x) (scan y))) (mapcar *'f x y)

Collecting is significantly more efficient if it can be determined at compile time
whether the type is a subtype of list or vector. For vectors, further efficiency is obtained
if the length of the vector is also specified as part of the type and known at compile time.

(collect '(vector * 3) #Z(1 2 3)) #* #(1 2 3)

32 Basic Reference Manual

In addition to subtypes of sequence, the type can be specified to be bag. If this is
the case, a list is produced with no guarantees as to the order of the elements. All other
types specify that the order of the elements in the sequence created must be the same
as their order in the input series. An unordered output is acceptable in many situations
and is significantly more efficient than collecting into an ordered list.

(collect 'bag #Z(a b c)) =* (c a b) <in some order>
(collect 'bag *ZO) =-)

" collect-append {type} sequences = sequence

Given a series of sequences, collect-append returns a new sequence by concatenating
these sequences together in order. The type is a type specifier indicating the type of
sequence created and must be a proper subtype of sequence. If type is omitted, it
defaults to list. It must be possible for every element of every sequence in the input
series to be an element of a sequence of type type. The result does not share any structure
with the sequences in the input.

(collect-append #ZO) 0- C)
(collect-append #ZC(a b) nil (c d))) =* (a b c d)
(collect-append 'string #ZC"A " "big " "cat.")) => "A big cat."

* collect-nconc lists =0 list

This function nconcs the elements of the series lists together in order and returns the
result. This is the same as collect-append except that the input must be a series of lists,
the output is always a list, the concatenation is done rapidly by destructively modifying
the input elements, and therefore the output shares all of its structure with the input
elements.

(collect-nconc #Z()) =:: C)
(collect-nconc WZ(a b) nil (c d))) :>, (a b c d)
(collect-nconc (#Mf (scan x) (scan y))) = (mapcan *If x y)

* collect-alist keys values =* alist

Creates an association list containing keys and values. It terminates as soon as either
of the inputs runs out of elements. Following the order of the inputs, each key/value pair
is entered into the association list being created so that it overrides all earlier associations.

(collect-alist #Z(a b) #Z()) :>- C)
(collect-alist #Z(a b) #Z(1 2)) :* ((b . 2) (a . 1))
(collect-alist #Z(a b a) #Z(1 2 3)) =0 ((a . 3) (b . 2) (a . I))

" collect-plist indicators values :* plist

Creates a property list containing keys and values. It terminates as soon as either of
the inputs runs out of elements. Following the order of the inputs, each key/value pair
is entered into the property list being created so that it overrides all earlier associations.

(collect-plist *Z(a b) #ZO) =* ()
(collect-plist #Z(a b a) #Z(1 2 3)) =*- (a 3 b 2 a 1)

Collectors 33

" collect-hash keys values &rest option-plist = table

Creates a hash table containing keys and values. It terminates as soon as either of
the inputs runs out of elements. Following the order of the inputs, each key/value pair
is entered into the hash table being created so that it overrides all earlier associations.
The option-plist can contain any options acceptable to make-hash-table.

(collect-hash #Z(a b a) Z(i 2 3))
=0- #(hash-table 3764432> <a hash table containing a-+3 and bi-+2>

(collect-hash #Z(a b) #ZO)
= *hash-table 3764464> <an empty hash table>

" collect-file file-name items koptional (printer t'print) =* T

Creates a file named file-name and writes the elements of the series items into it using
the function printer. The function printer must accept two inputs: an object and an
output stream. (For instance, printer can be print, prinl, princ, pprint, write-char,
write-string, or write-line.) If omitted, printer defaults to print. The value T is
always returned. The file is correctly closed, even if an abort occurs.

(collect-file "test.lisp" #Z((a) (1 2) T) #'prinl)
=*- T <after writing "(A) (1 2)T" into the file>

" collect-length items =0 number

Returns the nur' - r f elements in items.

(collect 1l agth #ZO) =: 0
(collect-length #Z(a b c)) =: 3

" collect-sum numbers &optional (type 'number) =:: number

Computes the sum of the elements in numbers. These elements must be numbers,
but they need not be integers. The type is a type specifier that indicates the type of sum
to be created. If there are no elements in the input, a zero (of the appropriate type) is
returned.

(collect-sum #Z() 'complex) = C(O 0)
(collect-sum #Z1 2 3) 'integer) =* 6
(collect-sum #Z(1.1 1.2 1.3)) :* 3.6

" collect-max numbers &optional items (default nil) =* item
Returns the element of items that corresponds to the maximum element of numbers. If

items is omitted, then the maximum element of numbers is itself returned. The elements
of numbers must be non-complex numbers, but they need not be integers. Processing
stops as soon as either numbers or items runs out of elements. The value default is
returned if either numbers or items has length zero.

(collect-max #Z(2 1 4 3) SZO) =;s nil
(collect-max #Z() #Z() 0) :. 0
(collect-max #Z(2 1 4 3)) * 4
(collect-max #Z(1.2 1.1 1.4 1.3) #Z(a b c d)) =. c

34 Basic Reference Manual

" collect-min numbers koptional items (default nil) =o- item
Returns the element of items that corresponds to the minimum element of numbers. If

items is omitted, then the minimum element of numbers is itself returned. The elements
of numbers must be non-complex numbers, but they need not be integers. Processing
stops as soon as either numbers or items runs out of elements. The value default is
returned if either numbers or items has length zero.

(collect-min #Z(2 1 4 3) #Zo) = nil
(collect-min #Z() #Z() 0) =: 0
(collect-min #Z(2 1 4 3)) =:> 1
(collect-min Z(1.2 1.1 1.4 1.3) #Z(a b c d)) =: b

" collect-and bools =* booi
Computes the and of the elements in bools. As with the function and, nil is returned

if any element of bools is nil. Otherwise, the last element of bools is returned. The
value T is returned if bools has length zero. If a value of nil is encountered, collect-and
immediately stops reading elements from bools.

(collect-and #Zo) =:* T
(collect-and #Z(a b c)) :>. c
(collect-and #Z(a nil c)) =:) nil
(collect-and (#Upred (scan x) (scan y))) =- (every #'pred x y)

" collect-or bools =, bool

Cor .putes the or of the elements in bools. As with the function or, nil is returned if
every element of bools is nil. Otherwise, the first non-null element of bools is returned.
The value nil is returned if bools has length zero. If a non-null value is encountered,
collect-or immediately stops reading elements from bools.

(collect-or #Zo) =. nil
(collect-or *Z(a b c)) = a
(collect-or #Z(a nil c)) =0- a
(collect-or (#Mpred (scan x) (scan y))) =- (some #'pred x y)

" collect-fn type init function sources-1 ... sources-n =40 result-1 ... result-m
The higher-order function collect-fn is used to create collectors. It is identical to

collecting-fn except that rather than returning series of values, it only returns the last
element of each series. If the series that would be returned by collecting-fn given the
same arguments have zero length, then the values returned by init are returned directly
as the output of collect-fn.

(collect-fn 'integer #'(lambda 0 0) '+ #Zo) =: 0
(collect-fn 'integer #'(lambda () 0) #1+ #Z(1 2 3)) :: 6
(collect-fn T #'(lambda 0 init) #'f s)

- (let ((v init))
(collect-last (collecting-fn T #'(lambda) v) #'f s) v))

Defining New Series Functions 35

As shown in the last example above, the init input to collect-fn does-double duty,
acting both as the init input to collecting-fn and as the default input to collect-last.
To specify a default value that is different from the initial value, use collect-last and
collecting-fn directly. This is shown in the following definition of a simplified form of
collect-max.

(defun simple-collect-max (numbers)
(declare (optimizable-series-function))

(collect-last
(collecting-fn '(values integer T)

#'(lambda) (values 0 T))
#'(lambda (max first? x)

(values (if first? x (max max x)) nil))
numbers)

nil))

If the series inputs of collect-fn are unbounded, then collect-fn will not termi-
nate. This is a property shared by all the predefined collectors, except collect-first,
collect-nth, collect-and and collect-or.

Defining New Series Functions
An important aspect of the Series macro package is that it is easy for programmers

to define new series functions and macros. The standard Lisp defining forms defun and
defmacro can be used to define new series operations.

However, when a series function is defined with defun, the Series macro package
is not capable of optimizing a series expression containing this new function unless the
declaration optimizable-series-function is specified in the defun and the defun appears
before the expression in question. The declaration optimizable-series-function is not
required when using defmacro.

e optimizable-series-function &optional (n 1)
The only place the declaration specifier optimizable-series-function is allowed to

appear is in a declaration immediately inside a defun. It indicates that the function being
defined is a series function that needs to be analyzed so that it can be optimized when it
appears in series expressions. (A warning is issued if the function being defined neither
takes a series as input nor produces a series as output.)

For optimization to be possible, there are some limitations on the form of the con-
taining defun. The lambda list cannot contain any keywords other than &optional. It is
erroneous if a default value for an optional argument refers to the values of other argu-
ments. There cannot be any declarations in the body of the defun other than ignore and
type declarations. In particular, none of the arguments can be declared to be special.

A final limitation is that the number of values returned by the function being defined
must be a constant and this constant must be known to the Series macro package at the
time the definition is initially processed. The argument n (default 1) to the declaration
optimizable-series-expression specifies the number of values returned by the function
being defined. (This is something that it would not be possible to reliiik determine by
local analysis.)

36 Basic Reference Manual

(defun collect-product (numbers)
(declare (optimizable-series-function))

(collect-fn 'number 8'(lambda) 1) #1* numbers))

It may seem unduly restrictive that one can only use the keyword &optional when
using defun to define an optimizable series function. However, this is not much of a
problem, because defmacro can be used in situations where other keywords are desired.
For example, catenate could be defined in terms of a more primitive series function
catenate2 (see page 44) as follows.

(defmacro catenate (items-1 items-2 &rest items-i)
(if (null items-i) '(catenate2 ,items-i ,items-2)

'(catenate2 ,items-1 (catenate ,items-2 ,0 items-i))))

Using deimacro directly also makes it possible to define new higher-order series func-
tions. For example, a series function analogous to the sequence function substitute-if
could be defined as follows.

(defmacro substitute-if-series (nevitem test items)
'(let ((newitem ,newitem) (test ,test) (items ,items))

(mapping ((item items))
(if (funcall test item) newitem item))))

(substitute-if-series 3 #'minusp #Z(1 -1 2 -3)) =* #Z(4 3 2 3)

0

0

37

* 3. Advanced Features

The various macros and functions discussed in Section 2 form a consistent whole and
are all that most programmers will ever need to use. This section presents a number of
useful but less often used features of the Series macro package.

Alteration of Values

The transformations introduced by the Series macro package are inherently antagonis-
tic to the transformations introduced by the macro setf. As a result, series function calls
are not allowed to be used s destinations of sertf. However, the Series macro package
supports a related concept that is actually more powerful than setf.

9 alter destinations items =: nil

alter modifies the data structure underlying the series destinations so that, if the
series were to be regenerated, the values in the series items would be obtained. The
alteration process stops as soon as either input runs out of elements. The, value nil is
always returned. Note that while the data structure underlying destinations is modified,
the series itself is not modified.

Consider the example below. The variable x initially contains the series of elements
in the list data (i.e., #Z(a b c)). When this is collected, it yields the list (a b c). The
use of alter changes the first two elements of the list data so that it becomes (1 2 c).
However, the series x remains unchanged. The function alter is more powerful than
setf, because it can be applied to a variable that holds a value, rather than having to be
directly applied to the function call that produces the value. This makes it convenient
to use the old value when deciding what the new value should be.

(let* ((data (list 'a 'b 'c))
x (scan data)))

(values (collect x)
(alter x (scan '(1 2)))
data
(collect x)))

S(a b c) and nil and (1 2 c) and (a b c)

Like sef, alter cannot be applied to just any destination. Rather, alter can only
be applied to series that are alterable. As shown in Figure 3.1, many scanners produce
alterable series, however, many do not.

Two facts should be kept in mind about the alterability of the series produced by
scan-lists-of-lists-fringe. First, altering a leaf will have no effect on the leaves
enumerated. In particular, if a leaf is altered into a list of lists, the leaves of this subtree
will not get enumerated. Second, if the entire input happens to be a leaf and gets altered,
this will have no side effect on the input as a whole.

Figure 3.1 also shows that a number of transducers produce series that are alterable
as long as the corresponding input series is alterable. In general, this is true as long as
the elements of the output come directly from elements of an inptit. For example, the
following alters a segment of a list.

38 Advanced Features

(let ((data (list 'a 'b 'c 'd 'e)))
(alter (subseries (scan data) 1 3) (scan-range))
data) :)- (a 0 1 d e)

9 to-alter items alter-fn other-items-1 ... other-items-n = alterable-items

Alterable series are created by using this function. The function to-alter takes a
series and returns an alterable series containing the same elements. The elements of the
output are taken directly from items. The input alter-fn is a function. The other inputs
are all series, each of which must be at least as long as items. If there are n inputs
other-items-i, alter-fn must accept n+1 inputs.

If an attempt is made to alter the jth element of the output series, the alteration is
performed by applying alter-fn to the new value as its first argument and the jth elements
of the other-items-i as the remaining arguments. As an example, consider the following
definition of a series function that scans the elements of a list. Alteration is performed
by changing cons cells in the list being scanned.

(defun scan-list (list)
(declare (optimizable-series-function))

(let ((sublists (scan-sublists list)))
(to-alter (#Mcar sublists)

#'(lambda (new parent) (setf (car parent) new))
sublists)))

(let* ((data (list 1 -1 2 -2))
(U (scan-list data)))

(alter (choose (#Mminusp x) x) (series 0))
data) U (0 2 0)

choose - Output alterable if items input alterable.
choose-if - Output alterable if items input alterable.
cotruncate - Each output alterable if corresponding input alterable.
scan - Output alterable.
scan-alist - Both outputs alterable.
scan-lists-of-lists-fringe - Output alterable.
scan-multiple - All outputs alterable.
scan-plist - Both outputs alterable.
split - All outputs alterable if items input alterable.
split-if - All outputs alterable if items input alterable.
subseries - Output alterable if items input alterable.
until - Each output alterable if corresponding input alterable.
until-if - Each output alterable if corresponding input alterable.

Figure 3.1: Series functions producing alterable series.

Generators and Gatherers 39

Generators and Gatherers

Generators and gatherers are yet another way of processing one-dimensional totally-
ordered collections of elements. They were originally proposed by C. Perdue and P. Curtis
as an alternative to series. However, it has since been realized that the two concepts are
actually synergistically supportive, rather than competitive. As a result, generators and
gatherers have been included as an integral part of the Series macro package.

Generators. A generator is similar to a series in that it represents a potentially
unbounded, one-dimensional totally-ordered collection of elements and is supported by
lazy evaluation. However, generators follow the semantics of streams more closely than
series do. In particular, the fundamental operation available for generators is next-in,
which gets the next element from a series by side effect. (No such operation is available
for series.) If a generator is used in two places, the second use will only see the elements
that are not read by the first use.

There is a close relationship between a generator and a series of the elements it
produces. In particular, any series can be converted into a generator. As a result, all
of the scanner functions used for creating series can be used to create generators as well
and there is no need to have a separate set of functions for creating generators.

" next-in generator &body action-list =. item

Reads the next element out of a generator. As with streams, the element is removed
by side effect and will therefore not be seen anywhere else that elements are read from
the generator in question.

The action-list specifies what should be done when generator runs out of elements.
When the generator runs out of values, the action-list is evaluated and the value of the
final form in it is returned as the value of the call on next-in.

If the action-list is empty, it is an error for the generator to run out of elements. It
is erroneous (with unpredictable results) to apply next-in to a generator a second time
after the generator runs out of elements.

" generator series =: generator

Given a series, this function creates a generator containing the same elements. As an
example of the use of generators consider the following.

(let ((x (generator (scan '(1 2 3 4)))))
(loop (prini (next-in x (return T)))

(prini (next-in x (return nil)))
(princ ",")))

= T <after printing "12,34,">

Gatherers. A gather is the inverse of a generator-i.e., it is analogous to an output
stream rather than an input stream. An unbounded number of elements can be put into
a gatherer one at a time. In a manner similar to a collector, the gatherer combines the
elements based on some formula. The resulting value can be obtained at any time.

There is a close relationship between a gatherer and a collector function that combines
elements in the same way. In particular, any one-input one-output collector can be

40 Advanced Features

converted into a gatherer. As a result, all of the collectors used for computing summary
results from series can be used to create gatherers and there is no need to have a separate
set of functions for creating gatherers.

" next-out gatherer item =: nil
Writes a value into a gatherer. This is done be side effect in such a way that the value

is seen from the perspective of every use of the gatherer in question. The value nil is
always returned.

" result-of gatherer =* result

Retrieves the net result from a gatherer. This can be done at any time. However, it
is erroneous (with unpredictable results) to apply result-of twice to the same gatherer,
or to apply next-out to a gather once result-of has been applied.

" gatherer collector =0 gatherer

The collector input must be a one input collector function. The collector input can be
of the form ' (lambda ...). (This is necessary when utilizing a predefined collector that
takes more than one argument.) The function gatherer returns a gatherer that performs
the same internal computation as the collector. As an example of the use of gatherers,
consider the following.

(let ((x (gatherer *'collect))
(y (gatherer V'(lambda (x) (collect-sum (choose-if #'oddp x))))))

(dotimes i 4)
(next-out x i)
(next-out y i)
(if (evenp i) (next-out x (* i 10))))

(values (result-of x) (result-of y))) =* (0 0 1 2 20 3) and 4

" gathering var-collector-pair-list &body body :=0 result-I ... result-n

The var-collector-pair-list must be a list of pairs, where the first element of each pair
is a symbol. The second element of each pair must be a form that, when prefixed with
#' is acceptable as an argument to gatherer. The body can be any Lisp expression.
Typically it will contain calls on next-out.

Gathering operates as follows. Each variable in the var-collector-pair-list is bound
to a gatherer produced by applying gatherer to the corresponding collector in the var-
collector-pair-list. The body is then run until it terminates. The gathering form returns
n values where n is the length of the var-collector-pair-list. Each value is the result-of
the corresponding gatherer. For instance,

(gathering ((x collect)
(y collect-sum))

(dotimes (i 3)
(next-out y i)
(if (evenp i) (next-out x (* i 10))))) = (0 20) and 3

is equivalent to

Defining New Off-Line Series Functions 41

(leot ((x (gatherer #'collect))
(y (gatherer #'collect-sum)))

(dotimes (i 3)
(next-out y i)
(if (.venp i) (next-out x (* i 10))))

(values (result-of x) (result-of y))) = (0 20) and 3

Optimization of generators and gatherers. A key idea behind generators and
gatherers is that they can be implemented simply and elegantly as closures and that
these closures can be compiled very efficiently if certain conditions are met.

First, the compiler must support an optimization P. Curtis calls "let eversion" in
addition to the optimization methods presented in [7]. If a closure is created and used
entirely within a limited lexical scope, the scopes of any bound variables nested in the
closure can be enlarged (everted) to enclose all the uses of the closure. This allows the
variables to be allocated on the stack rather than the heap.

Second, for a generator/gatherer closure to be compiled efficiently, it must be possible
to determine at compile time exactly what closure is involved and exactly what the scope
of use of the closure is. There are several aspects to this. The expression creating the
generator/gatherer cannot refer to a free series variable. The generator/gatherer must be
stored in a local variable. This variable must only be used in calls of next-in, next-out,
and result-of, and not inside of a closure. In particular, the generator/gatherer cannot
be stored in a data structure, stored in a special variable, or returned as a result value.

All of the examples above satisfy these restrictions. Further, as long as the collectors
do not refer to free series variables, every use of gathering satisfies these restrictions.

The Series macro package includes an implementation of generators and gatherers.
However, it does not support optimizations of the kind discussed in (7]. Thus, in general,
there is no guarantee that uses of generators and gatherers will be optimized. However,
it is guaranteed that uses of gathering will always be optimized and that generators and
gatherers will be optimized when used in conjunction with producing (see below).

Defining New Off-Line Series Functions

The following primitive form can be used to define any preorder series operation.

producing output-list input-list &body body =::) output-1 ... output-n

Computes and returns a group of series and non-series outputs given a group of series
and non-series inputs. The key feature of producing is that some or all of the series
inputs and outputs can be processed in an off-line way. To support this, the processing
in the body is performed from the perspective of generators and gatherers. Each series
input is converted to a generator before being used in the body. Each series output is
associated with a gatherer in the body.

The output-list has the same syntax as the binding list of a let. The names of
the variables must be distinct from each other and from the names of the variables in
the input-list. If there are n variables in the output-list, then producing computes n
outputs. There must be at least one output variable. The variables act as the names
for the outputs and can be used in either of two ways. First, if an output variable has

42 Advanced Features

a value associated with it in the output-list, then the variable is treated as holding a
non-series value. The variable is initialized to the indicated value and can be used in any
way desired in the body. The eventual output value is whatever value is in the variable
when the execution of the body terminates. Second, if an output variable does not have
a value associated with it in the output-list, the variable is given as its value a gatherer
that accumulates elements. The only valid way to use the variable in the body is in calls
on next-out. The output returned is a series containing these elements. If the body
never terminates, this series is unbounded.

The input-list also has the same syntax as the binding list of a let. The names of
these variables must be distinct from each other and the names of the variables in the
output-list. The values can be series or non-series. If the value is not explicitly specified,
it defaults to nil. The variables act logically both as inputs and state variables and can
be used in one of two ways. First, if an input variable is associated with a non-series
value, then it is given this value before the evaluation of the body begins and can be used
in any way desired in the body. Second, if an input variable is associated with a series,
then the variable is given a generator corresponding to this series as its initial value. The
only valid way to use the variable in the body is in calls on next-in.

Declarations can be included at the start of the body. However, the only declarations
allowed are ignore declarations, type declarations, and propagate-alterability decla-
rations (see below). In particular, it is an error for any of the input or output variables
to be special.

In conception, the body can contain arbitrary Lisp expressions. After the appropriate
generators and gatherers have been set up, the body is executed until it terminates. At
that time the final values of the non-series output variables are returned as results of
the producing form. The series outputs are returned one element at a time as they are
produced. (Following the lazy evaluation semantics of series, the evaluation of the body
is delayed so that individual series elements are not computed until they are actually
used.) If the body never terminates, the series outputs (if any) are unbounded in length
and the non-series outputs (if any) are never produced.

Although easy to understand, this view of what can happen in the body presents
severe difficulties when optimizing (and even when evaluating) series expressions that
contain calls on producing. As a result, several limitations are imposed on the form of
the body to simplify the processing required.

The first limitation is that, exclusive of any declarations, the body must have the
form (loop (tagbody ...)). The following example shows how producing could be used
to implement a scanner creating an unbounded series of integers.

(defun scan-integers)
(declare (optimizable-series-function))

(producing (nums) ((num -1))
(declare (integer num) (type (series integer) nums))

(loop
(tagbody

(setq num (1+ num))
(next-out nums num)))))

(scan-integers) =* 8Z(O 1 2 3 4 ...)

Defining New Off-Line Series Functions 43

The second limitation is that the form terminate-producing must be used to termi-
nate the execution of the body. Any other method of terminating the body (e.g., with
return) is an error. The following example shows how producing could be used to im-
plement a simplified version of collect-sum. The function terminate-producing is used
to stop the computation when numbers runs out of elements.

(defun simple-collect-sum (numbers)
(declare (optimizable-series-function))

(producing ((sum 0)) ((numbers numbers) num)
(loop
(tagbody

(setq num (next-in numbers (terminate-producing)))
(setq sum (+ sum num))))))

(simple-collect-sum #Z(i 2 3)) =* 6

The third limitation is that calls on next-out associated with output variables must
appear at top level in the tagbody in the body. They cannot be nested in other forms.
In addition, an output variable can be the destination of at most one call on next-out
and if it is the destination of a next-out, it cannot be used in any other way.

If the call on next-out for a given output appears in the final part of the tagbody
in the body, after everything other than other calls on next-out, then the output is an
on-line output-a new value is written on every cycle of the body. Otherwise the output
is off-line.

The following example shows how producing could be used to implement a simple
version of split-if that only accepts one predicate input. Items are read in one at a
time and tested. Depending on the test, they are written to one of two outputs. Note
the use of labels and branches to keep the calls on next-out at top level. Both outputs
are off-line. The scan-integers example above shows an on-line output.

(defun split-if2 (items pred)
(declare (optimizable-series-function 2) (off-line-port 0))

(producing (items-1 items-2) ((items items) item)
(declare (propagate-alterability items items-i)

(propagate-alterability items items-2))
(loop
(tagbody

(setq item (next-in items (terminate-producing)))
(if (not (funcall pred item)) (go D))
(next-out items-i item)
(go F)

D (next-out items-2 item)
F))))

(split-if2 *Z(1 -2 3 -4) #'plusp) =* #Z(1 3) and #Z(-2 -4)

The fourth limitation is that the calls on next-in associated with an input variable v
must appear at top level in the tagbody in the body, nested in assignments of the form
(setq element-variable (next-in v ...)). They cannot be nested in other forms. In
addition, an input variable can be the source for at most one call on next-in and if it is
the source for a next-in, it cannot be used in any other way.

44 Advanced Features

If the call on next-in for a given input has as its sole termination action (terminate-
producing) and appears in the initial part of the tagbody in the body, before anything
other than similar calls on next-in, then the input is an on-line input-a new value is
read on every cycle of the body. Otherwise the input is off-line.

The following example shows how producing could be used to implement a simple
version of catenate that only accepts two arguments. To start with, elements are read
from the first input series. When this runs out, a flag is set and reading begins from the
second input. Both inputs are off-line. The simple-collect-sum and split-if 2 examples
above have on-line inputs.

(defun catenate2 (items-1 items-2)
(declare (optimizable-series-function)

(off-line-port items-1 items-2))
(producing (items) ((items-1 items-i) (items-2 items-2)

(in-2 nil) item)
(loop
(tagbody

(if in-2 (go D))
(setq item (next-in items-1 (setq in-2 T) (go D)))
(go F)

D (setq item (next-in items-2 (terminate-producing)))
F (next-out items item)))))

(catenate2 #Z(1 2) #Z(3 4)) =* #Z(i 2 3 4)

* terminate-producing =

This form (which takes no arguments) is used to terminate the execution of (the
expansion of) the macro producing. As with the form go, terminate-producing does
not return any values, rather control immediately leaves the current context. The form
terminate-producing is only allowed to appear in the body of producing.

• propagate-alterability input output
Transducers that propagate alterability from inputs to outputs (such as choose and

split) can be defined using the declaration propagate-alterability in conjunction
with producing. (This declaration is not valid in any other context.) The declara-
tion propagate-alterability specifies that attempts to alter an element of the indicated
output will be supported by altering the corresponding element of the indicated input.
(The corresponding element of the input is the one most recently read at the moment
when the output element is written. It must be the case that the output element is the
corresponding input element.) For an example, see the definition of split-if2 above.

Warnings about off-line inputs and outputs. It is possible to obtain off-line
inputs and outputs without using producing. The easiest way to do this is to define a
series function by combining together one or more off-line series functions. For instance,
in the example below, the items input is off-line, because it is connected directly to the
off-line input of choose-if.

(defun choose-positive (items)
(declare (optimizable-series-function) (off-line-port items))

(choose-if #'plusp items))

(choose-positive #Z(1 -2 3 -4)) = *Z(i 3) 0

Defining New Off-Line Series Functions 45

Although it may seem surprising, it is also possible to get an off-line input or output
even when all of the functions used when defining a new series function are on-line. For
instance, in the example below, the input weights is off-line.

(defun weighted-sum (numbers weights)
(declare (optimizable-series-function 2) (off-line-port weights))

(values (collect-sum numbers) (collect-sum (#M* numbers weights))))
(weighted-sum Z(1 2 3) *Z(3 2)) =: 6 and 7

To see why weights is off-line, consider what happens when the input numbers is longer
than the input weights. In this situation, the computation of the first collect-sum must
continue even after the computation of the second collect-sum halts. Thus, the reading
of weights has to stop before the reading of numbers stops. As a result, weights cannot
be handled in an on-line way.

As can be seen by the examples above, it is not simple to look at a function and
determine whether or not a given input is on-line. This is unfortunate, since on-line
ports are significantly more useful than off-line ones. The declaration off-line-port is
supported to allow programmers to verify that ports they think are on-line are in fact
on-line. It is also worthy of note that off-line ports virtually never arise when defining
scanners or reducers.

off-line-port port-spec-1 ... port-spec-n

The declaration specifier off-line-port is used to indicate the inputs and outputs
of a function that are off-line. The only place this declaration is allowed is in a defun
that also contains the declaration optimizable-series-function. Each port-spec-i must
either be a symbol that is one of the inputs of the function or an integer j indicating the
jth output (counting from zero). For example, (off-line-port x 1) indicates that the
input x and the second output are off-line. By default, every port that is not mentioned
in an off-line-port declaration is assumed to be on-line. A warning is issued whenever
a port's actual on-line/off-line status does not agree with its declared status. Several
examples of using the declaration specifier off-line-port are shown on the last few
pages.

In the function weighted-sum above, it might well have been the programmers inten-
tion that the inputs numbers and weights would always have the same length. Or failing
that, it might have been his intention that any excess values of numbers be ignored. If
that were the case, there would be no need for the function to be off-line. An on-line
version could be written by using the function cotruncate as shown below.

(defun on-line-weighted-sum (numbers weights)
(declare (optimizable-series-function 2))

(multiple-value-bind (numbers weights) (cotruncate numbers weights)
(values (collect-sum numbers) (collect-sum (#M* numbers weights)))))

(on-line-weighted-sum #Z(1 2 3) *Z(3 2)) =0 3 and 7

46 Advanced Features

Primitives
Given the large number of series functions described above, two questions naturally

spring to mind. First, what is the motivation behind the exact set of functions chosen?
In particular, what basis is there for thinking that the functions are all useful and that
there are not lots of other functions that would be just as useful? Second, are all these
functions primitive, or can some be defined in terms of others?

The functions supported by the Series macro package were chosen by essentially tak-
ing the union of the preorder operations supported by the Common Lisp sequence func-
tions [8], the MacLisp Loop macro [21, and APL [61 with the addition of a few new
functions that fill obvious gaps in the resulting collection of functions. Thus, most of the
functions have proven their utility in other contexts.

*z

make-series
scan
scan-alist collect
scan-file collect-alist
scan-fn-inclusive collect-append
scan-hash collect-file
scan-lists-of-lists collect-hash
scan-lists-of-lists-fringe collect-length
scan-multiple collect-max
scan-plist collect-min
scan-range collect-nconc catenate
scan-sublists collect-plist choose
scan-symbols collect-sum choose-if
series #M iterate chunk

cotruncate
collect-and I latch expand
collect-firstI map-fn mask
collect-nth mapping minglepositions
collect-or scan-fn previous collect-fn split

split-if

spread
until-if subseries

until collecting-fn collect-last

producing

Figure 3.2: Series functions that can be defined in terms of others.

Primitives 47

On the other side of the coin, there are undoubtedly many other useful series functions.
As discussed above, comprehensive facilities are provided for defining new series functions.
A key reason for presenting a wide array of predefined functions is to inspire users with
thoughts of the wide variety of functions they can write for themselves.

The second question can be answered very precisely. As shown in Figure 3.2, a quite
small set of basic series functions can be used to define all of the other series functions.
In particular, three series functions (until, collecting-fn, and collect-last) can be
used to implement most of the other series functions.

The function collecting-fn embodies the fundamental idea of series computations
that utilize internal state. It can be used to define map-fn and other on-line transducers.
(Off-line transducers typically have to be defined using producing.)

The function until embodies the fundamental idea of producing a series that is shorter
than the shortest input series. As part of this, it embodies the idea of computing a
bounded series from non-series inputs. Together with collecting-fn, until can be used
to define scan-fn, which can be used to define any kind of scanner.

The function collect-last embodies the fundamental idea of producing a non-series
value from a series. Together with collecting-fn, it can be used to define collect-fn,
which can be used to define most kinds of collectors.

The collectors collect-first, collect-nth, collect-and, and collect-or are un-
usual in that they can sometimes produce their outputs without having to process all
of the elements of their inputs. The function until has to be used in conjunction with
collecting-fn and collect-last when defining these collectors.0 Beyond what is shown in Figure 3.2, there are three other primitives that are some-
times required when defining series functions. The function to-alter is used to make
series alterable. The form series-element-type is used to create type declarations that
are based on the types of inputs. The form encapsulated (see below) is used to assist in
the definition of the functions scan-file, scan-symbols, scan-hash, and collect-file.

It should also be noted that if the non-primitive operations in Figure 3.2 were defined
by the user, many of them would have to be defined as macros rather than functions,
because their argument lists are more complicated than what is allowed in a defun that
uses the declaration optimizable-series-function. For example defmacro would have
to be used when defining catenate, because the argument list utilizes trest.

Encapsulating forms. Some of the features provided by Common Lisp are sup-
ported solely by encapsulating forms and are not available in any other way. The pro-
totypical example of this is unwind-protect. There is no way to specify code that will
always be run, even when a computation aborts, without using this form. The Series
macro package provides a special primitive form that can be used to take advantage of
such encapsulating forms when defining a series function.

e encapsulated encapsulating-fn scanner-orcollec" - z result
This macro specifies a function that place, ipsulating form around the com-

putation performed by the second input. T1 4 encapsulating-fn must be of the
form ,... and must be a function that takes ii. isp expression and wraps the ap-
propriate encapsulating form around this expression, returning the resulting code. If
optimization is possible, this function will be called with the entire loop produced as its

48 Advanced Features

argument. If optimization is not possible, the encapsulation will be applied to a smaller
context, which is nevertheless guaranteed to surround the computation corresponding to
the scanner-or-collector.

The second input of encapsulated must be a literal call on collect-fn, scan-fn, or
scan-fn-inclusive. If it is a call on scan-fn, a test argument must be supplied. The
second argument can count on being evaluated in the scope of the encapsulating form.
The results returned by the call are returned as the results of encapsulated. The following
shows how encapsulated could be used to define a simplified version of collect-file.

(defmacro simple-collect-file (name items)
(let ((file (gensym)))
'(encapsulated

P'(lambda (body)
'(with-open-file (, ',file , ',name :direction :output)

,body))
(collect-fn T #'(lambda 0 T)

#'(lambda (state item)
(print item ,file)
state)

,items))))

An important aspect of the example above is that the encapsulating form binds a
variable (file) that is referred to by the expression forming the second input. However,
the Series macro package does not know anything about this variable. In particular, it
will do nothing to avoid name clashes if the same encapsulating form is used twice or if
a name clashes with some other variable in the expression. Therefore, gensym should be
used to create any variables bound by an encapsulating form. Further, no guarantees are
made about the relative nesting order of encapsulating forms, so one form cannot refer
to the variables bound by another.

The series functions scan-file and collect-file are defined using the encapsulating
form with-open-file. In addition, the Symbolics Lisp Machine versions of the functions
scan-symbols and scan-hash are defined using special encapsulating forms that are not
part of standard Common Lisp. For the time being, the pure Common Lisp versions
of these functions are handled in rather inefficient ways. However, the future standard
version of Common Lisp is slated to contain encapsulating forms that will allow efficient,
portable implementations of these functions.

Features That Facilitate Debugging

The Series macro package supports a number of features that facilitate debugging.
One example of this is the fact that the macro package tries to use the variable names
that are bound by a let in the code produced. Since the macro package is forced to use
variable renaming to implement variable scoping, it cannot guarantee that these variable
names will be used. However, there is a high probability that they will. If a break occurs
in the middle of a series expression, these variables can be inspected to determine what
is going on. If a let variable holds a series, then the variable will contain the current
element of the series. For example, the series expression below is transformed into the
loop shown. (For a discussion of how this transformation is performed see [171.)

Features That Facilitate Debugging 49

(let* ((v (get-vector user))
x (scan 'vector v)))

(collect-sum x))

4
(let ((W:index-7 0) (#:limit-5 0) (S:sum-9 0) v x)

(declare (type fixnum #:index-7 :limit-5) (type number #:sum-9))
(setq v (get-vector user))
(setq #:index-7 -1)
(setq #:limit-S (length v))
(setq #:sum-9 0)
(tagbody
#:L-10 (ncf #:index-7)

(if (not (< #:index-7 :limit-)) (go series::end))
(setq x (aref v #:index-7))
(setq #:sum-9 (+ #:sum-9 x))
(go C:L-I0)

series: :end)
#:sum-9)

" *last-series-loop*

This variable contains the loop most recently produced by the Series macro package.
After evaluating (or macro-expanding) a series expression, this variable can be inspected
to see the code produced.

" *last-series-error*

This variable contains the most recently printed warning or error message produced
by the Series macro package. The information in this variable can be useful for tracking
down errors.

" *series-expression-cache*

Like any macro package, the Series macro package operates based on macros-macro
expansion causing series expressions to be replaced by loops. In the case of the Series
macro package, the macros are relatively complex and the macro expansion process takes
a significant amount of time. Fortunately, from the point of view of running compiled
code, it matters very little how much overhead was involved expanding macros during
the compilation process. However, the overhead can be significant when evaluating in-
terpreted code. This is particularly true if a series expression is in an inner loop and has
to be macro expanded many times.

This problem is alleviated by maintaining a hash table of macro expansions to avoid
having to process the same series expression more than once. However, using a hash table
can cause two kinds of problems. First, by pointing to series expressions in otherwise
obsolete pieces of code, the hash table can stymie garbage collection and use up significant
amounts of memory. Second, once a series expression has been processed, it will never be
reprocessed unless it is read in a second time. This speeds up execution; however, if the
definition of some series function, series macro, or even any other macro that is contained
in the series expression is changed, this change will not be reflected in the evaluation of
the expression unless the expression is reread. (This same problem also applies in any
environment where functions are being compiled before use rather than iM1,,rpreted.)

50 Advanced Features

The control variable *series-expressions-cache* normally contains the hash table
used for hashing. If it is set to T, all cached information is forgotten and the construction
of a new hash table is initiated. This causes each series expression to be reprocessed the
next time it is evaluated. This can be helpful before garbage collecting or after zhafiging
the definition of some series function or macro. If the control variable is set to nil, the
caching feature is turned off altogether and each series expression is processed every time
it is evaluated.

51

* 4. Ugly Details

There are two areas of difficulty in the current implementation of the series macro
package. The first stems from theoretical limits of the algorithms used. The second
stems from the desire to provide a fully portable implementation. Maintaining porta-
bility significantly limits the amount of integration that can be achieved with any one
implementation of Common Lisp.

Theoretical Difficulties

There are a number of theoretical limitations to the algorithms underlying the Series
macro package. Some of these are fundamental in that there is no reason to believe that
they can ever be relaxed. Others are the subject of continuing research.

Side effects. It is believed that the transformations applied when a series expression
is converted into a loop are correctness preserving even in the presence of side effects.
In addition, since side effects (particularly in the form of input and output) are an
inevitable part of programming, several steps have been taken to make the behavior of
series expressions containing side effect operations as easy to understand as possible.

First, it should be realized that the order of operations within the body of a non-series
lambda expression appearing in a series expression (or the body of a mapping or iterate
form) is never changed. Therefore, there is no problem with understanding side effects

* as long as they are confined to a single such body.
Second, lazy evaluation is used as the foundation for the semantics of series. This

means that most of the transformations applied when converting a series expression into
a loop leave the order of evaluation of individual series elements unchanged. However, it
also means that it can be hard to tell what this order of evaluation will be even when a
series expression is not converted into a loop.

Third, the Series macro package tries to ensure that the order of evaluation will
follow the apparent syntactic order of the subexpressions in an expression as closely as
possible. Nevertheless, you should not depend on a series element Ri being evaluated
before another element Si, unless data flow requires Ri to be computed before Sj.

Fourth, off-line ports are supported by code motion. This can change the order in
which subexpressions are evaluated. However, things are simplified here by ensuring that
the evaluation order implied by the order of the inputs of an off-line function is preserved.
To make this be the case in a new off-line function being defined, you should make the
order of the calls on next-in in the producing form being used be the same as the order
of the corresponding series inputs.

Multiple values. In an effort to make series and series functions be as much like
other Lisp data objects and functions as possible, the Series macro package supports
multiple values in essentially all contexts. As shown above, several of the standard series
functions return multiple values. The forms multiple-value-bind, mul t iple-value-setq,
etc. (but not multiple-value-call) can be used to access these val,-. However, there
is one fundamental limitation in the way multiple values are handled.

When a series expression is transformed into a loop, all of the vdues computed by,

52 Ugly Details

and passed to, series functions are carried by variables. As a result, it is not possible to
support the standard Common Lisp feature that multiple values can coexist with single
values without the programmer having to pay any attention to what is going on. Rather,
the exact number of values returned by every series operation must be known at compile
time.

The Series macro package has been designed so that it is always possible to determine
at compile time how many values will be returned by a given call on a series function. To
start with, you are required to declare the number of values a series function will return
when defining the function (see the declaration optimizable-series-function). Beyond
this, higher-order series functions such as choose-if or scan-fn either return a number
of values that can be computed from the number of arguments or have a type argument
that specifies how many values are returned.

A separate issue relating to multiple values is that if you are not careful, it is easy for
multiple series return values to end up being off-line. The series macro package cannot
make them on-line unless it knows that they are the same length and generated exactly in
phase with each other. If this is your intent, you should indicate it by using the function
cotruncate to return the values. For instance, the following example shows how a simple
version of scan-plist could be defined.

(defun simple-scan-plist (plist)
(declare (optimizable-series-function 2))

(let (Centry (scan-fn T V'(lambda) plist) t'cddr #'null)))
(cotruncate (#Mcar entry) (#Mcadr entry))))

Declarations. The transformation of series expressions into loops causes two prob-
lems with regard to declarations. First, the transformations drastically alter syntactic
scopes. As a result, none of the variables bound in a series expression can be declared
special, because it would not be possible to make sure that they were bound in the cor-
rect scope. In addition, since variable renaming sometimes has to be used, it is not even
possible to guarantee that a given variable will be bound at all.

A second problem is that the transformations introduce new variables. For example,
when the expression (collect-sum (scan 'vector v)) is transformed into a loop, four
variables are introduced: one acts as an index into the vector, one holds the length
of the vector, one holds individual elements of the vector, and one holds the evolving
sum. Since none of these variables exists in the original code, none of them can be given
declarations in the normal way. This makes it difficult to satisfy the general desiderata
that, while type declarations are never required in Lisp, it should be possible to provide
a type declaration for every variable. The Series macro package has been designed to
ensure that this is in fact possible (though sometimes awkward).

The Series macro package creates appropriate declarations for the variables it intro-
duces, using three mechanisms. First, many variables have a specific type associated
with them that is inherent in the way they are used. For example, the index used when
scanning a vector is inevitably a fixnum. Second, some variables have types associated
with them that follow directly from the types of other variables. For example, the inter-
nal variable used to hold the output of previous must have the same type a the variable

holding the input. These types can be automatically determined by the S,.ries macro

Theoretical Difficulties 53

package. Third, other variables have types that must be directly (or indirectly) speci-
fied by the user. As discussed below, a variety of methods are provided for specifying
what these types are. The situations in which the various methods have to be used are
summarized in Figure 4.1. Note that if type information is specified for the scanners
in an expression, most transducers and collectors can generate appropriate declarations
without any further information from the user.

Normal declarations for explicit variables:
iterate, mapping, producing, defun, let, etc.

Special type arguments:
collect, collect-append, collect-fn, collect-sum, collecting-fn, map-fn,
scan, scan-fn, scan-fn-inclusive, scan-multiple, and scan-range.

The form the required to specify output type:
U1, #Z, catenate, latch, scan-alist, scan-file, scan-lists-of-lists,
scan-lists-of-lists-fringe, scan-hash, scan-plist, and series.

No user action required, all types known a priori:
collect-alist, collect-file, collect-hash, collect-length, collect-nconc,
collect-plist, mask, positions, scan-sublists, and scan-symbols.

No user action required, types propagated from types of inputs:
choose, choose-if, chunk, collect-and, collect-first, collect-last,
collect-max, collect-min, collect-nth, collect-or, cotruncate, expand,
mingle, previous, split, split-if, spread, subseries, until, and until-if.

Figure 4.1: Methods for specifying type information in series expressions.

In situations where explicit variables contain series, the declaration (series type)
can be used to declare the type of the variable. This declaration will carry over when
series expressions are converted into loops.

Several series functions have explicit type arguments. The higher order functions
scan-tn, collect-fn, etc. have type arguments that specify the number and kind of
outputs produced by their functional arguments. These also specify the types of the
internal state variables required. The functions scan, scan-multiple, collect, and
collect-append have type arguments that specify the type of sequence involved. A
type such as (vector integer) as opposed to merely vector also specifies the type of
the variable holding the elements returned by the scanners. It is permissible to use the
form (list type) to specify the type of elements in a list. The functions scan-range and
collect-sum have type arguments that specify the type of value returned.

The form the can be used to specify the type of the output of a series function-e.g.,
(the (series float) (scan-file f)). As shown in Figure 4.1, there are a number of
scanners for which this is the only way to specify the type of the variable containing the
output. This is also needed in conjunction with the transducers latch and catenate,
and the read macros #1M and #Z. In each case, the variable holding the output elements is
given the type T, unless more specific information is provided by the user.

The form the has another important use in series expNJ'Wsions. Whenever a non-series

54 Ugly Details

argument to a series function is an expression (as opposed to a constant or a variable), a
variable is introduced to hold its value. In order for this variable to have an informative
type declaration, the argument expression must be wrapped in a the form specifying the
type of the result. (It should be noted, that the variables introduced in this situation are
used in a very simple way-they are assigned in one place and then used in one other
place. A quality compiler can produce good code in this situation without needing any
declarations.)

Many of the variables introduced by series functions have types that are known in
advance. For example, the output of scan-sublists is always a series of lists. Similarly,
the output of positions is always a series of fixnums. Many other series functions have
internal variables whose types are known a priori.

A number of transducers and collectors have the property that the type of internal
variables and/or the type of the variable holding the output can be determined by looking
at the type of the variable holding the input. For example, the elements output by
previous are the very same elements that are in the input. Therefore, they must have
the same type. The Series macro package automatically generates a declaration for the
output variable that gives it the same type as the input.

The functions chunk, previous, mingle, collect-first, collect-nth, and collect-
last all have the character that the output comes directly from the input. Some of these
functions (e.g., previous and collect-last) take a default argument that sometimes
becomes part of the output. It is assumed that the default value will have the same type
as the elements of the main input.

A further set of functions (until, choose, split, subseries, etc.) have the property
that the outputs come from the inputs in such a direct way that it is not necessary to
have an output variable separate from the input variable. In these cases, there are no
new variables that need to be declared.

Other functions (e.g., expand, collect-max, collect-and, etc.) have output values
that primarily come from the the input, but occasionally take on other values (e.g., nil).
Declarations are automatically created reflecting this fact.

e series-element-type variable =. type
This special form can be used to specify the propagation of type information when

a new series function is defined. The variable argument must be a variable carrying a
series value (e.g., a series argument of a series function). As the last act of creating
optimized code for a series expression, the series macro package replaces every use of
series-element-type with the type of the elements in the corresponding series.

The following example shows how the function collect-last could be defined. The
use of series-element-type ensures that the internal variable used to hold the last value
will have the correct type.

(defun collect-last (items &optional (default nil))
(declare (optimizable-series-function))

(collect-fn '(series-element-type items)
#'(lambda) default)
#'(lambda (old new) new)
items))

Lack of Integration With Common Lisp 55

When optimized code is produced for the following series expression, the use of
series-element-type in collect-last is replaced with the type integer.

(collect-last (scan '(vector integer) v))

Lack of Integration With Common Lisp

One of the great benefits of Lisp is its ability to support complex language extensions
with macro packages. No other language would allow a portable implementation of
Series to be integrated into the language anywhere near as well. Nevertheless, there are
a number of unfortunate limitations on the amount of integration that can be achieved.

The optimization of series expressions should be a compiler extension. The
most logical way to support the optimization of series expressions would be as a compiler
extension. This is what would be done if optimizable series expressions were included
directly as part of Common Lisp. Unfortunately, their is no portable way to define such
an extension.

In the absence of extending the compiler, the only portable way to support optimized
series expressions is as a macro package. For the most part, this works very well. However,
it leads to a few problems that would not exist if direct compiler support were provided.

First, many of the series functions actually have to be macros. In particular, while the
scanners and transducers really are functions, all of the collectors are macros. This is nec-
essary so that the Series macro package will be activated when a potentially optimizable
series expression begins.

In general, the fact that collectors are macros need not concern the user. However,
the fact that they are macros does limit their use in some ways. For example, they cannot
be used as functional arguments to functions like mapcar. In addition, collectors have to
be defined before the first time they are used, even if optimization is not applied.

Second, a number of standard Common Lisp special forms and functions (let, let*,
funcall, multiple-value-bind, and defun) have to be shadowed by macros. Again, this is
necessary to ensure that the Series macro package will be activated whenever a potentially
optimizable series expressions begins. This change is almost totally transparent and
works remarkably well. However, it is inherently dangerous to shadow things that are
this fundamental to Lisp. For one thing, funcall is changed from a function to a macro.
Although this is unlikely to be a problem, it is not a correctness preserving change.

A third problem concerns the generation of appropriate initial values. In Common
Lisp there is no way to bind a variable without giving it an initial value. In general this
is not a problem. However, when the Series macro package wishes to bind the variables
it creates, this means that it has to generate appropriate initial values for them. This
is done heuristically under the assumption that any variable that is not some kind of
number can safely be bound to nil.

Weak support for code analysis. Common Lisp is quite deficient in its support
for the kind of code analysis that has to be done by a complex macro package. Common
Lisp provides the function macroexpand for dealing with macros and has gratifyingly few
special forms in comparison with earlier Lisps. However, it provides little other support

56 Ugly Details

for code analysis. This places a number of limits on what the Series macro package can
do.

First, there are a number of complex special forms that cannot be used in a series
expression. These include compiler-let, flet, labels, macrolet, and any non-standard
special forms supported by a given Common Lisp implementation.

Second, the standard Lisp forms let, let*, multiple-value-bind, progn, progl,
funcall, setq, multiple-value-call, multiple-value-progi, multiple-value-setq, and
lambda are all handled. However, for optimization to be possible, some restrictions
have to be followed. The only declarations that can be used inside let, let*, and
multiple-value-bind are type declarations and ignore declarations. In particular, none
of the variables involved can be declared or proclaimed to be special. When using a
lambda representing a series function that is to be optimized, no "&" keywords can be
used in the argument list. Further, the only declarations allowed are type declarations
and ignore declarations.

Third, there is no standard Common Lisp method that a macro can use for finding out
about proclaimed declarations or declarations that are specified in the scope surrounding
the macro call. As a result, the Series macro package cannot make use of a declaration,
unless it is syntactically embedded in a series expression.

The future standard version of Common Lisp is slated to contain features that address
several of the problems above.

57

. 5. Bibliography

[1] A. Aho, J. Hopcraft, and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading MA, 1974.

[2] G. Burke and D. Moon, Loop Iteration Macro, MIT/LCS/TM-169, July 1980.
[3] J. Orwant, Support of Obviously Synchronizable Series Expressions in Pascal,

MIT/AI/WP-312, September 1988.
[4] C. Perdue, W. van Melle, and P. Curtis, Various unpublished manuscripts

describing generators and gatherers, 1988.
[5] C. Perdue & R. Waters, "Generators and Gatherers", in Common Lisp: the

Language, Second Edition, G. Steele jr., Digital Press, Maynard MA, 1989.
[6] R. Polivka and S. Pakin, APL: The Language and Its Usage, Prentice-Hall,

Englewood Cliffs NJ, 1975.
[7] G. Steele Jr., Rabbit a Compiler for Scheme, MIT/AI/TR-474, May 1978.
[8] G. Steele Jr., Common Lisp: the Language, Digital Press, Maynard MA, 1984.
[9] R. Waters, Automatic Analysis of the Logical Structure of Programs,

MIT/AI/TR-492, December 1978.
[10] R. Waters, "A Method for Analyzing Loop Programs", IEEE Trans. on Software

Engineering, 5(3):237-247, May 1979.
[11] R. Waters, LetS: an Expressional Loop Notation, MIT/AIM-680, Oct. 1982.

(Revised February 1983.)
[12] R. Waters, "Expressional Loops", Proc. 1984 ACM Conf. on the Principles of

Programming Languages, Jan. 1984.
[13] R. Waters, "Efficient Interpretation of Synchronizable Series Expressions" Proc.

ACM SIGPLAN '87 Symposium on Interpreters and Interpretive Techniques, A CM
SIGPLAN Notices, 22(7):74-85, July 1987.

[14] R. Waters, Obviously Synchronizable Series Expressions: Part I: User's Manual for
the OSS Macro Package, MIT/AIM-958, November 1987. (Revised March 1988.)

[15] R. Waters, Obviously Synchronizable Series Expressions: Part II: Overview of the
Theory and Implementation, MIT/AIM-959, November 1987. (Revised March
1988.)

[16] R. Waters, "Using Obviously Synchronizable Series Expressions Instead of Loops",
Proc. 1988 International Conference on Computer Languages, 338-346, Miami FL,
IEEE Computer Society press, October 1988.

[17] R. Waters, Optimization of Series Expressions: Part rI: Overview of the Theory
and Implementation, MIT/AIM-1083, December 1989.

[18] R. Waters, "Series", in Common Lisp: the Language, Second Edition, G. Steele jr.,
Digital Press, Maynard MA, 1989.

[19] Lisp Machine Documentation for Genera 7.0, Symbolics, Cambridge MA, 1986.

58 Historical Note

6. Historical Note

The Series macro package is the last in a line of five related systems developed by
the author during the past 12 years. The first of these systems was a macro called
over (mnemonic for mapping over a sequence of values). This macro was written in
MacLisp in 1977 and was loosely inspired by looping constructs in Algol-like languages.
However, it went well beyond those constructs by supporting a variety of scanners and
several collectors (but no transducers other than mapping). In addition, over supported
powerful pattern matching facilities a' I'a Snobol for decomposing lists.

Except for its pattern matching facilities, over was semantically (although not syn-
tactically) quite similar to the loop macro [2], which was independently developed at
around the same time. However, unlike loop, which has been widely distributed and has
become the standard in Lisp for this kind of iteration facility, over was only used by the
author.

The central ideas behind the Series macro package were developed in 1977-78 as part
of a PhD thesis on program understanding [9, 10]. It was observed that loops are typically
constructed out of standard fragments of looping behavior and that loops can be viewed as
functional compositions of operations on temporal sequences of values (sequences spread
out in time). A program was implement that could analyze loops in terms of fragments
communicating via temporal sequences. In addition, although not implemented until
much later, an algorithm was designed for the reverse process of temporal composition.

Starting in 1979, work began on a macro called TC (for Temporal Composition) that
made use of the insights described above. This work started out as simple extensions
to over, but gradually grew to become more general, more powerful, and more focused
purely on looping (due to the elimination of most of the pattern matching facilities).

The work on TC culminated in the implementation of a MacLisp/LispMachine macro
package called LetS [11], which was released for general use at the MIT Al Laboratory in
October of 1982. The central macro in this package was named LetS (for let Sequence).
However, although named after the form let, the semantics of LetS was actually some-
what of a cross between the pure semantics of let and the semantics of the macro mapping
described in this document.

The key advance of LetS in comparison to things like over and loop was that it intro-
duced transducers as full fledged components and allowed operations to be combined by
simple functional composition rather than special syntax. In addition, it made extensive
use of implicit mapping i l APL.

In comparison with Series, Lets had three key defects. First, it only supported on-
line transducers. (This limit was ameliorated somewhat by introducing a set of special
conventions implemented using flag variables that allowed various filtering operations to
be supported in an on-line way.) Second, in hindsight, the theory behind Lets was rather
confused. There was no clear understanding of the distinction between on-line and off-
line or how important this concept is. In addition, there was no clear understanding of
what has to happen when one part of an expression wants to terminate before other parts
are ready to terminate. It was merely stated as a 'feature' that everything stops as soon
as anything wants to stop. Third, things were stated half from a loop-lik, perspective

59

and half from a functional composition perspective.
A key aspect of the ideas underlying LetS (and the the Series macro package) is

that they have nothing to do with the language Lisp per se. In early 1984, the ideas
behind LetS were presented at the POPL conference [12] in the context of a proposed
language extension for Ada. (At this time there was also a general shift in vocabulary
from talking about sequences to series, because Common Lisp adopted the term sequence
with a different meaning.)

The feedback gained from the presentation at POPL lead to a flurry of ideas for ways
to improve LetS. After a delay of several years caused by the need to pursue other areas
of research, and a desire to actually prove the correctness of the newly developed ideas,
a clear theory emerged for when series expressions can and cannot be transformed into
loops (see [15, 17]). Based on this new theory, a new Common Lisp macro package called
oss [13, 14, 15] was implemented. This macro package was released for general use at
MIT in late 1987 and distributed by DEC in conjunction with there implementation of
Common Lisp. (The name oss stands for Obviously Synchronizable Series. As discussed
in [15], this term is derived from the underlying theory.)

To show the utility of the basic ideas to languages other than Lisp, a demonstration
implementation of oss was produced as an extension to Pascal, during 1988 (see [3, 16]).

In addition to a clearer, better theory, expressed as a set of restrictions on how the
macro could be used, and a more purely functional viewpoint, the key advantage of oss
over Lets was that it supported a variety of off-line transducers. In addition, it moved
strongly toward supporting constructs that were semantically identical to standard Lisp
constructs, rather than just similar. For example, while there was still a form called LetS,
this form was now almost exactly the same as let.

One problem with oss was that, while the system was presented purely from the
perspective of composing functions operating on series, series were not first class data
objects. Rather, a series could only be used in situations where the surrounding expres-
sion could be completely transformed into a loop. Another problem was that although
the theory was expressed clearly as a set of restrictions, these restrictions were far from
simple. In particular, a restriction was introduced to guarantee that as soon as any part
of a series expression was ready to terminate, the whole expression would be ready to ter-
minate. Unfortunately, although the restriction was important for giving oss a firm basis
in theory, the detailed statement of the restriction could only be described as arcane.

During 1988, the iteration subcommittee of the Common Lisp standardization com-
mittee (X3J13) held a series of meetings. The goal of these meetings was to decide on
a set of improved iteration facilities to be included in Common Lisp. Three proposals
were put forward. The first proposal was a slightly cleaned up version of the MacLisp
loop macro [2]. Given the wide user community of loop, it was decided that it had to be
included in the Common Lisp standard.

The second proposal was oss. From the beginning, it was clear that there was consid-
erable resistance to oss, stemming primarily from its complexity. However, large amounts
of very useful criticism were obtained. This led to a renewed burst of implementation
activity, which culminated in the Series macro package described in this document. Un-
fortunately, even though it was agreed that the Series macro package answered most of
the detailed objections of the subcommittee, it was decided that the Series macro package

60 Historical Note

was simply too new for inclusion in the Common Lisp standard. However, Guy Steele
decided to include a description of the Series macro package in the new edition of his
Common Lisp book [18].

The third proposal was developed by C. Perdue and P. Curtis during 1988 and re-
volved around what they called generators and gatherers. After considerable discussion,
they became persuaded that the generators/gatherers proposal was actually quite similar
to the Series macro package. In particular, although the underlying data structures were
fundamentally different, most of the functions in the two proposals were redundant. As
reflected in this document, a joint proposal was produced that preserved each of the un-
derlying data structures while eliminating all redundancy. Unfortunately, as with Series,
it was decided that generators and gatherers were simply too new for inclusion in the
Common Lisp standard. However, Guy Steele again decided to include a description in
the new edition of his Common Lisp book [5].

There are several key differences between Series and oss. First, special forms such as
Lets have been removed in favor of simply using the standard forms. Second, a wholesale
change of function names has been introduced to bring things closer in line with standard
Common Lisp naming conventions. Third, Series have been made first class objects. This
change forced the abandonment of implicit mapping, but is more in line with the basic
spirit of Lisp. Fourth, the basic theory has been simplified, most notably by getting rid
of the restriction guaranteeing that as soon as any part of a series expression is ready to
terminate, the whole expression will be ready to terminate. To do this, the macro package
was extended to handle partial termination correctly. Fifth, generators and gatherers are
included as an integral part of the Series macro package.

61

* 7. Warning and Error Messages

To facilitate the debugging of series expressions, this section discusses the way the
Series macro package issues warning and error messages, with particular attention to
warnings about problems that block optimization. There are three classes of messages.
Restriction violation messages identify problems that make it impossible to optimize
an expression but do not block its correct evaluation. Warning messages identify minor
problems that do not block optimization or evaluation. Error messages describe problems
that make it impossible to optimize or evaluate an expression.

All of the messages are printed in the following format. The type of message is
indicated by the opening phrase. (The format is shown as it appears on the Symbolics
Lisp machine with *pretty-print* set to T. The format may differ somewhat in other
implementations of Common Lisp.)

{Restriction violationlarninglError} id-number in series expression:
containing series expression
detailed message

For example, consider the following warning message.

Error 66 in series expression:
(LET (((X Y) (SCAN-PLIST X)))

(COLLECT-ALIST X Y))
Malformed binding pair ((X Y) (SCAN-PLIST X))).

The first line of each message specifies an identifying number. For restriction vio-
lations, this number is useful for looking up further information in the documentation
below. The next part of the message shows the complete series expression that contains
the problem. This makes it easier to locate the problem in a program. (This part of the
print out is omitted if an error occurs after optimization has already been abandoned.)
The remainder of the message describes the particular problem in detail. (The variable
last-series-error contains a list of the information that was used to print the most
recent restriction violation, warning, or error message.)

Restriction violation messages have identifiers from 1-29. They indicate that the
Series macro package has detected a problem that prevents optimization, but which does
not prevent correct (non-optimized) evaluation. In response to these problems, the Series
macro package abandons any attempt to optimize the series expression in question. This
results in.a significant loss of efficiency, but does not lead to incorrect results. Each
restriction violation is discussed in detail in the following subsection.

Warnings have identifiers from 30-59. They indicate that the Series macro package
has located a feature that is often associated with there being a bug in an expression,
but which of itself does not block optimization or evaluation.

Error messages have identifiers from 60-89. They indicate conditions that make it
impossible to evaluate a series expression correctly. Each time an error is detected,
evaluation/compilation is abandoned altogether and no more problems will be detected.
It should be noted that many other kinds of errors in series expressions (e.g., using the
wrong number of arguments to a series function) are detected directly by the Lisp system
and do not have special Series macro package error messages a,.ociated with them.

62 Warning and Error Messages

Restriction Violations

Each message description below begins with a header line containing a schematic
rendition of the message. Italics is used to indicate pieces of specific information that
are inserted in the message. The number of the message is shown in the left margin at
the beginning of the header. For easy reference, the messages are described in numerical
order.

0 *suppress-series-warnings* default value nil

If this control variable is set to other than its default value of nil, restriction violations
still block optimization, however, no warnings are printed.

Situations that block static analysis. The following warnings are triggered by
situations that block the compile-time analysis of a series expression.

I The declaration declaration blocks optimization.

This indicates that a declaration has been encountered (e.g., in a let, let*, lambda,
producing, or optimizable-series-function defun) that prevents optimization either
because it is beyond the capabilities of the Series macro package to analyze (e.g., f type,
inline) or which blocks the optimization transformations (e.g., special). For example,
evaluating the expression below

(let ((x (scan '(1 2 3)))) ; Warning I signaled.
(declare (special x))
(collect-sum x)) =f 6

yields the restriction violation message:

Restriction violation I in series expression:
(LET ((X (SCAN '(1 2 3))))
(DECLARE (SPECIAL X))
(COLLECT-SUM X))

The declaration (SPECIAL X) blocks optimization.

2 Non-quoted type type.

This indicates that the type argument to a scan-fn, scan-fn-inclusive, map-fn,
collect-fn, collecting-fn, or collect-sum call fails to be a type specifier constant (i.e.,
T, nil, or a quoted type specifier list). This prevents static analysis of the series function
call. (The type arguments of other series functions, e.g., scan and collect, do not have
to be constants.) For example, evaluating

(let ((x '(values)))
(collect-fn x #'(lambda () 0) #'+ (scan-range :upto 4)))

generates the restriction violation message:

Restriction violation 2 in series expression:
(COLLECT-FN X *'(LAMBDA NIL 0) # (SCAN-RANGE :UPTO 4))
Non quoted type X.

Restriction Violations 63

Specific errors are issued if any type argument fails to evaluate to an appropriate
type. For instance, the restriction violation message above is immediately followed by
the error message below.

Error 62
The type (VALUES) specified where at least one value required.

3 M argument m to CHUNK fails to be a positive integer.
4 N argument n to CHUNK fails to be a positive integer.

For optimizations to be possible, the m and n arguments of chunk must be positive
integer constants. (Errors 63 and 64 are signalled if these arguments do not evaluate to
positive integers.)

5 ALTER applied to a series that is not known at compile time: form.

For optimization to be possible, the destinations argument of alter must be a series
that can be identified at compile time. (Error 65 is signalled if destinations does not
evaluate to an alterable series.)

6 The form function not allowed in series expressions.

In general, the Series macro package has a sufficient understanding of special forms
to handle them correctly when they appear in series expressions. However, it does not
handle the forms compiler-let, flet, labels, macrolet, or multiple-value-call. The
forms compiler-let and macrolet would not be that hard to handle, however it does not
seem worth the effort. The forms flet and labels would be hard to handle, because
the Series macro package does not preserve binding scopes and therefore does not have
any obvious place to put them in the code it produces. (All four forms can be used by
simply wrapping them around entire series expressions rather than putting them in the
expressions.)

The form multiple-value-call is impractical to support, because it is in general not
possible at compile time to determine how many values will be returned by a function.
The form multiple-value-bind can be used to avoid the need for multiple-value-call
in most situations.

7 VALUES returns multiple series: form.

The form values can be used anywhere to return multiple non-series values. However,
if it is used to return multiple series values it can only be used as the last form of the body
of an optimizable-series-function defun. In other contexts, the Series macro package
is not capable of correctly analyzing the data flow involved. (Also not that, as discussed
on page 52, using values in any context to return multiple series values is quite likely to
causes problems by making the series off-line. It is better to use cotruncate whenever
possible.)

Situations that allow a series to escape from an expression. The following
warnings are triggered by situations that allow series values to escape from the confines
of a single series expression. This blocks optimization because a physical series object
has to be created to represent any such series.

64 Warning and Error Messages

10 Series value returned by form.
This warning indicates that a syntactically complete series expression returns a series

as its value.

11 series value assigned to free variable form.
This indicates that a series value is stored in a variable that is bound outside of the

scope of the series expression that creates it.

12 Series var variable referenced in nested non-series LAMBDA.
This indicates that a series value is passed directly into a lambda that is an argument

of a function like scan-fn. This forces a physical series object to be created.

13 Series to non-series data flow from: call to: call.
As illustrated below, this warning is issued whenever data flow connects a series

output to a non-series input. This indicates that arbitrary computation is being applied
to it. A physical series has to be created because the Series macro package cannot analyze
the way in which the series is being used. In particular, it may well escape out of the
scope of the series expression. For instance, in the following example a series is being
stored in a data structure.

Restriction violation 13 in series expression:
(LET ((ITEMS (SCAN DATA)))

(RPLACA X ITEMS)
(COLLECT ITEMS))

Series value carried to non-series input by data flow from:
(SCAN DATA)
to:
(RPLACA X ITEMS)

The message prints out two pieces of code to indicate the source and destination of
the data flow in question. The outermost part of the first piece of code shows the function
that creates the value in question. The outermost function in the second piece of code
shows the function that receives the value. (Entire subexpressions are printed in order to
make it easier to locate the functions in question within the series expression as a whole.)
If nesting of expressions is used to implement the data fl w, then the first piece of code
will be part of the second one. (See the example of warning 21 below.)

14 The optimizable series function input variable used as a series value by form
and as a non-series value by form.

This indicates that an argument to an optimizable-series-function defun is used
in two ways that indicate both that it must be a series and that a physical series must
be created so that it can be processed arbitrarily.

Non-straight-line code. The following warning is issued when a series expression
fails to be a straight line computation.

20 Not straight-line code form.
The warning prints the part of the series expression as a whole that contains the

looping or branching form that causes the problem. For example:

Restriction Violations 65

Restriction violation 20 in series expression:
(LET ((X (SCAN '(1 2 3))))

(COLLECT-SUM (IF (EVENP (COLLECT-LENGTH X)) X (#Mi+ X))))
not straight line code
(IF (EVENP (COLLECT-LENGTH X)) X (#MI+ X))

Problematical constraint cycles. The most complex warning messages concern
constraint cycles that block optimization (see page 12).

21 A constraint cycle passes through the non-series output
at the start of the data flow from: call to: call.

22 A constraint cycle passes through the off-line output
at the start of the data flow from: call to: call.

23 A constraint cycle passes through the off-line input
at the end of the data flow from: call to: call.

Whenever a constraint cycle passes through a non-series or off-line port, one of these
warning messages is used to indicate the problematical port. Like warning 13, the message
prints out two pieces of code that indicate a data flow that ends (or starts) on the port
in question.

Restriction violation 21 in series expression:
(LET ((X (#MSQRT (SCAN 'VECTOR V))))
(COLLECT-MAX (#M/ X (SERIES (COLLECT-LENGTH X)))))

A constraint cycle passes through the non-series output at the start
of the data flow from:
(COLLECT-LENGTH X)
to:
(SERIES (COLLECT-LENGTH X))

It is always possible to eliminate this kind of problem by code copying and/or minor
rearrangement of the expression. For example, you could duplicate the computation of
the series of square roots of the elements of v.

(let ((x (#Msqrt (scan 'vector v)))
(length (collect-length (#msqrt (scan 'vector v)))))

(collect-max (#M/ x (series length))))

However, with a little thought, you can fix things much more efficiently. In pal icular,
the computation of the maximum can be distributed over the computation of the division.

(let ((x (#Msqrt (scan 'vector v))))
((collect-max x) (collect-length x))

Alternatively, the length can be computed without computing the square roots.

(let ((x (#Msqrt (scan 'vector v))))
(collect-max (#M/ x (series (length v)))))

a

66 Warning and Error Messages

Related warnings. The following two warnings do not indicate restriction viola-
tions. However, they are described here because they are also controlled by the variable 0
suppress-series-warnings.

28 Non-series to series data flow from: call to: call.

This warning is issued when a value that comes from outside of the series expression
as a whole is used in such a way that it is clear that it must be a series. This indicates that
the value must be a physical series object that escaped from some other series expression
(which therefore could not have been optimized). However, the fact that the series is
a physical one does not block the optimization of the series expression that uses it. (It
should be noted that, like restriction violation 13, the reported type conflict may just be
a symptom of some algorithmic problem in the expression.)

29 Non-terminating series expression: expression.

On the theory that non-terminating loops are seldom desired, the Series macro pack-
age checks each loop constructed to see whether it appears capable of terminating. If not,
the warning above is issued. The expression printed may well be only a subexpression of
the series expression being processed.

A warning message is issued instead of an error message, because the expression may
in fact be capable of terminating or the expression might not be intended to terminate.
For instance, the warning is useful in the first example below, but not in the second. The
form compiler-let can be used to bind the control variable *suppress-series-warnings*
to T around such an expression.

(collect (series 4)) ; Warning 29 signaled
(block bar ; Warning 29 signaled
(iterate ((x (scan-range :by 10)))
(if (> x 15) (return-from bar x)))) =: 20

(compiler-let ((*suppress-series-warnings* T))
(block bar
(iterate ((x (scan-range :by 10)))

(if (> x 15) (return-from bar x))))) == 20

0

67

. 8. Index of Functions

This section is an index and concise summary of the functions, macros, and variables
supported by the Series macro package. The first line of each entry shows the inputs and
outputs of the function. The second line shows the page where complete documentation
can be found and gives a brief one line description. In the first line of each entry, the
following documentation conventions are used.

A plural name (e.g., items) indicates that an input or output is a series.
Underlining indicates that an input or output is off-line.
t indicates that an output is alterable.
t indicates that an output is alterable if the corresponding input is alterable.

*M function =:. series-function
p. 22 * macro character syntax, creates a series operation that maps function.

#Z (item-1 ... item-n) =: items
p. 16 * macro character syntax, specifies a literal series.

alter destinations items =- nil
p. 37 Alters the values in destinations to be items.

catenate items-1 ... items-n =:. items
p. 29 Concatenates two or more series end to end.

choose bools &optional items =ee chosen-items
p. 27 Selects the elements of items corresponding to non-null elements of bools.

choose-if pred items =: chosen-items
p. 27 Selects the elements of items for which pred is non-null.

chunk m {n} it= =. items-1 ... items-m
p. 30 Breaks a series up into chunks of width m.

collect {type} items ::- sequence
p. 31 Combines the elements of a series into the indicated type of sequence.

collect-alist keys values =. alist
p. 32 Combines a series of keys and a series of values together into an alist.

collect-and bools =fr bool
p. 34 Computes the and of the elements of bools.

collect-append {type} sequences =* sequence
p. 32 Appends a series of sequences into a single sequence.

collect-file file-name items &optional (printer #'print) =t* T
p. 33 Prints the elements of items into a file.

collect-first items koptional (default nil) =0 item
p. 31 Returns the first element of items.

collect-fn type init function sources-1 ... sources-n * - result-1 ... result-m
p. 34 Computes a cumulative value by applying function to series elements.

collect-hash keys values &rest option-plist =0, table
p. 33 Combines a series of keys and a series of .alues together into a hash table.

collect-last items &optional (default nil) =* item
p. 31 Returns the last element of items.

68 Index of Functions

collect-length items =t number
p. 33 Returns the number of elements in items.

collect-max numbers &optional items (default nil) =0 item
p. 33 Returns the item corresponding to the maximum number.

collect-min numbers &optional items (default nil) = item
p. 34 Returns the item corresponding to the minimum number.

collect-nconc lists =- list
p. 32 Destructively appends a series of lists together into a single list.

collect-nth n items &optional (default nil) =0 item
p. 31 Returns the nth element of items.

collect-or bools =* boo]
p. 34 Computes the or of the elements of bools.

collect-plist indicators values =. plist
p. 32 Combines a series of indicators and a series of values together into a plist.

collect-sum numbers &optional (type 'number) =* number
p. 33 Computes the sum of the elements in numbers.

collecting-fn type init function sources-i ... sources-n =. results-i ... results-m
p. 25 Computes cumulative values by applying function to series elements.

cotruncate items-1 ... items-n :. initial-items-l ... initial-items-nt
p. 24 Truncates all the inputs to the length of the shortest input.

encapsulated encapsulating-fn scanner-or-collector :: result
p. 47 Specifies an encapsulating form to be used with a scanner or collector.

expand bools items &optional (default nil) =:' expanded-items
p. 28 Spreads the elements of items out into the indicated positions.

gatherer collector =. gatherer
p. 40 Creates a gatherer, given a collector.

gathering var-collector-pair-list &body body =* result-1 ... result-n
p. 40 Supports the efficient use of gatherers.

generator series =:. generator
p. 39 Creates a generator, given a series.

series::install key (pkg *package*) (:macro T) (:shadow T) (:remove nil) = T
p. 9 Makes the Series macro package ready for use.

iterate var-value-pair-list &body body =* nil
p. 23 Maps body over the input series for side effect.

last-series-error
p. 49 Variable, contains a description of the last series warning or error.

last-series-loop
p. 49 Variable, contains the loop the last series expression was converted into.

latch items tkey :after :before :pre :post =* masked-items
p. 25 Modifies a series before or after a latch point.

make-series item-1 ... item-n =:= items
p. 16 Creates a series of the item-i.

map-fn type function sources-1 ... sources-n =>- results-1 ... results-m
p. 21 Maps function over the input series.

69

mapping var-value-pair-list &body body =* items
p. 22 Maps body over the input series.

mask monotonic-indices :: bools
p. 29 Creates a series containing T in the indicated positions.

mingle items-1 items-2 comparator = . items
p. 30 Merges two series into one.

next-in generator &body action-list =o-
p. 39 Reads an element from a generator.

next-out gatherer item :. nil
p. 40 Writes an element into a gatherer.

off-line-port port-spec-1 ... port-spec-n
p. 45 Declaration specifying which series inputs and outputs are off-line.

optimizable-series-function &optional (n 1)
p. 35 Declaration, specifies that a series function should be optimizable.

positions bools =o. indices
p. 29 Returns a series of the positions of the non-null elements in bools.

previous items &optional (default nil) (amount 1) :o. shifted-items
p. 25 Shifts items to the right by amount inserting default.

producing output-list input-list &body body ::, output-i ... output-n
p. 41 Primitive form for defining off-line series operations.

propagate-alterability input output
p. 44 Declaration that alteration of output is supported by alteration of input.

result-of gatherer =:> result
p. 40 Retrieves the final result from a gatherer.

scan {type} sequence =# elementst
p. 17 Creates a series of the elements in the indicated type of sequence.

scan-alist alist &optional (test #'eql) = keyst valuest
p. 18 Creates two series containing the keys and values in an alist.

scan-file file-name &optional (reader #'read) =* itemls
p. 20 Reads a series of items from a file.

scan-fn type init step &optional test =- results-1 ... results-m
p. 20 Creates a series by applying step to init until test is true.

scan-fn-inclusive type init step test =- results-1 ... results-m
p. 21 Creates a series containing one more element than scan-fn.

scan-hash table :>. keys values
p. 19 Creates two series containing the keys and values in a hash table.

scan-lists-of-lists lists-of-lists &optional leaf-test ::' nodes
p. 19 Creates a series of the nodes in a tree.

scan-lists-of-lists-fringe lists-of-lists &optional leaf-test =:- leavest
p. 19 Creates a series of the leaves of a tree.

scan-multiple type sequence-i ... sequence-n :: elements-It ... elements-nt
p. 17 Scans multiple sequences in parallel.

scan-plist plist := indicatorst valuest
p. 19 Creates two series containing the indicators and values in a pli t.

70 Index of Functions

scan-range fkey :start :by :type :upto :below :downto :above :length = nums
p. 18 Creates a series of numbers by counting from :start by :by.

scan-sublists list ::- sublists
p. 18 Creates a series of the sublists in a list.

scan-symbols &optional (package *package*) =:>. symbols
p. 20 Creates a series of the symbols in package.

series &optional (type T)
p. 16 Type specifier, indicates a series with elements of type type.

series item-i ... item-n =: items
p. 16 Creates a series endlessly repeating the item-i.

series-element-type variable = , type
p. 54 Yields the type of elements in a series held in a variable.

series-expression-cache
p. 49 Variable, controls memoization of series expression expansions.

split items bools-1 ... bools-n := items-it ... items-nt items-n+lt
p. 28 Divides a series into multiple outputs based on the bools-i.

split-if items pred-l ... pred-n = items-lt ... items-nt items-n-+l$
p. 28 Divides a series into multiple outputs based on the pred-i.

spread gaps items &optional (default nil) =:: expanded-items
p. 28 Spreads the elements of items by inserting copies of default.

subseries jt= start optional below =. selected-itemst
p. 29 Returns the elements of items from start up to, but not including, below.

suppress-series-warnings default value nil
p. 62 Variable, controls error messages about restriction violations.

terminate-producing =
p. 44 Used in producing to cause termination of the computation.

to-alter itdms alter-fn other-items-1 ... other-items-n =, alterable-items
p. 38 Specifies how to alter a series.

until bools items-1 ... items-n = initial-items-it ... initial-items-nt
p. 24 Truncates the input series at the point indicated by bools.

until-if pred items-1 ... items-n =%. initial-items-it ... initial-items-nt
p. 24 Truncates the input series at the point indicated by pred.

0

