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1. IntroductionI
The original goal of radar (radio detection and ranging) was f o provide informa-

3 tion about the existence and position of targets. It was soon realized that additional

capabilities were desirable, in particular the ability to classify the target. Depending

on the nature of the application, classification might be concerned with friend or foe

I status or with flight rule status (visual/instrumental) or many other things. In some

cases it is possible to obtain this information by requiring the aircraft to transmit

3 it via transponders or IFF devices; in other cases this is impossible or undesirable.

The latter problem is the so called non-cooperative radar target identification (RTI)

problem.

3From physical considerations it is known that information about the shape of

the target is present in the radar return signal, since the target will distort the

3 incoming radar signal in a geometry-dependent manner. The problem of RTI is to

extract useful information from the distortions in the radar return. This extraction

process can be considered to consist of two stages: first there is a signal processing

stage, where the radar return signal is processed to extract some discriminating

information; second is the decision stage, where the extracted information from

3the signal processing stage is matched against a data base of known targets (the

catalog), and a decision as to the nature or identification of the target is made.

One method of performing target identification is to use no signal processing

3 step, so the decision algorithm operates directly on the frequency data. This method

has the advantages of simpler implementation and of not losing information in the

3 signal processing stage. However, there are some potential disadvantages. First, if

gthe number of frequency measurements is large, the decision step will be computa-

!1
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tionally intense. Second, the frequency domain information does not relate to the I
geometric configuration of the target in a direct manner; thus, one cannot directly j
obtain geometric information, such as overall length, about the target.

This report considers an alternative approach to target identification. In this 5
approach, the signal processing step is designed to extract geometrically relevant

scattering characteristics of the target. This method of RTI consists of a signal I
processing step which converts the radar return from the frequency to the time 1
domain, to obtain the radar cross-section versus time signal of the target. The

advantage of this method is that the reiation with the geometry of the target is 3
inuch more direct in this representation. The decision step then classifies the target I
from the time domain information. Traditionally the transition to the time domain

has been accomplished using Fast Fourier Transform (FFT) techniques [1]. FFT

techniques suffer from two potential disadvantages, however. First, they do not yield

any data reduction, so the output of the signal processing stage gives at least as 5
many data points in the time domain as originally present in the frequency domain.

Thus, there is no decrease in processing requirements for the decision algorithm. I
Second, the time resolution of the FFT is limited by the bandwidth of the frequency 5
domain return, so closely spaced features on the target might not be resolved.

This report addresses the option of using modern signal processing methods

to convert from the frequency to the time domain. In particular, Autoregressive I
Moving Average (ARMA) models are used to parameterize the radar data. ARMA

models do not suffer from the resolution limit of the FFT methods. In addition, 3
ARMA models are parametric, so the information present in a large number of

frequency samples can be concentrated into a small number of parameters, thus I

2
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reducing the computational burden for the decision stage. Finally, the parameters

i in the ARMA model are closely related to relevant geometric features of the target.

As a result, even if the target cannot be identified, some geometric information

about the target can be extracted from the ARMA parameters.

In this report, we study the application of ARMA models to the signal processing

part of the RTI problem. First, we develop a special representation for the ARMA

I model suited to the specifics of the RTI problem. We then describe an algorithm for

estimating the needed parameters from the frequency data. We study the effects of

several improvements over the basic algorithm, including the use of singular value

decomposition and the elimination of spurious scattering centers from the estimated

model. Both lead to an algorithm that is more robust. Finally, we present results of

this algorithm are shown using radar data obtained by compact range measurements

of commercial aircraft models.

I3
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I
2. Canonical Scatterers and ARMA Models I

This chapter discusses the modeling of radar targets by canonical scattering

centers, and the relation to ARMA models. In particular, it will be shown that

ARMA models are an appropriate way of modeling radar returns. 5
2.1 Canonical Scatterers

It is well-known [2] that scattering of electromagnetic waves at high frequencies,

i.e. at frequencies such that the wavelength is small compared to the scatterer, can

be modeled as a set of independent scattering centers. There are several varieties 5
of canonical scattering centers used in this process; typical examples are [2] the

point, edge and plate scatterers and the corner reflector. As is stated in [2], these I
examples are typical of the types of scatters that can be found on radar targets.

From [31, we have that all the above canonical types of scatterers can be modeled

in the following way: if a target consisting of m scatterers is illuminated using a I
CW radar, then the backscattered field received by a linearly polarized antenna will

give a signal of the form: I
rn - 12ri2 w1&(2. 

)
o= Kie c (j2lrfk)" (2.1)

i=I

where Ki is the amplitude, ri the relative range, and ti the type of the ith scatterer; 3
fk is the kth frequency, and m is the number of scatterers. For the canonical

scatterers in [3], t, takes on the following values I

ti E {-1,-0.5,0,0.5,1} (?) 1

41 I
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In addition, for stepped frequencies, we can represent fk by

fk=fo+k0f, k=,1,2,...,N-1 (2.3)

where fo, bf and N are given parameters of the system under consideration. The

I frequency fo represents the lowest frequency the radar system transmits and 6f

is the size of the frequency step. Estimation of the paral,.r ,,s in (2.1) from N

I measurements leads to a canonical scattering description of the target; see [3]. Un-

g fortunately, this estimation is nonlinear, and is not practical for real-time target

identification at this time.

For reasonably small bandwidths, a feasible method of target identification can

be obtained by approximating the canonical scattering model of (2.1). In particular,

the factor (j27rfk)t ' can be approximated by a factor of the form p for some pi.

* This approximation yields the data model:

m

Pdkpi (2.4)I ji--

where di is in general not equal to Ki in (2.1) because of the approximation involved.

I The variable pi can be found from:

Pi = pie- wf (2.5)

or, conversely, we can find pi and ri from p, by:

Pi = II (2.6)5 1 1Igp(-r )R (2.7)r =(2 2ir

I where R = is the maximum unambiguous range of the radar. In practice the

absolute range is not used; instead, ri represents the range relative to a zero range

15
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reference point.

The physical relevance of the pi parameter is dubious because it is defined from I
an approximation. However, it is important to estimate pi since it allows the calcu-

lation of a physically important quantity: the amount of energy associated with a

scattering center. This energy can found by considering the contribution of a single

scattering center to the total signal. The single scattering center component is

dzi k=o

The energy is the square of the absolute value of this contribution, or

p - _d121 = Id1 2 l -  (2.8)

k=O 1-

Equations (2.4) and (2.8) will be used to form a parametric model of target scat-

tering.

2.2 The ARMA Modeling Interpretation 1
In the previous section we established that the return of a stepped frequency

radar can be modeled as I
y= Y d,p, 3

In this section we will show how this relates to Autoregressive Moving Average

(ARMA) modeling and the radar cross section versus time relation of the target. I
If we take the inverse Fourier Transform of the above relation for Yk, v, ',"t

m di____ _<RO(2.9)

(2.9)-rR -p

6
6 I
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where r is relative range. The square of the absolute value of this function gives

5 the radar cross section as a function of relative range.

If we change from the Fourier to Z Transform (i.e. z = ej(1-2r/R)), equation

(2.9) becomes
y(z) = di C(z) (2.10)

Y =1 z - Pi A(z)

where

, A(z)= (z -pi) = zP + azP +...+ ap (2.11)
i=1

I and where Cz) is a polynomial of degree less than or equal to m - 1. It can be

seen that the pi coefficients are the zeros of A(z), and so they are the the poles

I of Y(z). Hence the model we have assumed for the radar data corresponds to an

I autoregressive moving average model with m poles and m - 1 zeros.

Note that the exponential model (2.4) applies to the frequency domain, and

3 the rational model (2.9), (2.10) applies to the time domain. This is in contrast to

standard time series analysis treatments of ARMA models, where the damped ex-

I ponential model applies to the time domain, and the corresponding rational transfer

3 function model is in the frequency domain [4]. This difference is cosmetic only, and

is easily handled.

Comparing (2.4) with (2.10), it can be seen that each term {djp }N-1 corre-

sponds to a term d, . As has been stated above, the terms {dipS} \ - corr. pond

to the scattering centers of the target; hence, the Zdi terms mod(i he r, ;-.nse

3 of the individual scattering centers in the time domain. In other words, ,;. Time

domain model (2.10) describes the radar cross section (RCS) versus time response

I of the target as the sum of the RCS responses of the scattering centers. The RCS

time response can be obtained by evaluating (2.9) for 0 < r < R or equivalently,

7I,
I
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evaluating (2.10) for z = ej , 0 < < 27r. This RCS time response is similar to the I
responses obtained by taking the DFT of the frequency data, but does not have the 3
resolution limitation inherent in the DFT.

The nature of each scattering center is determined by the values of the param- 3
eters pi = pie j (1- 2

ri/R) and di associated with it. First, ri determines the relative

range. Second the magnitude pi of pi determines the shape of the RCS response |
curve; if pi is close to one (i.e. pi is close to the unit circle), the curve will be a nar- I
row and sharp peak, indicating that the scattering is concentrated at a particular

range. If on the other hand, pi is not close to one (i.e. pi is far away from the unit U
circle), the curve is much wider and has no sharp peak, indicating the scattering

center response is spread out in range. Finally, the values of pi and di combine to

give the energy P associated with the scattering center, as indicated in (2.8). 1
The above ideas are illustrated in Figure 2.1. This Figure shows the response

IY(r)l of a hypothetical target composed of four scattering centers. The lower i
graph shows the location of the zeros {p'}=i in the complex plane. By comparing

the locations of the zeros and the positions of the peaks in the response graph, we

can clearly see how the argument of pi relates to the range of the corresponding 3
peak. Also, by comparing peaks 3 and 4, we can see that when pi is closer to the

unit circle, the corresponding peak will be sharper and narrower. Peaks 1 and 2 3
show that even if two scattering centers have pi's that are equally close to the unit

circle, the amplitude of their peaks may vary greatly, since the di values may be

different. For reference, Figure 2.2 shows the FFT of the same hypothetical target.

8
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3. Techniques to Estimate the Model Parameters from Radar DataI
Based on the results of the previous section, the frequency domain radar backscat-

ter data can be modeled as a sum of complex exponential terms. More practically,

5 the data will also contain an additive noise component due to receiver noise, clut-

ter, etc. In either case, the signal processing objective is to estimate the parameters

which describe the exponential components from a finite set of (possibly noisy)

data. This problem is considered in the time series analysis literature as the so-

I called Prony estimation problem [4].

Below, we develop algorithms which estimate the needed parameters from radar

data. These algorithms are based on singular value decompositioi (SVD) versions

of Prony algorithms. We then discuss modifications to the algorithms to make th, in

£ more appropriate for radar data.

3.1 The Backward Prediction Equations

Assume that we wish to model the radar data as a sum of complex exponentials,

t as in equation (2.4), and that the measured data contains noise: thus

I yk=Z p +;.k, k=,...,N-1 (3.1)
i=1

where {nk}l=0 is a sequence of zero mean noise. For concreteness, we will assume

nk is white noise with zero mean and variance 2; however, the colored noise case

3 can also be handled, using algorithms similar to the ones we describe below [5].

Below we discuss various alternative ways to estimate the pi and di coefficients

from the measured data sequence f{Yk k=0. These methods are adapted from similar

I algorithms discussed in (4].

1 11
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First we consider the estimation of the pi parameters. Recall that the pi param-

eters are the zeros of the A(z) polynomial (see equation (2.10)). It can be shown 5
[4 that the coefficients ai of the A(z) polynomial satisfy the equation:

Yk + Z iayk+i = 0

This can be written in matrix form as:

Ym+i YM ... Y/i amI

YM+2 YM+1 ... Y2 : '-0 (3.2) 3
a,

YN-1 YN-2 ... YN-M-i 1 I

Where M is some integer at least equal to m and where equality holds in the g
noiseless case; we will discuss the selection of M below. Solutions based on (3.2)

are called total least squares solutions [6]. It was shown in [6) that total least 5
squares solutions generally have superior accuracy when compared with ordinary

least squares methods [6]. 3
It should be noted here that in a given application we would not know the correct I

value of m. This point will be further discussed below.

3.2 Use of the Singular Value Decomposition

Estimation of parameters from a short data record is a difficult problem; while I
most popular techniques are quite good at estimating parameters from noisy data 5
if the record length is large, their ability to perform well for short records is signif-

icantly less. One technique modem signal processing research has found to combat 3
this effect is the use of the Singular Value Decomposition (SVD). The SVD is an

12 I
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orthogonal decomposition technique for matrices; it can be regarded as a general-

5 ization of the eigenvalue decompositions that exist for square matrices.

The use of the SVD to the estimation problem lies in its ability to help determine

the rank of a noisy matrix. Recall that estimating the polynomial A(z) requires5 forming a matrix out of the noisy data (equation (3.2)). In the noiseless case, the

rank of this matrix is m, the number of scattering centers on the target. However,

i due to the effect of the noise on the data, the actual rank will be greater than m.

For small noise variances, the data matrix will be "close" to a matrix of rank m, and

the SVD can help find the closest rank m approximation. It is expected that this

3procedure will reduce the effects of the noise on the estimate. For a more detailed

discussion, see (7,8,9].

£ Next we need to consider how to implement the SVD technique in our algorithm.

To do this we modify equation (3.2) as follows: we first compute the matrix on the

SI left of (3.2) and then compute its SVD:

I Y = UVH (3.3)

5 where Y is the data matrix, U and V are unitary matrices, and E is a diagonal

1
I
I
I
I

13
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matrix, given by:

or, 0 ... 0

0 02::: 0

= 0 0 ... aM+1 (3.4) 1
0 0 ... 0

(N-M-I)x(M+1) U
where 

al a2 ... aM+ > O. 
(3.5)

As noted above, if the SNR is sufficiently high, we will have: 3
a, >... _> am > a., _... _ aM+1 (3.6) 3

where am+, ... am+, are nonzero only because of the nonzero noise term. Thus, 1

some effects of the noise can be eliminated by replacing E by ' defined as

oai 0 1
(3.7) 1

O~n

0 0 (N-M-1)x(M+I)

for some value of n satisfying m < n < M + 1 (we will discuss ways of choosing n

below). Finally, the vector a = [1a ... &aM]T is found by solving

UEIVHaM = 0 (3.8) 1

114
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I in the least squares sense [6].

The SVD also greatly helps the order estimation problem. Assume we do not

know the true number of scattering centers m, but are confident that the value of

3 M is large enough to model the scattering behaviour of the target. Then we can

select n < M to best model the target and reject noise. Given the short data lengths

typical of RTI problems, a large enough M can typically be achieved by choosing M

3to be a large fraction of, or even equal to, E. Then n can be chosen by considering

the distribution of the sv's: we choose n such that a,,+, is the first sv that falls

3 below a preset threshold. In this way a, ... an represent the important (high energy)

signal components, and the other sv's represent either small signal components or

noise. Note that we may not model all of the target scattering components, as

the weaker ones can be eliminated from the model by choosing n small; on the

other hand, the weaker scattering components are more prone to be misestimated

£ in noise. Thus, this procedure represents a trade-off between geometric faithfulness

and robustness in the presence of noise. The clear advantage of this method is

its built-in robustness: it selects the high energy signal components, which are

3 expected to suffer the least degradation from the noise. Another advantage of

this method over order selection in a straightforward, non-SVD estimator is that

I because the order reduction proceeds in an orthogonal manner, we do indeed select

g the strongest signal components, whereas the straightforward algorithm will select

mixtures of several components, as can be seen from the experiments in [101. The

3 SVD method is one of the best currently known practical methods for tackling the

order estimation problem for radar data.I
I 15
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3.3 Estimation of Modal Amplitudes

Once we have estimates of the A(z) polynomial coefficients, we can find the I
corresponding zeros pi by using a polynomial root finding method. It then remains 3
to find the corresponding amplitude (di) coefficients. From equation (2.4) we can

see that given the pi, the problem of estimating the di is a linear one, so we can use I
a standard Least Squares approach. Of course we do not know the correct values

of the pi, but we can use the estimates obtained as described above in their stead. I
The least squares approach to estimating the di coefficients can be formulated as 3
follows:

Po .. PoM do Yo

- 0 (3.9)

... PM J _i YN-1 i
where Pi are the estimates obtained from the first step. This equation is simply

(3.1) written out in matrix form. Since the equation (3.9) is overdetermined, we

can solve it in a least squares sense.

3.4 Elimination of Spurious Zeros 5
In previous sections we computeA an estimate of a polynomial AM(Z) of order

M > m, and a corresponding set of M zeros {p}YM. We also computed ampli-

tudes corresponding to these zeros. The next step is to separate the m zeros that 3
correspond to the radar target (signal zeros) from the remaining spurious zeros.

In [10], we reported a criterion for zero inspection that worked well with a I
related ARMA algorithm. This criterion is based on the observation that a zero

with modulus greatly different from one will influence only the data elements at the

16 I
I
I



I

I start (if the modulus is smaller than one) or at the end (if it is greater than one).

5 In the time domain, we observe that such zeros correspond to widely distributed

scattering centers, which are of little interest to radar target identification. As

3 reported in [10], removal of such zeros improved the performance of the algorithm

we were then using.

Unfortunately, the criterion in [10] does not seem to mesh well with the current

3 SVD-based algorithm. Results of applying this zero selection method on aircraft

data shows two undesirable characteristics. First, this criterion produces erratic

3 changes in the selected zeros as one changes the value of m. This is undesirable

for RTI applications because our experience has shown that one needs to select the

order differently for different aircraft. Therefore, it is necessary for the order to be

3 selected on-line, and thus we need algorithms that will produce similar estimates

even if the order selected for the noisy data differs from the order selected for the

3 catalog prototype. Second, the experimentally found spread of the resulting di and

pi parameters was such as to make them useless for classification: there were no

clear clusters for the different targets. Hence, we needed a better way to differentiate

3 spurious zeros from the signal zeros. We are currently investigating two different

techniques, as detailed below.

3 The first technique is a refinement of the method in [10]. Whereas in [10] we

kept all zeros within an ring around the unit circle with outer radius r and inner

radius 1 , we now choose the outer and inner radii of the ring independently. In

3 particular, since one expects spurious zeros to lie inside the unit circle when using

backward prediction equations [4], the inner radius is set much closer to the unit

3 circle than the outer one.

1 17
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I
The second technique relies on the observation that since the spurious zeros

correspond to modes that are not present in the data, their estimated energy should 5
be low. To take advantage of this property, the algorithm is modified as follows.

First, all M zeros are kept, and the amplitudes Mdj} L, corresponding to those zeros

are found using equation (3.9). Then, the energy of each mode is computed using

equation (2.8). The m zeros whose corresponding energy is the highest are kept

and the remaining ones are discarded. Then, the energy estimates for the m kept I
zeros can be refined by recomputing the amplitude estimation using (3.9) with only

the m selected zeros, however, since the energies for the discarded zeros is low, the I
difference between the two estimates should generally be small, so this refinement 3
step may be omitted.

Preliminary simulation results indicate that the zero selection technique which

uses the energy criterion performs significantly better than the one using zero radii.

This will be seen in the experiments presented in section 4. I
Table 3.1 summarizes the ARMA modeling algorithm used in this report. 3

3.5 Classification Aspects I I

In this section we report results pertaining to experiments we performed to get

more insight into the ability of the algorithms discussed to form the signal processing.

stage before a classifier. We have looked at the experimentally found distribution 3
function for the distance of the two strongest scattering centers on a Boeing 747,

at the clustering properties of the pi and di parameters, and at the residual errorI

(defined below) as a function of n.

'The authors would like to thank O.S. Sands for his contributions to this material.
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Table 3.1: Summary of the Algorithm.I
1. Find the zeros {Pi}_- from the frequency data k fol-

lows:

m (a) Given M, form the matrix Y in (3.2) and obtain a singular

3 value decomposition of Y as defined (3.3).

(b) Given a cutoff criterion, find the smallest n such that on

m satisfies the criterion, but a,+, does not. Now solve the

equation
U~tVH &M 0

I for eM, where U, E' and V are defined in (3.3), (3.7) and

(3.8).

(c) Find the zeros P of the polynomial AM(z).

* 2. Find the modal amplitudes and energies associ-

ated with {pily from equations (3.9) and (2.8)

3. Select the m zeros with the highest energies A. From these m

3 zeros {pi}T._l compute the ranges {rj}i~n and dispersions {Pj}Ti

using equations (2.7) and (2.6). Optionally recompute the n

amplitudes and and m energies from equations (3.9) and (2.8)

5 using the m selected zeros.

4. The target response Y(r) can be found from (2.9) using the

I coefficients {r,, Pj, dj}Tj.

3 19
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The distribution of the difference in relative range between the two scattering

centers with the highest energies (i.e. r, - r2) for the Boeing 747 in 5 dBsm noise is 3
clearly Gaussian to good approximation in the case of the algorithm as presented in

Table 3.1, and it is clearly not Gaussian for the case of the algorithm with the ring i

criterion described in the previous section (see Figure 3.1). Moreover, in the former

case the variance is lower. This is important because it is easier to design classifiers

for parameters with a Gaussian distribution than for for other parameters. The 3
most important point however, is that the ring criterion algorithm shows significant

bias, whereas the algorithm as presented in Table 3.1 does not. The algorithm as

presented in the table gives a mean value for r2 - r, that corresponds to the relative £
range found in the noiseless case; as can be seen from Figure 3.1, the ring algorithm

gives a mean that differs from the true rneal by more than 10%. 3
It has further been found that the values of the di and pi coefficients tend to

cluster in different places in the d x p plane for the different aircraft; this means I
that these parameters carry information that will aid classification. 3

Finally, we have found that for the ring criterioni algorithm the residual crror is

not a monotonic function of the number of singular values. The residual error is 3
defined as: - m (

Nk0(k- 1= dP) (3.10)
Erea~m) £N Yk

It is a measure of how well the estimate models the data. It is known that without 3
the elimination of spurious zeros, Ere,(,) will decrease monotonically as a function

of the number of singular values kept, n. This is an important property, since i
it guarantees that increasing the number of singular values can only improve the 3
quality of the model. It was found experimentally however, that the ring criterion

20 I
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Figure 3.1: Relative Range between the the two strongest scatterers on a Boeing

I 747, using 20 data points from 6.25-12 GHz, 10th order model, 7 sv's kept.
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I
algorithm did not have this property. In fact, for this algorithm there was no

predictable regularity to the error versus singular values function. For the purposes 5
of RTI, it is important that spurious zeros be eliminated, so as to avoid confusing

the classifier with physically irrelevant data. It was for this reason that we started U
to investigate the energy based criterion for keeping zeros, and indeed, we found 5
that for the algorithm presented in Table 3.1, the residual error is a monotonically

decreasing function of the number of singular values kept, as desired.

l

5
I
U
I
I
I
I
I
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II I 4. Estimation Results Using Compact Range Data

This section describes the results of the signal processing procedure detailed in

I the previous section when applied to compact range measurements of targets. The

data used contain stepped frequency measurements of models of various commercial

aircraft; specifically the DC 10, the Concorde and the Boeings 707, 727 and 747

3 are compared. The measurements have all been made at the OSU ElectroScience

Laboratory Compact Range, and are available in various frequency ranges from 2-

1 36 GHz. The size scales for the model aircraft range from 130-200, so the frequencies

correspond to the 5-280 MHz for a full-size aircraft, depending on the scale of the

of the aircraft under consideration.

3The stepped frequency measurements consist of amplitude and phase of the

radar return from the target at each frequency. The radar receiver hardware range

gates the returning signal to eliminate spurious scattering effects from the anechoic

g chamber. The data is then calibrated by subtracting the return of the empty cham-

ber (with pedestal) and dividing by the calibrated return for a reference target. The

3 calibrated measurements obtained are then essentially error-free [11]. For those ex-

periments where we have used noisy data, we have added white Gaussian noise to

i these measurements.

34.1 Tests of Sensitivity to Parameter Selection

I First we look at the sensitivity of the ARMA algorithm with respect to choices

of certain parameters in the algorithm, such as model order M, number of singular

values kept n, etc. We also consider this sensitivity for the two methods of zero

1 23
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selection as described in Section 3.4. We first show the algorithm sensitive to

parameter selections when a radius test is used for zero selection. 3
If the radius test method is used (see Section 3.4), then Step 3 in Table 3.1 is not

performed, and instead in Step 1c the value m is determined as the number of zeros I
that fall within a preset ring of inner radius r, < 1 and outer radius r2 > 1. These 3
m zeros are selected and all following steps are performed with only this subset of

zeros. This implies that all subsequent steps use m instead of M. 5
Figure 4.1 shows the estimated response for the Concorde model, using model

frequencies from 18 to 26 GHz (this corresponds to frequencies from 138-200 MHz I
on the full-size Concorde), N = 30 data points, an order M = 10, while keeping 3
n = 5 singular values and m = 2 zeros. The same figure also shows a response

curve that corresponds to the same situation except that only 3 sv's are kept in 3
the estimate. For reference, the FFT of the Concorde data is shown Figure 4.2.

This figure shows the absolute value (in dB) of the inverse Fourier Transform of i
the data used by the algorithm. The inverse Fourier Transform has been evaluated 3
by zero padding the 30 data points to 512 and taking the IFFT. It is clear that

the ARMA algorithm is sensitive to changes in the number of singular values kept. I
Similar observations can be made for the number of zeros kept and the model order.

This verifies the claim that the ring method of zero selection is sensitive parameter I
choices. The figure given is a typical case taken out of a large number of trials that 3
we have performed.

If, on the other hand, we use energy as the criterion for keeping zeros (that 3
is, if we use the algorithm as presented in Table 3.1) we obtain the responses in

Figure 4.3 where we have the same frequency data as before, but now we use a

I
24

3
I



I I r I " gks IMPULSE RESPONSE

10

E

V -10-

I t -20-

.~-30-IE
-40I

5 angle in radians

Om 73 m
I n=- sm 'I

I- A db IMPULSE RESPONSE

* -5-

E -10I i
15 -5

I ~ -20-

-25-

-30-

angle in radians

5 Figure 4.1: Concorde, 18-26 GHz, 10th order model, 5 and 3 sv's kept, 2 zeros kept,

0 degree aspect angle.

* 25

U



I
I

-15 3

-20 3

-25-1

-30 1I , I
-35 I
-40-

0 1 2 3 4 5 6 7

Om 73m I
I
I
I

Figure 4.2: Concorde, 18-26 GHz, FFT using 30 data points zero padded to 512, 0

degree aspect angle. 3
I

26

I
I



I
tenth order model and respectively 3, 5 and 7 singular values are kept. For all three

3 cases the threshold mentioned in Step lb has been taken as the first large drop in

the magnitude of the singular values, which occurs after the second singular value

I in all three cases. It can be clearly seen that the estimated zeros are very similar

3 indeed, and the associated energies are also quite similar. If we compare this figure

with Figure 4.4, in which we have dropped the model order M from ten to five, we

3 see that the two zeros are still in the same place, although the estimated energy of

the weaker scattering center differs from those in Figure 4.3. Thus we see that the

algorithm presented in Table 3.1 is indeed less sensitive then the previous algorithm

3 to the choice of model order and number of singular values kept.

If we use a properly scaled picture of Concorde, such as shown in Figure 4.5,

3 to check for the geometric relevance of the two detected scatterers, we can see that

the first peak would seem to correspond to the leading edge of the wings, and the

i second peak appears to correspond to the trailing edge of the wing and/or the tail

3 assembly. Again, the FFT is provided for comparison in Figure 4.2.

Figures 4.6 and 4.7 show the response estimates for the Boeing 707. We have

3 used N = 30 frequencies from 18-26 GHz (this corresponds to 67-173 MHz mea-

surements of the unscaled target). In Figure 4.6, the model order M = 10, and

Ithe number of singular values kept n is 7 and 5, respectively. Note that these are

3 the same parameter choices as made for the Concorde in Figure 4.3. In Figure 4.7,

M = 7 and n = 5 sv's are kept. In all these cases the zero selection was based on

3 the energy criterion, and 5 zeros were kept. Again, we see that i li, algorithm is

very insensitive to changes in the parameters. The FFT data is shown in Figure 4.8

Comparing the results with Figure 4.9, a scaled picture of the Boeing 707. we

I
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see that the middle three peaks appear to correspond to the nose, the antenna and

3 the wing complex respectively. The two outer peaks would then be post resonances.

A post resonance can appear at a smaller range than the main response because of

i wraparound due to range aliasing.

3 In summary, we have shown that the algorithm is relatively insensitive to choices

of parameters. This means that a classifier based on thi- Agorithm could operate

3 in a robust manner. We have also shown that the estii;it .s produced by the al-

gorithm seem to have geometrical relevance. Finally, by c<,iiparing the results for

the Concorde and the Boeing 707 we can conclude that dift'Crent aircraft results in

3 different estimates.

3 4.2 Tests of Performance in Noise

3 The above comparisons were carried out using noiseless data. This section shows

that the estimates obtained are relatively insensitive to noise. We present results

3 for the Boeing 707 and the Concorde, both at 10dB signal to noise ratio (SNR). In

both cases we have used a model order M = 7 and kept n = 5 singular values. For

i the Concorde, we keep m = 2 zeros and for the Boeing 707 we keep m = 5.

3 Figure 4.10 shows the results of ten Monte Carlo simulations for the Concorde,

and Figure 4.11 shows the results of the same experiment for the Boeing 707. The

3 Figures show that the different Monte Carlo simulations lead to results that are

similar both to one other and to the noiseless results (compare with Figures 4.3 and

3 4.6 respectively). Again, these are typical results.

3Inspection of the algorithm shows that this experiment implies that the values of

M and n can indeed be chosen independently of the target, since the only difference

i
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3

between the parameter values for the Concorde and the Boeing 707 is the value of

m, which does not influence the choice of M or n. In fact, m can be chosen by the 3
classification stage after the signal processing stage has run to completion. This

means that the proper value of m can be made part of the data contained in the

classifier's catalog. 3
4.3 Other Comparison Tests

This section describes some experiments showing the results of applying the i

algorithm to different targets, aspect angles, frequency ranges, data lengths and

model orders. These results illustrate the range of applicability of the algorithm. 3
Figure 4.12 shows the Boeing 707 with N = 20 data points taken from a 6.25-

12 GHz data base (this corresponds to 42-80 MHz for an unscaled target), model U
order M = 10 and number of singular values kept n = 7. Despite the difference 3
in frequency range, the correspondence with Figure 4.6 is quite good (there is a

difference in the position of the reference point). We see that the leftmost peak 3
in Figure 4.6 is missing in Figure 4.12; otherwise we have similar shaped peaks

occurring at the same relative spacing in both Figures.

Figure 4.13 shows the Boeing 707 with N = 40 data points taken from the 3
6.25-12 GHz range, model order M = 10, and n = 7 singular values kept. Except

for the data length, these are the same choices as in Figure 4.12. Since the data I
length has been increased by a factor of two while keeping the bandwidth constant,

the frequency step size 6
f has been halved, and hence the maximum unambiguous

range R has been doubled. As a result, we expect to see the image of Figure 4.12 3
scaled down by half in the middle of Figure 4.13, surrounded by a flat response

3
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indicating the absence of target. Comparing Figures 4.12 and 4.13., this is exactly U
what we see. 3

In Figure 4.14 we see the Concorde, using N = 20 data points from the 6.25-12

GHz range (48-92 MHz for a full-scale target), model order m = 10 and n =7

singular values, at 0 and 20 degrees aspect angle. As can be seen from the figure,

main scattering behaviour is similar. The second large peak at 0 degrees has split

into two narrower peaks at 20 degrees, and all of the peaks are are a bit closer in 3
the 20 degree plot ,due to the apparent shortening of the target in the downrange

direction.

Figure 4.15 shows the DC 10 using N = 20 data points from 6.25-12 GHz (31- 1
60 MHz for a full scale target) and model order m = 10 with n = 10 singular values

in the one curve, and m = 6 and n = 4 in the other. Clearly, all major features

are preserved despite the changes in model order and number of singular values

kept. Figure 4.16 shows a scale model of the DC 10 which compares to the scale in I
Figure 4.15.

In summary, we see that each plane has its own characteristic response, which

is preserved well through changes in frequency band, model parameters, and aspect 3
angle. Moreover, small (20 degrees) changes in aspect angle lead to predictable,

smooth changes in the response. As a result, we expect to be able to identify both I
target type and target aspect angle on basis of the parameters computed by this 3
algorithm.

I
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5. Conclusions

We have developed an ARMA algorithm suitable for the estimation of radar

Starget responses from frequency domain data. We have shown that the algorithm

is robust with iespect to changes in the model parameters and to changes in the

U frequency band employed We have also shown that the algorithm performs reliably

3 lin the presence of noise. Using data from the ElectroScience Laboratory Compact

Range, we have shown that different targets do indeed produce different response

estimates, and that varying the aspect angle of the target by a small amount (20

degrees) leads to smooth and predictable changes in the estimated response.

I Since the remaining manual steps in the algorithm (the choices of the number

3 of singular values and zeros to keep) are easily automated, we expect that the

algorithm in its present form is suitable to serve as a signal processing front end for

a radar target identifier. With such a configuration, we expect to be able to identify

both the nature of the target and its aspect angle. This method has the advantage

I that the signal processing stage can serve to both transform the frequency data

I into geometrically relevant information and perform data ,,ipression (the number

parameters output by the algorithm is less than the numbei of data points). This

I is important for the computational burden impnoed by the classifier stage. The

performance of such a two stage classification pro,,dlure needs to be investigated.

I The algorithm itself could be improved by studying its statistical properties

3 and the effects of unmodeled dynamics on performance. The latter is especially

important in radar target applications, because the target typically contains far

Smore scatterers than we model. In addition to this, our model is an approximation

to the actual electromagnetic phenomena. It is known from empirical studies that
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the singular value decomposition helps to combat the effects of noise and unmodeled

dynamics, but the mechanism behind this is very poorly understood, especially for 5
the short data length case, such as we have in the radar target problem. These

problems are strong candidates for further study. I
I
U
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