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INTRODUCTION

This final report proffers results from a three-year theoretical study of wave propagation and

diffraction effects in irregular geologic media. The results are presented in order of increasing

analytical abstraction, with the first paper addressing various practical, numerical wave propagation

issues and models, following by three papers on the mathematical theory of diffraction.

The ostensible purpose of the study is to demonstrate and validate some discrete numerical

methods essential for analyzing linear and nonlinear seismic effects in the surficial geologies

relevant to several Air Force missions. In actuality, and without apology, the study has become a

pretext to solve the hitherto intractable problem of vector diffraction, which governs seismic wave

interactions at the geologic edges ubiquitous in near-surface structure.

The report begins with an applications paper on the use of numerical algorithms based on

explicit finite element methods. It describes a variety of linear and nonlinear seismic simulations at

small- and large-scale, and their performance on minicomputers and supercomputers. The verified

and documented, general finite element code described in the paper has been installed on the Air
Force Geophysics Laboratory's minicomputer and is available for staff and contract researchers.

Various aspects of finite element seismic modeling incorporated in the code have been supported by

AFGL over the years and the benefits have now come full circle.

The second paper develops a rigorous theory of vector wave diffraction for the canonical

planar wedge problem. The third paper presents a numerical evaluation and verification of the two-

dimensional diffraction theory for various types of incident plane-wave polarization. The report

ends with a purely mathematical paper on the theory of connected boundary value problems in

multiple complex planes, which provides theoretical underpinnings for the integral representations

used in the second paper, as well as more general diffraction problems.

Note that the diffraction analysis is in the context of TM and TE polarized electromagnetic

waves rather than seismic waves. This context is relevant since the elastic SH polarization is

mathematically identical to the TE (transverse electric) polarization. For reasons of schedule, the

more general P-SV-wave case is not presented, although it involves relatively minor modification

of the electromagnetic theory. The benefit of considering electromagnetic propagation for this first

published example of the solution technique and its evaluation is the broader range of application,

from seismic SH-waves to light and radar waves.

In a practical vein, the diffraction solutions described here are used to verify discrete

numerical solutions in the neighborhood of sharp edges. Validation is required because basis

functions for the discrete solvers do not support the field singularities that actually occur at an

edge. In fact, the exact solution evaluated here indicates that edge-diffracted seismic wave fields

calculated by discrete numerical methods probably exhibits significant errors.



MOTIVATION

Stimulus for this research is the patent observation that near-surface geology can deviate

markedly from the seismologist's common idealization of a uniformly layered half-space. This

idealization has been assumed almost universally in quantitative seismic analysis and interpretation

until the last fifteen years or so, as more attention has been focused on near-field propagation of
high frequency waves. These deviations from uniform layering are caused by tectonics,

sedimentation, and weathering--exhibited as folds, faults, escarpments, basins, mountains, etc.,

often two-dimensional and over a range of length scales. Consider the illustrations in Fig. I for

some relevant examples. Clearly, this complexity must be incorporated in any mathematical model

used to understand near-surface seismic wave interaction. Such interaction is important in many

practical applications, for example, ground motion estimates near a strategic site, the modification

of source radiation pattern, vehicle or event detectability and location uncertainty, the possibility of

seismic shielding, general scattering and attenuation, and so on. Such models are routinely used

for critical or strategic site analysis as well as nuclear explosion detection and discrimination.

Often, by virtue of these complicated surficial geologies, the only recourse for modeling

seismic effects is numerical simulation-typically using geometric or discrete methods. Geometric

methods constitute ray tracing and its various extensions. Although they generally involve high

frequency asymptotics and yield incomplete solutions, they are certainly useful in their place.

Discrete methods like time-domain finite differences (FDTD) and finite elements (FETD) provide

complete, broadband solutions but require substantial computer resources. They also limit the
analyst's ability to generalize results without an expensive suite of calculations. Despite these

limitations, discrete methods are becoming more and more prevalent, particularly with new, more

robust algorithms and the availability of large-memory supercomputers. Although much more

complete than geometric methods, discrete methods have their own shortcomings, e.g., low and

high frequency cutoffs, dispersion, model truncation, low order elemental approximations, etc.

Clearly, regardless of the analytical method used, the model's numerical limitations must be
well-established before making predictions or basing critical decisions on its predictions. One very

prominent limitation of both geometrical and discrete methods that has never been adequately

addressed is the fidelity of diffractions from model edges. The edge is a linear feature (li,-,eanent)

of high curvature on an interface separating different geologic media, and introduces elastic field

singularities and diffracted radiation that are not included completely in any ray tracing or discrete

solver formulation existing today. The reason is that the canonical mathematical problem of elastic

edge diffraction has never been solved, hence, cannot be incorporated. Sharp edges, i.e., sharp
with respect to the wave length, are ubiquitous in near-surface geology, e.g., faults, basin edges,

and escarpments. Therefore, the seismic community needs some quantification of the
phenomenon. This issue is the principal motivator for the research reported herein.
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FiG. 413 Diagram to illustrate the relation of various erosional landforms to
the structure and dip of the strata from which they have been carved

FfG. 796 Diagram to illustrate the fault-block structure of
the ranges of the Great Basin, Utah
(After W. M. Davis)

Coast Great Rocky W
W. Ranges Sierra Basin WasatcA Colorado prk Font

California Nevada Ms Plateau Range age
Pacic Valley

FIG. 791 Schematic section across the Cordillera of the western United States.
Length of section about 1,900 miles (3,000 km.)

Figure 1. Examples of erosional and tectonic landforms with edged features
promoting diffraction and scattering, reproduced from Holmes (1965).
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DISCUSSION AND CONCLUSIONS
The first paper on applications demonstrates our present ability to simulate large-scale, time-

domain wave propagation in inhomogeneous or nonlinear models using explicit, finite element

techniques. The examples show that one of the most powerful supercomputers available today, the

Cray-2, can indeed perform very large, two-dimensional, elastic simulations in complex models

very effectively. This computational resource affords an opportunity for analysts to model,

numerically, many of the crustal experiments and propagation phenomenology issues of interest to

the Air Force seismic community. Although these explicit, linear wave problems are well-solved

by virtue of the high degree of vectorization they admit, the addition of nonlinear constitutive

algorithms markedly reduces performance since they do not vectorize in general.
The calculations also indicate that, for three-dimensional problems commonly encountered in

applied seismology, still more speed is required. This is not to say that useful simulations cannot
be done, e.g., the scattering analysis discussed in the paper shows that some limited but interesting

three-dimensional simulation can finally be addressed at reasonable cost. What must be

emphasized is that cost grows so quickly in the third dimension that only processor speed increases

by one, or better yet, two orders of magnitude can push affordable model size beyond the

minimum required for adequate temporal and spatial resolution. Multiprocessor hardware with

distributed algorithms, e.g., Connection type machines, or vector-parallel machines with suitable

compilers, e.g., Alliant or modem hypercube type, provide another avenue to achieving the

necessary speed increase.

Simulations of the type described in the first paper are the only means of investigating

propagation phenomena involving range, azimuth, and depth dependent, i.e., nonseparable, or

nonlinear model properties. Other options like ray tracing or boundary integrals involve

idealizations that are too often unacceptable for this broader class of earth models. Note that

discrete simulation has, here and elsewhere, been used principally for the forward problem. As the

above performance issues are addressed more fully by software and hardware, it will eventually

become possible to implement discrete models for the inverse problem, i.e., in an optimization

loop with the synthetic data generated from discrete trial models. This prossibility is perhaps the

ultimate goal of seismic simulation research.

One obvious limitation of the models and simulation described above, is our inability to verify
certain aspects of the scattered wave field. This issue is suggested by the two-dimensional

refraction model in the first paper, where strong conversions of seismic radiation to Rayleigh

waves is observed at points of model surface roughness, e.g., at a low mountain, and the

discontinuities at basin edges. The question is, to what extent is this a numerical artifact of the
finite element discretization? The only way to answer this question is to compare against canonical

solutions around edges in so-called benchmark problems. The diffraction theory developed and

4



verified in the second, third, and fourth papers provides such a benchmark. In fact, the

verification comparisons reported in the third paper indicate that a careful examination and

reappraisal of any discrete numerical solution near sharp edges or rough structure is warranted.

To this end, the full P-SV elastic diffraction theory needs to be derived and an evaluation

performed, comparable to the work reported here in the second and third papers on electromagnetic

diffraction. Only from such a solution can the various algorithms currently used today be verified

for application to problems involving rough topography or other strongly diffracting structure.

Furthermore, these analytical solutions can provide a mathematical basis for incorporating

enhanced diffraction capabilities in both discrete and geometric modeiing algorithms.

In terms of further extension of the mathematical theory presented here, the vector wave

diffraction solution was derived by intuition, generalization of known mathematical techniques,

and persistence-not by conceptual leaps or new mathematics. The same intuition and

mathematical generali7ation provide a basis for extending the two-dimensional approach to three-

dimensions, applicable to a variety of diffraction problems found in radar and optical imaging

applications as well as stealth technology. Clearly, for these reasons as well as seismic

benchmarking and algorithm enhancement, this type of theoretical research should be continued.

In conclusion, the research contract under which this work was performed has produced a

number of substantial benefits and returns, specifically for the Air Force Geophysics Laboratory,

but also for other military and industry groups. These are both practical and intellectual.

The practical benefit is availability of a general purpose seismic wave modeling capability-in

the guise of a fully documented, verified, and demonstrated finite element code for one-, two-, and

three-dimensional models--to AFGL researchers and contractors. It runs effectively on machines

ranging from PCs to the most powerful Cray supercomputers. However, it is one thing to develop

a comprehensive, rigorous seismic modeling code, and quite another to apply it constructively to

many of the seismological problems requiring such capabilities. Making it available to this

community should substantially increase the knowledge return to the Air Force, particularly in
view of the supercomputer resources now available on Air Force systems.

The intellectual benefit is that, as a result of this research, the most intractable diffraction

problem in the classical theory of wave propagation has now been solved. This is significant

because of its intrinsic mathematical importance and the fact that it has confounded analysts for the

last century. The solution governs electromagnetic, elastic, and acoustic wave propagation in the

neighborhood of a planar edge and ronsequently has a wide variety of non-seismic applications.

In the seismic context, its practical implications are in terms of augmenting discrete modeling

algorithms to better represent diffraction phenomena.

5
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LARGE-SCALE, EXPLICIT WAVE SIMULATIONS ON THE CRAY-2

G.L. WOJCIK, D.K. VAUGHAN, M. BARENBERG and J. MOULD
Weidlinger Associates, 620 Hansen Way, Palo Alto, CA 94304, U.S.A.

M.B. HULIT
Air Force Geophysics Laboratory, Hanscom Air Force Base, MA 01731, U.S.A.

Most time-domain, wave modeling problems in geophysics are intractable by classical analysis methods, due
principally to nonseparability and to a lesser extent material nonlinearity. Therefore discrete numerical solution:
are often necessary for the simulation of realistic models. Applications in 2-D and 3-D geophysical modeling are
the subject of this paper, particularly as solved on a CRAY-2 supercomputer. Implementation and performance
differences between earlier CRAYs and the CRAY-2 are described, including the discrepancy between scalar
fetch and vector processing speeds. Explicit finite element solvers are applied to applications involving 2-D
simulation of a seismic refraction experiment across the state of Maine, 3-D simulation of near-source scattering
experiments, and both linear and nonlinear axisymmetric source simulation. Results show that the CRAY-2
allows cost-effective 2-D simulations of truly large-scale models, but only begins to be effective in 3-D for
models of interest in geophysics. The large memory (256 megawords) is adequate but a speed increase of at least
an order of magnitude is necessary for cost-effective 3-D. True multiprocessor capability (rather than 'multi-
computer') provides an alternative to raw speed but involves another set of difficulties.

1. Introduction

A large number of the time-domain, wave modeling problems in geophysics are intractable by
classical analysis methods-by virtue of either nonseparability or nonlinearity. In fact, only a
few practical problems are addressed by classical analysis, i.e., separable and linear, although this
restricted class has received most of the theoretical attention. The broader class of nonseparable.
nonlinear problems requires discrete numerical solutions. Some of these discrete time-domain
wave propagation problems in geophysics are the subject of this paper, particularly as they are
implemented and solved on the CRAY-2 supercomputer. The paper emphasizes various perfor-
mance and modeling issues, with little attention given to analytical development.

By way of background recall that separability depends on the medium's degree of inhomo-
geneity, namely, whether it conforms to a separable coordinate system for the governing partial
differential equations. Separability is not a good global assumption in general geophysical
applications. In contrast, the typical assumption of linearity depends on the medium's constitu-
tive model and, excluding the immediate source region, is often a good global assumption.

Separable problems include the common homogeneous or vertically stratified half-space and
are well solved by classical methods, with weak inhomogeneities sometimes included via
perturbation methods. For truly nonseparable problems, characterized by significant deviation
from the layered half-space, no corresponding analytical methods are available. Either local

0168-9274/88/S3.50 1988, Elsevier Science Publishers B.V. (North-Holland)
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geometrical solutions or global numerical solutions are necessary, provided in practice by
geometrical diffraction and ray theory or discrete numerical methods like finite difference and
finite element wave solvers, and to a lesser extent by boundary integral methods.

Nonlinear continuum mechanics problems typically involve irreversible material behavior due
to strains beyond the elastic limit (constitutive). Nonlinearities may also be due to large
displacements and/or rotations (geometric). However, the contribution of geometric nonlineari-
ties is generally secondary to constitutive effects in geophysical modeling. An effective means of
including these constitutive nonlinearities is through a rigorous plasticity formulation.

The 'best' approach for practical global solutions of nonlinear, nonseparable wave propa-
gation problems in geophysics is a discrete method. Reasons for this choice include ease of
modeling, minimal need for geometric or material idealization, full wave representation, and the
availability of efficient algorithms in conjunction with supercomputers. Certainly, discrete

methods have their share of drawbacks as well, including the inability to generalize results of one
calculation beyond its basic parameters, the difficulty of separating wave phenomena, e.g.. body
waves and surface waves, and errors associated with a finite model boundaries.

To address both the pros and cons of discrete numerical methods in geophysics, this paper
describes some appli,:ations of explicit finite element solvers to large-scale wave modeling
problems, principally on the CRAY-2 supercomputer. These include 2-D modeling of a refrac-
tion experiment across the state of Maine, 3-D modeling of some near-source scattering
experiments, and both linear and nonlinear source modeling simulations.

2. Background

The discrete wave solvers applied here incorporate finite element reductions of the governing
partial differential equations to ordinary differential equations in time. These ODEs are
integrated forward in time using a modified leapfrog scheme (centered differences). The routines
are included in a pre- and post-processing shell called FLEX, designed for efficient modeling.
solution, and interpretation of large-scale propagation problems (mechanical or electromagnetic)
[1]. The code was orginally written to take advantage of the architecture and power of CRAY
computers by developing fully vectorized kernel processing loops first, followed by an efficient
code architecture to support them. Rather than use one general purpose processing routine, a
group of specialized finite element and finite difference routines was developed for each class of
problems, including 1-D. plane and axisymmetric 2-D, and full 3-D. FLEX was designed to
minimize storage requirements for :ach problem by using an internal data management system
that avoids the use of dimensioned ariays within the code. The system automatically and
adaptively sets up internal data arrays as required by the problem at hand. Very large problems
are efficiently stored in memory, thus avoiding 1/0 limitations of data transfer to disk.

2.1. Finite element solvers

The explicit finite element routines applied in this paper to linear and nonlinear continuum
mechanics problem. employ bilinear (2-D) or trilinear (3-D) shape or interpolation functions
over each element !.g. see [21. Element geometry is either Cartesian (rectangles and bricks in 2-D
and 3-D, respcc%'vely) or skewed. The term, explicit (in contrast to implicit), effectively means

8



G. L W'ojcik et al. / Wave simulation on the CtR4 Y-2 49

that lumped masses are employed. This eliminates the need for assembly of a g.obal stiffness
matrix and a mass matrix inversion. Instead, nodal forces are accumulated element-by-element
and the nodal (lumped mass) velocity increments are calculated from Newton's law in incremen-
tal form. The algorithm is stable provided the timestep is less than the fastest wave's transit time
across the smallest element. This follows since all nodes are effectively decoupled by the
fundamental hyperbolicity of the governing equations; in other words. the influence of a node
during one timestep cannot affect nodes more than one element away. Numerical noise
(roundoff) propagates one element per timestep.

The algorithm stores three types of quantities for each node-lumped mass M(n) velocity
vector V(n), and force vector F(n), where n = 1. .N, with N the total number of nodes. The
nodal velocity and force vectors' dimension, d, is equal to the problem dimension, so there are
seven quantities per node in 3-D and five in 2-D (plane or axisymmetric). Velocities are defined
at full timesteps while forces are defined at timestep midpoints. Nodal displacements (U(n))
defined at timestep midpoints are not calculated directly, but may be found by integrating
velocities. Similarly, stresses are not explicitly calculated, but if required, e.g., in nonlinear
calculations, they are defined at the element centroid at timestep midpoints and updated using
incremental displacements.

The basic algorithm includes a vectorized force loop over rows of physically contiguous
elements (row by row) and a velocity loop over all of the nodes. In the force loop, increments
(AF= KAU = KVAt) are calculated at the nodes of each element and added to the nodal force
vector to obtain forces at the next half timestep (F= F+ A F). After all of the elements are

processed a single nodal loop updates velocities. In this loop, velocity increments (AV= M-1FAt,
where M is diagonal) are calculated using the nodal forces at the previous half timestep, and
added to the nodal velocity vector to obtain values at the next full timestep (V= V+ AV). These
loops are repeated for the required number of timesteps.

Ninety percent of the floating-point operations in the algorithm occur in the element force
loop. For example, in a 2-D plane, elastic model, this loop fetches nodal velocities and forces as
well as material and shape information, performs 73 floating-point operations, and stores
updated nodal forces for each element in the row. In general, data arrays for the nodal and
elemental quantities are mapped into memory so that contiguous elements in a row have
contiguous storage locations. The resulting data structures are such that a row of elements of any
length can be integrated one timestep in a vectorized computation without the need of a gather

operation to fetch data into a contiguous local array, and a scatter operation on the results.
The code lends itself to efficient vectorization in 'vanilla' FORTRAN (i.e., no assembly

coding necessary), and approaches the peak performance levels expected for 'nonideal' problems,
i.e., inhomogeneous, on pipelined supercomputers like the CRAY machines. This is not to say
that a supercomputer is required for practical calculations: tens of thousands of elements are
routinely executed on minicomputers, up to perhaps 100,000 elements, with reasonable execution
times.

2.2. Nonlinear constitutive behavior

Nonlinear material behavior can be modeled by a variety of constitutive relations and
numerical implementations. For soil-type and rock-type continua the so-called cap model has
proven effective, particularly in the context of explicit finite element or finite difference wave

9
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solvers. The cap model is essentially an algorithm implementing a rate-independent plasticity
theory with an associated flow rule. Since the formulation is not as well known as the discrete
wave propagation algorithms utilized in this paper, it is reviewed below.

The cap model, e.g., [3], is based on classical plasticity theory with incremental stress-strain
relations in the form

6 = , (2.1)

where a is the stress tensor (tension positive). E the strain tensor, and C the (tangent) modulus
matrix, assumed positive semi-definite to insure uniqueness, stability, and continuity. The cap
model is defined by a convex yield surface. Y(a), and a plastic strain rate vector, 4EP, which is
normal to the yield surface in stress space so that

- Y = (2.2)

where A is a non-negative scalar function.
Bulk modulus K and shear modulus G are used to represent simple linear elastic behavior

inside the yield surface. The surface is defined by a fixed failure envelope and a hardening cap.
The failure envelope is defined by

Y() = T_ - FF( JI), (2.3)

FF(JI) = A - C e8 '9, (2.4)

where A, B, and C are material parameters, J, is the first invariant of the stress tensor, and J.'
the second variant of the deviatoric stress tensor. The cap is defined by

Y(a) = /T : - F (JI, K) for L(K) >_J, > X(), (2.5)

where K is an internal state variable that measures hardening as a functional of plastic volumetric
strain history, and L(K), X(K) define the J1-range of the cap. Function F,(J,, K) is defined by

10

FI JI. K) = X(I) - LW] -K) J, - L (K)r'

in which

K if K<0, (2.7)L 0 if K >0,

X(K) K - RFF(K), (2.S)

where R is a material parameter.
Hardening parameter K is implicitly defined as a functional of the plastic volumetric strain, 'E,

by means of a relation between X(k) and J., which is then coupled with (2.8) to define k in
terms of J. For soils, the relationship is

Wle- (2.9)

10
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P

in which W. D, and X0 are material parameters and (, is a history-dependent functional of the
plastic volumetric strain and is given by the differential functional relation

[ "P if "p <0orK<,
-, =_ f% i < 0or K <0, (2.10)

€, /0 if ip > 0and K >0.

If dilatancy occurs when J, > 0, (2.10) limits the shrinking of the cap to K = L(K) = 0. This
insures that the cap remains finite and is assumed to apply in general for soils. Such a limitation
is somewhat arbitrary in view of the lack of data with respect to material behavior after the
occurrence of tension failure.

Tensile stresses are limited by the condition that the first invariant of stress

J, < T, (2.11)

so that T (a material parameter) represents a tension cutoff parameter. In order to insure that no
principal stress exceeds parameter T, the slope of the failure envelope (a measure of the friction
angle) has been appropriately limited.

The cap model provides a theoretically sound idealization for the salient features of nonlinear
soil behavior. The solution algorithm [3] is robust and quite efficient relative to many other
nonlinear material models and has proven effective for a wide variety of applications.

3. CRAY-2 implementation

The CRAY-2 was the largest and fastest 'conventional' supercomputer available at the time
the calculations described in this paper were performed (mid 1987). It uses a UNIX-based
operating system, has four available central processing units, and addresses 256 million words of
CMOS memory (typically). Other machines are available with theoretically faster architectures,
e.g.. the Connection Machine. but they also require significant modification of the discrete
algorithms and are presently unproven for production problems.

The CRAY-2 is therefore the machine of choice for large-scale simulations, particularly since
similar CRAY-1 type machines have been available for years and optimal programming
techniques are fairly well understood. Note that the principal advantage of the CRAY-2 over
earlier CRAYs (the X-MP for example) is the large memory available. The factor of two to three
in speed is also significant but not the principal reason for its choice. The availability of four
processors is not very useful in practice since chargeable time is accumulated on each one, with
nontrivial overhead for multiprocessor usage. The only advantage is a factor of three or so
decrease in wall clock time. This is useful for reducing run time, given the possibility of a system
crash during extended runs. A better solution is to store memory images periodically for restarts
during long runs (> five hours or so).

3.1. FLEX on the CRA Y-2

Several differences were found between the performance of FLEX on the CRAY-2 and its
performance on earlier CRAY machines. First, the original CRAY-1 FORTRAN coding
produced erroneous results on the CRAY-2 caused by the use of CDIR$ IVDEP system

11
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commands that force vectorization of certain computational loops containing vector dependen-
cies. Specifically, this occurs for the elemental loops computing internal force contributions to
each node of an element. Since a node receives force contributions from two adjacent elements. it
is clear that if the internal force contributions of both elements are being computed during the
same pass through the loop, there is a potential dependency problem. This issue was considered
during the initial development of FLEX and it was determined that forced vectorization gave
correct results. However, this did not carry over to the CRAY-2. The problem was easily
corrected by processing each row of elements in two passes, using a do loop increment of 2 to
ensure that two adjacent elements having common nodes would not be processed during the
same pass through the computational loop. This guaranteed that no vector dependencies would
occur if vectorization was forced.

A second difference worth noting between the CRAY-2 and earlier CRAYs is the speed of
scalar fetches from scattered memory locations. This issue involves the tradeoff between
increased storage versus CPU time in the design of efficient processing strategies, in particular,
to optimize storage for very large problems. For machines with 2-4 million words of storage. it
was considered wasteful to store often duplicated material parameters for each element in the
model, i.e., bulk and shear moduli. It even seemed extravagant to store a single material number
of each element, since for a model containing one million elements, there are often less than 20
unique sets of material properties. The approach adopted on earlier CRAYs was to develop a
group of unique site profiles, condensed to minimum storage. and a pointer table defining the
site profile for each row of elements. In this way material properties of a homogeneous
1000 x 1000 element model can be completely defined by 1005 words of storage compared with
1,000,002 words if storing the material model number for each element and 2.000,000 words if
storing the bulk and shear moduli for each element.

When computing the internal resisting forces for a row of elements, the site profile for the row
is checked against the previous row's profile, and if they differ, the condensed site profile for the
new row is expanded and loaded, with one word for each element. The element material
properties are loaded into the bulk and shear moduli arrays in a scalar loop since this process
does not vectorize on the CRAY-2. On earlier CIRAYs, the overhead associated with retrieving
the two material parameters at arbitrary locations in memory and placing them in consecutive
locations in a local array (to facilitate vectorization) was a factor of two in the worst case. i.e.. 2
times the homogeneous site performance. Although expensive, this approach significantly in-
creased the size of models resident in memory, thus eliminating expensive disk I '0. In contrast.
on the CRAY-2 it was found to increase the overall processing cost by at least a factor of 3.3.

The increased overhead follows because scalar fetches on the CRAY-2 are only slightly faster
than on the CRAY-1, but since vector processing is about 2.6 times faster the scalar overhead is
more significant. This can decrease the overall performance of the CRAY-2 to below CRAY-1
levels. After review, system analysts considered this scalar performance as normal for the
CRAY-2's memory architecture and recommended replacing the single scalar loop fetching
material properties with a series of gather calls. The result of this effort was to slow processing
another 10 percent.

Based on these findings, it is clear that savings in storage afforded by using the site profile
approach are irrelevant on the CRAY-2 with its large memory, in view of the significant CPU
overhead incurred by scalar fetches of material properties. Consequently. the CRAY-2 version of
FLEX has been modified to store both the bulk and shear moduli for each element in the model.

12
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3.2. Performance comparisons

With the changes described above, FLEX achieves performance levels on the CRAY-2 that are
about 2.6 times those on the CRAY-1 and 1.8 times the CRAY X-MP. These comparisons are
for the same model and site profile description. For 2-D elastic axisymmetric problems, FLEX
can compute 1.4 million element-timesteps per second of CRAY-2 CPU time, and for 3-D
problems, it computes 0.28 million element-timesteps per second. For example, integrating a
1000 x 1000 element 2-D problem 2000 timesteps (2 billion element-timesteps) requires 2 X
109/1.4 x 106 = 1429 seconds = 24 minutes, and integrating a 100 x 100 X 100 element 3-D
problem 200 timesteps (200 million element-timesteps) requires 2 X 10"/0.28 x 106 = 714 sec-
onds = 12 minutes.

The major advantage of the CRAY-2 is of course its large memory. For the explicit finite
element algorithm used in FLEX, memory requirements are 5 and 7 numbers per node in 2-D
and 3-D respectively. Storage of synthetic seismograms typically adds another 10 to 30 percent to
this, depending on the number of outputs points and components. Thus, the million element 2-D
and 3-D examples cited above would require on the order of 6 and 9 million words respectively
for the model and output. The calculations described below routinely use 10-30 million words,
with no disk access. No degradation in performance is observed as memory usage increases,
which has been verified for problems accessing up to 200 million words.

4. Large-scale 2-D simulations of a Maine refraction line

The first example calculation models a 200 km refraction line shot along an approximate
southeasterly track across the state of Maine. This was the longest line instrumented by the
United States Geological Survey during a 1984 cooperative refraction experiment in the north-
eastern United States and southeastern Canada, e.g., see [4]. The line is perpendicular to the
dominant structural features in the area and is reasonably approximated by a 2-D model. There
were three large, high explosive shots recorded on the line-at each end and in the middle-but
only the northwestern shot is modeled here.

4.1. The discrete model

The geologic model is illustrated in Fig. 1, showing a 50 x 183 km section of the Earth's crust
and upper mantle with piecewise homogeneous structure-based on USGS data and interpreta-
tions [5]. Near-surface seismic velocity features are represented in some detail in the section, as
well as the dominant topographic features (although not apparent in the figure). The finite
element model was composed of a uniform 1000 x 3660 Cartesian mesh (i.e., non-skewed) of
50 x 50 meter elements, for a total of 3.66 million elements (7.33 million nodal equations).
Interfaces and free surface topography were resolved step-wise by the mesh as in conventional
finite difference discretizations. Clearly, the CRAY-2 is essential for a model of this size since the
entire calculation (model and data) resides in-core to eliminate costly memory swaps to disk

Although the geology is primarily 2-D on the Maine refraction line, the use of an effective
point source clearly makes the problem 3-D. Since 3-D modeling on the scale of this experiment
is impractical on any modem supercomputer (requiring on the order of 1000 times more power

13



54 G. L Wojcik et al. / Wave simulation on the CRA Y-2

3660 ELEMENTS

0 5.7 4.5 5.7 6.25 5.4

10.
I0-1

6.3 z' 20-

30- 6.7 7.0

40
8.1

50
0 10 0 3'0 400 5 0 60 80 0 40 100 110 120 130 140 50 16070 180

RANGE IKM)

Fig. 1. A geologic model of the Earth's crust and upper mantle on a southwest section across the state of Maine, from
[5]. P-wave speeds are indicated in each homogeneous 'layer'. Finer near-surface velocity structure and topography are

included but not apparent in the drawing.

and memory than presently available), a 2-D approximation is necessary. This was accomplished
by posing the problem as axisymmetric, with the source on the axis of symmetry, i.e., the left
(northwest) boundary of the model. Axial symmetry is preferable to a plane strain approxima-
tion because it exhibits the proper radial divergence, however, the resulting global model in 3-D.
obtained by sweeping the geologic section about the axis, certainly appears unphysical.

Boundary conditions applied to the finite element model include symmetry on the left side as
described above, a so-called absorbing or radiation condition on the bottom and right, and a
free-surface condition on the top. The absorbing boundary condition used here and in subse-
quent finite element calculations described below is the simple normal impedance condition
based on the unidirectional wave solution, [a] = -pc[t], relating jumps in stress and particle
velocity. This is implemented for both P- and S-wave incidence and does a surprisingly good job
for non-normally incident waves, particularly the P-wave. It is also readily vectorizable.

The seismic source used in the USGS refraction experiments was a 2000 pound cylindrical
charge of chemical high explosive. The six inch borehole was 150 feet deep. filled to a depth of 75
feet with explosive, and topped off with rained sand. Considering that the entire borehole is
contained in a single element of the large-scale finite element model, it was not practical to
include details of the source directly. Instead a simple surface pressure, actually lumped vertical
forces, with Gaussian distribution over a few nodes was applied to excite seismic waves. No
attempt was made to reproduce the actual source's radiation pattern over takeoff angle. Linear
and nonlinear source simulations will be considered further in a subsequent section.

The source time function is chosen to match the observed or expected frequency content at
some range-in order to better compare synthetics to actual seismograms. However, for linear
models it is often more useful to calculate the impulse or step response, from which synthetic
seismograms due to an arbitrary source time function are obtained by convolution. The
frequency content of the derived response is of course limited by discretization, which, for the
low-order elements (linear interolitnn) used here, typically means significant dispersion when a
wavelength is supported by eight elements or less. This behavior is implicit in the step or impulse
response.

14
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4.2. Finite element synthetic seismograms

Calculated response of the finite element model is illustrated in Figs. 2 and 3, showing
synthetic vertical velocity seismograms at two kilometer station increments between 0 and 180
km from the northwestern source. They show true ground motion. i.e., no instruments response is
included. Step response is plotted in the bottom suite of seismograms, and after convolution with
2 Hz and 0.5 Hz wavelets in the middle and top suites respectively. The synthetics in Fig. 2 are
scaled by range (multiplied by radius) to remove spherical spreading attenuation, and further
multiplied by ten to accentuate early arriving body waves. The synthetics in Fig. 3 are scaled by
the square root of range to remove the cylindrical spreading attenuation of surface waves and
clearly show the Rayleigh wave.

The seismograms in Fig. 2 show a variety of body wave behavior, including reflection and
refraction arrivals from the intermediate layers (Pg), reflections from the deeper interfaces (P*
and ProP), mode conversion of Moho reflected body waves (PmP) to Rayleigh waves by
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Fig. 2. Suites of magnified vertical velocity seismograms at 2 km station spacing across the Maine model. The records
clearly separate body and surface wave phases. which are labeled in the lower suite. The wavelet responses are

obtained from the step response by convolution.
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Fig. 3. Suites of unmagnified vertical wv,,t; seismograms across the Maine model, showing predomiunance of the
Ra\'lelgh surface wave (R g).

topography, and layer resonance of Moho reflections at distinct stations. They also show ,clear
Rayleigh to Rayleigh reflections from lateral velocity variations in the top layer, as well as from
topography. Obscrve that the various coherent phases are readily identified from the suites of
seismograms by their slope, i.e., inverse phase velocity. These have been measured from the 2 Hz
suite in Fig. 2 for the following interpretations.

The rirst arrivals out to about 110 km are P-wave reflections and refractions from the first
interface, while from 70 km and beyond the arrivals transition into deeper reflections and
refractions. Corresponding S-wave arrivals can also be seen preceding the Rayleigh wave, which
is clipped in these synthetics. Discernible from aO km (subcritical) and stronger after 100 km
(supercritical) is the Moho reflection, which crosses the other body wave arrivals at about 170
km. At a range of 128 km a Rayleigh wave is seen to emerge at 24 seconds, traveling most
strongly to the left but also to the right. The mechanism is identified as scattering of the Moho
reflected P-wave by a 0.4 km step in topography (modeled by eight elements).

Figure 3 shows unclipped Rayleigh wave (Rg) arrivals across the model. The wave propagates
about 2.65 km/s and travels halfway across the model when the calculation is terminated at 35 s.
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The mesh is adequate to support 3-4 Hz fundamental mode Rayleigh waves so the observed
dispersion of the 2 Hz wavelet (containing frequencies above 4 Hz) is partly due to numerical
dispersion in addition to the more significant effects of lateral and vertical velocity variations
near the surface. This figure clearly shows the relative strength of the Rayleigh wave compared to
body waves for a surface pressure source, but hides all details. Of more use is the magnified
response in Fig. 2. The middle synthetics show Rayleigh wave scattering by transitions in
topography occurring between 12 to 25 km in range, and by lateral changes in wave speed at 33
and 55 km. Since the model's left side is assumed to be an axis of symmetry, apparent Rayleigh
wave reflections are also seen. These are from the symmetric scattering features on the other side
of the axis. This is of course a drawback of the axisymmetric approximation, however, the
nonphysical reflected phases are easily identified. In general. this large-scale 2-D simulation
produces a variety of propagation phenomena that would never be seen in a classical layered
half-space analysis but is observed in real data.

5. Large-scale 3-D simulations of a scattering experiment

The second example calculation considered here models some rudimentary aspects of 3-D
scattering experiments, performed by Reinke and Stump [61, in a small-scale alluvium site using
five pound buried charges with seismometers and accelerometers placed around the shot out to
20-30 meters. One purpose of the experiments was to investigate azimuthal variability of ground
motions by careful instrument calibration, exploration of site inhomogeneities, and the use of
repeated axisymmetric shots. The principal question of interest here is the scattering produced by
caliche lenses (cemented deposits) in the near-surface alluvial layer, and in particular, the
interaction of characteristic lengths, i.e., wavelength, layer depth and size of the scattering
feature. The following calculation was conducted to examine the feasibility of 3-D calculations to
evaluate scattering by cemented lenses.

5.1. T7he discrete model

The geologic model for this case, illustrated in Fig. 4. is a 30 X 30 x 6 meter quadrant of the
explosive testbed, including two layers of alluvial material-a 3 meter low-speed surface layer
over more competent alluvium. The finite element model is composed of 200 X 200 X 30 finite
elements, for a total of 1.2 million elements or 3.76 million nodal equations of motion. The
model is truncated on the bottom by an absorbing boundary condition, and similarly on the
outer boundaries, while the inner boundaries are symmetry planes. Elements in the lower layer
are elongated in depth by a factor of two.

In real geologies, there are typically many scatterers with assorted shapes and orientations
over the field of interest. For the purposes of this calculation, i.e., to determine propagation and
source parameters for 3-D scattering simulations, a single ellipsoidal lens was modeled in the top
layer, with nominal dimensions of 1 x 3 x 5 m and oriented as in Fig. 4. The P-wave speed ratio
between the caliche lens material and surrounding alluvium was taken as 2.6, based on field
measurements. No attempt was made to smooth the lens boundaries using skewed elements.
although comparisons of rough versus smooth scatterers should be made in future simulations.

The source in the field experiments is a five pound chemical explosive at the bottom of a two
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Caliche Lens
Scatterer

SourceCavity

Symmetry Absorbing

Boundaries Boundaries

Fig. 4. The 3-D finite element model of a 30 x 30 x 6 meter quadrant of the scattering experiment, from [6]. Details of
the source cavity and scatterer show actual discretization. The upper layer is shown transparent. and the lower la,er

discretization is drawn with only 75 elements on a side although 200 are used in the actual model.

meter borehole. Rather than simulate this source directly, a simple pressure function was applied
to a source cavity obtained by voiding elements around the symmetry axis in the model. as
illustrated in Fig. 4. The source's pressure history was a step function, from which responses to
other source time functions are obtained by convolution, in the same manner as descriloA above
for the 2-D model.

5.2. Finite element synthetic seismograms

Three-component velocity time histories were recorded on two lines o, 'r the model's free
surface. One extended from the source epicenter over the lens to the absorbing boundary (i.e., on
the line of symmetry), and the other was perpendicular to this line, extending from above the
lens centroid to the boundary. Vertical velocity synthetics are plotted in Fig. 5 on the radial and
crossing output lines, with the radial line data scaled by range and the cross line data merely
magnified.

These records show weak body wave phases followed by fairly strong surface waves. Some
limited observations can be made from these results, e.g., on the radial line the lens is seen to
scatter surface waves into body waves downstream, but interpretation is complicated by the
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Fig. 5. Vertical velocity seismograms recorded on the cross and radial lines indicated by dots on the surface in Fig. 5.
In-plane components of velocity were also recorded for polarization studies.

superposition of incident and scattered fields in the simulation. To overcome this it is necessary
to run an additional free-field CRAY-2 simulation of the same geological model, i.e. with the
scattering obstacle replaced by the surrounding medium. Subtracting seismograms from the two
calculations yields the scattered field of interest. Of course this doubles the cost of analysis,
however, for scattering studies it is essential for quantitative interpretation to decompose the
incident and scattered wave fields.

Since the source geometry was rather coarse in this model, an additional free-field calculation
would also be useful in evaluating azimuthal uniformity of the radiation pattern. In addition, a
2-D axisymmetric, free-field simulation could be used as a basis for comparison. Therefore, with
the caveat that an additional free-field, 3-D simulation is required and a 2-D axisymmetric
simulation is useful, these results indicate that this type of 3-D geophysical modeling is sufficient
to produce useful data for experiment interpretation and planning. In order to draw further
conclusions from the synthetic data in Fig. 5 it is necessary to perform further simulations. These
are currently being done.

6. Seismic source modeling

One drawback of the models considered above is their inability to represent details of the
source, since in large-scale simulations this region is only covered by a few elements. A solution
is to either refine the mesh in the source region or perform a local source simulation and couple
it to the global mesh. The latter approach is examined here, namely, the use of separate source
simulations in highly refined models of the source region. Both linear and nonlinear models are
considered.

Two types of source problems are modeled. The first includes 'nearly linear' surface or
down-hole sources that apply vibratory or impulsive loads. These can be reasonably approxi-
mated by prescribing forces or velocities at an interface, with linear constitutive behavior
assumed in the medium. The second type is the explosive source, for which strongly nonlinear
material behavior dominates the near-source response. The explosive source involves a signilicant
modeling effort to incorporate the proper energy release and coupling, in addition to difficultit
associated with nonlinear constitutive behavior.
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6. 1. Elastic source modeling

A few examples of near-field seismic source models are examined here, assuming elastic
properties. The idea is to model soil geometry around the source (mechanical vibrator, airgun.
etc.) in some detail, and apply suitable pressures or velocities at the interface. The simplest
geometry is the homogeneous half-space with prescribed surface pressure distribution and time
function. A slightly more complex geometry is the borehole on the axis of an axisymmetric
half-space, with either normal or shear tractions applied to all or part of the hole's boundary.

Only simple wavelet time functions are considered, representing the dynamic part of a total
load. This total typically includes a significant static component. e.g.. due to weight of the
mechanical vibrator or sonde, which is ignored here since dynamic signals are of principal
interest. It is permissible to have tension in the wavelet pressure boundary loading since this
would be biased to net compression by the neglected static component.

The first example is an axisvmmetric pressure loading over a small area of the free surface of a
homogeneous 100 x 100 element model. The time function is a wavelet with center frequency
chos,a so that about 20 elements support it. A Gaussian spatial distribution of lumped vertical
forces is assumed near the model axis. A sequence of vector snapshots shows the resulting
velocity wave field in Fig. 6. The left side is the axis of symmetry, the right and bottom sides are
absorbing boundaries, and the top is the free surface. The Gaussian pressure contributes
significant forces only on the leftmost three or four nodes. Note that the simple absorbing
boundary is quite effective for the P-wave, but less so for the S-wave at shallower angles, as well
as for the Rayleigh wave.

To quantify this refined source solution or incorporate it in larger models, a useful approach is
to record velocity time histories on a surface surrounding the source in its far field. For
convenience this is typically a Cartesian surface (rectangle or box) at 10-20 characteristic source
dimensions. In Fig. 7. results from the present calculation show velocities at a takeoff angle
increment of 150. These are rotated to display radial and tangential motion. This approach
yields a simple spatial characteriz.,tion of the source function. By calculating the impulse or step
response instead of a particular wavelet. other time functions can be obtained by convolution.

The remaining elastic examples considered here involve pressure or shear loading on a section
of a borehole. Figure 8 shows a snapshot sequence for a 75 ft hole with a pressure wavelet
applied over a 6 ft segment centered at a depth of 37 ft. Similarly. Fig. 9 shows a sequence for
the same geometry with a shear wavelet applied over the segment. The loads in both examples
transition from zero to full traction over one element, rather than tapering. This is too strong a
discontinuity for a discrete model to comfortably support, and consequently some spurious local
oscillations (so-called hourglassing) are excited. Hourglassing is automatically removed at the
element level by using orthogonality of the element's model shape-, e.g., see [7].

The above results are useful in comparing different source types or in characterizing non-ideal
sources for input to a ray tracing model. These data are also necessary in order to interpolate
input to coarser models.

6.2. Inelastic source modeling

There are various approaches to simulating underground chemical explosions. One is to apply
a pressure history to the boundary of a cavity defined at some suitable 'elastic' radius: another is
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Fig. 7. Velocity time histories versus takeoff angle for the calculation in Fig. 6. Amplitude is normalized to a unit
radius on radial lines from the center of the source region at 15 ' increments. The solid and dashed curses show radial

and tangential motion, respeciivelv, and quantify the source's radiation pattern.

to apply suitable initial conditions on velocity and pressure over an effective source region; and
still another is to model the expanding gases from the source starting from the initial explosive
volume. Of course the level of modelling detail can be further increased to include explosive
dynamics, vaporization, etc. More rigorous modeling is seldom necessary unless local effects like
cavity growth or cratering are important.
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If no information is available on nonlinear constitutive behavior of the near-source medium,
then the only alternative is to prescribe pressure or velocity on an 'elastic' cavity boundary.
Details of the time function are either chosen to populate an observed frequency spectrum, or
determined from experimental data in similar media. If a nonlinear model is available then bulk
initial values can be used to incorporate additional source physics in the simulation. The
nonlinear basis for the present source simulation is the cap model.

Chemical explosives typically exhibit confined detonation pressures of 2.9 X 106 psi (200
kbars) or less. Cap parameters are defined for pressures up to 200,000 psi in the alluvial-type
media of interest here. Therefore, the cap model cannot represent material behavior in the
immediate neighborhood of the detonated explosive. It is necessary to determine a radius where
pressure has decayed to 200,000 psi and prescribe initial values over this volume determined
from shock jump conditions. This is the basis for the bulk initial value approach used here. It has
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Fig. 10. Suites of vertical velocity seismograms for the nonlinear and linear explosive source simulations. Upward
velocity is plotted to the left. For ranges less than 85 ft the response is dominated by surface spal. Beyond this range

nearly linear response is observed, yielding 30 Hz single cycle wavecet-type motion.
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been used extensively by Sandier (81 and validated against a variety of explosive source
experiments.

The model examined here consists of a vertical cylinder of explosive 10 ft long and 0.25 ft in
diameter, with the upper end buried at a depth of 10 ft in homogeneous alluvium. Assuming a
nonlinear pressure decay proportional to 1/r 2 (for cylindrical geometry) yields the 200,000 psi
radius at about 0.5 ft. Therefore, the volume over which initial conditions are prescribed is 1 ft in
diameter and I Ift long. This volume of material is initially pressurized to P0 = 200,000 psi, with
initial radial velocity set to zero on the axis and increasing linearly to V at r = 0.5 ft, where V is
the particle velocity determined from the jump condition for a shock pressure of P0 and a shock
speed based on the secant modulus.

The finite element model examined here covers a 150 ft deep by 200 ft wide axisymmetric
region of homogeneous material (alluvium) discretized into 151 x 200 elements. On the model
axis, elements are 0.5 ft wide so that initial conditions are prescribed over a single column eleven
elements long. Figure 10 shows vertical velocity synthetic seismograms for both nonlinear and
linear simulations. The two lower suites are magnifications of the nonlinear calculation, while the
upper shows elastic response for a low-pressure wavelet applied to the cavity boundary.

Since the explosive source is very energetic, soil immediately above and to the side of the
model axis is spalled, i.e., launched at high velocity with complete tension cutoff. This clearly
violates the assumptions of small strain theory and no claim is made that this late time behavior
is realistic. However, the waves of interest have propagated beyond the source region before
mesh distortions and constitutive uncertainties invalidate the solution. In any event, at a range of
85-90 ft, vertical velocity has decayed to a small fraction of that over the shot. This behavior is
shown in the lower suite and magnified by ten in the middle suite to show additional details.
Upward velocity is drawn to the left in the individual seismograms. Referring to the middle suite,
beyond 110 ft the sequence of phases are, first a P-wave with upward motion (loading) arriving
at the elastic wave speed, then a stronger P-wave about 10 ms later with downward motion
(unloading), and followed by an S-wave with upward motion again. This up-down-up motion is
suggestive of the common velocity wavelet approximation used as source time function in
geophysics. Integrated yields a 30 Hz up-down (sinusoidal) cycle in displacement for the present
nonlinear case.

The elastic simulation shown in the upper suite confirms that the s!ope of the phases in the
nonlinear synthetics correspond to elastic wave speeds of the medium. Center frequency of the
wavelet is 300 Hz, which is nonphysical but chosen to maximize separation between the phases
while minimizing grid dispersion. Clearly, the frequency is not high enough to separate the shear
and surface wave since they differ by about 8% in phase velocity for such geologic media.

7. Discussion and conclusions

This paper has described a number of discrete wave modeling problems in geophysics.
including the simulation of large-scale 2-D refraction experiments, small-scale 3-D scattering
experiments, and axisymmetric seismic sources, both linear and nonlinear. All of these problems
require numerical solution because some level of nonseparability or nonlinearity precludes the
use of classical analysis techniques.

Since the finite element algorithms employed operate at the lowest level of numerical
sophistication practical for the problems at hand, i.e., linear, Cartesian elements and explicit

26



G. L Wojcik et al. / Wave simulation on the CRA Y-2 67

(leapfrog) integration, very little attention has been paid to theoretical background here since it is
well documented in the finite element and finite difference literatures. One exception is the cap
model for implementing nonlinear constitutive behavior, and so some theoretical background is
provided on this topic. The principal aims of the paper are to demonstrate the simulation and
performance capabilities of the CRAY-2, possibly the fastest and largest general purpose
machine available today, and to familiarize the theoretical analysis community with some of the
practical modeling issues and problems encountered in geophysics. These issues include (1) the
capacity for large-scale inhomogeneous models and their efficient implementation. (2) very fast
processing with very large. fast memory, and (3) capability for nonlinear behavior, material
attenuation, and radiation boundary conditions.

7.1. Large-scale modeling capacity

Regarding CRAY-2 machine capacity for large-scale simulation, we can comfortably assert
that 2-D models are well-resolved and appear cost-effective for most practical linear propagation
problems, however, 3-D models remain resource limited and are not cost-effective. Here the term
cost-effective means that simulations cost much less than the physical experiments. The reason
for the disparity between 2-D and 3-D capability is that, for explicit calculations, computational
and memory requirements grow like nd+ I where n is the number of nodes in a representative
direction, and d + 1 includes the problem's spatial dimension (d) and time dimension. For
example, if it is necessary to double a model's size or mesh resolution (halve the spacing), then
resource requirements increase by a factor of 8 in 2-D and a factor of 16 in 3-D. This additional
factor in 3-D is all too often prohibitive, not necessarily in terms of memory but more often in
terms of execution time.

In terms of the 3-D scattering model described above, the frequency resolution (element size)
is adequate but the symmetry conditions and depth are too restrictive to reproduce the full
experiment. As a consequence the model's size needs to be effectively doubled. For this more
realistic model the execution time would increase from 1.5 hours to 24 hours, while memory
requirements would increase from 20 million words to about 160 million. For this grid a
numerical simulation would probably cost twice as much as the experiment.

In the case of the 2-D refraction model considered above, the original discretization had twice
the element size of the final mesh. Unfortunately, this coarse model would not support wavelet
freo,.encies much above 1 Hz, and since the experiments indicated at least 4 Hz signal resolution
the element size was halved as a compromise. Consequently, the execution time went from an
original estimate of 1 hour to over 8 hours, and memory quadrupled from 5 million to 20 million
words. However, this simulation still cost a small fraction of one of the original refraction
experiments.

7.2. Speed and memory

The principal requirement for the large-scale simulations described in this paper is minimizing
disk I/O by retaining the entire model in fast memory. Thus, very large memories are necessary
and the 256 million words available on the CRAY-2 are adequate. However, there is a hardware
mismatch between scalar fetch and vector processing speed, which can seriously degrade
performance. Fortunately it can be circumvented by using less sophisticated inhomogeneous
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model representations at the expense of memory. This puts a serious limitation on problem size
when the memory limit is 2 megawords (early CRAY-1), but is insignificant with 256 megawords
available. Experiments with very large problems requiring upwards of 200 megawords show that
there is no degradation in performance as memory usage approached the limits of the machine.

The major issue in large-scale, explicit wave simulation is processing speed. In order to do
practical 3-D modeling, at least an order of magnitude increase in speed is necessary, for the
reasons cited above. Furthermore, this capability should not cost much more than present CPU
charges ($1000 to $3000 per hour say), otherwise we could use the CRAY-2 as it stands and pay
$25,000 to $50,000 per calculation. The point is to make 3-D calculations timely and affordable
by increasing speed while holding cost constant. The digital computer's forty year history and
present state shows that this is not an unreasonable expectation.

There are two avenues available to increase processing speed: one is to increase the central
processor's clock rate and the other is to increase the number of processors. A factor of three
increase in speed (faster clock, more efficient vector processors) can be reasonably expected in
the next generation of CRAY machines, and by using the four available processors a factor of 10
could probably be achieved. Unfortunately, the cost would be prohibitive since these multi-
processor supercomputers are in reality multicomputers, essentially four computers in one, with
the cost directly proportional to the number of processors used. The alternative is to use a
dedicated multiprocessor machine with slower processors but many more of them. This solution
of course depends on the ability to logically partition the problem, assign pieces to the
processors, avoid memory conflicts, etc. These are currently research questions but will be
addressed soon since machines are available and there exist large-scale problems demanding
solutions. However, it is not clear that CRAY-type machines will provide the necessary hardware
and software.

7.3. Nonlinear behavior, material attenuation, and boundary conditions

We gather here some comments on other technical issues illustrated by the source models
described above. These linear and nonlinear models are local refinements of the source regions in
large-scale simulations, and all are in homogeneous media. They were readily calculated on a
minicomputer rather than a CRAY.

The ability to model nonlinear material behavior is critical near energetic sources such as
explosions. This is not to say that mechanical devices do not involve some level of nonlinearity,
only that it does not obviously dominate the solution. Note that the nonlinear behavior
associated with medium to low stress levels has not been characterized to the extent that high
dynamic stress levels have. The important feature of nonlinear modeling with the cap and similar
plasticity algorithms is their extensive use of stress state tests and logical branching. This
branching effectively prevents vectorization of the algorithm. Consequently, nonlinear geophysi-
cal simulations are not vectorizable on CRAY-type supercomputers, hence are quite slow. An
alternative is to use parallelism to speed up the cap algorithm, but this is not yet feasible on
CRAYs.

None of the models considered here include anelastic attenuation, i.e., frictional damping. in
the material behavior. Although this feature is straightforward in implicit frequency domain
simulations, it is difficult to incorporate in the time domain. An implementation is available in
FLEX, using a standard linear solid algorithm tuned to give constant damping over a given range
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of frequencies. However, the requisite memory and arithmetic operations exact a significant cost.
Such ad hoc attenuation models should be used with caution when signal attenuation is an
important feature of a time-domain simulation.

Regarding boundary conditions, it is clear that discrete wave simulation models must be
truncated in space by suitable radiation boundary conditions. For the present examples, the
lowest-order condition assuming normal incidence of plane P- and S-waves was generally
adequate. Higher-order conditions valid for wider incidence angles are available [9], but in many
cases are unnecessary since boundary reflections from the model's side can usually be identified
in the synthetic seismograms.

Since virtually all theoretical work on time-domain absorbing boundaries assumes a homoge-
neous medium, any implementation is degraded when properties vary along the boundary, e.g.,
on the side. This depth variation is the rule in geophysics and should be accommodated in future
theoretical work. Some care must also be exercised on the model's lower boundary because the
typical increase of propagation speed with depth in geologic models causes waves to turn away
from the bottom. becoming more grazing there and less efficiently absorbed. Finally, note that
radiation conditions in nonlinear models present a host of new difficulties.

7.4. Conclusions

The calculations described here give an indication of our present ability to simulate large-scale,
time-domain wave propagation in nonseparable or nonlinear models. They show that one of the
most powerful supercomputers available today, the CRAY-2, can indeed perform very large,
2-D, elastic simulations efficiently, despite an imbalance between scalar memory access and
vector processing speeds. Of course this assumes that the principal processing loops are fully
vectorized. Explicit, linear wave solvers are well suited to vectorization, in contrast to nonlinear
constitutive algorithms for example.

The calculations also indicate that, for 3-D problems commonly encountered in geophysics,
still more speed is required. This is not to say that we cannot do useful 3-D simulations with the
CRAY-2. In fact the above scattering example shows that some limited but interesting 3-D
simulations in geophysics can finally be addressed at reasonable cost. What must be emphasized
is that cost grows so quickly in the third dimension, that only processor speed increases by one,
or better yet, two orders of magnitude, will push affordable model size beyond the minimum
required for adequate temporal and spatial resolution. Multiprocessor (not multicomputer)
hardware with distributed algorithms (e.g.. Connection type machines), or vector-parallel ma-
chines with suitable compilers (e.g., Alliant type), provide another avenue to achieving the
necessary speed increase.

Simulations of the type described here are the only means of investigating propagation
phenomena involving both range and depth dependent (nonseparable) or nonlinear model
properties. Other options like ray tracing or boundary integrals involve idealizations that are
unacceptable for this broader class of earth models. Note that discrete geophysical simulation
has, here and elsewhere, been used principally for the forward problem. As the above perfor-
mance issues are addressed more fully by software and hardware, it will eventually become
possible to implement discrete models for the inverse problem, i.e., in an optimization loop with
the synthetic data generated from discrete trial models. This possibility is perhaps the ultimate
goal of geophysical simulation research.
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A MATHEMATICAL THEORY OF
LIGHT DIFFRACTION BY DIELECTRIC WEDGESt

by

Gregory L. Wojcik
Weidlinger Associates*

ABSTRACT

The diffraction of light by dielectric wedges occurs whenever electromagnetic waves
illuminate a sharp edge on an interface separating different dielectric media, e.g., air and glass.
Such edges are often encountered in practice, for example, on prismatic and faceted transparent
objects, or, more generally, on nonconducting cylindrical and conical structures with polygonal
cross-sections. However, despite its common occurrence and intrinsic importance, dielectric
wedge diffraction has never been quantified due to the lack of an effective mathematical theory.
The reason is that, since distinct waves are coupled across the edge, their diffraction is
fundamentally a nonseparable, vector field phenomenon, hence, very awkward mathematically.

This paper presents a new vector theory for the planar canonical problem of two, contiguous,
semi-infinite, dielectric wedges, with a TM or TE polarized plane wave incident from the larger
wedge and parallel to the edge. The mathematical formulation, based on self-similar solutions of
the vector wave equation in two space dimensions, yields a vector initial-boundary problem in
connected complex half-planes. Solutions are found in terms of Cauchy-type integral
representations on the boundaries. Boundary conditions yield a singular integral equation to be
solved for the kernel of the boundary integral representation. The theory is developed for an
example that minimizes complexity while exhibiting all of the vector character, and evaluation of a
verification problem is discussed.

t Supported under AFGL Contract F19628-84-C-0102 and NSF SBIR Grant SI-8760089
* 4410 El Camino Real, Suite 110, Los Altos, CA 94022
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DESCRIPTION OF THE PROBLEM

1. Introduction
The phenomenon of dielectric wedge diffraction is encountered whenever electromagnetic

radiation illuminates a sharp edge on an interface separating two (or more) distinct dielectric media.

Many physical problems exhibit this type of diffraction, for example, the scattering of millimeter
(radar) waves from nonconducting cylindrical or conical objects with polygonal cross-sections, or
less conventionally, the scattering of micrometer (optical) waves from dielectric prisms or faceted

structures on semiconductor substrates. The phenomenon is particularly relevant to imaging by

means of diffracted radiation, e.g., radar cross-sections of nonmetallic, angular targets, and optical
metrology of small dielectric features.

Yet, despite the importance of dielectric wedge diffraction in many optical and radar
applications, no mathematical theory currently exists, either in physical optics or applied
mathematics, capable of solving the problem. The reason is, since waves with different speeds are
coupled across the interface at the edge, this is a vector rather than scalar wave phenomenon and

none of the mathematical formulations attempted over the last century are able to accommodate the
singular coupling of two or more, i.e, vector, wave functions on an interface with discontinuous

curvature. Consequently, there has been no effective way to satisfy boundary conditions globally.
Mathematical intrac' ,y persists even in the immediate neighborhood of the edge, when global

curvatures or ot-,_r "liaracteristic length" interactions can be ignored.
In what follows, the canonical initial-boundary problem governing plane dielectric wedge

diffraction is formulated and solved under the assumptions of classical field theory. This treamient
is appropriate provided the incident radiation is adequately represented by waves rather than

quanta. The mathematical problem is one of generalized vector diffraction since it considers ?
generalized interface, i.e., an infinitely sharp edge on a plane interface, separating two different
media supporting wave fields. The generalized two-wedge model consists of exterior and intenor.

two-dimensional, semi-infinite domains, with the larger wedge defining the exterior. It is assumed

that a plane, polarized electromagnetic wave is incident on the edge and parallel to it, with either the
electric component (TM polarization) or the magnetic component (TE polarization) directed along

the edge. For simplicity it is also assumed that the wave is incident from the larger exterior wedge
and does not reflect from the interface until it touches the edge. Clearly, since there is no spatial or
temporal variation in the geometry or incident field along any line parallel to the edge, the

problem's formulation may be confined to any perpendicular plane.

Some examples of generalized vector diffraction are illustrated in Fig. 1, showing incident,
reflected, transmitted, and diffracted wave fronts. The four cases drawn are combinations of two

interior wedge angles, 1200 and 60', and two relative wave speeds, c1 < c 2 and c, > c2, where cl
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Figure 1. Examples of dielectric wedge diffraction for plane wave incident on
600 and 1200 wedges.
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and c2 are speeds in the interior and exterior wedges, respectively. To illustrate some limiting

examples, the incident wave fronts are drawn nearly perpendicular to the line of symmetry in the

1200 wedges, and parallel to the upper interface in the 600 wedges. Note, as a general rule all

plane wave fronts propagating at c1 or c2 in the interior and exterior wedges, respectively, are

tangent to their supporting wedge's diffracted wave front or its "virtual" extension into the other

wedge. Thus, it is relatively simple to draw wave fronts for any incidence angle by continuig

tangentially off of the diffracted circles. Referring to the figure, the circular wave fronts constitute

the leading diffracted wave and the "triangular" wave fans are Mach waves excited in the slo'.c:

wedge by the faster diffracted wave grazing the interface. For the case of c1 < c2, as the interior

wedge angle decreases, the Mach wave fans will intersect, eventually reflecting between the

interfaces. This yields the most complicated situation in terms of analysis. The case of c1 > c2 is

generally simpler, although not as relevant to optical applications. In order to simplify the

presentation, this simpler case will provide the model for much of the theory's development.

The canonical vector diffraction problem illustrated in Fig. 1 is well-known in applied

mathematics, but has remained unsolved since its recognition in electromagnetism and elasticity

perhaps a century ago. In contrast, the associated scalar diffraction problems have been completely

solved. In 1896 Sommerfeld [8] gave a solution in the degenerate scalar wedge (27t included

angle), better known as the opaque screen. MacDonald [4] formally solved the first nondegenerate

scalar problem in 1902, with the first uniform asymptotic expansion, i.e., valid everywhere in the

domain, obtained by Pauli [6] in 1938. A variety of more direct scalar solutions have since been

derived, based primarily on separation of variables or transform methods, but also on the principle

of self-similarity, e.g., Keller and Blank [3]. In contrast to scalar diffraction, vector diffraction

involves two or more waves in one or more wedges, and the essential boundary coupling in

wedge-shaped domains defies separation of variables. This leaves the principle of self-similarity,

or equivalently, the theory of homogeneous solutions, as the most viable mathematical approach.

A study [10] by the present author has finally derived an effective self-similar vector theory.

There are two essential steps. First is transformation of the vector wave equation in the generalized

diffractor via self-similarity. This yields d'Alembert's classic string equation, i.e., the I-D wave

equation, in characteristic coordinates, which is solved by inspection. The solution is mixed, that
is, hyperbolic or elliptic over different parts of the domain, so substitution of the boundary

conditions yields a mixed boundary problem in semi-infinite strips. The second essential step is

transformation of the mixed strips to two complex half-planes by the so-called characteristic

mapping, essentially a Schwarz-Christoffel transformation, under which boundary conditions and

the real characteristics are mapped entirely to the real axes. By eliminating the hyperbolic

solutions, nonmixed elliptic boundary conditions are prescribed. This reduces the boundary

problem to a vector form of the Riemann-Hilbert problem on the real axes of two complex planes.
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By means of Cauchy-type integral representations, the Riemann-Hilbert problem reduces tj a

singular integral equation that must be solved on the two real lines.

The mathematical approach developed here is elegant, and straightforward once certain key

features are appreciated. It provides a consistent, constructive procedure for solving this most

difficult diffraction phenomenon. Of course, the problem's long history of intractability proves

that no formal analysis should be taken for granted, hence the need for numerical solution of the

integral equation to ultimately confirm the theory. Therefore, to validate the solution, numerical

results for the particular case of the canonical problem with c1 > c2 are discussed briefly at the end

of the paper. Although an all-encompassing analysis, valid for every combination of geometry,

input, and wave speed is not presented, the techniques developed here are necessary and sufficient

to analyze all such situations. However, these details must be left to future papers not burdened by

detailed development of the underlying mathematical theory.

The paper is presented below in twelve sections organized under five logcal headings. Under

DESCRIPTION OF THE PROBLEM, an introduction is provided (Sec. 1), Maxwell's equations

are reviewed (Sec. 2), and the mathematical problem is stated (Sec. 3). Under WAVE

SOLUTIONS AND THE INITIAL-BOUNDARY PROBLEM, self-similarity is introduced and

homogeneous solutions are determined (Sec. 4), the resulting vector initial-boundary problem in

semi-infinite strips is formulated (Sec. 5), and the characteristic mapping of the strip domains to

two complex half-planes is applied (Sec. 6). Under REDUCTION TO ELLIPTIC BOUNDARY

CONDITIONS, the hyperbolic part of solutions are determined (Sec. 7), and elliptic boundary

conditions on the real axes of the half-planes are derived in terms of vector Riemann-Hilbert (R-H)

problems (Sec. 8). Under INTEGRAL REPRESENTATIONS AND SINGULAR EQUATIONS,

the scalar R-H problems are solved for the basic structure of global solutions (Sec. 9), the vector

R-H problems are satisfied by Cauchy-type integral representations yielding a singular integral

equation (Sec. 10), and some undetermined functions are evaluated (Sec. 11). Under

DISCUSSION AND CONCLUSIONS, generalizations are discussed and a numerical solution of

the canonical problem is described (Sec. 12), and conclusions are drawn (Sec. 13).

2. Maxwell's Equations

Electromagnetic waves in linear, isotropic, time-invariant media are governed by a simplified

form of Maxwell's equations, namely

(2.1) VxH E , VxE

where E and H are the electric and magnetic field intensity vectors, respectively, while E is the

dielectric permirtivity and t is the magnetic permeability. This form assumes that the permittivity

and permeability are constant, so that gradients can be neglected. Note that electric current and
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charge terms have been omitted from (2.1) since they are not immediately relevant to the optical

applications of interest. For the nonmagnetic media considered here, It is essentially equal to its
vacuum value, 1aO , everywhere.

In two-dimensional, plane geometries it is convenient to decompose the electromagnetic field
into transverse magnetic (TM) and transverse electric (TE) components, e.g., see [21, from which
general polarizations may be obtained by superposition. In Cartesian coordinates, tl-.o: TM
polarization unknowns are EZ, Hx, and Hy, governed by Maxwell's equations (2.1) in the form

aH aH aE aE DH DE aH(2.2) H x z z _ Z E IH=

dx dy at ay a'Dt ' dx - aI t

and for TE polari-ation the unknowns are H2, Ex, and Ey, governed by
aH a)E aH DE aE aE aHz - -_ "--_.

(2.3) zH _ E YH dE E dE
dy dt ' dx F ' ax Dy at

In either case, taking appropriate time and space derivatives and eliminating the transverse field

components yields the scalar wave equation

(2.4) v2Af = a f

a~t 2

where f stands for E7 or HZ, v2 = l/Fti is the square of the speed of light in the medium, and A is

the Laplacian. Thus, the two polarizations are each governed by the scalar wave equation.
The above equations are valid provided there is no spatial variation in the permittivity. When c

is discontinuous across a material interface, certain continuity conditions must be applied there.
These are derived by, typically, integrating Maxwell's equations over the surface of an
infinitesimally thin "pillbox" ,urrounding part of the interface and applying Stokes integral

theorem, e.g., [9]. Evaluating the integrals shows that tangential components of the electric and

magnetic fields are continuous across the interface. For example, at a discontinuity in permittivitv

across the x-z plane, this means that Ez and H, (or dHx,,t) are continuous in the TM case, and

likewise for Hz and Ex (or DE,/Dt) in the TE case. From (2.2), it follows that TM or TE boundarv

conditions on wave equation (2.4) are, in general,

(2.5) ft = f  ' V, - 2 -

Subscripts denote the medium and coordinate n is along a vector perpendicular to the interface into

one medium. For the TM case, f = Ez and vi = l1t0 , while for TE, f = H, and vi = I/ci.

3. Problem Statement

The generalized, plane diffractor consists of two semi-infinite, contiguous dielectric wedges

defined by lines LI) and L(2) emanating from the origin at ang!cs "tI) and /2). These lines define

an interior domain with included angle o, < -r and an exterior domain with included angle c., > t,
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designated Q, and f2k respectively. Geometry and the polar coordinate system are illustrated in
Fig. 2, where, for convenience, it is assumed that L(1) coincides with the positive x-axis.

The applied electromagnetic field is a TM or TE polarized plane wave incident from exterior

wedge C2 onto the vertex at time t = 0, with a unit step or jump across the wave front. More

conventional time-harmonic response may be obtained by convolving a sinusoid with the solution

to this step input. There is no need to specify a particular wave polarization at the outset since only

constants in the boundary conditions differ.

Each wedge supports a scalar wave function, f, or f2, in domains 01 and 02 respectively.

Therefore, the two governing wave equations can be written in vector form as

(. AK]f 2 ] K --4 c2Af -ftt = 0

where cl = 1/,IElp. and c2 = 1/'e2A are wave speeds, scalar Laplacian A[] = [], + []r + [103/r 2

operates on the elements of the vector and partial derivatives are indicated by r, 0, and t subscripts.

Definitions of diagonal matrix c and vector f are clear from (3.1).

The two wave functions are coupled by boundary conditions on set DO, the union of Q-
domain limit points. In addition to the wedge interface, L M L) u L(2), these limit points may
include infinitesimal circular arcs bounding the vertex as r -- 0. The two boundary conditions on

the interface, (2.5), can be written

(3.2) vl 1[] f [ I0 f [2 -* vfo + f =O0
0

where definitions of boundary condition matrices v and T are obvious. Since the matrix

coefficients have independent rows, each term in (3.2) can be multiplied by an arbitrary coefficient,

e.g., to nondimensionalize or otherwise transform the boundary conditions. Continuity of ft rather

than f itself is included in (3.2) to make the order of differentiation the same in each equation,

thereby simplifying the analysis with no loss of generality. For simplicity, no conditions are

considered on the vertex, nor are any source terms included on the interface.

Completion of the problem statement requires two initial conditions representing the incident
plane wave. These conditions are prescribed on the wave function vector and a derivative in time

or space, or two derivatives, provided only that they are independent. Conditions on ft and f. are

preferred for the advantage of working with the same order of derivative. The incident plane wave
in Q, for t < 0 is given by step function H(c2t - xcoso - ysino), unity for positive argument and

zero for negative. Constants coso and sino are components of the wave front's unit normal at

angle 0 to the L(1) interface (x-axis). Converting the argument to polar coordinates and dividing by
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Figure 2. Geometry of the canonical diffraction problem.
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r yields
(3.3) f2 (r,O,t) = H(c2r/r - cos(0 -

Taking derivatives and setting t = 0 gives the initial conditions in terms of the delta function as_ 32(r,,O= 5_oo fi,O,O)=
(3.4) _f2(r'0'0) 0)) ' ,0 -sin(O -0)8(-cos(e -0))

at r A

where the argument has two simple zeros in interval 0 < 0 5 21c, one at 0 = + 7r/2 with positive

slope, and the other at 0 = 0 + 3n/2 with negative slope. Based on these slopes, the delta
function's argument is further transformed to yield initial condition on wave vector f in the form

(3.5) -~~L ft(r,0,0) = fe(r,0,0) =56- i V

with the (+) sign for the half of the wave front on 0 = + 7r/2, and the (-) sign for the other half on

0 =b + 37t/2.
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WAVE SOLUTIONS AND THE INITIAL-BOUNDARY PROBLEM

4. Self-similarity and Homogeneous Vector Solutions
Because the generalized diffractor lacks a characteristic length, self-similar solutions of

governing equations (3.2), (3.3), and (3.7) are admissible. Such solutions are given by
homogeneous functions of degree h, namely, functions satisfying f(r,e,t) = thf(r/t,0). The most

tractable and directly useful for the present case are of degree zero. In principle, functions of non-
zero degree can be obtained from these by differentiation or integration.

Defining scalar similarity variable p - r/t and transforming vector wave equation (3.1) using

differential relation rfr = -ft = pfp for homogeneous functions of degree zero, gives the reduced

wave equation
(4.1) p2  2 2I)f + c2 f + p(c 2 -2 ) fP=

PP 00P

where I is the identity matrix. Observe that the leading coefficient vanishes at pI = 0 and p1 = c,
indicating a singular point at the vertex and singular circle on the diffracted wave front,
respectively. It follows that the reduced wave equation is of mixed type across pl = c, i.e.,

hyperbolic outside the diffracted wave front and elliptic inside.

A direct solution of this self-similar form of the vector wave equation begins with the
transformation to characteristic coordinates. Writing the characteristic equation , e.g., see (81, and

solving for dO/dp gives the ordinary differential equation
(4.2) dO = + c (R/p 2 - = + d(costc /P)_ C_

dp dp

which also serves to define the so-called characteristic function, C+(p), exhibiting a pole at P = 0,

branch point at pI = c, and a double zero as p--oo, with double-valuedness included explicitly by
means of the ± sign. Principal values are assumed for the square root and inverse cosine

functions, which are continued through the branch point as

(4.3) p2I-c 2 --* i cT- p2  , cos-c/p -- icosh-lclp

These continuations insure that (4.2) is valid for all values of p. Multiplying (4.2) by dp,
integrating and rearranging yields

(4.4) 01 ± cos-cc/p = w±- u+v

where diagonal matrices w± = u ± v are constants of integration defining the characteristic

coordinates. Since v a cos-1c/p - i cosh-Ic/p, diagonal elements of v are real for pI > c and
imaginary for p1 < c, hence, the characteristics are real outside the diffracted wave front and

complex inside.

Reduced vector wave equation (4.1) is transformed to characteristic coordinates by replacing
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derivatives via the chain rule as
(4.5) f0 = f" + fw fp = C+f,+ + C-f

This yields the normal vector form
(4.6) fw+W,- = 0

which can of course be integrated directly giving d'Alembert's classic solution

(4.7) ff(p,O) = F+(w ) + F_(w_)

where F± are two unknown vector functions. This solution is of mixed type, changing from

hyperbolic (real characteristics) to elliptic (complex characteristics) across v = 0. Singular line v =

0 supports the diffracted wave front and is itself characteristic since it satisfies characteristic
equation (4.2), albeit degenerately. In the elliptic domain note that F± are complex conjugates and

C+ = -C_ is imaginary. Therefore, in terms of F., derivatives of f become

(4.8) f, -F. + F.= , + = C+ F' + CF- C+(F+ -F)

For later reference it is useful to examine asymptotic solutions of the reduced wave equation

near its singularities at pI = 0 and pI = c. In the neighborhood of the origin, (4. 1) and its solution

by separation of variables are

fInip (a + 0b) , X = 0

(4.9) p2fpp+ pfp+ foe 0 = f(p,0) = _X;(aos0 . biO
1p (a cos%+ bsiO X),X*0

where coefficients a and b, and separation parameter ?. are real diagonal matrices. On L(1) and 0 2)

these must satisfy boundary condition (2.5) with normal coordinate n replaced by 0, where fl, f2

are evaluated at 0 = 0, 21r, respectively, on L), and at 0 = 0), on L(2). For the X = 0 solution this

gives b = 0 and a, = a2. However, for X, * 0 the boundary conditions can only be satisfied if v, =

±v2. The minus sign is irrelevant, while the plus sign corresponds to the TM polarization and

yields coefficients a1 = a2, b, = b2, and exponents X1 = X2 = ±m, for m a positive integer. The

negative exponent must be eliminated because the resulting energy density, proportional to the

square of f(p,0), is nonintegrable. The positive exponent must also be eliminated because it

requires that the field vanish like pm in a zone spreading uniformly from the vertex as time goes to

infinity for a constant p - r/t << 1. This null zone is nonphysical and consequently, the only

solution valid near the vertex is the first of (4.11), i.e., f(p,0) = allnp I.
In the neighborhood of the diffracted wave front, i.e., pI = c ± where 0 < << 1, reduced

wave equation (4.1) and its solution by separation of variables are

(4.10) 24f + f + I f 0 = f(p,0) = (1 + k()/ pI-cl )(a + 0b)

where k(±), a, and b are diagonal matrix constants, with k(±) defined on either side of the circle; the

separation parameter is identically zero. This solution only yields a local estimate of the solution's

behavior because boundary conditions are not considered. Nonetheless, (4.10) shows that f and
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f. are continuous across the circle and have a vertical tangent there by virtue of the 4Ic - pll term.
Note that continuity also follows by contradiction since the well-known geometric amplitude decay
at a jump or infinity across a cylindrical wave front, namely, i/Vr, is inconsistent with the self-
similarity assumed here. Such jumps would require a homogeneous function of degree h -/2
rather than h = 0. By the same reasoning, continuity applies to all 0 derivatives because there is no

explicit 0 dependency in (4.1).

5. The Vector Initial-Boundary Value Problem

In order to solve the diffraction problem, particular solutions for F± must be found that satisfy
the initial and boundary conditions on the transformed wave domain. These conditions must first
be transformed to their self-similar, characteristic forms.

Transforming the boundary conditions to the similarity variable gives
(5.1) vf9 + 'fp = 0

where the second term has been multiplied by -t2/r to achieve this form. The boundary condition

on F:, is found by eliminating f. and fP in (5.1) using (4.8), giving

(5.2) [v + t C+1 F+ + [v + "t C F_ = 0

or, in component form LV F. 22] ::
(5.3) F1 C, 2 cjFi:] + LV I- C- FIF' Lo, 2 F' 0

Transforming derivatives in initial condition (3.5) to the similarity variable, where fit =-Pfp

yields

(5.4) f,(r,0,0) = irn f,(p,e) ft(r,0,O) = Urn P (p,0P -- _p --)o r P

Replacing the left sides from (3.5), the right sides from (4.8) with C+---) c/p2 as p-*oo. and

solving for the limits of Ft' gives

(5.5) lim F =: 8(u2 - - T n/2)Fj

These transformations of the boundary and initial conditions to self-similar forms (5.2) and
(5.5) provide a complete statement of the mixed initial-boundary problem for F.' in the
transformed wave domains illustrated in Fig. 3 for an example that will be used later to

demonstrate particular solutions. Each of the two mixed domains drawn in the figure, D, n = 1,
2, are spanned by diagonal coordinates un and vn, with hyperbolic Qnt t and elliptic D-nE
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subdomains corresponding to real and imaginary vn, respectively. The conjugate elliptic domains

covered by complex variables wn. and wn., are drawn perpendicular to the hyperbolic domains

covered by -450 and +450 lines, namely, wnj = un ± vn. Limits on un are Yn) < un S yn) + (n'
where 7(n) is the angle of L(n) and con is the included angle of i n. Real limits on v, are 0 < vn < n/2

(hyperbolic subdomain), where vn = ir/2 corresponds to the initial state at t = 0 (or r -. 0-); and vn

= 0 is the map of r = cnt, the diffracted wave front. Imaginary limits on vn are iO < vn < io, where

the upper limit is the map of limiting arcs surrounding the vertex. By virtue of the vector form of
the problem, subsequent references to these domains, coordinates, and solutions will drop the

subscript or superscript. For consistency, matrices y and (o are defined as01 0 01 01
(5.6) 'Y [0

Initial condition (2.4) is given on line v = 7t/2, corresponding to p - o (i.e., t -) 0 or r -- 0),

while boundary condition (2.3) is prescribed on lines u = it and u = y + w.

6. The Characteristic Mapping

Determining global elliptic solutions of the initial-boundary problem is complicated by

geometry of the mixed vector wave domain, consisting of a semi-infinite strip in the u-v plane with
real (hyperbolic) and complex (elliptic) characteristic coordinates changing across the diffracted

front, v = 0, also a characteristic. Applying boundary conditions on the strip perimeter is

inconvenient because the boundary parametrization changes at corners and the conditions are of

mixed type.

Clearly, the problem would be better posed if it involved only elliptic conditions on a circle or
half-plane, i.e., a single-parameter boundary. For a conventional scalar elliptic problem on a strip.

it is natural to apply a conformal mapping in order to parametrize the boundary by a single variable.

A similar approach is effective in the present case, although the ransformation is on a characteristic

variable rather than the conventional complex variable. This yields the so-called characteristic

mapping, z(w+).

Consider a succession of mappings of characteristic coordinates w, beginning with linea.r

transformation

(6.1) n oyl (w t -

which scales the u coordinate of the vector wave domain (i.e., width of the strip) between 0 and 7t.

Taking the cosine

(6.2) Cos (it YI1 (wt- y))

maps the boundary to the real axis, with w+ and w- elliptic subdomains going to the lower and
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upper half-planes, respectively, while the entire hyperbolic subdomain maps along characteristics

to the real axis between -I and +1. Finally, taking the reciprocal,

(6.3) z = [cos (Trtw (w - x + i y

maps the elliptic w+ subdomain to the upper half-plane, w_ to the lower, and the wedge vertex to

the origin. The hyperbolic subdomain now maps to the real axis, on -I > x > I. This is the

canonical domain for the vector initial-boundary problem.

Characteristic mapping (6.3) of the mixed domain is a generalization of the familiar Schwarz-

Christoffel transformation of semi-infinite strips to half-planes. However, the transformation is

much more robust in this context since it maps the entire boundary to the real linen and effectively

removes the hyperbolic part of the wave domain. The elliptic part of the strip maps conformally to

the half-plane, while the hyperbolic part collapses or folds nonconformally along the characteristics

to a finite or semi-infinite segment of the real axis. This segment is coincident with the map of the

v = 0 diffracted front. Consequently, boundary conditions on the mixed interfaces are transformed

along characteristics to conditions on the diffracted front. There is a one-to-one mapping of points

on the diffracted front to -I _> x > I, but a multivalued mapping of the hyperbolic and mixed

interfaces onto this range.

What remains is a boundary problem for the elliptic part of F+ on the real axis. This elliptic

part is redefined for convenience as

(6.4) F±(w±(z)) W(z) = U(x,y)+i V(x,y)

where W(z) satisfies the reflection principle, i.e., W(z*) = W*(z), since F ' and F_ are complex

conjugates and map to the upper and lower half-planes respectively. The problem is to determine

W(z) by continuation of the transformed boundary conditions on y = 0.
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REDUCTION TO ELLIPTIC BOUNDARY CONDITIONS

7. Hyperbolic Solutions
It is necessary to begin by solving the initial part of the problem, i.e., solutions in the

hyperbolic subdomains. These subdomains consist of rectangles in the w plane and the solution

procedure is simply the method of characteristics for the 1-D wave equation, e.g., the string

equation. However, in this problem there are two types of hyperbolic unknowns to be
determined-non-mixed and mixed. Non-mixed or explicit unknowns are associated with the
initial condition and constitute the system of incident, reflected, and transmitted plane waves.

Mixed or implicit unknowns are associated with the Mach envelopes in the slower wedge and are
composed of plane waves excited by the "superluminal" diffracted wave in the faster wedge

grazing the interface. The hyperbolic wave solutions are developed in this section, and

demonstrated for the example in Fig. 3.
The incident plane wave follows from initial condition (5.5) on the strip end by direct

continuation. Since v -7 t/2I as t -- 0 or p - oc, and therefore w2-- u2 ± 7t/2, then (5.5) may

be rewritten as

(7.1) F2  - 5(w2+- (0 + 27t)) , F2_ = (W2_- )

Characteristics w2,= 0 + 27t, w2-= 4 support the two halves of the incident wave front on either
side of the interior wedge-with the plus characteristic below and the minus characteristic above.

Moving along the characteristics toward the interior wedge, the waves either reflect off each
interface or one may terminate directly on the exterior diffracted front in the case of a shadow. The
case depends on whether the wave front normal through the vertex at t = 0 is inside or outside the
interior wedge, e.g., see Fig. 2. Reflection points at p( t) on L( 1) and p(2) on L(2), if they exist,

follow by setting the argument of the delta function in (7.1) to zero and solving for p, whence

(7.2) p0) = c2/cos(o) p (2) = c_/cos((01 - )

Boundary coadition (5.2) must be solved for the reflected and transmitted wave coefficients at

these points.

If the reflection point is on a hyperbolic interface, i.e., p(i) > max.[c l ,c2 ], then the boundary

condition can be solved explicitly, with solutions continued off the boundaries as reflected waves

in the exterior and transmitted waves in the interior. Continuation of the delta function is

accomplished using the identity
(7.3) g'(s0)6 (g(s)) 8(s - s )

where so is a simple zero of g(s). The complete system of non-mixed waves generated by

reflection and transmission of the incident wave becomes quite involvcd if the interior wedge angle

is small. However, a straightforward tree-type data structure of characteristics organizes the
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system for complete analysis. Thus, the non-mixed hyperbolic problem reduces to systematically

calculating the reflection and transmission coefficients from (5.2) at each non-mixed branch point

on the characteristic tree until these characteristics terminate on a mixed interface or the diffracted

front.

If the reflection point of the incident wave, or subsequent reflected and transmitted waves, is

on a mixed interface, i.e., max.[c1,c 2] > p(i) > min.[cc 2], then reflection occurs within a Mach

envelope consisting of a continuum of mixed waves emanating from the interface. No plane wave

is transmitted since the solution there is elliptic (so-called evanescent). Furthermore, the reflected

wave can only be solved implicitly in terms of this elliptic solution because boundary condition

(5.2) is mixed (hyperbolic-elliptic). As the interior wedge angle decreases, these Mach envelopes

intersect and eventually reflect between interfaces. This does not affect solvability but does make

the analysis much more tedious. Again, a tree-type data structure is helpful in organizing the

system.

To illustrate these points, explicit and implicit hyperbolic solutions will be determined for the

case shown in Fig. 3. Referring to the figure, the w2- = 0 characteristic su ortig incident wave

F2 ' above the interior wedge contacts L(2) at p(2) on a hyperbolic segment. The unknown reflected

and transmitted waves are F2,' and Ft.' respectively, and Fl,' vanishes since there is no incident

interior wave. Similarly, the w2, = 0 + 27r characteristic supporting incident wave F2,' below the

interior wedge contacts L() at p(l), also on a hyperbolic segment, where F2-' and F,+' are reflected

and transmitted waves and F1.' vanishes. Accordingly, solving boundary condition (5.3) on either

interface yields

(7.4) FT = ±AF2 I F - Q-- A)F )

where the upper and lower signs correspond to solutions on L(W), i = 1, 2 respectively, F2' (i) is the

incident wave, (7.1) evaluated on L(). The other terms are given by

0) W(i) = 1 Q(p) V
(7.5) A = AT -I Q0+ I IV I  C 2+( P )l

with Q(i) Q(p(i)), and AR(O), AT(O) defining the conventional Fresnel reflection and transmission

coefficients.

These boundary solutions are continued off the interfaces into 01 and C.2 by changing the

delta function's argument in (7.1) at p(i) according to (7.3). Thus, the reflected and transmitted

waves become

(7.6) FA8 (w2 ) - F A (w2-w) , F W 5(W - w(O)
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=21c- w , = 2(1), - w =cosAl(c 1 ) , w(I = (0 - (cs1(cp)

As an example of solutions on a mixed interface, consider Fig. 3 when c1 > p(i) > c2" In
boundary condition (5.3), Fl±' are now elliptic while C1± are imaginary. Solving on either
interface for the reflected wave yields
(7.8) F2' _. Qi(F' + - F'_) + F2( = -i(F

(78 V 2 1+ 2 V 2 I1 I

where again, F2' (i) on the right is given by (7.1) on LWi) and the upper and lower signs correspond

to solutions on L) and L(2). These hyperbolic boundary solutions are real since F1±' are complex

conjugates. Thus, the mixed waves in the Mach envelope can only be solved implicitly in terms of

the elliptic solutions plus the incident wave. Observe that the reflected wave can be eliminated

from (7.8) resulting in

(7.9) (1 -F i Q) F' + (l ± i Q) F_ = 2 v2 F"
-+ VI 2t

This provides a scalai condition on the elliptic unknown along the mixed interface that can, in

principle, be used to determine the local behavior of F1 ±' and thereby evaluate (7.8) at the

reflection point. However, this will be deferred to Sec. 10 where global elliptic solutions are

considered.

8. Elliptic Boundary Conditions
Since the characteristic transformation is only conformal on the non-mixed part of the

boundary (F1±' and F2+' both elliptic) the form of boundary condition (5.2) is invariant there and

nowhere else. In contrast, whe-ever F,' is mixed (F1±' elliptic and F2 ' hyperbolic, or vice versa)

the boundary condition must be modified by eliminating the hyperbolic solutions, resulting in

elliptic conditions only. Thus the simplified geometry provided by the characteristic mapping is

obtained at the expense of a modified boundary condition on -1 _ x _ 1.

Conditions on the non-mixed elliptic part of the boundary, which extends from the origin to

the map of p = min.[c1 ,c2 ! are simply found by substituting (6.4) into (5.2) and rewriting as

C1 (W -X) - C2+(W:- W-) = 0

(8.1)
(+ ++

1 +W - v 2(W 2 W) = 0

where ± superscripts denote limits from above and below the real axis, hence complex conjugates.

Solving for the real and imaginary parts gives
V(8.2) V2 = V- Q V , U 1 = v2 U2

2 2

where the relation between p in Q(p), xI, and x2 is readily found from (6.3) to be
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(8.3) -L = -lcosh[l cosh TI = -Lcosh[mZ-coshfI]p c1I I 2 1 X

Note that these elliptic boundary conditions yield another, more explicit interpretation. Effectively,

(5.2) states that [V + 'C CjW is imaginary on the boundary, equal to±iR say, whence, solving for

W± and expanding gives the factorization
-- i c2  -

v2 pR + - R
2- 2

(8.4) WI I FC 2 -
v c 2 2 ic

12 I- P - V2Cl P2 v1pR 1 ±F P

i.e., an explicit expression for boundary values of W(z) in terms of unknown real function R(x).

This indicates the singular endpoint behavior expected in W±, and will be useful later in

establishing the final form of W(z).

Conditions on the mixed hyperbolic-elliptic parts of the boundary follow by eliminating the

hyperbolic part. Critical to this elimination is wave field continuity across the diffracted wave

front, also a characteristic, since the continuity condition provides an additional equation that can

be solved for the hyperbolic solution. Therefore, the hyperbolic solution is eliminated between the

boundary and continuity conditions. Continuity of f and f. has already been established from
wave front solution (4.13) and the discussion following it. Therefore, from (4.9), f0 = F,'+ F' is

continuous, hence

(8.4) (F' + F_) 0 = (F' + F')I 0

where the left side is hyperbolic and the right side is elliptic and equal to 2Re[F+']. Effectively, the

hyperbolic solutions are eliminated by continuing them to the diffracted wave front and substituting

into (8.4), yielding a condition on the real part of the elliptic unknown. For the explicit waves this

provides a relation on the elliptic unknown in one domain, however, for the implicit waves, i.e.,

Mach envelopes, it yields a relation between elliptic unknowns in both domains. In either case the

resulting elliptic equations are mapped conformally to the half-plane boundaries by the

characteristic transformation, yielding the necessary boundary conditions.

To illustrate the procedure, the example in Fig. 3 will again be used. The characteristic

transformation for this case is shown in Fig. 4. Significant points on the interface and diffracted

fronts are labeled A through F, where points A' and C correspond to the tangent point of the

leading Mach wave emanating from A and C. Points B and E bisect the diffracted fronts and are

mapped to infinity by the transformation. Note that this case, with cl > c2, provides the simplest

domain in which to formulate and solve the elliptic boundary problem since the hyperbolic

solutions (plane waves) do not undergo multiple reflections.
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For the explicit hyperbolic solutions, continuing the reflected and transmitted solutions in

(7.7) along characteristics to their respective diffracted fronts and substituting into (8.4) yields

conditions on the elliptic solutions defined there. Characteristic transformation (6.3) then maps the

resulting elliptic conditions conformally to the real axis of the z, and z2 half-planes. Transforming

the delta functions in (7.7) on the diffracted front via (7.3), substituting into the left side of (8.4),

and replacing the right side by 2U = W+ + W- gives the desired relations as

(8.5) U, 2 A 1 (x- xl ) ' 2 - 2 5 x-X 2

)_ _it 1 x0) (xi 2 _ 1 ,CO = cI ) 1 (w( 0 - 7)1-1

valid on the real axes of the complex half-planes, with i = 1, 2 on maps of AB and BC in the z1

plane and A'E and EC' in the z2 plane, respectively.

To illustrate elimination of the implicit hyperbolic solutions, consider Mach fan solution (7.8).

Observe that in this example the Mach fans are supported by only one characteristic and yield so-

called single wave zones near the diffracted front. Therefore, continuation along either w or w-

characteristics to the front and substitution into (8.4) yields the elliptic conditions. Hence, on maps

of mixed interface segments CD and AF, the elliptic conditions equivalent to (7.8) are

(8.6) U 1 V U F'0)
62 = :QV 1  + 2 z±- v2 -1 22-+

relating the real part of W2 to the real or imaginary part of W1, with F2' (i) representing delta

functions (7.1) evaluated on L(i ). Transforming the delta function's argument from p to x, via

(7.3) and eliminating U2 from (8.6) gives

(8.7) U1 ± QV1 = Q 8

- xQ I - (X(I) 2  
, X.10 = [cosh c (-2 i

which is equivalent to (7.9) and relates the real and imaginary parts of W1. The upper and lower

signs are for maps of segments AF on L(I) and DC on L(2), respectively, in Fig. 4. In general, the

relation between p, xI, and x2 follows from (6.3) as
(8. 12) 1 = _- cosh[ (0= 11 1 *I

-csh 1 cof n I = cs I C2 n IX2 11

Thus, for a given x, or x2, the value of p in Q(p) and other terms evaluated on the mixed interface

are known.
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INTEGRAL REPRESENTATIONS AND SINGULAR EQUATIONS

9. The Scalar Riemann-Hilbert Problems

The boundary conditions derived above, namely, (8.2), (8.5), (8.8), and (8.9), relate real

and/or imaginary parts of the unknown elliptic functions. These equations couple parts either

between the two domains or within one domain only, defining respectively, vector or sclar

boundary problems. The scalar problems given by (8.5) and (8.9) are solved below in closed-

form. Their solutions establish the fundamental structure of representations used to formulate

vector boundary problems (8.2) and (8.8) in the next section.

Determination of an analytic function in the complex plane given a linear relation between its

real and imaginary parts on a curve or contour has come to be called the Riemann-Hilbert problem,

e.g., see [11, or [2] for an exhaustive treatment. This is precisely the type of boundary problem

derived above on maps of mixed segments CD and FA, as well as diffracted fronts ABC and

A'EC' on the real axes in Fig. 4. The solution of Riemann-Hilbert problems on the real axis

follows a straightforward procedure based on factorization methods and Cauchy-type line

integrals. Fundamental to this procedure is the representation of analytic functions in the half-plane

by Cauchy-type line integrals over segments of the real axis.
The basis for all that follows is: given the imaginary part of an analytic function on a segment

of the real axis, then the function can be represented by a Cauchy-type line integral on this

imaginary part over the segment. For example, if M(z) is analytic off the real axis, satisfies the

reflection principle, and its imaginary part is known on [Xa,XbJ, then representations of the function

and its boundary values are

M(z) Xt Jn +M (s) ds + N(z)

(9.1)
Xb

M, (x) = IJl"JI()I ds + N(x) ± i lm[M*(x)]

The integral is a particular solution of inhomogeneous equation M' - N = i2lm[jF], while N(z)

is a solution of homogeneous equation N - N- = 0, hence, N is real on [Xa, Xb]. This type of

representation is a generalization of the Poisson integral formula on the half-plane, or equivalently,

the Hilbert transform, and is readily mapped to arbitrary curves and contours. The second

equation in (9.1) is the limit of the first as z -4 x from above (+) or below (-) the axis. The

singular integral is evaluated as a Cauchy principal value and the imaginary part is the result of

integrating around the Cauchy pole on an infinitesimal half-circle.
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With this background it is natural to begin the analysis with (8.9) after putting it into the io-

called Riemann form, i.e., in terms of W1± as

(9.2) (1:F iQ)W+ + (l±iQ)W = 2Q l 4(x 1 -X6

Dividing through by the first coefficient on the left, introducing the factorizations

(93)G + -I iQ B+

(9. I- liQ '

and dividing by G+ and B4 = -B- yields

(9.4) WI W - 2Q 5) - X

BIG BIG BIGI(1: Q)

This is the normal form of Riemann-Hilbert problem (8.9). Comparing to (9.1) the solution is
(9.5) W1(z1) = Bl(z1)G,(z,) {Hl(z1) + Pl(z,))

where H1(z1) is some homogeneous solution, real on segments (-1,-a), (a,l), i.e., excluding

endpoints, and P1(z1) is the particular solution

(I)

(9.6) P= +  Q - 0) + {B- +1 Q
IG I I- I  IGz1 -x1

consisting of simple poles. These poles result from integrating the delta function and evaluating

via the sifting property. The coefficients are real since B1
+ is imaginary and G1  is the complex

conjugate of(1 - iQ) on [a, 11 and (1 + iQ) on [-1,-a].

The completion of representation (9.5) requires expressions for B1(z1) and Gl(zl). Taking the

principal-value logarithm of the factorizations in (9.3) yields the log Riemann-Hilbert forms
+ +

(9.7) InG+ - In G- =I 1± =+i i2tn Q InB+ - InB 13 In (4) i =II iQ - I

A particular solution for In Gl(zl) is therefore

t n I If a-a IQ s(9.8) InG(z) = ft- l -
a -1

2 1 sltan-IQ(sl)it f ' ds, = R~z)

and a general solution for In BI(z1 ) is
I -a

(9.9) In B,(z 1) = W2 ds + 'is -1 zI ,+ In 31(z)
-1
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S (zI + a)(z1 -1)

(zi - a)(Z + 1)

where In 1 is the homogeneous solution. Exponentials of (9.8) and (9.9) yield
r() B1(z) = +(z1) (z1+a)(z 1 - 1)

(9.10) G1(z) = ez 1-a=(z1 + z)

Thus, B, has branch cuts on [-1,-a] and [a,1], and since 03(z,) may have arbitrary zeros or poles

at the endpoints, Bj(zj) can exhibit square root branch points in either the numerator or the

denominator, despite the ordering in (9.10).

The remaining scalar Riemann-Hilbert problem in the z1 plane is given by the first of (8.5),

representing the transmitted waves on A'B'C' in Fig. 4. The Riemann form is

(9.11) W+ + W-. = 4')8(x -1

These delta functions are continuations of those in (8.9) as the reflection points move from mixed

to non-mixed segments of the interface. Therefore, the solution of (8.5) may be included directly

in that of (8.9), namely, (9.2), by extending the definitions of B1, H1, and P1. In particular, if the

branch points in B1 at x = +1 are moved off to ±-0 so that Bj(z) has branch cuts on [a,o), (-oo,-a]

rather than [a,1], [-1,-a], then dividing (9.10) by GI+B1
+ = -G1 B1 - and solving the Riemann-

Hilbert problem yields (9.5) with P1 redefined as

) (2)~~~[i AT !  A ~
(9.12) P_(Z_ + B G ~T Z1

which is real since B1
+ is imaginary and G1  is real on [1,a),(-o,- 1].

In the z2 plane, the scalar Riemann-Hilbert problem is given by the second of (8.5)

representing reflected waves on FED' in Fig. 4.. Following the above procedure, the normal

form can be written

(9.13) f2 _ 2
B+ B- B+5(2-X

B2  B2  B2

where B2 (z2) has branch cuts on (-o-,-b], [b,o),i.e.,

(9.14) B2(z2) = P2(z2) Z- b

where P2 has poles or zeros at the endpoints. A general solution is

(9.15) W2(z2) = B2(z2) {H2(z2) + P2(Z2))

where homogeneous solution H2 is real on C"E'A" and particular solution P, is
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(9.16) P2(z2) = -04) 1 + f -

S27CB 2 j z 2 - x2  21rB 2 j 2
which is real except at the poles. Note that this solution does not include the case where the point
of reflection is on the mixed interface segment since the corresponding boundary condition, (8.8),
is a vector Riemann-Hilbert problem.

10. The Vector Riemann-Hilbert Problems
Solutions of the scalar Riemann-Hilbert problems, (9.5) and (9.15), yield global

representations of analytic functions Wl(z1) and W2(Z2) that include unknown functions H1(z1) and
H2(z2). To complete the solution, these unknowns must be determined so as to satisfy the
remaining vector Riemann-Hilbert problems, given by (8.2) on maps of DOF and (8.8) on maps of

C'D and A'F, namely

(10.1) V = V2 
1V V2 U2

I V 1 Q 2 1, V 12

for x1 on [-a,a] and x2 on [-1,1], and

(10.2) UI = -2  
+

U2 2 8(X 1

forx, on [-1,-a], [a,1] and x2 on [-b,-1], [1,b].
Homogeneous factors H, and H2 are, effectively, residuals derived by multiplicative and

additive removal of the scalar boundary behavior. It follows that the imaginary part of H1
+ exists

only on [-a,aj, i.e., Hj + is complex on [-a,a] and real elsewhere. Similarly, the imaginary part of

H2+ exists only on [-b,b]. Therefore, from (9.1), representations for HI and H2 can be written in
terms of Cauchy integrals on the imaginary part, plus homogeneous solutions. Accordingly,

replacing H1 in (9.5) and H2 in (9.15) yields the final representations for Wt(zj) and W2(z2) as
),La(BIG,)- K (sl)d I +E~1 lZ)

(10.3) W,(zl) = Bl(z)G(z )n I S)j _ z s I + E(z1) + 4
-at

(10.4) W B ~b (B2)-1 K2S

2(Z2) 2 (z 2 ) (B2) K 2(s 2 ) d 2 + E 2(z 2) + P2(z2))(10.4) W2[I (z2G)-K an B2( 2)(=B 2 ) 2z2

where Im[1 1] -BGt)-'KI and lm[H2 ] - (B2 -'K 2 in the Cauchy integrals, K1 and K2 are

unknown density functions, and homogeneous solutions E1 and E2 are real on the real axes, hence,

entire functions. Taking the limit as z, -- x1 gives boundary values of W1 on [-a,a] in the form
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(10.5) W, = BIG, I 1T G x ds  + Ed} + BIGP, + iK,

where the integral is a principal value. The imaginary part of this expression is K1 , hence, K1 =

V1 on segment [-a,a]. On [-1,-a], [a,1] the boundary values are

+ + + jK(B GI) 1 K(s 1 )
(10.6) Wi = B1 G - ( - -  dsI + E1 ) + B+G P

1C 1

where the integral is real and nonsingular since x1 is outside the integration interval. Similarly,
taking the limit as z2 -> x2 gives boundary values of W2 on [-b,b] as

+b (B' 2f K2(S2) +(10.7) W 2 = B2- itBf-S3P 2 +i
(1.)2 21- It 2 7 WjX2 2 + E2 ) + B 2P2 +K 2

-b

On segment [-1,11 the imaginary part of these boundary values is K2, hence, K 2 = V 2 there. Note
that ± superscripts are used here when limiting values of a function from above or below the axis
have, or may have, different values--on a branch cut or pole in particular.

Given these representations for boundary values of W1 and W2, the first part of the vector
Riemann-Hilbert problem in (10.1) for x1 on [-a,a] and x2 on [-1,1] is satisfied by setting K, = V 1,

K2 = V2 and replacing K1 in integral representations for W I. The second part of this vector
problem is satisfied by substituting real parts from (10.5) and (10.7), giving the integral equation

a ( B G Q1IKI( ' K ( ,

(10.8) BIGf(B1 G 1Q- K 2(x2 (S1 )) ds - B f(a2) -  ds2 =SI j S1 -x 2 js 2 -" s

-a -

(10.9) S = nt(B 2(P2 + E2) - -B I G,(P 1 + El})

The remaining vector problem, (10.2), for x1 on [-1,-al, [a,1] and x2 on f-b,-1], [1,b] yields

(10.10) Re[B+G+a-(BI x ds BI(B K-(SJ) d2 S

-a -1

(10.11) S = ir(B 2 (Re[PJl + E}- V-{Re[B+G+P+] + Re[3+G +I E,})2 2 ) vI
2

VI () (2) (2) N
+ I-~Q 8 (x - zl + Q 5(X,- Z'

Therefore, solving the integral equations for K2 = V2 on [-b,b] and substituting the result into
representations (10.3) and (10.4) yields solutions for WI and W2. These solutions satisfy all of
the boundary conditions except when the incident wave reflects off a mixed interface. This is clear
from integral equation (10.10) since the poles and delta functions on the right side cannot be
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represented by the integrals on the left. In order to make the equation valid, the singularities on -

b,- 1I], [l,b] must be removed by suitable poles in P2, written as
(10.12) P 2 = (P)+ iq2 ) _ + (P + iq 2  _I 1)

z2 - X2  z2 - X2

These P2 poles are continuations of those due to reflected waves in (9.16), just as P1 poles in (9.6)
are continuations of t&3se due to transmitted waves in (9.12).

Removal of the singularities requires an expression for the limit of poles on the real axes.
According to (9.1) this is

(10.13) lir 0 1
Y 4( n n x n

i.e., the Cauchy integral of a delta function yields a simple pole by virtue of the sifting property.

Evaluating P1
+ and P2+ by taking the limit of poles in (9.6) and (10.12), and substituting into S

gives two singular algebraic equations as xn -4 zn(i), one in terms of poles and the other in terms of

delta functions, namely
Q (1)Q)2 C

icB2P2I I I -) 0
A 0 V (W)2 (
x2 - X2  21+ (Q ) x1- x1

(10.14)

2 ~ ~ ~ _ 95X2-Xl V2QC +(Q 6) )2 5 (x, - x )-4 0

Solving the two by changing variables and taking the limit gives the complex coefficient in P2 as
_Ci) v ) Q ( )[d2 .

(10.15) p2 +q 2  ) {1+i Q}

where

dl c x 2 _1
(10.16) 2 - V2 .01 1 X2 X2 - 1dXI  v 1o"2  Q X I /

-x2

11. Analysis of Undetermined Functions

The singular integral equations derived above involve multiplicative branch cut functions Bi

and B2, and additive entire functions El and E2, which are still undetermined. They must of

course be known completely before integral equations (10.8) and (10.10) can be solved. Their
final form is found here by insuring that the integral representations exhibit the proper behavior at

infinity and that the Cauchy-type integrals themselves exist.

First, consider the behavior of solutions at infinity in the
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z, and z2 planes. Through the characteristic mapping, these limit points correspond to bisecting

points on the diffracted fronts, namely, B and E in Fig. 4. They are ordinary points in the sense

that solutions are no more singular there than anywhere else on the diffracted fronts. It is readily

established from (4.13) that solutions W1 and W2 are bounded on maps of the diffracted fronts

except at isolated singular points where reflected or transmitted waves terminate. Consequently,

representations (10.3) and (10.4) must be bounded at infinity, i.e., 0(1), in the z, and Z2 planeS.

Examining integral representations in the previous section, it is clear that as z --- -c, P and the

integrals themselves are 0(1/z), while from (9.8) G1 - eO(I/z) = 1. Therefore, (10.3) and (10.4)

yield the asymptotic estimate
(11.1) W = B{E + O(1/z)} = 0(1)

Since (9.9) and (9.14) imply that B(z) is O(z) at infinity for d an integer, and the above order

condition requires BE to be 0(1), then entire function E(z) is necessarily a polynomial. with real

coefficients to make E(x) real. Therefore, the only choices that satisfy condition (11.1) are-in

order of increasing degree in E(z)--either B is O(z) and E is identically zero, or B is 0(1) and E is

a constant, or B is 0(1/zd) and E is a polynomial of degree d (positive).

Because all boundary conditions are satisfied by the integral representations for W(z), and the

behavior at infinity is correct, in principle, any of the above choices for B(z) and E(z) is admissible

provided that the integrals exist. This is true because the mathematical diffraction problem is well-

posed and must have a unique solution, to which any admissible choice of B(z) and E(z) should

lead. The "proper" choice is defined operationally as the one that minimizes the number of

constants that must be evaluated, namely, degree of polynomial E(z). According to (9.9) and

(9.14), B1 and B2 exhibit square root branch points at ±a and ±b respectively and have arbitrary

integer order at infinity. Therefore, the simplest choice satisfying all of the above requirements is

(11.3) Bl(z 1) = a- z , B2(z2)= - , E1 = E2  0

assuming that the resulting integrals in (10.3) and (10.4) exist.

The question of integrability, i.e., existence of the integrals, is answered by examining

solutions near the integration endpoints. Some indication of the endpoint behavior is provided by

explicit representation (8.4) for W-. Note that near p = cn, n = 1, 2, the roots in (8.4) may be

transformed using L'Hospital's rule as

Since (8.4) indicates that V2 = K2 vanishes like a square root at x2 = ±1, B1 may have its square

root branch point in the numerator, thereby canceling K2's root in the first integral of (10.8) and

(10.10). In order for the second integrals in (10.8) and (10.10) to exist at ±b, B, may have its

branch point in either the numerator or denominator. Thus, the simple choice given by (11.3) is

admissible.
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Finally, note that near the origin, (8.4) indicates that W is bounded when v1 # V2 (TE case),
however, when vi = V2 (TM case) the denominator becomes

p2 _2(11.5) v~~f 2 - v~lc - 2 ___- _cc

1 d P2 - 2C 221.oc Ic 2 P

Although this appears to indicate that W is more singular in the TM case, from the discussion

following asymptotic solution (4.11), R1 and R2 in (8.4) must vanish like p2 so that solutions go
to the same imaginary constant as z --+ 0. Therefore, the Cauchy-type integral representations are
valid near the origin, and moreover, V2 = K2 goes to a constant there.
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DISCUSSION AND CONCLUSIONS

12. Discussion
This paper develops a theory of planar, vector wave diffraction for the generalized, two-

wedge problem. The development proceeds from the general to the specific, namely, a general
formulation of the initial-boundary problem in two complex half-planes, to a specific analysis for
the case of c1 > c2, i.e., where the larger exterior wedge supports the slower wave. It is natural to
call this case "thick wedge" diffraction, in contrast to "thin wedge" diffraction, where the thick

(>n) or thin (<7t) wedge is defined as the one supporting the slower wave. In either case the wave
is always incident from the larger wedge. For example, consider Fig. 1 and imagine the slow
wedge as glass and the fast wedge as air. Thick wedge diffraction, drawn on the left, involves a
"concave" glass wedge (>7t), so-called reentrant, with the wave incident from within the slower

glass, whereas thin wedge diffraction drawn on the right involves a "convex" glass wedge (<Irt)
with the wave incident from the faster air.

The reason for specializing analysis to the thick wedge is that multiple reflections do not

occur, hence, it yields the simplest system of reflected, transmitted, and Mach waves.

Consequently, the thick wedge represents the canonical problem-in the sense that it involves the
simplest hyperbolic system while exhibiting all of the diffraction phenomenon's vector character.

In contrast, for the thin wedge, i.e., cl < c2, the transmitted waves may undergo multiple
reflections, and more to the point, when the wedge angle is less than 2cos'cl/c2 the Mach waves
overlap on the diffracted front, and for angles less than cos-icl/c 2 they eventually reflect between
the interfaces. Mach wave overlap necessitates a more tedious algebraic elimination of hyperbolic

solutions from boundary conditions on the real axes. This couples W2 on multiple segments of the
x2 axis to W1 on a semi-infinite segment of the x, axis. Therefore, the vector Riemann-Hilbert
problem on W, is defined on a semi-infinite line, and so is the resulting singular integral equation.
Although the additional algebra and manipulation required for the thin wedge are straightforward.

such details are beyond the scope of the present paper.
The analysis presented here is, in most part, formal since rigorous mathematical justification

does not accompany each step. Therefore, in order to claim that this is indeed a solution to the
problem, extensive verification is necessary. To begin this process of verification, an evaluation ot

the singular integral equation was performed assuming the following parameters, c1 = 1., c, =

.6854, o = 120, C02 = 240, 0 = 60' for both TM (v2/v1 = 1) and TE (v2/v1 = .4697)
polarizations. These parameters correspond to the case of thick wedge diffraction pictured in Fig.

lc, for an exterior wedge of glass (c2 = .6854) and interior wedge of air (c1 = 1.). The actual
numerics are described in detail elsewhere, see Wojcik and Mould in this report, so only a general

description and results will be mentioned here.
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The evaluation begins with a solution of singular integral equation (10.10). The standakd
approach to solving an integral equation is to first replace the integral by an approximate quadrature
formula. The equation's unknown function is evaluated at discrete points distributed along the line

of integration according to the type of quadrature formula used. By forcing satisfaction of the
resulting approximate quadrature equation at an appropriate set of evaluation points on or off the
quadrature points, the integral equation may be reduced to a determinate algebraic system of linear
equations in terms of discrete values of the unknown function. The system can then solved for the
discrete unknowns using a standard linear system solver.

In contrast to a standard integral equation, the equation to be solved here is defined on two
real lines, rather than just one, and exhibits two types of singularities, Cauchy-type principal
values at sn = x,, n = 1, 2, and various square roots at the endpoints. Neither of these anomalies
presents any fundamental difficulty since all of the known singularities may be subtracted and
integrated exactly, leaving smooth integrands in the equation, while the integrals defined on

separate lines are approximated by quadrature formulas appropriate to each line. The only
concession is that the evaluation points cannot coincide with quadrature points or endpoits.

because of the singularities.

It is most efficient to use an N-point Gauss quadrature formula over each "logical" line
segment, i.e., corresponding to mixed and nonmixed segments on the two interfaces, namely. (-
a,0), (0,a) on x1 and (-b,-1), (-1,0), (0,1), (l,b) on x2. On this basis, the smoothed unknown is
approximated by four 2N-1 degree polynomials over the four distinct segments. Note that there
are four rather than six polynomials because of the one-to-one mapping between segments (±a,01
and (±1,0). The polynomial coefficients become the approximate quadrature equation's
unknowns. Evaluation points in sufficient numbers are arbitrarily interspersed between quadrature
points to render a determinate algebraic system on the coefficients. This system. consisting of
perhaps 128 unknowns in the case of ten quadrature points per segment, is readily solved using
direct Gaussian elimination. The right hand side of the system is proportional to the incident wave
only, hence, the homogeneous algebraic system corresponds to vanishing input.

The integral equation has been solved in this way for the problem parameters mentioned ahove
and no difficulties were encountered. Substitution of the results back into the scalar and vector
Riemann-l-ilbert problems shows that all are satisfied to the numerical accuracy of the integral
equation's solution. This solution yields the unknown densities, K1 and K2, in integral
representations for W1 (zt) and W2(z2) respectively. Thus, the solution at any point in either plane
is found by performing the quadrature in (10.3) or (10.4). It is natural to use the same Gauss
quadrature formula for this evaluation as that used for the integral equations themselves since the

polynomial solutions are then integrated exactly.
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With F'(w) = W(z(w)) known in the elliptic subdomains, it is necessary to integrate F' to

obtain F, hence f(p,e). In the hyperbolic domains this is simply done by integrating plane wave

solutions (7.7) by inspection to yield step functions for the incident, reflected, and transmitted

waves. In the elliptic subdomains, f is obtained by numerically integrating fp in the second of

(4.9) along a radial path starting from known initial conditions at the diffracted front, then

computing all other points in the domain by integrating f. in the first of (4.9) along circumferential

paths emanating from the initial radial path. The explicit singularities in the solution, including

those of C+ in (4.9), must be accommodated by subtracting them, integrating the singular terms

exactly, and numerically integrating the smooth residual. Since f has poles where the reflected

and transmitted waves are tangent to the diffracted front, these points are best approached in the 0

direction. Finally, solutions in Mach wave regions are computed by continuing along

characteristics from the mixed boundary where it is known from the diffracted wave calculation in

the interior wedge. These integrations were verified in the elliptic domains by differencing the

solutions and confirming that they satisfy the boundary conditions and Cauchy-Riemann

conditions to the numerical accuracy of the calculation.

A final verification of the solution was performed by comparing to a finite element simulation

of the diffraction problem. Since discrete numerical solutions like finite elements cannot capture

step response due to grid dispersion, a wavelet exhibiting minimal dispersion was input to the

grid. The exact solution was then convolved with this wavelet for comparison at a number of grid

points around the vertex. The agreement was excellent, with any discrepancies attributable to the

finite element model.

13. Conclusions

In seeking solutions to initial-boundary problems, the function of applied mathematical

analysis is to reduce complicated, unsolved problems to simpler, "solved" problems. In this vein.

the preceding analysis has reduced the canonical generalized vector diffraction problem to a well-

posed singular integral equation on finite segments of two real axes. Solving this integral equation

yields the density functions in integral representations of the unknown analytic functions, from

which a complete solution of the original problem follows by transformation and quadrature.

This is certainly an effective reduction of the diffraction problem since numerical solution)

techniques for singular integral equations are well-known and very effective. The need to

ultimately solve integral equations should not come as a surprise since most scalar diffraction

problems are naturally posed as integral equations, e.g., see Carrier, et al. (1966) in reference to

dual integral equations. Apparently, a closed-form solution to a vector problem of this cornilexit%

is beyond any reasonable expectation. In any event, this paper is concluded by claiming that -he

canonical problem of light diffraction by planar dielectric wedges is now, essentially solved.
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LIGHT DIFFRACTION BY A PLANAR AIR-GLASS WEDGE:
VERIFICATION OF THE VECTOR THEORYt

by

Gregory L. Wojcik & John Mould, Jr.

Weidlinger Associates*

ABSTRACT

The diffraction of light by dielectric wedges occurs whenever electromagnetic waves
illuminate a sharp edge on an interface separating different dielectric media, e.g., air and glass.
Such edges are often encountered in practice, but despite their common occurrence and intrinsic
importance, the associated diffraction phenomenon has never been quantified due to the lack of an
effective mathematical theory.

This paper presents the numerical evaluation of a solution based on a new, mathematic,11
vector diffraction theory for the planar canonical problem of two, contiguous, semi-infinite,
dielectric wedges, with a TM or TE polarized plane wave incident from the larger wedge and
parallel to the edge. A detailed solution and results are presented for a symmetric example that
minimizes complexity while exhibiting all of the vector character.

This solution is verified against a finite element simulation of the same problem and excellent
agreement is found. Consequently, the theory provides a benchmark against which to validate
discrete numerical simulations of models with sharp edges that diffract vector waves.

t Supported under AFGL Contract F19628-84-C-0102 and NSF SBIR Grant SI-8760089
* 4410 El Camino Real, Suite 110, Los Altos, CA 94022
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1. Introduction
This paper evaluates a canonical problem in the theory of light diffraction by dielectric

wedges. The physical problem consists of an exterior 2400 glass wedge "enclosing" an interior

1200air wedge. This two-wedge diffractor is illuminated by a plane electromagnetic wave incident

from within the glass and parallel to its edge. Transverse electric (TE) and transverse magnetic

(TM) plane wave polarizations are considered. Problem geometry is illustrated in Fig. 1, showing

a two-dimensional slice perpendicular to the edge. By virtue of wedge geometry and wave

incidence angle, the problem is two-dimensional. For convenience, only the symmetric proble-n

will be calculated, where the wave is perpendicular to the wedge's bisector.

The purpose of the paper is to verify a mathematical theory of vector wave diffraction recently

developed by Wojcik [2]. This theory takes advantage of the self-similarity exhibited by wedge-

type diffraction problems lacking any characteristic length scale. It is assumed that the incident

plane wave has a simple step in field amplitude across the wave front. More general inputs, e.g.,

time-harmonic, follow by convolution with the step solution's first time-derivative. For the

relative simplicity of working with the same order of derivative in boundary conditions, relations

on the field's normal and tangential gradients are used, rather than equivalent relations on the field

and its normal gradient. This choice yields a formulation in terms of field gradient unknowns,

requiring a simple numerical quadrature on the solution to recover the field itself.

Self-similarity reduces the governing two-dimensional wave equation in each wedge to a one-

dimensional "string" equation in mixed characteristic coordinates. The term, mixed, means that the

equation changes type over different parts of the domain, namely, elliptic inside the diffracted wave

fronts and hyperbolic outside. A Schwarz-Christoffel transformation maps the characteristic

domains to two complex half-planes. The problem's initial and boundary conditions all map to the

real axes of these two half-planes and yield either elliptic, hyperbolic, or mixed conditions there.

Thus, by means of self-similarity and domain mapping, the diffraction problem is reduced to

the determination of two analytic functions, each defined in its own complex plane. This is the so-

called normalized boundary problem. Boundary conditions relate real and imaginary parts of the

two functions on the real axes. These boundary relations effectively define a vector generalization

of the Riemann-Hilbert problem, where analytic functions are defined by a linear relation between

their real and imaginary parts. A vector theory for this class of boundary problems is given in [31.

A solution of the normalized boundary problem begins by expressing the analytic functions as

a Cauchy-type integral representation in each plane. These representations consist of Cauchy

integrals on segments of the real axes and include certain additive and multiplicative algebraic

factors. Substituting into the pure elliptic boundary conditions yields a singular integral equation in

one unknown but on the two real lines. The additive and multiplicative factors are determined from

the hyperbolic and mixed boundary conditions.
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Figure 1. Geometry and polar coordinates for the two-dimensional, two-wedge

diffractor. fl and f22 denote the interior and exterior wedges, respectively
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Figure 2. The system of incident, reflected, transmitted, and diffracted wave fronts
is drawn on the left. On the fight is the mapping of the two wave
domains to complex half-planes.
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Therefore, the canonical diffraction problem is converted to that of solving a singular integral

equation. Given a solution to this equation, the boundary integral representations are evaluated to

provide spatial gradients of the diffracted electromagnetic field at each point in the physical two-

wedge diffractor. The field itself is recovered by numerical integration of the gradients, resulting

in the complete diffracted field for a step function input. If another input time-function is of

interest, typically time-harmonic, then this last quadrature is unnecessary because convolution is

performed on the derivative of the step function response, which is given directly by the boundar'

integral representations.

2. The Singular Integral Equation

The problem considered in this paper is chosen because it yields the simplest system of plane

waves associated with the diffracted waves, while exhibiting all of the phenomenon's vector

character. The system of wave fronts is drawn in Fig. 2, showing incident, reflected, and

transmitted plane waves, circular diffracted waves, and "triangular" Mach wave zones excited in

the slower wedge by superluminal grazing incidence of the faster diffracted wave. Note that all

plane waves are tangent to their diffracted front. By way of contrast, if the interior and exterior

wedges are glass and air, instead of vice versa, then the transmitted plane waves can undergo

multiple reflections and the Mach waves can intersect on the diffracted front, significantly

complicating the analysis with no better elucidation of the solution process.

Also shown in Fig. 2 is the mapping of the domains to complex half-planes. Observe the

one-to-one mapping of segments C'D'O'F'A' and C"D'O'F'A" on the real axes back to the air-

glass interface. The unknown analytic functions defined in the complex half-planes are denoted

Wn = Un +iV n, n = 1, 2, and are represented by the boundary integrals
P1rn Vn

(2.1) Wn(Zn) = Bn(Zn) -- dsn + Pn(zn)

where functions Bn, Pn, and interval [-Pn,Pn] are determined from the boundary conditions. On

intervals -1 < x, < 1 and -b < x- < b of the half-plane boundaries, the analysis in [11 yields a

singular integral equation to be solved for the imaginary part of the analytic function in the CL--

plane, namely,
(BlQ 2• 2 V  s

(2.2) Re[B] I -Q)-V2 ds, - B} s2 - ds, = S
-a I-b2 2

where

(2.3) S t Re[BP-' - vI B+P;1
2 2 2F 1 1

is a smooth source term proportional to the incident wave's amplitude through transmission and

68



reflection coefficients in P and P2 respectively, e.g., see [I]. Constants v1 and v2 depend on the

incident wave's polarization: in the TM case v, = v2 = 1/to where go is free-space magnetic

permeability; in the TE case vi = l1/i, i = 1, 2 where ei is the dielectric permittivity. The remaining

functions in (2.2) are

a2 :_z2er 1(Z) b I(2.4) B1 = e, B 2 = V 1 I

(2.5) r(z 1 ) = 1f n Q dsl
na S1 -2_Z 12

sinh - cosh- 1  }
Clv 2  I Ix21

(2.6) Q = . ' Iv -1
2 1 sinh {-cosh -1 }

3. Solution of the Integral Equation

Solutions of singular integral equation (2.2) are calculated assuming the following parameters,

c, = 1., c2 = .6854, ctl = 120, o2 = 240'. and 0 = 600, for both TM (v2/v1 = 1) and TE (v2 /v1 =

.4697) polarizations. These correspond to symmetric incidence of a plane wave from an exterior

wedge of glass (c2 = .6854) onto an interior wedge of air (c1 = 1 .).

The standard approach to solving an integral equation is to first replace the integral by an

approximate quadrature formula. The equation's unknown function is sampled at discrete points

distributed along the line of integration according to the type of quadrature formula used. By

evaluating the resulting approximate quadrature equation at an appropriate set of evaluation points

on or off the quadrature points, the integral equation may be reduced to a determinate algebraic

system of linear equations in terms of discrete values of the unknown function. The system can

then solved for the discrete unknowns using a standard linear system solver. In principle, any

desired degree of accuracy can be achieved by choosing a sufficiently large number of quadrature

points.

In contrast to a standard integral equation, the present case is defined on two real lines, rather

than just one, and exhibits two types of singularities, Cauchy-type principal values at sn = xn, n =
1, 2, and various square roots at the endpoints. Neither of these anomalies presents any

fundamental difficulty. All of the known singularities may be subtracted and integrated exactly,

leaving smooth integrands to be integrated numerically. The resulting nonsingular version of (2.2)

is in terms of unknown residual R2(x2 )-obtained by dividing out the square root singularities in

V2. To accommodate integrals defined on separate lines, they are simply approximated by

quadrature formulas appropriate to each line. The only concession is that evaluation points cannot
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coincide with quadrature points or endpoints, because of the singularities.
The unknown piecewise smooth function R2 is represented by separate polynomials over

each "logical" integration interval. These subintervals corresponding to mixed and nonmixed

segments on the two interfaces in Fig. 2, namely, (-a,0), (0,a) on x1 and (-b,-1), (-1,0), (0,1),

(1,b) on x2. In each subinterval, N,al interior evaluation points or nodes are chosen and four

N,all degree Lagrangian polynomials are postulated to represent the smooth unknown in terms
of nodal values over the four subintervals. There are four rather than six polynomials because of
the one-to-one relation between segments (±a,0) and (±1,0).

For the numerical integration we choose a Gauss-Legendre quadrature rule using N. =

Ne.,aV'2 quadrature points, which integrates the polynomial representation of the residual exactly.
Thus, integral equation (2.2) is written once for each of the Ne, nodes on x2 in each of the four

intervals. Each of these equations also references the residual value at the Nqm quadrature points
of each interval, so Lagrangian interpolation equations are written to express the residual at these

points in terms of its values at the evaluation nodes. Additionally, Nqm quadrature points are
chosen in the two x-plane subintervals in order to approximate the nonsingular version of the
first integral in (2.2). These discrete equations constitute an NxN linear system (where N

4xP,,,ai + 6xNqua + 8) that is solved for the unknown nodal values of R2 .
This linear system, consisting of perhaps 128 unknowns in the case of ten quadrature points

per segment, is readily solved using direct Gaussian elimination. Note that the right hand side of
the system is proportional to the incident wave, hence, the homogeneous algebraic system
corresponds to vanishing input.

The integral equation has been solved for the problem parameters mentioned above and no

numerical difficulties were encountered. A comparison of residual solution R2 using four-, six-,

an.- ten-point quadrature rules is shown in the upper plot of Fig. 3. This indicates that a ten-point

rule per subinterval is near the limit of observable error.Multiplying residual R2 by the appropriate
so are root singularities yields the imaginary parts, V1 = (vl/v 2)QV2 , in integral representations

(2.1) for W,(z 1) and W2(z,). The real part of this representation on the real axis yields U1 and
U compared in the lower plot of Fig. 3. Plots of real and imaginary parts on the integration
in*,-rvals in each plane are shown in Fig. 4. Substitution of the results back into the vector

Ri. mann-Hilbert problems, i.e., the boundary conditions, shows that all are satisfied to the
nu-ierical accuracy of the integral equation's solution. For example, the dashed curve showing

vIU, in the lower plot of Fig. 3 is proportional to the gradient normal to the wedge interface.

This quantity should be continuous across the interface, and indeed, the solid curve shows that
the error, normalized by the peak value of v1U1 and scaled on the right axis, is negligible. It

appears to be proportional to the slope of vU 1 and, as expected, is greatest at the endpoints
where the quadrature solutions are extrapolated rather than interpolated.
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Solution vs. Number of Quadrature Points
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! Figure 3. Convergence of residual solution with quadrature level (upper), and error

in solution of the integral equation for the ten-point quadrature (lower).
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It is noted that alternate, and perhaps more efficient techniques could be employed to solve

singular integral equation. For instance, one could construct a weighted quadrature scheme

incorporating the endpoint singularities so that they need not be subtracted out. For this

application however, such an approach would require a different quadrature scheme for each

interval. At the other extreme, one could think of fitting a high order (our approach retains only

the constant term) polynomial to the kernel and extending the subtraction process until the

numerical quadrature becomes unnecessary. The drawback here is that the analytical integrals

such become increasingly more complicated and result in more involved bookkeeping to assemble

the coefficient matrix.

4. Evaluation of Diffracted Field Gradients

With the imaginary parts known, the solution gradients at any point in either plane is found

by performing the integration in (2.1). It is natural to use the same Gauss-Legendre quadrature

formula for this evaluation as was used for the integral equations themselves because the

polynomial solutions for the residuals are then integrated exactly. Special care must again be

taken to subtract out all square root endpoint singularities and integrate them exactly. This should

also be done for the Cauchy singularity since the representation is often evaluated quite close to

the real axis, where the singularity overwhelms the quadrature scheme.

The physical solution to be determined is f(p,0) where p - r / t and f is equal to electric field

E. for the TM case and magnetic field H, for the TE case. Both H, and E, field components are

parallel to the edge of the diffractor. The analysis in [1] gives this solution as

(4.1) fn(p,O) = Fn+(Wn+) + F_(Wn_) , wrtt = 0 ± icosh 1c/p

where only the derivative with respect to wn is determined from the boundary conditions. This

derivative is in fact Wn(zn(w.,)) determined above in the half-planes corresponding to the elliptic

subdomains.

5. Evaluation of Diffracted Fields

It is necessary to integrate Fn'= W n to obtain Fn, hence fn(p,0). In the hyperbolic domains

this is simply done by integrating plane wave solutions by inspection to yield step functions for

the incident, reflected, and transmitted waves. In the elliptic subdomains, fn is most conveniently

obtained by numerically integrating (fn)P along a radial path starting from known initial conditions

at the diffracted front,computing all other points within the diffracted zone by integrating (f,),

along circumferential paths emanating from the initial radial path. The explicit singularities in the

solution must be accommodated by subtracting them, integrating the singular terms exactly, and

numerically integrating the smooth residual. Since (fn)P has poles where the reflected and

transmitted waves are tangent to the diffracted front, these points are best approached in the 0
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direction. Finally, the solutions in Mach wave regions are computed by continuing along

characteristics from the mixed boundary where it is known from the air wedge diffracted wave

calculation.
The solution was integrated on a dense grid of points covering the diffracted wave region

and contour plots of the results are shown in Fig. 5. These illustrate and contrast the general
character of TM and TE diffracted fields for an incident step wave. One-dimensional plots along
the interface and wedge bisector are drawn in Fig. 6, indicating the stronger diffracted fields

generally excited by TM waves. These integrations were verified in the elliptic domains by

differencing the solutions and confirming that they satisfy the boundary conditions and Cauhy-
Riemann conditions to the numerical accuracy of the calculation.

6. Finite Element Model Comparisons
A final verification of the solution was performed by comparing to a finite element simulation

of the diffraction problem. Since discrete numerical solutions like finite elements cannot capture

step response due to grid dispersion caused by space and time discretization, a wavelet exhibiting
minimal dispersion was input to the grid. The exact solution described above was then

convolved with this wavelet for comparison at a number of grid points around the vertex. The
finite element model, Cartesian (stairstep) discretization, and the output point locations are

depicted in Fig. 7.
Comparisons are shown in Fig's. 8 and 9 for TE and TM polarizations, respectively. For

the two cases agreement is quite reasonable, within about one percent of the incident \ \c

amplitude in the interior wedge and similarly in the exterior. Agreement appears poorer in the
exterior wedge only because the diffracted signal is much weaker there. The comparison is good

even near the vertex. Note that the precursor signal obvious in the exterior wedge is the incident
plane wave, which is sufficiently separated in time to allow a reasonably clean diffraction.

Discrepancies in the TM case are attributable to the finite element model, since this stairstep

model does not even include a sharp vertex. Despite minor discrepancies, it appears that the finite

element simulation generally verifies the exact solution.

7. Conclusions
The overall goal of this paper is to confirm solvability of the integral equations resulting fromn

a new mathematical theory of vector wave diffraction given in [1], and verify the resulting

solutions to the extent feasible. This goal has been achieved and results support the conclusion
that the theory does indeed solve this historically intractable problem. It is also gratifying to note

that the theory yields an integral representation of solutions that is readily evaluated to a high

degree of precision without "heroic" efforts, either numerically or computationally.
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On this basis it seems reasonable to continue the verification exercise in the future with other

geometries and incidence angles, particularly in conjunction with finite element simulations.

However, the simulations should examine effects of conforming versus stairstep interface

approximations, to see if this minimizes the discrepancy near the vertex. An observation relevant

to finite element modeling is the apparent breakdown in accuracy of these diffraction solutio,,s as

an edge singularity becomes more pronounced. For other diffraction problems, particularly i:I

elasticity where the singularity is known to be algebraic, stronger edge singularities rnau

invalidate certain discrete wave propagation models that include sharp edges and corners. "Thc

solution reported here provides the first benchmark that can be used as a rigorous basis to test the

effectiveness of finite element, finite difference, and boundary element methods in modeling

vector wave diffraction in ideally "rough" media.
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VECTOR BOUNDARY PROBLEMS IN
CONNECTED COMPLEX HALF-PLANES t

by

Gregory L. Wojcik
Weidlinger Associates*

ABSTRACT

Harmonic boundary problems in connected, plane domains present formidable analytical
difficulties. In principle, they may be solved by iteration, e.g., Schwarz's alternating procedure.
This paper presents a more elegant alternative in the form of vectorized integral representations for
plane, multiply connected problems. The theory provides a methodology for solving some
previously intractable multi-domain boundary problems in physics and mechanics.

The problem is to determine the N-vector of analytic functions, W(z) = U(x,y) + iV(x,y)
given the linear relation, aU - bV = G on limit points of the connected domains. These domains
are mapped conformally to N complex half-planes, each supporting one component of W(z), and
boundary conditions are prescribed on all or parts of the real axes. Complex variable z = x + iy is
a diagonal NxN matrix with each element spanning one of the N planes, while boundary
coefficients a and b are full NxN matrices and G is an N vector of distributions.

An analytical vector basis is derived in terms of so-called Schwarz dual boundary equations
and their normal forms. These are solved in terms of a vector of Cauchy-type line integrals and
certain homogeneous solutions. The boundary conditions are converted to conjugate vector
integral equations over segments of the N real axes using a Hilbert-type transform pair. Either
conjugate equation must be solved numerically for the kernel of the corresponding integral
representation since general closed-form solutions do not appear feasible.

. Supported under Air Force Geophysics Laboratory Contract F19628-84-C-010
* 4410 El Camino Real, Suite 110, Los Altos, CA 94022
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1. Introduction

A fundamental boundary problem in the theory of complex variables is to find scalar function
W(z) = U(x,y) + iV(x,y) analytic on its domain of definition, given linear relation aU - bV = G
(i.e., Re((a + ib)W} = G) between continuous real and imaginary parts on the domain's limit
points. The problem is associated with the names of Riemann (from his famous thesis (1851),
e.g., [7]) and Hilbert [3] for their seminal contributions to the case of a closed contour.
Carleman's name should be appended for his closely related work on singular integral equations
[2]. The practical scope has since been broadened by analysts in various disciplines to systems c;
contours and curved lines, but typically in only one complex variable (domain or medium), e.g.,
see Muskhelishvili [6], and later references in the applied mathematics and mechanics literatures.

The objective of this paper is to extend the analytical theory of two-dimensional boundary

problems from one to several complex variables-in other words, from simply to multiply
connected domains. The similar case of multiply connected harmonic domains in two and three
dimensions was formally solved by H.A. Schwarz using an alternating domain procedure

(iteration) on scalar functions, and also by Poincar6 as the balayage method, e.g., see [2] and [4].
In contrast to these formalisms, the present analysis is accomplished by vectorization of the
complex variable basis and conformal mapping of physical domains, so that each unknown

function is supported in its own complex half-plane---essentially one element in a "vector" of half-
planes. General vector solutions are found as Schwarz-type integral representations on the union
of boundaries, with the density vectors determined by solving well-posed systems of Cauchy-type
singuilar integral equations. Closed-form boundary integral expressions are only available under
certain degenerate conditions on matrix boundary functions a and b, of which the scalar theory

(single complex variable) provides the simplest example.
Motivation for the paper is a need to solve classical partial differential equations with

nonseparable boundary conditions in multiply connected domains. These problems arise whenever
one or more domains support two or more harmonic functions coupled nontrivially on common
boundaries. The theory's kernel is provided by the problem of self-similar vector wave
diffraction-where several wave functions are coupled on a plane boundary or interface with
discontinuous tangent [8]. The theory supplies a practical basis for other difficult multi-finction or
multi-domain problems. These may involve inverse formulations as well as the direct approach

described here.

Considering the variety of boundary shapes encountered in practice, the following analysis
only examines the canonical problem defined in so-called parallel complex half-planes, with
boundary conditions given on the real axes. Here the term parallel simply means that the domains
meet at their limit points and are otherwise disconnected, like parallel lines. Isolated singularities
may be prescribed off the real axes, while the behavior at infinity (and perhaps special boundary
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points) is specified in each half-plane for completeness. Connected polygonal domains reduce to

this canonical case via Schwarz-Christoffel transformations. More general domains can in

principle be mapped conformally to circles by virtue of Riemann's mapping theorem, and then to

half-planes. The mapping may in addition be multiple-valued; however, the original boundaries

must have single-valued parameterizations.

The paper is organized into eleven sections. An example supplying background and

motivation is described in Sec. 2. A vectorized form of the general mathematical problem is

formulated in Sec. 3. Since this form is not amenable to the classical (scalar) Riemann-Hilbern

approach, an analytical vector basis in terms of so-called Schwarz dual boundary equations and

their normal forms is derived in Sec. 4. General solutions of the normal form are developed in

Sec. 5 and the dual boundary equations are solved in Sec. 6, yielding conjugate Schwarz integral

representations and the Hlbert-type transform pair. The boundary conditions are converted to

conjugate integral equations over segments of the real axes in Sec. 7 using the Hilbert-type

transforms. Section 8 returns to the classical Riemann-Hilbert form and examines a degenerate

closed-form solution that does not involve solving integral equations. In Sec. 9 the prescribed

isolated singularities and endpoint conditions are incorporated in the representations via the

homogeneous part of general solutions. Overall results are discussed in Sec. 10 and the paper is

concluded in Sec. 11.

2. Background

This section formulates a class of plane, multiply connected boundary problems in terms of

the vector equations analyzed in the paper. This class involves two unknown harmonic functions

and illustrates the lowest dimension vector (versus scalar) formulation. The results provides

background and motivation for the analytical development in subsequent sections, although they do

not yield the most general expression covered by the theory.

For all two-component problems, the canonical (mapped) domains consist of two complex

half-planes, designated 0,,, and spanned by complex variables wn = un + iv n, n= 1,2. Each half-

plane supports a single harmonic field denoted by unknown function X,(un,Vn). Segments of the

real axes across which the fields communicate are designated L1 and L, in the half-planes. These

segments, finite or infinite, are maps of the common boundary connecting the two original

domains, hence there is a one-to-one correspondence between points on L1 and L.2.

In conventional applications to equilibrium problems in connected domains, the boundary

coupling consists of two continuity conditions--one on the fields and the other on their normal

derivatives. These are natural generalizations of Dirichlet and Neumann conditions for disjoint

domains. For example, in heat conduction or electrostatics the two conditions would represent

continuity of temperature and heat flux, or electrostatic potential and electric field intensity.



respectively. In other problems the conditions are not so simply interpreted, but general

expressions can be defined on the fields and gradients.

Since a mixture of conditions involving the fields and their derivatives is awkward

analytically, it is convenient to replace field continuity by continuity of its tangential derivative.

Thus, both boundary conditions are expressed uniformly in terms of gradients, either normal or
tangential to the interfaces. Note that recovery of the unknown harmonic functions using dLs

formulation requires an additional quadrature after solving the resulting boundary problem for
dXn/dzn. However, this is preferable to working throughout with mixed boundary conditions.
i.e., involving the functions and their derivatives.

The normal- and tangential-derivative boundary conditions can usually be written in one of

two more general forms on segments L, and L2. For two unknown functions coupled on the

boundary these conditions are either

X1 - 1 aX1  ax, 1
aI--+ a. G a - + b~ -5 - = Gu- - a U2 u- b2  2

(2.1) or
_X_ aX2 2 b X I  aX2 2
b -+ by-= G b v +2,

where coefficients an and bn, n=l,2 incorporate the original boundary condition factors and the

transformation of normal (vn) and tangential (un) derivatives, while GI and G2 are generalized

functions representing boundary distributions (sources). The continuity conditions described
above for electrostatics or heat conduction are a special case of the pair on the left. The pair on the

right arises whenever normal and tangential derivatives are related. Both conditions occur in a
variety of practical problems. Observe that each equation in (2.1) relates functions supported in

separate half-planes, across segments L1 and L, of the real lines. These functions are defined on

the boundaries in terms of the original interface parameters, which typically reduce to an arc length

on each distinct segment of the coupled interface.

The vector boundary problem for this example, as well as more involved cases, is formulated

by defining complex functions
(2.2) Z(w) = X(uv) + i Y (un;n

with n=l,2, where Xn is the unknown harmonic function defined above and Yn is its conjugate.

Since the derivative of Z. on the real axes involves the gradients appearing in the boundar

conditions, defining the new functions
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W(z) = Zn(wn)

ax ax

(2.3) n x i . --x n

= Un(xn,y n) + iV(xn,yn)

yields the components necessary for the algebraic vector formulation. Boundary conditions (2.1)

are now given by linear equations on the Un and/or Vn, written in matrix form as

or

a 01U 0 b2 [V1 Gil
(2.5) a U2  b V2 = [2

Observe that these conditions yield disjoint coefficients, i.e., the matrices have no elements in

common. Equations (2.4,5) define a particular case of the general vector boundary conditions

studied in the following, written as
(2.6) aU - bV = G

where a and b are full matrix coefficients, and U, V, and G are vectors. In practice, coefficients a

and b may be discontinuous and it is convenient to restate (2.6) as

(2.7) Re(cW) = G, c - a + ib

where W = U + iV is the unknown analytic vector. In this form there is no need to consider

matrices a and b separately, but instead in the more natural combination, c = a + ib. Equations

(2.6) or (2.7) yield the vector form of the boundary problem analyzed below.

3. The Canonical Half-Plane Problem

To state the general mathematical problem consider N complex variables, i.e., Argand

diagrams,
(3.1) z =x +iy n=l,N

and N unknown complex functions
(3.2) Wn(Z) = Un(xyn) + iVn(xn,y ) n= 1, N

defined on yn>O, where Un and Vn are real functions satisfying Laplace's equation, i.e., harmonic.

Given a linear relation between the real and imaginary parts of all W, coupled on lines ,, over each

of the N real axes, namely, boundary conditions in the form
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(3.3) [armUm(xM, 0 ) - bmnVm(XO)l = Gn(xn) n = 1, N
m=i

the problem is to find the N functions, Wn(zn), analytic in the upper half-planes except at

prescribed isolated singularities, and with prescribed endpoint behavior on L".

Each of the N equations in (3.3), in terms of given real boundary functions a., b ,, and

distribution Gn, is defined generally on Ln. Each line Ln is a mapping to real axis xn, which may
be multi-valued (overlap on xn) but is assumed to have a single-valued parameterization. The

isolated singularities in each plane are specified by singularity function Sn(zn). This is any analytic

representation regular on L with the same isolated singularities as Wn(z n) in the upper half-plane,

including the point at infinity. When appropriate (a priori), the behavior of Wn(x n) at irregular

points on Ln (endpoints and certain interior points) is specified by endpoint function En(xl), which

merely exhibits the proper order or continuity conditions. An example is the order at infinity (if not
included in Sn) which depends in part on the mapping of the original domain to the half-plane.

The boundary problem defined by (3.1,2,3) is better stated in vector form as
(3.4) z = x + iy

(3.5) W(z) = U(x,y) + i V(x,y)

(3.6) alU0 - bV 0 = Re f(a+ib)W0 ) = G on L

respectively, where L is the union of mappings and

(3.7) W0 = U0 + i V0 = U(x,0) + iV(x,0)

Complex variable z and its real and imaginary parts x and y are NxN diagonal matrices, while
complex function W(z) and its parts U and V are N component vectors. Boundary condition

coefficients a = [am] and b = [b.] are full NxN matrices, and inhomogeneous term G(x) is an N

vector of distributions. The prescribed isolated singularities are given by analytic N vector Stz

and the explicit endpoint behavior is exhibited in N vector E(x). Observe that the above vector

form is algebraically identical to the scalar form, and except for some necessary operational

ordering no distinction need be made in the following analysis.

4. Dual Boundary Equations and Normal Forms

To express the vector boundary problem in a form amenable to analysis, vector unknown

W(z) is continued into the lower half-plane by (Schwarz) reflection about the real axis as

(4.1) W(z*) = W*(z)

where superscript * denotes a complex conjugate. It is assumed that all subsequent analytic

functions introduced in this analysis are likewise defined in the lower half-plane by reflection,

hence, will satisfy the reflection principle.
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The real and imaginary parts of W(z) can be written as the sum and difference of the function

and its complex conjugate as

U = ReW = L (W + W*)
(4.2) W

V = ImW= 1-(W-w*)
2i

On the real line, replacing W(x) and W*(x) by limits frum above and below the axis, namely

(4.3) W+(x) W(x)

W (x) W*(x)

by virtue of reflection into the lower half-plane, and rewriting (4.2) yields the underlying Schwarz

boundary equations governing analytic continuation off L,
W +W=2U 0

(4.4) W +W=2U

W+ - W = i 2 V0

In the following sections these conjugate equations are solved for W(z) in terms of real or

imaginary boundary values, yielding two Schwarz-type analytic representations. Either

representation can in principal be used as a basis for solving the vector boundary problem.

Dual boundary equations (4.4) are most tractable after reduction to so-called Schwarz normal

forms. The second of (4.4) is the vector prototype. More general forms are derived by

introducing homogeneous matrix and vector equations corresponding to (4.4). Diagonal matrix

functions f(z) and g(z) are defined, satisfying the homogeneous equations,
f+f= 0

(4.5) 
+ -

g+- g= 0

Clearly, f is imaginary and g is real on L, and it is assumed that no terms vanish identically.

Multiplying the first of (4.4) by f+, the second by g., and replacing f W. by -fW. and gW_ by g_

W. yields the forms

(4.6) fW - fW = 2f+U0

g+W - g.W = i 2 gV0

Defining vector functions A(z) and B(z) satisfying the homogeneous normal forms,
A-A =0

(4.7) 
+

B -B =0
+-

whence A and B are real on L, and adding zero to both sides of (4.6) provides the most general

normal forms as
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(4.8) (fW -A) -(fW.-A) =2f U0

(g+W+- B+) -(g.W- B.) = i 2 g Vo

To complete this reduction it is necessary to normalize the homogeneous matrix boundary
equations in (4.5) by introducing the so-called logarithmic normal form. The second equation is
already normalized, but to uniformly convert both to a logarithmic form the pair is rewritten as

f f-= f-1 f = -I(49) + +
( .-1 -1gg~g. =g_ += I

where I is the NxN identity matrix and the inverses exist by definition. Since the terms commute,
taking the multiple-valued matrix logarithm gives the desired forms as
(4.10) Inf+ - Inf = icI + i27cj

lng+- Ing_= i21ck

where j and k are diagonal matrices of arbitrary integers. Thus, the original Schwarz dual

boundary equations in (4.4) are equivalent to the two general normal forms in (4.8), with f and g

defined by the logarithmic normal forms in (4.10).

5. Solutions of the Normal Forms
The normal boundary problems equivalent to dual equations (4.4) all have the vector or matrix

form
(5.1) F+ - F = D(x)

on L, where F(z) is a composition of analytic functions in the z plane with branch cut on L, over
which distribution D(x) is defined. Since F(z) is defined in the lower half-plane via Schwarz

reflection, D(x) is just twice the imaginary part of F on L. Defining particular solution C(z) such

that
(5.2) C+ - C = D(x)

i.e., any factorization of D(x), and subtracting (5.2) from (5.1) gives the homogeneous problem
(5.3) (F+- C) - (F- C) =0

satisfying
(5.4) H - H = 0

where I-L= F± - C± is continuous across L, i.e., H+ = H. = H(x). Continuing off L by inspection

(replacing x by z) yields the general solution as

(5.5) F(z) = C(z) + H(z)

Thus F(z) is the sum of particular and homogeneous solutions satisfying (5.2) and (5.3)

respectively.
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A particular solution follows by representing density D(x) as an integral over L on the rexal
axis. This is developed here using the sifting property of the delta function,

(5.6) D(x) = ds 8(s-x) D(s)
L

by factoring the diagonal matrix of real delta functions as the difference between upper and lower
limits at a simple pole on L

(5.7) 8(s-x) = - ([s-xlI - [s-xl.- )

In other words, a simple pole on the real axis is the Green's function for the normal form.
Replacing 8(s-x) in (5.6) and interchanging the order of integral and limit operators gives
(5.8) D(x) = C+[x; D] - C.[x; DI

for which C±[x;D] are limiting values of the following Cauchy-type integral

(5.9) C[z; l =_ _ f ds [s-zj-' D(s)
27ti L

where s and z are diagonal matrices and D may be a vector or diagonal matrix. Indenting the path
of integration around x on L gives these limits as
(5.10) C±[x; DI = _ + Cp[x; DI

2

with Cp he principal value integral. Comparing (5.2) and (5.8), clearly integral operator Ciz-DI

solves the normal form, so a particular solution is

(5.11) C(z) = C[z; D] - C[D]

with C[D] an abbreviated notation for the Cauchy-type vector or matrix operator on density D(x).
An illustration of these solutions is provided by the logarithmic normal forms in (4.10).

General solutions follow as

In f(z) = i7t(I+2j)C[I] + lnhf(z)

In g(z) = i 2 r k C[I] + In h (z)

where hf and h8 satisfying homogeneous logarithmic forms. Taking the matrix exponential (since
the matrices are diagonal) gives

f(z) = hz) e i x(I+ 2j)qil

(5.13) f 2 xkzle
g(z) = h (z) e

The integral, i27rC[I] = fLds[s-z -l has logarithmic singularities at the ends of L, so the above
exponentials give zeros or poles at endpoints, depending on the integers in diagonal matrices j and
k. The intC[l] term in the expression for f(z) yields square root branch points at the ends of L.
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Consequently, g(z) is a rational function with poles confined to the endpoints of L, and f(z) has

poles and square root branch points there.

Returning to the homogeneous normal form, the second of (4.4) shows that (5.4) is satisfied

by any analytic function real on L. Reduction to a homogeneous matrix equation follows by

factoring H(z) as

(5.14) H(z) = h(z) J

where J is the unit vector and h(z) is diagonal, and substituting into (5.4), giving
(5.15) (h+- h.) J = 0

Without loss of generality it can be assumed that no component of H or h vanishes identica!ly since

a (nonvanishing) homogeneous solution can always be added. Therefore h(z) satisfies the
homogeneous matrix normal form and, from the second solution in (5.13), is a rational function

with poles at the endpoints of L only, as is the resulting vector homogeneous solution, H(z)=h(z)J.

6. Dual Schwarz-type Integral Representations

Expressions for W(z) are determined from dual boundary equations (4.4) by solving the

general normal forms in (4.8). Replacing the right hand sides by the Cauchy integral factorization

and solving for W(z) yields the conjugate Schwarz-type integral representations

W(z) = f-I(z) {2C[z;f +U0 ] + A(z)}

W(z) = gI(z){i 2C[z;gVo] + B(z)}

where A(z) and B(z) are tadditive homogeneous vector solutions, and f(z) and g(z) are

multiplicative homogeneous matrix solutions. At this point the order of endpoint behavior and

other zeros in f and g is arbitrary, provided of course the integrals in (6. 1) exist. In particular, the

rational functions in f and g must be chosen to insure existence of these integrals and satisfy an,

explicit endpoint conditions given by E(x), described in Sec. 3. Homogeneous solutions A(z) and

B(z), in conjunction with f(z) and g(z), depend on the singularity function S(z) and prescribed

endpoint and infinity conditions. Methods for their evaluation are described in Sec. 8.

To insure consistency between the Schwarz-type representations it is necessary to examine

boundary values of W(z) in (6.1) from limits in (5.10), giving
W+' = Uo ±_ 2 f' Cplf+U0 I+ f+1 A

(6.2) - 0 + P 0 +

Wt= ±iV0 + i2g CplgV 0 I + g' B

where A± = A, B± = B, and g± = g are real while f± = +f are imaginary on L. Since W±= U0 _

iV0, it follows that U0 and V0 are related as
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(.3)=iV0  2f+C[ f UO] + A(63) ++
-1 -1

U0 =i2g l Cp[gV 0 ] + g B

which is a generalization of the Hilbert transform pair. These equations provide necessary

conditions on boundary values of the conjugate harmonic vector functions. In applications, either
the first or second of (6.1) is used to represent W(z) in terms of U0 or V0, and the respective
conjugate boundary value is given by the first or second of (6.3). Note that eliminating either U0

or V0 between the Hilbert-type transform pair yields a double integral equation for

each-generalizations of the Poincar6-Bertrand formula for repeated singular integrals.

7. Boundary Integral Equations
The boundary condition, (3.6), must be solved for U0 or V0 in order to evaluate W(z) from

one of the Schwarz-type boundary integral representations in (6.1). To this end, either the original
form of the boundary condition can be considered, namely
(7.1) aU o - bV o = Re{(a+ib)W0 ) = G

or alternatively, a vectorization of Riemann's classic form, obtained by replacing U0 and Vo from

(4.4) giving

(7.2) c+W++cW = 2G, c±- a ± ib

Either expression can be used to reduce the boundary problem to a tractable boundary integral

equation. Note that for convenience the ± subscript on c denotes the function (+) and its complex
conjugate (-), rather than boundary values of some analytic function (i.e., c(z)).

The obvious approach is to decouple boundary condition (7.1) by eliminating V0 or U0 using

dual integrals (6.3), i.e., the Hilbert-type transform pair, resulting in a singular integral equation
for each as

aCo+ i2bf I Ctf Uo]= G -ibf' A
(7.3) 1U + +

i2ag-"Cp[gV 0 - b 0 = G - ag 1 B

Alternate forms of the integral equations can be written when a and b are invertible, by solving

(3.6) for U0 or V0 and inserting directly in the Hilbert transform integrals. However, there is no
obvious advantage except when a and b exhibit further degeneracy, e.g., they commute with
inverses of g and f, respectively. A limiting example is Carleman's "algebraic" solution for scalar

equations. Simplifications also arise when a and b are disjoint, i.e., share no common matrix

elements.
A more constructive approach to reducing the boundary condition is to first extract an

expression for W:±(x) from Riemann's form (7.2). Factoring 2G on the right as
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(7.4) 2G = K + K

yields the homogeneous form

(7.5) (c W - K) + (c.W - K.) = 0

Therefore, the expression in parentheses is imaginary, i.e., c±W±- K, = ±iR where R(x) is a real

function on L. Solving for W+ gives

(7.6) W, - U0 ± iV 0 = c' (±iR + K±)

i.e., an explicit factorization for boundary values of W(z) on L in terms of unknown real function,

R(x). This reduction assumes that the inverse of c± exists. Note that (7.4) is normalized and

solved just like the first of (4.4), yielding a particular solution for Kt as

(7.7) K± = 2 r±_1 C±[x; rG] = G ± 2rCp[x; r+GJ

where r(z) has square root branch points at the ends of L.

Boundary representation (7.6) is useful in its own right since it exhibits the singular behavior

of U0 and V0 in terms of the given boundary data, namely, C.. More to the point, either part, real

or imaginary, can be continued off the boundary via Schwarz representation (6.1), provided of

course that the corresponding Hilbert transform is satisfied. Therefore, this approach yields

another conjugate pair of boundary integral equations by substituting the real and imaginary parts

of (7.6) directly into the dual Hilbert equations. To examine the resulting integral equations,

particular expressions for U0 and V0 follow from (7.6) as

(7.8) U0 = -Im (c+) R + Re(c K+) -qR + P
'1 -1

V0 = Re (ca )R + Im(c+ K+) pR + Q

which, when substituted into (6.3), give

(7.9) ifqR - 2Cp[f+pRI = 2Cpf+PJ - if+Q + A

gpR - i2Cp[gqR] = i2Cp[gQ] - gP + B

The principal advantage of these last integral equations over those in (7.3) is that unknown

vector R is a residual factor, i.e., the principal boundary behavior is explicitly factored out.

whereas it is implicit in U0 and V0. Therefore, a "smoother" basis can be used in solving (7.9) for

factor R. This assumes of course that the inverse of c = a + ib exists, and if not, (7.3) provides

the necessary equation. Therefore, to solve the boundary problem in terms of either Schwarz-type

representation in (6.1), it is necessary to solve one of the singular integral equations in (7.3) or

(7.9). Of course, the resulting solutions are only unique to the extent that homogeneous solutions

A, B, f, and g are known.
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8. Determination of Homogeneous Solutions

The general Schwarz-type representations obtained for W(z) in Sec. 6 are determined there to

within certain homogeneous solutions, namely vectors A(z) and B(z), and diagonal matrices f(z)

and g(z). These must be evaluated on the basis of all remaining information on the problem,

namely, the prescribed singularity function, S(z), endpoint behavior and convergence

requirements, and properties of the line of integration, L.

S(z) prescribes the isolated singularities of W(z) off L in the upper half-plane and is regular on
L by hypothesis. Evaluating the residue of W(z) from Schwarz representation (6.1) at an arbitrary

isolated singularity, say z0 , yields

(8.1) r0 -- Res(W(z)} = Res(S(z)] = Res ff (z) A(z)} = Res gI(z) B(z)} at z.

assuming that f(z) and g(z) do not vanish at z0 . Thus, in principle A(z) and B(z) can be obtained

from S(z). For example, without loss of generality S(z) can be defined as a sum composition of

singularities with complex conjugate images in the lower half-plane, thereby satisfying the

reflection principal, S*(z)=S(z*). In the case of a simple pole A(z) and B(z) follow directly from

this continuation after multiplying the upper half-plane residues by matrix constants f(zo) and g(z9)

respectively, and residues in the lower half-plane by f*(k0) and g*(zo). For higher order poles A

and B can still be determined from S, in principle, although the residue calculus becomes more

involved.

To evaluate rational functions in f(z) and g(z) given by (6.2), it is necessary to examine the

homogeneous solution of Riemann's form for W±(x), given by (7.11) with G=0,

(8.2) W± = U0 ± iV0 = ± i(a±ib)-IR

Although real and imaginary parts do not satisfy the Hilbert transform pair in general, this

expression does exhibit the singular behavior of W±(x) explicitly in terms of boundary coefficient

c±-1 = (a + ib)-1. In particular, when the determinant of c± vanishes on L, then U0 and V0 have

corresponding infinities for which f and g must have zeros of the proper order to insure

convergence of the integrals in (6.1). Therefore, homogeneous factors f(z) and g(z) provide

means for factoring out irregularities in the density function of the Cauchy-type integrals, both at

interior points and endpoints on the line of integration.

Additional conditions are provided by the point at infinity and the prescribed endpoint order

function, E(z). Depending in part on the mapping of the original domain to the half-planes, the

behavior at infinity is regular or singular and the homogeneous terms must exhibit it. This

behavior is known a priori and typically incorporated by an order condition in the endpoint

function as x- *±. Consequently, in addition to removing singularities in the density functions,

multiplicative homogeneous solutions f(z) and g(z) are chosen to incorporate these prescribed

endpoint conditions. Of course, all of the conditions must be self-consistent and admit solutions of
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the boundary condition singular integral equations derived in Sec. 7.

9. Degenerate Solutions of the Riemann-Hilbert Form
An alternative to solving integral equations is to examine the more familiar (historically)

Riemann-Hilbert form of boundary problem. The starting point is Riemann's form in (7.2), which

yields a generalization of Hilbert's form as

(8.1) W =-c 4c W + 2c- G

assuming c±-I exists. This vector form cannot be normalized in general since c± has off-diagonal

terms that, after continuation off L, mix the complex variable dependency. This violates the

implicit vector convention that the nth component of W is a function of zn only, i.e., Wn=Wn(zn).

However in a degenerate case-isomorphic to the scalar theory-the Riemann-Hilbert form can be

normalized and solved.

An examination of Hilbert's form (8.1) shows that when c+-1c- is diagonal the problem

reduces to a logarithmic normal form. In this case introducing factors d± such that

(8.2) d-Id =d dI =-c - c+ - +-+

where d(z) is a diagonal matrix function, and taking the principal value logarithm gives

(8.3) Lnd - Ln d = Ln (-c 1 c)

with particular solution

C1z: tn(-c c1
(8.4) d(z) = s(z) e

where s(z) satisfies the homogeneous normal form. Replacing -c,-Ic_ in Hilbert's form using (8.2)

and multiplying by d gives the normal form

(8.5) d+W - d W = 2d+cI G

with general solution

(8.6) W(z) = d- 1(z) (2C z;dc G] + M(z)}

where homogeneous solution M(z) follows from the singularity function. Of course, (8.6) is a

degenerate solution since it is only valid when c+'c, is a diagonal matrix.

10. Discussion

The foregoing analysis has developed a vectorized theory for multiply connected boundary

problems involving vector unknowns defined either in a single domain or in connected domains.

The terminology, multiply connected, means that two or more functions in one or more domains

are coupled at the limit points. In general, the problems are mapped to several complex half-planes
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(canonical domains), each supporting one component of the unknown, with a linear nmAtrix

equation (boundary conditions) relating real and imaginary parts of all coupled components on the

real axes. The half-planes are analytically continued by reflection, giving domains with branch

cuts on the real axes. These mapped and continued domains are similar to Riemann sheets, but

here each is defined by a unique complex variable in a diagonal matrix, rather than by one branch

of a multiple-valued function. The somewhat pretentious term, parallel complex planes, is
introduced to distinguish this case-indicating in particular that domains meet at their limit points

only, either continuous (the real axis) or isolated. The only functional connection is across these

limit points, which consist of mapped boundaries, branch cuts, and isolated singularities.

The classical approach to scalar problems (single complex variable) is the Riemann-Hilbert

formalism, due in part to Carleman. However, the present vector form requires a more

fundamental theory based on continuation of the Schwarz boundary equations off the real axes.

This is developed using so-called Schwarz normal forms and their algebraic or logarithmic

solutions given by vectors of Cauchy-type integrals over appropriate segments of the axes. The

integrals follow from the sifting property of the delta function and its continuation off the real axes.

These solutions provide a general vector basis for representing analytic functions in several

complex planes using integrals of real or imaginary parts. The representations explicitly yield the

Hilbert-type transform expressing consistency (conjugacy) between real and imaginary boundary

values.

With the analytic Schwarz-type representation available, the boundary problem can be reduced

to a tractable form. The most direct approach is to decouple the boundary condition by eliminating

either the real or imaginary vector using the Hilbert-type transform pair-resulting in two vector

singular integral equations, only one of which need be solved for either the real or imaginary part.

A more constructive approach is to extract a boundary factorization (with analytic unknown) from

Riemann's form of the boundary conditon and substitute the real or imaginary part into the Hilbert-

type transform pair, yielding two singular integral equations in terms of a "smoother" unknown.
Due to off-diagonal terms in the coefficienits, closed-form solutions of the singular integral

equations from either approach do not appear possible in this vector case. However, discrete

(approximate) algebraic solutions of the integral equations may be found by replacing the Cauchy-

type integrals by open-ended quadrature formulas and solving. Such vector quar', ature formulas
present no new difficulties, the only drawback being size of the resulting algebraic system and its

inversion. When boundary condition matrix coefficients a and b or c -- + ib are invertible, a

0 recursive solution of the integral equations is possible, thereby eliminati-ng the need for a matrix

inversion.

A general solution of the boundary problem is found by evaluating the Schwarz integral of the

real or imaginary part. This evaluation also reduces to a qjadrature formula in practice. To
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complete the general solution, as well as uniquely solving either integral equation derived from the
boundary condition, certain homogeneous solutions must be evaluated. They arise since the

Schwarz-type representations are only unique to within multiplicative and additive analytic

functions. These functions are determined by requiring that all Cauchy-type integrals be

convergent, and by including any endpoint behavior or isolated singularities prescribed a priori.

Convergence of the integrals depends on removing nonintegrable singularities derived from the

complex boundary coefficient matrix, c = a + ib.

Some attention has been given to the Riemann-Hilbert approach to these problems in order to

show its limitations and justify the procedure developed above. The classical Riemann-Hilbert

formalism in one complex variable typically avoids the solution of singular integral equations by

applying Carleman's algebraic reduction and writing inversion formulas directly. It is not

generally applicable to the vector problem since there are off-diagonal terms in the matrix

coefficients. However, in a degenerate case the formalism does apply, namely, when the boundary

coefficients are diagonal. This vector case does not appear useful in general, but instead completes

the connection between scalar and vector theories.

11. Conclusions

The principal result of this paper is a constructive solution procedure for vector boundary

problems in two-dimensions, i.e., problems involving two or more unknown harmonic functions

coupled on the limit points of one or more plane domains. The vectorized theory offers a

significant analytical advantage over iterative methods such as Schwarz's alternating procedure and

similar schemes. The mathematics reads like a scalar theory but is uniformly valid for any number

of harmonic vector components.

The vectorized theory generalizes the Riemann-Hilbert formalism for scalar boundary

problems at the expense of Carleman's algebraic technique-because the equivalence between

Riemann-Hilbert problems and singular integral equations in one complex domain is a degenerate

case. It is not valid for the vector problem since Carleman's approach, based essentially on a

product factorization of the coefficient in Hilbert's form, fails for matrix coefficients with off-

diagonal terms-even if commutating factors exist.

The analysis has considered so-called canonical domains, i.e., half-planes. These are

straightforward analytically and appropriate for discontinuous boundaries (finite or semi-infinite

lines of integration). However for continuous boundaries (infinite lines) it is often better to map

the original domains directly to interiors of circles and trade the functional simplicity of Cauchy

kernels and line integrals for their circular equivalents, namely, Hilbert kernels and contour

integrals. It is a simple exercise to generalize all of the paper's results to the case of circular

contours. Boundary continuity also bears on the apparent freedom to choose either of two
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Schwarz-type representations for W(z), either on the real or imaginary boundary value. The ical

kernel exhibits a multiplicative function (homogeneous solution) with square root branch points at

endpoints and is appropriate for finite or semi-infinite lines of integration; while the imaginary

kernel does not admit multiplicative branch points and is best suited to infinite lines, corresponding

to continuous boundaries.

This analysis has not examined with any rigor the question of existence and uniqueness of

solutions. Rather, emphasis has been on vectorization and generalization of well-known methods

to construct an analytical basis for reducing vector boundary conditions to a tractable form. The

crux of the analysis is the pair of vector singular integral equations derived from the boundary

conditions, and their solution. Existence and uniqueness depend on order or continuity conditions

at endpoints and the point at infinity (governed by the boundary condition matrices and mappings

of the original domains) and the multiplicative and additive homogeneous solutions (determined by

enforcing convergence of the Cauchy-type integral representations and incorporating prescribed

poles). These aspects require further study in general, particularly in the context of real boundary

data.

As mentioned in the Introduction and exemplified in Sec. 2, this theory provides a

constructive basis for solving some interesting two-dimensional vector ,iffraction problems that

are unsolvable by classical analysis methods. The problems involve multiple wedge-shaped

domains connected on their faces from a common vertex. Each wedge supports one or more wave

functions coupled by nonseparable continuity conditions across the faces. By considering

homogeneous solutions of degree zero, i.e., self-similarity, and a so-called characteristic

transformation, these problems yield the vector boundary problem studied here. The diffraction

problem is thereby reduced to characterizing the boundary condition matrices obtained for the

various wave functions and boundary conditions considered, and solving the resulting singular

integral equations. Electromagnetic and elastic waves are of particular interest, with applications

ranging from optical diffraction in the small (integrated optics) to seismic diffraction in the large

(crustal seismology).

In addition to the diffraction problem there are certainly a variety of multiply connected

harmonic boundary problems for which the technique is applicable, although many of these have

no doubt been formulated and solved using other approaches. Of more practical interest is the

future extension of this theory to multiply connected biharmonic problems, particularly in the two-

dimensional theory of elasticity, e.g., [4] and especially [5]. Examples of interest include heating
of a finite multi-layer strip (e.g., bi-metal), and elastic contact problems involving a deformable

(rather than rigid) indentor.

99



REFERENCES

[11 T. Carleman (1922). Sur la resolution de certaines 6quations intigrales., Arkiv for

Matematik Astronomi och Fysik, Bd. 16, No. 26.

[2] R. Courant and D. Hilbert (1962). Methods of Mathematical Physics, Vol. I,

Interscience Publishers.

[31 D. Hilbert (1904). Uber eine Anwendung der Integralgleichungen auf ein Problem der

Funktionentheorie. Verhandl. des HI. Internal Mathematiker Kongresses, Heidelberg.

[4] S. G. Mikhlin (1957). Integral Equations, Pergamon Press, New York.

[5] N. I. Muskhelishvili (1935). Some Fundamental Problems of the Theory of Elasticity,

Noordhoff International Publishing.

[6] N. I. Muskhelishvili (1944). Singular Integral Equations, Noordhoff International

Publishing.

[7] B. Riemann (1953). Gesammelte Mathematishche Werke, Dover Publications, Inc.,

New York.

[81 Wojcik, G. L. (1989). 'A Numerical and Theoretical Study of Seismic Wave
Diffraction in Complex Geologic Structure,' Final Report AFGL-TR-88-0291, Air

Force Geophysics Laboratory Contract F 19628-84-0102, Weidlinger Associates.

100


