
DII FILE COPY

AFGL-TR-89-0290 AD-A218 207

Optical Instrumentation Support for the
Airborne Ionospheric Observatory

Robert H. Eather
Cyril A. Lance

Keo Consultants
27 Irving St.,
Brookline, MA 02146

25 October, 1989

DTIC
Final Report

ELECTE

12 March 1986 - 30 September 1989 FEB 13199011

Approved for public release; distribution unlimited E

GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000

90 02 _' 9 v

"This technical report has been reviewed and is approved for publication"

HOWARD W. KUENZLER / WILLIAMIK: VIKERY'
Contract Manager Branch Chief

FOR THE COMMANDER

ROBRT A,/ZIVANEK
Division'Director

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from Defense Technical
Information Center. All others should apply to the National Technical
Information Service.

If your address has changed, or if you wish to be removed from the mailing
list, or if the addressee is no longer employed by your organization, please
notify GL/IMA, Hanscom AFB, MA 01731. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

UNCLASSIFIEDS'ECURIT CLA'SSFICATION O'F ,Ms FACE

A oForm ApprovedREPORT DOCUMENTATION PAGE 7 OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION "" 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATICON AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

KEO - FINAL AFGL-TR-89- 0290
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

jb(If applicable)

KEO CONSULTANTS GEOPHYSICS LABORATORY

6C. ADDRESS (City, State, ard ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

27 IRVING ST. HANSCOM AFB MA 01731-5000
BROOKLINE MA 02146

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZTION (if applicable)GEOPHYSICS LAB. LIS F19628-86-C-0028

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNITHANSCOM AFB MA 01731-5000 ELEMENT NO NO. NO ACCESSION NO
62101F 4643 08 AK

11. TITLE (include Security Classification)

OPTICAL INSTRUMENTATION SUPPORT FOR THE AIRBORNE IONOSPHERIC LABORATORY

12. PERSONAL AUTHOR(S) ROBERT H. EATHER AND CYRIL A. LANCE

13a. TYPE OF REPORT 113b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
FINAL _TFROM _Lj2LIbT09I3flj9 1989 OCT. 25 38

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP >ALL-SKY IMAGING PHOTOMETER, PHOTOMETER; SPECTROPHOTOMETER,

, AURORA, AIRGLOW.(I] ,

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

-7This Report summarizes activities during this 3 year contract, with special
emphasis on Year 3. Included is a description of software development for instrument
control and calibration, hardware modifications and improvements, mission support
for field trips, optics improvements, instrument maintennance, and data analysis.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT J21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED/UNLIMITED El SAME AS RPT 03 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Howard Kuenzler 617 37747891 LIS

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Table of Contents

1. Contract Objectives 1

2. Changed Contract Objectives during Year 1 1

3. Software Development 2

4. Optics Development 5

5. Hardware Development 7

6. Documentation 10

7. Data Analysis 10

8. Mission Support 1 1

9. General Repairs, Maintenance, Procurement 12

10. Personnel 13

Appendix I 14

Aooeuion For

NTIS R&

DTIC TAB
1Jn rmoned
Justificatio 0

.Distribution/

.2 Availability Codes

Dist special

1. Contract Obiectives:
To participate in ionospheric research programs using the new optical

equipment (designed and constructed by Keo Consultants) that was planned to be
installed on the Airborne Ionospheric Observatory (AIO), a research aircraft operated
by the Ionospheric Effects Branch at AFGL. This participation to include:

(a) Testing, improvement and continuing development of the software
operating systems that control the instrument operation.

(b) Complete testing, calibration and documentation of all optical properties of
the optical systems.

(c) Improvements and continuing development of data recording systems for
all instruments, and techniques for quick-look data presentation.

(d) Assistance in analysis of optical data obtained on airglow and auroral

experiments.
(e) Provide personnel assistance on research flights and field trips as required

by AFGL.
This Final Report summarizes efforts completed on this contract from March,

1986 to Sept.,1989. Much of this work has been described in previous reports
(Scientific Report #1 and Scientific Report #2) which are referenced throughout this
Final Report.

2. Changed Contract Objectives during Year I:

The optical equipment involved in this Contract was to be installed on the AIO.
The photometers and spectrometers were sent to Wright Patterson AFB for this
installation, and the equipment was held there for some nine months and so was
unavailable at AFGL for checkout, software development and improvements.
Consequently we did not hire a full-time software engineer on this Contract as early
as planned, and continued to utilize a part-time engineer to continue development
work on the software for the all-sky imaging photometer (ASIP II).

Towards the end of Year 1 it became evident that the optical equipment would
probably not be installed permanently on the AIO. Consequently the emphasis of
this Contract changed somewhat to address optimization of the use of ASIP II from
the ground in association with various field trips of the Ionospheric Effects Branch,
and the facilitation of image analysis. The net result of this change in direction was a

decreased level of spending on salaries and an increased level of spending on

equipment. However the spending level by the end of Year 2 was still less than

anticipated and allowed a no-cost extension for Keo providing the services listed

under 1. above from April 15, 1989 to Sept. 30, 1989.

3.Software Development:

(a) Photometers and Spectrometers:

Year 1:
Much of the spectrophotometer software was rewritten to correct problems

with the Spectrophotometer Controller operation. It also became apparent that the

large number of interrupts that the computer had to generate to control the total of 10

stepper motors in the system was leading to timing problems so that only one

spectrometer could be operated simultaneously with the photometer (not two as
planned). A hardware solution utilizing intelligent stepper-motor control chips was

devised but not implemented in Year 1 as the equipment was at Wright Patterson
AFB and was not available to work on. (On the return of the equipment to AFGL in
Year 2, it was decided to delay installation in the AIO to a later date) The
recommended solutions to the problem described above were discussed and fully

documented in the report entitled "Suggested Upgrades for the
Photometer/Spectrometer System", and provided to AFGL. An abstracted version
was included as Appendix I of Scientific Report #2 (AFGL-TR-88-0188).

Year 2:
No software development, for photometers or spectrometers.

iear 3.
In August of 1989, it was decided to use the photometer as a ground-based

instrument for an upcoming campaign in Sondestrom, Greenland. Software was

rewritten for the photometer system and debugged as a field instrument, including

the hardware/software modification of providing an additional external port to track
the position of the SRI radar. This external port was implemented in a generalized
way that could be adapted to many field applications. During this work, the first

generation software were debugged and tested thoroughly. Full testing of the

2

system will be continued after the first field operation at Sondestrom in October-

November, 1989.
Four test programs were also written to facilitate trouble-shooting the system

and checking various components. Data handling files were written to allow
primitive data viewing capabilities in the field. A full set of command files were

written to allow generalized construction of the software, and all software
pneumonics were changed to make the code much more "user friendly". In addition,

the software data file structures were re-written to allow a much more space efficient
program, and thus give the operator much more flexibility in modifying the code for

specified field needs. A full user's manual for this generation of software was written
and included in the documentation set along with an updated software listing and
updated hardware documentation. This manual contains an in-depth index of
programmer notes to facilitate the easy modification of code to implement further field

options (included here as Appendix I).

(b) ASIP I1:

Year 1:
The imager software was completely exercised and tested, and in the process,

some new routines were written and problems with original routines fixed. The
complete package was then made more "user Triendly" by introducing menu control
of most operational functions. The menu system was designed for convenient and
efficient operator interaction, but at the same time protecting the operating system
from questionable or invalid commands.

The resultant software package was fully documented in the report entitled

"All-Sky Imaging Photometer - Keo System Users Manual" which was included as

Appendix L.in Scientific Report #1 (AFGL-TR-87-0224).

Year 2:

Software was developed for automatic calibration of ASIP I1. The software
takes the operator through a complete system calibration with appropriate screen
instructions and prompts, with the full procedure taking about 40 minutes. This

software was documented in the report entitled "ASIP II- All Sky Imaging Photometer
- Calibration Software User's Manual" supplied to AFG31, and included as Appendix II

in Scientific Report #2 (AFGL-TR-88-0188).

3

Further software improvements were made in Year 2 to upgrade ASIP's ability
to keep accurate real (civil) time. (This improvement in system time was necessary
for an Arecibo experiment where it was important to maintain synchronization with
the on/off times of the HF Heater and the start/end times of ASIP exposures.) This
Arecibo experiment also required new software to subtract the on/off images and to
correct for system vignetting of the original ASIP II optics (since improved, see
Section 4 below). The resultant images showed the capability of detecting airglow
enhancements in 5577 01 and 6300 01 emissions of just 5 Rayleighs, with good
contrast, and so demonstrated the powerful low-light-level capabilities of the
instrument.

Near the end of Year 2, Keo began development of a new system to record
and process scintillations on VHF/UHF satellite signals. The system is based on a
Zenith Z-248 (IBM clone) computer and written in "C". Various commercial software
packages in C were purchased to begin this development. Initial specifications of the
development environment was completed in April, 1988; coding of the prototype
system began in May, with prototype software testing in August, 1988. This effort
suffered from the unexpected resignation of the software engineer (Mr. Keane). His
replacement (Dr. Tsuei) initially worked with AFGL personnel (Dr. Sheehan) to

continue the project (which was poorly documented at that stage), and the project
was then taken over full time by Dr. Sheehan.

Year 3:
Software was written to allow recording of ASIP II images on the new

Panasonic optical disc recorder. Image sequences through different filters can be
recorded on different parts of the disc, so as to allow continuous playback of image

sequences at particular wavelengths.
Keo personnel (Mr. Keane) also worked extensively on the new image
" ,.; s t.:.,; dcoivered by Northwest Research. i .J C'o (rt i:voi.,lej i fl ,al

shakedown problems, understanding the system and its capabilities and limitations,

and writing modified and new software for specific image analysis and presentation
requirements. This system is now used regularly on a variety of tasks, and is proving

extremely valuable to the various projects of the Ionospheric Effects Branch. Future
upgrades have been suggested to reduce analysis time, and to allow compatibility
with ASIP I images.

4

Dr. Tsuei also worked in improving various aspects of the Northwest Research

software, including facilitating data interchange between the NW Research system

and the ASIP Il. In addition, he wrote a new utility so that an image pixel on the all-
sky image can be individually addressed, and be associated with its corresponding
azimuth and elevation coordinates. Selecting any two pixels allows an intensity
profile along the line joining them to be displayed and written to a data tape format
for distribution to other labs participating in auroral experiments. This has greatly
facilitated the use of ASIPII as a quantitative instrument whose data can be shared
amongst the auroral community

4.Optics Development:

Year 1:
(a) A new telescope spider was designed and fabricated to hold the diagonal

mirror and front cover glass of the azimuth/elevation scanning telescope for the
photometer system. This was necessitated because the original was broken when
returned from Wright Patterson AFB. The new design is much more rugged.

(b) A diagonal viewing mirror/telescope was designed and fabricated to slide
into the optics path of the ASIP I between the two relay lenses. This allows direct
viewing of the output screen of the image intensifier (at selectable magnifications),

and is very useful when focussing or trouble shooting.
(c) A new calibration light source was designed and fabricated for use in

calibrating the ASIP II (and for ail optical calibration procedures in general). It
features a large output screen (100mm dia.) and uses integrating spheres to assure
uniformity, and to allow a large dynamic range with aperture stops (with no
consequent change in output spectral distribution). There is also provision for the
insertion of an interference filter in a parallel-beam portion of the light path so as to
obtain a monochromatic (30A) output screen. The available dynamic range exceeds
10"'6. The light source is a tungsten halogen light with accurate current control. The

unit was calibrated against a NBS secondary standard source, and has been
delivered to AFGL.

(d) A set of five primary telecentric lenses for ASIP II was designed and

fabricated. A different telecentric lens pair is used for each Mamiya primary lens
(covering fields of view from 5 - 180 degrees). The optics (resolution, vignetting) was
considerably improved by replacing the original telecentric element (a bi-convex

5

lens) with the piano-convex lens pair. The complete lens set (in a custom carrying
case) was delivered to AFGL.

Year 2:
(a) The ASIP II was shipped from AFGL to Keo (towards the end of Year 1) for

complete calibration procedures. An exhaustive calibration of ASIP was completed
in Year 2, including absolute calibration, spectral sensitivity, vignetting, flat field,
resolution, shutter characteristics, temperature effects, phosphor decay

characteristics, and linearity with respect to gain and exposure. These results were
documented in the report entitled "ASIP II - All Sky Imaging Photometer - Calibration
Results" supplied to AFGL, and abstracted in Scientific Report #2 as Appendix Ill
(AFGL-TR-88-0188).

(b) The new telecentric optics design (replacing the original bi-convex
element with two plano-convex elements) was evaluated during the ASIP II
calibration procedures. Resolution was considerably improved, especially near the
edges of the all-sky field.

(c) The reimaging optics was redesigned, replacing the previous piano-
convex + meniscus lens pair with a pair of achromats. This led to further resolution
and vignetting improvements, and substantially corrected chromatic aberrations
which had previously led to slight focal changes with different filters.

(d) A new filter wheel with capacity for five 3" filters was designed and
constructed and delivered to AFGL. The new filter wheel controller utilizes a ROM
that selects the shortest route (clockwise or anticlockwise) for changing filters in an
arbitrary order.

(e) The lens coupling arrangement to the CCD chamber was modified to allow
dry nitrogen flushing. This was necessitated because of window frosting problems in
the (cooled) CCD detector housing. This problem first occurred in the humid
,nvironment enccuntered on a field trip to Puerto Rico. It was found oi irivesti;ation

that the CCD chamber was no longer holding a vacuum. Discussions with
Photometrics Ltd.. suggested that this might not be unusual, and that we could not
reasonably expect the chamber vacuum to hold for long periods. Because of the
impracticality of taking vacuum equipment to the field, it was decided to implement
the dry nitrogen flushing. Tests showed that the CCD minimum temperature was not
adversely affected, and when frosting next occurred (again on a field trip to a humid
environment - Wake Island), flushing clearing the problem in 20-30 seconds.

6

(f) A new image intensifier mount was designed and built to allow more
convenient installation and removal of the image intensifier. This was found to be
desirable during the calibration procedures, and we considered it would be
desirable in general.

(g) A new optical design was developed (in cooperation with Dr. S. B. Mende
of Lockheed Research Laboratories and the Lockheed Optics Design Group) for a
high-resolution all-sky optics assembly. The design is specific to the all-sky primary
lens, and so does not allow interchange of primary lenses. However it succeeds in
giving very high resolution and freedom from chromatic aberration. Although not
implemented to date, and requiring specially ground components, the design is
available should a future need arise.

(g) During ASIP II calibration procedures, advantage was taken of the
calibration set-up to carry out an absolute calibration of the AFGL secondary
standard light sources. These calibrations were provided to AFGL.

Year 3:
(a) The optics improvements to the ASIP II (described above) were also

implemented on the monochromatic intensified film cameras deployed at field
locations at Svaalbad and Greenland. The optics/camera heads were returned to
AFGL, and new Mamiya lenses, telecentric elements and achromatic reimaging
optics fitted. The Automax cameras were also cleaned (especially removal of brush
carbon in the motor) and lubricated as required.

(b) Prior to field deployment of the photometer system at the end of Year 3 (to
Greenland), the telescope optics was aligned, and all filters checked for stability of
passband since purchased. All were ok.

5.Hardware Development:

Year 1:
(a) Synch Strippc!: A synch stripper was purchased and installed in the ASIP

II system to correct synch problems in using the Photometrics scan converter boards
to drive the RGB monitor.

(b) Image Intensifier Gain: Circuitry was designed and installed to allow the
image intensifier gain in the ASIP II system to be controlled by the computer (in

7

addition to manual control). Gain steps equivalent to a photographic F 3top (1,2,4,8)
were preselected and calibrated.

(c) Image Intensifier AGC: An image intensifier power supply was modified to
allow the monitoring of an internal voltage controlling the AGC circuit. Once the tube
enters the AGC regime, it was found that knowledge of this voltage allows extension
of quantitative intensity measurements by two orders of magnitude. For the present
applications of this instrument to aurora and airglow, this feature would only be
useful for the very brightest aurora.

Year 2:
(a) Controller: A new filter-wheel Controller was designed and constructed for

the new 5-position filter wheel. The following features were incorporated into the
Controller chassis:

(i) Filter temperature set and readout.

(ii) CCD temperature readout.
(iii) Image intensifier gain control (manual and computer).
(iv) Image intensifier AGC indication and monitoring capability.
(v) Image intensifier HV circuit continuity indication.
(vi) Manual/remote shutter switch.
(vii) Two auxiliary switches.
Incorporation of all the above functions in the one chassis simplified wiring

and resulted in a more compact and professional instrument appearance.

(b) Time Base Corrector (TBC): Various problems arose with recording
images from ASIP II (from Photometrics scan converter boards) onto the Panasonic
optical disc recorder, in accepting images from the disc recorder into the Northwest
Research Image Analysis System, and in using ASIP I images in the Northwest
Research Image Analysis System. Analysis indicated that a time-base corrector
(TBC) should correct these formatting problems, so a demonstration of the For-A TBC
was arranged at AGFL, resulting in purchase and incorporation into the system.
Besides correcting the problems mentioned, the unit has proved valuable in other
video manipulation situations.

(c) Aircraft Power: A requirement arose for an addition frequency converter
(400 Hz to 60 Hz) for the AIO, and a used unit was located and purchased.

(d) Foreign Power: To allow operation of the ASIP II in foreign countries, a
power converter (220V/5OHz to 11 5V/6OHz) was purchased.

8

Year 3:
(a) A special 35mm camera system for the Northwest Image Analysis System

was procured and installed, together with a video printer, to further facilitate image
analysis being carried out with this system.

(b) Two new dual monitors were procured and installed to ruplace old units on
the ASIP 1 system, as these old monitors were failing intermittently and displaying
somewhat distorted pictures.

(c) A comprehensive study of optical disc technology was undertaken by Keo,
for the purpose of updating recording facilities on ASIP I1. It was deemed very
desirable to replace the troublesome Kennedy recorders (two repairs needed last
year) with the much smaller and lighter optical discs. As a result of this procurement
research, the best type of optical disc, together with needed driver software, was
identified. Quotations were solicited, and procurement of optical disc drives and

software can now proceed as soon as funds are available.
(d) Keo worked closely with an AFGL engineer (Mr. Kuenzler) on hardware

requirements for the new scintillation recording system. Circuit boards were laid out
and fabricated, and required components procured, in time for assembly by a
summer student working at AFGL. The assembly and testing of eight of these units
for the field was nearing completion at the end of Year 3.

(e) Several hardware modifications were designed for the
Photometer/Spectrometer system:

A generalized 16 channel 12 bit Analog/Digital Converter Interface was
implemented. This has been used for quick readouts of the mount Azimuth and
Elevation positions, but can easily be expanded to read 14 other generalized axes.

. A generalized parallel port was provided on the back of the mount controller
to interface to any parallel device in the field. This was designed specifically for ihe
SRI Radar interface in Sondestrom, Greenland, but like the ADC interface, can be
generalized to any 2-byte interface.

These twc ',hardware modifications give the instrument a great deal of flexibility
in being used in a wide variety of field situations.

. Trimming resistors were added to the filter wheel nulling circuits to decrease
the current to the reflector switches, which solved a problem of unreliable filter
nulling.

9

6. Documentations

All ASIP II and Photometer/Spectrometer documentation has been
periodically reviewed and updated throughout this contract, and three complete
documentation sets maintained. Two have been provided to AFGL (one for field use,
and one for lab use) and one set is retained at Keo.

7. Data Analysis:

Year 1:
(a). The P.I. participated with AFGL and the University of Texas at Dallas in a

co-ordinated program to investigate conjugacy of equatorial airglow depletions (July,
1986; P.I. funding from National Science Foundation). Data from this campaign was

used for the test and evaluation of the Northwest Research Image Analysis System.
To this end, the P.I. traveled with Dr. E. Weber from the Ionospheric Dynamics
Branch to Seattle to consult and work with Northwest Research. The equatorial data
(from Hawaii and Cook Is.) was converted to geographic plots with data from both
hemispheres plotted on the same map. Star fields were used to define camera look

directions. Study of the one (weak) event selected showed conjugacy (or near
conjugacy), and these data were supplied to Dr. B. Tinsley of University of Texas at
Dallas. It is expected that the experiment will be repeated in the summer of 1990 or
1991 when the sunspot cycle peaks and more intense and frequent events are

expected.

(b). Keo part-time personnel (Mr. Stephen Weisfeldt) worked on various data
analysis tasks within the Ionospheric Effects Branch during the 1987, 1988 and 1989

summer months.

Year 2:
Keo personnel (Mr. Steven Weisfeldt and Mr. Michael Keare) continued to

work with AFGL scientists as requested to assist in the operation of the Northwest
Research Image Analysis System on a number of different projects. [Results from
such analyses were presented by Dr. E. Weber at the CEDAR Workshop (Boulder,
CO.) and the MIT Workshop in June, 1988.]

10

Year 3:
Keo Personnel (Dr. T.G. Tsuei and Ms. Colerico) worked with AFGL scientists

as requested in assisting in the operation of the Northwest Research Image Analysis

System on a number of different projects.

8.Mission Support:

Year 1:
Keo personnel participated in the fo;lowing AFGL field trips during Year 1:

(a) Sonde Stromfjiord and Thule, Greenland and Norway (Nov., 1986):
Mr. James Moore (trip planning and mission director).
Mr. Cyril Lance (software and hardware engineer).

(b) Sonde Stromfjiord,Greenland (Feb.-March, 1987):
Mr. Cyril Lance (software and hardware engineer).

Year 2:

Keo personnel participated in the following AFGL field trips during Year 2:

(a) Thule, Greenland (Feb., 1988):

Mr. Michael Keane (software and operations support).

(b) Arecibo, Puerto Rico (March and April, 1988):

Mr. Michael Keane (software and operations support).

Other travel included a trip by the Principal Investigator (Dr. R. H Eather) to the

CEDAR conference in Boulder, CO. in June, 1988 to attend imaging sessions, and

also to attend a special meeting/demonstration at Ball Aerospace in Boulder on CCD

imaging techniques.

11

Year 3:

Keo personnel participated in the following AFGL field trips during Year 3:

(a) Sonde Stromfjiord, Greenland (Dec., 1988):

Mr. Michael Keane and Mr. Cyril Lance (software and operations support).

(b) Duck, North Carolina (May, 1989)

Dr. T.G. Tsuei (software support).

(c) Arecibo, Puerto Rico (June, 1989).

Mr. Cyril Lance (software and operations support).

Other travel included a trip by the Principal Investigator (Dr. R. H. Eather) to
the ISlE Conference at San Diego, CA in Dec., 1988 to attend a technical session

on Image Intensifiers.

9. General Reoairs. Maintenance. Procurement:
Keo responded to repair and maintenance requirements as they arose during

the contract, and appropriate parts or equipment were purchased as necessary. A
partial list, other than work specifically described in the above sections, includes the

following:
CCD camera returned to Photometrics for in-warranty repair.
Procurement of DEC VT201 terminal.

Procurement of narrow band interference filters (9).
HV power supply repair (Westinghouse) for ASIP I.

Procurement of Sony video printer.
New image intensifier mount for ASIP II.
Test jigs for calibration procedures for ASIP II.

Special calibration/test jigs for optical testing and evaluation.
Procurement of 3 shipping cases for the ASIP II

Upgrade of optics for one of the film based imagers.
Procurement of hardware and software for the new scintillation data

system.

12

* Procurement of a Varo image intensifier tube with special (blue sensitive)
cathode and special (fast white) output phosphor.

. New drive motor for an Automax camera.

. New BCD digital clock to replace faulty field unit.
Repairs of 3 photometer/spectrometer amplifier/discriminators.

* Numerous other minor repair problems.

10. Personnel:
The following lists Keo personnel who worked on this Contract

Year 1:
Dr. Robert H. Eather - Principal Investigator
Mr. Cyril Lance - Software and Hardware Engineer
Mr. James Moore - Mission Planning and Director
Mr. Stephen Weisfeldt - Technician and Data Analyst.

Year 2:
Dr. Robert H. Eather - Principal Investigator
Mr. Cyril Lance - Software and Hardware Engineer (part time)
Mr. Michael Keane - Software Engineer (full time from Dec., 1987)
Mr. Steven Weisfeldt - Technician and Data Analyst (part time)

Year 3:
Dr. Robert H. Eather - Principal Investigator
Mr. Michael Keane - Software Engineer (full time through Dec., 1988)
Mr. Cyril Lance - Software and Hardware Engineer (part time)

Dr. T.G. Tsuei - Senior Software Engineer (April - Sept., 1989)
Ms. Marlene Colerico - Data Analyst (Sept., 1989)

13

Six Channel Photometer System

Operating System for Sondestrom Greenland 10/1989

KEO Consultants Revision 01

14

KEO Six Channel Photometer System

User' Manual for Sondestrom, Greenland

This manual will describe the software and hardware system for the KEO Six Channel
Photometer System as it was shipped to Sondestrom in October 1989. While the system seems
operational at this point, there has been no exhaustive field testing and no doubt many modifications
will be made in the field. This manual will describe how to use the present software, contain a
description of the various software components, and give some pointers on using and modifying the
software. The documentation may seem a little wordy for a user's manual, but keep in mind two
things. One, it was written by me. And two, it's being read by you! By this I mean that I know that
you can learn about the software by actually using it without a manual. The purpose of this manual,
then, is to fill in the gaps completely, and to have you really understanding the system's capabilities
and problems. Skip over programmer's notes if you are not a programmer. Skip over my
dissertations on what could be, if it's driving you crazy and you just want to know how to turn the
thing on.

This generation of the Photometer software comes from the original software that John Hogan
started back in 1984. 1 have changed all the names of variables and routines to be somewhat
pneumonic and have tried to reduce the level of inefficiency in the methods used. There are still a great
deal of quirks to the system, and probably some inconsistencies. However, I hope the present system
provides a working skeleton for you to use in Sondestrom. From being out in the field, you will learn
exactly what you WANT from such an instrument. Hopefully, you will be able to make some of these
changes. I would encourage you to keep a section in your notebook that deals with a wish-list so that
when you return, we can plot a course for further development.

The evolution of this project has dictated the present design and as it is rather complicated, care
should be taken when modifying even small things. Presently, the system utilizes the system CPU
power exhaustively during the period of data acquisition, a period when there are interrupts (some in
FORTRAN) and data recording occurring. There are many neat things that one would like to have
done in real-time in the field, such as screen displays. These are very easy to implement in software,
however, they could have tragic results (results without obvious manifestations -- the worst kind) for
the accuracy of the data. Thus, my caution is that, while the computer is capable of a great deal more
than it is presently doing, quick modifications should be discouraged until the operator really
understands the anatomy of the operating system: One would not want to do cosmetic surgery before
one understood the nervous system!

The thing that I tried to guarantee with the system before it was packed up, was that it would
take data reliably at a constant rate, and that the various controlled axes moved with a constant rate. At
any time, one can verify these criterion by reading back data of predictable results, and to check the
motion of the axes by measuring the cycle times of the controller pulses. I suggest that these things be
done before and after each software modification.

The Basics -- Using the System

The use of the Photometer system is pretty self-explanatory, but I will go through a typical
operational set-up to fill in some of the gaps. Unfortunately, at the time of this writing, the system
was being shipped to Greenland, so some of the details may be a little distorted by my memory!

The most basic thing about using the system is turning it on! While this seems kind of silly,
there are a couple of points to make. The first is the issue of power. Always make sure that the

15

Lambda Power supplies are isolated from the rest of the system using the RFI filters, because the
system is very sensitive to the switching power supply noise. You might also be affected by noise
from the Radar operation, and this must be checked. The hard disk should be turned on first and
allowed to run up to speed and the terminal should be turned on and have finished its self-check before
turning on the computer. If in this state, the computer will automatically boot from the hard disk. If
not, the computer will sit in a HALT state and the run light will not be on. To boot the computer
manually, flick the BOOT switch up momentarily. After a few seconds, the RUN light should turn on
on the computer and RT- 1 System messages should start appearing on the screen.

You can also reboot from the terminal, if it was remote from the system, by either hitting the
BREAK key (at which point you halt operation of the system and an @ appears on the terminal), or it
the computer is already HALTed (there is already an @ on the terminal) and giving the boot address of
the system and the GO command:

@773000G

After a couple of seconds, the RT- II System messages should start appearing on the terminal. At any
point during operation of the software, you can HALT and RUN the system by using the BREAK
key. An @ should appear and to continue with the software, you just need to type:

@ P

This is very useful for debugging and if you are planning to program the system or debug the
hardware, you should try to become familiar with this operating mode by reading in the RT- 1
manuals.

Hopefully, the computer booted with no problems and now you are in the RT- 11 operating
system. The computer should boot into the Foreground/Background system called RTI 1FB.SYS on
your disk. It will prompt you for the date and time. This is very important to enter accurately and
some care should be taken as this is the time base for your data. A typing mistake here could cause
incredible headaches back home at Hanscom. I am not sure how accurate this clock is in real time, and
the drift of the clock should be monitored very carefully.

The hard disk is divided into three equal partitions. Under RT-11, they are called DLO:, DLI :,
and DL2:. The system files for RTIIFB and RTI1SJ (Single Job) and the original
Photometer/Spectrometer files are stored on DLO: which is where the computer boots to. DLI:
contains all the system files for using RTI XM, which is an Extended Memory operating system.
This system will become very useful if you want to eventually expand the program size beyond the
32Kword limitation. However, right now this system is never used.

DL2: is reserved for this photometer system. There should be NO other files put on this disk.
I can't stress this enough. A sloppy use of your hard disks is the easiest way to cause errors,
confusion, and unseen bugs. DLO: is pretty sloppy leftover from the previous programmer. Names
are inconsistent and there is a lot confusion when doing a directory listing. I would like to avoid that
with DL2:. When you boot the computer, DL2: is automatically defined as the default disk (DK:).
Thus, you are already residing on the correct disk partition to run the Photometer software.

The first thing you need to think of is where you want to store your data. Presently, it seems
possible to write to either Magnetic Tape, or a file directly on DL2:. The first seems more reliable and
permanent, however, there will be times when you do want to use the disk to store data. One example
of this might be that you are in the middle of taking data on a magnetic tape and you want to do
something different just for a second, and then return to your normal operating mode. Instead of

16

having a weird file in the middle of your data tape, and instead of rewinding the tape, mounting a new
one, then rewinding that, and mounting the old one and returning to the middle of the tape, it would be
much easier simply to write this new data to disk and make a good note in your log. This file can then
be put on tape at a later time.

To use the magnetic tape, there is a little prep work to do. If the tape is partially used, and you
are just adding more files to it, you simply have to mount the tape, making sure there is a write ring in
it, put it ON-LINE, and start the Photometer system software. If the tape is new, you need to initialize
it under RT- 11. This creates a system directory file on the tape to keep track of files. Once this is
done, the tape looks just like other devices to the operating system. However, there are many nuances
to using Magnetic Tape under RT-1 1 that should be read about in the manuals (particularly under the
system utility PIP). To initialize a tape, you can use the RT- II command:

.INIT MTO: (The. is the system prompt)
INIT/Are you sure? Y

When the computer prompts Are you sure?, don't rush over this step. If you by accident typed
DLO: instead of MTO:, you would do some serious damage. So take the second -- did I type MTO:?
Uh-huh, OK, I'm sure...

The tape would then be initialized as an RT- 11 system tape. I have included a command file on
the system called INIMT.COM. This command allows you to give the tape an owner and a tape
name. Since there will be lots of data being taken out in the field for different experiments, it will
probably be useful to utilize this automatic labelling to keep the data a little bit more organized. To use,
simply type:

.@INITMT

The system will then prompt you for the tape labels, and then initialize the tape and create a new
directory on the tape. I suggest always using this function and finding a consistent method of labelling
the tapes, it will save you much time back at Hanscom.

If you want to use the disk for data stoarge, there are a couple of prep things to do to make sure
everything runs smoothly. The first and most important is to keep the disk immaculately clean and
organized. Miscellaneous test files that aren't documented, data files for test runs, files with funny
names have no place on DL2:, they should be deleted or moved onto a floppy disk. The next thing to
do is to clean up where the remaining files are on the actual disk physically. This allows the greatest
number of contiguous blocks for the data file to be written and thus reduces problems related to this.
To achieve this, type:

.SQUEEZE DL2:
Squeeze/Are you sure? Y

Again, this is a crucial operation. Do not rush it. The system is asking you if you are sure for a good
reason. If you were to accidentally type SQUEEZE DLO:, the operating system might move the
system files around and accidentally move the boot file from the proper sector on the disk, making it
unbootable. This would be a very regrettable error, and if it happens, make up another reason for the
system being down (a Huuuuge power surge, must of been something Cyril did, etc...).

Once the system is done with this process, you are ready to record data to disk. It should be
noted that for small test files, this is not really necessary and that since the process takes a little bit of

17

time, you will probably not always want to do this. However, if you are going to seriously take a
decent amount of data onto the hard disk, I would recommend this step strongly.

So, at this point, either the Magnetic Tape, or the Hard Disk is prepared to take data. So lets
enter the Photometer Operating System:

.@PH

This starts running the Photometer software. The system first asks you for the data storage file:

Enter the name of the data file: MTO:89SN14.DAT (or DL2:89SN14.DAT)

This is an example of a file name: 1989 - in Sonde -- tape #14. I'm sure you will come up with your
own method for labelling data files. Once this is done, the screen will clear and the header will appear.
At this point, you should make sure that the date is correct, and that the name of the data file is correct.
This is a good place to point out a problem and limitation with the software. Presently, there is no real
file handler and this severely limits what you can do. To change the data file, you have to leave the
system. If you make a typing mistake, and need to create a new data file, you have to leave the system
and start again. It works, but it is clumsy and can lead to some problems.

It should be noted at this point that at anytime during operation of the photometer software, you
can abort the program by typing two consecutive AC's. Undoubtably you will have to do this as
problems arise, or you entered a parameter wrong. Unfortunately, this could have drastic
repercussions for your data file, as the file will not be closed. On disk, you will loose the files, but on
tape, the directory will not be updated, and thus the tape could have some problems for the next file. If
at all possible, instead of aborting the program, you should try exiting it from within the software,
even if this will take an extra minute. Your next question will be, what if it aborts on its own? (And it
will, say by typing an integer in, when it wanted a floating point number.) This will cause you
unending frustrations and it's a real problem. You will undoubtably dub this system many new names
as this problem keeps re-occurring. The only suggestion right now is to be very careful with what you
type, make sure you know what you are doing, avoid typing ahead, and always, always take good
notes of what you are doing. Hopefully, a better scheme will be developed.

Programmer's Note#]: How can one handle data files from within the system?
How can one handle system aborts better?

A new programming section could be added that would be similar to the Mount or Filter
Initialization routines, that would handle allfile operations. Things such as opening new and old data
files could be done from within the photometer operating system. This would greatly increase the
efficiency of the operating system and avoid a lot of frustration with dealing with data files. In
addition, this software could include provisions for writing the parameter files to tape as well, so that
there is some permanent record of what the operational mode of the system was when data was being
recorded -- What was the velocity of the Azimuth axis? What was the filter integration time? My notes
are a little messy. This software could be integrated into the same memory overlay segment as the
other initialization routines and thus add no new memory overhead to the system.

A way to avoid system aborts due errors associated with data entry and typing errors, is to
develop a photometer system error page that the software can abort to when it encounters these
problems (i.e. see the ERR option in the FORTRAN READ statement.

Next, the Photometer software starts the initialization routines. First to be set up is the Filter
system:

Would you like to calibrate the filters?Y

18

If you want to calibrate the filters type a Y, otherwise just hit a <RET>. A filter calibration takes a
while and is used to find the peak transmission angles of the filters automatically. First, the software
nulls all the filters. If this is not accomplished, a system message will result that not all the filters are
nulled, but there is no further provision and the software keeps operating. This is obviously an
operational problem and can be changed with some simple software modifications, however, if this
happens, you will need to abort the program, figure out why the filters are not nulling (maybe try it
again) and then restart the whole process with an @INIMT (if necessary), and then a @PH. (Now,
you begin to see the reason for the above note!)

Programmers Note #2: What if filters don't all null?
A simple modification to FNULL.FOR could pause the software if not allfilters are nulled, and

ask the operator if they would like to try again. Are the filter motors turned on?, Are they plugged in?
Oh yeah, l forgot to plug them in, OK let's try again -- ah they all nulled, good, lets continue, etc...

Once the filters are nulled, the software immediately begins the calibration routine. Filters are
stepped and then the counters are integrated for 20 msec and recorded in a data array. The whole filter
cycle is repeated ten times to provide a good average. These values are then used to find a maximum
value for each filter and it's position for that value is recorded and noted to the operator. Finally, this
data can be recorded onto the data tape or to a file on disk with the prompt:

Please enter a calibration file name: DL2:HIST24.DAT

In case the operator is unsure of whether these values are accurate, you are given the option of doing
another calibration to make sure the positions are repeatable. Keep in mind that there are 100 steps per
filter cycle and that the filter wheel moves about 10 degrees. The relationship between steps and
degrees is not linear because the filter wheel tilts with a cam device. There are many more degrees/step
at the limit of the tilt (10 degrees) than there are near the 0 null position.

Programmers Note #3: What if I need a different integration time?
There are couple of modifications that could be made to FILCAL.FOR, but the most important

would be to give the operator an option for integration time. This could easily be modified by using
the same method as in the program TSTCNT.FOR as they have the same format. In addition, there is
no real need to take the average of the histogram (dividing each value by 10) and this part of the
program could be commented out. The calibration routine previously would automatically re-null the
filters and position them to the maximum, but then I decided the operator might want to take some
tilting data first so I commented this out too.

Once these filter positions are determined, they should be written down in your data log and
checked from time to time. Are they consistent? What is the filter temperature for each data point?

The next step is to set up the operational mode for the filters. The software gives you the
options of having each filter either tilt or remain at a fixed position (probably the one calculated by the
above calibration). Right now, the handling of these parameters is kind of sloppy and there are no
elegant menus such as in the KEO system, or a Mclnctosh, but these could be added to make this
easier. There are presently four filter rates allowed to be used: .120, .5, 1., and 2. seconds per
revolution. Thus a filter rate of .5, gives us 50 steps per second, or a 20 msec integration time. It will
probably be necessary to add more options and you want to consider having a much more flexible
method of determining filter rates.

The current stepper rate (rps) is .500
Enter new rate (.125,.5,1.,2.) or hit return: 1.

19

Now that the filter rate has been selected, all filters are assumed to be tilting and the operator can set up

the fixed filters and their fixed positions:

Current Motor Status: 1-T 2-T 3-T 4-T 5-T 6-T

Enter the number and step position for each of the fixed motors: 2,67
Filter #2 set to 67. Enter next selection: 4,24
Filter #4 set to 24. Enter next selection: <RET>

The following motors are still in tilting mode
1 356

The operator in the above example, set filter 2 to position 67, and filter 4 to position 24, and left all the
other filters in tilting mode. Next, the computer asks for the integration time of the photometers. The
system chooses integration times based on filter steps. If the filters are stepping at 50 times a second,
and you integrate for 4 filter steps, then your integration time is 80 msecs. Even if none of the filters
are actually tilting, the computer still operates on this time base. Thus, in the above example, every 20
msecs, the computer interrupts and sees if the filters need to be stepped, or the counters need to be
read. Thus, to make the CPU as efficient as possible, if none of the filters are tilting, you would want
to integrate for every filter step, and have this imaginary "step rate" (even though no filters are
stepping) be equal to your desired integration time. This limits the amount of times the computer has
to interrupt, and thus decrease the CPU overhead.

The integration period can range from 1 to motor steps per period
The current number of steps per period is 4
Enter new selection: 1

Let's say in the above example that you had been tilting the filters once every 2 seconds (filter
rate = .5) and that you were integrating every 4 steps giving you an integration time of 80 msecs. If
you now wanted to set all filters at the FIXED position determined by FILCAL, and integrate for 80
msec, you would ideally want to set the integration period to I step per period and have the filter rate
be. 125 revolutions per second. This is allowed in the above system, but I think you can see that there
could easily be some problems related to this way of setting up the filters (see programmer's note #4).

The photometer system then writes all this parameter information to a file called
DL2:FILTER.DAT. Keep in mind that every time you do this, the old file gets written over so it is
CRUCIAL that you keep a log of these parameters at all times. A better way to handle this is
mentioned in programmer's note #1. Another interesting point is that these files are not presently read
upon entering the filter initialization, so that you need to re-set everything everytime to run the
program. This, also, is unnecessary and is addressed in programmer's note #4.

Finally, the computer nulls all the filters. Again, if not all filters were nulled, the computer
continues on. This is a potential problem and can easily be avoided (see programmer's note #2).
Next, the computer positions the fixed filters to their requested positions:

*** All Filters have been nulled *
Filters nulled: 1 2 3 4 5 6

If not all filters were nulled in 200 steps, the nulling routine notifies the operator and continues on:

***** NOT ALL FILTERS WERE NULLED ****
Filters nulled: 1 3 4

20

Next the filters are all positioned to their proper positions for fixed mode operation. In the above
example:

Filter #2 positioned to 67 motor steps
Filter #4 positioned to 24 motor steps

Programmer's Note #4: How can I improve the filter initialization process?
One obvious improvement would be to change the routine and all other initialization routines to

a method similar to that of the ASIPII system, where all parameters are displayed in a logical format,
and you are given the option to individually (or as a group) modify the parameters you want. Once
modified, the parameter is updated in the screen display of this set. In addition, this could allow you
the option to have different parameter sets stored in different files on disk and the operator could have
the option of opening up different parameter sets (say from last night's run). This is another universal
scheme that could be implemented. Presently the software writes a parameter file into FILTER.DAT,
but there is no way to store specific parameter files except by using the RENAME command under
RT-11. Also, this set could be read in at the beginning of the filter initialization (FILINI.FOR) as most
likely, the modes will be very similar every night of data acquisition. Also, it would be nice to have a
more flexible set of filter rates, and integration times. This would be very easy to change.

Programmer's Note #5: ASCII Status words .vs. Binary status words
A universal problematic approach in this software is that John Hogan loved to use ASCII byte

flags to store the state of the system (i.e. if a filter is tilting, this is stored as a T' in the BYTE
FCYCLE(i) for filter #i). This is a waste of memory, and is also very inefficient to program. A better
way to implement all these system states would be through binary status words, where each bit
represented the state of an axes (i.e. BYTE FCYCLE: bit 0: 1=tilting, 0=fixed, bit 1: etc...) These
status words could be stored in an absolute memory location using a MACRO ASECT and thus at any
point, the computer could be halted and the status of the system could be PEEKed as simple binary
flags.

The filter initialization is now complete and the operator is ready to set up the mount
parameters. These control the motion of the Azimuth/Elevation mount that points the telescope to
different parts in the sky. There are 50 steps per degree resolution in the stepper motors that control
each axis and the computer keeps track of the azimuth and elevation by counting the number of steps it
has moved since the mount was moved to the zero location. To double check that the mount is
operating carefully, there is an analogue readout of the mount position. When at rest, this is accurate
to within +/- .5 degrees, but when the mount is moving, there seems to be some sort of lagging
between the computer's mount position and the analogue position. This needs to be looked into in
more detail, but it never seems to more than 2-3 degrees, and thus is not outside the telescope's 5
degree field of view.

Again, this software has many of the same characteristics of the filter initialization routine.thus
you will run into a lot of the same problems. The first thing the mount initialization routine does is to
read in the parameter file MOUNT.DAT. This has the last available mount parameter set in it. If it
can't find such a file, it will create one. Once the initialization is completed, the new parameters are
updated into this file. Again, this creates a similar problem as with the filter parameter set (see
programmer's note #5).

Allowed mount MODES are POINTING or SCANNING
The current mode is POINTING. Change to SCANNING

21

This sets the mount up to either point at a particular spot in the sky or to scan through two end points
continuously back and forth. A third mode, slaving to the radar, should be added (addressed in an
appendix). Unfortunately, you have to type in the mode instead of just selecting it using an easier
method (see programmer's note #5). If the mode is scanning, the end points are requested and the
scanning rate. If the mode is pointing, just the pointing location is requested. In the above example:

The current ELEVATION scanning rate is 2.0 degrees per second.
The new scanning rate must be 6.0 or less degrees per second.
Please enter new scanning rate: <RET>

The current AZIMUTH scanning rate is 3.0 degrees per second.
The new scanning rate must be 6.0 or less degrees per second.
The new rate is: 2.0

The current start ZENITH angle is -20.0 degrees
Please enter new ZENITH angle or hit return: -45.0

The current stop ZENTIH angle is 36.0 degrees
Please enter new ZENITH angle or hit return: 45.0

The current start AZIMUTH is -130.0 degrees
Please enter new AZIMUTH angle or hit return: -80.0

The current stop AZIMUTH angle is 129.0 degrees
Please enter new AZIMUTH angle or hit return: 80.0

The computer then writes these parameters to a parameter file MOUNT.DAT. In the above example, I
set the mount to scan at 2.0 per second (100 steps/second) between points (-45.,-80.) and (45.,80.).
Notice that during the scan, both the AZIMUTH and ZENITH should cross their zeros at the same
point. In other words, the scan goes through the point (0,0). The other thing an operator would
notice is that there's a slight prob. rn with this. How can I be moving the mount smoothly from point
A to B with the same scanning rate (in the above example) if the distance of the two axes is different?
Obviously, you can't! The software looks for the longest axes and divides down from there, so, in the
above example, the AZIMUTH scanning rate is 2.0 degrees/second and the ZENITH scanning rate is
divided by 160/90 (So in this case the real ZENTIH rate is 2*(90/160) = 1.125 degrees/second). This
could be corrected in the new system -- how about asking for an angular velocity in degrees/second
and then having the software figure out what the major and minor axes velocities are?

Once these parameters are decided the mount needs to be checked and set to the starting
position. When first running your system, you will probably want to know if the mount is working
correctly, as you will probably not be able to look at it visually. The software checks the end limits of
the mount and then moves to the physical zero position of the mount and sets the software position
variables to zero. Once this has happened, you know that the mount is working, the computer knows
where it is and you can move to the start location and start taking data.

Since you will undoubtedly will be changing parameters here and there, eventually you will get
tired of waiting for the mount to check for all it's limits and then zero and then move to start location. I
certainly did. So there is a provision to just zero the mount very quickly and then move to the start
location. This assumes that computer accurately knows where the mount is. If it doesn't there is a
chance this will not work and you could run into trouble. I have fo.nd that it works pretty well, but
since it was written an hour before I had to have the software finished, it obviously has not been fully

22

tested. My suggestion is that if you are not sure, and have time, check the limits. If this quick zeroing
scheme seems to work well, use it when you don't have a huge data file open (and thus don't have that
much to loose). If it seems to always work, take your chances!

Would you like to do a quick zeroing of mount? N

The computer will now step the mount to the CW limits and then to the CCW limits and then
find the zero. After these steps, the mount will slew to the starting location and the computer will wait
until the operator wants to start the data acquisition cycle.

*** Checking Mount Operation *

Checking CCW limit indicators
Azimuth CCW limit is reached
Elevation CCW limit is reached
MOUNT clock is working

Checking CW limit indicators --
Azimuth CW limit reached
Elevation CW limit reached

Moving to locate ZERO
Azimuth ZERO found
Elevation ZERO foun

Moving to START elevaio, aiI 'h7infLtL

PAUSE Hit <RET> to start scanning <RET>

If at any point, a limit is not reached, or there is a problem (mount is off-line) the software will pause
and let you address the problem. There is a time-out limit in searching for the limits and the zero in
case the mount gets stuck in a position (i.e. the fiber optics cables have snuck up another 2/1000 of an
inch, or there's a physical obstacle, a stepper motor board burned out, etc.).

If you used the quick zero option, the mount would have just slewed to the zero position and
once found, moved to the starting position. This software reads the present analogue position of the
mount (because you can't assume the computer position is valid) and based on the position, issues a
set of movements to get the mount to the physical zero position. It is a very simple approached and
could probably be modified to be more time efficient.

Programmer's Note #6: How can I improve this initialization?
As with the filter initialization, there are the obvious problems with how the parameters are

displayed and accessed. Right now, everything is linear and to change something back two steps, you
would have to go through the whole process again which is very time consuming and very frustrating
for a simple typo. So, a parameter display and simple editing feature would be nice and could be
coupled together with the filter routines for compactness. Again, there's the problem with redundant
flag variables and flags in 4 Byte ASCII words. Again, this is a waste of space and a waste of CPU
time. These could be changed over to binary status words located in absolute memory along with the
filter flags. In addition, the option of different parameter sets could easily be implemented.

Once, you have finished with this section, the system just waits until you would like to start
acquiring data. This option is so that you can synchronize the data run with a real-time clock such as

23

the Kinemetrics satellite clock. It would probably be a good idea to note exactly what time you start
and end each scan with this clock in your log book as I have no idea how accurate the CPU keeps
time. This will need to be looked at very carefully.

You are now taking data!!!

Programmer's NAote #7: What's the computer doing right now?
At this point, it would be nice to know exactly what the computer is doing by looking at the

terminal. Displays of mount position, filter wheel activity, present count rates of the photometer tubes,
what data buffer is being read, etc. By having this on the screen, an operator could feel comfortable
operating the system with a remote terminal, say down in the radar control room. At this point, there
is not enough CPU time to write to the screen with terminal interrupts because so much time is spent
processing these FORTRAN interrupts to move the mount and tilt the filters, and every 1/2 second or
so write a data buffer to the tape.

These are not insurmountable problems, interrupts can be simplified and written in MACRO,
data buffers can be adjusted to make this more efficient, a tricky low priority terminal display
interrupt can be written to update the screen only as time permits. However, for right now, the
operator is stuck with having faith that the system is working as envisioned. This means that the
operator will need to take doubly good notes, and always be checking their results.

A very easy modification to the existing software would be to add another option when you
finished a data taking run and are still in the software. You could write a piece of code that just
displays all the pertinent parameters such as the mount positions, filter positions, the last 10 data
points, the time and data of the last data buffer, etc. Once satisfied, you could return and the computer
would continue to take data as if nothing had happened. You could even modify this so that every
minute during the data run, you would stop the run (STPINT), display the latest data buffer and
continue on (GOINT) and this would happen automatically and very quickly (less than a second).

The mount should now be scanning at the proper rate to the limits you requested, or it should
be pointing at the right place if possible. Check these things. Is the mount moving fairly smoothly?
Check that the filters are tilting by putting your fingers on the filter shafts. Are filters 1,3,5,6 tilting
and filters 2 and 4 stationary? If you have confidence in the system, then you could leave and it would
run indefinitely until the data storage device got saturated. Unfortunately, this would crash the
computer and you would loose your data, so it is important to be aware of how long you have. The
day before the system was packed, the system ran for 8 hours taking 10 data points/sec without a
problem and the magnetic tape was almost filled up.

At some point during the data run, you will want to stop the process and either close the file
and create a new one, call it quits for the night, modify a parameter, etc. To do this, you must type
consecutively:

CO<RET> (short for COmmand)

The reason it is so complicated to stop the interrupt is that this instrument was initially
supposed to be installed on the aircraft where space is limited and it would be very easy to brush
against a keyboard that was exposed to the walkway. Thus, miscellaneous characters are ignored.
Once this has been typed, the computer will prompt:

Command requested:

Presently there are only two commands: QUIT or INIT. QUIT stops the data acquisition process,
closes the data file and exits from the software. Perhaps a better option would be to close the file and
then ask the operator if they want to leave the photometer system or to open a new data file, change

24

parameters, etc. INIT goes through the whole system initialization routine again keeping the data file
open. This is a little dangerous, especially if you don't take good log notes, as you can change modes
drastically inside a single data file. Hopefully, each buffer has enough information to analyze the data
correctly, however, it makes me nervous. This scheme should be re-thought and changed as per
programmer's note #1.

You have now used all the basic photometer system commands. Use in the field will show
you how to really utilize this system in its present configuration. The present system is clumsy,
frustrating, and inefficient, however it works (last time I checked!). Hopefully, it will be sufficient for
this campaign.

Photometer Utilities -- Checking things out

Since the run time checks for the photometer system are so limited, I have written a few simple
routines to help analyze the performance of the software and to help with debugging software and
hardware. There are millions of these routines that can be envisioned and written. I encourage writing
more that are really useful, and carefully documented. I discourage writing lots of little routines with
funny names on DL2: that do this and that with no documentation.

Probably the most important thing to check right away is "Are the photometers counting
photons and can the computer read this?" The first part of the question can be addressed best with an
oscilloscope and the amplifier/discriminator documentation describes this well. The second half can be
looked at using the software TSTCNT. To use this software, simply type:

.RUN TSTCNT (The <.> is the RT- II System prompt)

Enter integration time (in 20msec units): 25

The screen will then clear and the six different photometer channels will integrate (in the above
example) for 500 msecs (1/2 second) and update the counter values to the screen. This is an extremely
useful piece of software. First, it can be used simply to test that the photometers are working
correctly. Are they all counting? Are the discriminators consistent from channel to channel if you
change which photometers go to which channel? Is there a lot of noise coming into the counter boards
with the HV off, with the 6V power supply voltage off? What happens if I turn up the discriminator
some to reduce noise? Am I decreasing the count rate?

An other useful aspect of this routine is to see what kind of exposure you want to use for the
particular night conditions. Unfortunately there is no provision to move the filters to a particular point
in this routine, but it could easily be added. For a 1/2 exposure, am I getting enough counts, how
about a 20 msecs exposure? Am I far enough above noise to get good statistics? All these questions
and many more are answered much easier with the use of this utility.

Another very useful thing to do is to read a record from a data file. This uses the primitive

utility READTP. To use this, make sure your data medium is loaded, and type:

.RUN READTP

Enter the name for the data file: MTO:89SN14.DAT

The software will then open this data file and read the first record and then wait to see if you want to
read another record. If you do, you can hit any key except an N. A data record will be displayed as:

25

Date: 23-Oct-89 Time: 10:23:45
AZ/EL: Mount Pos: -34.5 134.2 Radar Position: -31.0 138.4
Azim: -35.6 Elev: 132.9 Filter Positions: 23 67 58 24 67 47
123465 234345 456567 45345 456546 45345
435345 345345 435345 67675 344545 34545
324344 456556 367787 75655 245454 25467
234458 578987 245656 85656 132567 23546
229854 467876 220897 93473 93467 19347
192367 410920 197677 108787 83467 23090
148787 387873 238746 138783 76236 33897
98787 834887 345464

...etc.

There will be 12 rows of data because each record is the result of one data buffer being read onto the
tape. You should check that the date and time is correct. If you are taking data 24 times a second, then
the time should jump one second every 2 records, 4 seconds every 8 records. Is this happening? Is
the year correct and the day? The second line displays the analogue value of the mount position at the
time the data record was written. Is it within a reasonable range of the Azimuth and Elevation listed in
the next line? Is the Radai position reasonable? If you suspect a problem with either of these, there is
another utility TSTRD that can check this.

Next check that the computer mount positions are reasonable. If the mount Azimuth is moving
at 2 degrees/second and the Zenith at 1.125 degrees/second, and each record represents 1/2 second of
data, do the axis change I degree/record and .5 degree/record accordingly? Is there a software
problem here? (I sure hope not, but you had better check!) Are the filter positions moving correctly?
Is filter #2 at position 67, and filter #4 at position 24 for every record? Are the other filters tilting? If
there is one filter step per integration, then every record should represent 12 filter steps. Are the filter
positions at the next record 12 more than they are for this record? Does the filter position wrap around
properly at 100? If there is a peak for filter #3 at position 46, and you have a continuum, does that
peak stay at position 46 or does it jump 4 positions forward every cycle? (Hope to god, it don't!)

These are just a few of the questions to ask when looking at the data record to check that
everything is working correctly. As you can see, it would be very useful to check this while the
program is running (see programmer's note #7).

Another very helpful utility will be TSTRD. This utility reads the radar port and the analogue
mount position 5000 times (an antiquated feature that I used to time this routine -- notice that it takes
only 200usec) and then displays the converted values. This will be especially useful to get the
RADAR interface hooked up. It might be useful to put a loop in there and take out this 5000 repetition
loop to make this more useful. That way you could monitor the radar as it scans. Also, a loop would
be useful if you need to recalibrate the ADC circuit that reads the mount position (this is described in
the Mount Controller documentation envelope). There is a test plug built for the radar interface tha,
puts a bit pattern into the DRV 11 -J interface that reads this port. This plug should give a radar position
of:

Azimuth: 119.0 Elevation: 238.0

If this is not the case, there is something wrong with the interface.

26

It is probably worth going over quickly how each of the 3 positions are stored since they are all
different(!):

Azimuth Elevation
Computer Mount Position: AZ20.0 EL/20.0
Analogue Mount Position: (AZ*(360/4095))-180.2 (EL*(360/4095))- 180.2
Radar Mount Position: AZ* 1.4 EL* 1.4

At first glance, you would say, "geez, why don't you store them all with the same units, this is so
confusing" and the answer is that there's not enough CPU time to do this arithmetic while the
interrupts are going and data is being taken. Floating point arithmetic is time costly. This should give
you an appreciation of just how tight the computer is for time.

The final utility written is RDHIST and is used to read files written by the FILCAL routine.
This works the same as READTP, but scrolls through the Histogram values for each filter positions
and then displays where the peak was for each filter. This information will be useful to compile when
you get back at the lab. It would be useful to make a note of filter temperatures for each Histogram file
in your log book as then when you come home and plot these out, you can make sure that the peaks
remain constant with constant temperature and that the shape of the curve looks correct (i.e. two peaks)
and a low point at maximum filter angle. To use the utility, type:

.RUN RDHIST

What is the name of the Histogram file? DL2:HIST24.DAT

PAUSE Opened file <RET>

Programming Hints for RT-1I Command Files

This section is not meant to replace the operator reading through the FORTRAN and RT- 11
manuals to get a feeling for how to fully use this computer, but it will list the command files that I have
on DL2: to help you understand how the software is put together and how to modify it.

The command file PHTSYS.COM shows the system components well and how to build a
system. To run it, type:

.@PHTSYS

The command file will execute the following commands:

FORT/NOLINENUMBERS/CODE:THR FILINI, MNTINI,FILCAL,SONDSY

MACRO PRMETR

LINK/PROMPT/MAP:SONDSY SONDSY,PRMETR
PHTLIB,DLO:FORLIB
FILINI/O: 1
MNTINI/O:I
FILCAL/O: 1

The first line of the command file compiles all the major FORTRAN components of the

Photometer system. The options NOLINENUMBERS and CODE:THR are used to reduce the amount

27

of physical space each routine takes once compiled. FILINI.FOR has the filter initialization routines.
MNTINI.FOR, the mount initialization routines, FILCALFOR, the filter calibration routines, and
SONDSY.FOR, the main photometer system routines.

The second line of this command file compiles the MACRO file PRMETR. This is an
assembly language routine that contains all the global parameters.

Finally, you need to link all the elements of the program together into one large binary file
(SONDSY.SAV) which will be an executable file. This LINK command show how this file is
structured. The main components to be linked are SONDSY, PRMETRPHTLIB,FORLIB, and the
memory overlay segment which contains the three initialization routines. PHTLIB is a user created
library of routines written in both MACRO and FORTRAN that will be discussed in more detail in the
next section. FORLIB resides on DLO: and is the system supplied FORTRAN library which contains
the executable code for all the FORTRAN routines. Finally, the memory overlay segment is a method
used to save space. Since none of these initialization routines are used at the same time, or in real
time, it makes more sense to create an area in the code where they can be written in and out of memory
as needed. This is described in detail in the LINK documentation under RT- 11.

If you just wanted to link the routines together (maybe you had changed something else), you
can use the command file:

.@PHTLNK
LINK/PROMPT/MAP: SONDSY SONDSYPRMETER
PHTLIB,DLO:FORLIB
FILINI/O:1
MNTIN/O: I
FILCAO: 1

Once, these steps have been taken you have a file called SONDSY.MAP which shows you
exactly what the binary image looks like. This can be very helpful during debugging. In addition, you
have an executable file SONDSY.SAV which can best be run by typing the command file:

.@PH

.SET USR NOSWAP

.RUN SONDSY

Enter name of data file:

Once you have typed this, the photometer system is running, and you are ready to continue as in the
first section of this manual.

Another very important command file automatically builds your user library PHTLIB.OBJ.
This is done by typing:

.@PHTLIB

This command file will go through all the library routines, compile them either from their FORTRAN
or MACRO source code into binary files (.OBJ) and then create the library using the LIBR utility:

28

.LIBRARY/CREATE/PROMPT PHTLIB INTRUP,ININTS,INICLK,CLKCHK
INTIMR,SETCLK,ARMCLK,MNSTAT,SPTMNT,SLEWIT,FILMOT,PHTCNT,
RESETM,MNTZRO,MNSLW,FNULL,FPOS
//

All this different files are compiled together into one large binary file called PHTLIB.OBJ which is
then used when linking to the photometer system. You should read through the LIBR utility if you
want to fully understand how this works. If you want to modify one particular element of the library
such as FNULL.FOR which could use some modification, there is an easy way to do this without
having to compile everything and re-create the whole library (this is the purpose of a library). I wrote
a command file for the modification of FNULL to show you how this is done. Any other file in the
library system can be changed similarly.

Say you have finished editing FNULL.FOR to change how it handles a nulling error, and you
want to update the library. Simply type:

.@ FNULL (Could be called something slightly different!)
FORT/CODE:THR/NOLINENUMBERS FNULL
R LIBR
PHTLIB=PHTLIB,FNULL/R
AC

@PHTLNK

Now the new version of FNULL.FOR has been compiled and added into the library, and the whole
system has been linked again and you are ready to run the photometer system by typing @PH.

Since you will be modifying SONDSY.FOR quite a bit, there is a command file to go through
this process automatically. You could write a command file similar to this for PRMETR.MAC,
FILINIFOR, FILCAL.FOR, or MNTINI.FOR as well, but you don't want to have too many
command files lying around your disk. However, this command file should show you how do such
modifications:

.@FS
FORT/CODE:THRINOLINENUMBERS SONDSY
@PHTLNK
LINK/PROMPT/MAP:SONDSY SONDSYPRMETR
PHTLIB,DLO:FORLIB
FILINI/O: I
MNTINI/O: 1
FILCAL/O: I

SET SL OFF
UNLOAD SL
SET USR NOSWAP
RUN SONDSY

After this is done, you are in the new photometer system software ready to see if you have fixed the
old bug and create any new ones. You can see that using these command files saves you an incredible
amount of time and typing. The above process gives you enough time to go an refill your cup with
coffee!

29

I have included one command file that compiles the program TSTCNT.FOR on the disk.
While I wouldn't ordinarily leave lots of command files like this on the disk, I wanted to provide you
with an example of compiling a program that is not related to the photometer system.

.@TSTCNT
FORT TSCNT
LINK TSTCNT, PHTCNT, PRMETRDLO:FORLIB

Notice that there are some components from the photometer system that I am using in the routine
TSTCNT, yet I do not want the whole library, or all the other aspects of the photometer system linkcd
together here. I figured out which element I needed in the library (PHTCNT.MAC -- which controls
the photometer counters), and then what other parts of the system I needed (PRMETR.MAC -- which
contains the storage of all the global parameters) and of course the FORTRAN library.

A final command file is FPYCPY.COM which stands for "floppy copy" and is the backup for
the photometer system. The floppy disk is called under RT- 11, DYO:. Any writes and reads to and
from this disk must use this label.

.@FPYCPY
copy dl2:*.sav dyO:*.* All the executable files
copy dl2:*.for dyO:*.* All the FORTRAN code
copy dl2:*.mac dyO:*.* All the assembly language code
copy dl2:*.com dyO:*.* All the command files
copy dl2:*.dat dyO:*.* All the data files (Make sure disk is clean)
squeeze dyO:
dir/print/full dyO:

This command file takes a while and copies all useful code over to a floppy disk for a backup. I
recommend that you regularly backup your software as it gets modified. Once, all the files are copied,
this software squeezes the disk and then sends a printout of the directory to the printer. This should
then be stored with the floppy disk so you know the date of the backup. The more careful and
systematic you are with backups, the more chance you'll have of keeping the system running in the
field.

Presently there is no system bootable backup. In other words, if the system disk (DLO:) can't
boot one day, then there is no other device to boot from. One of the first things you should do is to try
and create a bootable floppy disk, and even maybe a bootable magnetic tape. You should read in the
manuals about this (I didn't have time to do this for you, I'm sorry!) under COPY.

A first thing you could try is to mount a tape and initialize it and then type

.COPY/DEVICE DLO: MTO:

This should copy the system disk bit for bit onto the magnetic tape, and preserve the bootstrap file.
However, I cannot guarantee that this will work.

30

Modification to hardware -- RADAR port

I added a parallel port to the system to read in the radar position information. This is a general
16 input port and can really be used for anything you want to interface to the computer, so hopefully it
will be useful to have at other field locations as well.

The port is on the back of the Azimuth Elevation Controller and is a DB25 connector labelled
RADAR INTERFACE. This goes to two 14 pin sockets on the interface board by ribbon cable
connectors. This following is a list of the signal names and connections going to the DRV 11-J
interface in the PDP- I1 computer (I enclosed documentation on this interface in the envelope for this
controller).

LABEL .12 DRVII-. DIP CABLE DB25
AZ7 (MSB) 41 IN07 1 1 1
AZ6 36 IN06 14 2 2
AZ5 42 IN05 2 3 3
AZ4 35 IN04 13 4 4
AZ3 40 IN03 .3 5 5
AZ2 38 IN02 12 6 6
AZI 39 IN01 4 7 7
AZO (LSB) 37 INOO 11 8 8
GND GND 5 9 9
GND GND 10 10 10
EL7 (MSB) 45 IN15 6 11 14
EL6 46 IN14 9 12 15
El5 43 IN13 7 13 16
EIA 49 IN12 8 14 17
EL3 48 IN1I 1 15 18
EL2 44 IN1O 14 16 19
ELI 50 IN09 2 17 20
ELO 47 IN08 13 18 21
GND GND 3 19 22
GND GND 12 20 23
GND 31 USER RDY D

This radar port is read in the MACRO routine RDAZEL residing in file MNSTAT.MAC and stores the
lower and upper bytes of this word as the Azimuth and Elevation of the Radar. Presently there are no
checks to see if the data is valid or not. Since the Radar position can change at any time, there is the
chance that a read could occur during this change and thus the data point could be strange. I didn't
have time to address this problem, but your could modify the read to read the word twice and do a
compare, and if it is not the same, then the data point is not valid -- try again. However, it might not
be a big problem. Just keep an eye out for it in your data records.

31

SLAVING TO THE RADAR

The question of slaving to the radar was simply a question of not having the time to program
the steps. There is, however, a very simple way to try and implement this. The real way to have one
robotics axes slave to another is by using a feedback loop that is constantly re-adjusting the velocity of
the axes trying to follow. This would require a lot of code, and while it is not conceptually hard, it
would be time consuming to implement.

You might want to try a quick scheme using already existing software that could very easily be
implemented. The basic idea would be to come up with a slewing rate that would be a reasonable one
to follow the radar around during it's data taking runs. This would have to arrived at by trial and
error, but utilizing the already existing command MNTSLW, you could just keep the radar and the
mount somewhat near each other by issuing short MNTSLW commands every second, or so.

For instance, if the radar was at position Xr,Yr, and the mount was a position Xm,Ym, a
MNTSLW command could be issued to move the mount to the present position of the radar:

CALL MNTSLW(Xr,Yr,SLVRTE)

where SLVRTE is the experimentally determined optimized rate to slave to the radar. The problem
with this is that between every MNTSLW vector, the mount would stop, causing a kind of jerky
motion. By the time this vector was done, the radar would be located at point X'r,Y'r, and the mount
would be at Xr,Yr. Immediately, another short vector would be initiated:

CALL MNSTLW(X'r,Y'r,SLVRTE)

You could get even more extravagant by analyzing the distance and modifying SLVRTE to make the
motion smoother (i.e. if really close, SLVRTE = RTEMIN, if medium distance, SLVRTE=RTEMED,
and if really far away (i.e. when first entering mode) SLVRTE=RTEMAX).

This is not the ideal way to control a slaved device as the motion is somewhat jerky, but it has some
good points to it. The first is that the telescope has a 5 degrees field of view verses the radar's one
degree or less field of view. Thus, there should be some overlap. Also, during data acquisition of the
radar scan, the radar is not moving that fast, so short slow motions of the mount should not be that
much of a problem. From the programming point of view, this is extremely easy to implement.
Presently, when the mount does it's scan, the photometer system just loops until it sees that the last
move was completed (i.e. MNTSLW finished). Then it issues the next command (scan the opposite
way). This could be changed so that when operating in SLAVE mode, instead of just slewing the
other direction, it slews to the last read position of the radar (during the last data record dump). So, in
routine SCANNR (located in file SONDSY.FOR):

32

CALL PRINT ('SCANNR called')

IF (SMODE .EQ. 1) GOTO 1000 !Mode was Scanning

C Mode is to SLAVE to the radar, check present positions and issue next motion command
C First, check to see if radar is more than 1 degree away from mount

DIFFAZ = IF[X((RADRAZ* 1.4) - (AZANGLU20.))
DIFFEL = FIX((RADREL*1.4) - (ELANGL/20.))

IF (DIFFEL.LE.1 .AND. DIFFAZ.LE. 1) RETURN !No motion needed

C Select different rates for Slaving

DIFFAZ = IMAX(DIFFAZ,DIFFEL) !Find major axis
IF (DIFFAZ .LT. 5) SLVRTE = RTEMIN
IF (DIFFAZ .GT.5 .AND. DIFFAZ.LT. 20) SLVRTE = RTEMED
IF (DIFFAZ .GT.20) SLVRTE = RTEMAX

C Issue slew command

CALL MNT' ...W ((IFIX(RADRAZ* 1.4)),((IFIX(RADREL* 1.4)),SLVRTE)
RETU, 1v

C Mode !s SCANNING, see which way mount is moving and issue next slew command

100l IF (ELSTAT .EQ. 'S') GO TO 10

...... etc.

This software example is very conceptual. There are lots of different ways that you could implement
this. Your scheme could be more complicated to allow continuous motion by modifying MNTSLV'
which already handles accelerations and decelerations. However, keep in mind that at the same time,
the filter is interrupting\\\ The more math the computer has to do during this period (especially
floating point), the more likely it is that the computer might crash, that interrupts will not operate at
constant rates and that the data recording will not be consistent. After each software modification,
check that all these things are still working well.

This example is meant purely as a conceptual skeleton. Thought should be given to how you
want to handle how often this gets called. Maybe it should only be called every time a data record is
written, instead of every time a vector is completed as in the SCANNING mode. (This would reduce
the Math overhead in comparing the mount position with the radar position. There are thousands of
ways to implement this, however, the best way will be the simplest, the one with the least math, and
one that is called infrequently.

Obviously it will take a great deal of trial and error to get this working and to get the slew rates
matched up well, but if you have time up in Greenland, I think it would be a lot of fun, and it's really
the best place to write such software, as you have the radar right there to test.

33

DATA Format of Photometer Counters

There could be a lot of confusion when analyzing the photometer counter data if you do not
understand how the data is acquired so I will give a brief description at this point. The data is stored in
a long word (2 words, 4 bytes, 32 bits) This is to allow a large dynamic range. Electronically, the
data can only be read in a 8 bytes/read, so each byte is clock into the appropriate register in the
computer memory during the RDCNTR command (see Counter documentation and PHTCNT.MAC
software comments).

The thing to be careful of is that the data is in integer format, but all FORTRAN routir';
assume integers are only 16 bits long and the last bit is a sign bit in 2's complement format. Thus, if
you look at an INTEGER*4 word (such as our data) and print it out, you are really only looking at the
first 16 bits and even that's in 2's complement. To get around this is the software (see for example
FILCAL.FOR, READTP.FOR, TSTCNT.FOR), we convert this value into a floating point number
before we do anything with it (such as displaying data , doing arithmetic, etc.)

HIST(i,j) = AJFLT(ITEMP)

ITEMP was an INTEGER*4 data point used to store the result of a RDCNTR subroutine. This data
point is then converted into a floating point number from 32 bit integer format. (example is from
FILCAL.FOR) This is extremely crucial when analyzing your data or using it. If this is done, you
have an incredible amount of dynamic range available and can utilize very long integration times if you
need them.

Timing of DATA Records

I just wanted to mention that it seems when the software is dumping a data record to tape or
disk, the interrupt rate is disrupted a little bit (perhaps 200 to 600 usecs). This probably is not that
important, but it should be noted, and maybe really tested to see if it is true and what kind of effects it
may have (i.e. period peaks in your data, when the integration time is a tiny bit longer). There may be
ways around this as well.

Ouick Reference to Using Photometer System

Assuming you understand the basic operation of the Photometers, and that you can figure out
this software by the prompts and trial and error, and that you really don't want to read through thiV
manual, the basic steps are:

1. Turn on the controllers and power supplies
2. Turn on the disk drives, and terminal
3. Turn on the computer
4. If computer didn't boot, hit the boot button once
5. Enter Date and Time when the computer prompts you for it.
6. Initialize the Magnetic tape (which needs to mounted with write ring!)

@INIMT
7. Enter photometer system software

@PII
8. You're all set!

34

