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ABSTRACT

Current search algorithms and heuristics perform very poorly in the highly realistic

scenario of a physical agent traversing an initially unknown search space. They do not

attempt to minimize the amount of movement required by the physical agent attempting to

reach a desired goal location. In order to overcome the failings of these algorithms in

dealing with searches of this particular nature, a new algorithm called persistent search was

created.

Persistent search differs from most other algorithms because it focuses on

minimizing the physical movement of an active agent traversing an unknown search space,

coping with the physical aspects of the problem which are too often ignored. Persistent

search uses several standard search techniques but applies them in such a way as to change

the semantics of the search. An interesting additional property of this algorithm is that

through the manipulation of a single control variable, termed the persistence factor, the

operation of the basic algorithm can be changed to span the continuum of behaviors

between depth-first and breadth-first search.
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I. INTRODUCTION

Current search algorithms and heuristics perform very poorly in the highly realistic

scenario of a physical agent traversing an initially unknown search space. They do not

attempt to minimize the amount of movement required by the physical agent to reach a

desired goal location. Most algorithms ignore the physical aspects of search, measuring the

quality of their solutions only by the amount of computation required. In order to

overcome the failings of these search algorithms in dealing with searches of this particular

nature, a new algorithm called persistent search was created and is presented here.

Persistent search differs from most other algorithms because it focuses on minimizing

the physical movement of an active agent traversing an unknown search space rather than

on the number of comparisons. To deal with this twist on a classic search problem,

persistent search copes with the physical aspects of the problem which are too often

ignored.

The difference between persistent search and other standard search algorithms likens

to the difference between internal and external sorting algorithms. External sorting

algorithms use the same methods as internal sorting algorithms but apply these methods

differently. External sorting algorithms take into account the fact that they must interact

with a mechanical device which is inherently very slow in comparison to strictly electronic

operations.

Persistent search uses several standard search techniques but applies them in such a

way as to change the dynamics of the search. Persistent search provides the agent with the

flexibility to handle the physical constraints of the problem. In a search over unknown

terrain, where the relative location of the goal is known but the feasible paths to the goal are

" " "I II



unknown, the search involves not only movement to the goal but also exploration.

Exploration is the process of learning about one's surrounding environment.

Since the agent does not start with a map, it can only learn about its environment by

moving through it. If a map were available to the agent, standard path planning algorithms

could do relatively inexpensive computation to find the optimum path (shortest, least cost,

most efficient, etc.) to the goal before the first step was ever taken by the agent. Without a

map, the agent must instead physically roam its environment to learn about it by sensing the

immediate surroundings. While exploration is movement which adds to the agent's

knowledge of its environment, a different kind of physical movement, backtracking, does

not provide this offsetting benefit.

Backtracking in the physical sense, unlike backtracking in classic search methods,

entails the physical movement of the agent through its environment. Backtracking is

especially costly for two reasons. First, it entails physical movement to make a transition

from one state to another in the search space and such movement is vastly slower than

computation. Second, it implies movement which does not add to the agent's knowledge

of the search space. In most classic search algorithms, no cost is associated with

backtracking: none is needed. A pointer is merely redirected or a context is popped off a

stack. In contrast, persistent search associates a cost with backtracking which enables it to

minimize physical movement in a realistic way.

Persistent search is the embodiment of a new methodology for treating search by a

physical agent which trades additional computation for a reduction in physical movement.

An interesting additional property of this algorithm is that through the manipulation of a

single control variable, termed the persistence factor, the operation of the basic algorithm



can be changed to span the continuum of behaviors between depth-first search and breadth-

first search.



II. PROBLEM STATEMENT

A search problem may be characterized by a start state, a description of a set of goal

states and a set of transition operators which transform one state into another. A state is a

collection of information of sufficient content to uniquely differentiate one state from

another. If there exists a transition operator which transforms a state A into a state B then

state B is called the immediate successor of state A. The set of all states reachable from the

start state through the application of transition operators is known as the search space.

A search problem may be represented by a graph and in special cases by a tree rooted

at the start state as shown in Figure 2.1. Search has the effect of overlaying a tree of

explored nodes onto the search space even when the search space may not natt-ally have a

tree-like structure. The depth of the search is the length of the longest path to any state in

this tree. A search space is naturally represented by a tree if there exists no transitions

which create circuits. Circuits are transitions which allow a state to be visited more than

once along a path in the graph. Circuits create connections between separate branches of

the graph.

Since persistent search operates on a search space represented by a graph, it can

therefore be considered as a variation of the graph traversal problem. A graph consists of a

finite set of nodes V joined by a set of undirected arcs E. The nodes represent states in the

search space while the arcs represent legal transitions between states.
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Figure 2.1 Maze with Tree Representation

The terms node, state, and location all represent the same concept of situation or

condition, but each implies a different context. Node is used when discussing search in the

context of graph traversal. Use of the term state implies a general or abstract discussion of

search. When referring to states as locations, the context is that of the chosen problem

domain, search in a rectilinear maze.

Traversing the graph is a single physical agent which attempts to arrive at a single

distinguished node called the goal state. The agent, which has no prior knowledge of the

graph, attempts to minimize the amount of physical movement expended searching for the

goal. Although the agent has no knowledge of any paths to the goal, it does have a method

for judging its nearness to the goal. This nearness can be measured in a number of ways

including absolute distance, number of arcs to the goal, amount of difference between the

description of the agent's current state and the goal state, etc.

The identity of the physical agent performing the search is not specified in the

problem. It could be an autonomous vehicle or robot attempting to find its way across
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unfamiliar terrain, able only to sense its immediate surroundings. The agent could also be a

packet of information traversing a packet switching network from the node of the packet's

sender to the node of its addressee. The routing logic at each packet switching node knows

only which nodes are attached to it, not the entire set up of the network.

In a more restrictive case, the agent could be a read/write head on a tape drive. Here

the environment (tape) moves instead of the agent (read/write head), but the effect is the

same. In optimum search on a tape (Hu, 1987, pp. 573-590), n records are stored

alphabetically on a tape. A binary search of the tape minimizes the number of comparisons

but not the amount of movement of the tape. A linear search of the tape minimizes the

number of movements but not the number of comparisons. A tape-optimal search

minimizes the total cost of comparisons and movements. Optimum search on a tape is

considered a restricted case of the general problem because the search space can be

naturally represented by a tree.

For the purpose of using a real world example, the case of a robot traversing a

random maze is chosen and will be used throughout this thesis. Among all of the real

world examples, it is the most directly applicable and simplest to grasp while still

encompassing the full dynamics of the general problem.

6



Figure 2.2 Maze with Rectilinear Graph Representation

The unknown terrain over which the robot will travel is represented by a rectilinear

graph or grid-graph as shown in Figure 2.2. Nodes are arranged in a rectangular fashion

with arcs connecting nodes immediately above and below and to the right and left (north,

south, east and west respectively). Each node then has four possible immediate successors

which are distinguished from one another by their x and y coordinates.

Locations within the maze are either passable or impassable. Impassable locations in

the maze are represented by disconnected nodes in the graph, making them unreachable

from any direction.

As stated above, the robot begins with no knowledge of the graph. It may learn

about the graph only as it moves from node to node via the edges connecting them. The

robot's ability to sense its surroundings is limited to determining whether the immediate

successors of the current state are passable or impassable. In effect, the robot can judge

whether it can move to the north, south, east or west. Since the terrain is a grid-graph, the

robot is on]y able to move and survey in the four cardinal directions.
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Additionally, the robot knows its position relative to the goal. Several different

means could be used to accomplish this. If the robot initially knows the goal's position

relative to its own, it can maintain this knowledge through dead reckoning as it moves

about the maze from its initial starting point. Using this information the robot can

determine its rectilinear distance from the goal as well as the distance from the goal to any

immediate successor state. The following formula computes rectilinear distance from the

node's x and y coordinates:

I X, - xg + Y,- Yg I (2.1)

The r subscript is used to indicate the robot's coordinates while the g subscript

indicates the goal's.

Using a different method, either an active or passive guidance system could also be

used to direct the robot to the goal (e.g., either a form of radar or a beaconing system).

While only lines of bearing are required to choose which immediate successor is closer to

the goal, an exact location for the goal is required to totally order the search space. If the

goal is northeast of the current location, then the states to the north and the east are closer to

the goal and have the same rectilinear distance to the goal. However, when comparing

widely separated locations, a ranking for the locations based on their closeness to the goal

cannot be determined without an exact location for the goal. If location P is north of the

goal and location Q is south of the goal, there is no static way to tell which one is closer

merely by their direction to the goal. By triangulating lines of bearing taken from different

locations, an exact location for the goal can be determined.
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III. SURVEY OF CLASSIC SEARCH METHODS

Different search methods can be classified based on the way transition operators are

applied to control the traversal of the search space. There are two major categories of

search methods: depth-first and breadth-first.

A. DEPTH-FIRST SEARCH

Depth-first search is the simpler of the two. Beginning at the start state, depth-first

search makes a transition to an immediate successor state. It then performs the same

operation again moving to a successor state of that state. This continues until a goal state is

reached or a state which has no successors is reached. If the current state has no

successors, depth-first search backtracks along its path and tries to reach new states by

taking previously unchosen transitions in the order in which they are reached while

backtracking. One can also view depth-first search in the following way. At each state

reached, depth-first search places all immediate successor states on a stack, a last-in, first-

out (LIFO) data structure. It then pops a state off the stack and makes it the current state.

If a state which has no successors is the current state, no transitions are pushed onto the

stack. A state previously pushed onto the stack is then popped off and made the current

state. A stack is a data structure which automatically supports this type of backtracking.

Depth-first search moves away from the start state very quickly but can pass by the

goal, performing needless additional search. This becomes a very serious problem,

especially when the search space is very large.

9



B. BREADTH-FIRST SEARCH

While in the current state, breadth-first search chooses every possible transition. It

applies them all in turn, adding the immediate successor states reached by each transition to

an agenda of new states not yet explored. States on the agenda are also called frontier

states. Frontier states are states which have been examined and perhaps rated by either a

cost or evaluation function, but not yet explored. A state has been explored if its immediate

successor states have been examined and added to the agenda.

Breadth-first search adds all immediate successor states of the start state to the

agenda. It then begins working its way from the beginning to the end of the agenda,

adding the successors of the states it explores to the end of the agenda. The agenda is

equivalent to a queue data structure, first-in, first-out (FIFO). The search continues until

either the goal is found or until the agenda is empty, signifying the exhaustion of the search

space. Typically, breadth-first search progresses very slowly but is guaranteed to

eventually reach the goal if the goal is located within the search space. If the number of

successors of each state is very large, breadth-first bogs down very quickly.

C. EVALUATION AND COST FUNCTIONS

Each of the above methods may be guided by an evaluation function, a cost function

or both. An evaluation function is a way of associating a number with a state which is a

measure of the state's goodness in regard to it leading to the goal state. Traditionally, the

closer the value of the state's evaluation function is to zero, the higher the state's rank. An

evaluation function always looks forward from the current state to the goal state and

therefore its value is often referred to as a state's estimated future cost.
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A cost function applies a price to a state transition or to an entire path. The value of

the cost function tells how expensive a particular transition or path is. Again, as with

evaluation functions, smaller is better - the lower the cost of a transition, the higher its

ranking. A cost function measures from either the start state or current state to a successor

state, associating the cost of the whole path with the successor state.

A convenient way to tell the difference between a cost and evaluation function is that a

cost function looks at the states where the search has been while an evaluation function

looks ahead and assesses where the search is going (Rowe, 1988, pg. 201). Some search

techniques combine the cost and evaluation function in guiding the search. In such cases it

is best to choose functions which are measured in the same units, since it often does not

make sense to mix unrelated quantities (e.g., combining gallons of fuel expended with

minutes of exposure to enemy fire). The sum of the values of a state's cost and evaluation

functions is referred to as the state's combined cost.

To further clarify the use of cost and evaluation functions, their role in solving two

problems will be examined: a bin packing and a maze problem. In the case of searching

through a maze, every intersection in the maze is considered to be a state. The paths

leading to and from the intersection are transitions leading to other states. The goal and

start states are randomly chosen intersections.

A good evaluation function for this problem is a state's straight line distance to the

goal state. If the agent's movement through the maze is limited to movement left, right,

forward and back, then the state's rectilinear distance to the goal location should be the

evaluation function. Both of the above functions have the desirable property that their

return values are continuous and smooth. The values do not jump around wildly as the

search progresses from state to state.

11



In a search of a maze with variable cost regions, where the cost of moving from one

location to another is not constant, a cost function can be used to constrain the search. This

is often done when searching for the least cost path. Only the move which would result in

the least cost path from the start state to the new state is ever taken.

In the case of a bin packing problem, where a set of objects are to be stored in the

fewest number of bins, the number, total weight or volume of items left to store could

serve as the evaluation function. The cost function for this problem can be represented by

the number of bins used. A transition has a cost of one if it causes a new bin to be used,

zero otherwise. The total number of bins used would be the cost of the path composed of

the set of transitions chosen.

D. HILL-CLIMBING SEARCH

Variations of depth-first and breadth-first search are possible through the use of cost

and evaluation functions. Using an evaluation function with depth-first search, an

immediate successor state which is closest to the goal will always be explored first. This is

called hill-climbing. While this is very useful in guiding the search, it still very often leads

to trouble. Because each transition decision is based solely on the current state, hill-

climbing can very quickly go wrong due to local minimums. These are paths that start out

looking promising but do not lead to the goal. They either end in a dead end or eventually

turn and lead away from the goal.

E. BEST-FIRST SEARCH

A variation of a breadth-first search using an evaluation function which avoids the

above problems is called best-first search. Best-first search adds the successors of the

12



current state to its agenda which is ordered by the value of each state's evaluation function.

The state with the lowest value for its evaluation function is at the front of the agenda and is

made the next current state. Its successors are then added to the agenda in order. This kind

of agenda can be easily represented by the use of a priority queue or a nin-heap.

Using best-first search, exploration can often expand towards the goal just as quickly

as with hill-climbing search. Best-first search also has the added benefit of always moving

to the state with the lowest evaluation function result, thus keeping the agent from

searching at a depth beyond the depth of the goal, missing it just because it was initially

misled by a local minimum.

F. BRANCH-AND-BOUND

Branch-and-bound (B&B) search methods use a cost function to constrain the search

and may be either of a depth-first or breadth-first variety. Breadth-first B&B adds states to

the agenda according to their cost function result. The lower the cost function, the higher

on the agenda the state is placed. The state with the lowest cost function is explored next.

Breadth-first B&B guarantees the first path to the goal found is the optimal or least cost

path (Kumar, 1987, pp. 1000-1004). Of all search strategies, breadth-first B&B hops

around the most since it is controlled by a cost function stemming from the start state. In

an homogeneous cost search space, breadth-first B&B radiates symmetrically from the start

state.

Depth-first B&B always moves to the immediate successor state which has the least

cost. Depth-first B&B follows the path of least resistance and so is like a stream of water

running down hill. Only when it is dammed up does it back up and start flowing down

another branch.

13



G. A* SEARCH

A* (pronounced "A star") is a very powerful search method which combines a cost

and evaluation function to produce a flexible and capable search method. A* adds states to

its ordered agenda according to the combined cost of each state's evaluation and cost

functions. It then explores the state at the front of the agenda. A*'s cost function measures

from the start state to the state to be explored. Just like breadth-first B&B, A* guarantees

the first path to the goal found is the optimal path under the extra condition that the

evaluation function result for the current state is always less than or equal to the actual cost

of the path from that state to the goal (Hart, 1968, pp. 100-107). A* is most often used in

path planning problems.

H. PATH PLANNING VS. PATH FINDING

Path finding algorithms differ from path planning ones in that path planning

algorithms require complete knowledge of the search space. They are used when it is

important to find and record a particular path to the goal (usually the optimum). Path

planning is a batch process that takes place prior to traversal of the search space by a

physical agent. If the terrain can be represented as a graph without negative costs

associated with the edges, then a variation of Dijkstra's algorithm (breadth-first branch &

bound) can be used to very efficiently find the optimal path from the start state to the goal

state. More complex search strategies, such as A*, are used when it is necessary to reduce

the branching factor of the states and hence reduce the search space.

Path finding on the other hand is an interactive process that takes place as the graph is

being traversed. No prior knowledge of the graph is assumed although the parts of the

14



graph which have been explored may be remembered. Unlike path planning, an optimum

path seldom results from this kind of search. Any path found is considered a success.

Path finding is only useful in those cases where incomplete information about the search

space is available or full processing of the information is too costly. The use of path

finding in the latter case is often called lazy evaluation.

I. SUMMARY

Each of the above algorithms may be the best search method for a particular set of

circumstances, but each has significant weaknesses when dealing with the search problem

of a physical agent traversing an unknown maze. In the next chapter, the persistent search

algorithm will be described in detail, focusing on how it differs from the above methods

and why it is particularly well suited to solve the selected search problem.

15



IV. ALGORITHM DESCRIPTION AND IMPLEMENTATION

The algorithm for persistent search will be described in two ways. The first

description will be very general, suitable for application to any kind of search space. A

very detailed description of the algorithm will then follow which is specific to the chosen

problem domain of a physical search agent in a rectilinear maze.

A. GENERAL ALGORITHM

The algorithm for persistent search is presented in terms of a general search space

with a cost and evaluation function. The algorithm is as follows:

Step 0: Add the start state to the list of frontier states and make it the current

state.

Step 1: If the current state is the goal state, quit.

Step 2: If the current state is not the goal state, remove it from the list of

frontier states.

Step 3: Examine all immediate successor states which have not yet been

frontier states and add them to the list of frontier states.

Step 4: Examine the list of frontier states. If the list is empty, quit; the

search has failed. If the list is not empty, traverse to the best frontier

state on the list; make it the current state and then go to Step 1.

The best frontier state as described above in Step 4 is defined as the state, v, which

minimizes the equation:

f(v) = g(v) * pf + h(v) (4.1)
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where g(v) is the cost of traversing to the state v from the current state; h(v) is a lower

bound estimate for the estimated future cost, the cost of traversing from the state v to the

goal; and pf is the persistence factor, a coefficient for discounting the cost of backtracking.

While the above algorithm is very close to the algorithm for A* search, one should

note the subtle but important differences. g(v) is computed from the current state to the

frontier state, rather than from the start state. This has the effect of totally negating the

impact of past movements on future decisions. This is desirable since for a physical agent,

once a move has been made there is no taking it back (without exerting a like amount of

effort). All that matters in the search is where the agent is now and where it is going, not

where it has been.

A second difference shows in the use of the persistence factor as a cost coefficient for

g(t'). The persistence factor varies between 0.0 and 1.0 and serves to discount the cost of

backtracking versus estimated future cost, h(v). By varying the persistence factor, the

behavior of persistent can be dramatically altered. When the persistence factor is 0.0, the

cost of backtracking from one state to another becomes zero, negating it. Hence the

formula for rating frontier states reduces to:

f(v) = h(v) (4.2)

which is equivalent to that used for best-first search. Each frontier node is ranked only

according to its estimated future cost. The physical agent will move about the search space

without regard for the amount of movement required, traversing to which ever state is

closest to goal.

When the persistence factor is 1.0, the behavior of persistent search is equivalent to

that of hill-climbing. Since the traversal cost from one state to another is fully counted,

f(v) for a immediate successor of the current state will always be less than that of any other
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frontier state. This can most easily be seen when the cost for moving to an immediate

successor is the same for all states and h(v) is transitive. If g(v) is one for an immediate

successor then the f(v) of the successor equals at most h(v) + 1. This will always be less

than the combined cost of any other state since even if the h(v) of another state is lower,

the traversal cost to that state will more than offset it. If another frontier state's estimated

future cost is h "(v) and this is less than the successor state's h(v), then they must be at

least Ih(v) - h "(v)l away from each other. Figure 4.1 demonstrates this very clearly.

State P's estimated future cost (or distance from the goal) is four. The estimated future

cost of state Q is six. Because the current state is only one away from state Q, its total cost

will always be lower than P's. This is true for all immediate successor states.

v Q1_-

Figure 4.1 Maze with Frontier State P vs. Frontier State Q

Since an immediate successor state will always rank higher than any other frontier

node when the persistence factor is 1.0, persistent search will never backtrack until it must.

It only backtracks when a state has no legal successors. Again, it can easily be seen that
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this equivalent to hill-climbing and depth-first search in general. When backtracking, the

frontier node closest to the current state will be chosen. This happens for the sane reasons

as above, because the cost of traversal to a frontier state will always overcome any

difference in estimated future cost among states.

B. SEARCH OVER A RECTILINEAR MAZE

The algorithm for persistent search which deals with the chosen problem domain of a

rectilinear maze executes in two stages, with the second stage's execution depending on the

results of the first stage. Several other changes in the algorithm have also been made for

the sake of efficiency. Appendix A lists the source code for this specific implementation

which will be explained in further detail below. The algorithm for persistent search in the

context of an unknown maze is as follows:

Step 0: Add the start state to the list of frontier states and make it the current

state.

Step 1: If the current state is the goal state, quit.

Step 2: If the current state is not the goal state, remove it from the list of

frontier states.

Step 3: Examine all immediate successor states which have not yet been

frontier states and add them to the list of frontier states.

Step 4: If any of the immediate successor states have a lower estimated

future cost than the current state, move to that state, make it the

current state and go to Step 1.

Step 5: If none of the immediate successor states has a lower estimated

future cost than the current state, examine the list of frontier states.
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If the list is empty, quit; the search has failed. If the list is not

empty, traverse to the best frontier state on the list; make it the

current state and then go to Step 1.

The best state is again defined as the state, v, which minimizes the equation:

f(v) = g(v) * pf + h(v) (4.1)

The above algorithm accurately reflects a robot traversing a rectilinear maze trying to

reach a goal location. Step 3 implements the first half of the persistent search algorithm, a

hill-climbing search. The robot is able to evaluate immediate successor locations with

respect to their distance from the goal. A successor state is made the current state if its

rectilinear distance to the goal is less than the current state's. A simple north, east, south,

west preference serves as a heuristic to break ties between successors of equal estimated

future cost. This heuristic only results in multiple equivalent solutions when more than one

path to the goal exists, such as when the maze is not a tree.

Step 3 greatly reduces the computation required by persistent search since the agenda

does not need to be examined when a successor state which is closer to the goal exists.

The reasoning for this is exactly the same as that stated above for why persistent search

with a persistence factor of one acts like hill-climbing search. As long as the search is

moving towards the goal no state on the list of frontier nodes has a lower combined cost

than the successor state picked. The function search() in Appendix A implements this

portion of the algorithm.

When no terrain map is available and a physical agent is performing the search,

depth-first search variants such as hill-climbing and depth-first branch-and-bound are the

only reasonable alternatives to persistent search. Breadth-first algorithms such as best-first
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and breadth-first branch-and-bound jump around the search space excessively and perform

too much unforced backtracking to be considered practical for a physical agent.

Best-first search does perform well, doing very little backtracking, if there are very

few local minimums in the maze. Best-first search immediately backtracks if there is a state

on the agenda with a lower estimated future cost than any of the successors of the current

state. This happens when local minimums occur within the maze. As stated above, best-

first search is equivalent to persistent search with a persistence factor of zero.

When there exists no successor to the current state which has a lower estimated future

cost than the current state, the list of frontier states must be examined. This occurs in the

function getbestnode0 of the persistent search implementation. A min-heap maintains

the list of frontier states with the state which has the lowest estimated future cost on top.

Two-way links between the elements of the min-heap and the mapped portion of the maze

are maintained to allow random access to the states on the min-heap and access to the

state's description.

A breadth-first search of the known maze scans for the frontier state with the lowest

combined cost each time the list of frontier states must be examined. This search is called a

backtracking search since it determines which state the agent will move to next and the

agent may have to backtrack through previously traversed states to reach the frontier state.

The depth of the backtracking search represents the result of the cost function, g(v), from

equation (4.1) and is the traversal or shortest path cost to that state. The value of g(v) is

multiplied by the persistence factor to attain a modified traversal cost.

The estimated future cost of every frontier state reached by the backtracking search is

summed with its modified traversal cost to give a combined cost for the state. During the

course of the search, the state found with the lowest combined cost so far is saved. This
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combined cost is then compared against a lower bound for the combined cost of the frontier

state on top of the min-heap. Recall that the state on top of the min-heap is the frontier state

with the lowest estimated future cost. The current depth is used as a lower bound for the

traversal cost of this minimum frontier state. As the depth increases so does the lower

bound of the traversal cost.

The backtracking search for the best frontier state ends when the combined cost of a

frontier state matches or exceeds the lower bound combined cost of the state with the

lowest estimated future cost. This check is made whenever the lowest combined cost state

found changes or the depth changes. The backtracking search is terminated at the earliest

possible point while still ensuring that the state with the lowest combined cost is the state to

be explored next.

The state with the lowest combined cost represents the state most likely to lead to the

goal without incurring overly expensive backtracking costs. The lower the persistence

factor is for a search, the farther an agent will be allowed to travel to reach a state with a

low estimated future cost. The persistence factor greatly influences the amount of

backtracking which takes place during a search.

The path followed to every state during the backtracking search of the known maze is

temporarily saved in each state's description so that once the best next state is found, the

agent can traverse the indicated path to the state.
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V. ANALYSIS OF ALGORITHM AND SEARCH COMPLEXITY

Formal complexity analysis of an algorithm determines the amount of resources (i.e.,

memory, time, etc.) needed by the algorithm as a function of the size of the problem

instance (Brassard, 1988, pg. 5). The search complexity of a search problem is equal to

the number of states evaluated. The algorithmic complexity of persistent search can then be

stated as a function of the search complexity and the cost of making a transition during the

search. The size of the search space places an upper bound on the search complexity, since

the search space is the set of all reachable states. For an arbitrarily large search space, this

result is not very satisfying since its limit grows without restriction.

A. SEARCH COMPLEXITY

A tighter bound for search complexity can be achieved by reasoning about the

branching factor and the depth of a search problem (Rowe, 1988, pp. 207-208). The

number of immediate successors of a state is called the branching factor of the state and

usually includes only those successor states not already explored. If the branching factor

for all states is not the same, then the average branching factor over all states is taken to be

the branching factor for the search. The branching factor can also often be computed as the

ratio of the number of states at depth k + I away from the start state to the number of

states at depth k.

The lower bound for the depth of a search is the number of transitions along the

shortest path in the search space from the start state to the goal space. The search

complexity can then be stated as:

(BK+l - 1)/(B - 1) (5.1)
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where B is the average branching factor and K is this lower bound for the depth of the

search (Rowe, 1988, pg. 208). For large branching factors, the equation (5.1) can be

approximated by:

BK (5.2)

By convention, the term n shall often be substituted for equation (5.1), when referring to

the size of a problem instance.

For the general case of graph traversal, the branching factor has an upper limit of

V - 1, where V is the number of nodes in a completely connected graph. This then makes

the depth of the search one, since every node is an immediate successor of every other

node. The branching factor has a lower limit of one since the graph can be a chain of V

nodes. In this instance, the depth has an upper limit of V - 1 since the start state and goal

state could be on opposite ends of the linear chain. As can be seen for the general graph

case, the size of the search space is bound by the depth and branching factor of the search.

I II I I I I

I I I I I

(a) (b)

Figure 5.1 (a) Maze Without Cycles (b) Maze With Cycles
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For the case of a rectilinear maze, an exact limit for the average branching factor can

be computed in terms of the depth, K. A rectilinear maze with and without cycles is shown

in Figures 5.1(a) and (b). Again, the main difference between the two types of mazes is in

how they may be most naturally represented. As it happens, they also have different

branching factors.

In the case of a rectilinear maze with cycles, the branching factor of the search is

again severely constrained by the topology of the maze. At each deeper level of the search,

the number of nodes on that level exceeds that of the previous level by four. This is

illustrated in Figure 5.3. To calculate the upper bound on the number of nodes at any depth

in the search of a rectilinear maze, merely multiply the depth by four.
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n =2* k2 +2* k + 1 (5.3)

where k is the current depth of the search and n is the number of states in the search tree.

For a search of sufficient depth over a maze without cycles, the limit of the average

branching factor approaches one even faster than above. A single starting node in a

complete rectilinear maze is allowed to expand freely and only those nodes which would

result in circuits are disconnected. Figure 5.2 displays this scenario, showing expansion

level by level. Expansion is constricted to the expansion of only four states at regular

intervals, just as at a depth of three in the figure. The branching factor is severely

constrained by the topology of the maze.

Figure 5.2 Maze Without Cycles Showing Search Order

For a rectilinear maze without circuits, the upper bound on the size of its search space is

conjectured to be:

n = k2 + 2* k + 2 (5.4)
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B. ALGORITHM COMPLEXITY

Now that a tighter bound has been placed on the search complexity, O(k2), a

reasonable worst-case complexity for the algorithm may be shown. By examining each

step in the general algorithm for persistent search as stated in Chapter IV, a computational

cost in terms of n may calculated. Step 0 is only done once and takes constant time. Steps

1 through 4 may be done up to n times, once for each state in the search space. No state is

ever examined more than once. The complexity of any one of these steps must therefore be

multiplied by n.

In Step 1, the current state is checked to see if it is the goal state. The amount of

computation needed for this is proportional to the amount of information needed to

distinguish one node for another. In the strictest sense, this increases as the log 2 of the

number of nodes, n. This is most easily shown if each node is uniquely identified by an

integer. The more nodes, the greater the number of bits needed to represent the integer

signifying a particular node. So the complexity of Step 1 is O(log 2n) when including bit

complexity. Bit complexity is often ignored when determining algorithm complexity thus

making the time complexity of Step 1 constant, or 0(1).

In Step 2, the current state is removed from the list of frontier states. Locating the

current state in the agenda list can be done in constant time if a link to the state's position in

the list is kept in the state's representation. In the implementation of persistent search

discussed above, the frontier list is kept in a min-heap so as to allow easy access to the

smallest element and efficient updating of the list. Removing an element from the min-heap

requires 0(log 2n) time.

All immediate successors of the current state which have never been frontier states are

examined and added to the list of frontier states in Step 3. The complexity of finding
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immediate successors of the current state is equivalent to that of the transition operators

multiplied by the number of successor states. The operators are assumed to take constant

time and since any state in a rectilinear graph has at most four immediate successors, the

complexity is merely a constant multiplied a constant. Telling whether a state has been a

frontier state also takes constant time since that information is part of its state description.

Adding the states to the frontier list takes 0(log2n) time for a min-heap.

Step 4 examines the list of frontier states and traverses to the best one. This takes

O(n) time since every state in the search space up to that point in ,.ie search may have to be

examined to determine the best state. Traversing to the best state on the list also make take

up to O(n) time in the worst-case.

pAgent

Goal

Figure 5.4 Worst-case Maze for Persistent Search

Figure 5.4 shows an example of a worst-case situation. The maze is linear with the

goal unreachable. Persistent search will constantly have to explore the entire search space

to determine the best state, no matter what the persistence factor. Several methods for

combatting this are discussed in the next section of this chapter.

By combining the time complexities for the above steps, the exact time complexity for

persistent search is given by the following equation:

T(n) = cl + n * (c2 + c3 * log 2n + c4 * log 2n + c5 * n) (5.5)
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cI through c5 are constant factors. ci represents the time complexity of Step 0 and the

terms inside the parentheses represent the time complexity for Steps I through 4.

For sufficiently large n, only the highest order term is significant; the rest can be

dropped. Ignoring lower order terms, Equation (5.5) simplifies to:

T(n) = c * n2 (5.6)

where c is a constant. Substituting Equation (5.3) for n in Equation (5.6)

T(n) = c * (2 * k2 + 2 * k + 1)2 (5.7)

the computational complexity of the algorithm is shown in terms of k. If the depth of the

search is limited to k, then ignoring lower order terms the limit is:

T(k) = c * V (5.8)

While the time complexity of persistent search is of O(k4 ), or O(n2), its space

complexity is of O(n). Only enough memory to store the state information and the frontier

list is needed and both of these items are of O(n).

C. COMPLEXITY SHORTCUTS

Several methods for reducing the complexity of persistent search are possible under

certain conditions. With a persistence factor of 1.0, there exists no chance of backtracking

before a state without successors is reached. There is no reason then for evaluating any

state beyond the first frontier state found when backtracking from the current state. Setting

the persistence factor to n ensures that the first frontier state reached will be have a lower

combined cost at the time it is reached than the frontier state on the top of the min-heap.

This results in the backtracking search terminating immediately and with the agent

traversing to the first frontier state found. By limiting the backtracking search in this way,

the amount of computation performed by persistent search is reduced to within a constant
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factor of the amount of computation performed by hill-climbing search. Since n is

normally not known prior to the search, a very large constant can be used for the

persistence factor.

By maintaining the min-heap in the implementaion, persistent search is able to cut off

the search for the best frontier state at the earliest opportunity, after it is sure it has found

the best state. Although worst-case scenarios can still be created which require O(n2) time,

the average case complexity is much lower. Empirical testing of the algorithm has shown

very favorable results in comparison to hill-climbing search.
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VI. EMPIRICAL TESTING AND RESULTS

In order to better judge the performance of the persistent search algorithm, a random

maze generator and a hill-climbing algorithm were both implemented. See Appendix C to

examine the actual code. These implementations were not only useful in testing persistent

search but also in improving it. The testing also revealed several weaknesses in the testing

methodology which was subsequently revised.

A. MAZE GENERATION

The random maze generator operates in two modes, creating mazes with or without

cycles. The mazes without cycles can be naturally represented as trees and those with

cycles can be represented as graphs. This mode implementation was necessary because of

the nature of persistent search's backtracking. When backtracking, persistent search

always follows the shortest path to the next frontier state. This gave persistent search an

extra advantage over hill-climbing search which can only trace back along its original path

to its next frontier state. In non-tree mazes, this results in a large amount of back and forth

movement by the hill-climbing algorithm as it winds its way out of large open areas. This

inefficient behavior can be seen clearly in Figure 6.1. Persistent search cuts across its own

path following short circuits in the terrain. If the maze is a tree, there are no circuits, which

offsets persistent search's advantage and allows it to be more accurately evaluated.
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Figure 6.1 Hill-climbing Search in a Maze With Cycles

The function makemazeo implements the maze generation algorithm. Using a

depth-first algorithm to follow a random path through an empty maze, makemaze()

creates obstacles at intervals along its path according to a maze density parameter.

makemaze0 begins by creating the bounds for the maze and then picks a random starting

point within the maze. The algorithm maintains a trail of the locations in the maze it has

explored.

At each step along its path, it randomly determines whether it must turn from its

current direction. If so, it places an obstacle in the direction it was going and continues on

in a random new direction. The higher the maze density, the more likely it is that the path

will turn and an obstacle will be created. If the maze generator becomes blocked by its own

trail and obstacles, it backs along its trail until it comes to an open location to which it then

moves.

If makemaze() is restricted to creating mazes which are trees, it must also check

before it takes a step to see if the next location it is going to explore will create a cycle in the
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maze. If so, it places an obstacle there instead and chooses a new direction. In a maze

without circuits, there is only one path from any state to any other state in the maze.

B. HILL-CLIMBING SEARCH EVALUATION

For comparison with persistent search, a hill-climbing algorithm was implemented. It

is very similar to the algorithm used to create the maze as they are both depth-first

algorithms. An evaluation function determining which successor location was nearer the

goal was added to the maze generating depth-first algorithm to create the function dfsO.

dfsO uses a simple stack to keep its current path and a bitmap to mark where it has

been. It places all successor states on the stack and then moves to the state on the top of the

stack. dfso uses the same heuristic that persistent search does. It chooses between

successor states with equal estimated future costs by using a simple north, east, south, and

west preference. Again, dfs0 performs exactly like persistent search with a persistence

factor of one, choosing to explore the same nodes in the same order.

The results comparing hill-climbing to persistent search are very favorable for the

new algorithm. With very few exceptions, a persistence factor for the search can be found

which beats hill-climbing search and minimizes the amount of movement required by the

agent to find it way to the goal. In all cases, persistent search can do at least as well as hill-

climbing search.
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Figure 6.2 - Graph of moves vs. persistence factor for a maze

of size 16 X 16 and a maze density of 0.5

Both the number of moves made by the agent and the amount of computation required

were recorded for each test run. The graphs in Figures 6.2 through 6.5 show the number

of moves and the amount of computation for two representative test runs and a range of

persistence factors.
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Figure 6.3 - Graph of computation vs. persistence factor for a
maze of size 16 X 16 and a maze density of 0.5

A persistence factor of n applies only to reducing the amount of computation. The

persistence factor is set to a number larger than the number of states in the search space.

This reduces backtracking search and makes the amount of computation done by persistent

search equivalent (within a constant factor) to that done by hill-climbing search.
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Figure 6.4 - Graph of moves vs. persistence factor for a maze
of size 64 X 64 and a maze density of 0.5

As can be seen from the graphs, both the number of moves and the amount of

computation varn greatly with the persistence factor. There is no smooth curve, because

persistent search depends on catching discontinuities in the graph. Persistent search excels

when a local minimum is followed which quickly turns away from the goal. Hill-climbing

must follow these local minimums to their end while persistent search can cut them short

and move to more promising paths.

Over 27,000 test mazes were created and comparisons of persistent search and hill-

climbing search performed. On randomly generated mazes which were trees, persistent

search performed better, making fewer moves, than hill-climbing search over 40% of the

mazes with some persistence factor and performed at least as well with some persistence
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factor in 100% of the cases. In mazes which were not trees, persistent search bettered hill-

climbing in 87% of the test runs with some persistence factor.
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Figure 6.5 - Graph of computation vs. persistence factor for
a maze of size 64 X 64 and a maze density of 0.5

Several factors influenced the results of these tests in the hill-climbing algorithm's

favor. First, the search space is bounded Hill-climbing can stray from the path to the goal

and wander forever while following a local minimum and never reach the goal unless the

search space is bounded or an arbitrary limit for the depth of the search is set. Persistent

search needs no such boundary as it uses its persistence factor to cut short a path but then

possibly later continuing that path. Bounding the search space has the effect of setting an
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arbitrary limit for the depth of a search without the possibility of cutting short the search too

soon.

A second advantage is that the random maze is generated with an algorithm very

similar to dfsO. Both are depth-first searches in nature, but makemazeO uses a random

heuristic to choose the next state while dfsO uses an evaluation function. This advantage

was curtailed by using a new random starting location for the search than the one used by

makemazeO to create the maze.

As can be seen in the results for the number of computations performed by persistent

search, higher time complexity algorithms soon outstrip constants and lower order

algorithms no matter how large their coefficients. This implies there is a limit to the size of

the search space that persistent search can traverse before the computation time for the

search takes longer than the time needed to physically traverse the search space. The time

needed to physically traverse the search space is proportional to the number of states. The

time complexity of persistent search is proportional to the square of the number of states.

In the broadest sense, persistent search applies to any search where physical

constraints apply to the exploration of the search space. This applies to movement by a

physical agent. be it a robot or a read/write head on a mass storage device, as well as to the

transmission time of a network packet of information.
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VII. FUTURE RESEARCH

A number of possible areas of future vesearch suggest themselves from the empirical

testing and conclusions. The first and the closest to the heart of this research is the

implementation of methods for changing the persistence factor in an adaptive manner

during the course of a search. The second is the use of persistence search in non-

homogeneous cost search spaces, consisting of non-unit cost transitions. The first area of

research provides ways to improve the performance of the algorithm, the second expands

the set of problems to which it can be applied.

Although persistent search always performs as well as hill-climbing, it is very

dependent on the choice of the right persistence factor. Even so, search spaces are not

completely consistent in that a single persistence factor operates best throughout the course

of a search. When the search space is a tree, there exists only one path to the goal. The job

of persistent search is to see that the agent does not stray too far from that path. There are

multiple "fateful turns" along that path When the persistence factor is too high and a

wrong turn is made. no correction of the error is possible before the agent is whisked

away. When the persistence factor is too low, the agent is plagued by indecision, running

back and forth over its path unable to move forward in a definitive way.

Without global knowledge of the search space, no perfect method exists for adjusting

the persistence factor during the course of a search, although several useful heuristics

suggest themselves. The first heuristic for improving the performance of persistent search

involves regulating the persistence factor in inverse proportion to the density of the maze.

Empirical testing revealed a tendency for a search with a high persistence factor to do better

on a less dense maze. In the corresponding opposite case, a search with a lower

39



persistence factor does better in a more dense maze. This trend was very strong when

testing on non-tree mazes, but was inconclusive when testing on tree mazes. One factor in

this is that density is far less distinct when also preserving the tree property of the maze.

The above results tend to bear out one's natural intuition. When the terrain is wide

open and there are but a few small obstacles, it pays to just go directly around them rather

than double back and try a different tack. The search is very unlikely to be led too far out

of it way. When the terrain is dense and large obstacles are common, then dead ends and

local minimums are common. It pays to do some backtracking in order to find a path to

the goal.

Another heuristic for adjusting the persistence factor would be to vary it with the

distance from the goal state. When the current state is far from the goal, make the agent

more persistent so that it will cover a larger area with less backtracking. When the agent is

close to the goal, have it be less persistent so that it will cover the terrain surrounding the

goal more thoroughly. The author calls this method the bird dog technique. When a bird

dog is on the trail of a pheasant, let's say, and the scent is faint (the pheasant is far away),

the bird dog very quickly covers a large amount of terrain in an ambling manner. When the

scent is strong. the dog's movement and attention becomes very concentrated. The dog

traces and retraces its path covering a very small area very thoroughly. Judging from

hunting dogs observed in the past, this method is very effective.

An area of research which would greatly expand the applicability of persistent search

would be to implement it for a search problem where the costs of making a transition from

state to state is variable. This research would dovetail well with current research within the

Computer Science Department at the Naval Postgraduate School. It could easily be added
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to a number of ongoing projects. The change to the algorithm itself is slight and only a

single variable need be added to each state description.

To handle variable cost transitions, add a variable to each state description to hold that

state's path length from the current state. Now when performing the search over the

known terrain for the best next state, instead of merely keeping track of the depth of the

search, update each state with its path length from the current state. Use the state's path

length instead of depth to calculate the best next state. As one can easily see, the changes

required to handle this new expanded problem domain are almost trivial.

Persistent search is totally new in its perspective on the problem of search and much

more work will be required to fully ascertain its worth. Many new, appi iati.ns and deeper

insights await to be discovered.
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APPENDIX A

PERSISTENT SEARCH C CODE

* psearch.c - A program which demonstrates and evaluates the persistent
* search algorithm as specified in the NPS Master's Thesis
* titled: Persistent Search: A Bridge Between Depth-first and
* Breadth-first Search For Physical Agents, June 1989.

* Written by: Michael M. Mayer, LT, USN
* Date: 29 May 1989
* Version: 1.1

* Compiler: Written in C on a VAX 11/785. Versions also available for
* the Apple Macintosh and Silicon Graphics IRIS4D/7OGT
* Options: The following compiler options are allowed via the -D option
* TREE: Causes makemaze() to produce mazes which are trees rather
* than more general graphs.
* PM: Causes the display of the mazes generated by makemaze()
* PP: Causes the algorithms to print their path as they search

* Compiling: cc psearch.c (-DTREE] [-DPM] [-DPP] -o psearch
* Usage: psearch <maze size> <maze density> <persistence factor>

**** *********** ***************************************************************I

/* include files */
#include <stdic.h>

#define FALSE C
*define TRUE 1

/* max frontier nodes = 2x + 2, where x = path length. Therefore
n = 2x + 2 + x, where n = # nodes */

#define MAXFRNF2NDEs (size * size / 3 * 2 + 2)
#define NUMLINKS 4 /* number of connected nodes (NESW) */
#define UNKNOWN C /* code for node never before seen */
#define VISITE; 1 /* code for node that has been traversed */
#define FRONTIER 2 /* code for node that is on the frontier -

seen but not traversed 4/
/* recti-linear distance */

#define dist(a,b,c,d) (abs((a) - (c)) + abs((b) - (d)))

/* turn x,y coordinate into array index */
#define indx(x,y) ((y) * size + Cx))

/* get x coordinate from array index */
#define getx(x) ((x) % size)

/* get y cocrdinate fro. array index */
#define gety(y) ((y) / size)
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typedef struct a node

unsigned int

estfutcost, /* estimated future cost */
/* result of the evaluation function */
/* node's rectilinear distance to the goal */

parent, /* index of node used to get to this node
during backtracking search*/

links[NUMLINKS], /* links to the North, East, South, West */
status, /* whether the node has not been seen before,

visited, or on the frontier */
mhindex, /* index of a frontier node on the minheap */
searchid; /* index of node started from during

search for best frontier node
guarenteed to be unique since a node is
never searched from twice */

} node;

unsigned char *world; /* a bitmap holding the representation
of the terrain. In a robot, this bitmap
supplies input to the robot's sensors */

unsianed char *trail; /* a bitmap representing the nodes traversed
by the makemaze function */

unsigned int *pstack; /* a stack holding the path being followed by
the makemaze function */

none *myworld; /* the two dimensional array of nodes which
holds the robot's representation of the
terrain seen so far */

unsianed int *heap; /* a minheap which holds the frontier nodes
in order of their estimated future cost */

unsigned int *agenda; /* a circular queue holding the nodes seen
but not yet expanded in a breadth-first
which attempts to find the best frontier

node to go to next */

unsigned int compares, /* number of operations performed
by persistent search */

moves, /* number of moves by the agent traversing
the maze from the start to the goal using
persistent search */

dfscompares, /* number of operations performed
by depth-first search (hill-climbing) */

dfsmoves; /* number of moves by the agent traversing
the maze from the start to the goal using
depth-first search (hill-climbing) */

unsigned int size, /* size on a side of the maze, a square
size X size large */

Start, /* the index of the start node in the maze '/
goal; /* the index of the goal node in the maze *1

double pf, /* persistance factor of the search */
density; /* density of the maze */
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main(argc, argv)
int argc;
char **argv;

unsigned int x, y; /* loop variables */
double atof(); /* ascii to floating point library function */

/* check number of arguments passed to psearch */
if (argc < 4)
(

fprintf(stderr, "Error: too few arguments.\n");
exit (1);

/* get parameters: 1) size of the maze
2) density of the maze
3) persistence factor of the search */

size = atoi(argv[l]) / 8 * 8;
density = atof(argv[2);
pf = atof(argv[3]);

/* allocate dynamic memory for data structures */
world = (unsigned char *)calloc(size * size / (sizeof(char) * 8),

sizeof (char)) ;
trail = (unsigned char *)calloc(size * size / (sizeof(char) * 8),

sizeof (char));
pstack = (unsigned int *)calloc(size * size, sizeof(unsigned int));
myworld = (node *)calloc(size * size, sizeof(node));
heap = (unsigned int *)calloc(MAXFRNTRNODES + 1, sizeof(int));
agenda = (unsigned int *)calloc(MAXFRNTRNODES + 1, sizeof(int));

/* create random maze
makemazeo;

/* print out maze */
printmazeo;

/* perform depth-first (hill-climbing) search on maze */
dfs();

/I perform persistent search on maze */
initheap();
addheap(Start);
search(getx(Start), gety(Start), getx(goal), gety(goal));

/* print results of search */
printf("persistance factor:%.2f\nmaze density:%.2f\n", pf, density);
printf("dfs:%4d ps:%d moves\n", dfsmoves, moves);
printf("dfs:%4d ps:%d comparisons\n", dfscompares, compares);

/* free dynamic memory */
free (heap);
free (agenda);
free (myworld);
free(world) ;
free(pstack);
free(trail);

/* main 'I
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int search(x, y, goalx, goaly)
unsigned int x, y, /* coordinates of current node */

goalx, goaly; /* coordinates of goal node */

int i, /* link direction from current node */
best; /* index of best next node */

#ifdef PP /* print out coordinates of current node */
printf("PS visited: %d, %d\n", x, y);

#endif

if (! atgoal(x, y, goalx, goaly)) /* see if the goal has been found */

/* keep statistics */
moves++;
compares++;

/* update map and list of frontier nodes */
alterheap(myworld[indx(x, y)].mhindex);
myworldfindx(x, y)].status - VISITED;
setlinks(x, y, goalx, goaly);

/* find out if there exists a successor node which:
1) is reachable from the current node
2) has not yet been visited and

3) is closer to the goal than the current node
i = 0;
while( i < NUMLINKS &&

! (myworld[indx(x, y)] .links[i] &&
myworld[myworld(indx(x, y)].links[i]].status != VISITED &&
closer(x, y, getx(myworld[indx(x, y)].links[i]),

gety(myworld[indx(x, y)].links[i]), goalx, goaly)))
i++;

/* if such a node exists go there and continue search */

if (i < NUMLINKS)
search(getx(myworldtindx(x, y)].links(i]),

gety(myworld[indx(x, y)].links[i]), goalx, goaly);
ei

/ if not, get the best node from the list of frontier nodes "/

best = getbestnode(x, y);
if (best >= 0)

/* if get back a node index, move to that
node and continue search */

printsteps((unsigned int)best, indx(x, y));
search(getx(best), gety(best), goalx, goaly);

else
/* if returns -1, list is empty and search fails */

printf ("PS: No solution possible!\n");

)/* if /

/* search */
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int getbestnode(x, y)
unsigned int x, y; /* coordinates of current node */

int i, /* link direction */
ci, /* current link index */
minindex - -1, /* index of node with lowest combined cost */
depth = 0, /* depth of backtracking search */
numthislevel = 1, /* number of nodes at cuurent depth */
numnextlevel - 0, /* number of nodes one level deeper */
id = indx(x, y), /* unique search identifier */
head = 0, /* head of circular qucue */
tail = 0; /* tail of circular queue */

/* combined cost of node with lowest combined cost */
float mincost = (float)size * size * pf + size * size + 1,

currcost; /* combined cost of node being evaluated */

agenda(tail++] = indx(x, y); /* insert into circular queue */
while (head != tail) /* while circular queue not empty */
{

compares++; /* keep statistics */

/* if through with all the nodes at the current depth */
if (!numthislevel)

depth++; /* increase depth */
numthislevel = numnextlevel; /* get # of nodes at new depth */
nunnextlevel = 0;

/* see if combined cost of best node found so far is better
than the lower bound for the combined cost of node with
the lowest estimated future cost */

if (mincost <= (float)myworld[findmino).estfutcost +
(float)depth * pf)

break; /* if so then search is complete */
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if (myworld[agenda[head)].status -- VISITED) /* not frontier node */
for(i - 0; i < NUMLINKS; i++) /* for each edge */

ci - myworldtagenda(head]].links(i]; /* set current index *f

/* if that node has not already been examined
during the backtracking search */

if (ci && myworld~ci].searchid !- id)

myworld[ci].parent - agenda(head]; /* set parent */
myworld[ci].searchid - id; /* mark search */
agenda(tail] ci; /* add to queue */
tail = ++tail % MAXFRNTRNODES; /* turn corner */
numnextlevel++; /* add to next level */

else /* this is a frontier node */

/* get combined cost of frontier node being examined */
currcost = (float)myworldtagenda[head]].estfutcost +

(float)depth * pf;
/* if better than current minimum combined cost node */

if (currcost < mincost)

minindex = agenda[headJ; /* get new mincost node */
mincost = currcost; /* get new mincost */

/* check combined cost just like the time above*/
if (mincost <= (float)myworld[findmin()] .estfutcost +

(float)depth * pf)
break; /* if so then search is complete */

numthislevel--; /* done checking another node */
head = ++head MAXFRNTRNODES; /* turn corner of cueue */

/* while */
return(minindex); /* return index of lowest combined cost node */

/* getbestnode "/

int closer(xi, yI, xZ, y 2 , goalx, goaly)
unsIgned int x^, yi, /* coordinates of current node */

x2, y2, /* coordinates of successor node */
goalx, goaly; /* coordinates of goal node */

/* if current node is closer to goal than successor node, return true */

return(dist(xl, yl, goalx, goaly) > dist(x2, y2, goalx, goaly));
/* closer */
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setlinks(x, y, goalx, goaly)
unsigned int x, y, /* coordinates of current node *

goalx, goaly; 1* coordinates of goal node *

1* get frontier nodes, fill in their state description, and add
them to the list of frontier nodes */

if(!getblk(x, y - 1, world)) f* North *

myworld[indx(x, y)).links[O] - indx(x, y - 1);
if(!myworldtindx(x, y - )].status) /* if status UNKNOWN ~

myworld[indx(x, y - )).estfutcost
dist(x, y - 1, goalx, goaly);

xnyworld~indx(x, y - l)).status -FRONTIER;
addheap(indx(x, y - 1))

if(!getblk(x + 1, y, world)) /* East *

rnyworldtindx(x, y)].links(l] = indx(x + 1, y);
if(!rnyworld[indx(x + 1, yfl.status) /* if status UNKNOWN *

myworldi~indx(x + 1, y)).estfutcost=
dist(x + 1, y, goalx, goaly);

myworld[indyx(x + 1, y)].status =FRONTIER;
addiheap(incix(x + 1, y));

i'f(!getblk(x, y +4 1, world)) /* South *

myworldrmndx(x, y)].links[2] = indx(x, y + 1);
if(!myworld[indx(x, y + l)3.status) /* if status UNKNOWN ~

mvworld[indx(x, y + l)J.estfutcost=
dist(x, y + 1, goalx, goaly);

mywcrld~indx(x, y + l)].status = FRONTIER;
addheap(indx(x, y + 1));

if(!gettlk(x - 1, y, world)) /* West *

rnyworldlindx(x, y)J.links[3] indx(x - 1, y);
if(!nyworldlindx(x -1, y)].status) /* if status UNKNOWN *

rnyworld(indx(x -1, yfl.estfutcost
dist(x - 1, y, goalx, goaly);

rnyworldfindx(x - 1, y)).status - FRONTIER;
addheap(iridx(x - 1, y));

/* setlirnks *
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init heap() /* initialize heap by setting its size to zero */

heap[0] = 0;
} /* initheap */

int findmin() /* return node with the lowest estimated future cost */

return (heap[ i)

addheap (new)
unsigned int new; /* item to be added to heap is index into myworld */

heap[0]++; /* increment heap size */
heap[heap[O] = new; /* put index into last position */
myworld[new].mhindex = heap[0]; /* set link into minheap */
percolate(heap[0]); /* let item bubble up minheap */

I /* addheap */

alterheap (rT.)
unsigned int rm; /* index of element in heap to be deleted *

int oldval;

if (r,-. > heap[07) /* ***ERROR** */

fprintf(stderr, "Tried removing element [%d3 with heap size [%d)\n",
rm, heap[0]);

exi.t (2) ;

else if (rr. == heap[CI) /* if removing last element in heap */

heap[02--; /* just decrement heap size ",'
return;

else /* remove element and adjust heap "/

oldval = myworld[heap[rm]].estfutcost:
heap[rrr] = heap[heap(O]; /* replace element to be removed

with last element */

heap[O]--; /* just decrement heap size */
myworld[heap[rm]].mhindex = rm; /* adjust link to minheap */

/* decide whether to bubble element up or down */
if (myworld(heap(rm]].estfutcost < oldval)

percolate (rTr)
else

settle (rT-.)

,/ alterhear /
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percolate(start) /* bubble element up in heap */
unsigned int start; /* starting position within heap */

int i, /* heap index */
temp; /* temporary swap variable */

for (i - start; i != 1; i /- 2) /* from start to every parent */

compares++; /* keep statistics */
/* if cost of child is more than the parent then swap them */

if (myworld[heap[i]].estfutcost < myworld[heap[i / 2)).estfutcost)

temp = heap[i / 2);
heap(i I 2) - heap[i);
heapti] temp;
temp = myworldtheap[i / 2]].mhindex;
myworld[heap[i / 2)).mhindex - myworld[heap[i)].mhindex;
myworld[heap[i)].mhindex = temp;

else
break; /* done bubbling up */

/* percolate */

settle(start) /* bubble element down in heap */
unsigned int start; /* starting position within heap */

int i, /* heap index */
ternn, /* temporary swap variable */
child; /* index of child */

= start; /* current index is start */
while (i <= heap[- / 2) /* while current index is not a leaf index */

compares4-; /* keep statistics */
child = 2 * i; /* get child index */

/* if second child exists and its estimated future cost is less
than the first child's, make it the current child */

if (child + i <= heap[O) && myworld[heap[child + 1]).estfutcost <
myworld[heap[child]].estfutcost)

child--;
/I if cost of child is less than the parent then swap them */

if (myworld[heap[i]].estfutcost > myworld[heap[child)].estfutcost)

temp = heap[child);
heap[child) = heap[iJ;
heap[i) = temp;
temp = myworld(heap[child]].mhindex;
myworldlheap(child).mhindex - myworldtheap[i]].mhindex;
myworld(heap(i)].mhindex - temp;

ei 5e

break; /* done bubbling down */
± = ch±ici: /* current element is now the child element */

/* while "/
/" sett( "
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int atgoal(x, y, goalx, goaly)
unsigned int x, y, /* coordinates of current node */

goalx, goaly; /* coordinates of goal node */

return(x goalx && y == goaly); /* if at goal node return true */
} /* atgoal *1

printsteps(finish, start)
unsigned int finish, /* index of best next node */

start; /* index of current node */

int currnode = myworld[finish.parent,
old - finish,
real-old = finish;

while (currnode != start) /* reverse pointers along path */

old = currnode;
currnode = myworld[currnode].parent;
myworld[old].parent = real-old;
real-old = old;

currnode = old;
while (currnode != finish) /* while not at end of path */

moves++; /* keep statistics */

#ifdef FP /* print out traversed node */
printf("PS visited: %d, %d\n", getx(currnode), gety(currnode));

*enldif

currnode = mywcrld[currnode.I.parent; /* follow path */

/* printsteps *!
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setblk(x, y, bitmap)
unsigned int x, y; /* coordinates in bitmap *1
unsigned char *bitmap; /* bitmap in which to set value */
/* sets the bit in the bitmap corresponding to the provided x,y coordinate */

unsigned int byte, /* byte where x,y coord is located */
bit; /* bit in byte where x,y is located */

byte - indx(x, y) / (sizeof(char) * 8);
bit - indx(x, y) % (sizeof(char) * 8);
bitmap[byte] I- 1 << (7 - bit);

/* setblk */

getblk(x, y, bitmap)
unsigned int x, y; /* coordinates in bitmap */
unsigned char *bitmap; /* bitmap from which to get value */
/* return the value of the bit in the bitmap corresponding to the x,y

coordinate provided */

unsigned int byte, /* byte where x,y coord is located */
bit; /* bit in byte where x,y is located */

byte = indx(x, y) / (sizeof(char) * 8);
bit = indx(x, y) % (sizeof(char) * 8);
return((bitmaptbyte >> (7 - bit)) & 1);

I /* getbik *1
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APPENDIX B

PERSISTENT SEARCH LISP CODE

Original implementation of persistent search in Lisp.

Written by: Michael M. Mayer, LT, USN
Date: 1 September 1988
Version: 2.0
Compiler: Written in Allegro Common Lisp on the Apple Macintosh
Usage: (psearch '(startx starty) '(goalx goaly))

(require 'quickdraw)

(defvar *persistence-factor* 0.5)

(defvar *future-locs* nil)

(defvar *agenda2* nil)

(defvar *path2* nil)

(defvar *complete-trail2" nil)

;column number 0 1 2 3 4 5 6 7 8 9

(defvar *world2* '((! 1 2 I 1 2 2 1 2 2) ;C
(. 0 C C 0 1 0 0 C 1) ;i
(1 0 0 0 0 1 0 0 0 1) ;2
(i C C 1 1 i 0 C 0 1) ;3
(1 C C 0 0 1 0 1 0 1) ;4 row number
( 1 C I 2 C 2 C 1 0 -) ;5
(i C 1 0 0 1 0 0 0 2) ;6
(2 C 1 1 1 1 0 1 0 1) ;7
(2 C C C C 0 0 1 C 2) ;E
(1I i I i 2 2 2 i 2 )));9

(defur. init-psearc. ()
(setq *path2* nil)
(setq *agenda2* nil)
(setq *future-locs* nil)
(setq *complete-trail2, nil)
(setq *dead2* nil))

(defun stats2 (thewindow)
(ask thewindow (move-to 8 214))
(princ "The path length is: " thewindow)
(prinl (length *path2*) thewindow)
(ask thewindow (move-to 8 228))
(princ "The # of moves made is: " thewindow)
(prin: (Ientoh. *cor.plete-traii2*) thewindow)
t5
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(defun xoves-away2 (ptl pt2)
(+ (abs (- (car ptl) (car pt2))) (abs (- (cadr ptl) (cadr pt2)))))

(defun update-lists (newpath)
(let ((pathback (set-difference *path2* newpath))

(pathforw (reverse (set-difference newpath *path2*))))
(setq *complete-trail2*

(append (append (reverse pathforw)
(remove (car *Path2*) pathback))

*complete-.trail2*))
(draw-circles pswindow2 pathback *white-.pattern*)
(draw-circles pswindow2 (reverse pathforw) *1ight-gray-pattern*)))

(defun pathlength (x y)
(- (+ (length x) (length y)) (* 2 (length (intersection x y :test 'equal))))

(defun compare-agenda-items (itemi item2)
(cond ((<= (+ (get itemil 'distance)

((pathlength (get itemi 'path) *path2*)
*persistence-factor*))

(+ (get item2 'distance)
((pathlength (get item2 'path) *path2*)
*persistence-factcr*)))

item!2)
(t item2))

(defun best-on-agenda 0)
(do* ((agenda *agenda2* (cdr agenda))

(best (car *agenda2*) (compare-agenda-items (car agenda) best)))
((null (cdr agenda)) best)))

(defun movep2 (dir 1cc)
(cond ((eaual dir 'north)

(and (<= (nth (car loc) (nth (I- (cadr 1cc)) *world2l)) 0)
(not(merrber (list (car 1cc) (1- (cadr 1c)) *complete-.trai12*

:test 'equal))
(not(rnember (list (car loc) (1- (cadr locMl *future-loc.s

:test 'equal))))
((equal dir 'east)
(and (<= (nth (1+ (car 1cc)) (nth (cadr 1cc) *world2*)) 0)

(nct(merrber (list (1+ (car 1cc)) (cadr 1cc)) *ccmplete-.trail12*
:test 'equal))

(not(member (list (1+ (car 1cc)) (cadr 1cc)) *future-lobcs*
:test 'equal)

((equal dir 'west)
(and (<= (nth (I- (car icc)) (nth (cadr loc) *world2*)) 0)

Cnot(member (list (I- (car 1cc)) (cadr 1cc)) *complete-trail2*
:test 'equal))

(nct(member (list (1- (car 1cc)) (cadr 1cc)) *future-lccs*
:test 'equal))))

((equal dir 'south)
(and (<= (nth (car 1cc) (nth (1+ (cadr 1cc)) *wcrld2*)) 0)

(nct(member (list (car 1cc) (1+ (cadr occ)) *complete-.trail2*
:test 'equal))

(nct(member (list (car 1cc) (1+ (cadr 1occ) *future..bccs*
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(defun add-agenda (item)
(setq *agenda2* (cons item *agenda2*))
item)

(defun any-poss-dirs (start goal)
(let ((no-bktrk nil) (temp nil))
(when (movep2 'south start)

(setf (get (add-agenda (gensym)) 'distance)
0 (moves-away2 (setq temp (list (car start) (1+ (cadr start))) goal))

(setf (get (car *agenda2*) 'path) *path2*)
(setf (get (car *agenda2*) 'boc) temp)
(setq *future-locs* (cons temp *future.locs*))
(setq no-bktrk t)

(when (movep2 'vest start)
(setf (get (add-agenda (gensym)) 'distance)

(moves-away2 (setq temp (list (1- (car start)) (cadr start))) goal))
(setf (get (car *agenda2*) 'path) *path2*)
(setf (get (car *agenda2*) 'bc) temp)
(setq *future..ocs* (cons temp *future..ocs*))
(setq no-bktrk t))

(when (movep2 'east start)
(setf (get (add-agenda (gensym)) 'distance)

(roves-away2 (setq temp (list (1+ (car start)) (cadr start))) goal))
(setf (get (car *agenda2*) 'path) *path2*)
(setf (get (car *agenda2*) 'boc) temp)
(setq *future..ocs* (cons temp *future..ocs*))
(setq no-bktrk t)

(when (movep2 'north start)
(setf (get (add-agenda (gensym)) 'distance)

(roves-away2 (setq temp (list (car start) K1- (cadr start))) goal))
(setf (get (car *agenda2*) 'path) *path2*)
(setf (get (car *agenda2*) 'boc) temp)
(setq *future-locs* (cons temp *futureblocs*))
(setq no-bktrk t))

nc*-bktrk))

(defun psearch (start goal)
(setq *complete-trail2* (cons start *complete-trai'2*))
(setq *path2* (cons start *path2*))
(draw-circle2 pswindow2 start *light-.gray-.pattern*)
Won&~ ((equal start goal) t)

Kt
(let ((est nil) (best-boc nil) (best-path nil))

(cond ((or (any-poss-dirs start goal) (consp *agenda2*))
(setq *agenda2*

(remove (setq best (best-on-agenda)) *agenda2*))
(setq best-path (get best 'path))
(setq best-boc (get best 'boc))
(setq *future-locs* (remove best-loc *future-locs*))
(update-lists best-path)
(setq *path2* best-path)

* (psearch best-brc goal))
(t nil))))))
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;Graphics Support

(defun showworld2 (thewindow)
(ask thewindow (erase-rect 0 0 512 342))
(ask thewindow (move-to 175 228))
(prini *persistence-.factor* thewindow)
(do ((y 0 (1+ y)) (world *world2* (cdr world)))

((null world))
(do ((x 0 (G+ x)) (row (car world) (cdr row)))

((null row))
(if (equal 1 (car row))

(ask thewindow (paint-rect (*x 20)
(*y 20)

(+ (~x 20) 20)
(+ (*y 20) 20))))

(defun draw-circles (thewindow ptlist pattern)
(cond ((null ptlist) t)

(t
(draw-circles thewindow (cdr Ptlist) pattern)
(draw-circle2 thewindow (car ptlist) pattern))))

(defun draw-circle2 (thewindow pt pattern)
(Prog ()
no-shift-key
(cond ((shift-key-p) (return))

(t (go no-shift-key))))
(ask thewindow (fill-oval pattern

((car pt) 20)
((cadr pt) 20)

(+ (*(car pt) 20) 20)
(+ (~(cadr pt) 20) 20)))

(ask thewindow (frame-oval (*(car pt) 20)
((cadr pt) 20)

(4 ( (car pt) 20) 20)
(4 ( (cadr pt) 20) 20))))

(Seto~ pSWindow2 (onecf *window*
.window-title "Persistent Search"
.window-type :tool
.window-position #@? (25 60)
.window-size #@ (200 232)
.window-font ' ("New York" 10))
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;Menus

(setq psmenul (oneof *menu* :menu-title "PS Actions"))
(ask psmenul (add-menu-items

(oneof *menu..item*
:menu-itein-title "Initialize"'
:menu-item-actiof l (init-psearch2))

(oneof *menu-item*
:menu-item-title "Show World"'

* :menu-item-action '(shovworld2 pswindow2))
(oneof *menu-item*

:menu-item-title "Statistics"
:menu-item-action '(stats2 pswindow2))

(oneof *menu-item*
:menu-item-title "Run (1 1) (8 8)"
:menu-item-action '(eval-enqueue

'(psearch '(1 1) '(8 8))))
(oneof *menu-item*

:menu-itern-title "Run (6 1) (8 8)"'
:menu-itern-action '(eval-enqueue

'(psearch '(6 1) '(8 8)
(oneof *menu..item*

:menu-item-title "Run (1 4) (8 4)"'
:renu-item-action '(eval-enqueue

'(psearch '10 4) '(8 4))))))

(ask psrnenul (menu-install))

(setq psmenu2 (oneof *menu* :renu-title "Persistence"))
(ask psmenu2 (add-menu-items

(oneof *menu..item*
:menu-item-title "0.0"'
:menu-item-action ' (setq *persistence-factor* 0.0))

(oneof *menu-item*
:menu-item-title "0 .2"1
:renu-item-action ' (setq *persistence-factor* 0.2))

(oneof *menu-item*
:menu-item-title "0.3"
:menu-item-action '(setq *persistence-factor* 0.3))

(oneof *menu-iter.
:renu-item-title "0.41"1
:menu-itern-action ' (setq *persistence-factor, 0.41))

(oneof *menu-item*
:menu-item-title "0.5"'
:menu-item-action ' (setq *persistence-factor* 0.5))

(oneof *menu-item*
:menu-item-title "0. 66"1
:menu-itern-action ' (setq *persistence-factor* 0.66))

(oneof *menu-item*
:menu-item-title "0.8"'
:menu-itern-action ' (setq *persistence-factor* 0.8))

(oneof *menu-item*
* :menu-item-title "1.0"'

:menu-item-actio. '(setq *persi.stence-factor* 1.0))))

4 (as00 psrseF.2 (meru-install))
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APPENDIX C

EMPIRICAL TESTING C CODE

makemazeo) /* generate a random maze */
{ 4

unsigned int x, y, /* node coordinates */
i, /* loop index */
stepclear, /* movement is clear in current direction */
dir 0 0, /* current direction */
lastdir - 0, /* last direction */
mazestart; /* starting point of maze creation */

int ptop - 0; /* top of the path stack */
float getrandomo; /* returns random number in range specified */

for (i - 0; i < size; i++) { /* set border of maze
setblk(O, i, world);
setblk(size - 1, i, world);
setblk(i, 0, world);
setblk(i, size - 1, world);

/* picks a starting point for maze creation */
mazestart - random() % ((size - 2) * (size - 2)) + size + 1;
x = getx(mazestart);
y = gety(mazestart);
setblk(x, y, trail);
pstack[ptop] = mazestart;

while (TRUE) I
if(getrandom(l.0) < density) /* if rand less than density */

dir - random() % 4; /* change direction */
switch(lastdir) /* block previous direction */

case 0:
if(!getblk(x, y - 1, trail))

setblk(x, y- 1, world);
break;

case 1:
if(!getblk(x + 1, y, trail))

setblk(x + 1, y, world);
break;

case 2:
if(!getblk(x, y + 1, trail))

setblk(x, y + 1, world);
break;

case 3:
if(!getblk(x- 1, y, trail))

setblk(x- 1, y, world);
break;

/* switch(lastdir) */
/* if */
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stepclear - FALSE;

switch(dir) /* see if node in current direction is clear */

case 0:
if(!getblk(x, y- 1, trail) && !getblk(x, y - 1, world)

#ifdef TREE
&& treetest(x, y - 1) /* make maze a tree */

#endif

stepclear - TRUE;
y--;

break;
case 1:

if(!getblk(x + 1, y, trail) && !getblk(x + 1, y, world)
#ifdef TREE

&& treetest(x + 1, y) /* make maze a tree */
#endif

stepclear = TRUE;
X++;

break;
case 2:

if(!getblk(x, y + 1, trail) && !getbik(x, y + 1, world)
#ifdef TREE

&& treetest(x, y + 1) /* make maze a tree */#endi

stepclear = TRUE;
y++;

break;
case Z:

if(!gethlk(x - ., y, trail) && !getblk(x - 1, y, world)
#ifdef TREE

&& treetest(x - 1, y) /* make maze a tree 'I
*endif

stepclear = TRUE;
X--;

break;
}/* switch(dir) *

if(!stepclear) /* if current path not clear */

int count - 0, /* number of clear moves */
chcice, /* which clear mcve chosen */
dirs[4j; /* array of up to four clear moves */

59



while(!count) /* find all clear moves */

if(!getblk(x, y- 1, trail) && !getblk(x, y - 1, world)

#ifdef TREE
&& treetest(x, y - 1) /* make maze a tree */

#endif

dirsfcount++] - 0;
if(!getblk(x + 1, y, trail) && !getblk(x + 1, y, world)

#ifdef TREE

&& treetest(x + 1, y) /* make maze a tree */
#endif

dirs[count++] = 1;
if(!getblk(x, y + 1, trail) && !getblk(x, y + 1, world)

#ifdef TREE
&& treetest(x, y + 1) /* make maze a tree */

#endif

dirs[count++) = 2;
if(!getblk(x- 1, y, trail) && !getblk(x - 1, y, world)

#ifdef TREE
&& treetest(x - 1, y) /* make maze a tree */

#endif

dirs[count++] = 3;
if(!count) /* if no clear moves

ptop--; /* pop path node off stack */
if(ptop == -1) /* if stack empty, we're done!*/

setstartandgoal(); /* get random start and goal */
return;

x = getx(pstack[ptop));
y = gety(pstack[ptop]);

else /* pick one of the clear moves */

choice - random() % count;
dir = dirs[choice];
switch (dir)

case 0: y--; break;
case 1: x+--; break;
case 2: y++; break;
case 3: x--; break;

/* switch */
/* if */

/* while */
) /* if */
pstack[++ptop] - indx(x, y); /* put node on path stack */
setblk(x, y, trail); /* add to trail bitmap '/
lastdir = dir;

/* while /
/* makemrazE */
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#ifdef TREE

treetest(x, y) 1* see if adding node to maze would cause a cycle ~
unsigned int x, y; /* coordinates of node to be tested *

int connect - 0; 1* number of clear adjacent nodes in maze

if(getblk(x, y - 1, trail))
) connect++;

if(getblk(x + 1, y, trail))
connect++;

if(getblk(x, y + 1, trail))
connect++;

if(getblk(x - 1, y, trail))
connect++;

if (connect > 1)

setblk(x, y, world);
return FALSE;

else
return TRUE;

Oendif

setstartandgoal() 1* finds an open space to place the start and goal nodes *

Start = randomo( % ((ize - 2) * (size - 2)) + size + 1;

1while(!getblk(getx(Start), gety(Start), trail));
d:

goal = randomn( % ((ize - 2) * (size - 2)) + size +4 1;

while(!getblk(getx(goal), gety(goal), trail));

float getrandoriraige)
float range; /* value returned is in 0 -range ~
,* returns random floating point value in the range 0 - range ~

return( (float)randon() / (float)Ox7FFFFFFF * range);

/* getrandom ~
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#ifdef PM

print-maze ()

unsigned int i, j; /* loop variables */

for(i 0 0; i < size; i++) /* print maze */

for(j = 0; j < size; j++)
if(getblk(j, i, world))

printf(" *")

else
printf(" ") ;

printf ('\n");

for(i = 0; i < size; i++) /* print maze and trail */

for(j = 0; j < size; j++) /* shows blocked open space */

if(getblk(j, i, world) && getblk(j, i, trail))

fprintf(stderr, "trail/world mismatch: %d, %d\n", j, i);

if(getbik(j, i, world))
printf (" X");

else if(getblk(j, i, trail))
printf (" 0");

else
printf(" );

printf("\n");

/* printmaze

*else

print maze C)

en6f
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dfs() /* depth-first search (hill-climbing) */

unsigned char *dfstrail;
unsigned int *stack;

unsigned int x, y, /* coordinates of current node */
gx, gy, /* coordinates of goal node */
count = 0, /* number of successor nodes */
choice, /* successor node chosen */
dirs[4]; /* array of successor nodes */

int top = 0; /* top of stack pointer for stack */

/* get coordinates */
x = getx(Start);
y = gety(Start);
gx = getx(goal);
gy = gety(goal);

/* allocate dynamic memory for the stack and dfs path trail */
stack = (unsigned int *)calloc(size * size, sizeof(unsigned int));
dfstrail = (unsigned char *)calloc(size * size / (sizeof(char) * 8),

sizeof(char));

/* make start node current node and mark the trail */
setblk(x, y, dfstrail);
stack[top] = Start;

while(stack[top = goal) /* while we are not at the goal */

co-nt = ;
while(count == C) /* while we have no successors */

#ifdef P /I print path of dfs search */
printf("DFS visited: %d, %d\n", x, y);

#e n f
/* find legal successors */

if(!getblk(x, y - I, dfstrail) && !getblk(x, y - ., world))
dirscount 4 ]- = indx(x, y - 1);

if(!getblk(x 1 1, y, dfstrail) && !getblk(x + 1, y, world))
dirsfcount+-] = indx(x + 1, y);

if(!getblk(x, y + 1, dfstrail) && !getblk(x, y + 1, world))
dirs(count++] = indx(x, y + 1);

if(!getblk(x - 1, y, dfstrail) && !getblk(y - 1, y, world))
dirscount1 ] = indx(x - 1, y);

if(count == C) /* if no successors */

tot -- ; /* pop stack */
if(toz == -I) /* if stack is empty */

free(stack); /* free dynayfic memory */
free(dfstrail);
printf(" F: 1: solution possible.\n");
return; /* search failed, return */
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x - getx(stackftopl);
y = gety(stack[top]);

else

/* pick a direction */
choice - closest(dirs, count, gx, gy);
x - getx(choice);
y = gety(choice);

/* if */

/* keep statistics */
dfsmoves++;
dfscompares++;

1 /* while */
stack[++top] = indx(x, y); /* push stack */
setblk(x, y, dfstrail); /* mark trail */

/* while */
#ifdef PP

printf("DFS visited: %d, %d\n", x, y);
#endif

free(stack); /* free dynamic memory */
free (dfstrail);

/* dfs */

int closest(dirs, count, gx, gy)
unsigned int dirs[], /* array of node indexes */

count, /* number of indexes */
gx, gy; /* coordinates of the goal */

/I closest returns the index of the node which is the closest to the goal.
* It chooses from the up to four indexes contained in dirs. count gives

the number of indexes contained in dirs. The indexes contained in dirs
are the clear nodes surrounding the current node. gx and gy
are the x and y coordinates of the goal */

int i, /* loop variable */
winner = dirs[O]; /* index of best node up till then */

for(i = 1; i < count; i++)
if(dist(getx(dirs[i]), gety(dirs[i]), gx, gy) <

dist(getx(winner), gety(winner), gx, gy))
winner = dirs[i];

return winner;
/* closest */
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APPENDIX D

RESULTS OF SAMPLE TEST CASE

Maze density: 0.50

******* ********* xxxxxxxxxxxxxxxx
** * * * * * * XXXOOXXOOXXOOOOX
* * * * *x* xooox XOOOOXOxx
* * ** ** ** * * x0x xxOxxOOx
* ** ** XOOxxOOOOOOOOOxx
* * * * * ** * XXOOOOXOXOXXXOOX
* * * * 0* ** XxO Xx xooooxx
* * * * * * * xoxooxooxooxoxOx

* * * * * X xO xOOxOxOOx

* * * * * * * XOOXOXXOOOXOOOXX
* * * * * * * xoxxoxooxooxox X
* * * * * *** xoxo xOOxO0xOx xX

* * * * 0* XOOOx xXOxxoOX
* * * * * * * x 0OXXOOOOOxxOX

* * * * * x XO XxOX XOOOOx
** * * *** ****** ** x X xxxxx xxxX

Persistance factor: 0.90

ps:23 moves ps:125 comparisons

PS visited: 6, 7 PS visited: 7, 7 PS visited: 7, 8
PS visited: 7, 9 PS visited: 8, 9 PS visited: 9, 9
PS visited: 9, & PS visited: 9, 9 PS visited: 9, 10
PS visited: 1C, 1, PS visited: 9, 10 PS visited: 9, Ii
PS visited: 8, 11 PS visited: 8, 12 PS visited: 8, 13
PS visited: 9, 13 PS visited: 10, 13 PS visited: 11, 13
PS visited: 11, 1' PS visited: 11, 11 PS visited: 12, 11
PS visited: 12, 10 PS visited: 12, 9 PS visited: 13, 9
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dfs: 163 moves dfa: 163 comparisons

DFS visited: 6, 7 DFS visited: 7, 7 DFS visited: 7, 8

DFS visited: 7, 9 DFS visited: 8, 9 DFS visited: 9, 9

DFS visited: 9, 8 DFS visited: 9, 7 DFS visited: 10, 7

DFS visited: 10, 6 DFS visited: 11, 6 DFS visited: 12, 6

DFS visited: 13, 6 DFS visited: 13, 5 DFS visited: 13, 4

DFS visited: 13, 3 DFS visited: 13, 2 DFS visited: 13, 1

DFS visited: 14, 1 DFS visited: 13, 1 DFS visited: 12, 1

DFS visited: 11, 1 DFS visited: 11, 2 DFS visited: 10, 2

DFS visited: 9, 2 DFS visited: 8, 2 DFS visited: 8, 1

DFS visited: 7, 1 DFS visited: 8, 1 DFS visited: 8, 2

DFS visited: 9, 2 DFS visited: 10, 2 DFS visited: 11, 2

DFS visited: 11, 1 DFS visited: 12, 1 DFS visited: 13, 1

DFS visited: 13, 2 DFS visited: 13, 3 DFS visited: 14, 3

DFS visited: 13, 3 DFS visited: 13, 4 DFS visited: 12, 4

DFS visited: 11, 4 DFS visited: 10, 4 DFS visited: 9, 4

DFS visited: 9, 5 DFS visited: 9, 4 DFS visited: 8, 4

DFS visited: 7, 4 DFS visited: 7, 5 DFS visited: 7, 4

DFS visited: 7, 3 DFS visited: 7, 4 DFS visited: 6, 4

DFS visited: 5, 4 DFS visited: 5, 5 DFS visited: 4, 5

DFS visited: 4, 6 DFS visited: 4, 7 DFS visited: 4, 8

DFS visited: 5, 8 DFS visited: 4, 8 DFS visited: 4, 9

DFS visited: 4, 10 DFS visited: 4, 11 DFS visited: 3, 11

DFS visited: 3, 12 DFS visited: 3, 13 DFS visited: 4, 13

DFS visited: 4, 14 DFS visited: 4, 13 DFS visited: 3, 13

DES visited: 3, 12 DFS visited: 2, 12 DFS visited: 1, 12

DFS visited: 1, 11 DFS visited: 1, 10 DFS visited: 1, 9

DFS visited: 2, 9 DFS visited: 1, 9 DFS visited: 1, 10

DFS visited: 1, 11 DFS visited: 1, 12 DFS visited: 2, 12

DFS visited: 3, 12 DFS visited: 3, 11 DFS visited: 4, 11

DFS visited: 4, 10 DFS visited: 4, 9 DFS visited: 4, 8

DFS visited: 4, 7 DFS visited: 3, 7 DFS visited: 4, 7

DFS visited: 4, 6 DFS visited: 4, 5 DFS visited: 3, 5

DFS visited: 2, 5 DFS visited: 2, 6 DFS visited: 1, 6

DFS visited: 1, 7 DFS visited: 1, 6 DFS visited: 2, 6

DFS visited: 2, 5 DFS visited: 2, 4 DFS visited: 1, 4

DES visited: 1, 3 DES visited: 1, 2 DES visited: 2, 2

DFS visited: 3, 2 DFS visited: 3, 3 DFS visited: 4, 3

DFS visited: 3, 3 DFS visited: 3, 2 DFS visited: 3, 1

DFS visited: 4, 1 DFS visited: 3, 1 DFS visited: 3, 2

DFS visited: 2, 2 DFS visited: 1, 2 DFS visited: 1, 3

DFS visited: 1, 4 DFS visited: 2, 4 DFS visited: 2, 5

DFS visited: 3, 5 DFS visited: 4, 5 DFS visited: 5, 5

DFS visited: 5, 4 DFS visited: 6, 4 DFS visited: 7, 4

DFS visited: 8, 4 DFS visited: 9, 4 DFS visited: 10, 4

DFS visited: 11, 4 DFS visited: 12, 4 DFS visited: 13, 4

DFS visited: 13, 5 DFS visited: 14, 5 DFS visited: 13, 5

DFS visited: 13, 6 DFS visited: 12, 6 DFS visited: 12, 7

DFS visited: 12, 6 DFS visited: 11, 6 DFS visited: 10, 6

DFS visited: 10, 7 DFS visited: 9, 7 DFS visited: 9, 8

DFS visited: 9, 9 DFS visited: 9, 10 DFS visited: 10, 10

DFS visited: 9, 1C DFS visited: 9, 11 DFS visited: 8, 11

DFS visited: 8, 12 DFS visited: 8, 13 DFS visited: 9, 13

DFS visited: C, 12 DFS visited: 11, 13 DFS visited: 11, 12

DFS visited: 11, II DFS visited: 12, 11 DFS visited: 12, 10

DFE visited: 12, 9 DFS visited: 13, 9
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