
fihic FILE COPY/

00 (0 AN INVESTIGATION OF THE LOCALITY OF MEMORY
yuan ACCESSES DURING SYMBOLIC

PROGRAM EXECUTION
00

by

DTI

FEB 22 1990D

U DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

DISTRI~TJrION SATENT r
Aipproved for Public relecsel

DitibUtion Unlimited

THE UNIVERSITY OF TEXAS AT AUSTIN

August, 1989

SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
APPROVED FOR PUBLIC RELEASE;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/CI/CIA- 89-081

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT UNIV OF (If applicable) AFI/CIA

TEXAS AT AUSTIN A
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification) (UNCLASSIFIED)
An Investigation of the Locality of Memory Accesses During Symbolic Program Execution

12. PERSONAL AUTHOR(S)
William C. Hobart, Jr.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
X155 DISSERTATION FROM _ TO_ _ 1989 Aujust 148
16. SUPPLEMENTARY NOTATION AP---= F-R-PUBI R EASE IAW AFR 190-1

ERNEST A. HAYGOOD, ist Lt, USAF
Executive Officer Civilian Institution Pro rams

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on revere if necessary and identify by block number)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
NUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. E3 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
ERNEST A. HAYGOOD, 1st Lt, USAF (513) 255-2259 AFIT/CI

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

AFIT/CI "OVERPRINT"

AN INVESTIGATION OF THE LOCALITY OF MEMORY

ACCESSES DURING SYMBOLIC

PROGRAM EXECUTION

Accesiori For IdAPPROVED BY

NTIS CRAMI SUP I YOMMITTEE:
DUGC TAB 0
Unannounce~d 03
Justifica tici

Distribution/ A

Availability Codes

Avail andfor
Dist Spuc~ia

*",o

To my family

Acknowledgments

I would like to thank my supervising professor, Harvey Cragon, and the

other members of my doctoral committee: Les Belady, Mario Gonzalez, David

Greene, Roy Jenevein, and Baxter Womack for their guidance and suggestions during

my research.

Also, this research would have been much more difficult without the consid-

erable support and assistance of those at Texas Instruments, especially Mark Young,

John Osman, Bob Fish, Jim Leftwich, and Mike Fulghum. Their help in modifying

the Explorer Ilsystem microcode was invaluable in completing this investigation.

I would also like to thank those who provided workloads for this research.

At the University of Texas at Austin, I am indebted to Gordon Novak for his GLISP

program, Don Simon for his Reducer program, and Ben Kuipers for his QSIM pro-

gram. I am also grateful to Rick Spickelmier and Karti Mayaram at the University

of California at Berkeley for providing the BIASLisp workload.

Finally, I would like to thank those in my research group, especially Yong-

jae Rim, who provided many helpful comments and suggestions during this research

and Joan Van Cleave for her cheerful and efficient administrative support.

WILLIAM C. HOBART, JR.

The University of Texas at Austin

August, 1989

'Explorer II is a trademark of Texas Instruments, Inc.

iv

AN INVESTIGATION OF THE LOCALITY OF MEMORY

ACCESSES DURING SYMBOLIC

PROGRAM EXECUTION

Publication No.

WILLIAM C. HOBART, JR., Ph.D.

The University of Texas at Austin, 1989

Supervising Professor: Harvey G. Cragon

9
This research focused on the low-level virtual address memory referencing behavior

of symbolic programs. The virtual address traces of six artificial intelligence ap-

plications and two conventional workloads executed on the Texas Instruments f)--

Explorer II were used to characterize the locality of virtual memory accesses during

symbolic program execution and to compare these characteristics with the local-

ity characteristics of conventional workloads. By using this approach, this research

accomplished three overall objectives: first, it enhanced the basic understanding

of symbolic program memory referencing behavior; second, it found new ways in

which the architecture can be tailored for these low-level memory referencing lo-

cality characteristics; and third, it laid the foundation for developing a symbolic

program workload generator model that can be used to drive memory system design

tools..

This research was the first systematic effort to characterize symbolic pro-

gram behavior through the investigation of symbolic workloads' temporal, spatial,and

structural locality. Its specific contributions are the development of new measures

and methods for the analysis of program locality, an extension of Denning's model of

page referencing behavior to virtual address word-level memory referencing behav-

ior, the identification of a low-level virtual memory referencing structural locality,

the identification of significant differences in the low-level virtual memory referencing

behavior of symbolic and conventional workloads, and a memory system design for
/

exploiting the structural locality characteristics of symbolic workloads. -

vi

Table of Contents

Acknowledgments iv

Abstract v

Table of Contents vii

List of Tables xi

List of Figures xii

1. Introduction 1

1.1 Statement of the Problem 1

1.2 Structure of This Dissertation 2

2. Background 4

2.1 Motivation for This Research 4

2.2 Design Principles for Memory Implementations 5

2.3 Design Alternatives for Memory Implementations 6

2.4 Methods of Quantifying the Locality of Memory Accesses 7

2.5 Past Work Related to This Research 11

2.5.1 Program Modeling 11

2.5.2 Methods Used to Measure Program Locality 14

2.5.3 Published Measurements of Program Locality 18

2.5.4 Proposed Architectures Tailored to Symbolic Workloads 24

2.6 Contributions of This Research 27

vii

2.7 Summary 27

3. Data Collection 29

3.1 Overview of the Experimental Setup 29

3.2 Microcode Modification 31

3.3 Trace Collection Procedure 32

3.4 Workload Selection 33

3.4.1 Selection Criteria 33

3.4.2 Modifications Made to the Workloads 35

3.5 Extraction of the Sample Data from the Workload Traces 35

3.5.1 Determination of the Sample Length 35

3.5.2 Extraction of the 450,000 Reference Sample 36

3.6 Summary 36

4. Trace Analysis 40

4.1 Markov Model of Low-Level Memory Referencing Behavior 40

4.2 Trace Categorization and Data Compression 43

4.3 Locality Characteristics Computed 44

4.4 Summary 50

5. Results 51

5.1 Spatial Locality 51

5.1.1 Existence of a Spatial Locality Window 51

5.1.2 Differences in Psw for Symbolic and Conventional Workloads . 53

5.1.3 Implications for Symbolic Memory Subsystem Design 55

5.2 Temporal Locality 55

5.2.1 LRU Stack Distance Thresholds 55

viii

5.2.2 Stack Distance Thresholds for Symbolic and Conventional Work-

loads 56

5.2.3 Implications for Symbolic Memory System Design 69

5.3 Structural Locality 69

5.3.1 Structural Locality Metric 69

5.3.2 Differences in Symbolic and Conventional Workload Structural

Locality 70

5.3.3 Implications for Symbolic Memory System Design 71

5.4 State Transition Probabilities 72

5.4.1 Metrics Used for the Comparison 72

5.4.2 Differences Between Symbolic and Conventional Workloads . 72

5.4.3 Implications for Symbolic Memory Subsystem Design 75

5.5 Results of Correlogram and Power Spectrum Analysis 75

5.6 Summary 80

6. Validation of Results 83

6.1 Validation of the Software Routines 83

6.2 Evaluation of Architectural Independence of Results 84

6.2.1 Distinctive Architectural Features of the Explorer II 85

6.2.2 Comparison Between Explorer II and IBM System/360 Model

91 Traces 88

6.3 Summary 94

7. Application to Memory Subsystem Design 96

7.1 Motivation for the Design 96

7.2 Proposed Design 97

7.3 Specific Design Parameters 99

ix

7.4 Analytic Model of Effective Memory Access Time 99

7.4.1 CAM Cache Hit Probability and Design Parameters 100

7.4.2 Structural Locality Cache Hit Probability and Design Parameters 107

7.5 Performance Analysis 112

7.6 Summary 121

8. Conclusion 122

8.1 Main Contributions 122

8.2 Additional Applications of This Research 123

A. Individual Workload Locality Measurements 126

BIBLIOGRAPHY 142

Vita

x

List of Tables

3.1 Explorer 11 Workloads Traced 34

4.1 Relative Frequency of Types of References. 43

5.1 Spatial Window Probability (Psw) 53

5.2 LRU90 Stack Distance Thresholds. 67

5.3 LRU95 Stack Distance Thresholds 67

5.4 LRU99 Stack Distance Thresholds 68

5.5 PSSD Transition Probabilities 70

5.6 PON Transition Probabilities 73

5.7 PNO Transition Probabilities 74

7.1 Memory Subsystem Design Parameters. 99

7.2 Structural Locality Cache Hit Probability (psc) 112

7.3 Performance Analysis for RCAM = 4 and RMEM = 32. 113

xi

List of Figures

2.1 Spatial Locality 8

2.2 Temporal and Structural Locality 8

3.1 Project Overview 30

3.2 Example Spatial Locality Histogram for a 10,000 Reference TMYCIN

Sample 37

3.3 Example Spatial Locality Histogram for a 100,000 Reference TMYCIN

Sample 38

3.4 Example Spatial Locality Histogram for a 450,000 Reference TMYCIN

Sample 39

4.1 Two-State Markov Model of Program Behavior 41

4.2 Three-State Markov Model of Program Behavior 42

4.3 Example Individual Frequency Histogram 46

4.4 Example Cumulative Frequency Histogram 47

4.5 Example Correlogram 48

4.6 Example Power Spectrum 49

5.1 BIASLisp Cumulative Temporal Locality Histogram 57

5.2 FFT Cumulative Temporal Locality Histogram 58

5.3 Boyer Cumulative Temporal Locality Histogram 59

xii

5.4 Compile-RB Cumulative Temporal Locality Histogram 60

5.5 Compile-Str Cumulative Temporal Locality Histogram 61

5.6 GLISP-Comp Cumulative Temporal Locality Histogram 62

5.7 GLISP-Pay Cumulative Temporal Locality Histogram 63

5.8 QSIM Cumulative Temporal Locality Histogram 64

5.9 Reducer Cumulative Temporal Locality Histogram 65

5.10 TMYCIN Cumulative Temporal Locality Histogram 66

5.11 Example Correlogram of a Spatial Distance String 76

5.12 Example Power Spectrum of a Spatial Distance String 77

5.13 Example Correlogram of a Temporal Distance String 78

5.14 Example Power Spectrum of a Temporal Distance String 79

5.15 Correlogram of the FFT Data Write New-New Spatial Distance String 81

5.16 Power Spectrum of the FFT Data Write New-New Spatial Distance

String 82

6.1 IBM FFT1 Cumulative Spatial Locality Histogram 89

6.2 IBM FFT2 Cumulative Spatial Locality Histogram 90

6.3 IBM APL-Plotter Cumulative Spatial Locality Histogram 91

6.4 IBM WATFIV Compiler Cumulative Spatial Locality Histogram . . . 92

6.5 IBM WATEX Bin Packing Cumulative Spatial Locality Histogram . . 93

7.1 Proposed Memory Subsystem Design 98

xiUo

7.2 Markov Model for Main CAM Cache Referencing with No Prefetching 101

7.3 W, vs. Effective Cache Size 103

7.4 Markov Model for Main CAM Cache Referencing with Prefetching . . 106

7.5 Markov Model for On-Chip SLC Referencing with No Prefetching . .. 108

7.6 W, vs. Effective On-Chip SLC Cache Size 109

7.7 Markov Model for On-Chip SLC Referencing with Prefetching110

7.8 Speedup vs. RCAM and RMEM for Ns = 2 words 114

7.9 Speedup vs. RCAM and RMEM for Ns = 4 words 115

7.10 Speedup vs. RCAM and RMEM for NS = 8 words 116

7.11 Speedup vs. RCAM and RMEM for NS = 16 words 117

7.12 Speedup vs. RCAM and RMEM for NS = 32 words 118

7.13 Speedup vs. RCAM and RMEM for Ns = 64 words 119

7.14 Speedup vs. RCAM and RMEM for Ns = 128 words 120

xiv

Chapter 1

Introduction

1.1 Statement of the Problem

Ideally, memory subsystem design should be a systematic process which

results in a memory that conforms to the constraints imposed by other computer

subsystems and which exploits the characteristics of its expected workloads. How-

ever, current memory architecture designs for symbolic processing systems either are

optimized for the memory reference localities observed in conventional workloads or

for the memory access characteristics that are assumed for symbolic workloads based

on a high-level analysis of symbolic programs. Much more research into the memory

access characteristics of symbolic workloads is required before cache memory design

and paging algorithms can be optimized for symbolic processing workloads.

This, then, was the purpose of my research:

" To further the characterization of memory accesses during symbolic program

execution, and in so doing,

* To progress toward a more systematic memory subsystem design procedure.

In accomplishing this goal, this research also:

* Developed new measures, models, and methods for the analysis of program

locality,

2

" Identified the specific low-level memory referencing behavior associated with

the previously little understood structural aspect of program locality, and

" Provided a systematic analysis of a novel design alternative for exploiting the

special locality characteristics of symbolic workloads.

1.2 Structure of This Dissertation

The next chapter provides the context for this research. It begins by

establishing the need in memory subsystem design for an adequate characterization

of workload memory referencing behavior. The chapter then summarizes other work

done in the characterization of memory referencing behavior as well as other attempts

to exploit program locality in the memory subsystem design. Chapter 2 ends with a

description of the scope of the research in this dissertation and how it relates to the

other work summarized in this chapter.

Chapter 3 describes the collection of the virtual memory address traces.

This description includes the experimental setup, the selection of the workloads, and

the selection of the trace segments used in the trace analysis.

Chapter 4 then describes the procedure used to analyze these traces. The

chapter starts with an explanation and justification of a Markov model of program

behavior upon which much of the analysis is based. Then, using this Markov model,

the data compression and sorting techniques used are described, as well as each of

the locality characteristics computed for the workload traces.

The results of the trace analysis are described in Chapter 5. This chapter

characterizes the spatial, temporal, and structural locality of symbolic workloads and

contrasts these locality characteristics with those of conventional workloads. In this

chapter, these differences are not only statistically quantified, but are also explained

in the light of previously published research and the known high-level behavior of

3

symbolic workloads. Finally, Chapter 5 concludes with an analysis using the Markov

model developed in the previous chapter to show further differences between symbolic

and conventional workloads in their low-level memory referencing behavior.

Chapter 6 describes the procedures used to validate the results of the pre-

vious chapter and assesses the architectural independence of the results presented in

Chapter 5. The validation procedures include numerous cross-checks for consistency

among the results and comparison with virtual memory address traces generated

on an IBM System/360 Model 91. To assess the architectural independence of the

results, the influence of each of the distinctive architectural features of the Explorer

II on the virtual address memory referencing behavior are evaluated in this chapter.

Chapter 7 provides an example of applying the results of this research by

evaluating a novel memory subsystem design also resulting from this research. This

evaluation develops and uses an analytic model of the processor-to-memory effective

access time for this design to select the cache design parameter values which will min-

imize the effective mzmory access time for the measured symbolic workload locality

characteristics. This candidate design is then compared to the existing Explorer

II memory design and shown to provide over a 20 percent speedup in the effective

memory access time for symbolic workloads.

Finally, Chapter 8 summarizes the major contributions of this research and

suggests additional applications of the results of this research.

Chapter 2

Background

This chapter begins by explaining how workload characterization affects

memory system design. Next, the related research that has been accomplished in the

characterization and exploitation of program memory referencing locality is summa-

rized, thus giving the context for my research. Because so much research has been

done in this area and because so many approaches have been used in measuring

program locality, any summary of the published research in this area is by necessity

extensive. This chapter is no exception. To enhance the readability of this summary,

related results are grouped together and cross-referenced, rather than simply listing

the contributions in chronological order.

2.1 Motivation for This Research

One of the key input parameters in designing a computer memory subsys-

tem is the characterization of the expected workload. And, one of the key workload

features is the word-level virtual memory referencing behavior during workload ex-

ecution. For this reason, researchers have extensively studied these memory access

patterns for both scientific and data processing workloads. The characterizations of

these workloads have then been used to exploit observed spatial and temporal local-

ity with cache memory implementations, paging algorithms, and instruction branch

prediction strategies.

However, in comparison to the characterizations of scientific and data pro-

4

5

cessing workloads, the memory access characteristics of symbolic processing work-

loads are relatively unknown. But characterizing symbolic workloads is essential if

three important questions are to be answered. First, are there any basic differences in

the locality characteristics of conventional and symbolic workloads that would justify

a memory subsystem design tailored to symbolic workloads? Second, what are the

differences and how should the memory design be tailored? And, finally, how does

the performance of a memory subsystem tailored for symbolic workload execution

compare with the performance of a conventional memory subsystem design?

In addition to answering these questions, this research lays the foundation

for further investigation of these differences and provides a basis for evaluating new

memory designs that claim to be tailored for symbolic processing computer systems.

And, finally, this characterization provides a basis for developing symbolic work-

load generator models and so aids in the development of expert systems that guide

memory subsystem design.

2.2 Design Principles for Memory Implementations

In designing a memory subsystem implementation, the principal objective

is to minimize the time required for processor reads and writes while staying within

the constraints imposed by cost and physical size. While the actual effective memory

access times depend greatly on the technology used to realize a memory implemen-

tation, the designer seeks an implementation that will make best use of a technology

once it is selected. The effective memory access time will also vary with the type

of workload being executed by the computer system. If the computer system is

being designed for a particular application, the designer should optimize the mem-

ory implementation for this type of workload. This is done by first characterizing

the memory referencing locality of this type of workload, and then exploiting these

6

locality characteristics to decrease the effective access time of the memory system.

A secondary factor which may also have to be considered is the processor-

to-memory bandwidth required to allow the processor to run at its maximum speed.

Many design alternatives which decrease the effective memory access time, do so at

the expense of increasing the required processor-to-memory bandwidth; and so, this

tradeoff must be addressed.

2.3 Design Alternatives for Memory Implementations

There are many design alternatives for memory implementations that can

decrease the effective memory access time. For example, if the workload tends to

concentrate its accesses in a small subset of memory locations, a small high-speed

cache memory may greatly decrease the effective memory access time. If the cost of

the memory subsystem is kept constant, then, in most cases, a hierarchical memory

system consisting of two or more levels will improve the overall access time of the

memory subsystem when compared to a single-level memory subsystem. The num-

ber of levels, as well as their speed and size ratios; whether demand or prefetching

strategies are used; the replacement and write back algorithms chosen; and sizes of

the blocks of data transferred between these levels of memory are all design alter-

natives that will affect the memory system performance. Other design alternatives

include the choice of what memory contents to cache and how to map the addresses

of the lowest level memory into the higher levels of memory.

If on-chip memory is included in the memory hierarchy, then still more

design options are available. The on-chip memory can be used in place of or in

combination with general purpose registers, as an instruction cache, as a data cache,

or as a top of stack (TOS) buffer used to cache both instructions and data.

7

2.4 Methods of Quantifying the Locality of Memory Accesses

The primary ways of quantifying the locality of memory accesses center on

the concepts of spatial and temporal locality. A workload exhibits spatial locality if

reference to a memory location increases the probability that subsequent accesses will

be to nearby memory locations. In contrast, a workload exhibits temporal locality

if reference to a memory location increases the probability that it will be referenced

in the near future.

In addition to these concepts there is a third type of locality. A work-

load exhibits this third type of locality, which Thazhuthaveetil has termed structural

locality, if reference to a particular memory location increases the probability of a

subsequent access to another specified memory location [Thaz86]. In other words,

these memory locations seemed to be paired together in some fashion such as be-

longing to the same structure. These three types of locality are summarized below:

Spatial Locality infers that the subsequent reference is likely to be to a location

near the current reference in the virtual memory address space

Temporal Locality infers that the subsequent reference is likely to be to one of

those addresses referenced in the recent past

Structural Locality infers the subsequent reference will be to address B given that

the program has just referenced address A and such that the previous reference

to address A was followed by a reference to address B

Figures 2.1. and 2.2. illustrate these three types of locality.

The spatial, temporal, and structural aspects of locality are, to a large

extent, independent of each other. For example, a program consisting of a few large

subroutines each with no branch instructions would be expected to have high spatial

8

Virtual Memory Address Space

FFFFFF

Current Reference-- Spatial Locality

000000

Figure 2.1: Spatial Locality

Least Recently Used Stack
of Virtual Memory References

Current Reference _____Temporal

LTemporal
Locality

1tructural
Previous Stack _Locality

Position of Current
Reference

Figure 2.2: Temporal and Structural Locality

9

locality for the instruction stream since consecutive instructions are normally stored

in consecutive virtual memory addresses. However, this program's instruction stream

would have little temporal locality since the large size of the subroutines and the lack

of looping within the subroutines would make the re-referencing of an instruction in

the near future unlikely. Finally, the instruction stream would have structural locality

since the re-referencing of a subroutine would provide a high probability that other

instructions in that subroutine would be referenced in the near future. Likewise,

other examples can be constructed to show that virtual memory address streams can

exhibit any combination of spatial, temporal, and structural locality.

Most of the work in measuring the locality of memory references focuses

on the temporal aspect. Denning proposed the most common method of quantifying

temporal locality in a multiprogramming environment: defining a working set of the

program as the set of memory pages that were referenced by the program during

the previous T memory references where T is called the window size [Denn68]. The

working set attempts to characterize the temporal locality that exists at each point

in time and this is then used as a predictor for future memory references. A number

of attempts have been made to model the memory reference pattern of conventional

workloads mathematically. A semi-Markov model for the univariate point process of

page exceptions was proposed by Lewis and Shedler and provides a fairly accurate

characterization of the paging behavior for the workloads they executed [Lewi73].

Spatial locality for instruction fetches is sometimes expressed as the fre-

quency of successful branches, the distribution of branch distances, or the average

instruction loop length [Alex75]. For symbolic workloads, Clark has measured both

the static and dynamic spatial locality of list structures by tabulating histograms of

the pointer distances of list cells [Clar77, Clar79].

Thazhuthaveetil defined list sets in a way analogous to working sets and

10

then used the size of the list set and its lifetime as measures of a program's structural

locality. He defined a list set as the union of a list reference with the list sets of its car

and cdr provided that the references to the car and cdr were temporally adjacent.

Thazhuthaveetil used ten percent of the length of the address trace as the maximum

separation of two list references that could be considered to be temporally adjacent.

He defined the lifetime of the list set as the number of references between the first

reference to the list set and the last reference to it. Then, using these characteristics,

Thazhuthaveetil partitioned the reference string into a set of possibly overlapping

localities just as the working set does for conventional workloads. He also proposed

a metric for static structural locality that characterizes the effective branching factor

of lists [Thaz86].

However, there are no universally accepted metrics for comparing the dy-

namic spatial, temporal, and structural localities of programs. Instead, the most

common approach is to infer the locality of the workload from the cache miss ratio

or the page fault rate for a given implementation of a memory system. A. Smith

has been a main contributor in this area by using address traces to drive simulations

and then measuring the effects on the memory system performance as the design

parameters are varied [Smit85a]. However, using this procedure does not produce an

absolute quantification metric; rather, only the relative localities of the two workloads

can be inferred. Furthermore, this approach is not a preferred design methodology,

since with the many parameters in a memory subsystem design, it is extremely un-

likely that the optimal n-tuple of these parameters in the design space can be found

using this approach.

11

2.5 Past Work Related to This Research

2.5.1 Program Modeling

The initial research in this area in the 1960's concentrated on developing

more efficient paging algorithms for multi-programmed computer systems executing

conventional data processing workloads. Belady performed much of the initial work

and developed the MIN algorithm for assessing paging performance [Bela66]. This

algorithm assumes prior knowledge of future memory references and is thus not

feasible to implement. However, because it is an optimal algorithm (minimizing

the page fault rate for a given memory reference string), it serves as a standard for

determining how closely other implementable paging algorithms approach optimality.

Belady and Kuehner then proposed a lifetime function which relates the

amount of memory allocated to a program to the average number of memory refer-

ences it makes between page faults [Bela69a]. This function is S-shaped with the

convex portion following the curve e - ask where e is the average number of mem-

ory references between page faults, a is a constant, s is the storage allocated to the

program, and k is approximately equal to two.

Olsson, in 1981, measured the paging performance of an InterLisp system

implemented in FORTRAN and hypothesized that the lifetime function proposed by

Belady and Kuehner could better be represented as a family of lifetime functions

when modeling the paging performance of symbolic workloads [Olss83]. This family

of lifetime functions has the characteristic shape of the Belady lifetime function, but

the slope and tail-off of each function is dependent on the page size as well as the

amount of memory allocated. However, Olsson acknowledges the limited amount of

data upon which his hypothesis is based and recommends further measurements of

this type be taken to confirm or reject his hypothesis.

12

Mattson, Gecsei, Slutz, and Traiger in 1970 used address traces to evaluate

replacement algorithms and the effect of memory allocation on the page fault rate

[Matt70]. They specifically addressed a class of algorithms which met their definition

of a stack algorithm and then used a least recently used (LRU) stack model for their

evaluation of the address traces. They defined a metric, stack distance, as the number

of pages referenced since the current page was last referenced and assigned a stack

distance of infinity to any page that was referenced for the first time. Using these

stack distances, they computed a distance string from the address trace which could

then used in one pass to determine the page fault rate iteratively for all possible

memory allocations.

Denning states in [Denn72] that

the property of locality can be summarized as three statements:

1. A progri m distributes its references non-uniformly over its pages,

some pages being favored over others.

2. The density of references to a given page tends to change slowly in

time.

3. Two reference string segments are highly correlated when the inter-

val between them is small, and tend to become uncorrelated as the

interval between them becomes large.

He also proposed modeling the program behavior as transitions through a collection

of overlapping localities. This view of program behavior is still a basis for workload

characterization today.

As stated in a previous section, Lewis and Shedler in [Lewi73] have de-

veloped a micromodel of sequences of page faults from statistical modeling of ad-

dress traces. They call their model a micromodel because its domain is restricted

13

to steady state program execution and does not apply to the loading of the initial

working set of a program. Since the occurrence of a page fault is relatively rare

once the initial working set is loaded, Lewis and Shedler first attempted to model

the sequences of page exceptions as a Poisson process. However this model proved

to be highly inaccurate and a two-state semi-Markov model was next tried. This

model had to duplicate the high degree of skewness in the empirical data, and thus,

a mixed geometric and negative binomial plus one probability distribution was cho-

sen. The estimation procedure for the parameters of the distribution was ad hoc by

the authors' own admission and in the final analysis, the authors suggested that a

three-state semi-Markov process might be a more accurate model. The third state

would model a referencing mode that they encountered where a very large number

of memory locations would be accessed consecutively with page faults occurring only

at the page boundaries.

Spirn has suggested that one of the states in Lewis and Shedler's model

may be due to the referencing within a locality and the other state due to refer-

encing that takes place when the locality is changed [Spir77]. In this second mode,

page exceptions are much less rare, and it appears that it is the presence of this

relatively rapid transition between localities that causes the Poisson process model

to be inadequate.

J.E. Smith and Goodman studied cache organizations and replacement

policies for instruction caches [Smit83]. In this research, they used analytical models

of instruction referencing patterns to indicate design choices for an instruction cache

design. To model instruction fetching, Goodman used a loop model and a complex

loop model. In the complex model, consecutive instruction fetches are not necessarily

made to consecutive memory addresses. Using these analytical models, they show

for the simple loop model that the random replacement algorithm is superior to the

14

LRU and First In First Out (FIFO) algorithms. They also show that a direct-mapped

cache is superior to a fully associative cache for LRU and FIFO algorithms but that

the two cache designs have equivalent performance for the random replacement algo-

rithm. Finally, they conclude that a set-associative cache with random replacement

combines the advantages of the direct-mapped and fully-associative caches for the

simple loop model. No significant conclusion could be derived, however, for the

complex loop model. Finally, they determined that both cache organization and

replacement policies are secondary factors and that the primary factor controlling

cache performance is its size.

2.5.2 Methods Used to Measure Program Locality

In the mid-1970's, Alexander and Wortman published their analysis of the

static and dynamic characteristics of instruction fetches in XPL programs [Alex75].

To gather their data, they modified the microcode of an IBM System/360 to im-

plement a technique known as jump tracing. This trace technique records only the

memory addresses referenced by the branch instructions and thus greatly reduces

the amount of trace data to analyzed. To determine the static characteristics, they

modified the XPL compiler that they were using. Among the static characteristics

they gathered were the frequency of occurrence of each instruction in the program

and the relative frequency of operators. They were also able to measure the relative

frequency with which instructions were executed and to determine the distribution

of branch distances. These statistics continue to be referenced as a basis for conven-

tional instruction set design and understanding program behavior.

As cache memories became more common in the late 1960's and early

1970's, research into better cache designs and replacement algorithms increased. This

research built upon the knowledge used to develop paging systems. As mentioned in

15

the previous section, A. Smith introduced the use of trace-driven simulation in the

late 1970's to evaluate cache design alternatives and many other researchers have

built upon his work. Also, in 1977, Smith proposed two methods of reducing the

trace data for analysis [Smit77]. The first method, which he called Stack Deletion,

reduced the trace by deleting all memory references which were rereferences to one of

the last k - 1 memory locations referenced where k is defined as the stack level. For

instance, if k = 1, then all immediate rereferences would be deleted from the trace.

Smith's other proposed method was the Snapshot method. In the Snapshot method,

a routine periodically interrupts the program being traced and records those pages

whose page reference bits are currently set. By scanning the page reference bits in

a pseudo-random order, the LRU stack can be replicated and the page fault rate

predicted with a high degree of accuracy. Both of these methods have the potential

of reducing the trace data by one to two orders of magnitude and thus allow the

analysis of longer trace intervals.

Clark and Emer built a micro-PC histogram monitor which allowed the

relative frequency of various architectural events, such as the execution of specific

opcodes, to be determined [Emer84]. Because they used a separate passive hardware

monitor on the VAX Unibus, they were able to trace the execution of the workloads

at full speed and thus compile data for up to two hours of CPU processing at a time.

However, because they were strictly counting the total number of each event that

occurred during that time, they had no way of observing changes that occurred in the

relative frequency of events during that two-hour interval. There were also several

architectural events that they could not monitor because the hardware signals were

not available on the Unibus.

In [Smit85a], A. Smith points out six drawbacks of trace-driven simula-

tion. First, the trace must necessarily represent only a very small fraction of the

16

actual workload. Second, it is very difficult if not impossible to guarantee that this

snapshot is typical of the overall workload, and, in practice, the part of the workload

traced has better locality than average. Third, the traces do not usually include the

memory references due to the operating system, even though studies such as Clark

and Emer's [Clar85] have shown the operating system to have a great effect on the

system performance. Fourth, task switching and interrupt servicing are usually not

included in the address traces and so their effects on system performance are masked.

Fifth, the trace data is influenced by the implementation of the architecture and so

the order of the memory references will differ from one implementation to another.

Finally, most traces do not capture the effect of input/output on the cache activity.

Agarwal, Sites, and Horowitz proposed a new technique for capturing ad-

dress traces by modifying the microcode on the VAX 8200 to record memory refer-

ences as they are made [Agar86]. They state that this technique has the advantage

of slowing down the execution by only one order of magnitude rather two or three

orders of magnitude as is the case when an operating system trace mode is used

or when a software simulator generates the trace. Also, the virtual memory ad-

dresses are recorded rather than physical addresses thus eliminating the distortion

of implementation features such as instruction prefetch buffers. Further, since every

memory reference is recorded, the trace does not suffer from the granularity distortion

that can limit the usefulness of traces obtained from modifications to the page fault

handler that record only page exceptions. As they point out, there is no omission

distortion, since all memory references due to interrupt servicing, task switching, and

operating system calls can also be recorded. Other advantages include being able to

record other CPU internal state information along with the virtual address and not

requiring additional hardware to record the trace data. Because they modified each

microcode location that could request a memory reference, they had about 80 dis-

tinct microcode modifications and were not able to modify all necessary microcode

17

locations due to exhausting the spare microcode memory. They found through their

tracing that with the inclusion of system references in the address traces, that for

caches under 256K bytes, the cache size had to quadruple to have the same miss ratio

achieved with the address trace of the user program by itself. They were also able

to evaluate the effect of process switching and found that for caches smaller than 16

Kbytes, multiprogramming increased the cache miss rate only slightly over the miss

rate when the programs were run sequentially in a uniprogramming environment and

that the small increase could be modeled with cache purges. For cache sizes above

64K bytes, little was gained from cache purges and a cache greater than 256K bytes

was able to hold the working set of several processes simultaneously.

Trace flattening, developed by McNiven and Davidson, is the most recently

used method of measuring program locality [McNi88]. This technique traces values

rather than memory locations. Thus, a memory location which is used at different

times in the program for different values is treated as a separate entity for each value.

Likewise, different memory locations holding the same value as a result of a move

instruction are treated as one entity as long as they hold the same value. McNiven

and Davidson state that trace flattening masks the effects of the architecture and

compiler by integrating the register set into the memory hierarchy and by simulating

an ideal compiler that does not needlessly move data. They also introduce the

con-ept of excess traffic, which is the traffic generated by having to reread data

which was previously in the local memory. Using trace flattening and the concept of

excess traffic, McNiven and Davidson divided the values into classes based on their

interreference times and lifetimes. These classes of values were then individually

analyzed and appropriate memory caching strategies developed for each class.

18

2.5.3 Published Measurements of Program Locality

In 1977, Clark and Green published their analysis of the static spatial

locality of the list structure data produced by Lisp programs. They found substantial

spatial locality and little sharing of list structures [Clar77]. Another interesting result

was that they found that the frequency with which atoms were referenced basically

followed Zipf's Law [Zipf49]. That is, the nth most common atom was referenced 1/n

as many times as the most common atom. They also found that static spatial locality

between successive list elements was primarily due to the elements being created close

together in time and that using sophisticated storage allocation algorithms for list

element creation improved the static spatial locality by only a few percent. They also

quantified the improvements in static spatial locality of the list data structures after

recopying the list structures to make successive list elements follow each other in

memory whenever possible, a process called list linearization. Finally, they proposed

encoding the pointer from a list element to its successor with an offset code, laying

the foundation for cdr-coding.

In 1979, Clark published measurements of the dynamic spatial locality

of symbolic programs including CONGEN, an expert system to generate chemical

structures; NOAH, a hierarchical planning system; and SPARSER, a speech under-

standing parser [Clar79). In his measurements, the frequency with which atoms were

dynamically referenced dropped off much faster than Zipf's Law indicating a more

uneven distribution of atom references. However, only a small portion of each pro-

gram's execution could be traced without having unreasonably long traces. Clark

conjectures that this limitation caused the program to be traced while it was only in

a few of its localities and offers this explanation for the differences between the static

and dynamic frequency of reference measurements. Clark found that the primitive

functions car and cdr accounted for the great majority of the function executions.

19

He also found that the nil primitive function was executed less dynamically than it

was present statically which would seem to infer that lists are usually not traversed

to their end. He confirmed that the static spatial locality that he had previously

measured was indicative of a dynamic spatial locality. In fact, the percentage of

list pointers pointing to the same page was basically equivalent for the static and

dynamic measurements. Finally, he determined that once a list was linearized, it

tended to remain linearized.

Foderaro and Fateman added to the characterization of symbolic work-

loads through their measurements of Macsyma on the VAX-11 in the FranzLisp

environment [Fode8l]. They validated a design decision to treat the garbage collec-

tion phase as an abnormal memory referencing mode by rebuilding the working set

from scratch once the garbage collection phase had ended. They also found for their

demonstration scripts that 385 cons cells were allocated and quickly deallocated for

each 'permanent' cons cell that was allocated. However, when bignums (arbitrarily

precise integers represented by linked lists) were calculated in a program computing

the Binet function, one 'permanent' cons cell was created for every 37 temporary

cons cells created. In another demonstration script, the Begin demo, they found

that the functions cons and equal accounted for a significant portion of the instruc-

tions executed and that the most common VAX-11 assembly language instruction

was movi (move longword) with a static frequency of occurrence of 43 percent and a

dynamic frequency of occurrence of 27 percent. They also found that integer arith-

metic was used very little. These latter results are roughly comparable to the relative

instruction frequencies of XPL programs compiled by Alexander and Wortman.

Goodman studied the design of on-chip data caches which are often con-

strained by the bandwidth available for off-chip memory references [Good83]. He

showed that while larger block sizes exploit spatial locality in cache design, that

20

they can greatly increase processor-memory traffic. In systems where the processor-

memory bandwidth is the primary limiting factor on system performance, smaller

block sizes should be used and thus temporal locality should be primarily exploited.

He also determined that the trace results were easier to interpret if the parameters

were plotted after averaging them over all the traces to eliminate individual program

anomalies. He found that spatial locality dominated the cold start period when the

working set for a program was being loaded, while temporal locality dominated the

warm start period (the period after the initial working set was loaded). He also

proposed the use of transfer blocks that were sub-blocks of the address block. This

reduces the amount of memory required for the tags through the larger address block

size while decreasing the processor-memory traffic through the smaller transfer block

size.

Stanley and Wedig have also studied the locality of on-chip caches. In

[Stan87], they measured the performance of various TOS buffer management algo-

rithms for an on-chip data cache. Using the Dhrystone benchmark on the VAX-11,

they noted that TOS buffers only 16 elements in size cut the processor-to-memory

data stream bandwidth in half. They attributed this to the very high temporal and

spatial locality of the data references.

However, Goodman and Hsu contend that available on-chip memory can be

more effective in reducing the required memory bandwidth if the memory is organized

as registers and a sophisticated register allocation scheme is used, rather than if the

available on-chip memory is organized as a cache [Good86]. In their trace-driven

simulation of five UNIX traces on the VAX-11, they found that the bus traffic for

the register organization was consistently less than that for the LRU cache for on-

chip memory sizes of 2 to 64 words. For example, with a memory size of 16 words,

the bus traffic was decreased by 68 percent when organized as registers instead of an

21

LRU cache.

On the other hand, Flynn and Mitchell have found that, in most cases,

a single register set used with a data cache is more effective in reducing the data

traffic than approaches using all available chip area for multiple register sets [Flyn87].

Additionally Mitchell, in his modeling of processor architectures, showed that a stack

architecture requires a 3 Kbyte instruction cache to have the same instruction stream

memory traffic as an IBM System/360 register architecture with a 1 Kbyte instruction

cache [Mitc86]. Thus, they found it necessary to adopt an approach, combining both

instruction set and memory subsystem design, that makes balanced reductions in

both instruction and data traffic.

Goodman and Chiang found in their trace-driven simulations of conven-

tional workloads on the VAX-11 that instruction dynamic spatial locality was much

greater than the data dynamic spatial locality [Good84]. They also noticed that as

amount of memory in computers has increased, the locality of the programs written

on the computer has correspondingly decreased as programmers exploit the extra

memory available. Finally, they concluded that the static column RAM cache that

they were analyzing would be more effective caching both instructions and data than

if it was used to cache only instructions with no cache for the data references.

Using their trace flattening technique mentioned in the previous section,

McNiven and Davidson found that most of the bus traffic is caused by great number

of values having very short lives and the values with longer lives that are referenced

frequently. They state that the great number of short-lived values is why a fairly

small number of registers so effectively reduces the memory bus traffic, and they

recommend using compiler-generated information that identifies values which will

no longer be referenced (dead values) to enhance the cache replacement algorithm.

Clark and Emer determined from their VAX measurements in [Emer84]

22

that a small number of complex instructions accounted for 90 percent of the CPU

execution time and a large number of the memory references even though 84 percent

of all instructions were moves, branches, and other simple instructions. They also

determined that the average number of loop iterations was 10 and that branches

and subroutine calls accounted for about 40 percent of the instructions that were

executed. They measured the relative frequency of addressing modes, and also found

the average ratio of reads to writes to be about two to one.

In (Smit85a] A. Smith attempted to minimize the error due to the first

three drawbacks of trace-driven simulation mentioned in Section 2.5.2 by using a

large number of workloads (49) and using traces gathered with a hardware monitor

that included memory references due to operating system calls. Significantly, for my

research, he included in his collection of workloads several Lisp program traces of

a Lisp compiler and Vaxima runs to represent symbolic workloads. Contrary to his

expectations, ir measurements revealed little difference in the program statistics

for convent~onal and symbolic workloads on the VAX-11/780. He found that the

ratio of reads to writes was about two to one corroborating the findings of Clark

and Emer. He also found that the percentage of data reads was very stable across

the various workloads while the percentage of data writes varied widely. He was

able to postulate a few rules of thumb for the IBM System/370 and VAX workloads.

One such rule was that half the memory references are instruction fetches. Another

rule of thumb was that approximately half of the data lines being pushed out of

the cache are 'dirty', thus requiring a write-back to memory. A. Smith found that

the data space for most workloads was larger than the instruction space and that

there was less locality in data than in instructions. Finally, Smith pointed out the

need for additional traces for both the machines traced in his research as well as

other machines, and he identified the need for improving the quality of the traces by

23

obtaining traces that are consistent with the assumptions made in his paper about

instruction buffering and the quality of the compilers used.

At the lowest end of the memory hierarchy, A. Smith has used the trace-

driven simulation technique to analyze the design and effectiveness of various disk

cache implementations [Smit85b]. In this work, he found that the main memory

was better used by the paging algorithms than by setting aside a portion of it as a

specialized disk cache.

Hill and A. Smith further studied the design of on-chip microprocessor

caches through trace-driven simulation using conventional workloads [Hi1l84]. They

analyzed the contributions of a minimum cache and of a smart cache that exploits

the instruction and data referencing patterns. Through their simulation results, they

concluded that a small minimum cache can be very effective, especially when used as

an instruction buffer. For the smart cache, they implemented a load-forward mech-

anism where only the sub-blocks forward of the referenced location in the address

block were prefetched. While the load-forward mechanism increased the miss ratio

by 7 percent, the processor-memory traffic ratio was reduced by 20 percent. Thus,

this prefetch algorithm could be useful where the bus traffic is a limiting factor on

system performance.

Lee and A. Smith have used trace-driven simulation to evaluate the effects

of instruction prefetching strategies. However, their proposal to exploit the struc-

tural locality of program instruction references involves modifications to the CPU

architecture rather than the memory subsystem [Lee84]. Their analysis focused on

methods of avoiding pipeline breaks when instruction branches are executed. They

proposed a four-state branch predictor and showed through trace-driven simulation,

that it could be expected to provide an improvement of 5 to 20 percent in CPU

performance.

24

2.5.4 Proposed Architectures Tailored to Symbolic Workloads

As mentioned in Chapter 1, most architectures tailored for symbolic work-

loads are designed to exploit some high-level characteristic of this type of workload.

This was most evident with the MIT Lisp Machine [Gree84] which was optimized for

fast function calling, had a large virtual address space, and had a heavily-microcoded

architecture to support high-level Lisp functions. As this section will show, another

major characteristic of symbolic workloads exploited by system designers include

symbolic workloads' heavy use of lists for their data structures.

Hayashi, Hattori, and Akimoto tailored their memory subsystem design to

exploit the high temporal locality of variables that is due to the frequent function

calling characteristic of symbolic workloads. In 1983, they published the results of

their implementation of a high-speed hardware stack in a back-end Lisp processor to

exploit this temporal locality of variables [Haya83]. The variable values are cached in

the hardware stack and are tagged with the function entry frame number. This was

predicted to speed up function calling for functions with deep-bound variables and

double the overall performance of the system [Yuha86]. However, since their Lisp

system, UTILISP, only used shallow binding of variables, the effect of this cache

could not be measured. Because of the spatial locality of list cells, they implemented

a garbage collection scheme using reference counts, but only storing the counts of

references outside the subspace containing the cell. The excellent performance of

this garbage collection scheme added further evidence to the static spatial locality

of memory references.

Sohi, Davidson, and Patel have proposed an architecture specifically tai-

lored for symbolic workloads in [Sohi85a. This paper is based on Sohi's research

which is fully described in [Sohi85b]. Sohi proposed representing each Lisp list as

a tree in a logical address space with the car of the list cell being located at loca-

25

tion 2n and the cdr of the list cell being located at location 2n + 1 where n is the

location of the list cell. Thus the location of any element of the list can be com-

puted arithmetically rather than by following a set of pointers. Since most lists are

almost linear, Sohi proposes storing in the virtual address space only the leaf nodes

to the tree which are the atoms in the list and other nodes that contained forwarding

pointers due to rplaca and rplacd operations on the list or space limitations on the

list. In the best case, this allows the list representation to be about four times as

compact as the two-pointer list cell and twice as compact as lists represented using

cdr-coding. Sohi further proposed that the machine architecture consist of separate

processors for list processing and garbage collection and that the exception tables

for lists currently being accessed be stored in a content addressable memory (CAM)

cache. He also proposed a Tree Occupancy Table, analogous to a page table, to hold

the starting locations of list exception tables in the CAM cache. To validate his

proposed architecture, he demonstrated the greater efficiency of this architecture in

implementing the higher level Lisp length and member functions.

Reese has also proposed an architecture tailored to symbolic workloads by

more efficiently supporting those high-level Lisp functions that occur most frequently

in Lisp programs such as get and nthelem [Rees85]. He constructs a Lisp architecture,

ALISP, that allows constant time access to all top-level list elements by using a CAM

to cache lists in the current working set of the program. He specifies an alternate

list representation similar to that used for cdr-coding but with an additional tag

field to specify the position of a list cell in the list. This additional tag then allows

any top-level element of the list to be retrieved in constant time using associative

search. The CAM controllers are designed to perform some high-level functions such

as reverse independently of the CPU, thus allowing for some parallelism in the Lisp

function execution. In addition, once the CPU has written a pointer to a CAM

controller, the CAM controller is able to perform garbage collection on the list in its

26

cache in parallel with other CAM controllers and independently of the CPU. Reese

validated his architecture by simulating the performance of a resolution theorem

prover on his architecture and showing that it achieves an 80 percent speedup over

clause hashing techniques on a conventional architecture and a 235 percent speedup

over the conventional architecture when clause hashing is not used.

In [Thaz86], Thazhuthaveetil proposed an architecture tailored to sym-

bolic workloads that relies on caching identifier-pointer pairings for all lists that are

accessed. In addition, the identifier-pointer pairings of the car and cdr of a list are

cached in a list processor table when a list is first accessed. A separate list processor

manages the heap memory and maintains the list structure while the evaluation pro-

cessor works strictly with the object identifiers in the cache. Because of the separate

processors, the evaluation processor is often able to continue its execution while the

list processor makes the appropriate changes to the list structure in heap memory.

The l3t processor maintains a reference count for each line in the cache and reclaims

both the cache line and the heap memory whenever a reference count goes to zero.

Thus, the garbage collection is incremental and is overlapped with the evaluation

processor's execution. Thazhuthaveetil simulated his proposed architecture using

list structures corresponding to the study by Clark and Green [Clar77] and to his

own studies of the effective branching factors in lists. He found that the list pro-

cessor table captured the temporal locality of list accessing about as effectively as

a standard LRU cache but was inferior to the LRU cache in exploiting the spatial

locality of the list structure since only the car and cdr of a list were cached. However,

since the list processor table permitted overlapping of the execution of the evaluation

processor and list processor and more efficient garbage collection, the architecture

was deemed more effective for symbolic workloads.

Finally, Patterson and his research group have tailored the Berkeley RISC-

27

II architecture for symbolic workloads (Tayl86]. This SPUR Lisp architecture differs

from the RISC-II architecture in only a small number of features. It has four new

compare and branch conditions which depend on the tag values of the operands and

hardware checking for five kinds of tag exceptions during data operations. With

these few modifications, they predict, based on their simulations, that the SPUR

will run Common Lisp programs at least as fast as the Symbolics 3600 Lisp machine

or a DEC VAX 8600.

2.6 Contributions of This Research

This research is the first systematic characterization of the spatial, tempo-

ral, and structural locality of symbolic workloads based on the word-level analysis of

virtual memory address traces. As such, it lays a foundation for future work in this

area by providing a methodology for a comprehensive analysis of program locality.

This methodology includes new metrics for spatial, temporal, and structural locality

as well as adapting a semi-Markov model used in Lewis and Shedler's page fault

studies for use in characterizing the word-level virtual memory addressing behavior

of both symbolic and conventional workloads. These new metrics are then used in

conjunction with older metrics mentioned in the previous sections to identify the

special locality characteristics of symbolic workloads. Finally, this research evaluates

a new memory subsystem design tailored for symbolic workloai i by exploiting these

special locality characteristics and exercising new design alternatives. Thus, this re-

search adds to the published work described in each of the previous sections of this

chapter.

2.7 Summary

Research into program locality has taken many different approaches from

direct analysis of trace data to inferences of program locality based upon trace-

28

driven simulation and from high-level program analysis to low-level memory word

referencing behavior. Unfortunately, as is readily apparent from this chapter, there

has been little continuity in the research directions taken, nor in integrating the

results of the various approaches to produce a picture of program referencing behavior

consistent with the many varied results. As will be seen in subsequent chapters, this

research incorporates previous results, where possible, and integrates the new locality

characteristics revealed by this research with the previous results of this chapter to

provide explanations for the measured differences in the virtual memory addressing

behavior of symbolic and conventional workloads.

Chapter 3

Data Collection

This chapter describes the methodology used to collect the virtual address

traces used for this research. It begins with a description of the overall experimental

setup and then describes, in detail, the modifications made to the Explorer II mi-

crocode to enable recording of the virtual memory address references and machine

control register information. Next, the procedure for executing the workloads and

collecting the trace data is detailed. The selection criteria and modifications made

to each workload are next described, and the chapter ends with a description of the

methodology used to extract samples from the workload address traces.

3.1 Overview of the Experimental Setup

This research consisted primarily of the development and use of the seven

modules shown in Figure 3.1. The trace program was a Lisp program that started

the execution of the program being traced while it was also activating the microcode

modifications in the TI Explorer II that record the address traces. These traces were

stored on a 16 Mbyte memory board whose physical address space was not mapped

into the virtual memory address space and so was inaccessible to the operating

system for virtual memory reads and writes. Another Lisp program then wrote the

trace data to a disk file for input to the sort/data compression routines. Sorting and

data compression reduced the amount of data to the minimum required for adequate

characterization of the memory referencing behavior. Then the data analysis routines

29

30

II-

°)

°0
i •)

0°

r5-

I I I I I I I

31

computed the locality characteristics of the memory accesses which were, in turn,

used to optimize the memory subsystem design for this workload.

3.2 Microcode Modification

With considerable assistance from the microcode programmers and pro-

cessor board designers at Texas Instruments, I modified the microcode on the Ex-

plorer II to record address traces in a manner similar to that of Agarwal, Sites, and

Horowitz [Agar86]. However, rather than modifying each microcode location that

could generate a memory reference, the page map table was modified to force the

system on every virtual memory reference to enter the page fault abort handler,

which was modified to record the trace data. Along with the virtual address, the

following information was also recorded: whether the reference was a read or a write,

whether an instruction or data word was being referenced, whether a data word was

being prefetched, and whether a reference had been made to a forwarding pointer.

This information was recorded on a memory board whose configuration ROM had

been removed causing it to fail the power up check and thus be excluded from the

address space of the system. However, reads and writes could be made to the board

using physical addresses, and the microcode in the page fault abort handler used this

procedure to record the virtual memory address trace information. After the trace

information had been recorded, the modified microcode then used the other informa-

tion bits in the page map table to restore proper access to the memory location and

completed the memory reference. Finally, the microcode reset the page map table

access bit to zero to insure that a page fault would occur again when this page was

next referenced. This scheme had a distinct advantage over the approach used by

Agarwal, Sites, and Horowitz, since the microcode that actually recorded the trace

data was localized in the page fault abort handler and did not have to be replicated

throughout the microcode. This allowed for easier modification of the code and also

32

simplified the debugging of the modified microcode.

A Lisp program was also written to set in the microcode a bit that reset

all the access bits in the page map table and enabled the other microcode patches to

be executed. At the end of the program trace or when the memory board was filled

with trace data, the microcode restored the page map table to its normal state and

disabled the other microcode patches.

3.3 Trace Collection Procedure

Because my goal was to characterize symbolic workload behavior and not

overall system behavior, I traced the programs with all interrupts disabled and the

incremental garbage collector turned off. Thus, my research established a baseline

for symbolic workload behavior which subsequent research can use to characterize

the effects of context switching and incremental garbage collection on the word-level

virtual memory referencing behavior. I also traced that portion of the workload

that did not involve extensive amounts of disk or screen I/O since the memory

referencing behavior for these activities was heavily influenced by the TI Explorer II

paging algorithms and display routines.

The first step in the trace procedure was to cold boot the Explorer II

under the modified microcode and with the configuration ROM removed from the

16 Mbyte memory board. Then the compiled code for the workload to be traced was

loaded and executed immediately after setting the microcode trace-enable variable

to true. The trace collection was stopped when either the 16 Mbyte board was full or

when the workload being traced terminated-whichever occurred first. As stated in

Section 2.5.2, because the modifications were made to the microcode, the execution

time of the workload was only increased by a factor of 10, rather than the typical

slowdown of 100 to 1000 typical of simulators or operating system trace modes.

33

After the trace was completed, a function profiling routine dumped to a file

the addresses in trace memory of the instruction fetches, the virtual memory address

which was the target of the instruction fetch, and the name of the functions in which

the fetches took place. To decrease the size of this file, only those instruction fetches

which occurred in a function different from that of the previous instruction fetch were

recorded. Thus, by using this function profiler, the major phases that each workload

went through as it executed, and the section of trace memory corresponding to each

of these phases was determined.

All of the trace information was then converted from its binary-encoded

form to an ASCII hexadecimal representation and dumped from the 16 Mbyte board

to a file on disk. This file was then used as the source file for the data sampling

routine. Once these tasks were complete, the Explorer II was powered off, the con-

figuration ROM replaced, and the system would be cold booted under an unmodified

release of the system microcode.

3.4 Workload Selection

3.4.1 Selection Criteria

There is no universally accepted distinction between symbolic and conven-

tional workloads. Many, in fact, question such a categorization of all workloads into

just these two categories. However, since over the past decade there has been an ex-

tensive effort to tailor computer architectures and implementations to the symbolic

processing tasks required for AI applications, categorizing workloads in this manner

at least provides the framework for analysis of the distinctive features present in AI

applications.

Two principal factors were considered in selecting the symbolic workloads

to be traced. Workloads were selected that represented legitimate Al applications

34

Table 3.1: Explorer II Workloads Traced

Workload Name Application Categorization

BIASLisp Circuit Analysis Conventional

Boyer Theorem Prover Symbolic

Compile Buffer Lisp Compiler Symbolic

FI Numeric Computation Conventional

GLISP Expert System Tool Symbolic

QSIM Qualitative Reasoning Symbolic

Reducer Symbolic Computation Symbolic

TMYCIN Expert System Tool Symbolic

such as qualitative reasoning, theorem proving, and expert systems reasoning, and

not just conventional applications written in Lisp. But, compilers as well as symbolic

computation programs such as Macsyma were also included in the symbolic workload

category because of their inherent symbolic processing tasks and their data-driven

behavior. The other criterion was more pragmatic: preference was given to applica-

tions that were portable to the TI Explorer without unreasonable effort.

For conventional workloads, Lisp programs were selected that implemented

conventional applications such as numeric computation and circuit analysis. Here,

preference was given to those workloads that made minimal use of list structures,

and instead relied primarily on arrays, hash tables, and records. Table 3.1 lists the

workloads which were traced.

35

3.4.2 Modifications Made to the Workloads

Each workload was kept as close to its original form as possible with only

those modifications made that were necessary to allow the program to run on the

Explorer II or to allow the program to run without input from the keyboard. Without

these latter modifications, the process would halt when input was required from the

keyboard, and the trace memory would be filled during the execution of one of the

operating system processes. Some modifications were also made to minimize the

effects of print statements. Specifically, screen print statements were commented

out where possible or, at the least, redirected to a null stream rather than to the

terminal handler routines. Finally, the call to the test-trace macro was sometimes

embedded in a workload subroutine that was executed after the initial workload

housekeeping functions, to delay the tracing until the nucleus of the program was

actually executing. For example, when the qualitative reasoning system was traced,

the tracing was delayed until the user menu selections had been made and the actual

qualitative simulation of the selected system had started.

3.5 Extraction of the Sample Data from the Workload Traces

3.5.1 Determination of the Sample Length

A sample length of 450,000 references was selected based upon both a high-

level analysis of the workload phases and a low-level analysis of the sensitivities of

the locality characteristics to the trace sample length. From the high-level analysis,

a length of 450,000 references was found to be an upper bound on the length of the

trace since trace samples longer than this would sometimes contain more than one

workload phase, thus masking the characteristics of a particular phase. From the

low-level sensitivity analyses, it was found that the locality characteristics were very

similar despite variations in the trace sample length from 10,000 to 450,000 memory

36

references. This is typified by the plots of the cumulative distribution of spatial

distances for the TMYCIN expert system overall reference strings, shown in Figures

3.2 through 3.4. Thus, the 450,000 reference sample length was small enough to

allow analysis of individual workload phases, but large enough to provide enough

references, even after sorting into subtraces ' to allow accurate computation of the

locality characteristics.

3.5.2 Extraction of the 450,000 Reference Sample

The function profiler described in the previous section was used to extract

450,000 reference segments from the address trace file for each major phase of each

workload. All but two workloads had only one major phase. These two, the GLISP

expert system tool and the Explorer Lisp compiler, each showed two distinct phases

making them, in essence, four workloads altogether. So, for these two workloads, a

450,000 reference segment was extracted for each of the two phases.

3.6 Summary

This chapter summarizes the procedures used to produce the virtual mem-

ory address traces upon which this research is based. Thus, it allows a qualitative

evaluation of the validity of the virtual memory address traces and so of the research

overall. Wherever possible, the experimental setup was designed to produce virtual

memory address trace samples that were representative of the memory referencing

behavior of the types of workload being characterized. This objective guided each

step of the data collection process, from the design of the microcode modification to

the extraction of the virtual memory trace sample for analysis.

'The sorting criteria are discussed in the next chapter.

37

CUMULATIVE SPRTIRL LOCRLITY HISTOGRRM
TMYCIM -- 10,88 References

w Be

lee-

C9

70

iv

. Ge

Cy)
56

29

is " " i ' i " ' '" " '"
25 26 15 18 5 6 5 t6 15 28 25

<-- BRCKMRRD FORMARO -- >

LOG2DISTRMCE

Figure 3.2: Example Spatial Locality Histogram for a 10,000 Reference TMYCIN
Sample

38

CUMULATIVE SPRTIAL LOCALITY HISTOGRAM
THYCIM -- 100,888 References

98 -

mJJ

70 9

CD
W)

z
w

98

38

28

18

8
25 28 1s 18 5 8 5 18 1s 20 25

<-- BRCKUARD FORWRRO -

LOG201STRIICE

Figure 3.3: Example Spatial Locality Histogram for a 100,000 Reference TMYCI
Sample

39

CUMULRTIVE SPRTIRL LOCRLITY HISTOGRAM
TMYCIM - 45,SSS References

190

w

S so
C.)

LA.
C

66

LU

48

38
sIA..

25 25 15 1s 5 5 5 19 15 25 25
<-- BRCKWRRD FORMRRD -- >

LOGDISTRMCE

Figure 3.4: Example Spatial Locality Histogram for a 450,000 Reference TMYCIN
Sample

mnmm~~~~~~~~MNUE

M~ Imm
mm m mInamn

l n m m ll~ l

Chapter 4

Trace Analysis

This chapter describes the methodology for analyzing the 450,000 reference

samples. Since much of this methodology is based upon a new model of word-level

memory referencing behavior, this model is first described and the motivation for it

explained. Although most of the trace analysis results are described in the following

chapter, those results which helped to validate this model of program behavior are

discussed here. The chapter then describes the sorting techniques used. Finally, each

of the locality characteristics computed is described as well as the usefulness of each

in characterizing memory referencing behavior.

4.1 Markov Model of Low-Level Memory Referencing Behavior

It was obvious features of the temporal distance strings themselves that

motivated this model of low-level memory referencing program behavior. Previously

unreferenced virtual memory locations, which will be called 'new references', oc-

curred most often in clusters. Strings of references to previously referenced memory

locations, which will be called 'old references', would be followed by periods of suc-

cessive new references in a behavior analogous to that noted by Denning and others

in page fault studies [Denn68]. Much more surprising, at first glance, was a tendency

in the temporal distance string for a large number of successive references to have the

same stack distance. Adopting Thazhuthaveetil's term, this phenomenon has been

attributed to the structural locality of the workload, since the memory contents are

40

41

Same Stack
Distance

Not Same

Stack Distance

Figure 4.1: Two-State Markov Model of Program Behavior

being referenced in the same order in which they had been previously referenced

[Thaz86].

To characterize the types of behavior observed in the temporal distance

strings, a two-state Markov model shown in Figure 4.1 and similar to that used

in models of paging behavior was developed [Lewi73]. The program referencing

behavior transitions between long periods of old references-the Old-Ref state-

followed by bursts of new memory references-the New-Ref state. Within the Old-

Ref state successive references with the same stack distance-Same-Stack-Distance

or SSD references-are distinguished from successive references with different stack

distances-Not-Same-Stack-Distances or NSSD references. Altogether, then, there

were five possible state transitions: New-New, New-Old, Old-New, Old-SSD, and

Old-NSSD.

A three-state Markov model was also considered to characterize the sym-

bolic workload behavior by separating the Old-Ref state into a Same-Stack-Distance

42

Stack Stack Ref
Distance Distanc

Structural Temporal Spatial
Locality Locality Locality

Figure 4.2: Three-State Markov Model of Program Behavior

state and a Not-Same-Stack-Distance state to gain additional insight into the mem-

ory referencing behavior when structural locality is present. This model is shown in

Figure 4.2. However, because this model has almost twice as many transitions and

provides little additional information, the three-state model was rejected in favor of

the simpler and more tractable two-state model.

When the distance strings were computed for just those references in each

transition class, the strings differed markedly from each other and revealed charac-

teristics not evident in the overall distance string. In addition, many of the transition

distance strings showed a strong degree of order, and therefore predictability, that

was not present in the overall distance string. This along with other results presented

in Chapter 5 validated the model's usefulness in providing a deeper understanding

of the memory referencing behavior.

43

Table 4.1: Relative Frequency of Types of References

Type Ref # of Refs % of Total # of Addresses % of Total
SYm Cony Sym Cony SYm Cony Sym Conv

All 450,000 450,000 100 100 15,258 35,344 100 100

Inst 173,161 57,000 38.5 12.7 2,861 379 18.8 1.1

Data 276,839 393,000 61.5 87.3 12,399 34,965 71.2 98.9

D Read 246,307 281,120 54.7 62A 10,805 33,628 70.8 95.1

D Write 30,532 111,880 6.8 24.9 8,487 31,229 55.6 88.4

4.2 Trace Categorization and Data Compression

The address traces were sorted into five types of address references: all

references, instruction fetches, all data references, data reads, and data writes. Then

each of these resultant traces was further sorted into four of the five transition types:

Old-New, Old-NSSD, New-Old, and New-New. Table 4.1 gives the mean number of

each type of reference for symbolic and conventional workloads as well as the number

of distinct virtual memory addresses referenced by each type of reference. As shown

in Table 4.1, the mean number of instructions in the symbolic workloads was about

three times the mean number of instructions in the conventional workloads. Also,

the mean number of data writes for the symbolic workloads was less than one-third

that of the conventional workloads. These differences in the relative frequency of the

types of references for symbolic and conventional workloads are used in Chapter 5 to

account for some of the measured differences in symbolic and conventional workload

locality.

To compress the data, distance strings rather than the actual memory ref-

erence addresses were analyzed. While the spatial distance string was simply corn-

44

puted by subtracting the virtual memory address from the previous virtual memory

address, the temporal distance string computation was more involved. The temporal

distance was computed by simulating an LRU stack and by recording the stack posi-

tion of each simulated LRU stack access. Zero was used to represent a new reference

to the stack and a Lisp implementation of Spirn's temporal distance computation

algorithm was used to compute this string [Spir77].

Both spatial and temporal distance strings were computed for the full set

of addresses for each type of address reference. In addition, using the traces sorted

by transition type, the following distance.strings were also computed: an Old-New

spatial distance string, an Old-NSSD temporal distance string, a New-Old temporal

distance string, and a New-New spatial distance string. Thus, altogether, 30 distance

strings were computed for each workload phase as shown below:

(5 Ref Types) x [(3 Spatial Loc) + (3 Temporal Loc)

All Refs

Inst Fetches All Refs All Refs

All Data Refs New-New Old-NSSD

Data Reads Old-New New-Old

Data Writes

4.3 Locality Characteristics Computed

Four sets of locality characteristics were computed for each of the dis-

tance strings, making a total of 120 sets of locality characteristics for each workload

phase. These four locality characteristics for each distance string were an individual

frequency histogram, a cumulative histogram, a correlogram, and a power spectrum.

The individual frequency histogram, analogous to a probability density

45

function, mapped the range of possible distances to the x-axis and the percent of the

total number of references that had each distance to the y-axis. Since the spatial dis-

tance space was very large extending from 225 words backward to 225 words forward,

these distances were mapped to the x-axis logarithmically with the spatial distances

of -1, 0, and 1 being mapped to 20. The temporal distance space extending from 1

to the maximum LRU stack depth referenced, on the other hand, was smaller and

so was mapped linearly to the x-axis. Using these individual frequency histograms,

typified by Figure 4.3, it was possible to identify those distances that occurred most

frequently.

The cumulative histogram, analogous to a cumulative distribution func-

tion, used the same mappings for the x-axis described for the individual frequency

histogram. However, each y-axis value, corresponded to the percent of the total num-

ber of references that had a distance equal to or to the left of the corresponding value

on the x-axis. Therefore, the cumulative histograms showed the overall distribution

of the spatial distances over the virtual memory address space and the distribution

of the stack access positions over the simulated LRU stack. They were particularly

helpful in identifying the ranges of distances corresponding to large percentages of

the total number of references. Figure 4.4 illustrates this locality characteristic.

The correlogram, a plot of a distance string's autocovariance coefficient for

each lag from 0 to 120, revealed a number of characteristics including the rate at

which the autocovariance of the distance string dropped off with the lag, the magni-

tude and duration of periodicities in the distance string, and how the magnitudes of

these periodicities varied with the lag. Figure 4.5, an example correlogram, shows,

for this particular distance string, rapid fluctuations in autocovariance with lag but

centered around a constant value.

The power spectrum of the distance string, computed by taking the Fourier

46

IHDIVIDURL FREQUENCY SPRTIRL LOCRLITY HISTOGRRM
OSIM -- R11 450.00 References

29

19

w

CD
=

C, 19

6

4

2

2128 15 l 5 0 5 19 15 29 25
<- BRCKURRD FORMRRD -

LOGOISTRflCE

Figure 4.3: Example IndividualFrequency Histogram

47

CUMULATIVE SPRTIRL LOCALITY HISTOGRAM
OSIM -- Fill 458,688 References

96

2r

C

.
S e

IL

0
6

s o

48

36

26

18

25 26 15 i6 5 S 18 is 28 25
<-- BACKW4ARD FORWARRD--

LDGDISTRMCE

Figure 4.4: Example Cumulative Frequency Histogram

48

CORRELI3GRRH
OSIM -- All 450.866 References

I .Sle+134

to 2.Sle+13-

+ 1.26e+13-

S 6.31e+12

cc 3.16e..lZ

I- 1.58e+12

7.94e+11

3.98e+l I

2.00e.11 - I I i I I
12 24 36 49 66 72 94 96 198 126

LAG

Figure 4.5: Example Correlogram.

49

POWER SPECTRUM
OSIM Rll 4Se,90 References

1 .0Sm+15

3.160+14

1.Bse+14

3.16e+13. . . 4

1F.reu13

3. 164P12

I1.SS..12

3.16.+11

1.66.+11

3. 16e+18

9.65 6.1 6.15 8.2 6.25 8.3 6.35 8.4 6.45 8.5

Frequency

Figure 4.6: Example Power Spectrum

50

transform of the autocovariance function, more clearly revealed the exact values of

the periodicities and whether the distance string was correlated more strongly over

very short sequences (less than five references in length) or over longer sequences. As

shown in Figure 4.6, the rapid variations in autocovariance in Figure 4.5 correspond

to values of 0.5, 0.33, and 0.17 reflecting periodicities in the distance string of 2, 3,

and 6 respectively. There is also a peak at 0.4 corresponding to an average periodicity

of 2.5. Finally, Figure 4.6 shows that the distance string is correlated more strongly

over short lags than over longer lags.

4.4 Summary

Thus, through systematically tracing both symbolic and conventional

workloads and then computing these characteristics, a comprehensive data base was

produced for analyzing the differences and similarities of these two types of work-

loads. Computing both 'binning' characteristics, the histograms, as well as 'order'

characteristics, the correlograms and power spectra, enabled this research to view

both the 'order' and 'binning' aspects of the memory referencing behavior.

Chapter 5

Results

This chapter describes the measured differences in the spatial, temporal,

and structural locality characteristics of symbolic and conventional workload word-

level virtual memory referencing behavior. It also introduces new measures of mem-

ory referencing locality used to characterize the behavior of the workloads and ends

by describing a difference in the transition probabilities for the two-state Markov

model between symbolic and conventional workloads. This chapter fully describes

each of the noted differences between symbolic and conventional workloads and gives

a statistical measure of confidence for each difference1 . Other known characteristics

and measurements of symbolic and conventional program behavior are then used,

where possible, to explain the differences. Finally, the implications of each difference

for memory subsystem design are addressed.

5.1 Spatial Locality

5.1.1 Existence of a Spatial Locality Window

The cumulative histograms of the spatial distance strings revealed a hereto-

fore unpublished characteristic of word-level virtual memory referencing behavior. In

all workloads and for all five types of address references, if spatial locality existed in

the virtual address space, it existed within a window of plus or minus 32 words from

'The detailed data for all Explorer II workloads from which the results were computed are
included as Appendix A.

51

52

the current address. Very few subsequent references took place between 32 words

and 32K words from the current reference for this 32-Mword address space. This is

shown in Figure 4.4 by the almost zero slope segments of the cumulative histogram

curve between these values.

These plateaus in the cumulative spatial histogram curve can be better

understood by viewing the virtual address space as several subspaces including: a

subspace for system tables in very low memory, a subspace for system Lisp routines

about 4 Mwords higher in the virtual address space, and a user subspace about 4

Mwords higher still. At load time, memory is allocated in the user subspace for the

compiled code and any static structures such as arrays. Also at load time, any sys-

tem functions called in the user code are linked to the appropriate function headers

in the lower virtual memory address subspaces. During execution of the program,

additional heap memory is dynamically allocated from the user subspace to construct

new list elements and other dynamic structures. With this understanding, then, ref-

erences falling within the spatial locality window represent subsequent references to

the same subspace, while references outside the window represent reference transi-

tions between subspaces or references to different functions within the system Lisp

routine subspace. The narrowness of the window shows that references within the

user subspace have very high spatial locality.

To further characterize this phenomenom of a narrow spatial locality win-

dow, a new spatial locality metric was introduced. This metric, the spatial window

probability (Psw), is defined as follows:

Psw: the probability that the subsequent memory reference is within plus or minus

32 words of the previous reference.

Thus, Psw is basically the difference in the values of the upper and lower plateaus

in the cumulative spatial locality histograms. Using this metric, the first significant

53

Table 5.1: Spatial Window Probability (Psw)

Type Ref Symbolic Conventional Ratios t-Test Conf
Mean SD Mean SD Mean F Used Level

All 0.494 0.0587 0.332 ' 0.0255 1.488 5.32 EqI 0.006

Inst 0.907 0.0407 0.957 0.0594 0.948 2.13 EqI 0.187

Data Refs 0.438 0.1397 0.329 0.0106 1.334 173 EqI 0.319

Data Reads 0.406 0.1531 0.296 0.0120 1.378 162 EqI 0.357

Data Writes 0.504 0.1791 0.202 0.0396 2.496 20.5 EqI 0.053

difference between symbolic and conventional workload memory referencing behavior

can be characterized.

5.1.2 Differences in Psw for Symbolic and Conventional Workloads

From the individual Psw values for each workload, a mean Psw was com-

puted for the symbolic workloads and another mean Psw for the conventional work-

loads. Table 5.1 summarizes the differences in spatial locality for the symbolic and

conventional workloads by giving the means and standard deviations (SD) of the

Psw values for each type of workload. This table also gives the ratio of the mean

symbolic Psw to the mean conventional Psw along with the F statistic used in the

test for significantly different variances. This F statistic is computed as the ratio

of the variances of the distributions of symbolic and conventional Psw values with

the larger variance always appearing in the numerator. If this F statistic indicates

that the variances of the distributions of symbolic and conventional workload Psw

values are significantly different, then the Student's t-Test for Unequal Variances is

used. Otherwise, the standard Student's t-Test is used. The Student's t-test used

is indicated in Table 5.1 by Uneql and Eql resr, -tively. Finally, the last column of

54

Table 5.1, the confidence level, contains the likelihood that the symbolic and conven-

tional workload Psw values came from distributions with the same mean. When the

confidence level is less than 0.05, the differences between the symbolic and conven-

tional workloads locality characteristics are considered to be statistically significant.

Thus, Table 5.1 shows that the spatial window probability differs signif-

icantly for symbolic and conventional workloads for the memory reference stream

consisting of all references. The mean Psw for the symbolic workloads is almost

50 percent greater than that of the conventional workloads. And, using the equal

variance Student's t-test for significantly different means, one can conclude that the

probability that the values of Psw for the symbolic workloads and the values of Psw

for the conventional workloads came from distributions with the same mean is only

0.006.

This difference does not show up when only instruction references are an-

alyzed. In fact, as can be seen from Table 5.1, all workloads, both symbolic and

conventional, have a very high Psw for just the instruction fetches. Table 5.1 also

shows that the difference in the spatial locality of symbolic and conventional work-

loads is not statistically significant when just data references are analyzed. Likewise,

the differences in Psw between the symbolic and conventional workloads are not sta-

tistically significant when data reads and data writes are analyzed separately, even

though the mean Psw for the data write spatial distance strings of the symbolic

workloads is about two and one-half times that of the conventional workloads.

The difference in the spatial locality of the overall memory reference

stream, (i.e., all memory references) is due to the much higher percentage of in-

struction fetches (with, as just mentioned, their higher spatial locality than data

references) in the overall symbolic workload memory reference streams as noted in

Chapter 4, and as shown in Table 4.1. Furthermore, since the symbolic workloads

55

consisted of more and smaller functions, there was a greater tendency for a number

of instruction fetches to follow one another in the overall reference stream than was

the case for the conventional workloads, which had much less function calling. Thus,

the symbolic workloads experienced fewer transitions between the virtual memory

subspaces.

5.1.3 Implications for Symbolic Memory Subsystem Design

These spatial locality results for the overall memory reference stream can

be exploited in two principal ways. First, because the spatial locality window is very

narrow, the size of prefetch blocks can be kept small. This reduces the bus bandwidth

wasted by caching data2 which are never referenced as well as the proportion of

the cache taken up by these unneeded fetches. Second, there is no evidence that

instruction fetches or data reads are any more or less spatially local for symbolic

workloads than they are for conventional workloads. Thus, the same prefetching

strategies used for conventional workloads should be used for symbolic workloads.

However, the higher percentage of instruction fetches in the symbolic workloads may

make prefetching more effective.

5.2 Temporal Locality

5.2.1 LRU Stack Distance Thresholds

Symbolic and conventional workloads also differ in their temporal locality.

To compare these localities, a simulated LRU stack of the virtual memory addresses

accessed was maintained for the entire memory reference string as described in the

previous chapter. The metrics used to compare the symbolic and conventional work-

2 The term 'data' used in this context refers to any contents of a memory location, i.e., either an
instruction or data element.

56

loads are the stack distances corresponding to the 90, 95, and 99 percent thresholds

in the cumulative temporal locality histograms and are termed LRUgo, LRU95, and

LRU99 respectively. Thus, these metrics are defined as follows:

LRUg0 : the simulated fully-associative LRU stack depth required to capture 90 per-

cent of the old references

LRUg5: the simulated fully-associative LRU stack depth required to capture 95 per-

cent of the old references

LRU99: the simulated fully-associative LRU stack depth required to capture 99 per-

cent of the old references

These cumulative stack distance histograms are very close to the LRU hit function

h(m) defined by Wong and Morris [Wong88]. However, my cumulative temporal

locality histograms only include old references, whereas their h(m) LRU hit function

includes both old and new references. Thus, whereas h(m) corresponds directly to

the hit ratio of a fully-associative LRU stack, my stack distance metrics correspond

to the fully-associative LRU stack sizes required to capture 90, 95, and 99 percent

of the old references, respectively. In addition, my metrics, as does h(m), provide

a lower bound measure on the interreference times between accesses to the same

memory locations.

5.2.2 Stack Distance Thresholds for Symbolic and Conventional Work-

loads

As can be seen in Figures 5.1 and 5.2, between five and ten percent of

the old references for the conventional workloads had very large stack distances of

25,000 or more. In contrast, none of the old references for the symbolic workloads had

comparable stack distances as shown in Figures 5.3 through 5.10. Accordingly,

57

CUIULRTIVE TEMPORAL LOCALITY HISTOGRAM
BIRSLisp -- All 45,080 References

198-

LJ

Uj

IL.
CD

60

US

w
40

30

20

6 3138 62?? 9415 12553 15692 16630 21968 25166 2824S 31383

SIMULATED LRIJ STACK DISTANCE

Figure 5.1: BIASLisp Cumulative Temporal Locality Histogram

58

CUMIULATIVE TEMIPORAL LOCALITY HISTOGRAM
FFT AllR 458.666 References

La

dw

336

28

1w

so 65?1 61 441166261223 84 24 65
CYURE R SRKOSRC

Fiue52 F uuaieTeprlLclt itga

59

CUMULATIVE TEMPORAL LOCALITY HISTOGRAM
Boy.er -- Al 4Se,009 References

98

C)

2- J
58

2M

16

=, S 15 5636 686? 5869 84 15 25

SIUAE R SAKDSAC

Fiue53ooe'umiaieTmoa Lclt itga

60

CUMULATIVE TEMPORAL LOCALITY HISTOGRAM
Compile-RB -- All 458,888 References

188

98

IAJ
W
LAJ 8e

8
I

C-)

LA-
C)

6
LJ

a 58

ad
U.

40

29

S I I I I I I I I I I
e 1672 3343 5815 6686 8359 18836 11el 13373 15I44 16716

SIMULATED LRU STACK DISTANCE

Figure 5.4: Compile-RB Cumulative Temporal Locality Histogram

61

CUMULRTIVE TEMPORRL LOCALITY HISTOGRAM
Compile-Str -- Rll 450,e0e References

lee

se

LJ

Ui e

60

L6
C

66

LIJ

LA.
40

36

26

is

6 1945 3896 5835 7786 9726 11671 13616 15561 17566 19451

SIMULRTEO LRU STACK DISTANCE

Figure 5.5: Compile-Str Cumulative Temporal Locality Histogram

62

CUMULRTIVE TEMPORRL LOCALITY HISTOGRRK
GLISP-Coap - Rl 456,606 References

IS.-

fie

130

'98

LI2

w B

ag

a

,- 4 +e-

la

.

4,

36

26

16

6 1412 2824 4237 5649 Ol61 84?3 9885 11298 12710 14122

SIMULRTED LRU STRCK DISTRCE

Figure 5.6: GLISP-Comp Cumulative Temporal Locality Histogram

63

CUMULRTIVE TEMPORRL LUERLITY HISTOGRRM
GLISP-Psy -- Il 46,06 References

C)

Ix~

00

le

0

0 4i'1 942 1412 1993 2354 2925 3296 3766 423? 4?S9

SIMULRTED LRU STRCK DISTANCE

Figure 5.7: GLISP-Pay Cumulative Temporal Locality Histogram

64

CUMULATIVE TEMPORRL LOCLITY HISTOGRAM
USIM -- Al1 456,699 References

199
la.I

9

U,

C

IL&

CO)0

68
C,)

: 56
a
J

IL

46

36

20

16

6 924 184? 2?71 3695 4618 5542 6466 ?390 8313 9237

SIMULRTED LRU STRCK DISTANCE

Figure 5.8: QSIM Cumulative Temporal Locality Histogram

65

CUMiULRTIVE TEMPORAL LOCALITY HISTOGRAM
Reducer -- Al 456,666 References

C.)

C

C

C.)

U-

46

36

26

19

6 1632 3264 4996 6529 9166 9791 11423 13655 14687 16319

SIMULATED LRU STACK DISTAMCE

Figure 5.9: Reducer Cumulative Temporal Locality Histogram

66

CUMULRTIVE TEMPORRL LOCRLITY HISTOGRRM
TMYCIM -- RII 458o660 References

le

?o
z

S 8e

CD)

C

0

L

0
60

5s

so
96

La.

40

30

20

le

6 926 1839 27S9 36?8 4599 SS1 6437 ?357 826 9196

SIMULRTED LRU STRCK DISTRMCE

Figure 5.10: TMYCIN Cumulative Temporal Locality Histogram

67

Table 5.2: LRU90 Stack Distance Thresholds

Symbolic Conventional Ratios t-Test Conf
T=ve Ref Mean SD Mean SD Mean F Used Level

Al 734 438 2,059 829 0.356 3.58 EqI 0.010

Inst 322 254 196 236 1.644 1.16 Eq 0.543

Data Refs 519 206 15,197 1,822 0.034 78.3 UneqI 0.055

Data Reads 512 174 24,053 477 0.021 7.46 Uneql 0.007

Data Writes 89 46 23,306 2.271 0.004 2,426 UneqI 0.044

Table 5.3: LRU95 Stack Distance Thresholds

Symbolic Conventional Ratios t-Test Conf
Type Ref Mean SD Mean SD Mean F Used Level

AN 1,283 494 27,207 2,730 0.047 30.5 Uneq 0.046

Inst 547 367 196 236 2.791 2.41 Eql 0.244

Data Refs 788 248 26,913 3,008 0.029 147 Uneql 0.051

DataReads 790 212 25,585 2,005 0.031 89.6 Uneql 0.036

Data Writes 184 150 23,436 2,098 0.008 194 Uneql 0.040

LRU95 and LRU99 for the conventional workloads are significantly greater than those

of symbolic workloads. Table 5.2 shows that LRU90 is also significantly greater for

the overall temporal distance strings of the conventional workloads. Although, as

the ratio of the mean values of LRU90 for the symbolic and conventional workloads

show, the difference between them is less dramatic than the differences in Tables 5.3

and 5.4 for LRU9 s and LRU99 . Tables 5.2, 5.3, and 5.4 show that the likelihood

that the stack distance threshold values for the overall temporal distance strings of

the symbolic workloads and the threshold values for the overall temporal distance

68

Table 5.4: LRU99 Stack Distance Thresholds

Symbolic Conventional Ratios t-Test Conf
T_pe Ref Mean SD Mean SD Mean F Used Level

All 4,881 4,896 27,593 2,271 0.177 4.65 EqI 0.000

Inst 1,497 2,154 299 366 5.014 34.7 Eql 0.474

Data Refs 3,539 2,880 27,310 2,521 0.130 1.31 Eql 0.000

Data Reads 3,246 2,724 26,019 1,440 0.125 3.58 Eq 0.000

Data Writes 1,293 1,095 23,516 2,007 0.055 3.36 Eq 0.000

strings of the conventional workloads came from distributions with the same mean

is less than 0.05 for each of the stack distance thresholds. Furthermore, the mean

value of LRU95 for the conventional workloads is over 20 times as great.

As shown in Tables 5.2 through 5.4, the instruction reference stack distance

thresholds for the conventional 4 symbolic workloads do not differ significantly

(due to the large standard deviations of the sample distributions relative to their

means), whereas the data reference stack distance thresholds do. Furthermore, as

shown in the above tables, when data reads and data writes are analyzed separately,

both of these temporal d,.tance strings exhibit the same locality characteristics as

the overall data temporal distance strings.

The explanation for this behavior can be found in two of the high-level pro-

gram characteristics of symbolic workloads. Conventional workloads tend to traverse

their structures accessing the entire structure evenly. In contrast, while symbolic pro-

grams often access entire lists when they reference them for the first time, subsequent

accesses to the list are concentrated on the first few elements in a list, as noted i..

Chapter 2. The other difference can be seen from Table 4.1. The number of distinct

virtual memory addresses referenced by the symbolic workloads for data references

69

is only about one-third the number referenced by the conventional workloads. Thus,

both the total number of distinct locations referenced and the distribution of the

references over *he data structures used by the programs account for this significant

difference in the temporal locality stack thresholds.

5.2.3 Implications for Symbolic Memory System Design

The primary approach for exploiting the special temporal locality char-

acteristics of symbolic workloads is to trade off cache size for other design options.

Since as shown in Table 5.4, a 99 percent cache hit rate on old references can be

achieved with about one fifth the car'- size required for an equivalent hit rate for

the conventional workloads, other parameters such as cache speed and complexity

can be enhanced.

5.3 Structural Locality

5.3.1 Structural Locality Metric

To compare the structural locality of symbolic and conventional workloads,

the percentages of successive references to the same position in the simulated LRU

stack, PSSD, was used. Thus PSSD is defined as:

PSSD: the probability that the subsequent reference will have the same stack distance

as the previous reference given that the previous reference was an old reference

As explained in the previous chapter, these successive references having the same

stack distance constitute a rereferencing of the same set of memory locations in the

same order as they were last referenced. So, PSSD gives an overall indication of how

much of the memory referencing can be characterized by this pattern of behavior.

70

Table 5.5: PSSD Transition Probabilities

Symbolic Conventional Ratios t-Test Conf
Tre Ref Mean SD Mean SD Mean F Used Level

AD 0.550 0.065 0.293 0.033 1.881 3.86 Eql 0.00078

Inst 0.923 0.044 0.992 0.010 0.930 19.9 EqI 0.06663

Data Refs 0.709 0.060 0.374 0.021 1.894 8.09 Eq 0.00007

Data Reads 0.788 0.044 0.700 0.030 1.127 2.07 Eql 0.02936

Data Writes 0.972 0.013 0.831 0.010 1.170 1.60 EqI 0.00000

5.3.2 Differences in Symbolic and Conventional Workload Structural Lo-

cality

As shown in Table 5.5, the values of PSSD differ significantly between sym-

bolic and conventional workloads. For individual symbolic workloads, PSSD ranged

from 0.444 to 0.626 giving the mean of 0.550 shown in Table 5.5. In other words,

slightly over half of the symbolic memory references can be characterized as refer-

encing structures. With the conventional workloads measured, the mean value of

PSSD is 0.293, only slightly more than half the mean PSSD for symbolic workloads.

Thus the percentage of memory references for conventional workloads that can be

characterized as referencing structures is closer to o;.e-fourth of the total number.

Using the Student's t-Test for equal variances, one can conclude that the likelihood

that the values of PSSD for the symbolic workloads came from a distribution with

the same mean as the distribution for conventional workloads is less than 0.0008.

The differences in structural locality are also present when the types of

references are analyzed individually, except for the instruction stream. The instruc-

tion stream structural locality is extremely high for both symbolic and conventional

workloads, and actually slightly higher for the conventional workloads as shown in

71

Table 5.5. However, for the data references, the mean structural locality of the sym-

bolic workloads is about twice that of the conventional workloads. There are also

significant differences in the mean PSSD values for symbolic and conventional work-

loads when the data reads and data writes are analyzed individually as is also shown

in Table 5.5. One can also see that the structural locality is greater when each type

of reference, such as data reads, is analyzed separately than for composite temporal

distance strings that are made up of all data references. The data writes have the

greatest mean structural locality for the symbolic workloads with a PSSD of 0.972.

At first, these results might seem counterintuitive, since, as previously

mentioned, the conventional workloads have a more uniform and more regular ac-

cessing pattern for their data structures. However, while this accessing pattern is

more uniform and regular, the actual order of access changes from one traversal of

the main structure to the next. Because of this, a whole new working set of sub-

structures is generated for each traversal of the main structure. With the symbolic

workloads, on the other hand, the same basic substructures are usually traversed in

the same order each time.

5.3.3 Implications for Symbolic Memory System Design

The structural locality of the symbolic workloads provides possibly the

greatest opportunity for exploiting the unique referencing behavior of this type of

workload. As mentioned in the background chapter, there have been other attempts

to exploit the structural locality through novel list representations and caching

schemes. The method p -osed in this dissertation involves mapping the struc-

tural locality of the low-level .nemory referencing behavior to a spatial locality in a

fully-associative main cache and then prefetching from the main cache to a smaller

on-chip cache. Chapter 7 details this design as well as providing an analytic model

72

to evaluate its performance.

5.4 State Transition Probabilities

5.4.1 Metrics Used for the Comparison

There are two other important metrics for comparing conventional and

symbolic workloads: the frequency of program transitions from referencing previously-

referenced locations-the Old-Ref state-to referencing previously-unreferenced loca-

tions-the New-Ref state-and vice versa. These metrics are thus defined as follows:

PON: the probability that the subsequent reference will be a new reference given

that the previous reference was an old reference

PNO: the probability that the subsequent reference will be an old reference given

that the previous reference was a new reference

These are the Old-New and New-Old transition probabilities described in the pre-

vious chapter. Together, these metrics reveal two important characteristics of the

workloads: first, how often the workload will transition to the New-Ref state, and

once there, how long it will stay in the New-Ref state.

5.4.2 Differences Between Symbolic and Conventional Workloads

The mean Old-New transition probability, PON, for the conventional work-

loads is over four times greater than the mean PON of the symbolic workloads. And,

using the Student's t-Test for equal variances, one can conclude that the likelihood

that the transition probabilities for the symbolic workloads and those for the con-

ventional workloads came from distributions with the --tre mean is only 0.00002.

As Table 5.6 shows, this difference in the Old-New transition probabilities

was analyzed for each type of memory reference. For instruction fetches, the Old-

73

Table 5.6: PON Transition Probabilities

Symbolic Conventional Ratios t-Test Conf
Tv= Ref Mean SD Mean M e F Used Level

All 0.013 0.0063 0.060 0.0078 0.223 1.50 Eql 0.000

Inst 0.001 0.0008 0.000 0.0000 0.000 0.00 Uneql 0.021

Data Refs 0.011 0.0062 0.059 0.0078 0.190 1.59 Eq 0.000

Data Reads 0.017 0.0108 0.054 0.0057 0.306 3.66 EqI 0.002

Data Writes 0.007 0.0064 0.051 0.0085 0.132 1.72 EqI 0.000

New transition probabilities are extremely low in both symbolic and conventional

workloads. However, for the entire data reference string, as well as for the individual

data read and write reference strings, there are significant differences. The greatest

difference is in the data write reference string where the mean Old-New transition

probability for the conventional workloads is over seven times that of the symbolic

workloads.

This difference between conventional and symbolic workloads is due to

two factors: the smaller mean number of new data read references for the symbolic

workloads and the different ways in which these types of workloads access their data

structures. As shown in Table 4.1, the mean number of new data read references

for the symbolic workloads is only one-third the mean number of new data read

references for the conventional workloads. In addition, the conventional workloads

usually access each data structure element individually, do some processing on it,

and then write back the result of that processing. On the other hand, while sym-

bolic workloads read their list elements individually, they write the results of a list

operation out to memory through one transition to the New-Ref state and then by

making subsequent new references until the entire result list has been written. Thus,

74

Table 5.7: PNO Transition Probabilities

Symbolic Conventional Ratios t-Test Conf
Type Ref Mean SD Mean SD Mean F Used Lvel

Al 0.371 0.124 0.696 0.015 0.534 69.2 Eq 0.008

Inst 0.148 0.048 0.069 0.009 2.161 27.0 EqI 0.055

Data Refs 0.399 0.140 0.694 0.028 0.574 24.6 EqI 0.022

Data Reads 0.631 0.171 0.670 0.024 0.941 50.4 Eq 0.763

Data Writes 0.359 0.174 0.684 0.021 0.525 72.2 Eql 0.036

rather than transitioning from the Old-Ref state to the New-Ref state each time a

list element has to be written, one transition is normally made, and the entire list is

written.

A significant difference between symbolic and conventional workloads in

the New-Old transition probabilities, as shown in Table 5.7, supports the above

explanation. The mean symbolic workload New-Old transition probability is only

about half that of the conventional workloads. Analyzing just the data reads and

data writes shows that there is no significant difference in the data read mean PNO

probabilities for the symbolic and conventional workloads, but the mean data write

PNO probability for the symbolic workloads reflects the difference present in the

overall memory reference stream. Thus, the PNO transition probabilities substantiate

the assertion that this difference in the PON transition probabilities is due, at least

in part, to the consecutive new references made to write back to memory the results

of list operations.

75

5.4.3 Implications for Symbolic Memory Subsystem Design

Any memory design exploiting these state transition probability differences

must focus on the smaller total number of new data read references and the tendency

of symbolic workloads to write the results of lists operations out to memory through

consecutive new memory references. The smaller number of new data read references

will tend to decrease the impact of prefetching, since the overall cache miss rate due

to new references will be less for symbolic workloads. However, the use of a buffered

write-back scheme rather than a write-through cache scheme should decrease the

effective memory access time.

5.5 Results of Correlogram and Power Spectrum Analysis

While the correlograms and power spectra were analyzed, no significant

differences in the periodicity or order characteristics of symbolic and conventional

workloads were found. Instead, these plots seemed to depend much more on the type

of reference (e.g., instruction fetch or data ref) and type of locality (e.g., temporal or

spatial) being characterized than whether the workload was a symbolic or a conven-

tional one. Temporal distance strings had decreasing autocorrelation with increasing

lag in accordance with Denning's definition of locality in Chapter 2. However, spatial

distance strings did not follow this pattern. Instead, the autocovariance varied over

short periods of time but did not decrease in average value even for large lags. This

was reflected in all the autocovariance functions and power spectra of the spatial

and temporal distance strings for both symbolic and conventional workloads and is

typified by the plots shown in Figures 5.11 through 5.14.

The FFT workload provided some interesting plots due to the workload's

very ordered data structure accessing pattern. The regularity of this accessing pat-

tern is clearly shown by the correlogram and power spectrum of the FFT data write

76

SPRTIRL DISTRMCE STRING CORRELDGRRM
GLISP-Comp R11 1ll59,999 References

1 .90a+14-

+ 1.26e+13

ccJ

316e+12

:--

C-)

I- 1.59..12-

7.94e+1l

398we.11

12 21 36 49 60 72 94 96 19 128

LRG

Figure 5.11: Example Correlogram of a Spatial Distance String

77

POWER SPECTRUM OF SPRTIRL DISTRIICE STRiNG
GLISP-Comp RI- Ni5 ,S60 References

I .60.+I4-

B .96e.13-

I.SBe.I3-

6 .31e.12-

1 .66e+12Z

3.96e.11-

1 .S8.+II

6.310+1O-

e.95 8.1 8.1S 8.2 8.25 8.3 0.35 8.4 G.A5 8.5

Freauency

Figure 5.12: Example Power Specti am of a Spatial Distance String

78

TEMPORAL DISTANCE STRIHG CORRELOGRAM
GLISP-ComD -- Al 458,686 References

7.*94e+5

0
CD 6.31e+5

w

S 3.98e+5-

C

4.)
C

I- 2.51e+5

2.90ee5-

1 .58e+5-

I .26e.5
12 24 36 49 66 72 94 96 169 126

LAG

Figure 5.13: Example Correlograxn of a Temporal Distance String

79

POWER SPECTRUM OF TEMPORAL DISTANCE STRING
GLISP-Comp -- A11 458ee References

1.eee+8-

S.Ole+?-

2.51e+?

1.26e+?

6.31e+6

3.16e+6

1 .58e+6

?.94e+5

3.98e+S

2.eSe.5

1.ee+s
S.AS 6.1 8.15 6.2 .2s 8.3 6.35 8.4 8.45 8.5

Frequency

Figure 5.14: Example Power Spectrum of a Temporal Distance String

80

New-New reference string shown in Figures 5.15 and 5.16.

5.6 Summary

This research has identified several significant differences in the locality

characteristics of symbolic and conventional workloads. The spatial locality of sym-

bolic workloads, as quantified by the spatial window probability, Psw, is greater than

that of conventional workloads. The stack distance thresholds, LRU 95 and LRU99 ,

are much smaller for symbolic workloads. The symbolic workloads have greater struc-

tural locality, as quantified by PSSD, and finally the Old-New transition probability

is much lower for symbolic workloads. Principal reasons for these differences include

the greater number and smaller size of functions in symbolic workloads, the inherent

difference in the way data structures are accessed for these two types of workloads,

and the smaller number of distinct memory locations referenced by the symbolic

workloads.

However, it is not the intent of this chapter to imply that these are the

only differences between symbolic and conventional workloads. Computation of other

locality characteristics and even further analysis of the characteristics computed in

this research may provide additional insight into these two types of workloads.

~~TI~ L Date, Ur i te DR rO f

LU

2mJ
cc

cc

0.-

5 :c re o~ ~ o h E? D t rt e . e p tll D s~ e Srn
F3ig80re

82

POMER SPECTRUM OF SPATIRL DISTRHCE STRINIG
FFT -- 18,289 Date Mrite No-hem References

1 .ee+14-

3.16e+13-

1.eOe+19--

3.16e+12-

1 .eee+12-

3.16e+11-

1.69e11-.U

3.1le 16

3. 15e+9

1.eee 9 i i i U i i i i i i
9.95 6.1 6.15 6.2 0.25 0.3 6.35 6.4 6.45 6.5

Frequency

Figure 5.16: Power Spectrum of the FFT Data Write New-New Spatial Distance
String

Chapter 6

Validation of Results

This chapter describes the various methods used to validate the results

of the previous chapter. It first describes the validation of the software routines

used to generate the results and then details the techniques used to validate the

results themselves. These techniques include the generation of test plots with highly

structured data, comparison with previously published results, and cross-checking

the results for consistency and reasonableness. To assess the influence of the Lisp

Machine architecture on the results, a two-fold approach was used. First, each of the

major factors that could influence the results was analyzed and its probable impact

assessed. Then the traces of programs executed on an IBM System/360 Model 91 at

the Stanford Linear Accelerator and used in several cache performance studies such

as [Smit82] were used to generate locality characteristics for comparison with those in

the previous chapter. The similarities of the locality characteristics for these vastly

different architectures helped to validate the architectural independence of some of

the results, while the differences in the locality characteristics helped to assess the

influence of the various architectural differences.

6.1 Validation of the Software Routines

Each routine was tested extensively, both before integration into the trace

analysis software, and after its integration. Each routine was written in Lisp code

and the only global variables accessed were the print base and the window name for

83

84

the plots. To insure that the sorting routines were generating the proper memory

reference strings, a completely decoded portion of one of the virtual memory address

traces was used to verify that each of sorted traces contained the correct subset of

the memory references.

To test the autocovariance and Fourier transform routines, very regular

strings whose output could be easily predicted, such as the one below,

119119119...

were used as input to these routines. These routines were also used to duplicate

correlogram and power spectrum plots Spirn had published in his book [Spir77].

Once the results were generated, they were cross-checked for consistency.

These checks are listed below:

1. Does the sum of the numbers of references in each of the traces sorted by

memory reference type (e.g., instruction fetch) equal 450,000?

2. Is the number of Old-New references within one of the number of New-Old

references?

3. Are the percentages of each type of memory reference reasonable when com-

pared with other published results such as those cited in Chapter 2?

4. Is the maximum stack distance of each temporal distance string less than the

string length?

6.2 Evaluation of Architectural Independence of Results

This evaluation consisted of two complementary approaches. The first ap-

proach consisted of evaluating those features of the Explorer II architecture which

85

could affect the results. The second approach was to compare the locality character-

istics of the Explorer II traces with those computed from the traces of workloads on

an IBM System/360 Model 91.

6.2.1 Distinctive Architectural Features of the Explorer II

Altogether, five principal architectural features of the Explorer II were

considered. One of these features, was the Explorer Irs use of cdr-coding to exploit

the spatial locality of list structures. The principal effect of a frequent use of cdr-

coding would be a spatial distance of one word rather than two words for consecutive

list elements. As mentioned in the background chapter, Clark showed in his studies

that list elements are placed close to each other without cdr-coding or a special cons

algorithm. Instead, because the elements of a list are usually created temporally

close together, the memory locations allocated from the heap memory are normally

spatially contiguous or at least very close. Although cdr-coding is used only for

list, append, and reverse commands on the Explorer II and not for regular cons

operations, it is used to write out lists which have been built in the PDL and so

access to cdr-coded structures is fairly common for the symbolic workloads. Even

so, since none of the results mentioned in the previous chapter would be affected

by whether the distance between successive elements of a list was one word or two,

cdr-coding did not influence these results.

The PDL, which was just mentioned, is a 1000-word top of stack on-chip

buffer, and its influence on the results must also be considered. The PDL is used

in place of a register set, with most local scalar variables or pointers to these local

variables being stored in this buffer. Since this buffer is large, it also eliminates

the virtual memory references occurring from register overflows in conventional ar-

chitectures with smaller register sets. However, all data structures, compiled code,

86

and global variables are stored in the heap memory. Thus, the results of the pre-

vious chapter characterize the program referencing behavior of the workloads' data

structures and not the scalar referencing within a function nor parameter passing

between functions. As mentioned in the background chapter, there has been one

attempt, trace flattening, to incorporate the register set into the overall memory

hierarchy for temporal locality analysis. This technique was not used in my research

although it may provide a way in future work to incorporate the register set in a fur-

ther characterization of the temporal and structural locality of symbolic workloads.

However, there is no way to incorporate the register set into a characterization of

the spatial locality of the workloads without first defining a distance measure for the

register set and assigning it a space in the virtual memory. And even incorporating

the register set does not eliminate all influence of the architecture. For instance,

intermediate results which might be stored in register memory for one architecture

might be stored within the arithmetic logic unit for another processor architecture

(e.g., software versus hardware multiplies).

This suggests another of the features of the Explorer II, its heavily-micro-

coded complex instruction set (CISC) architecture. Because of this architecture, one

instruction fetch may cause a number of data reads or writes as in the case of writing

a list out to memory or appending an element to a list.

Because of the large PDL and CISC architecture, the virtual memory refer-

ences characterized by this research comprise a common subset of the virtual memory

references across all simpler architectures. As such, symbolic workload word-level vi-

tual memory referencing behavior characterized in the previous chapter is not due

to architectural features such as a limited instruction set or a small register set but

rather to access requirements of the workload that are common to all architectures.

Thus this research can be contrasted with Mitchell's study of the influence of proces-

87

sor architecture on cache performance, where he focused on those references captured

in the PDL [Mitc86].

However, the CISC architecture and large PDL do bias the characterization

of the symbolic workloads in one. respect. The buffering of intermediate list results

and the writing of the list to memory through successive data write accesses lowers

the New-Old transition probability, PNO, for data writes, as was noted in Chapter 5.

Thus, the implication that a buffered write-back algorithm is preferred over a write-

through algorithm cannot be generalized for symbolic workloads on all architectures.

The Lisp compiler on the Explorer II further insures that only those virtual

memory references required by all architectures are characterized. The compiler

does an excellent job of using the PDL whenever possible and of minimizing virtual

memory references.

The last feature of the Explorer II which had an influence on the results in

the previous chapter is the size of the virtual memory address space and the memory

allocation strategy used for the various kinds of virtual memory references: system

variables, system Lisp routines, and user defined routines and data structures. As

described earlier, each of the above is allocated in a separate portion of the virtual

memory address space. And because the virtual memory address space is very large,

the distance between these subspaces is substantial. However, since a large virtual

memory address space is more the rule than the exception among newer architec-

tures, as is the use of subspaces and the separation between them, this Explorer II

architectural feature helps identify the virtual memory referencing behavior resulting

from this trend toward larger virtual memory address spaces.

88

6.2.2 Comparison Between Explorer II and IBM System/360 Model 91

Traces

Although the IBM System/360 Model 91 was chosen because of the avail-

ability of the trace data and of results derived, from the use of these traces, it was

also a good choice for another reason. Architecturally, it is vastly different from

the Explorer II and thus provides a good basis for evaluating the architectural in-

dependence of the results computed from the Explorer II traces. Specifically, the

IBM System/360 Model 91 has a much smaller register set, a memory address space

which is one-eighth the size, and no cdr-coding. The instruction set architecture is

fairly complex, although simpler than that of the Explorer II.

Despite these differences, some of the Explorer II results could also be

derived from the IBM System/360 Model 91 traces. The primary factor preventing

a confirmation of the differences, was the lack of a trace of a true symbolic workload

for the IBM System/360 Model 91. Although two of the workloads, the WATFIV

FORTRAN compiler and the WATEX sorting and bin packing routine were data-

driven, none of the workloads used lists.

The spatial locality characteristics observed in both conventional and sym-

bolic workloads on the Explorer II were also present in the BM System/360 Model

91 traces. As can be seen by comparing Figures 6.1 through 6.5 with Figure 4.4, the

plateaus are present in the spatial locality cumulative histograms, although they are

shorter due to the smaller memory address space and thus shorter distances between

subspaces. The width of the spatial locality window was also smaller, although

for comparison with the Explorer traces, Psw was not redefined. As with the Ex-

plorer traces, there was a significant number of accesses, about 40 percent, within

the spatial locality window. Table A-1 in Appendix A shows the very similar spatial

locality results that were obtained when the same type of workload, a fast Fourier

89

CUMULRTIVE SPRTIRL LDCRLITY HISTOGRRM
IBM FFT1 R11Al 45008 References

La B

I'-

IAJ
56

40

16

16 12 9 4 S 4 a 12 is
<- BACKNARD FORMARD -

LGGDISTRHCE

Figure 6.1: IBM FFTl Cumulative Spatial Locality Histogram

90

CUMULATIVE SPRTIRL LOCRLITY HISTOGRRM
IBM FFT2 R- ll 458,8ee References

(-i

9e

3d.
0

69

L)

S 58

w

46

3.

20

16 12 a 4 6 4 a 12 16
4-- BRCKURNRD FORMWRD -- >

LOGODISTARCE

Figure 6.2: IBM FFT2 Cumulative Spatial Locality Histogram

91

CUHULRTIVE SPRTIRL LOCRLITY HISTOGRRM
IBM RPL Plotter R11 456.666 References

lee-

ci

(j 78

W

U-

U.

40

36

28

is

S iIIItIIIIIIII
26 16 12 a 4 S 4 a 12 16 28

<-- BRCKWRRO FORIIRRO--

LOG2 orSTRICE

Figure 6.3: IBM A-PL-Plotter Cumulative Spatial Locality Histogram

92

CUMULRTIVE SPRTIRL LOCRLITY HISTOGRRM
IBM MRTFIV Compiler -- RIl 450.80 Referenceslee-

LL Be

09

Cr

S 60
C2)

50

2e

10

16 12 a 4 S 4 B 12 16
<-- BACKURRD FORIRRD --

LOG DISTRIICE

Figure 6.4: IBM WATFIV Compiler Cumulative Spatial Locality Histogram

93

CUMULATIVE SPRTIRL LOCRLITY HISTOGRRM
IBM MRTEX Bin Packin -- All 456,086 References

166-

9e
Uj

L)

La

C

C

i.
Ue

46

28

16 12 B 4 6 4 B 12 16
<-- BfRCKMRlRD FORURRD -- >

LOG2DISTRICE

Figure 6.5: IBM WATEX Bin Packing Cumulative Spatial Locality Histogram

94

transform, was traced on these two vastly different architectures.

Other locality results preserved across both symbolic and conventional

workloads as well as across both machine architectures were the very high spatial lo-

cality of instruction references and the very high spatial locality of instruction fetches

during New-New transitions, i.e., new instruction fetches. As shown in Table A-2 of

Appendix A, the standard deviations for all fifteen workloads were well under ten

percent of the mean values. The high structural locality of data reads and writes

was also a common characteristic for both symbolic and conventional workloads on

both machine architectures as shown in Tables A-14 and A-15 of Appendix A.

Thus, this comparison helped confirm the validity of the results and show

where the Explorer II architecture had influenced the results, and also show where

the results were independent of the machine architecture. While it could not confirm

the differences between symbolic and conventional workloads, due to the lack of

true symbolic workloads on the IBM System/360 Model 91, it did indicate that a

key high-level feature of symbolic workloads essential to distinguishing them from

conventional workloads is their use of lists. In fact, when the results of the GLISP-Pay

workload, an algorithmic rather than data-driven routine, using lists are considered,

the algorithmic nature of the workload appears to have had much less influence in

determining the memory referencing locality characteristics of the workload than its

use of lists.

6.3 Summary

The results obtained in this research were subjected to extensive cross-

checking and validation, and they were critically evaluated for biases introduced by

the Explorer II architecture. Based on this analysis, it can be concluded that the

symbolic workload locality characteristics and their differences from conventional

95

workload locality characteristics are not due to the Explorer architecture, but rather

to inherent differences in the ways that these two types of workloads access memory.

Chapter 7

Application to Memory Subsystem Design

This chapter gives an example of applying the measured symbolic workload

locality characteristics to a memory subsystem design. First, the basic motivation

for a candidate design is discussed and each component of the proposed design is

described. Then, an analytic modpl is developed to estimate the effective memory

access time of the memory subsystem as a function of its design parameters. These

parameters are then chosen to minimize the effective memory access time for the

symbolic workload locality characteristics. Finally, the performance of the memory

subsystem is evaluated by comparing it to a conventional design on the Explorer II.

7.1 Motivation for the Design

One of the key characteristics of symbolic workloads that is not exploited

directly by conventional memory subsystem designs is the structural locality of the

memory references. As was shown in Chapter 5, the best prediction for the next

memory reference is the same simulated LRU stack position which was last refer-

enced. If the simulated LRU stack can be realized in a cache with full associativity,

then any position in the stack can be referenced in constant time, and the references

immediately above the stack position accessed can be prefetched into a smaller faster

on-chip cache which I have named the structural locality cache (SLC).

There are two concerns with using the SLC. First, it requires that the main

cache be fully-associative. Typically, CAM requires four times the circuitry of con-

96

97

ventional memory [Blau87]. Any CAM design, then, should also perform comparably

to a conventional memory system design with a direct-mapped cache four times as

large. The other concern is cache pollution' in the CAM caused by prefetching from

the main memory. The structural locality present in the LRU stack occurred when

no prefetching was employed. The larger the blocks prefetched, the less mapping of

temporal to spatial locality in the CAM, and hence the less structural locality.

7.2 Proposed Design

As shown in Figure 7.1, the proposed design is a three-level memory hi-

erarchy consisting of a large physical memory (MEM), a much smaller main CAM

cache (CAM), and the very small on-chip SLC. The CAM's purpose is to emulate

the top portion of the simulated LRU stack thus mapping temporal locality into

spatial locality within the CAM. The SLC is then able to use the structural locality

captured in the CAM to prefetch memory references.

Because the CAM is finite, it cannot, as a rule, contain the entire simulated

LRU stack for a given workload. If a straight LRU replacement algorithm was used,

the CAM would have to be reordered after each access. The primary object've,

though, of the CAM is to enable prefetching by the SLC based on structural locality.

This objective can be met using a FIFO circular buffer replacement algorithm. This

replacement algorithm can be expected to result in a slightly higher miss ratio,

however, since even the most frequently referenced memory locations are guaranteed

to be periodically removed from the CAM. On the other hand, since the SLC is

much smaller than the CAM and does not have the same requirement for complete

ordering, an LRU replacement algorithm is preferable for this smaller cache.

'Smith defines cache pollution as the proportion of the cache taken up by prefetched data which
is never referenced during its stay in the cache.

98

FIFO Circular
Buffer Replacement

Top of
Stack

LRU Replacemnent
Stack
G row th

B

Temnporal
Locality

On-Chip Cache BS
N l B SBlocks

Structural_______
Locality Main CAM Cache
Prefetch NJdBc BlocksL

5-C

Locality
Prefetch

Main Memoiy

Figure 7.1: Proposed Memory Subsystem Design

99

Table 7.1: Memory Subsystem Design Parameters

Locality

Symbol DescriDton Caris ics

NC Size in words of CAM LRU 9 5 , LRU9 9

BC Number of words prefetched to CAM PNN, PSW

NS Size in words of SLC LRU 9 5 , LRU9 9

BS Number of words prefetched to SLC PSSD

7.3 Specific Design Parameters

The design parameters to be chosen for this implementation and the lo-

cality characteristics on which they are primarily dependent are shown in Table 7.1.

Belady has shown that the CAM miss rate cannot be guaranteed to decrease mono-

tonically with increasing CAM size when a FIFO replacement algorithm is used

[Bela69b]. However, in most cases, the CAM miss rate should decrease as its size

is increased. Therefore, to arrive at maximum limits for Nc and N$, a reasonable

starting point is the current memory subsystem design of the Explorer II. The Ex-

plorer II has a cache of 32K words, and so using Blauuw's four to one size ratio, the

corresponding size for a fully-associative cache would be 8K words. Assuming that

some of the chip area used for the PDL could be reallocated for the SLC constrains

the size of Ns, since allocating too large a percentage of the PDL chip area would

increase memory traffic due to PDL overflows [Mitc86].

7.4 Analytic Model of Effective Memory Access Time

The following model estimates the effective memory access time from the

workload locality characteristics and cache design parameters in Table 7.1. The

100

effective memory access time can first be computed as

ta = tSLCPSLC + tCAM(I - PSLC)PCAM + tMEM(l - PCAM)

where

ts is the memory access time of the SLC

PSLC is the hit rate of the SLC

tCAM is the memory access time of the CAM

PCAM is the hit rate of the CAM and

t MEM is the memory access time of the main memory

This can be rewritten as

tn = PsLc + RCAM(l - PSLC)PCAM + RMEM(l - PCAM)

where

tn = ta/tSLC

RCAM - tCAM/SWc and

RMEM " tMEM/ItS.

7.4.1 CAM Cache Hit Probability and Design Parameters

The probability of a CAM cache hit, PCAM, will be addressed first. If no

prefetching takes place, then using the model first developed in Chapter 4 and the

state transition probabilities shown in Figure 7.2, the expected CAM cache hit rate

can be calculated for the workload locality characteristics measured in Chapter 5.

101

4-4U

00

?AU

004)

s r-

102

State So is the state where the reference is to a previously-referenced mem-

ory location. And likewise, state S1 is the state where the reference is to a new

memory reference location.

The state transition probabilities can be estimated using the measured

locality characteristics. The New-New transition probability, PNN, can then be used

to estimate the likelihood of remaining in S, and the New-Old transition probability,

or 1-PNN, can be used to estimate the likelihood of transitioning from S to So.

However, because the size of the CAM cache is limited, a transition from S to So

does not assure a cache hit. The weighting factor, We, uses the temporal lifetime

function derived from the temporal locality cumulative histograms to estimate the

likelihood of a cache hit for this transition. There were no significant differences

between the temporal locality histograms of the overall, New-Old, and Old-NSSD

distance strings in their overall shape nor their 90th, 95th, and 99th stack distance

thresholds. Thus, the overall temporal locality cumulative histogram was used in

lieu of using the individual temporal locality histograms for the New-Old and Old-

NSSD distance strings. In addition, the temporal locality characteristics for the

eight symbolic workloads executed on the Explorer II were averaged to generate the

function of W, versus stack distance shown in Figure 7.3. Finally, the Old-New

transition probability, PON, is used to estimate the likelihood of transitioning from

So to S1 and 1 - PON to estimate the likelihood of remaining in So. Again, W is

used to estimate the cache hit rate for the transition loop on So. The cache hit rate

can then be computed as

PCAM = PSo(1 - PON)W + pS1(1 - PNN)W

where

I - PNNPSo = PON + (1 - PNN)

103

1.000

0.998

0.996

0.994

0.992

u0.990

0.988

0.986

0.984

0.982

0.980

0 4000 8000 12000 16000 20000

Effective Cache Size

Figure 7.3: W, vs. Effective Cache Size

104

and

Ps' 1 - Pso

Substituting for ps0 and Ps1 gives

PCAM = W(1 - PNN)
PON + (1 - PNN)

From Figure 7.3, the value of W, corresponding to an 8 Kword LRU stack

is 0.996. Then using the mean values of PON and PNO for the symbolic workloads

from Table A-11 in Appendix A2 , the value of PCAM is computed as

(0.996)(0.371) = 0.962
PCAM = 0.013 + 0.371

As discussed in the Chapter 5, the individual frequency histograms and

the values of PNN for the symbolic workloads indicate that the prefetch size should

be kept small. Also, since analysis of the individual frequency spatial distance his-

tograms shows that neither a fetch forward nor a fetch backward strategy is optimal

for a preponderance of the symbolic workloads, a prefetch of plus or minus one ref-

erence from the cache miss should be used. Since care must also be taken not to

prefetch a reference already in the CAM cache, a good approximation to this prefetch

strategy is to prefetch the block of four words in which the reference occurs, or in

other words, prefetch using all but the two least significant bits of the address.

The average number of references used within this four-word prefetched

block during the New-New referencing mode was found to be 1.41 using a probability

decision tree and summing the expected vaiae of each of the outcomes. Thus, on

the average only 0.41 out of the additional 3 prefetched references in the CAM cache

is actually referenced during the New-New referencing behavior, effectively reducing

2 PNO = I - PNN

105

the cache size to 1.41/4 or 35 percent that of the CAM cache when prefetching is

not used because of the unreferenced prefetches.

As shown in Figure 7.4, the New-New referencing of the prefetched block

can be modeled as a loop on state So with a transition probability, pcp, chosen such

that the expected value of the number of New-New references, Ucp, is equal to the

0.41 additional references calculated from the decision tree. The expected value of

number of New-New prefetch references is

00 PCP PC

Ucp = (1 -ipcp) = (1 - pp) p) - 1- pcp
i=I

where pcp is the New-New CAM prefetch block reference probability. Now, setting

the expected value of Ucp equal to 0.41 additional references calculated from the

decision tree gives

C' = 0.41=: P* P = 0.2 9 1
1 - pcP

The CAM cache hit probability then is

PCAM = (1 - PON)Wps, + ((1 - PNN)W + PCP)PS,

Substituting for pso and ps, gives

Wv(1 - PNN) + PCPPON
PcAM N +(1- PNN)

Calculating the new value of W, for a cache size of (1.41/4)8192 = 2888 words from

Figure 7.3 gives W, = 0.986 and so

(0.986)(0.371) + (0.291)(0.013) = 0.962
PCAM = 0.013 + 0.371

Thus, the reduction in effective cache size due to the unused prefetches off-

sets the increase in cache hits from the prefetched block, and the cache hit probability

is not improved by the prefetching strategy.

106

0.r.

CI C)

4-t-

06~

107

Since there is no advantage to prefetching and since unused references

would decrease the structural locality that is captured spatially in the CAM cache,

the proposed CAM cache design is that no prefetching take place, or in other words,

that Bc = 1.

7.4.2 Structural Locality Cache Hit Probability and Design Parameters

The SLC hit probability will first be calculated with no prefetching. While

the primary objective of the CAM cache is to exploit structural locality through

prefetching into the SLC, the hit rate with no prefetching provides a basis for eval-

uating the effectiveness of structural locality prefetching.

With no prefetching, the SLC model is almost identical to the CAM cache

model as shown in Figure 7.5. The only exception is the use of W, in place of W,.

The SLC hit probability is then

W.(1 - PNN)

PON + (1 - PNVN)

where Wo is a function of Ns as shown in Figure 7.6.

Prefetching can be incorporated into the SLC model as it was for the CAM

cache. As can be seen from Figure 7.7, an SLC hit can occur when the reference

is to the same stack position or to a recently referenced location. Since only Bs

references will be in the prefetch block from the CAM cache, any strings of SSD

references greater than Bs will cause SLC misses. To compensate for the finite

prefetch block size, an adjusted SSD transition probability, PSSDA, must be used so

that the expected value of the consecutive SLC hits due to SSD references, USPM,

is equal to the expected value given the prefetch block size. The expected value of

the model's SSD reference strings is

00 PSSDA PSSDAUSPM = (1 - PSSDA,) iPssD.i= (I - PSSDA)(1-.PS--D) SD

108

cmi

4-.)

U)s
0) a. L6

109

0.60

0.50

0.40

0.30

0.20

0.10

0

0 16 32 48 64 80 96 112 128

Effective On-Chip Cache Size

Figure 7.6: W, vs. Effective On-Chip SLC Cache Size

110

ho

'42

ILI-

PS,

UT

>O

cn

Ad)
+U

111

and the expected value of the prefetch block references, Usp, is

Bs-i
Usp = (1-PSSD) j iPSSD'

i=1

= (1 - PSSD) (1'PSSD)2 ((B S - 1)PssD B s - BsPssDB s - 1 + 1)

PSSD ((Bs - 1)PssDB s - BsPssDB s - , + 1)
1 - PSSD

Setting USPM = Usp and solving for the adjusted PSSD, PSSDA, gives
Usp

PSSDA = USP
I + Usp

There is also another adjustment to make. The effective size of the SLC

cache will be reduced by references in the prefetch block which are not accessed

before they are swapped out. Thus, W, will decrease as Bs increases. To calculate

the effective size of the cache, the actual cache size is reduced by the expected value

of the percentage of each prefetch block which is unreferenced. The unreferenced

portion of the prefetch block can be thought of as a form of cache pollution and will

be denoted by psp. The value of psp is calculated as

= (Bs - 1)- (1 - PSSD) Ei= iPssDi (Bs - 1) - Usp
Bs Bs

Using Figure 7.6, W, can be calculated for the effective cache size which is Ns(1 -

psp). With these adjustments for the prefetching it is now possible to calculate the

SLC hit probability.

PswC = (PssD + PNSSDW.)PSo + (1 - PNN)W.PS,

Solving for pso and ps, and substituting gives

PsW = PON (- PNN + W(PNSSD + PON))

112

Table 7.2: Structural Locality Cache Hit Probability (psLc)

128 64 32 16 8 4 2

1 0.579 0.424 0.317 0.240 0.145 0.070 0.038 0.029

2 0.393 0.342 0.303 0.261 0.230 0.212 0.202

4 0.572 0.535 0.492 0.458 0.436 0.424

8 0.646 0.603 0.567 0.543 0.529

16 0.620 0.583 0.559 0.545

Using the measured locality symbolic workload locality characteristics from

Table A-11 in Appendix A and the above equation, the SLC hit probability varies

with prefetch block size as shown in Table 7.2 for a range of values of Ns. The values

of BS which maximize ps$ for a given N$ are highlighted in boldface.

7.5 Performance Analysis

Using the CAM cache and SLC hit probabilities and typical values of

RCAM = 4 and RMEM = 32, it is now possible to estimate the effective access

time for this memory subsystem design. Substituting these values into the previous

equation for an SLC size of 8 words and a prefetch block size of 8 words gives

t, = 0.529 + (1 - 0.529)(4)(0.962) + (32)(1 - 0.962) = 3.557 clock cycles

Similarly, Table 7.3 gives other effective memory access times for RCAM = 4 and

RMEM = 32 and for values of NS ranging from 2 to 128 words and using the val-

ues of Bs highlighted in Table 7.2. To compare this with a conventional memory

design without a CAM cache, PCAM must be computed for a cache four times as

large. From Figure 7.3, Wc for a 32 Kword cache is 0.997. Also, for this cache size,

113

Table 7.3: Performance Analysis for RCAM = 4 and RMEM = 32

128 64 32 16 8 4 2

In 3.224 3.347 3.449 3.518 3.557 3.856 4.489

3.082 3.530 3.839 4.062 4.337 4.554 4.646

S(%) -4.4 5.5 11.3 15.5 21.9 18.1 3.5

prefetching does iesult in a lower cache miss rate. So, computing the new PCAM for

the conventional cache with Bc = 4 gives

Wc(1 - PNN) + PcPFON = (0.997)(0.371) + (0.291)(0.013) = 0.973

PON + (1 - PNN) 0.013 + 0.371

Therefore, the base effective memory access time for the conventional memory

design using prefetching is

tb = 0.145 + (1 - 0.145)(4)(0.973) + (32)(1 - 0.973) = 4.337 clock cycles

The speedup (given in percent) is then defined as

S -- (Lb- 1)100

Thus, for an on-chip structural locality cache of 8 words, a system CAM

cache memory access time of 4 clock cycles, and a main memory access time of 32

clock cycles, this drsign is about 22 percent faster than the conventional hierarchical

memory design used as a comparison as shown below:

S = 337- 1)100 = 21.9 percent

Table 7.3 gives other effective memory access times, base comparison times, and the

effective speedup for RCAM = 4 and RMEM = 32 and for values of Ns ranging from

2 to 128 words using the values of Bs highlighted in Table 7.2.

114

20

-U--- Rcam-u2
-4--- Rcarn-4
-U- Rcam=8
-4-- Rcam=16
-u-- Rcant-32

10

-1

-20

4 8 16 32 64 128 256 512 1024

Figure 7.8: Speedup vs. RCAM and RMEM for Ns =2 words

---- Rcam-2

-4---Rcam-4

-U---Rcam-8

40 --- Rcam-1 6
-U-- Rcam=32

C 30-

~20

10

0-

-10-
4 8 16 32 64 128 256 512 1024

R M

Figure 7.9: Speedup vs. RCAM and RMEM for NS 4 words

116

so -

-U-- Rcam=2
-- Rramm4

---- Rcamm8

--- Rcamm1 6

60o-U Rcam=32

40 11\%\

CA 20

4 8 16 32 64 128 256 512 1024

Figure 7.10: Speedup vs. RCAM and RMEvM for NS 8 words

117

60-

R- CA=2

~~RAM= 8

--- RCAW16

40

~20

41

0

-20-

4 8 16 32 64 128 256 512 1024

R M

Figure 7.11: Speedup vs. RCAM and RMEM for N5 = 16 words

50-

-Rn- AM R =2

-U---RCAM=32

30

20

ai 10

0.

-10-

-20-

4 8 16 32 64 128 256 512 1024

R M

Figure 7.12: Speedup vs. RCAM and RMEM for N5 = 32 Words

119

40-

20K

10

-10

4 8 16 32 64 128 256 512 1024

R M

Figure 7.13: Speedup vs. RCAM and RMEM for N5 = 64 words

120

20

-- RCAJ=2

- - RCAM=I6

-- pAM=32

10

ma 0
CL

-10-

4 8 16 32 64 128 256 512 1024

RMEM

Figure 7.14: Speedup vs. RCAM and RMEM for Ns = 128 words

121

Figures 7.8 through 7.14 show the speedups attainable with this architec-

ture for a range of values of RCAM and RMEM. For all values of RCAM and

RMEM, the highest spedup, although not necessarily the minimum access time,

occurs when Ns and Bs are equal to 8 words. For larger on-chip cache sizes, the

temporal locality tends to capture a large portion of the Old-SSD transitions, thus

decreasing the benefits of a design tailored for structural locality prefetching.

7.6 Summary

This chapter has shown how the results of this research can be used to

design a memory subsystem tailored to the special structural locality characteristics

of symbolic workloads. It also shows how possible designs such as the one in this

chapter using a structural locality cache can be quantitatively evaluated and how

the design's proper regime for application can be identified.

Chapter 8

Conclusion

8.1 Main Contributions

The principal contribution of this research is the identification of signif-

icant differences in the virtual word-level memory addressing behavior of symbolic

and conventional workloads. These differences in the spatial, temporal, and struc-

tural locality of symbolic and conventional workloads provide direction to memory

designers tailoring their designs for a particular application. As shown in Chap-

ter 7, the locality characteristics of symbolic workloads can be used as an input to

a systematic design process producing a memory design with the minimum effective

access time for that type of workload.

The metrics and txperimental methodology developed for this research

are also significant contributions. Especially significant is the identification of a

low-level measure of structural locality and the relating of this locality to the Same-

Stack-Distance phenomenom observed in the virtual memory address traces. While

structural locality has been previously acknowledged, no other published measure-

ments so directly characterize this type of locality.

Nor do other published characterizations suggest the direct exploitation

of structural locality evaluated in Chapter 7. This novel design option is another

contribution of this research. While it does not guarantee lower access times for all

technologies, as the penalty for accessing memory off-chip increases and the larger

main cache sizes cause their access times to more closely approach those of main

122

123

memory, this design option will become more attractive.

Finally, the extension of Denning's page reference Markov model to virtual

word-level memory addressing behavior contributes to the development of symbolic

workload generators which, in turn, can be used to provide input to expert system

design tools. For example, an adaptation of the Markov model presented in this

dissertation is already in use as part of a cache memory design tool [Rim89].

8.2 Additional Applications of This Research

There are several ways in which this research can be extended. First, as

the integrated circuit complexity increases, there is greater opportunity for building

into the cache controller a monitoring system, similar to those proposed by Belady

in [Bela73] and [Bela74] for paging control, which allows cache parameters such as

the prefetch block size or caching strategy to periodically adapt to measured locality

characteristics. The results detailed in Chapter 5 suggest another possible approach.

A memory system design could be dynamically tailored for conventional or symbolic

workloads by first classifying the memory referencing behavior using the locality

characteristics, and then adopting the appropriate cache control strategy. Thus this

research provides a sound footing for the investigation of dynamic cache control.

Another application is to incorporate the results of this research into mod-

els of the multitasking operating system environment. This would involve an exten-

sion to the Markov model to represent task switching behavior and an architecturally

independent characterization of operating system behavior. Techniques similar to

those used by Wong and Morris in their benchmark synthesis model based on their

LRU hit function have potential for extending symbolic workload characterization

for these environments [Wong88].

Still another application would be to use the locality metrics and experi-

124

mental methodology developed in this research to characterize the low-level virtual

memory referencing behavior of various garbage collection algorithms. This would

provide valuable insight into the design of memory systems tailored for symbolic

workloads where garbage collection is a major concern.

There are also other design alternatives which can be evaluated using the

models developed in this research and similar methodology to that in Chapter 7. For

example, the ability of a split cache for instruction and data references to exploit the

distinct locality characteristics of the instruction fetches could be evaluated and its

performance compared to that of a unified cache.

Possibly, the greatest potential for building upon this research lies in de-

veloping a unifying theory of program behavior which explains and interrelates the

spatial, temporal, and structural aspects of locality of reference characterized by this

research. When one considers the small standard deviations of the values of many

of the locality metrics computed in this research for a wide range of programming

styles, data structure usage, and applications there appears to be an underlying pat-

tern of virtual address memory referencing behavior that transcends all these factors.

One possible approach, would be to pursue further the 'order' content of the mem-

ory reference string with methods similar to those of Hammerstrom and Davidson

[Hamm77]. Specifically, analyzing the information theoretic content or entropy of the

spatial and temporal distance strings sorted by the type of reference (e.g., instruction

fetch) and the transition type (e.g., New-New) could yield new insight. Using this

approach, it may thus be possible to achieve an understanding of program behavior

which has proven so elusive over the past quarter century.

In summary, there are many ways to apply the results of this research to

memory system design. What this research has done is to lay a foundation based

on a systematic experimental process and measurable locality characteristics for the

125

analysis of low-level virtual memory referencing behavior. And hopefully, by quan-

tifying differences between symbolic and conventional workload memory referencing

locality, this research has helped to make the memory subsystem design process more

systematic.

Appendix A

Individual Workload Locality Measurements

126

127

Table A-I. Spatial Locality .. All References

CPU Type: Explorer H

Workload Type: Symbolic

Workload Psw-Al Psw-Old-New Psw-New-New

Boyer 0.452 0.011 0.954
Compile-RB 0.467 0.262 0.689
Copine-STR 0.463 0.264 0.708
GLISP-Comp 0.527 0.141 0.741
GLISP-Pay 0.443 0.188 0.877
QSIM 0.460 0.131 0.825
Reducer 0.525 0.135 0.965
TMYCIN 0.616 0.076 0.901

Mean for Wkld Type: 0.494 0.151 0.832
Std Dev for Wkld Type: 0.0587 0.0866 0.1092

Workload Type: Conventional
BIASLisp 0.314 0.028 0.940
FFT-Gabriel 0.350 0.004 0.839

Mean for Wkld Type: 0.332 0.016 0.889
Std Dev for Wkid Type: 0.0255 0.017 0.0714
Mean for CPU Type: 0.461 0.124 0.843
Std Dev for CPU Type: 0.0862 0.0954 0.1021

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 0.519 0.611 0.943
FFrI 0.345 0.110 0.915
FFT2 0.351 0.110 0.911
WATEX-BinPack 0.390 0.337 0A60
WATFIV-Comp 0.397 0.495 0.623

Mean for WkdXPU Type: 0.400 0.332 0.770
Std Dev for Wkd/CPU Type: 0.0702 0.2253 0.2171

Overall Mean: 0.441 0.193 0.819
Overall Std Dev: 0.0841 0.1752 0.1465

128

Table A-2. Spatial Locality -- Instruction Fetches

CPU Type: Explorer 1

Workload Type: Symbolic

Workload Psw-All Psw-Old-New Psw-New-New

Boyer 0.962 0.917 0.927
Compile-RB 0.862 0.721 0.930
Compile-STR 0.878 0.721 0.930
GLISP-Comp 0.893 0.723 0.905
GLISP-Pay 0.902 0.689 0.933
QSIM 0.906 0.694 0.895
Reducer 0.976 0.670 0.930
TMYCIN 0.880 0.741 0.909

Mean for Wkld Type: 0.907 0.734 0.919
Std Dev for Wkld Type: 0.0407 0.0772 0.0146

Workload Type: Conventional
BIASLisp 0.915 0.812 0.944
FFT-Gabriel 0.999 0.833 0.933

Mean for Wkld Type: 0.957 0.822 0.938
Std Dev for Wkld Type: 0.0594 0.0149 0.0078
Mean for CPU Type: 0.917 0.752 0.923
SWl Dev for CPU Type: 0.0460 0.0777 0.0153

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 0.932 0.929 0.827
FF1I 0.885 0.899 0.815
FFr2 0.886 0.894 0.819
WATEX-BinPack 0.907 0.685 0.820
WATFIV-Comp 0.914 0.875 0.812

Mean for Wkld/CPU Type: 0.904 0.856 0.818
Std Dev for Wkld/CPU Type: 0.0198 0.0978 0.0057

Overall Mean: 0.913 0.786 0.888
Overall Std Dev: 0.0389 0.0959 0.0528

129

Table A-3. Spatial Locality -- All Data References

CPU Type: Explorer II

Workload Type: Symbolic

Workload PwAIl Psw-Old-New PswNew.New

Boyer 0.215 0.011 0.954
Compile-RB 0.376 0.291 0.697
Compile-SIR 0.393 0.292 0.727
GLISP-Comp 0.430 0.126 0.718
GLISP-Pay 0.333 0.177 0.894
QSIM 0.560 0.148 0.819
Reducer 0.561 0.085 0.966
TMYCIN 0.637 0.062 0.902

Mean for Wkld Type: 0A38 0.149 0.834
Std Dev for Wkld Type: 0.1395 0.1019 0.1095

Workload Type: Conventional
BIASLisp 0.321 0.027 0.962
FFT-Gabriel 0.336 0.004 0.808

Mean for Wkld Type: 0.328 0.015 0.885
Std Dev for Wkld Type: 0.0106 0.0163 0.1089
Mean for CPU Type: 0.416 0.122 0.844
Std Dev for CPU Type: 0.1315 0.1062 0.1053

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 0.562 0.412 0.984
FFTI 0.309 0.032 0.971
FFF2 0.309 0.031 0.972
WATEX-BinPack 0.373 0.142 0.608
WATFIV-Comp 0.538 0.232 0.792

Mean for Wkld/CPU Type: 0.418 0.169 0.865
Std Dev for Wkld/CPU Type: 0.1234 0.1593 0.1645

Overall Mean: 0.416 0.138 0.851
Overall Std Dev: 0.1244 0.1226 0.1223

130

Table A-4. Spatial Locality -- Data Reads

CPU Type: Explorer II

Workload Type: Symbolic

Workload Ps-AII Psw-Old-New Psw-New-New

Boyer 0.178 0.467 0.696
Compile-RB 0.331 0.314 0.642
Compile-STR 0.35 1 0.335 0.684
GLISP-Comp, 0.406 0.26 1 0.670
GLISP-Pay 0.285 0.175 0.643
QSIM 0.562 0.385 0.744
Reducer 0.492 0.055 0.720
TMYCIN 0.645 0.163 0.788

Mean for Wkld Type: 0.406 0.269 0.698
Std Dev for WldType: 0.1531 0.1336 0.0505

Workload Type: Conventional
BIASLisp 0.287 0.388 0.862
FFTr-Gabriel 0.304 0.381 0.680

Mean for Wkld Type: 0.295 0.384 0.771
Std Dev for Wkld Type: 0.0120 0.005 0.1287

Mean for CPU Type: 0.384 0.292 0.712
Std Dev for CPU Type: 0.1429 0.1275 0.069

CPU Type: EBM System/36O Model 91

Workload Type: Conventional
APL-Piotter 0.5 30 0.251 0.984
FFI1 0.385 0.108 0.962
FF12 0.385 0.107 0.960
WATEX-BinPack 0.356 0.095 0.550
WATFIV-Coxnp 0.543 0.216 0.714

Mean for WkldCWPU Type: 0.439 0.155 0.834
Std Dev for Wkld/CPU Type: 0.0892 0.0725 0.1935

Overall Mean: 0.402 0.246 0.753
Overall Std Dev: 0.1271 0.1281 0.1314

131

Table A-S. Spatial Locality -- Data Writes

CPU Type: Explorer H

Workload Type: Symbolic

Workload Psw-All Psw-Old-New Psw.New.New

Boyer 0.342 0.000 0.998
Compile-RB 0.443 0.057 0.958
Compile-STR 0.460 0.048 0.956
GLISP-Comp 0.377 0.022 0.969
GLISP-Pay 0.627 0.007 0.982
QSIM 0.427 0.001 0.739
Reducer 0.896 0.004 0.989
TMYCIN 0.461 0.011 0.986

Mean for Wkld Type: 0.504 0.018 0.947
Std Dev for Wkld Type: 0.1791 0.0221 0.0854

Workload Type: Conventional
BIASLisp 0.230 0.003 0.916
FFT-Gabriel 0.174 0.001 0.799

Mean for Wkld Type: 0.202 0.002 0.857
Std Dev for Wkld Type: 0.0396 0.0014 0.0827

Mean for CPU Type: 0.443 0.015 0.929
Std Dev for CPU Type: 0.2034 0.0207 0.0887

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 0.759 0.464 0.996
FFTI 0.573 0.027 0.147
FFI'2 0.573 0.023 0.148
WATEX-BinPack 0.450 0.168 0.621
WATFIV-Comp 0.577 0.287 0.844

Mean for Wkid/CPU Type: 0.586 0.193 0.551
Std Dev for Wkd/CPU Type: 0.1105 0.1867 0.3919

Overal Mean: 0.491 0.074 0.803
Overall Std Dev: 0.1869 0.1335 0.2880

132

Table A-6. Temporal Locality -- All References

CPU Type: Explorer 11

Workload Type: Symbolic

Workload LRU90 LRU9 5 LRU99

Boyer 221 838 3822
Compile-RB 467 845 3234
Compile-STR 1020 2197 16777
GLISP-Comp 840 1405 4390
GLISP-Pay 1638 1673 1694
QSIM 532 1460 4158
Reducer 517 806 2570
TMYCIN 634 1038 2400

Mean for Wkld Type: 733 1282 4880
Std Dev for WkId Type: 437 494 4895

Workload Type: Conventional
BIASLisp 1473 25276 25987
FFT-Gabriel 2645 29137 29199

Mean for Wkld Type: 2059 27206 27593
Std Dev for Wkld Type: 828 2730 2271

Mean for CPU Type: 998 6467 9423
Std Dev for CPU Type: 733 10976 10531

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 71 250 3380
FFTI 118 119 184
FFI2 118 119 184
WATEX-BinPack 136 306 532
WATFIV-Comp 802 995 1882

Mean for Wkld/CPU Type: 249 357 1232
Std Dev for Wkld/CPU Type: 310 365 1389

Overall Mean: 748 4430 6692
Overall Std Dev: 712 9294 9371

133

Table A-7. Temporal Locality -. Instruction Fetches

CPU Type: Explorer n1

Workload Type: Symbolic

Workload LRU90 LRU95 LRU99

Boyer 30 33 50
Compile-RB 270 454 1314
Compile-STR 563 1223 6742
GLISP-Comp 465 656 1196
GLISP-Pay 753 753 756
QSIM 134 592 635
Reducer 72 156 650
TMYCIN 291 509 631

Mean for Wkld Type: 322 547 1496
Std Dev for Wkld Type: 253 366 2154

Workload Type: Conventional
BIASLisp 363 363 557
FFT-Gabriel 29 29 40

Mean for Wkld Type: 196 196 298
Std Dev for Wkld Type: 236 236 365

Mean for CPU Type: 297 476 1257
Std Dev for CPU Type: 243 364 1969

CPU Type: IBM Systern/360 Model 91

Workload Type: Conventional
APL-Plotter 36 52 452
FF11 82 82 110
FF1r2 82 82 110
WATEX-BinPack 61 200 358
WATFIV-Comp 530 640 1334

Mean for Wkld/CPU Type: 158 211 472
Std Dev for Wkld/CPU Type: 208 246 504

Overall Mean: 250 388 995
Overall Std Dev: 234 345 1647

134

Table A-8. Temporal Locality -- All Data References

CPU Type: Explorer 11

Workload Type: Symbolic

Workload LRU90 LRU95 LRU99

Boyer 697 1062 5132
Compile-RB 229 408 2057
Compile-STR 441 1096 9863
GLISP-Comp 463 800 3480
GLISP-Pay 910 922 943
QSIM 561 869 3384
Reducer 474 732 1812
TMYCIN 427 575 1726

Mean for Wkld Type: 519 788 3538
Std Dev for Wkld Type: 205 247 2880

Workload Type: Conventional
BIASLisp 13909 24786 25527
FFT-Gabriel 16485 29040 29092

Mean for Wkld Type: 15197 26913 27309
Std Dev for Wkid Type: 1821 3008 2520

Mean for CPU Type: 3454 6013 8293
Std Dev for CPU Type: 6220 11062 10373

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 205 388 4685
FFT1 37 58 81
FF12 37 58 80
WATEX-BinPack 111 143 314
WATFIV-Comp 290 366 696

Mean for Wkld/CPU Type: 136 202 1171
Std Dev for Wkid/CPU Type: 110 163 1980

Overall Mean: 2348 4076 5919
Overall Std Dev: 5244 9312 9076

135
Table A-9. Temporal Locality -. Data Reads

CPU Type: Explorer II

Workload Type: Symbolic

Workload LRU96 LRU95 LRU9 9

Boyer 539 735 2662
Comnpile-RB 236 426 2216
Compile-STR 474 1145 9649
GLISP-Comnp 463 852 3428
GLISP-Pay 853 862 881
QSIM 605 867 3359
Reducer 499 829 2204
TMYCJN 427 600 1572

Mean for Wkld Type: 512 789 3246
Std Dev for Wkld Type: 174 211 2723

Workload Type: Conventional
BIASLisp 23716 24167 25001
FIFT-Gabriel 24390 27002 27037

Mean for Wkld Type: 24053 25584 26019
Std Dev for Vkd Type: 476 2004 1439

Mean for CPU Type: 5220 5748 7800
Std Dev for CPU Type: 9928 10477 9909

CPU Type: EBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 227 354 4108
FFTrI 34 58 66
FFTr2 34 58 66
WATEX-BinPack 121 165 321
WATFIV-Cornp 297 353 652

Mean for Wkld/CPU Type: 142 197 1042
Std Dev for Wkld/CPU Type: 117 148 1730

Overall Mean: 3527 3898 5548
Overall Std Dev: 8337 8826 8651

136

Table A-10. Temporal Locality -- Data Writes

CPU Type: Explorer H

Workload Type: Symbolic

Workload LRU90 LRU95 LRU99

Boyer 8 13 31
Compile-RB 44 142 1442
Compile-STR 142 458 2816
GLISP-Comp 142 365 2899
GLISP-Pay 110 143 143
QSIM 82 95 750
Reducer 81 85 1456
TMYCIN 100 171 803

Mean for Wkld Type: 88 184 1292
Std Dev for Wkld Type: 46 150 1095

Workload Type: Conventional
BIASLisp 21700 21952 22096
FFT-Gabriel 24911 24919 24935

Mean for Wkld Type: 23305 23435 23515
Std Dev for Wkld Type: 2270 2097 2007

Mean for CPU Type: 4732 4834 5737
Std Dev for CPU Type: 9818 9829 9443

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 1315 4185 4388
FFI 42 50 50
FF12 42 50 50
WATEX-Bfack 71 117 151
WATFIV-Comp 133 162 439

Mean for Wkd/CPU Type: 320 912 1015
Std Dev for Wkld/CPU Type: 557 1829 1891

Overall Mean: 3261 3527 4163
Overall Std Dev: 8166 8168 7978

137

Table A-Il. State Transition Probabilities -- All References

CPU Type: Explorer II

Workload Type: Symbolic

Workload PNO PSSD PNSSD PON

Boyer 0.506 0.474 0.502 0.024
Compile-RB 0.382 0.562 0.423 0.015
Compile-STR 0.383 0.544 0.438 0.018
GLISP-Comp 0.478 0.623 0.361 0.016
GLISP-Pay 0.250 0.588 0.407 0.005
QSIM 0.457 0.444 0.544 0.012
Reducer 0.137 0.540 0.454 0.006
TMYCIN 0.378 0.626 0.364 0.010

Mean for WkId Type: 0.371 0.550 0.436 0.013
Std Dev for Wkld Type: 0.1235 0.0653 0.0634 0.0063

Workload Type: Conventional
BIASLisp 0.706 0.269 0.677 0.054
FFT-Gabriel 0.685 0.316 0.619 0.065

Mean for Wkld Type: 0.695 0.292 0.648 0.059
Sid Dev for WkId Type: 0.0149 0.0332 0.0410 0.0078

Mean for CPU Type: 0.436 0.498 0.478 0.022
Std Dev for CPU Type: 0.1748 0.1234 0.1061 0.0205

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plouer 0.315 0.126 0.869 0.005
FFTI 0.560 0.161 0.837 0.003
FF12 0.558 0.160 0.837 0.003
WATEX-BinPack 0.751 0.101 0.896 0.004
WATFIV-Comp 0.749 0.161 0.832 0.007

Mean for Wkld/CPU Type: 0.586 0.141 0.854 0.004
Std Dev for Wkld/CPU Type: 0.1794 0.0273 0.0276 0.0017

Overall Mean: 0.486 0.379 0.604 0.016
Overall Std Dev: 0.1850 0.2008 0.2025 0.0187

138

Table A-12. State Transition Probabilities -- Instruction Fetches

CPU Type: Explorer II

Workload Type: Symbolic

Workload PNQ PSSD PNSSD PON

Boyer 0.236 0.830 0.170 0.000
Compile-RB 0.113 0.954 0.044 0.002
Compile-STR 0.117 0.944 0.054 0.002
GLISP-Comp 0.152 0.929 0.070 0.001
GLISP-Pay 0.099 0.919 0.08 1 0.000
QSIM 0.158 0.896 0.103 0.001
Reducer 0.196 0.975 0.024 0.001
TMYCIN 0.113 0.933 0.067 0.000

Mean for Wkld Type: 0.148 0.922 0.076 0.000
Std Dev for Wldd Type: 0.0478 0.0441 0.0446 0.0008

Workload Type: Conventional
BIASLisp 0.075 0.985 0.015 0.000
FFT-Gabriel 0.062 0.999 0.001 0.000

Mean for Wldd Type: 0.068 0.992 0.008 0.000
Std Dev for WkId Type: 0.0092 0.0099 0.0099 0.000

Mean for CPU Type: 0.132 0.936 0.062 0.000
Std Dev for CPU Type: 0.0539 0.0488 0.0489 0.0008

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 0.855 0.477 0.518 0.004
FFTI 0.783 0.477 0.522 0.000
FF1r2 0.780 0.475 0.524 0.000
WATEX-BinPack 0.876 0.506 0.492 0.003
WATFIV-Comp 0.825 0.534 0.461 0.005

Mean for Wkld/CPU Type: 0.823 0.493 0.503 0.002
Std Dev for Wkld/CPU Type: 0.0427 0.025 9 0.027 0.002 3

Overall Mearr 0.362 0.788 0.209 0.001
Overall Std Dev: 0.3410 0.2199 0.219 0.0016

139

Table A-13. State Transition Probabilities -- Data References

CPU Type: Explorer II

Workload Type: Symbolic

Workload PNO PSSD PNSSD PON

Boyer 0.506 0.627 0.349 0.024
Compile-RB 0.454 0.653 0.336 0.011
Compile-STR 0.445 0.654 0.333 0.013
GLISP-Comp 0.534 0.746 0.241 0.013
GLISP-Pay 0.259 0.714 0.282 0.004
QSIM 0.477 0.808 0.181 0.010
Reducer 0.121 0.722 0.274 0.005
TMYCIN 0.393 0.744 0.247 0.009

Mean for Wldd Type: 0.398 0.708 0.280 0.011
Std Dev for Wkld Type: 0.1403 0.0603 0.0575 0.0062

Workload Type: Conventional
BIASLisp 0.714 0.359 0.588 0.053
FFT-Gabriel 0.674 0.389 0.547 0.064

Mean for Wkld Type: 0.694 0.374 0.567 0.058
Std Dev for Wkld Type: 0.0283 0.0212 0.029 0.0078

Mean for CPU Type: 0.457 0.641 0.337 0.020
Std Dev for CPU Type: 0.1758 0.1509 0.1316 0.0209

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 0.109 0.820 0.178 0.001
FF1l 0.547 0.756 0.242 0.002
FF12 0.546 0.757 0.241 0.002
WATEX-BinPack 0.684 0.744 0.255 0.002
WATFIV-Comp 0.673 0.733 0.264 0.003

Mean for Wkid/CPU Type: 0.511 0.762 0.236 0.002
Std Dev for Wkld/CPU Type: 0.2347 0.0339 0.0338 0.0007

Overall Mean: 0.475 0.681 0.303 0.014
Overall Std Dev: 0.1905 0.1357 0.1180 0.0190

140

Table A-14. State Transition Probabilities -- Data Reads

CPU Type: Explorer II

Worldoad Type: Symbolic

Workload PNO PSSD PNSSD PON

Boyer 0.892 0.708 0.260 0.032
Compile-RB 0.480 0.781 0.208 0.011
Compile-STR 0.455 0.764 0.223 0.013
GLISP-Comp 0.555 0.821 0.167 0.013
GLISP-Pay 0.571 0.760 0.235 0.005
QSIM 0.569 0.841 0.147 0.011
Reducer 0.893 0.803 0.162 0.035
TMYCIN 0.630 0.826 0.163 0.012

Mean for Wkld Type: 0.630 0.788 0.195 0.016
Std Dev for Wkid Type: 0.1706 0.0437 0.0414 0.0108

Workload Type: Conventional
BIASLisp 0.687 0.678 0.273 0.050
FFT-Gabriel 0.653 0.721 0.221 0.058

Mean for Wkld Type: 0.670 0.699 0.247 0.054
Std Dev for Wkld Type: 0.0240 0.0304 0.0368 0.0057

Mean for CPU Type: 0.638 0.770 0.205 0.024
Std Dev for CPU Type: 0.1516 0.0546 0.0442 0.0186

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 0.071 0.859 0.140 0.001
FFII 0.128 0.840 0.160 0.000
FF12 0.129 0.840 0.159 0.000
WATEX-BinPack 0.666 0.813 0.186 0.001
WATFIV-Comp 0.662 0.855 0.143 0.002

Mean for Wkld/CPU Type: 0.331 0.841 0.157 0.000
Std Dev for Wkid/CPU Type: 0.3047 0.0181 0.0183 0.0008

OverallMean 0.536 0.794 0.189 0.016
Overall Std Dev: 0.2526 0.0567 0.0436 0.0187

141

Table A-15. State Transition Probabilities -- Data Writes

CPU Type: Explorer II

Workload Type: Symbolic

Workload PNO PSSD PNSSD PON

Boyer 0.500 0.966 0.012 0.022
Compile-RB 0.369 0.966 0.031 0.003
Compile-STR 0.330 0.964 0.032 0.004
GLISP-Comp 0.574 0.965 0.027 0.008
GLISP-Pay 0.133 0.980 0.019 0.002
QSIM 0.480 0.985 0.008 0.006
Reducer 0.080 0.994 0.003 0.003
TMYCIN 0.402 0.958 0.035 0.006

Mean for Wkld Type: 0.358 0.972 0.020 0.006
Std Dev for Wkld Type: 0.1742 0.0125 0.0121 0.0065

Workload Type: Conventional
BIASLisp 0.669 0.838 0.117 0.045
FFT-Gabriel 0.698 0.824 0.119 0.057

Mean for Wkid Type: 0.683 0.831 0.118 0.051
Std Dev for Wkld Type: 0.0205 0.0099 0.0014 0.0085

Mean for CPU Type: 0.423 0.944 0.040 0.015
Std Dev for CPU Type: 0.206 0.0607 0.0423 0.0197

CPU Type: IBM System/360 Model 91

Workload Type: Conventional
APL-Plotter 0.013 0.972 0.028 0.000
FFT1 0.472 0.962 0.037 0.001
FFT2 0.471 0.962 0.036 0.001
WATEX-BinPack 0.563 0.939 0.060 0.001
WATFIV-Comp 0.724 0.882 0.000 0.002

Mean for Wkld/CPU Type: 0.448 0.943 0.032 0.001
Std Dev for Wkld/CPU Type: 0.2645 0.0364 0.0216 0.0007

Overall Mean: 0.431 0.943 0.037 0.010
Overall Std Dev: 0.2177 0.0524 0.0361 0.0173

b

BIBLIOGRAPHY

[Alex75] Alexander, W. G. and D. B. Wortman, "Static and Dynamic Character-

istics of XPL Programs," Computer 8 (11) pp. 41-46 (November 1975).

[Agar86] Agarwal, A., R. L. Sites, and M. Horowitz, "ATUM: A New Technique

for Capturing Address Traces Using Microcode," Proceedings of the 13th

International Symposium on Computer Architecture, pp. 119-127 (June

1986).

[Bela66] Belady, L. A., "A Study of Replacement Algorithms for a Virtual Storage

Computer," IBM Systems Journal 5 (2) pp. 78-101 (February 1966).

[Bela69a] Belady, L. A. and C. J. Kuehner, "Dynamic Space-Sharing in Computer

Systems," Communications of the ACM 12 (5) pp. 282-288 (May 1969).

[Bela69b] Belady, L. A., R. A. Nelson, and G. S. Shedler, "An Anomaly in Space-

Time Characteristics of Certain Programs Running in a Paging Machine,"

Communications of the ACM 12 (6) pp. 349-353 (June 1969).

[Beia73] Belady, L. A. and R. F. Tsao, "Memory Allocation and Program Behavior

Under Multiprogramming," Proceedings of the 7th Annual Interface Sym-

posium on Computer Science and Statistics, pp. 72-78 (October 1973).

[Bela74] Belady, L. A. and F. P. Palermo, "On-line Measurement of Paging Be-

havior by the Multivalued MIN Algorithm," IBM Journal of Research

and Development 18 (1) pp. 2-19 (January 1974). [Blau87] Blauuw, G. A.

142

143

and F. P. Brooks, Jr., Computer Architecture, Vol 1-Design Decisions,

(Draft, Unpublished 1987).

[Clar77] Clark, D. W. and C. C. Green, "An Empirical Study of List Structure in

Lisp," Communications of the ACM 20 (2) pp. 78- 87 (February 1977).

[Clar79] Clark, D. W., "Measurements of Dynamic List Structure in Lisp," IEEE

Transactions on Software Engineering 5 (1) pp. 51-59 (January 1979).

[Clar85] Clark, D. W. and J. S. Emer, "Performance of the VAX- 11/780 Transla-

tion Buffer: Simulation and Measurement," ACM Transactions on Com-

puter Systems 3 (1) pp. 31-62 (February 1985).

[Denn68] Denning, P. J., "The Working Set Model for Program Behavior," Com-

munications of the ACM 11 (5) pp. 323-333 (May 1968).

[Denn72] Denning, P. J., "On Modeling Program Behavior," Proceedings of the

Spring Joint Computer Conference, pp. 937-944 (1972).

[Emer84] Emer, J. S. and D. W. Clark, "A Characterization of Processor Perfor-

mance in the VAX-11/780," Proceedings of the 11th International Sympo-

sium on Computer Architecture, pp. 301-310 (June 1984).

[Flyn87] Flynn, M. J., C. L. Mitchell, and J. M. Mulder, "And Now a Case for

More Complex Instruction Sets," Computer 20 (9) pp. 71- 83 (September

1987).

[Fode8l] Foderaro, J. K. and RI. J. Fateman, "Characterization of VAX Macsyma,"

Proceedings of the 1981 A CM Symposium on Symbolic and Algebraic Com-

putation, pp. 14-19 (August 1981).

144

[Good83] Goodman, J. R., "Using Cache Memory to Reduce Processor- Memory

Traffic," Proceedings of the 10th International Symposium on Computer

Architecture, pp. 124-131 (June 1983).

[Good84] Goodman, J. R. and M. Chiang, "The Use of Static Column RAM as a

Memory Hierarchy," Proceedings of the 11th International Symposium on

Computer Architecture, pp. 167-174 (June 1984).

[Good86] Goodman, J. R. and W. Hsu, "On the Use of Registers vs. Cache to Min-

imize Memory Traffic," Proceedings of the 13th International Symposium

on Computer Architecture, pp. 375-383 (June 1986).

[Gree84] Greenblatt, R. D., T. F. Knight, Jr., J. Holloway, D. A. Moon, and D. L.

Weinreb, "The LISP Machine," Interactive Programming Environments,

eds. D. R. Baxstow, H. E. Shrobe, and E. Sandewall, McGraw-Hill, High-

tstown, NJ, pp. 327-352 (1984).

[Hamm77] Hammerstrom, D. W. and E. S. Davidson, "Information Content of CPU

Memory Referencing Behavior," Proceedings of the 4th International Sym-

posium on Computer Architecture, pp. 184-192 (March 1977)

[Haya83] Hayashi, H. A., A. Hattori, and H. Akimoto, "Alpha: A High-Performance

Lisp Machine Equipped with a New Stack Structure and Garbage Collec-

tion System," Proceedings of the 10th International Symposium on Com-

puter Architecture, pp. 342-348 (June 1983).

[Hill84] Hill, M. D. and A. J. Smith, "Experimental Evaluation of On-Chip Micro-

processor Cache Memories," Proceedings of the 11th International Sympo-

sium on Computer Architecture, pp. 158-166 (June 1984).

[Lee84] Lee, J. F. K. and A. J. Smith, "Branch Prediction Strategies and Branch

Target Buffer Design," Computer 17 (1) pp. 6-22 (January 1984).

145

[Lewi73] Lewis, P. A. W. and G. S. Shedler, "Empirically Derived Models for Se-

quences of Page Exceptions," IBM Journal of Research Development 17

(2) pp. 86-100 (March 1973).

[Matt70] Mattson, R. L., J. Gecsei, D. R. Slutz, and I. L. Traiger, "Evaluation

Techniques for Storage Hierarchies," IBM Systems Journal 9 (2) pp. 78-

117 (February 1970).

[McNi88] McNiven, G. D. and E. S. Davidson, "Analysis of Memory Referencing

Behavior for Design of Local Memories," Proceedings of the 15th Interna-

tional Symposium on Computer Architecture, pp. 56- 63 (May 1988).

[Mitc86] Mitchell, C. L., "Processor Architecture and Cache Performance," Tech-

nical Report CSL-TR-86-296, Computer Systems Laboratory, Stanford

University, Stanford, CA (June 1986).

[Olss83] Olsson, 0., "The Memory Usage of a Lisp System: the Belady Lifetime

Function," SIGPLAN Notices 18 (12) pp. 112-1 19 (December 1983).

[Rees85] Reese, B. R. II, "Hardware Support for High-Level List Functions," Ph.D.

Dissertation, Texas A & M University, College Station, TX (1985).

[Rim89] Rim, Y., "A System-Level Modeling Methodology and Its Application to

Multi-Cache Systems," Ph.D. Dissertation, University of Texas at Austin,

Austin, TX (In Preparation).

[Smit77] Smith, A. J., "Two Methods for the Efficient Analysis of Memory Address

Trace Data," IEEE Transactions on Software Engineering SE-3 (1) pp.

94-101 (January 1977).

[Smit82] Smith, A. J., "Cache Memories," ACM Computing Surveys 14 (3) pp.

473-530 (September 1982).

146

[Smit83] Smith, J. E. and J. R. Goodman, "A Study of Instruction Cache Organi-

zations and Replacement Policies," Proceedings of the 10th International

Symposium on Computer Architecture, pp. 132-137 (June 1983).

[Smit85a] Smith, A. J., "Cache Evaluation and the Impact of Workload Choice,"

Proceedings of the 12th International Symposium on Computer Architec-

ture, pp. 64-73 (June 1985).

[Smit85b] Smith, A. J., "Disk Cache-Miss Ratio Analysis and Design Considera-

tions," ACM Transactions on Computer Systems 3 (3) pp. 161-203 (Au-

gust 1985).

[Sohi85a] Sohi, G. S., E. S. Davidson, and J. H. Patel, "An Efficient Lisp-Execution

Architecture with a New Representation for List Structures," Proceedings

of the 12th International Symposium on Computer Architecture, pp. 91-98

(June 1985).

[Sohi85b] Sohi, G. S., "BLAST: A Machine Architecture for High- Speed List Pro-

cessing Using Associative Tables," Ph.D. Dissertation, University of Illi-

nois, Urbana, IL (1985).

[Spir77] Spirn, J. R., Program Behavior: Models and Measurements, Elsevier, New

York, NY (1977).

[Stan87] Stanley, T. J. and R. G. Wedig, "A Performance Analysis of Automati-

cally Managed Top of Stack Buffers," Proceedings of the 14th International

Symposium on Computer Architecture, pp. 272-281 (June 1987).

[Tayl86] Taylor, G. S. and P. N. Hilfinger, J. R. Larus, D. A. Patterson, and B. G.

Zorn, "Evaluation of the SPUR Lisp Architecture," Proceedings of the 13th

I

147

International Symposium on Computer Architecture, pp. 444-452 (June

1986)

[Thaz86] Thazhuthaveetil, M. J., "A Structured Memory Access Architecture for

Lisp," Ph.D. Dissertation, University of Wisconsin- Madison, Madison,

WI (1986).

[Wong88] Wong, W. S. and R. J. T. Morris, "Benchmark Synthesis Using the LRU

Cache Hit Function," IEEE Transactions on Computers 37(6) pp. 637-645

(June 1988).

[Yuha86] Yuhara, M. et. al., "Evaluation of the FACOM Alpha Lisp Machine," Pro-

ceedings of the 13th International Symposium on Computer Architecture,

pp. 184-190 (June 1986).

[Zipf49] Zipf, G. K., Human Behavior and the Principle of Least Effort, Addison-

Wesley, Reading, MA (1949).

"A T

VITA

A,/ William Chester Hobart, Jr. "

After

graduating from Cabrillo Senior High School, Lompoc, California, in 1972, he entered

the United States Air Force Academy, Colorado Springs, Colorado. He received the

degree of Bachelor of Science from the United States Air Force Academy in June,

1976, and was commissioned a Second Lieutenant in the United States Air Force. In

June, 1979, after serving as a communications maintenance officer, he entered the Air

Force Institute of Technology at Wright-Patterson Air Force Base, Ohio. In March,

1981, he received the degree 6f Master of Science in Electrical Engineering from the

Air Force Institute of Technology. He then taught in the Department of Electrical

Engineering at the United StatesAir Force Academy until June, 1983. Finally, until

entering the Graduate School of the University of Texas in September, 1986, he

served as Chief, Data Link Standards Branch, Tactical Air Forces Interoperability

Group, Laligley Air Force Base, Virginia. Upon completion of hi studies, Major

Hobart wi1l'join the faculty of the Air Force Institute of Technology.

This dissertation was typeset with IWTX by the author.

I/, X document preparation system was developed by Leslie Lamport us a @pecal vermoat
Donald Knuth's TEX program for computer typesetting. TEX is a trademaut of tie Amekria .
Mathematical Society. The U tX macro pacle for The Univesity of Tem at Autis dissetatia
format was written by Khe-Sing The.

