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Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fufillment of the

Requirements for the Degree of Master of Science

SEMANTIC QUERY OPTIMIZATION IN AN
OBJECT-ORIENTED SEMANTIC ASSOCIATION MODEL (OSAM*)

By

Garrett L Gleason

Chairman: Dr. Stanley Y. W. Su May 1990

Major Department: Computer and Information Sciences

The Object-oriented Semantic Association Model (OSAM*) represents the

semantics of a knowledge base in terms of structural properties, operational

characteristics, and knowledge rules associated with the objects of concern in an

application. Because of its rich semantic modeling capabilities, OSAM* can be

used as the underlying model for constructing a more powerful knowledge base

management system (KBMS) than those database management systems that use

the traditional relational data modt . Knowledge rules in a KBMS serve to

uphold the semantic properties and security/integrity constraints and to derive

data that is not explicitly stored in the knowledge base. The knowledge rules in

OSAM*'s KBMS can be specified in two ways: (1) frequent integrity constraints -7)
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are structurally specified by key-words in OSAM*'s Semantic-diagram (S-

diagram) and (2) user defined const'aints and deductive rules are specified by a

rule specification language. The knowledge rules are important sources of

information for query optimization (i.e., semantic query optimization). This

thesis (1) analyzes the integrity constraints and deductive rules (knowledge rules)

allowable in OSAM*, (2) defines a set of transformation rules which can be

used for query optimization, (3) uses these transformation rules in a number of

case studies to show how query plans can be generated, and (4) discusses the

cost estimation for evaluating the query plans. , ,
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CHAPTER 1
INTRODUCTION

In database management technology, there is a trend toward building a

database management system (DBMS) with higher functionality and ease of use.

The higher functionality is achieved by using semantic models that capture the

semantics of an application in terms of structural properties, the operational

characteristics, and the knowledge rules. High-level models and non-procedural

languages of knowledge base management systems (KBMS) have contributed

greatly to ease-of-use. Very complex query requests are easier to formulate by

allowing the user to specify what information is desired, rather than a step-by-

step specification of how to get that desired information.

Efficiency becomes a key issue in the implementation of a DBMS/KBMS

that uses a semantic model and a high-level query language. The concern of

employing efficient processing no longer rest on the user but rather within the

DBMS/KBMS itself. Query optimization techniques, which make use of the rich

semantic information captured by a semantic model, are important to make the

intelligent DBMS/KBMS perform efficiently. The knowledge rules of a KBMS

that serve ,o uphold semantic properties and security/integrity constraints and to

'1 ' . . .• . . . | "1 II I ' - I,,,, -,• . . ...
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derive data that is not explicitly stored in the knowledge base (deductive rules),

can also serve as a basis for optimizing high-level queries. As important sources

of information, knowledge rules can be employed to generate a series of

alternative query execution plans that are projected to be more efficient than

evaluating the query in its original form. The multiple query execution plans

generated represent semantic equivalent queries (i.e., queries that will produce

the same result provided the knowledge base is in a valid state).

There are many existing works on query optimization [GIR78], [HAM80],

[KIN81], [JAR84a], [JAR84b], [CHA85], [FRE87], [GOE87], [LOB88], and

[GOE89]. Most of them are based in the relational data model which captures

a limited amount of structural properties and integrity constraints. Relational-

data-model-based KBMSs employ query and rule specification languages that are

based on attribute values (i.e., queries and rules are defined in terms of

attributes of relations). As such, the languages weakly support (if at all) queries

and rules based on semantic relationships between objects. Semantic query

optimization in these KBMS.. in turn, cannot take full advantage of known

semantic associations between objects.

In this work, we use the Object-oriented Semantic Association Model

(OSAM*) [SU86] and [SU89] as an example semantic model to show that

constraints specified structurally and user-defined rules can be used for query
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optimization. This model's KBMS employs query and rule specification

languages that are based on associations between data objects. The languages

explicitly define queries and rules in terms of patterns of object associations.

Complex queries and rules can therefore be easily formulated. In this manner,

the knowledge rules in OSAM*'s KBMS capture more semantic properties than

the relational-data-model-based rule specification languages. Thus, semantic

query optimization is also developed on the basis of associations among data

objects. This thesis analyzes the integrity constraints and deductive rules

(knowledge rules) allowable in OSAM*, defines a set of transformation rules to

be used for query optimization, uses these transformation rules in a number ofii
case studies to show how alternative query plans can be generated, and discusses

the cost estimation for evaluating the query plans.

This thesis is organized as follows: Chapter 2 introduces a KBMS

designed on the basis of the OSAM*, including the Semantic diagram, the query

language, the rule specification language, and the underlying formalism of the

system (i.e., association algebra). Chapter 3 presents some query optimization

techniques, with special emphasis on conventional and semantic query

optimization. Chapter 4 introduces knowledge rules and a knowledge rule

classification scheme beneficial to semantic query optimization. It identifies the

type of rules that is most beneficial to semantic query optimization. When

covering integrity constraint rules, this chapter describes the association types of

_ _ _
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OSAM* and defines the constraints within each type. Chapter 5 defines

transformation rules to perform semantic query optimization and exemplifies the

use of the transformation rules through a series of case studies. Finally, Chapter

6 briefly discusses cost estimation for semantic query optimization. Cost

estimation is introduced in this chapter as a guide to future research. A full

treatment of this problem is out of scope of this research. A discussion on

future work and a conclusion are also presented in this chapter.

Ii



CHAPTER 2
THE OSAM* KNOWLEDGE BASE MANAGEMENT SYSTEM

This chapter gives an overview of the Object-oriented Semantic

Association Model OSAM*, its query and rule specification languages, and the

underlying algebra called Association Algebra. The conceptual understanding of

the model and the languages are necessary for the understanding of query

optimization issues and techniques to be presented in the subsequent chapters.

Overview of OSAM*

The Object-oriented Semantic AssociatiLf Model (OSAM*) is a semantic

data model which is rich in constructs for explicitly specifying the structural

properties of objects found in an application. In addition, it allows user-defined

operations and knowledge rules to be specified as part of the semantic

properties of objects. OSAM* is an integration of the object-oriented paradigm,

database management technology, and rule-based system concept. From the

object-oriented paradigm, it incorporates familiar objects (complex data types),

the encapsulation of methods and types within an object, the inheritance of

rules, attributes, operations, and associations, and the uniform treatment of data

and meta-data. OSAM* also allows objects to inherit properties from multiple

5
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parent classes and allows instantiation of an object in more than one class

[SU861 and [SU89].

In OSAM*, objects sharing common semantic properties are grouped

together to form an object class. Objects in a class have similar structural and

behavioral properties. The definition of an object class consists of associations,

operations, and rules. The associations identify the object class' structural

relationships with other classes. The operations and their corresponding

methods define the meaningful operations for manipulating a class' members.

Finally, the deductive rules and integrity constraints specified for a class

respectively generate data that is not explicitly stored in the knowledge base and

govern manipulations performed against the class to ensure that they do not

violate the semantic integrity and security of the knowledge base.

An object class is either an entity class (E-class) or a domain class (D-

class). An E-class is used to model objects of an application that are

independent entities (real world objects). Objects in an E-class are assigned

object identifications (or OIDs). An E-class is materialized as instances of

objects in that class. A D-class, however, serves as descriptive data of objects i.

E-classes or other D-classes. A D-class specifies domain characteristics such as

data type, ranges of values, data structures, etc. The data values that form a D-

class identify the objects in the class.
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The semantic relationships among classes and thus their corresponding

objects are defined in OSAM* by semantic associations and data type

constructors. There are five system-defined association types: Aggregation (A),

Generalization (G), Interaction (I), Composition (C), and Cross-product (X).

These types are exemplified and explained in detail in Chapter 4. User-defined

association types are also allowed. Data type constructors, on the other hand,

are definitions of sets, vectors, matrices, etc. and form domains having complex

structures such as set of real numbers, vector of integers, matrix of part

numbers, etc.

The Semantic Diaeram

The Semantic Diagram (S-diagram) is a network of nodes and edges that

graphically represent the schema of a knowledge base in terms of classes and

their associations. The S-diagram also presents frequently defined constraints

associated with classes via specific labels and graphic symbols. The S-diagram

does not show, however, operations and deductive rules that can be specified in

a class. Most of the figures in this thesis are S-diagrams representing various

example database schemas.

S-diagram primitives are as follows:

(1) Domain Class: A domain class (D-class) is represented by a circular node.

The name of the D-class is presented next to the circle. In Figure 1, section#,

room#, textbook, ss#, name, etc. are D-classes. Following the name can be a
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system-defined data type or a constraint within a data type, such as a range or

set of valid values. For example, in Figure 2 the D-class Name is typed as

having character string of length 40. A D-class can also be defined in terms of

other classes through an aggregation or a generalization association, or a data

type constructor. Such classes are composite D-classes. Finally, attribute names

that are different from their domain names are written as labels on the

connectiLg edges of the D-class, such as the attribute names Major and Minor

off the Student and Undergrad classes, respectively, in Figure 1.

(2) Entity Class: An entity class (E-class) is represented by a rectangular node

in the S-diagram with its name appearing within the rectangle. In Figure 1,

Section, Person, Transcript, Teacher, etc. are E-classes. Edges of E-class are

labeled (at their originating endpoints) according to the association types the

edges are representing (labeled with A, G, I, C, or X for the five system-defined

association types). As with D-classes, attribute names that differ from the class

names are shown via labeled edges.

(3) Constraints: There are many types of constraints that can be specified in an

S-diagram. Different association types may have different types of constraints.

For example, arcs across E-class edges represent a specified constraint on the

associations those edges represent, such as a mapping constraint or a composite

key constraint. A mapping constraint in Figure 1 is represented on the arc

between Student and Course's links to the Transcript class. It specifies that a
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student can take many courses and a course can have many students (i.e., a n:m

mapping). Chapter 4 explains all association types and their constraints.

In summary, the S-diagram serves as a graphical tool to display the

structural properties and frequent constraints specified in the schema of a

knowledge base. An in-depth analysis of the S-diagram is given in a work by Su

and Siggelkow [SU88a].

Object-oriented Query Language

OSAM*'s query language, an Object-oriented Query Language (OQL), is

designed to produce results that are structurally and conceptually consistent with

the knowledge base the query is executed against (i.e., having the closure

property). The key feature of this language is that it is pattern-based language

rather than the conventional attribute-based languages. Complex search

conditions can be specified in this language it terms of patterns of object

associations. The language allows complex queries to be specified in a relatively

simple way. An OQL query results in a sub-database of some selected object

classes and their associations. The sub-database is materialized by objects in the

database that satisfy some association patterns given in the OQL query. The

resultant sub-database of a query forms a context in which the system-defined or

user-defined operations specified in the query can be performed on the selected

objects. An OQL query is syntactically structured to allow the user to first

define the appropriate sub-database applicable to the query and then to specify
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the operations to be performed within that sub-database. Syntactically, an OQL

query consists of two clauses: a CONTEXT clause and an Operation clause, as

shown below:

CONTEXT association-pattern [intra-class conditions]
WHERE inter-class conditions
SELECT object classes and/or attributes

Operation(s) object classes

The CONTEXT clause specifies the sub-database the query is to be

processed against. The association-pattern is specified in terms of a structure of

object classes, association and non-association operators, and AND/OR branch

operators. Each class in the structure is optionally followed by intra-class

conditions expressed in the form of predicates. The association operator "

specifies that objects in two adjacent classes that are associated with each other

shall be retained in the sub-database. The association operator "I" specifies that

objects in two adjacent classes that are not associated with each other shall be

retained in the resultant sub-database. The association-pattern of the

CONTEXT clause may also contain branches with AND and OR operators.

These operators must procede a parenthesized list of sub-expressions, where the

sub-expressions are an association operator and a class name, or simply a class

name (in which case the applicable association operator, which applies to all the

classes in the list, must proceed me AND/OR operator). The AND/OR

operators specify the AND/OR condition among objects of the involved classes.

For example, the pattern (Section * AND(Teacher, Course)) specifies that a
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section must be associated w.h both a teacher and a course. Al section,

teacher, and course objects that satisfy the AND pattern are retained to form

the resultant sub-database.

The WHERE sub-clause of the CONTEXT clause is optional and can be

used to specify inter-class comparison conditions. The comparisons must be

between type-compatible attributes or between type-compatible objects of two

classes. Object comparisons are limited to "equal" (=) and "not equal" (1=).

Finally, the SELECT sub-clause specifies the portion of the resultant sub-

database that is to be "projected" into the final resultant sub-database. Object

classes and/or attributes specified in the SELECT sub-clause are retained in the

resultant sub-database.

The Operation clause of the OQL query syntactical structure defines the

operations to be performed against the final resultant sub-database of the

CONTEXT clause. The operations can be system or user-defined and are

activated via messages to the classes of the sub-database. Example of system-

defined operations are DISPLAY and PRINT, for displaying and printing the

values of the descriptive attributes appearing in the resultant sub-database,

respectively.

OQL also provides some advanced features such as identification of sub-

expressions within the association pattern, set operations on association patterns,

and queries with multiple association patterns. As this thesis does not use any
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of the advanced features, they will not be described. Refer to [ALA89a] for a

complete discussion of an OQL.

In summary, OQL defines queries in two conceptual components: (1) a

component to establish a sub-database context and (2) a component to specify

the operations to be performed against that sub-database. The two-component

s'tucture is reflected in the two-clause format of ar OQL query. As a patten-

based language, OQL allows complex queries to be specified in a relatively

simple manner.

Rule Specification Lang-age

OSAM*'s rule specification language is a powerful, association-based

language designed to derive data not explicitly stored in the knowledge base

(deductive rules) and to ensure the knowledge base remains in a secure and

semantically consistent state (integrity constraint rules), Though Chapter 4

categorizes and exemplifies the knowledge rules, this section introduces the

constructs of the rule specification language, specifically the constructs pertinent

to this thesis. The syntactical structure of a knowledge rule is:

RULE rule-id
TRIGGER COND trigger-specification
rule-body
CORRECTIVE-ACTION action-specification
END

The full rule construct contains details that are superfluous to semantic

query optimization, such as the rule-id, trigger condition, and corrective action.

-rn,
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The rule-body contains the knowledge that is pertinent to optimization. The

body can have one of two formats: IF-THEN-ELSE or a simple statement of

conditions that must exist in the knowledge base. The IF-THEN-ELSE format

follows the typical structure:

IF antecedent
THEN consequent1
ELSE consequent2.

The antecedent of the rule body is an association pattern, just as in an

OQL query's CONTEXT itatement. It stipulates the conditions in which

consequentl of the rule must be maintained. For those portions of the

knowledge base where the conditions of the rule's antecedent are found to exist,

consequenti's conditions/operations must be upheld/performed. Instead of

specifying the conditions that must exist or the operations to be performed, the

consequent may define a sub-database or attribute(s) that is derived from the

existence of the antecedent's conditions (i.e., in the case of deductive rules).

Consequent2 in the ELSE clause is applicable in cases where the conditions of

the antecedent do not exist.

The second type of format for the rule body is a statement of conditions

that must be unconditionally upheld. Rule bodies of this format type either

stipulate an association pattern that must or must not exist (through the EXIST

and NOT-EXIST operators, respectively) or stipulate a particular attribute

predicate that must be maintained.
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In summary, the rule specification language of OSAM* defines knowledge

rules for a given knowledge base. The rule bodies, like OQL queries, are

association-based rather than the conventional attribute-based rules. Thus, the

language allows comparably easier definitions of complex constraints and data

derivations.

Association Algebra

Association algebra (A-algebra) serves as a formal foundation for the

establishment of an OQL and rule specification language. Its association-based

operators match and manipulate association patterns among data objects as to

produce other association patterns. Association patterns specify conditions to

select some objects for query or rule processing. Association pattern operators

include: ASelect (a), AProject (r), Associate (*), AComplement (I), AUnion

(+), ADifference (-), ADivide (+), NonAssociate (1), and Alntersect (-). Of

these nine operators, this thesis explicitly employs Associate (*), NonAssociate

(1), AUnion (+), and Alntersect (.) in its discussions. They will be described in

detail. All association operators are discussed in a report by Guo, Alashqur,

Lam, and SU [GU089].

Before explaining each operator, some preliminaries must be covered.

Assume that all objects are associated with themselves by what is called an

l ........ .I
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inner-association-pattern (Inn-pattern).1 An explicit relationship between two

Inn-patterns (i.e., two objects) is termed an inter-association-pattern (I-pattern).

Objects not explicitly related to each other (i.e., not connected by an I-pattern)

are conceptually associated by a complement edge. A complement edge and the

objects connected by it form a complement-association-pattern (C-pattern).

Derived-association-patterns (D-patterns) represent patterns of object that may

be directly or indirectly associated, thus consisting of both complement and

regular edges between objects. Associations between objects form an object

graph, whose connected sub-graphs are association patterns. An Association-

pattern-set (association-set) is a set of patterns or an empty set that does not

contain any duplicate patterns. The operators of A-algebra are defined

according to the possible relationships between the patterns of association-sets.

Figure 3 is an object diagram that serves as an example in the definition of the

following operators:

(1) Associate (*): The Associate operator identifies the association of objects of

two classes. From the two association-set operands, application of the Associate

operator generates a new association-set of those ,-pT" tr" "s and -T pa- ..rn

where the I-patterns connect the Inn-patterns of the two operands' association-

sets. For example, in the object diagram of Figure 3 (A * B) results in the

association-set: (albl), (a2b4), (a32), (a4b5).

'This assumption allows the algebra to operate against single objects as well as

objects' associations with other objects.



16

(2) NonAssociate (I): As a complement to the Associate operator, the

NonAssociate operator identifies a set of objects of either operand association-

set that do not connect to any association-patterns of the other operand

association-set. (A ! B) for example results in the a5 and b3 objects in the

object diagram example.

(3) AUnion (+): The AUnion operator combines two association-sets to produce

all associations of both sets. Redundant and superceded association-patterns are

eliminated. An association-pattern is superceded by another if it is contained

within the another association-pattern. The pattern (A * B + B * D) results in

the association-set of (albl), (a2b4), (a3b2), (a4b5), (b4dl), (b5d2) in the object

diagram.

(4) AIntersect (.): The Alntersect operator is similar to the conventional

intersection operator of logic but is applicable in the context of association-sets.

Its resultant association-set contains a set of associations which have at least one

association from both operand associalion-sets and where these two associations

share a common inner-associLtion in each of the common classes of the operand

association-sets. The resulting association-set of (A * B * C . A * B * D) is

shown in Figire 3. The b4 object represents the common inner-association of

the (A * B * C) and (A B * D) operands. The resulting association-set is

(a2b4), (b4c2), (b4dl).

__ Ii
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The logical properties within association algebra of commutatively,

associativity, idempotency, identity, and distributive properties [GUO89] are not

explicitly employed in this thesis but will be important in the implementation of

semantic query optimization in OSAM*.

In summary, association algebra provides the formal basis to establish an

OQL and a rule specification language. It permits logical operations on

associations between objects. The logical operations are important in the

association patterns specified in an OQL query CONTEXT clause and in a

constraint rule's antecedent and consequent.

In conclusion, this chapter has reviewed an underlying KBMS for the

OSAM*. The data model of the system, the graphical tool for schema

specification, the query and rule specification languages for the system, and the

underlying formalism of these languages have been discussed. The purpose of

this discussion was to establish a context in which semantic query optimization is

to partake.
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CHAPTER 3
QUERY OPTIMIZATION

Query processing is a multi-stepped procedure. Upon receiving a user-

submitted query, the Database Management System (DBMS) or Knowledge Base

Management System (KBMS) should validate, translate, optimize, and then

execute a query. Query validation ensures syntactic and semantic correctness of

the query, resolves what portion of the database the query references, and

performs security checks to ensure the user is permitted the requested

operations. Once validated, a query can be translated into an internal

representation understandable to the DBMS/KBMS. The DBMS/KBMS can

then apply optimization techniques to generate an efficient processing strategy.

Finally, the query is executed to obtain the desired results. It is the third step

of this multi-phased process, i.e. query optimization, that shall be examined in

this chapter.

Ovezview of Que, O-timization Techniqes

The introduction of non-procedural query languages have made queries

easier to formulate and more user-friendly. In doing so, the languages have

alleviated the user from efficiency concerns, such as the selection of the access

21
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method and the order to perform the primitive operations. The user can

concentrate on modeling the real world application and state what he/she wants

from the database rather than describing how data should be obtained. This

concept is called data independence; meaning, the end user is free from the

internal and physical data storage details and can design the system that is

conceptually appropriate for the application. Codd's introduction of the

relational data model allowed data independence to be fully realized [COD70].

While data independence and non-procedural query languages make a system

more user-friendly, it places the burden of achieving efficiency within the internal

processing of the DBMS. The distinction between the logical and physical

representations of the database has forced what was once the responsibility of

the application programmer to become the responsibility of the DBMS/KBMS.

Query optimization is a broad field of study within DBMS/KBMS systems

that examines methods to make query execution as efficient as possible. The

goal of query optimization is to translate a user-submitted query into an efficient

query evaluation plan (QEP). A QEP is an executable representation of how a

query is to be efficiently processed as to return the requested results.

Frequently, there are many ways to process a query to produce the correct

results. The query optimizer would generate multiple QEPs from which the

most efficient plan is selected for execution. This methodology brings up two

important points.
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First, the KBMS!DBMS must have a selection criteria to choose from the

multiple QEPs generated. The selection criteria is based on costs incurred in

processing a query. In general, the cost may include secondary storage access

cost, computational cost, cost of physical storage (main memory and secondary

storage), and communication cost. The costs are not independent from each

other, as they are often determined by some related factors. Specifically in the

processing of a query, factors such as the amount of data being processed, the

organization of the data, the order of operations, and knowledge about the data

itself can greatly effect the above costs. Query optimization, then, muat examine

such factors and streamline their effect. However, since query optimization is in

itself additional processing, the cost of the optimization techniques must be

significantly less than the saving that will be realized by performing the

optimization. In short, a cost-benefit analysis of optimization methodologies

must be conducted. Such an analysis is outside the scope of this thesis.

The second point of query optimization generating multiple QEPs is that

"optimality" is most often an unreachable goal. The reason for this shortcoming

is two-fold. Firstly, if every possible QEP is generated for a query, then the cost

of optimization can be much greater than the savings incurred in doing the

optimization. It is computationally intractable to do such an exhaustive

generation and search for optimality [FRE87]. The generation of QEPs must

therefore be focused on those plans that offer the greatest potential for saving
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query processing time and require only minimal computational time to generate'.

Secondly, no existing system implements all aspects of optimization, nor is it

possible to since some techniques are. alternatives to each other. A few of the

techniques include rule-based, dynamic, multiple query, conventional (or

syntactic), and semantic optimization. These means are explained below:

(1) Rule Based Query Optimization [FE871. In rule based query optimization,

rules define how to derive different QEPS and restrict the number of QEPs

generated for a query. Many experimental/research systems employ heuristic

rules to guide the translation process of a query into QEPs that have good

optimization potential. Heuristics are necessary since finding the optimal QEP is

intractable (as already discussed). Rules commonly used in optimization pertain

to access methods, ordering of operations, predicate distribution, join strategies,

and use of indexes.

(2) Dynamic Ouery Optimization [GOER9]. While most queries are optimized

at compile time, dynamic query optimization occurs as a query is being executed.

Optimization at compile time requires estimations on variable values, available

resources, size of intermediate results, and the existence of access paths.

Dynamic optimization, however, can use current parameters of these variables to

decide on appropriate strategies. Dynamic optimization can also be used to

'Query optimization is a misnomer. It really means query amelioration rather that
optimization, since a significant improvement, not optimality, is understood to be the
underlying and achievable goal.

t i i i i i i_ _ _ _ _ _ _ _ _ ti I
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"learn" from past performance. As optimization procedures choose a strategy,

statistics can be kept on how the choice fared; that is, how much savings is

gained compared to the cost incurred to achieve those savings. The statistics

can then be used in future optimization decisions.

(3) Multiple Query Optimization [CHA851. Queries are often envisioned as

single entity requests for information. However, it is quite likely that a series of

queries run consecutively are inter-related and often perform the same

operations and request for much the same information. Thus, the intermediate

results of one query may be useful to a following query. Combining the

evaluation of queries with common sub-expressions can be beneficial and time-

saving. Multiple query optimization attempts to optimize groups of queries to

avoid evaluating common sub-expressions more than once. In short, multiple

query optimization aims to reduce duplicated effort.

Finally, conventional query optimization and semantic optimization are

discussed in detail in the next sections, as they are two more promising and

popular techniques. Keep in mind that no system implements all five

techniques, and likewise, few systems employ only one aspect. Most systems

employ a two or three faceted optimization technique, such as a combination of

rule-based, conventional, and semantic optimization.
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Conventional Query Optimization

Conventional query optimization, also called syntactical query

optimization, logically transforms a query into multiple QEPs, relying on the

operator properties and storage details to perform the transformations. Most

often, relational calculus is the underlying mathematical formalism to logically

generate the QEPs. First, the query is converted into first order predicate

calculus, then QEPs are generated through algebraic transformations, and finally,

the "cheapest" QEP is executed. The algebraic transformations used to generate

the logically equivalent QEPs are guided by heuristic rules that consider existing

access paths, data structures, and algorithmic efficiencies. The heuristic rules,

or "rules of thumb," undt. ake these considerations to perform optimization.

In considering access paths and data structures, conventional optimization

must compare the type of scan being performed to the available accesses and

data structures, including such items as indexes, B-trees, hash tables, sorted data

files, etc. Obviously if a full scan of a file is being performed, the alternative

access paths listed offer little savings. However, data specific searches can take
much advantage of the effict acces path an iA data

Pa.. . 1 ,,, ,,oa n d s e c a s tr -u c t u r e s . G o o d

conventional optimization may track access frequencies and types of data scans

as to determine if new access plans/data structures are warranted. It will then

suggest to the database administrator that an alternative is needed or will

automatically introduce the alternative in a self-adaptive manner.

______
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Typically, there are several efficiencies considered by conventional query

optimization. Most of the consideration is focused on the join operator since

the join is recognized as a frequent and the most expensive operation. The

multitude of join algorithms [SU88b], including nested-loop join, merge join, hash

join, and semi-join, indicates the large amount of study devoted to this operation

and its cost of computation. The selection of an efficient join algorithm not only

depends on the amount of data being joined, the data structures, and the

efficient access paths available, but also on the hardware configuration of the

system on which the DBMS/KBMS is implemented [SU88b]. Conventional

query optimization may also consider low level details, such as storage r.ethods

like data buffering and clustering, to introduce additional data access efficiency.

Finally, because of the complexity and intractability of query optimization,

conventional optimization relies on heuristic rules to successfully limit the scope

of its processing. The rules perform modifications based on operators of the

query language. That is to say, the rules do not consider knowledge about data

domains and relationships, but rather focus on heuristic guidelines derived from
4,,LaI -J'f 1 ..... .. .

statil data kept on query laniguage operators and their probabilities. T'he

rules pertain to the following strategies:

(1) Scanning strategy. Heuristic rules can consider access methods for particular

data, choosing a strategy based on the amount of data being accessed, physical
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representation of the data, and statistical information on the distribution of

attribute values.

(2) Join stratey. Heuristic rules can choose join algorithms, access paths to

joining data, order in which join is performed, and the outer and inner data

groups of the join. Rules may also indicate when a join is not necessary and

can be eliminated.

(3) Ordering of operations and early application of data reduction operations.

Heuristic rules determine when to apply restriction and projection operations so

as to move them as early as possible in processing. Early application of these

operations will reduce intermediate data size. Rules can also determine if

distributing predicates among all involved data is possible, again to reduce the

working data size. Pushing down predicates prior to join operations in order to

reduce the amount of joined data is also a rule that is frequently applied.

Finally, rules may also detect null answer query selections.

In summary, conventional query optimization examines access paths, data

structures, and algorithm efficiencies to perform algebraic transformations of a

user-submitted query into a multitude of QEPs with the guidance of heuristic

rules. It is therefore characterized by its reliance on syntactical information and

implementation details to generate QEPs.

__ _ _ _ _ _ __ _ _ _ _ _ _
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Semantic Query Optimization

Semantic query optimization is different from conventional in that it uses

semantic knowledge about data to generate QEPs and improve query execution.

Semantic query optimization is the process of applying a set of semantic query

transformations that result in a set of semantically equivalent queries and

choosing the one with lowest execution cost [SIE8]. Semantically equivalent

queries produce the same results when applied against a valid database state,

even though the queries may be markedly different. Semantic equivalence is

weaker than the notion of logical equivalence. A set of logically equivalent

queries are contained in the set of semantically equivalent queries for any query

and database. Note that conventional query optimization is solely concerned

with generating logically equivalent QEPs. Semantic query optimization,

however, relies on data relationships, domains of data instances, and database

state constraints to perform query transformations. Such information is readily

available in a knowledge base.

A Knowledge Base Management System (KBMS) is an extension of the

traditiona Database Management System (DBMS). It not only stores

elementary facts (the actual data) but also manages the general laws pertaining

to those elementary facts. The general laws in a KBMS govern operations

against the elementary facts to ensure the variable types are not violated, that

user-specified rules concerning the data and data relationships are upheld, and
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that the requested operations are valid and permitted. The elementary facts of

a KBMS form the so-called extensional database (EDB). In contrast, the meta-

data and general laws of a KBMS are called the Intensional Database (IDB).

Note that while the EDB is very dynamic, the IDB is fairly static. The IDB is

the conceptual definition of the knowledge base. It changes only when the

semantics of the application being modeled change. The knowledge in the IDB

is used in conjunction with query processing and optimization. It is compiled

inio an internal format for use by a query optimizer prior to processing any

query.

The IDB is a rich source of semantic knowledge that is useful for

producing semantically equivalent queries. Specifically, the knowledge rules

specified in the IDB that are defined to maintain a valid knowledge base state

or to derive new information serve quite well to improve query processing. The

knowledge within a rule can transform a query by the addition or deletion of

constraints to the query or by the replacement of requested extensional data of

query with derived data. The transformation set is the set of all rules that can

be used to alter the query. Obviously, a knowledge base with many rules can

lead to larger transformation sets, which in turn, cause higher semantic

optimization cost. The generation of the transformation set must therefore be

guided by heuristics to limit QEP generation to meaningful and profitable plans.

__ _ _ _ _
Il
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The KBMS must employ control strategies to avoid generating a large number

of semantically equivalent queries in an exhaustive manner.

In order to use knowledge rules in query processing, a user-submitted

query and the rules must have comparable formats; that is, the system must be

able to integrate a rule's contents with the constraints specified in a query.

Most KBMSs use the relational data model as their means for database

definition. Outside of the structural specification of a database, the user must

specify rules and operations for the defined database. The query language is

specifically designed for the relational data model. The common underlying

formalism for relational query languages and their knowledge rules is first order

theory and predicate calculus. Through this formalism, the semantics of rules

are integrated with queries to generate semantically equivalent queries.

Given a common underlying formalism, semantic query optimization

becomes a two step process: semantic compilation and semantic query

transformation [CHA85]. Semantic compilation is the process of converting a

knowledge rule into an internal representation that is useful to the KBMS. For

the relational-data-model-based KBMSs, the transformation set for any given

query must first be identified and then the rules in the set must be converted

into the internal representation. When a query is compiled or translated, it

must also undergo this transformation. This internal representation implements

first order theory and predicate calculus. Semantic query transformation, the

I
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next step in semantic optimization, is the integration of integrity constraints and

deductive rules with a query in order to generate a set of QEPs that are

projected to be more efficient than the original user-submitted query. Again,

heuristic procedures must guide this step of the optimization process to ensure

that the transformations will be profitable (more efficient and not difficult or too

costly to derive).

In OSAM*, the structure of the KBMS is different than in the relational-

data-modeled KBMSs. The EDB is the materialization of objects in object

classes and their associations with other objects. The IDB con&its of the

structural relationships among object classes, the methods (or operations), and

knowledge rules (deductive or constraint rules) associated with the classes.

Integrity constraint rules can be implicitly and structurally represented by key-

words in the S-diagram or explicitly defined by a knowledge rule definition

language. In order to integrate knowledge rules and a query in OSAM*, the

rules and user-submitted query must have comparable contexts; that is, the

context of the rules must be akin to the portion of the data base referenced in

the query. Unlike the relational-data-model-bsed K.BMSs, the transformation

set in OSAM* needs not be sought. Knowledge rules are defined explicitly

within their object classes and therefore directly associated to the -)bject classes

being reference in a query. The rules simply need to be compiled into their

internal formats.

4_
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As outlined in chapter two, OSAM* is a much more powerful modeling

tool than the relational data model. It not only defines the structural properties

of object classes which include several system-defined association types, but also

captures the behavioral properties in terms of operations and knowledge rules.

Its query language (OQL) therefore focuses on patterns of object associations.

The underlying formalism for OQL is the association algebra [GUO89].

Association algebra serves well as a common underlying formalism for

representing queries and knowledge rules for a KBMS based on OSAM*, just as

first order theory and predicate calculus does for the reiational-data-modeled

KBMSs.

The semantic query transformation step aims to alter a query in lieu of

semantic information. Frequently, alterations are either semantic expansion,

semantic reduction, or semantic replacement [SHE87]. Semantic expansion is

the addition of a new restriction implied by the combination of a query and

integrity constraint. Specifically, a rule whose antecedent is satisfied by

constraints specified in the queiy can incorporate its consequent as another

restriction to the query, provided this transformation is deemed profitable and

the restriction is not already present in the query. As semantic query

transformations are being performed, it is advisable to attempt early detection of

contradictions in restrictions, as they immediately imply a null answer to a query.

Semantic reduction aims to detect redundant restrictions. Specifically, if the
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constraints specified in a query imply the antecedent of a rule and the rule's

consequent is implied by a restriction already present in the query, then the

restriction is redundant and may be removed from the query, provided that the

removal does not leave an empty context and that it is profitable. Semantic

replacement is the exchange of derived data from a deductive rule for

extensional data requested in the query. The amount of derived data must be

less than the extensional data and must be materialized prior to query

processing. Specific examples of semantic query optimization in OSAM* are

detailed in Chapter 5.

In summary, the goal of semantic query optimization is the generation of

semantically equivalent and more efficient QEPs. The integrity constraints and

deductive rules of an intensional database encapsulate knowledge useful for this

transformation purpose. In order to use such knowledge, however, the queries

and rules must have a common underlying formal basis that will serve to

integrate the two. Semantic compilation converts rules into an internal

representation. The rules and a query are then integrated in semantic query

transformation step to generate QEPs projected to be more efficient than the

original query.

As a final note on query optimization, very seldom is a single

optimization technique employed, as already mentioned. An example of an

integration of techniques is the combination of rule based, semantic, and
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conventional query optimization aspects. Thus, query optimization would consist

of first searching for semantically equivalent queries (semantic compilation and

query transformation), guided by a set of heuristic rules representing query

processing expertise and costing information. Each semantically equivalent

candidate query would then employ conventional optimization techniques

(syntactic transformations) to further introduce lower level QEPs. As such, the

number of candidate QEPs can grow exponentially if a good search control is

not implemented in the KBMS. Each of the techniques must interact with the

others in order to guide the whole process towards profitable transformations.

The importance of search control cannot be overlooked when devising an overall

optimization strategy.

In conclusion, the separation of the physical database from the conceptual

database has brought forth ease in designing and using database systems.

However, it has shifted the responsibility of efficient query processing to the

DBMS/KBMS. To uphold this responsibility, the DBMS/KBMS may employ

rule-based, dynamic, multiple-query, conventional, and semantic query

optimization techniques. Cn-ent.1onal. Ad semantic query optimization have

been discussed in detail since they represent the most promising and popular

aspects of query optimization.
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RULE TYPES AND EXAMPLES

There are two main types of rules in a Knowledge Base Management

System (KBMS): deductive rules and integrity constraint rules. The purpose of

the following sections is to define each rule type, to give examples of such rules,

and to explain each type's potential to help optimize queries. Within the next

sections, each type is further partitioned according to a rule's functionality within

their type.

It should be noted that none of the rule examples given specify a trigger

condition or a corrective action. Their exclusion is intentional, since the rule

body (IF-THEN portion of the rule) contains the knowledge useful for semantic

query optimization.

Deductive Rules

A deductive rle is defined as follows: A deductive rule is a knowledge

rule whose application against a knowledge base results in the generation of

information that is not explicitly stored in the knowledge base. Integrity

constraint rules, on the other hand, ensure the semantic correctness and

consistency of the data that is explicitly stored in the knowledge base. Integrity

36
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constraint rules can ensure semantic correctness by either representing valid

states in the knowledge base or by performing operations to maintain valid

states. Constraint rules are discussed in the next section. In OSAM*, a

deductive rule can be further categorized by what the rule deduces. The rule

may deduce a sub-database, attributes, or a combination of sub-database and

attributes. The following paragraphs refine these categories. The university

model in Figure 1 is the S-diagram used for deductive rule examples.

Deduction of Sub-database

Rules of this category derive a sub-database through implied relationships

between classes or through specific restriction on an existing class(es). These

rules specify the name and attributes of the resultant sub-database in their

consequent. A rule substantiating an implied relationship derives associations

not explicitly modelled in the S-diagram and projects the desired attributes for

the resultant sub-database. Rule 1 is a deductive rule of this type.

Rule 1:
IF Teacher * Section * Course
THEN Teacher-Course(Teacher[ss#,name],Course[c#,title]).

Explanation: Because a teacher teaches a section of a particular course,

the teacher is indirectly associated with the course. Supposing we want to know

what courses a teacher instructs but are not interested in the sections of such

courses, application of the above rule creates a sub-database containing teacher
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instances which are directly associated with course instances. The class Sections

will not be contained in the resultant sub-database.

A deductive rule can also generate a sub-database via a restriction on the

instances of an existing class(es). Rule 2 is a rule of this type:

Rule 2:
IF Student[gpa > 3.5]
THEN Honor-Student(Student).

Explanation: The above rule does not deduce any associations but rather

creates a sub-database called Honor-Student based on the restriction on an

already defined class (Student).

Deduction of Attributes

Rules in this category represent the derivation of attribute values that are

not explicitly stored in the knowledge base. The attribute values may be

dependent on other attribute instances, as in Rule 3, or may be the

computational result of operations on instances in the knowledge base, as in

Rule 4:

Rule 3:
IF Faculty[degree = = "PhD"]
THEN title := professor ELSE title := "teacher".

Rule 4:
IF Student * Transcript * Course
THEN gpa := SUM (Grade by Student)
DIV COUNT (Course by Student).
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Explanation: For Rule 3, it is assumed that there is a derived attribute

called "title" in the Faculty class. The attribute is directly dependent on a

faculty member's degree, where such a member should be titled "professor" if

he/she has a PhD, otherwise titled "teacher." Rule 4 illustrates how gpa could

be a derived attribute that is calculated from a student's grades, assuming grades

are stored numerically instead of alphabetically. The rule employs SUM, DIV,

and COUNT operations to accumulate a student's grades and then divide them

by the number of courses he/she has taken.

Combination of Sub-database and Attributes

Finally, a deductive rule can derive a combination of sub-database and

attributes.

Rule 5:
IF Facultytdegree == "PhD"] * Section * Course
THEN PhD-Faculty-Course (Faculty.[ss#,name,degree,

title := "professor"], Course[c#,title]).

Explanation: The above rule combines the derivation of associations and

new attributes such that the resultant sub-database contains faculty members

with PhDs and the courses they instruct. Note that the members are

appropriately titled as professors and that the new sub-database no longer

references Faculty's relationship with sections to get to the courses they teach.

Deductive Rules and Ouery Optimization

In OSAM*, deductive rules are not explicitly represented in an S-diagram

but rather are user-specified using a Knowledge Base Definition Language
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(KBDL) and stored in the data dictionary with their appropriate classes.

Additionally, a rule is defined to be data dependent if satisfaction of its

antecedent requires the value of an object (i.e., the descriptive data or the

associations of an object) to be accessed. For example, Rules 1 through 5 are

data dependent. However, if Rule 2's antecedent did not contain the attribute

restriction (gpa > 3.5), then it would be data independent. Given this

definition, deductive rules will usually be data dependent. The concern of de -

dependence is one of efficiency to be considered at implementation. From a

conceptual viewpoint, deductive rules are generators of new information. The

sub-databases they generate must be fully operable databases in the sense that

they can be queried, further deduced by other dcductive rules, and constrained

by integrity constraint rules.

Deductive rules are important to query optimization when a query or an

integrity constraint rule references the derived data. The knowledge of how the

data is derived, which is contained in the rule, may serve to optimize a query

directly or may work in conjunction with an integrity constraint. For example, if
a query references some derived data, yet the deductive rule that derives the

data indicates that the query is not satisfiable, then obviously the operations to

derive the data need not be performed. A null answer can be immediately

returned. Rule 5 could be such a case. Supposing a query requests a list of

professors that do not have their PhDs. The PhD-Faculty-Course sub-database
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does not need to be derived, since the rule ensures that there would never be

an instance in the knowledge base where a teacher titled professor does not

have a PhD. A null answer could be quickly returned. An example of where

an integrity constraint rule and a deductive rule may work in conjunction is as

follows: If an integrity constraint rule references (in its antecedent or

consequent) a sub-database or attribute generated by a deductive rule, that

deductive rule must be considered in query optimization. The following integrity

rule references the resultant sub-database of Rule 5:

Rule 6:
IF PhD-Faculty-Course
THEN NOT-EXIST (PhD-Faculty-Course * Teaching-Assistant).

Explanation: This integrity rule implies that a teacher with a PhD (alias,

professor) is never a teaching assistant (TA). As such, the deductive rule must

also be considered in query optimization as it contains knowledge of how the

data is derived. Specifically, if a query requests for professors who are TAs, the

integrity constraint rule combined with the knowledge in the deductive rule

(Rule 5) can be used to immediately answer the query with a null response,

without ha-ving to access the extensional database.

Finally, the derived data specified in a deductive rule can also be used to

optimize a query. Specifically, the derived data may replace extensional data

requested in a query. The derived data must be of smaller size and must be

materialized prior to the processing of the query in order for this replacement to

I I
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be more efficient than processing the original query (i.e., accessing and

extracting the requested extensional data). This transformation (i.e., Semantic

Replacement) is demonstrated in Chapter 5.

Thus, query optimization with deductive rules may serve to forgo the

operations necessary derive information or may serve to replace requested

extensional data. When the operations to derive data can be eliminated, the

savings may be significant if the amount of data being derived is large or if the

operations to derive the data are complex. Likewise, when derived data can

replace a request for extensional data, the savings may be significant if the

amount of derived data is significantly less than the amount of requested

extensional data and is materialized prior to query processing. The amount of

savings versus the cost of performing the optimization step must be considered

when generating optimization plans. This topic is discussed in Chapter 6.

As a final note on deductive rules and query optimization, an efficiency

measure that can be implemented is the a priori generation of the sub-databases

and attribute values derived from data independent deductive rules. When a

query or another rule references the resultant sub-database or attributes, the

information will have already been derived and available. Data dependent

deductive rules cannot implement this efficiency measure because of their need

for object instance values. Given this efficiency step, only data-dependent
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deductive rules need to be considered in run-time query optimization; data

independent rules can be compiled prior to query processing.

Intearity Constraint Rules

An integrity constraint (IC) rule is a knowledge rule designed to ensure

semantic correctness and consistency of a knowledge base. Integrity constraints

are applied when an operation against the knowledge base (i.e., a trigger

condition) can potentially violate the knowledge base's semantic correctness and

consistency. In OSAM*, integrity rules are specified in a schema in two ways.

Frequently used integrity rules are specified by key words in the structural

portion of an object class definition (e.g., an attribute is a key or the mapping

between two classes is many-to-many). This method of rule specification

simplifies the user's task since a set of implicit rules can be named by key words

and can be structurally shown in an S-diagram. Other constraint rules can be

explicitly defined in the constraint specification language by the rule portion of

an object class definition.

IC Rules Represented in the OSAM* S-Diagram

The following paragraphs itemize, the possible integrity constraints that

can be specified in an S-diagram. These constraints can be mapped directly into

integrity constraint rules. Examples of such mapping and the S-diagrams used in

the examples are given. This itemization serves two functions. First, it

enumerates the association types of OSAM* and the constraints within each
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type. Second, it serves to familiarize the reader with the S-diagram and how the

semantics of the diagram can be represented by integrity constraint rules.

Within each association type, a definition for the type is given and the

constraints within the type axe listed. Following each constraint within a type, a

rule example, the pertinent S-diagram figure number, and the meaning of the

rule are given if such a rule can be constructed for that type of constraint.

Generalization

The generalization association type is used to indicate a super-class/sub-

class relationship between two object classes, much like that of the object-

oriented paradigm with a super-set/subset constraint between the super-class and

sub-class. This relationship (i.e., "is-a" relationship) indicates an automatic

inheritance of attributes, operations, and rules of the super-class to the

constituent sub-classes. Figures 4 and 5 contain generalization association types.

For example in Figure 4, FemaleEmp, MaleEmp, Engineer, and SupportEmp

are sub-classes of the Employee super-class. Constraints within the

generalization association type are:

(1) Super-class/Sub-class Constraint in Figure 4.

Rule 7:
IF Engineer THEN Employee * Engineer.

Explanation: The Engineer class is a sub-class of the Employee super-

class. As such, an engineer must also be an employee (i.e., there must be an

association between every engineer and employee).

__ _ _ _ _ __ _ ___



45

(2) Set eXclusion (SX) in Figure 4.

Rule 8:
IF Employee * Engineer THEN Employee I SupportEmp.

Rule 9:
IF Employee * SupportEmp THEN Employee I Engineer.

Explanation: Either of these two rules will suffice to indicate that an

employee cannot be both an Engineer and a SupportEmp. Specifically, the first

rule finds employees that are engineers and then checks to ensure that they are

not also supporting employees. The second rule is simply the reversal of

Engineer and SupportEmp classes. Note that this constraint could also be

specified as follows:

Rule 10:
NOT-EXIST (Employee * AND(Engineer, SupportEmp)).

Explanation: This rule explicitly states that an employee must not be

specified as both an engineer and supporting employee.

(2) Set Intersection (SI -- default).

(3) Set Equality (SE): different perspective of the same object, Figure 5.

Rule 11:
IF Part * Geometric THEN Part * Machining.

Rule 12:
IF Part * Machining THEN Part Geometric.

Explanation: Every part that is associated with a geometric part must also

be associated with a machining part and vice versa. Note that both Rules 11 an

12 are necessary to ensure that the set equality constraint holds. Neither by
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itself fully guarantees semantic correctness. It will become apparent in Chapter

5, Case Study 4 that single semantic properties should be written as a single rule

to be more beneficial to semantic query optimization. As such, rules 11 and 12

can be more correctly written as follows:

Rule 13:
IF (Part * OR(Geometric, Machining))
THEN (Part * AND(Geometric, Machining)).

Explanation: This rule is closer to the exact semantic meaning of set

equality. It implies that if a part has either geometric information or machining

information, then it must have both types of information.

(4) Total Specialization (TS): super-class is the union of subclass instances as

shown in Figure 5.

Rule 14:
IF Container THEN Container * OR(Device, Tray).

Explanation: Every Container must be associated with a Device or Tray.

Again, this rule may be written in a non-IF/THEN format:

Rule 15:
NOT-EXIST (Container I OR(Device, Tray)).

(5) Partial Specialization (defalt- o ' - mW naf.n. of a super-class does rot

belong to the subclass(es).

(6) Specialization Condition as shown in Figure 4.

Rule 16:
IF Employee[Sex = "P'] THEN Employee * FemaleEmp.

Rule 17:
IF Employee[Sex "M"] THEN Employee * MaleEmp.

_ _ _ _ i i i , i = ' i I ] i - i_ _i I_ I I ii i
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Explanation: An Employee specified as having sex equal "F'is a

FemaleEmp; sex equal "M" is a MaleEmp.

Aggregation

Aggregation association type models the semantics of "has-a" relationship

between two classes. The class being defined has an attribute whose value is

drawn from a constituent class, which may be either a domain class or an entity

class. The objects of the constituent class form the domain of the attribute. In

general, an entity class has a number of attributes defined over a number of

constituent classes. One, or a combination of attributes, can uniquely identify

the objects of the defined class. This unique identity serves as the "user-defined"

key. This key is separate and distinct from the system-defined and maintained

object identification (OID). OlDs are transparent and inaccessible to the user.

For example, in Figure 6, the attribute XId defined over domain class X2 is

pictorially identified as the user-defined key by the two cross bars on its

association to class X2. Likewise, attributes Ylattr and Y2_attr defined over

classes YI and Y2 respectively, form a composite key for ClassY. This key is

pictorially indicated by the two cross-barred arch spanning the attributes'

associations.

(1) User-defined key in Figure 6.

Rule 18:
MAPPING (ClassX, X2, 1:1).
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Explanation: Assume "MAPPING" iL a function that takes a ciass, a class

name, and a mapping specification (one-to-one in this case) as input and ensures

that the instances within the specified classes meet the mapping constraint. This

function can be used to enforce the fact that X.Id attribute is a user-defined

key of ClassX. User-defined keys, however, are a special system function that is

handled internally by the KBMS. Therefore the KBMS ensures that the key

attribute values are unique. The rule for this type of constraint does not have

to be explicitly defined by the user.

(2) Composite key in Figure 6. See user-defined key above.

(3) Total Participation (TP): every object in a constituent class must be a

participant in the defined class. Assume the class Section totally participates in

the class Course in Figure 1.

Rule 19:
IF Section THEN Section * Course.

Explanation: All Sections must be assigned to (associated with) a Course.

(4) Non-Null Constraint (default) in Figure 6.

Rule 20:
z3_Attr ! NULL

Explanation: The value of the z3_Attr attribute must exist; it cannot have

a null value. NULL is a system-defined value.

(5) Mapping (default is n:1): parent-to-child mapping. 1:1 mapping implies a

candidate key. Same construct as the example for user-defined key.



. , , -C . ,; - . ,

49

Interaction

Interaction association type models the semantics of stating facts or

relationships that exist between/among objects of two or more participating

classes. Each instance of an interaction association type is formed by the objects

of the participating classes. Interaction instances can take on attributes that

represent descriptive properties. Figure 7 is used as an example of this

association type. The schema in this figure indicates that suppliers interact with

parts (i.e., they supply parts) and this interaction is described by a quantity and

a date. Constraints within the interaction association type are:

(1) Total Participation (TP): every object in a constituent class must participate

in some interaction as specified in Figure 7.

Rule 21:
IF Supplier THEN Supplier * Supply.

Explanation: All suppliers must participate in supplying parts.

(2) Mapping as specified in Figure 7.

Rule 22:
IF Supplier * Supply * Part
THEN MAPPING (Supplier, Part, n : m).

Explanation: Using the same MAPPING function as discussed in the user-

defined key example in the aggregation association section, this rule states that

one suppliers can supply many parts and one part can be supplied by many

suppliers.

(3) Non-null: values that form an instance of an interaction cannot be null.
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Rule 23.
IF Supply THEN Supply * AND(Supplier, Part).

Explanation: Every case of supply must have an associate supplier and an

associated part being supplied.

(4) Defined over entity classes only.

(5) No inheritance.

Composition.

Composition association type is a construct for forming an object class

that uses the constituent classes as its members. That is, the set of objects of a

constituent class is treated as a single object in the composed class. Aggregation

associations then apply to the resulting composition to define the descriptive

data of the objects in the composed class. For example in Figure 2, the

PartInfo class is a composition of MechPart and ElectPart; that is, the dynamic

set of objects in MechPart is treated as an object of PartInfo and the dynamic

set of objects in ElectPart is the other object of PartInfo. Manager and

Sub otalCost are so-called "class attributes." Constraints within the composition

association type are:

(1) Distinct object classes: constituent classes have to be distinct and contain

dynamic sets of objects.

(2) Constituent classes must be E-classes.

(3) No inheritance.

I I I I I I I 1 I I I I I I II



i •i 51

Cross-p roduct

Cross-product association type can be interpreted as the "grouped by"

semantics. That is, the cross-product of objects in the constituent classes form

the names of categories of objects. These categories can have summary

attributes. Figure 8 s an example on a cross-product association type. The

objects of Population Group class are named by a cross-product of State,

County, Age, and Sex objects. Each object in Population-Group class represents

a category of objects which have summary attributes Count and AvgSalary. This

association type is a special case of an aggregation association tp. It is useful

for modeling statistical databases. Constraints within the cross-product

association type are:

(1) Constituent classes must be domain classes.

(2) All attributes form a composite key (uniqueness implied); same as user-

defined key example of the aggregation association type.

(3) Non-null constraint, None of the attributes can have null values, which is

the same construct as non-null constraint of the aggregation association type.

(4) Total Participation (TP -- default); same construct as with aggregation and

interaction types.

Further Constraints

Below are general constraints relating to an S-diagram as a whole:
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(1) Interaction, composition, and cross-product association types are mutually

exclusive within a given class.

(2) Every entity class that is defined by an aggregation association with other

classes without association types must have (or inherit) a user-specified key.

The constraints discussed above are those constraints that are implicitly or

explicitly specified in the structural definition of a knowledge base. They are

frequent constraints that can be more conveniently specified by users in the

structural declaration of a knowledge base. Having enumerated the integrity

constraint rules from the S-diagram, it is appropriate to classify such rules and

discuss their role in query optimization.

Intearitv Constraint Rule Classification

In many current studies, integrity constraint rules are classified according

to their data dependence/independence [RAS88]. While such a classification does

indicate when such rules can be considered for query optimization (a priori or

run-time), it is not a direct indication of a rule's potential to optimize a query.

In the following section, an alternative classification scheme is presented using

the terminology of Shenoy, Ozsoyoglh, and Siegel [SHE87] and [SDE88]. This

scheme distinguishes transition integrity constraint rules, which perform

operations to maintain a knowledge base's semantic correctness, from state

integrity rules, which specify semantically valid/invalid knowledge base states. As

will be shown later, state rules, are more directly beneficial to query optimization
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than transition rules. However, these two categories are not incompatible in

that both meet the integrity constraint rule definition, and rules from one

category can be directly converted to the other. Though Shenoy and Ozsoyoglu

[SHE87] further classifies state integrity constraints, the finer distinction is not

necessary in OSAM*'s context of query optimization using rules.

Transition Integrit Constraint Rules

As stated, transition integrity constraint rules maintain a knowledge

base's semantic correctness by performing operations when triggered by other

operations or by a knowledge base state. The operations that the rule performs

are the actions that will maintain the knowledge base's integrity. Consider again

the S-diagram of the university model in Figure 1. Assume that our knowledge

base should ensure that every teacher teaches a section. Though not labelled as

such in the diagram, this constraint implies total participation of the constituent

class Teacher in the Section class. Rule 24 is a transition integrity constraint

rule to repregent this knowledge.

Rule 24:
IF Teacher ! Section
THEN DELETE Teacher.

Explanation: This rule implies that if a teacher is found that does not

teach a section, then the teacher should be deleted from the knowledge base.

While the above rule is great for automatic integrity maintenance, its

semantics are indirect. The ambiguity is because of the consequent action. It

1-11 i ]= T~i i IT -i ii ii -J i i i I
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does not define a valid or invalid state but rather performs an operation (the

deletion of teacher objects not associated with section objects). The intention of

the consequent operation must therefore be deduced. In this case, the rule is

intended to never allow a teacher to not teach a section. While many integrity

constraint rules are better defined as state rules, there are a few cases in which

the semantics of the application fit the transition type of integrity rules better.

A case in point is the set equality constraint shown in Figure 5 of the

Geometric and Machiining classes. The set equality constraint specifies that

these two classes represent two different perspectives of the same set of objects.

Transition integrity rules keep the two classes consistent in an automatic and

natural manner. When an object is altered in one class, the rule will be

triggered and do the same changes to the other class. An transition rule will

keep the classes equal without user interaction.

Another example where an transition rule is applicable is with the

interaction association type. If an object of an interaction association is deleted

then the other objects of the iteration should be deleted as well. For example,

in the university schema again, if a student is deleted from the knowledge 1-se

then all the associated transcript instances should be deleted as well, thus

maintaining referential integrity. A transition rule can perform this operation

automatically.

i____ii____i__i______ _iiii
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State Integrity Constraint Rules

As stated above, state integrity constraint rules explicitly specify valid and

invalid knowledge base states. When triggered, the state rule checks to

determine if an operation will or has violated the knowledge base's correctness;

in which case, the operation is rejected, undone, or the user is informed of the

violation. Two example state rules that are counterparts to Rule 24 are:

Rule 25:
IF Teacher THEN Teacher * Section.

Rule 26:

IF Teacher I Section THEN NOTEXIST Teacher.

Explanation: Rule 25 signifies that there must be an association between

a teacher instance and a section instance. Rule 26 states that there is never a

teacher who does not teach a section. Note that both rules do not perform any

operation, but rather represent the valid and necessary associations of the

knowledge base. They also allow a section to exist without a teacher, which is

the original, intended meaning in this case.

The reason for distinguishing transition and state integrity constraint rules

is two-fold. The first reason being that state rules should represent the majority

of a knowledge base's integrity constraints. State rules explicitly define the

semantics intended for the rules. The semantics of transition rules' consequent

operation, however, are not directly defined. While the above integrity

constraint rules that are mapped from the S-diagram examples could be
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designated as transition rules, their semantics are better represented by the given

state rules. The second reason for the transition/state integrity rule

categorization is to illustrate how state rules are directly usable to query

optimization, while the semantics of transition rules must be deduced before they

can be used in optimization. Suppose a simple query is entered to request those

teachers who do not teach a section. While Rules 24 through 26 are intended

to have the same meaning, state Rules 25 and 26 logically indicate that no such

teacher exists. Rule 24, however, is not so direct. One must first deduce that

since teachers who do not teach a section have been automatically deleted, there

will not be an instance of a teacher not teaching a section in the knowledge

base. In making such a deduction, one is conceptually converting the transition

rule into a state rule; which in turn, answers the query. In short, a KBMS

needs such a mechanism if it is to make full use of transition as well as state

integrity constraint rules in query optimization. Because such a conversion will

take additional time, the majority of the integrity constraints should be state

rules.

In sumina-y, Figure, 9 is a hicrarchial diagram of the k Iowledge rUle

categories. The distinction between the types makes it apparent that state

integrity constraint rules offer the highest query optimization potential; that is,

they are most likely to be beneficial in improving query processing. Deductive

rules have variable savings potential (the savings may be great or insignificant
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depending on the particular amount of data being deduced) and transition

integrity rules require extra interpretation to extract their exact semantics.

Therefore, these last two rule types are not as desirable to query optimization.

Thus, the next chapter focuses on state integrity constraint rules and the exact

methodology to use them in query optimization.
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CHAPTER 5

SEMANTIC QUERY OPTIMIZATION IN OSAM*

After an intensive study of semantic query optimization in OSAM*'s

KBMS, a set of transformation rules to perform optimization has been

developed. This chapter serves two purposes. Firstly, it defines the

transformations rules with examples. Secondly, it serves to exemplify the

applications of these transformation rules through a series of case studies. For

each case study, a query contrived to exemplify a certain aspect of the

transformation rules is presented in its initial form. The transformation rules are

then applied to generate alternative query execution plans. For each

transformation step, the transformation rule applied and the constraint rule used

are identified. The case studies demonstrate the step-by-step conversion of a

query to a point where an answer can be returned or all pertinent rules have

been applied. This chapter defines and demonstrates the complete set of

transformation rules utilized to accomplish semantic query optimization in

OSAM*.

Though this chapter defines valid semantic query transformation rules, it

does not consider the criteria for a specific transformation. ThIs topic is

discussed in the iext chapter. It is sufficient to emphasize now that the

64
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alternative plans generated by the transformation rules may or may not be more

efficient than executing the query in its initial form. Along the same lines, note

that each transformation step (each tinme a rule is used to generate a different

context), an alternatively valid execution plan is created. Many of the case

studies go through several transformations before completion. For each

iteration, the alternative generated must be considered a valid plan and must be

analyzed to determine if it is more efficient than all the other plans generated

for that query. The "profitability" of a query execution plan is discussed in the

next chapter.

Transformation Rules For Semantic Query Optmizgon

This section defines the transformation rules necessary to perform

semantic query optimization in OSAM*'s KBMS. These rules are the result of a

study on employing every type of knowledge rule in the optimization process.

The use of state integrity constraint rules becomes the main focus of the study

since they are the most beneficial to the optimization process, as discussed in

Chapter 4. All sub-types of state integrity constraint rules were studied for the

development of the transformation rules. In this manner, the set of

transformation rules is believed to be complete.

Tr'ansformation Rule 1: Reduction to Binary Associations

The association patterns of a query's context expression and of a rule's

antecedent and consequent should be reduced to a series of binary associations.
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This transformation step is imperative for the definition of other transformation

rules. It allows for a conceptually simpler and clearer definition of the

remaining transformation rules by standardizing the association pattern format.

For example, (A * B * C • A * B * D) reduces to the AIntersect expression:

(A * B) - (B * C) - (A * B) * (B * D). Let's examine the validity of this

process by the example object diagram in Figure 3. Following the proper order

of precedence, the object associations that satisfy A * B * C are (albl), (btc3),

(a2b4), (b4c2), while the object associations that satisfy A * B * D are (a2b4),

(b4dl), (a4b5), (b5d2). The intersection of these patterns then is (a2b4), (b4c2),

(b4dl), as highlighted in the diagram. Alternatively, evaluate the pattern using

only binary associations. Object associations satisfying A * B are (albl), (a2b4),

(a3b2), (a4b5); satisfying B * C are (blc3), (b3cl), (b4c2); and satisfying B * D

are (b4dl), (b5d2). Next the Alntersect of (A * B) * (B * C) produces (albl),

(blc3), (a2b4), (b4c2), while (A * B) * (B * D) produces (a2b4), (b4dl), (a4b5),

(b5d2). Finally, intersecting these results produces the same answer (i.e., (a2b4),

(b4c2), (b4dl)) as what is derived from the non-binary association pattern.

The reason for reducing association patterns to binary relationships is

two-fold. First, it simplifies the definition of transformation rules. The rules are

easier to define once the patterns are standardized into binary associations. The

semantic converse rule (Transformation Rule 5) and the logical contradiction

rule (Transformation Rule 6) would be much more complicated to define if it is
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not assumed that the association patterns are a series of binary relationships.

Secondly, simplification of context expressions becomes easier. Logical

contradictions and redundancies become more apparent when the patterns are

reduced to a series of binary associations. As in the above example of (A B *

C • A * B * D), the pattern is converted to (A * B) • (B * C) * (A * B) * (B

* D). In this form it becomes apparent that the (A * B) is redundant and one

instance can be removed to simplify the expression to (A * B) - (B * C) • (B *

D). Finally, distributions may have to be performed across parenthesized sub-

expressions in order to perfoim the reduction to binary associations. The

distributive properties of all association operators are defined by Guo, Alashqur,

Lam, and Su [GU089].

Transformation Rule 2: Semantic Expansion

This rule pertains to state integrity constraint rules and is stated in

Chapter 3 as follows: If the antecedent of a rule is satisfied by the constraints

within a query's context, then the rule's consequent can be incorporated as

another restriction to the query, provided that restriction is not already present

in the query. The consequent is concatenated to the query's context with an

AIntersect operator, "° ". There are several sub-rules falling under this rule type

depending on whether the antecedent of the state integrity rule or the context of

the query have attribute restrictions within them.
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a. Semantic expansion when no attribute range is specified in the query's

context or in the constraint rule's antecedent: The association pattern of a rule's

antecedent is satisfied if that pattern is encompassed by a broader or equivalent

association pattern specified in a query's context. For example, if a rule's

antecedent is (B * C) and a query has the context of [A * B * C * D], which

equals [(A * B) • (B * C) • (C * D)], then the rule's antecedent is satisfied

and its consequent can be added as an additional restriction.

b. Semantic expansion when an attribute range is specified in the query's

context: In this case, an attribute range may or may not be specified in the

antecedent of a constraint rule. If the context of a query restricts a particular

attribute to a set (or range) of values, then a rule's antecedent must pertain to a

super-set (or greater and encompassing range) of those attribute values in order

for the rule's antecedent to be satisfied. For example, if a the context of a

query is (A[al < 5]) and a rule's antecedent is (A[al <= 7]), then the rule may

be used for semantic expansion, as its antecedent is satisfied by the query's

context.

c. Semantic expansion when an attribute range is specified in a rule's

antecedent but not in a query's context: If a constraint rule's antecedent

contains an attribute range and tiv. query's context does not contain a restriction

on the same attribute, then st "antic expansion cannot be performed. The rule's

antecedent is not necessarily satisfied. For example, if the context of a query is

_ _I_............ _I _ _ I _ _ _ _ i_. . I
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(A) and a rule's antecedent is (A[al < = 2]), then expansion using this

constraint rule caunot be done. It is quite possible that there exists object

instances in class A where attribute al is greater than 2. The rule's consequent

does not apply to those instances. In such situations, the consequent cannot be

added as an additional restriction to the context of the query.

Transformation Rule 3: Semantic Replacenent

This transformation rule is much like the semantic expansion rule

(Transformation Rule 2), except that it pertains to deductive knowledge rules.

The goal of this rule is not to expand the query with an additional restriction,

but rather to replace some or all of a query's context with the consequent of the

deductive rule (i.e., the derived data). The replacement is feasible only when

the derived sub-database is materialized prior to query processing, for it would

be highly inefficient to derive data during processing when compared with

executing the original query without data derivation. Semantic replacement is

defined as follows.

If the antecedent of a deductive rule is satisfied by the constraints within

the context of a query, then the rule's consequent can replace those -etA" ritio

that satisfy the antecedent, provided the sub-database contains the necessary

attributes to uphold the remaining attribute restrictions in the context. To

determine whether the context satisfies a rule's antecedent, use the same criteria

as that specified for semantic expansion (Transformation Rule 2, sub-rules a

t___-__
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through c). Additionally, the deductive rule must project the necessary attributes

into the resultant sub-database to uphold all attribute restrictions not replaced in

the transformation. For example, if a query's context is (A[al > 25] * B * C)

and a deductive rule is IF A * B THEN A-B(B[bl, b2]), then semantic

reduction cannot be done as the (al > 25) attribute restriction cannot be

represented in the derived A-B sub-database. The al attribute is not retained in

the sub-database A-B. If the deductive rule is IF A * B THEN A-B(A[al],

B[bl, b2]), then semantic replacement could take place to produce a query

context of (A-B[al > 25] * C).

Transformation Rule 4: Semantic Reduction

This rule pertains to state integrity constraint rules as follows: If the

constraints specified in a query's context imply the antecedent of a rule and the

rule's consequent is also implied by a restriction already present in the query,

then that restriction is redundant and may be removed, provided its removal will

not result in an empty query context. Implication of a rule's antecedent and

consequent must meet the same satisfaction requirements as those outlined in

Transformation Rule 2, su,-,,les a , ,oug, c. IThoughi these sub-rules pertain to

a rule's antecedent, they are equally valid and applicable to satisiing a rule's

consequent.

In some cases, application of semantic reduction could lead to removal of

the entire context expression from a query, since the entire context may be
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flagged as a redundant restriction. This situation arises when the entire context

of the query implies the consequent of the rule (in addition to the rule's

antecedent being satisfied by the context). Obviously, total removal of the

context is not allowed because the query must have some specification as to

what portion of the database it is to be applied against. In such cases, the

portion of thle o-.xt (i.e., the sub-expression) that satisfies the rule's

antecedent must be retained, If more than one sub-expression of the context

satisfies the rule's antecedent, then any of the satisfying sub-expressions may be

retained.

Transformation Rule 5: Semantic Converse Rules

When a user defines a state integrity constraint rule, there also exists

what is termed a "semantic converse rule." The semantic converse rule is the

complement of a state integrity constraint rule. In general, if the rule's structure

is given as IF A THEN B, then its converse is IF NOT(B) THEN NOT(A),

where A and B are the antecedent and consequent of a state integrity constraint

rule, respectively, and NOT(B) and NOT(A) represent complement association

patterns. Assuming the knowledge base is constantly in a valid state (i.e., there

exists no instances in the knowledge base that violate a state integrity constraint

rule), semantic converse rules are valid rules that can be used for semantic

query optimization; just as any other state integrity constraint rule. The validity

of this assertion is ascertained by perceiving a rule in a cause and effect manner:
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view the antecedent of a rule as the cause of an effect, where the effect is the

consequent of the rule. Then, a converse rule implies that if the effect does not

exist, then the cause of the effect cannot possibly exist.

Thus, for every state integrity constraint rule, there actually exists two

rules that can be used for optimization: the rule itself and the semantic converse

rule of that rule. The complexity of generating a semantic converse rule,

however, can be restrictively large, depending on the complexity of the

association patterns used in the integrity constraint rule. For example, it is clear

that the complements of association patterns such as (A * B) and (A[al < 6])

are (A! B) and (A[al >= 6]), respectively. For an association pattern with

more classes and attribute restrictions, however, the generation of converse rule

becomes much more complicated and lengthy. For example, the association

pattern (A * B * C * D) has a complete converse association pattern of [(A I B

* C*D) + (AIBIC*D) + (AIB!CID) + (A*BIC*D) + (A*B

ICI D) + (A * B * C ID) + (AI B * C! D)]. Specifically, if there exists a

total of n association operators and attribute equivalence operators in an

association pattern, then an expression with (2' - 1) AUnion operands will be

generated for a complete converse association pattern.

To avoid generating large converse rules, which in turn would lead to

large overheads in the optimization process, a simple methodology has been

developed to create zimpler converse rules. 'This methodology generates
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completely valid state integrity constraint rules that are constructed from a sub-

set of the total possible converse sub-expressions. This methodology limits its

scope by focusing on binary associations constructed in Transformation Rule 1.

The methodology to construct the simplified converse rules is as follows:

a. Association operators are replaced accordingly: " I"I I, of ", tU+I are

replaced by "1", "*", "+", and "-" respectively.

b. Attribute equivalence operators are replaced by their converses,

m e a n in g " I", " = ", 1< , 11 > ",, = < " a re re p la ce d b y "1 --1, = , > = , t1" < ,

"<", and ">" respectively.

c. Logical AND operators are replaced by OR operators. Logical OR

operators are replaced by AND operators.

d. Existence operators are replaced by their converses. Association

patterns consisting of a single class with no association or attribute restriction

are implied to have a default "EXIST"' operator (if it is not explicitly stated)

which should be replaced by a "NOT-EXIST' operator. Likewise,

"NOTEXIST' operators of association patterns consisting of a single class with

no association or attribute restriction should be replaced by "EXIST"' operators.

e. The rule configuration is reversed. That is, the rule's antecedent

becomes the consequent, and the rule's consequent becomes the antecedent.

Note that this methodology does not imply that the converse of the

AIntersect (.) operator is AUnion (+), nor is the OR operator the converse of
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the AND operator. Rather, the instruction to replace each with the other is

part of the strategy to limit the scope of generating full complement association

patterns. For example, the full complement expression of the association

pattern (A * B) • (B * C) is very complex and involves association operators

not introduced in this thesis. The methodology above suggests that (A ! B) +

(B ! C) is a simpler (but not complete) compliment association pattern. For

example, in Figure 3, (A * B) • (B * C) produces (albl), (blc3), (a2b4), (b4c2).

A full complement expression to this expression would identify all other patterns

that do not contain these specific associations. The expression (A I B) + (B I

C) produces a sub-set of such patterns, specifically: a5, b3 and b2, b5, c4 from

the (A I B) and (B ! C) operands, respectively. The a3 and cl objects are

missed by this simplified, complement association pattern. The validity of

replacing AUnion/Alntersect and AND/OR operators as specified thus rests on

the fact that the other association operators (i.e., the Associate/NonAssociate

operators) and the attribute equality operators are truly complemented. The

truly complemented sub-expressions are either AUnioned or Alntersected to

generate an expression that is less lengthy and complex than the full

complement expression.

In summary, the converse rules enhance semantic query optimization by

generating more state rules that can be considered for query transformations.
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The length and complexity of the converse rules is purposely limited to avoid

large overhead in query processing.

Transformation Rule 6: Context Simplification

After each semantic expansion or replacement, a query's context

expression must be checked for simplification. The context statement can be

simplified in one of several ways:

a. Logical contradiction. After a semantic expansion or replacement, a

logical contradiction may exist between an existing sub-expression in the context

and the newly added restriction. Sub-expressions of a query's context are those

portions of the association pattern that are separated by the Alntersect

operator(s). The logical contradiction may exist in an association between

classes, such as (A * B) * (A ! B), or in restrictions on an attribute, such as

(A[al > 25]) • (A[al < 15]), or ini a combination of both, such as (A[al > 25]

* B) * (A I B). To detect a logical contradiction, the restriction added t)y

se.antfic expansion/replacement must be compared with all existing sub-

expressions hi the context. The restriction contradicts a sub-expression if it

restsicts any class to a set of object instances that is logically exclusive to a set

of object iitstances roeeting the restriction of an existing sub-expression.

b Simplification of an AUnion (+) expression. After a semantic

expansion or replaceirent, an AUnion expression can be simplified because of

the additional restriction to the context. If the restriction added to a query's

W
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context is equivalent to an operand of an AUnion expression in the context,

then the AUnion expression can be simplified to consist of only that operand.

That operand, in turn, can also be eliminated since it is redundant to the

restriction added to the context expression of the query. Overall, the entire

AUnion expression is replaced by the added restriction. On the other hand, if

an added restriction contradicts an operand of an AUnion expression in the

query's context, then that operand can be eliminated from the AUnion

expression.

To exemplify these two particular cases, consider the object diagram in

Figure 3. For the first case, suppose the query context (A * B * C) + (A * B

D) undergoes semantic expansion to add the restriction (A * B C), thus

making the context expression (A * B * C) + (A * B * D) • (A * B * C).

The AUnion operator, according to this sub-rule, can be simplified so that the

remaining context is (A * B * C). Specifically, in Figure 3 the expression (A *

B * C) produces (albl), (blc3), (a2b4), (b4c2), while (A * B * D) produces

(a2b4), (b4dl), (a4bS), (b5d2). Therefore the AUnion of these two operands is

(albl), (blc3), (a2b4), (b4c2), (b4dl), (a4b5), (b5d2). If this result is then

AIntersected with (A * B * C), the same association set as that of (A * B C)

results: (albl), (blc3), (a2b4), (b4c2). To exemplify the second case of this sub-

rule, suppose the context of a query (A * B) + (B * D) undergoes semantic

expansion to add the restriction (B ! D), thus making the context expression (A
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* B) + (B * D) • (B ! D). According to this sub-rule, the (B I D) restriction

contradicts the (B * D) AUnion operand, so that the expression can be

simplified, making the context (A * B) • (B I D). Again in Figure 3, (A * B)

produces (albl), (a2b4), (a3b2), (a4b5), while (B * D) produces (b4dl), (b5d2).

The AUnion of these two operands is (albl), (a2b4), (a3b2), (a4b5), (b4dl),

(b5d2). When this result is the AIntersected with (B 1 D), which produces bl,

b2, b3, d2, d4, the result is the association pattern (A * B) • (B ! D), which

produces the association set of (albl), (a3b2).

c. Attribute range simplification. Semantic expansion or replacement

may introduce an attribute range restriction to a context expression that already

restricts that same attribute. One of three situation will arise at such an

occurrence: the attribute restrictions will coutradict each other, the range of one

attribute restriction will wholly overlap the other, or the attribute ranges may

partially overlap each other. n the first case, the logical contradiction exists and

a null answer must be returned. For example, if the restriction (A[a < 5]) is

added to the contuxt expression (A[a >= 6) * B) of a query, then a

contradiction exists. A null answer is the result of the query. This case is

pertinent to sub-rule a of tis transtormation rule. In the second case, the

attribute restriction that wholly ovelaps the other attribute restriction may be

eliminated. If the context expression (A[a >= 6] * B) undergoes semantic

expansion/replacement and the restriction (A[a > 20)) is added, then the context

a~m2
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expression must become (A[a > 20] * B) since the restriction with the narrower

range (i.e., (a > 20)) must prevail over the other. In the final case of partially

overlapping attribute restrictions, the restrictions can be combined to represent

an intersection of the attribute range restrictions. For example, if the context

expression (A[a > = 6] * B) of a query has the restriction (A[a < 20]) added to

it, thc attribute restrictions can be combined to form a simplified context with

only one attribute range (A[6 <= a < 20] * B).

d. Association algebra simplifications according to commutative,

associative, reflexive, and distributive properties. In [GUO89], the mathematical

properties of association algebra operators are given. They can be used to

simplify the context statements of a query. For example, an expression such as

A • A * B can be simplified to A * B according to the identity property of

association algebra.

Transformation Rule 7: Singularity of Rules

This transformation rule pertains more to rule definition than to

transformation methodologies. A single semantic property must be written as a

single rule. Violation of this rule does not threaten the integrity of the

knowledge base, but restricts the rule's usefulness to semantic query

optimization. If the full semantics of a property are not enveloped in a single

rule, then the separate rules making up that semantic property may not be, in

and by themselves, applicable to transformations. The KBMS would then need
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a mechanism to combine such rules and additional overhead would be incurred

for query processing. Such a mechanism and overhead could be avoided if every

semantic property is expressed as a single rule. This rule is strongly exemplified

later in Case Study 4.

Transformation Rule 8: Automatic Generation of Rules Representing Derivation

Knowledge If a derived sub-database is referenced in a query, then the

knowledge of how the data in the sub-database is derived can be represented in

a rule which can be considered for transformations. In order to generate such a

rule, however, the condition(s) on which the data is derived must be expressible

in terms of the attributes in the derived sub-database. For example, the

deductive rule IF A[al > 5' THEN Large-A(A[al,a2]) can be used to generate

the constraint rule IF Large-A THEN A[al > 5]. The attribute restriction of

(al > 5) fully represents the condition on which data is derived for the Large-A

sub-database. If the attribute restriction of the deductive rule's antecedent is

instead (al > 5 OR a3 < 10), then the above constraint could not be

generated, since the a3 attribute is not in the resultant sub-database and the (al

> 5) restriction alone does not fully express a condition for deriving data into

the sub-database. Finally, if the attribute restriction of the deductive rule is (al

> 5 AND a3 < 10), then the (al > 5) restriction does fully express a condition

(i.e., one of the two conditions) for data derivation and the above integrity

constraint rule IF Large-A THEN Large-A[al > 51 can be realized.
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Case Studies Fxemplifying Transformation Rules

Having defined the transformation rules for semantic query optimization

in OSAM*'s KBMS, case studies exemplifying the application of the

transformation rules would be very beneficial to a clearer and deeper

understanding of the rules. The following case studies are structured as follows:

Within each case study, a short explanation of what the study intends to

demonstrate is given first. Next, pertinent knowledge rules for the study are

identified or defined. The appendix lists all the knowledge rules used

throughout the thesis and serves as a quick, consolidated look-up of rules

referenced in the case studies. For each pertinent rule, a rule implication is

listed. It has the form: "rule antecedent --> rule consequent," meaning the

antecedent of a rule implies its consequent. Next, a contrived query is stated

(verbosely and in OQL syntax). The query is designed to illustrate specific

transformations rules. Using the initial query context as a starting point, a series

of transformation steps is performed whereby the information contained in the

pertinerit knowledge rules is used to generate semantically equivalent context

expressions. Each transformation step is an application of one of the defined

transformation rules. The transformation rule and the knowledge rule being

used (if one exists) are identified with each query alteration. Finally, following

the transformation steps, the resulting query plan, the overall transformation
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process, and the case study is discussed. In total, the case studies cover the use

of every type of integrity constraint state rules and the use of deductive rules.

Case Study 1

Figure 4 Schema. This case is an example of query transformations by

semantic expansion that lead to a null query answer. It emphasizes the logical

equivalence of rules, showing how rules can be stated differently but will lead to

the same result. Specifically, this case illustrates that every rule has a semantic

converse rule which is beneficial to query optimization. Finally, it illustrates how

to detect logical contradictions in the context expression.

Pertinent Rules: Rules 8, 9, and 10.

Pertinent Rule Ira.plications:

Rule 8:
Employee * Engineer --> Employee I SupportEmp.

Rule 9:
Employee * SupportEmp --> Employee ! Engineer.

Rule 10:
(Employee * Engineer) • (Employee * SupportEmp) -- > NULL

Note: Transformation Rule 1 is applied to Rule 10's antecedent to reduce
ml oy, . .. ax tO twEmploy..-. -arny rekla-iu nup to two ,Untersect operands with binary

associations.

uey: "Display employees who are both engineers and supporting employees."

CONTEXT Employee * AND(Engineer, SupportEmp)
SELECT Employee[name]

DISPLAY
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Ouery Transformation Using Rule 8:

Initial:

Employee * AND(Engineer, SupportEmp).

Step 1: Transformation Rule 1 is applied to reduce Employee's ternary

relationship to an Ahitersect expression with operands having binary associations.

Thus, the resulting expression is:

(Employee * Engineer) • (Employee * SupportEmp).

Step 2: Transformation Rule 2, semantic expansion is applied to add the

consequent of constraint rule 8 as an additional restriction to the query. Since a

restriction does not exist in either the context expression or in the rule's

antecedent, sub-rule a of Transformation Rule 2 is applied. The rule's

antecedent is satisfied by the context expression according to this sub-rule.

Thus, the resulting expression is:

(Employee * Engineer) • (Employee * SupportEmp) •
(Employee I SupportEmp).

Step 3: Transformation Rule 6, context simplification, is applied to the context

of the query to determine that a logical contradiction exists (sub-rule a) and a

null answer must be returned. Specifically, the AIntersect operands of

(Employee * SupportEmp) and (Employee ! SupportEmp) contradict. The

context expression simply reduces to:

NULL
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Ouery Transformation Using Rule 9:

Initial:
Employee * AND(Engineer, SupportEmp)

Step 1: Transformation Rule 1 is applied to reduce Employee's ternary

relationship to an AIntersect expression with two operands having binary

associations. The context expression thus becomes:

(Employee * Engineer) • (Employee * SupportEmp).

Step 2: Transformation Rule 2, semantic expansion, sub-rule a, is applied to

add the consequent of constraint Rule 9 to the context of the query, making the

context:

(Employee * Engineer) • (Employee * SupportEmp)
(Employee 1 Engineer).

Step 3: The context simplification rule, Transformation Rule 6, is applied to

determine that a logical contradiction exists. Specifically, the AIntersect operands

of (Employee * Engineer) and (Employee I Engineer) contradict. The query

should return a null answer; the context simply becomes:

NULL

OuMry Transformation Using Rule 10:

Initial:
EmplDyee * AND(Engineer, SupportEmp).

Step 1: Transformation Rule 1 is applied to reduce Employee's ternary

relationship to an Alntersect expression with operands having binary associations.

Thus, the resulting expression is:
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(Employee * Engineer) • (Employee * SupportEmp).

Step 2: Semantic expansion, Transformation Rule 2, is applied to add the

NULL consequent of Rule 10 to the context of the query. Sub-rule a of

Transformation Rule 2 is applied to add this restriction. Thus, the resulting

expression is:

(Employee * Engineer) • (Employee * SupportEmp) • NULL

Step 3: The context simpLification rule (Transformation Rule 6) is applied to

determine that the NULL restriction simplifies the AIntersect expression to

simply NULL. The query must return a null answer. The context expression

simply reduces to:

NULL

Rules 8, 9, and 10 are logically related to each other in that any rule can

be used to derive the other two rules. For example, Rule 8 not only states that

employees who are engineers cannot be also supporting employees, but also all

employees who are supporting employees cannot be engineers. This fact is

apparent by examining Rule 8 in a cause and effect manner: An employee

being instantiated as an engineer causes that em .lploye A-ot t bi.na. as

a supporting employee. Conversely, if an employee is a supporting employee

then he/she could not have been an engineer, else the effect would exist and

would contradict with the statement that an employee is a supporting employee.

That is to say, a cause cannot exist if the effect of the cause does not exist. As
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an aside, the existence of an effect, however, does not imply the cause exists

(the effect may be the result of another cause or causes). In essence, the

converse statement above is the implication of Rule 9: an employee who is a

supporting employee cannot also be an engineer. This reasoning can be

extended a step further to show Rule 8 and 9 can be combined to derive Rule

10. In summary, logically equivalent rules can be used ior query transformations

to produce the same results.

Case Study 2

Figure 4 Schema. This case employs both semantic expansion and

reduction transformation rules. It shows how a rule and its semantic converse

rule must be considered in semantic expansion. This case also shows that a rule

is pertinent if its antecedent is satisfied, but does not necessarily match query

constraints exactly. Finally, this case also shows that an integrity constraint rule

may be considered for transformations more than once for a given query.

Pertinent Rules: Rule 8 and the following rules:

Rule 21:
IF Employee THEN Employee * OR(Engineer, SupportEmp).

Explanation: This is a contrived total specialization constraint on the

schema in Figure 4. It means that every employee must be an engineer or a

supporting employee.

Rule 28:
IF Employee * Engineer THEN Employee.salary > $40k.
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Rule 29:
IF Employee * SupportEmp THEN Employee.salary < $30k.

Explanation: Assume it is company policy that all employees who are

engineers will make over $40k a year and all employees who are supporting

employees will make less than $30k. State Rules 28 and 39 ensure these

conditions are maintained in the knowledge base.

Pertinent Rule Implications:

Rule 8:
Employee * Engineer --> Employee ! SupportEmp.

Converse:
Employee * SupportEmp -> Employee 1 Engineer.

Rule 27:
Employee --> (Employee * Engineer) + (Employee * SupportEmp).

Converse:
(Employee ! Engineer) • (Employee ! SupportEmp) -- >

NOT-EXIST (Employee).

Note: Transformation Rule 1 is applied to reduce the ternary consequent

of Rule 27 to an AUnion expression with two operands having binary

associations for Rule 27's implication and to an AIntersect expression for Rule

27's converse implication.

Rule 28:
Employee * Engineer --> Employee.salary > $40k.

Converse:
Employee[salary <= $40k] --> Employee ! Engineer.

Rule 29:
Employee * SupportEmp -> Employee.salary < $30k.
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Converse:
Employee[salary > = $30k] -- > Employee ! SupportEmp.

Note: Transformation Rule 5 is applied to create all of the semantic

converse rule implications given above.

Quezy: "Display all employees who make more than $35k."

OQL:
CONTEXT Employee[salary > $35k]

SELECT Employee[name]
DISPLAY

Query Transformations:

Initial:
Employee.salary > $35k.

Step 1: Transformation Rule 2, semantic expansion, is applied to add Rule 27's

consequent as a restriction to the context of the query. Since the context

contains an attribute restriction, sub-nile b is used to determine if Rule 27's

antecedent is satisfied by the initial context. Rule 27's antecedent addresses the

entire Employee class and the query restricts the context to just those employees

making more than $35k. Therefore, the antecedent does indeed pertain to a

super-set of objects over those selected in the context of the query. Rule 27's

consequent is t.erfre added as another restriction to the context, making the

context:

(Employee.salary > $35k)
[(Employee * Engineer) + (Employee * SupportEmp)].
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Step 2: Semantic expansion is again applied to add the consequent of Rule 29's

semantic converse rule. Sub-rule b of Transformation Rule 2 is again the

appropriate sub-rule for the application. The context expression thus becomes:

(Employee.salary > $35k) •
[(Employee * Engineer) + (Employee * SupportEmp)] •
(Employee ! SupportEmp).

Step 3: After adding the restriction of (Employee I SupportEmp) in step 2, the

context expression can be simplified. Specificr,,ly, sub-rule b of Transformation

Rule 6 can be used to simplify the AUnion expression of [(Employee *

Engineer) + (Employee * SupportEmp)]. Since the added (Employee I

SupportEmp) restriction contradicts the (Employees * SupportEmp) operand of

the AUnion expression, (Employee * SupportEmp) is no longer needed as an

operand in the AUnion expression. It is eliminated and the AUnion expression

simplifies to just the (Employee Engineer) operand. Thus, the resulting

expression is:

(Employee.salaiy > $35k) • (Employee * Engineer)
(Employee ! SupportEmp).

Step 4: Transformation Rule 4, semantic reduction, can be accomplished at this

point. Rule 8 is used to identify the redundancy in this case. Application of

Transformation Rule 4 is detailed below:

"Constraints specified in a query's context imply the antecedent of a rule,"

i.e., (Employee * Engineer) in the context of the query --> (Employee *

Engineer) in Rule 8's antecedent, "and the rule's consequent is also
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implied by restriction already present in the query," i.e., (Employee I

SupportEmp) in the context of the query --> (Employee I SupportEmp)

in Rule 8's consequent, "then the restriction is redundant and can be

removed."

Thus, the resulting expression is:

(Employee.salary > $35k) . (Employee '* Engineer).

Step 5: Semantic expansion is applied to add Rule 28's consequent to the

context. Sub-rule b is the appropriate sub-rule since the Employee class is

restricted in the context to those employees having a salary over $35k. Rule

28's antecedent applies to the entire Employee class and therefore represents a

super-set of objects over those meeting the query's restriction on the employee

objects. The expansion transforms the context to:

(Employee.salary > $35k) * (Employee * Engineer)
(Employee.salary > $40k).

Step 6: Transformation Rule 6 can once again be applied to simplify the

context expression. According to sub-rule c of this transformation rule, the

(Employee.salary > $40k) restriction represents a narrower range than the

(Employee.salary > $35K) restriction. It therefore takes precedence and

eliminates the (Employee.salary > $35k) restriction. Thus, the context

expression is:

(Employee * Engineer) • (Employee.salary > $40k).
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Step 7: Finally, semantic reduction (Transformation Rule 4) can be applied with

consideration of Rule 28. Specifically, Rule 28's antecedent and consequent are

given as restrictions in the context expression. The restriction matching the

consequent (i.e., Employee.salary > $40k) is thus redundant and can be

removed. The final resultig context expression is:

(Employee * Engineer).

Though there are more transformation steps involved in this case as

compared to the previous case and a null answer does not result, the resultant

query context is markedly different than the original queiy. The result may be

very beneficial if data is clustered by ngineers. On the other hand, the

restriction on the salary attribute has been totally removed. Its removal may not

be beneficial if the Employee class is indexed or sorted by the salary attribute.

As such, the original context expression or that given in Step 6 would be more

efficient to process. Determination of which plan is most efficient depends on

underlying data structures and access paths.

In summary, this case has emphasized the importance of converse rules

and simplification steps. It has demonstrated that a knowledge rule may be

applicable more than once to a query's transformations. A costing plan should

determine how many times a rule can be considered for transformations.
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Case Study 3

Figure 4 Schema. This case illustrates how a very broad and general

query can become very tightly restricted through semantic expansions. Tightly

restricted queries result in smaller intermediate data sizes and thus are generally

more efficient to process.

Pertinent Rules: Rules 8, 17, 28, and the following:

Rule 30:
IF Employee THEN Employee * OR(MaleEmp, FemaleEmp).

Explanation: Every employee of the Figure 4 schema must be a male or

female employee. The above rule ensures that this specialization is maintained

in the knowledge base.

Pertinent Rule Implications:

Rule 8:
Employee * Engineer -> Employee I SupportEmp.

Converse:
Employee * SupportEmp --> Employee ! Engineer.

Rule 17:
Employee[sex = = "M"] --> Employee * MaleEmp.

Converse:
Employee I MaleEmp -- > Employee[sex != "M:'].

Rule 28:
Employee * Engineer--> Employee.salary > $40k.

Converse:
Employee[salary <= $40k] --> Employee I Engineer.

Rule 30:
Employee --> (Employee * FemaleEmp) + (Employee * MaleEmp).

L -_._ _ _ _ _ _ _ _ _ _
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Converse:
(Employee ! FemaleEmp) - (Employee I MaleEmp) -- >

NOTEXIST(Employee).

Note: Transformation Rule 5 is used to generate all of the above

converse rule implications. Likewise, Transformation Rule I is used to reduce

the ternary relationship defined in Rule 30's consequent to binary associations in

an Alntersect expression.

Query: "Display all male engineer employees."

OOL.
CONTEXT Employee[sex == "M"] * Engineer

SELECT Employee[name]
DISPLAY

Query Transformations:

Initial:
Employee[sex "M"] * Engineer.

Step 1:
(Employee[sex = = "M"] * Engineer) • (Employee I SupportEmp).

Step 2:
(Employer'[sex == "M"] Engineer) • (Employee I SupportEmp)
(Employee * MaleEmp).

Step 3:
kEmiuuyee'seA - 1, Lng~iree -,Employee SupportEmp )

(Employee * MaleEmp) • (Fmployee[salary > $40k]).

The above transformation steps are the result of applying semantic

expansions using Rules 8, 17, and 28, respectively. The query contained an

attribute restriction from its initial definition. Therefore, sub-rule b of
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Transformation Rule 2 is the appropriate sub-rule for determining if the

constraint rules' antecedents are satisfied by the context of the query. Rule 17

is the only constraint rule that has an attribute restriction in its antecedent. Its

attribute restriction is the same as that specified in the query. It is therefore

satisfied by the query context. All the other cohstraints pertain to the entire

Employee class and therefore represent a super-set of objects over those objects

satisfying the quely's attribute restriction.

Rule 30 is defined but never introduced into the context of the query.

Though its antecedent is satisfied by the context, its consequent would be a

redundant restriction if it were added to the expression. Since the restriction of

(Employee * MaleEmp) already exists in the context, adding the AUnion

expression [(Employee * FemaleEmp) + (Employee * MaleEmp)] (i.e., Rule

30's consequent) would be redundant. If this transformation had been

performed, the very next step would result in the removal of that same AUnion

expression (as prescribed in Transformation Rule 6, sub-rule b). Thus, before a

restriction is added by semantic expansion, the context must be checked to

easure t at the -estri"tion will not be redundant.

Finally, in the evaluation of the transformation result, the context

expression has many more restrictions than the original query. Depending on

lower level details such as data structures and access paths, the additional

restrictions can be very beneficial. For example, if the data is clustered by
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engineers and supporting employees or by male and female employees, the

transformed query context would be much more efficient.

Case Study 4

Figure 5 Schema. The first query in this case is another example of

semantic expansion leading to a logical contradiction in a context expression and

thus to a null answer. The second query illustrates how a semantic property

should be written as a single rule. Rules not representing the full semantic

property may not be applicable to query transformations while a single rule may

be.

Pertinent Rules: Rules 11, 12, and 13.

Pertinent Rule Implications:

Rule 11:
Part * Geometric --> Part * Machining.

Converse:
Part ! Machining --> Part ! Geometric.

Rule 12:
Part * Machining -> Part * Geometric.

Converse:
Part I Geometric--> Part I Machining.

Rule 13:
(Part * Geometric) + (Part * Machining) -- >

(Part * Geometric) • (Part * Machining).

Converse:
(Part I Geometric) + (Part I Machining) -- >

(Part ! Geometric) • (Part ! Machining).
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Note: Transformation Rule 5 is used to generate the converse rule

implications given above. Likewise, Transformation Rule 1 is used to create the

implications for Rule 13 in the standardized binary association format.

Query: "Display all parts that are geometry parts but not machining information
parts."

CONTEXT (Part AND(* Geometric, I Machining)
SELECT Part[item-nr,part desc]

DISPLAY

Ouery Transformations:

Initial:
Part AND(* Geometric, I Machining).

Step 1: Transformation Rule 1 is used to reduce the context expression to the

following standardized binary association format:

(Part * Geometric) • (Part I Machining).

Step 2: Semantic Expansion is applied to perform a transformation step,

whereby Rule l's consequent is introduced as an additional restriction to the

context. The context expression thus becomes:

(Part * Geometric) • (Part I Machining)
(Part * Machining).

Step 3: According to Transformation Rule 6, a logical contradiction is produced

in the context expression in Step 2 between (Part ! Machining) and (Part *

Machining). The query should return a null answer and the context simply

becomes:
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NULL

Quey: "Display all parts that are either geometric parts or machining parts."

OOL:
CONTEXT Part * OR(Geometric, Machining)

SELECT Part[item-nrpart-desc]
DISPLAY

Query Transformations:

Initial:
Part * OR(Geometric, Machining).

Step 1: Transformation Rule I is used to reduce the context expression to the

following standardized binary associations format:

(Part * Geometric) + (Part * Machining).

Step 2: This next step in the transformation process is fairly involved. First of

all, note that neither Rule 11 or Rule 12 could be used for semantic expansion,

for neither of their antecedents are satisfied by the context of the query at this

point. As an example, Rule l1's antecedent (i.e., (Part * Geometric)) is a

tighter restriction than the AUnion expression making up the context of the

query. There are objects that will meet the conditions of the context but not

those of Rule l's antecedent (i.e., objects identified by the (Part * Machining)

operand). Thus, Rule 11's antecedent is not satisfied. Using the same

reasoning, Rule 12's antecedent is not satisfied at this point either.

While Rules 11 and 12 are defined together to maintain the set equality

constraint on the Geometric and Machining classes, neither rule in and by itself
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ensures this integrity constraint. It does not mean that these rules are invalid

integrity constraints, for as long as both rules are present in the knowledge base,

the set equality constraint is maintained. The problem of not defining this single

semantic property as a single rule is pertinent to semantic query optimization.

The multiple rules representing the single semantic property may not be

applicable to a transformation, while a single rule encapsulating the full semantic

property may be applicable. This case study, which uses Rules 11, 12 and 13,

demonstrate this point. Thus, Transformation Rule 7 has been defined avoid

the occurrence of this problem.

Rule 13, a rule that does encapsulate the full set equality constraint in a

single rule, can be employed in the transformation process to perform semantic

expansion (Transformation Rule 2). Its antecedent is exactly that of the context

expression, permitting its consequent to be added as an additional restriction.

The resulting context expression therefore is:

(Part * Geometric) + (Part * Machining) •
(Part * Geometric) . (Part * Machining).

Step 3: Transformation Rule 6, sub-rule b is applied to eliminate the AUnion

expression in the context. Either of the sub-expressions added in Step 2 (i.e.,

(Part * Geometric) or (Part * Machining)) can be used to eliminate the Aunion

expression. The resulting context is:

(Part * Geometric) • (Part * Machining).
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Step 4: Either Rule 11, 12, or 13 can be used in a semantic reduction

(Transformation Rule 4) at this point. Rule 13 is selected because it introduces

an interesting scenario. Specifically, it demonstrates the possibility of losing the

entire context expression in a semantic reduction if precautions are not taken.

Rule 13's antecedent is satisfied by either operand of the AIntersect expression

resulting from Step 3 (i.e., (Part * Geometric) or (Part * Machining)). Rule 13's

consequent, however, is satisfied only be the entire context expression. Normally

in a semantic reduction, the restriction satisfying the rule's consequent is

eliminated, for it is redundant. In this case, however, doing so would leave an

empty context expression. To avoid this precarious resIlt, Transformation Rule

4 stipulates that the sub-expression satisfying the rule's antecedent must be

maintained. Since either (Part * Geometric) or (Part * Machining) sub-

expression satisfies Rule 13's antecedent, either can be retained as the context

expression. The choice is arbitrarily made in this example to result in the

following context expression:

(Part * Geometric).

In summary of this case study, some peculiar aspects of semantic

expansion and reduction have been demonstrated. These aspects are

compensated for in the transformation rules' definitions.
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Case Study 5

Figure 1 Schema. This case illustrates the use of a deductive rule in a

semantic replacement. In the first example of this case, a smaller sub-database

replaces a large class specified in the original context of the query. The second

example illustrates the use of the knowledge on how data is derived (as

represented " , rule format) to perform a semantic expansion. The semantic

expansion then leads to a null answer in this example.

Pertinent Rules: Rule 19 and the following deductive rule:

Rule 31:
IF Course[c# >= 5000] THEN GradCourses[c#, college].

Pertinent Rule Implications:

Rule 19:
Section --> Section * Course.

Rule 31:
Course[c# >= 5000] --> GradCourses[c#, college].

Query: "Display the course numbers of graduate courses whose course number is
less than 6000.'

QDOL:.- -

CONTEXT Section * Course[5000 =< c# < 6000]
SELECT Section[section#]

DISPLAY

Query Transformations:

Initial: Assume graduate course are known to have course numbers (c#'s)

greater than or equal to 5000. The restriction on the c# attribute in the initial
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context expression is then (5000 = < c# < 6000). Thus, the initial context

expression is given as:

Section * Course[5000 = < c# < 6000].

Step 1: Rule 19 could now be employed in a semantic expansion (i.e., it's

antecedent is satisfied by the context expression), except its consequent is a

restriction already present in the context. Therefore it simply serves to verify

the semantic validity of the query. Transformation Rule 3, senintic

replacement, however, can be applied to transform the context. The

Grad-Courses sub-database of Rule 31 can replace the Course class in the

context expression. Since the attribute restriction of (c# < 6000) is not in Rule

31's antecedent, it must be presented as a restriction against the GradCourses

sub-database in the transformed context expression. Had c# not been projected

into the sub-database, this transformation step could not have been performed.

Thus, semantic replacement results in the following expression:

Section * GradCourses[c# < 6000].

The sub-database that Rule 31 creates is a sub-set of instances of the

Course class. It will therefore be more efficient to process the query against the

sub-database since the amount of data being worked with will be less, provided

the sub-database is materialized prior to query processing (as stipulated in

Transformation Rule 3).
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The next exam*e shows that the knowledge on how data is derived is

useful in query optimization as well. Rule 32 represents such knowledge:

Rule 32:
IF Grad-Courses THEN GradCourses[c# > = 5000].

Rule 32's Implication:

Grad-Courses -> GradCourses[c# >= 5000].

Note: Rule 32 should automatically be generated from Rule 31 (i.e.,

should not have to be user-defined) as prescribed in Transformation Rule 8.

Quo "Display all graduate courses with course numbers less than 5000."

CONTEXT Grad Courses[c# < 5000]
SELECT Grad Courses[c#, title]

DISPLAY

Ougy Tranlformations:

Initial:
Grad Courses[c# < 5000].

Step 1: Rule 32 can be employed to accomplish semantic expansion. Notice

that the initial query context contains an attibute restriction on c# so sub-rule b

of Transformation Rule 2 must be applied. The resulting context is:

(GradCourses[c# < 5000]) • (GradCourses[c# >= 5000]).

Step 2: Transformation Rule 6, sub-rule c, is applied after step 1 to deduce

that a logical contradiction exists between attribute restrictions in the context

expression. The query result must be null, and thus the context expression

simply reduces to:
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NULL

Rule 32 does not need to be user-defined, as it represents how the

Grad-Courses sub-database is generated. From the deductive Rule 31, we know

that every c# in the Grad-courses sub-database will have a c# greater than or

equal to 5000 since this restriction is exactly the criteria for generating the sub-

database. This case exemplifies the application of Transformation Rule 8.

In summary, this chapter has defined and demonstrated the use of

transformation rules to accomlish semantic query optimization.



CHAPTER 6
COST ESTIMATION, FUTURE WORK, AND CONCLUSION

While Chapter 5 introduced transformation rules and demonstrated their

use by case studies, it left the issue of gain accrued by transformations

unanswered. Specifica.Uy, it never discussed what transformations would result in

more profitable execution plans, how many transformations steps should be

allowed for a given query, how many rules should be considered for a query, or

in what order transformations should be performed. These are all issues of

costing strategy and will be briefly discussed in this final chapter. Their

introduction at this point is intended to be a guide for future research in this

area. This chapter will also examine what future work must be accomplished to

realize an implementation of semantic query optimization in OSAM*. Finally, a

conclusion to this thesis will be given.

Cost Estimation

Profitability of semantic query opti-zation depends on many actors, not

the least of which is the ability to estimate which plans will execute most

efficiently. To make such an estimate, underlying data structues, data access

paths, and the amount of data that is to be processed are some of the most

103
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important considerations. For example, the existence of indexes, hash tables,

sorted data files, an clustered data can greatly determine which plans offer the

best execution strategy. Likewise, some of the plans may offer a very quick

reduction in the amount of data being requested, and thus may be more

beneficial in this aspect. Finally, if the identified context of the query is a small

set of data in the first place, no optimization may be profitable since the

overhead to perform the optimization may outweigh the cost to execute the

original query.

These are exactly the types of concerns of conventional query

optimization, except now their importance is even greater. No longer is it

sufficient just to generate a multitude of plans, estimate which of the plans is

most efficient, and then execute it. Such "passiveness" in the generation of plans

would lead to far too many rules being considered for transformations (in the

case of recursive rules, a never-ending list), far too many transformation steps,

and the costing of far too many execution plans.

Costing elements must therefore be used to guide the transformation

process as to limit the scope of its considerations and to direct the process along

profitable avenues. Such guidance can be implemented by identifying which

rules most often lead to the most efficient plans. For example, a particular

semantic property of data may not be well known to users. As such, the rule

representing this property generally leads to transformations that result in a null

._ _____
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answer and thus an efficient plan. Such a rule then should be given a high

priority among those being considered for transformations. Likewise, a rule's

consequent could represent a restriction that allows access to data through

indexes or clusters. It too then should be deemed as hlighly profitable. In

essence, the efficiency considerations that are typically identified in conventional

query optimization must be used to identify which rules will result in

transformations that are profitable and in what order transformations should be

performed.

Another important consideration is semantic query optimization is the

complexity of a query. In addition to estimating the value of a rule (in terms of

the efficiencies it will introduce to query processing), the original complexity of

the query must be estimated to determine the scope of the transformation

process. In general, very complex queries can afford to search harder for

efficient plans, for without such plans the execution time of the queries would be

unacceptably long. It is worthwhile to pay for the increase in query compilation

time to achieve a lower query execution time, especially if the query is complex

and is evaluated frequently. Simple queries, on the other hand, can afford only

a few transformations before the cost of query optimization becomes be higher

than the cost of executing the query in its original form. Query complexity is

vital in determining the scope of the optimization efforts.



106

As a final note on costing strategy, transformations concerning deductive

rules demand special consideration (as alluded to in previous chapters). If a

deductive rule is to be used in semantic expansion, as in Case Study 5 of

Chapter 5, a couple efficiency restrictions must be maintained. First, the sub-

database being derived must be materialized prior to query processing.

Derivation during query execution is far too inefficient. Second, the derived sub-

database must represent a significantly smaller subset of data than the amount

of data the query initially would have been run against. These additional

stipulations ensure deductive rule transformations in semantic query optimization

are profitable.

Future Work

To implement semantic query optimization is OSAM*, the above costing

strategy has to be realized. The following section suggests a methodology to

realize the strategy. The entire costing strategy can be analyzed using a liability

and benefit scenario. The initial query's context can be used to determine an

"allowance" as to how much liability the query can afford based of the query's

complexity. Highly complex queries will have higher allowances than simpler

ones. Pertinent rules are then examined by theit liability and benefit. The

liability is the cost of transforming the query by that rule, while the benefit is

the expected savings that result by using the rule. Only those rules whose

benefit outweighs their liability should be considered for semantic query
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optimization. The rules should also be ordered eccording to the difference of

their benefit minus their liability, with the rules having the greatest difference

being given the highest priorities. Each rule's liability then is considered as a

deduction to the query's allowance. Rule's can continue to be considered for

transformations as long as a query's allowance does not expire. Once the

allowance is expired, the cost of the plans generated up until that point can be

used to determine which has the most efficient execution strategy.

This methodology fulfills the essentials of the costing strategy. It limits

the rules considered for transformations and orders them according to an

estimated profitability. In doing so, it will also limit the number of

transformation steps and the number of QEPs generated. The priority of rules

also serves as a guide towards the most profitable transformations. This

methodology mandates, however, that a query's complexity and a rule's benefit

and liability be estimated. So far no mechanism has been developed in OSAM*

to make such estimations. Also, the mapping of the data structures and access

paths to rule's benefit has to be determined. ULkewise, a rule's liability must be

studied and determined from its transformations cost (i.e., the overhead it adds

to query compilation).

Once the basic semantic query optimization is accomplished in OSAM*,

there are several extensions that can be implemented. For example, database

usage patterns may be used to determine new access strategies or to determine
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which sub-databases defined in deductive rules should be materialized because of

their frequent reference in queries. Likewise, the efficiency gained by using

particular knowledge rules in semantic query optimization may be monitored to

implement a more dynamic determination of a rule's benefit and liability.

Another possibility for optimization in the OSAM* knowledge base management

system is to monitor query histories so that queries with a high frequency of

execution are allotted higher allowances for transformations (instead of solely

considering query complexity for this purpose). Query histories may also be

used to determine which queries are often executed together. Knowledge rules

used for transformations of those queries executed together can be examined as

a group to determine if any additional semantics may be deduced from logically

&'ouping the rules together. This approach parallels the singularity of rules: one

ri z to a semantic property (i.e., Transformation Rule 6). Finally, the KBMS

can track certain frequently queried data as to introduce state rules based on

the values of that data. Such rules would not be integrity constraint rules, but

simply rules indicating the current status of the database state. The

maintenance cost for such a scheme must be considered..

Conclusion

In conclusion, this thesis has served several purposes. First, it was a

revicwN of the OSAM* knowledge base management system, including its S-

diagram, query and rule specification languages, and association algebra. Next,
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an overview of query optimization techniques has been presented. Particular

attention was given to the conventional and semantic query optimization.

Thirdly, a categorization scheme for rules was given and integrity constraint rules

associated with OSAM* constructs were fully described. An emphasis was made

that state integrity constraint rules are most beneficial to semantic query

optimization. Finally, eight transformation rules, which make use of the rules of

a knowledge base to optimize queries, have been introduced. The use of these

rules for query optimization have been illustrate,2 in a number of case studies.

These case studies have shown that constraint and deductive rules of a

knowledge base can be used by a query optimizer to generate meaningful and

potentially profitable execution plans.

Im



APPENDIX
LIST OF RULE EXAMPLES

Below is a compiled list of all the rule examples used in this thesis,
numbered and ordered in the manner in which they were presented.

Rule 1:
IF Teacher * Section * Course
THEN Teacher-Course(Teacher[ss#,nameJ,Course[c#,title]).

Rule 2:
IF Student[gpa > 3.5]
THLN Honor-Student(Student).

Rule 3:
IF Faculty[degree =='ThD"J
THEN title := professor ELSE title :="teacher".

Rule 4:
IF Student *Transcript *Course
THEN gpa := SUM (Grade by Student)
DIV COUNT (Course by Student).

Rule 5:
IF Faculty[degree == "PhD"] * Section * Course
THEN PhD*-Faculty-Course (Faculty[ss#,name,degree,

title := "~professor"], Course[c#,title]).

Rule 6:
IF PhD-Faculty-Course
THEN NOT-EXIST (PhD-Faculty-Course * Teaching-Assistant).

Rule 7:
IF Engineer THEN Employee *Engineer.

110
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Rule 8:
IF Employee * Engineer THEN Employee ! SupportEmp.

Rule 9:
IF Employee * SupportEmp THEN Employee I Engineer.

Rule 10:
NOTEXIST (Employee * AND(Engineer, SupportEmp)).

Rule 11:
IF Part * Geometric THEN Part * Machining.

Rule 12:
IF Part * Machining THEN Part * Geometric.

Rule 13:
IF (Part * OR(Geometric, Machining))
THEN (Part * AND(Geometric, Machining)).

Rule 14:
IF Container THEN Container * OR(Device, Tray).

Rule 15:
NOT-EXIST (Container ! OR(Device, Tray)).

Rule 16:
IF Employee[Sex = F'] THEN Employee FemaleEmp.

Rule 17:
IF Employee[Sex = "M"] THEN Employee * MaleEmp.

Rule 18:
MAPPING (ClassX, X2, 1:1).

Rule 19:
IF Section THEN Section * Course.

Rule 20:
z3_Attr != NULL

Rule 21:
IF Supplier "THEN Supplier * Supply.
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Rule 22:
IF Supplier * Supply * Part
THEN MAPPING (Supplier, Part, n : m).

Rule 23:
IF Supply THEN Supply * AND(Supplier, Part).

Rule 24:
F Teacher I Section THEN DELETE Teacher.

Rule 25:
IF Teacher THEN Teacher * Section.

Rule 26:
IF Teacher ! Section THEN NOT-EXIST Teacher.

Rule 27:
IF Employee THEN Employee * OR(Engineer, SupportEmp).

Rule 28:
IF Employee * Engineer THEN Employee.salary > $40k.

Rule 29:
IF Employee * SupportEmp THEN Employee.salary < $3C.

Rule 30:
IF Employee THEN Employee * OR(MaleEmp, FemaleEmp).

Rule 31:
IF Course[c# > = 5000] THEN Grad.Courses[c#, title, college].

Rule 32:
IF Grad-Courses THEN GradCourses[c# >= 5000].
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