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Requirements for the Degree of Master of Science

REAL-TIME CONCURRENCY CONTROL AND
TRANSACTION SCHEDULING

By

Ronnie Edge

December 1989

Chairman: Yuan-Chieh Chow
Major Department: Computer and Information Sciences

) Existing real-time concurrency control and scheduling

techniques are inadequate for controlling the execution of

transactions in a real-time database system. Some of these

techniques place unnecessary restrictions on the concurrent

execution of tasks in order to ensure they are executed

correctly. Several of these mechanisms lack modularity--an

important property in database concurrency control. Most of

these real-time scheduling mechanisms lack the flexibility

necessary to schedule both periodic and event-driven

transactions to meet their timing constraints.

This thesis examines the desired properties of

concurrency control and the desired properties and priority

management issues of real-time transaction scheduling. A

survey of some existing real-time concurrency control and

scheduling mechanisms are presented and evaluated.

v



A new integrated real-time concurrency control and

transaction scheduling mechanism, termed the dataflow

scheduler, is presented. This scheduling technique meets

all of the desired properties of concurrency control and

provides more flexibility than existing real-time

techniques. A roll-forward approach to data item conflict

resolution is used by the scheduler. Simulation results

show that this method performs better in meeting

transactions deadlines than restarting or rolling back a

transaction. /
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CHAPTER 1
INTRODUCTION

Real-time database systems are increasingly being

considered for handling large quantities of data in systems

for monitoring and control, tracking, and surveillance

[Sha88b].

Existing real-time concurrency control and scheduling

techniques are inadequate for use in real-time databases.

These techniques place unnecessary restrictions on the

concurrent execution of transactions. They also lack the

flexibility needed to ensure the completion of a

transaction, whether periodic or event-driven, by its

deadline. In order to use real-time database systems for

time-critical applications, integration of real-time

scheduling and concurrency techniques is needed.

This thesis presents a new integrated concurrency

control protocol and transaction scheduling technique for

real-time database systems. This technique, termed the

dataflow scheduler, provides more concurrency and

flexibility than existing real-time concurrency control

methods.

An important aspect of this scheduler is that it is

dynamic. Transactions are scheduled to run when they enter
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the system. In this manner, the arrival times of

transactions do not have to be known in advance.

Transactions are scheduled to meet their deadlines based on

their priorities. Event-driven transactions can-be given

higher priorities over periodic transactions. Because the

dataflow scheduler schedules transactions when they enter

the system, no restrictions are placed on modifying a

transaction or changing certain characteristics of a

transaction such as its period.

Another important property of this scheduler is that of

predictability. The interaction of periodic and event-

driven transactions can be simulated to determine scheduling

feasibility.

This new approach is useful for scheduling transactions

under timing and resource constraints in a centralized or

distributed real-time database system.

Chapter 2 provides a discussion of the problems that

can occur when transactions execute concurrently in a

database system. The properties of concurrency control

protocols needed to avoid these problems and other desired

properties are presented. The most popular concurrency

control techniques are also presented along with their

drawbacks.

Chapter 3 discusses the desired properties of real-

time transaction scheduling and the associated priority
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management issues of preemption, deadlock, and priority

inversion.

Chapter 4 provides an overview of the existing real-

time concurrency control and scheduling techniques available

in the literature. Most of these techniques are being used

in research-oriented distributed real-time systems. Each

technique presented is also evaluated in the context of a

real-time database system.

Chapter 5 introduces the dataflow scheduler--an

integrated real-time concurrency control and transaction

scheduling mechanism that uses a roll-forward approach to

resolve data item conflicts. The properties of the dataflow

scheduler are presented along with its priority management

technique and failure recovery mechanism. Simulation

results are presented and compared with that of restarting

and rolling back a transaction to resolve data item

conflicts.

Chapter 6 concludes by emphasizing the usefulness of

the dataflow scheduler. In addition, areas in the dataflow

scheduler and real-time database systems requiring further

research are presented.



CHAPTER 2
CONCURRENCY CONTROL

Database concurrency control is the activity of

coordinating the actions of transactions operating

concurrently, accessing shared data, and potentially

interfering with each other [Ber8l, Ber87]. The goal of

concurrency control is to prevent database updates performed

by one transaction from interfering with database retrievals

and updates performed by other transactions.

Problems

There are three problems that can occur from allowing

transactions, executing concurrently, to have shared access

to data [Elm89]. These three problems are the lost update,

the temporary update, and the incorrect summary. The

database concurrency controller must take measures to ensure

that these problems are avoided.

The lost update. One of the more serious problems that

can occur when transactions access shared data,

concurrently, is the lost update [Elm89]. This problem

occurs when two transactions update a database item in the

database with one performing its update after access by the

other but before the other transaction performs its update.

To illustrate this problem, consider transactions Ti and T2

4
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of Figure 2-1. Transaction T1 updates accountl by deducting

50 dollars from it. Transaction T2 performs another update

by depositing 30 dollars into accountl. If these two

transactions are interleaved and executed as shown in Figure

2-2, where each line represents the temporal order of

execution of transaction steps, the deduction of 50 dollars

from accounti performed by transaction Ti is lost.

Concurrency control protocols must produce schedules that

avoid the lost update problem.

Transaction Tl: Transaction T2:

read(accountl) read(accountl)
accountl := accountl - 50 accountl := accountl + 30
write(accountl) write(accountl)

Figure 2-1 Example Transactions Ti and T2

Transaction TI: Transaction T2:

read(accountl)
read(accountl)

accountl := accountl - 50
write(accountl)

accountl := accountl + 30
write(accountl)

Figure 2-2 Example Schedule of Transactions T1 and T2

The temporary update. Another problem the concurrency

controller must avoid is the temporary update [Elm89]. This

problem occurs when a transaction updates an item in the

database and then fails prior to completing all of its

updates. If other transactions are allowed to access the

updated data item before it is changed back to its original
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value, data inconsistencies can result. Consider

transaction T3 of Figure 2-3. If transaction T3 failed

after deducting 20 dollars from savings and before adding

the 20 dollars to checking, then any other transaction

accessing checking and savings will get incorrect values

returned. Concurrency control protocols must not allow

access to items updated by a failed transaction until

failure recovery is complete.

Transaction T3:

read(savings)
savings := savings - 20
write(savings)
read(checking)
checking := checking + 20
write(checking)

Figure 2-3 Example Transaction T3

The incorrect summary. Another of the more serious

problems that may occur when transactions access data

concurrently is the incorrect summary [Elm89]. This problem

occurs when one transaction is calculating an aggregate

summary function on a number of data items while another

transaction is updating some of these items. Consider a

transaction that calculates the difference between the total

dollar amounts in the savings and checking accounts of a

bank. If transaction T3 of Figure 2-3 were to execute after

summation of all the savings accounts but prior to summation

of the checking accounts, then the calculated difference

between savings and checking will be off by 20 dollars.
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Concurrency control protocols must avoid the incorrect

summary problem.

Desirable Properties

There are three desirable properties of concurrency

control protocols. These properties are consistency,

correctness, and modularity [Sha88a]. Each property is

determined from the possible schedules the protocol can

produce. A concurrency control protocol is said to have the

property of consistency if all possible schedules produced

by that protocol do not violate database consistency

constraints. The property of correctness is attributed to a

concurrency control protocol if all possible schedules

result in each individual transaction being executed

correctly. Finally, the property of modularity is given to

a concurrency control protocol if that protocol allows the

correct scheduling of transactions without reference to the

semantics of other transactions.

The properties of consistency and correctness are

necessary to avoid the problems of the lost update and the

incorrect summary; the temporary update problem is avoided

by not allowing a transaction to make its updates visible to

other transactions until it has committed [Elm89].

Consistency. Any valid concurrency control approach

must ensure the database does not enter a state that has

been defined by the designer to be inconsistent (Ber87,

Esw76] Consistent states are defined by the boolean product
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of consistency predicates. A concurrency control protocol

must not produce schedules that allow the database to enter

a state where any of these predicates evaluate to false. An

example predicate might be "the sum of funds in a savings

and checking account must be preserved after execution of

transactions transferring funds between them." Consider

transactions T3 and T4 of Figure 2-4. Let the sum of

savings and checking be the consistency constraint that must

be preserved after execution of these transactions. If each

transaction in Figure 2-4 were executed in a serial fashion

(i.e., T3 before T4 or T4 before T3), the final state of the

database would meet this consistency constraint. However,

if we execute transactions T3 and T4 as shown in Figure 2-5,

the database will enter an inconsistent state. In the

schedule of Figure 2-5, the sum of savings and checking

before execution of the transactions will not equal their

sum after execution. Here the 20 dollars deducted from

savings by transaction T3 is lost. In order to be

effective, a concurrency control protocol must have the

property of consistency.

Transaction T3: Transaction T4:

read(savings) read(savings)
savings := savings - 20 deduct := savings * .05
write(savings) savings := savings - deduct
read(checking) write(savings)
checking := checking + 20 read(checking)
write(checking) checking = checking + deduct

write(checking)

Figure 2-4 Example Transactions T3 and T4
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Transaction T3: Transaction T4:

read(savings)
deduct := savings * .05

read(savings)
savings := savings - 20
write(savings)
read(checking)

savings := savings - deduct
write(savings)
read(checking)
checking = checking + deduct
write(checking)

checking = checking + 20
write(checking)

Figure 2-5 Example Schedule for Transactions T3 and T4

Correctness. A database concurrency control protocol

must schedule transactions in such a manner that they are

executed correctly. A concurrency control protocol is

defined to be correct if all possible execution schedules

generated by that protocol are correct. A schedule is

considered correct if it is computationally equivalent to a

serial schedule [Ber87, Cer84]. As an example, consider

again the transactions depicted in Figure 2-4. Each

transaction is now decomposed into tasks as indicated in

Figure 2-6. Transaction T3 can be scheduled to execute with

task A occurring before task B, task B occurring before task

A, or both task A and B occurring pseudo-simultaneously

(pseudo-simultaneity is used to characterize a pair of

events when the temporal relationship between them cannot be

determined [Cer84]). The result of each of these possible

schedules is computationally equivalent to a serial

execution of transaction T3. However, in the case of
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transaction T4, the schedules where task D is executed prior

to task C or pseudo-simultaneously may be incorrect. These

two schedules cannot guarantee the amount added to checking

will equal five percent of savings. It is critical for

concurrency control protocols to have the property of

correctness.

Transaction T3: Transaction T4:

Task A: Task C:
read(savings) read(savings)
savings := savings - 20 deduct := savings * .05
write(savings) savings := savings - deduct

write(savings)
Task B:
read(checking) Task D:
checking := checking + 20 read(checking)
write(checking) checking := checking + deduct

write(checking)

Figure 2-6 Transactions T3 and T4 Divided into Tasks

Modularity. Modularity refers to the property of a

concurrency control protocol that allows scheduling of

transactions without reference to the semantics of other

transactions [Sha88a]. A modular concurrency control

approach is very important in database systems where new

transactions can be added or existing transactions modified.

If a database concurrency control protocol were not modular,

adding a new transaction or modifying an existing

transaction would jeopardize the correct execution of all

transactions in that database system.
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Serializable Methods

The most widely accepted basis for concurrency control

in databases is that of serializability theory [Ber87,

Sha88b]. If each transaction in a database system is

correct and leaves the database in a consistent state when

executed in some serial order, then any schedule that is

equivalent to that serial schedule will also be correct and

leave the database in a consistent state [Ber87].

Serializability is used as the definition of correctness for

concurrency control protocols in database systems [Ber87,

Cer84, Elm89, Kor86].

There are several concurrency control protocols used in

database systems that are based on serializability. The

three most popular protocols are two-phase locking,

timestamp ordering, and optimistic concurrency control

[Ber87, Cer84, Cou88, Elm89, Kor86].

Two-phase Locking

The most popular concurrency control approach in

database systems is two-phase locking [Ber87]. Two-phase

locking ensures the serializability of schedules by

determining the order between every pair of conflicting

transactions at execution time (Kor86]. The idea behind the

two-phase locking protocol is simple. When a transaction

accesses a data item in the database it is granted a lock on

that item. Under two-phase locking, transactions do not

release locks on data items until all locks are obtained.
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This is where the name "two-phase" locking comes from.

There is a growing phase in which locks are obtained and a

shrinking phase in which locks are released. Shared access

to data items is controlled through these locks.

Transactions are granted a lock when granting the lock leads

to a schedule that is serializable. Two-phase locking is a

consistent, correct, and modular concurrency control

protocol.

Even though two-phase locking is the most popular

database concurrency control protocol, it does have some

drawbacks. One drawback of two-phase locking is that it

does not allow all schedules that are serializable and thus

correct (Cer84]. To illustrate this drawback, look back at

transactions T3 and T4 in Figure 2-6. Let's assume that

savings and checking are at separate locations in a

distributed database system. If the'serial order were T3

then T4, task A would not release its lock on savings until

task B is initiated and obtains its lock on checking. We

see, however, that allowing task C to execute immediately

after task A writes savings leads to a serializable, correct

schedule.

Another drawback of two-phase locking is that it allows

deadlocks to occur. Deadlocks occur when there is a

circular wait for resources among two or more transactions

[Pet86].
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Still another drawback is that of cascading rollbacks

[Kor86]. If a transaction aborts after releasing some of

its locks, then all transactions that have accessed the

released data items must be rolled back. This problem can

be avoided by requiring transactions to hold on to their

locks until committed. Even with these drawbacks, two-phase

locking is still the most popular concurrency control

protocol in database systems.

Timestamp Ordering

Another popular concurrency control protocol used in

database systems is timestamp ordering. Unlike two-phase

locking, timestamp ordering determines the serializability

order in advance between every pair of transactions (Kor86].

Before a transaction is executed it is given a unique

timestamp. If transaction Tj has been assigned a timestamp

TSj and a new transaction Tj enters the system, then TS, must

be strictly less than TS. The timestamps issued determine

the serializability order. If TS1 is less than TSj, then the

scheduler must ensure that the schedule produced is

equivalent to a serial schedule in which Tj appears before

Ti.

In addition to the transaction timestamps, each data

item has associated with it two timestamps called a write

and read timestamp. The write timestamp is equal to the

largest timestamp of any transaction that has successfully

performed a write operation on that data item. The read
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timestamp is equal to the largest timestamp of any

transaction that has successfully performed a read operation

on that data item. Serializability of transaction execution

is accomplished by ensuring read and write operations are

done in timestamp order. Timestamp ordering is a

consistent, correct, and modular concurrency control

protocol.

As with two-phase locking, timestamp ordering has some

drawbacks. Timestamp ordering cannot produce all possible

serializable schedules [Kor86]. There are serializable

schedules produced under two-phase locking but not timestamp

ordering and serializable schedules produced by timestamp

ordering but not two-phase locking [Kor86]. In timestamp

ordering, serializability of concurrent transaction

execution is achieved at the possible expense of restarting

some transactions. If transactions are given access to

updated data items before the updating transaction commits,

cascading rollbacks can occur. Any time spent recovering

from restarts is taken away from executable transactions.

Optimistic

In yet another protocol, termed optimistic concurrency

control, the serializability order is determined at

transaction completion. All updates to data items are

accomplished on local copies kept by the updating

transaction. There are three phases to the optimistic

concurrency control approach. In the first phase, the
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transaction is executed. In this phase, the transaction is

allowed to read data items with updates made on the

transaction's personal copy. In the next phase, a check is

made to determine if the transaction updates can be applied

to the database without violating serializability. If the

updates are serializable, then they are applied to the

database in the final phase. If the validation is

unsuccessful, then the updates are discarded and the

transaction is restarted. Optimistic concurrency control is

a consistent, correct, and modular concurrency control

approach.

As with timestamp ordering, the optimistic approach has

run-time overhead associated with transaction restarts. In

systems where transactions are mostly independent, the extra

level of concurrency achieved by this approach may

compensate for the overhead of restarts. However, in large

systems where transactions exhibit a large amount of

dependency, the extra concurrency provided is outweighed by

the cost of achieving it. Another problem with the

optimistic approach is starvation [Cou88]. The optimistic

approach alone does not guarantee that a transaction can

complete. Although the likelihood of repeatedly restarting

a transaction is small, some mechanism is needed to prevent

its occurrence.
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Nonserializable Methods

In some applications it may be acceptable to execute a

schedule that preserves consistency even though it is not

serializable (Gar83]. In distributed databases where data

are located at many different sites connected by a

communications network, performance considerations may

dictate the use of a nonserializable concurrency control

protocol.

Ensuring atomic transactions and serializable schedules

in a distributed system has some drawbacks [Gar83]. First,

transactions take longer to execute due to communication

delays. Transactions that take longer to execute hold on to

their resources longer, causing other transactions to wait

longer to use those resources. Another drawback is the loss

of site autonomy. Coordinating the commit exercise

necessary to guarantee atomic transactions may cause sites

to lose their autonomy. This occurs when a blocking

commitment protocol is used. In a blocking commitment

protocol, sites control access to their resources based on

what is occurring at other sites. A failure at one site may

unnecessarily tie up resources at another site. The

objective of nonserializable schedules is to avoid the

performance drawbacks described above and still meet the

consistency requirements of the required application.

Garcia-Molina (Gar83] has introduced a nonserializable

concurrency control method based on semantic consistency
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constraints rather than serializability constraints. The

semantic consistency constraints are based on the

observation that some database users may be satisfied when

they access inconsistent data. Transactions that must have

consistent data are called sensitive transactions. The

author claims nonserializable, semantically consistent

schedules provide more concurrency than serializable

schedules.

Lynch [Lyn83] has defined a nonserializable concurrency

control approach based on the relative atomicity of

transactions. This relative atomicity (also termed

multilevel atomicity) is defined by the activity of certain

applications. In other words, in some applications it may

be natural to expect transactions to receive inconsistent

views of the data. Transaction atomicity is defined by

breakpoints in the transaction where possible concurrent

execution with other transactions can occur. When a

transaction has no breakpoints, the execution of that

transaction reduces to a serializable execution. In this

way, a transaction can take on various levels of atomicity

with respect to other transactions.

Sha et al. [Sha88a] have introduced a modular

nonserializable concurrency control approach similar to that

of Lynch [Lyn83]. Their approach decomposes both the

database and the individual transactions accessing the

database. The database is decomposed into atomic data sets
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using database consistency constraints. Each transaction is

decomposed into elementary transactions. Elementary

transactions preserve the consistency of the accessed atomic

data sets when scheduled serializably with respect to the

atomic data sets. In the situation where transactions and

database cannot be decomposed, concurrency control reduces

to that provided under serializability.

Even though nonserializable concurrency control methods

may increase concurrency in distributed database systems,

additional research is needed to determine their usefulness

in distributed real-time database applications.



CHAPTER 3
REAL-TIME TRANSACTION SCHEDULING

Real-time transactions can be classified into two

categories: time-driven and event-driven (also termed

periodic and aperiodic). Time-driven transactions are

executed periodically. An example might be a periodic

update of certain equipment status information at each site

in a monitoring and control database system for a

communications network. An event-driven transaction is

executed when a specific event occurs in the system. An

example might be when a received signal level falls below a

certain threshold at a microwave communications site in the

network. The event-driven transaction could access specific

site data to correlate a cause and recommend corrective

action.

When dealing with a static system where only periodic,

independent transactions execute and these transactions do

not change, the feasibility of a schedule is simple and can

be determined using the rate monotonic algorithm [Sha88b,

Tok89]. A set of n transactions scheduled by the rate

monotonic algorithm can always meet their deadlines if the

following inequality holds:

C1/Pi + C2/P2 + . . . + Cn/Pn <= n(2 'a - 1)

19
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In the above equation, each Ci and Pi corresponds to the

execution time and period of transaction Ti respectively.

Given a periodic, independent transaction set, the above

algorithm will determine if a feasible schedule exists.

The rate monotonic approach to determining a feasible

schedule for transactions in a real-time database system is

inadequate for a number of reasons. It lacks a mechanism

for controlling the concurrent execution of transactions

accessing shared data. Also, an effective real-time

scheduler must be able to handle both periodic and event-

driven transactions. The simple assumption that all

transactions are independent (i.e., they do not depend on

other transactions to accomplish their jobs and do not

access shared data) is usually not valid. One should expect

a real-time database to be a flexible system where

transactions can work together and access shared data to

accomplish their jobs. Also, one might expect real-time

database transactions to be modified and new transactions to

enter the system. The static scheduling algorithm of rate

monotonic is inadequate because it cannot deal with event-

driven transactions and transactions accessing shared data.

Properties

In addition to the concurrency control properties of

consistency, correctness, and modularity, a real-time

transaction scheduling mechanism must be capable of

satisfying the timing constraints of transactions accessing
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the database. Consider our previous example of a monitoring

and control database system for a communications network

that required a transaction to update the status of critical

equipment periodically. If such data were not kept up to

date, the monitoring exercise would be a failure.

Flexibility. In order to be able to meet the timing

constraints of both periodic and event-driven transactions,

the scheduler must be flexible. A real-time transaction

scheduler is considered flexible if it can schedule the

highest priority transaction to meet its deadline regardless

of the arrival time of that transaction.

Predictability. The behavior of a real-time

transaction scheduler for a given transaction set should be

predictable. This scheduling property of predictability is

necessary to provide some confidence during the design stage

that the system can meet the timing constraints of the

transactions.

Priority Management Issues

When designing a real-time transaction scheduler, the

designer must deal with the priority management issues of

preemption, deadlock, and priority inversion. An effective

real-time concurrency control protocol must manage

transaction execution so that, whenever possible,

transaction deadlines are met. Before discussing these

issues in detail, a framework on data item conflict

resolution is needed.
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In some instances, it may be necessary for the

scheduler to resolve a data item conflict between a higher

priority task and a lower priority task. The conflicting

lower priority transaction can be restarted, rolled back, or

allowed to execute (rolled forward). Restarting a

transaction requires undoing all of the work accomplished by

the restarted transaction. Rolling back a transaction

requires undoing that work accomplished after the

transaction accessed the conflicting data item. Roll

forward requires preemption of the higher priority task to

allow the lower priority task to execute.

Preemption. The first major issue in scheduling

real-time transactions is preemption. In systems where both

event-driven and periodic transactions exist, some

capability is needed to preempt an executing transaction

when a higher priority transaction becomes ready to run. To

maximize database system performance, however, it may not be

acceptable to preempt at any time if such preemption results

in having to restart or partially roll-back the preempted

transaction. A more favorable approach might be to allow

the preempted transaction to execute (roll-forward) if it

does not prevent the higher priority transaction from

meeting its deadline. This roll-forward approach could

allow a transaction to execute to completion or reach a

point where preemption can safely occur. Such an approach
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would not only be more efficient, but may also result in

more transactions meeting their deadlines.

Deadlock. Another important issue in real-time

transaction scheduling is transaction deadlock. In

real-time databases, transactions cannot be allowed to

deadlock with other transactions. If deadlocks are allowed,

no reasonable guarantee can be made about meeting a

transaction's deadline. Even if an adequate deadlock

detection and resolution scheme is used, the time spent

recovering from deadlock may degrade system performance

below a tolerable level. It is important that real-time

transaction scheduling mechanisms produce schedules that are

deadlock free.

Priority inversion. The final issue of importance in

real-time scheduling is priority inversion [Sha88b].

Priority inversion can occur in a concurrency control

protocol when a higher priority transaction requires a data

item held by a lower priority transaction. One obvious

solution is to preempt the lower priority transaction and

allow the higher priority transaction to execute. In other

words, we could roll-forward or roll-back the transaction to

a safe state and preempt it. In database systems where

rolling back or restarting a transaction requires recovery

action on the database, this simple approach is not good

enough because a chain of blockage can occur.
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Chained blockage is an execution state in which several

lower priority transactions hold data items required by a

higher priority transaction. Chained blockage [Sha88b]

occurs when transactions are given unlimited access to

unlocked data items by a locking protocol and preemption is

used to allow higher priority transactions to run. Such a

protocol can result in an arbitrarily long chain of low

priority transactions blocking a higher priority

transaction.

The problem of chained blockage is illustrated by

Figure 3-1. Let the order of transaction entry into the

system be Ti, T2, T3, and T4. Also, assume the same order

for transaction priorities with Ti having the lowest

priority and T4 having the highest priority. The execution

state depicted in Figure 3-1 is reached by the following

scenario: transaction T1 enters the system and locks data

items 01 and 02. Transaction Ti is then preempted by

transaction T2. Transaction T2 locks data item 03 and is

then preempted by transaction T3. Transaction T3 locks data

item 04 and is then preempted by transaction T4. Since

transaction T4 is the highest priority transaction in the

system at this time, it is allowed to run to completion.

Transaction T4 immediately locks data item 05 and proceeds

to accomplish its job. However, when transaction T4

attempts to lock data item 04 it has to block because this

item is currently held by transaction T3. This is where
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priority inversion begins. If roll-back or restart is not

allowed, the system must allow transaction T3 to run until

it can unlock data item 04. When data item 04 is released,

transaction T4 then locks it and is allowed to continue.

Transaction T4 then immediately attempts to lock data item

03 and blocks. Once again, priority inversion occurs. As

you can see, this chain of blockage will continue until

transaction T1 releases data item 01.

Ti: T2: T3: T4:

lock(01)

i4;k(02)
(preempted)

lock(03)

(preempted)
lock(04)

(preempted)

lock(05)

lock(04) = BLOCK

(ommit)

lock(03) = BLOCK

(commit)

lock(01) = BLOCK

(commit)

(commit)

Figure 3-1 Schedule Illustrating Chained Blockage

The execution schedule of Figure 3-1 required the

highest priority transaction in the system to wait for

completion of three lower priority transactions before it
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could execute to completion. This situation is very

undesirable in real-time databases. In order to maximize

performance and provide some guarantee that a transaction

will meet its deadline, priority inversion must be managed

so that chained blockage is avoided or reduced in severity.

An effective real-time transaction scheduling technique

must have the properties of flexibility and predictability

and deal effectively with the priority management issues of

preemption, deadlock and priority inversion so that as many

transactions as possible finish by their deadlines.



CHAPTER 4
RELATED WORK

There have been several mechanisms developed for the

scheduling and concurrent execution of real-time tasks.

Each of these mechanisms can be classified as either static

or dynamic. This classification is based on whether

schedules are dominated by a static scheduling technique

that schedules tasks before they enter the system or by a

dynamic scheduling technique that considers tasks when they

enter the system. The objective of static approaches is to

determine a feasible schedule from a set of known tasks that

do not change. In the dynamic approach, the tasks entering

the system are immediately included for generating the

schedule.

The purpose of this chapter is to discuss the static

and dynamic approaches taken by several real-time scheduling

techniques available in the literature. Each approach will

be evaluated based on the desirable properties of

concurrency control and real-time transaction scheduling.

Static Schedulers

The distributed real-time system of MARS (MAintainable

Real-time System) [Dam89] provides a static scheduling

approach for periodic tasks. Each task is designated with

27
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various starting points and stopping points. Tasks are

activated by the system at their starting points. However,

the system relies on each task to release the processor at

its stopping point. In spite of the static nature of this

mechanism, task schedules can be developed to run at

different phases of system operation. In order to avoid

inconsistencies when scheduling switches occur, each

possible switching point must be predefined at the

design-stage.

The MARS concurrency approach is inadequate for

effective concurrency control in a real-time database

system. Even though this approach has the properties of

consistency and correctness, it lacks the property of

modularity. Tasks cannot be modified without affecting the

correct execution of other tasks. These limitations make

the MARS scheduler inappropriate for use in a real-time

database system.

The MARS scheduling approach is not flexible enough to

support real-time transaction scheduling. The MARS

scheduler lacks the capability to handle event-driven

transactions. Deadlock and priority inversion can be

prevented by defining a static schedule where these do not

occur. Static preemption points can also be defined so that

data item conflicts are managed appropriately and potential

data inconsistencies do not occur. Without the capability

of handling event-driven transactions, however, the MARS
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system scheduling approach lacks the flexibility necessary

for use in a real-time database system.

Another distributed real-time system using a static

scheduling technique is ARTS (Advanced Real-Time Technology

System) [Tok89]. The rate monotonic scheduling algorithm is

used by ARTS to analyze the scheduling of simple periodic

tasks. Scheduling of dependent tasks is resolved by an

integrated time-driven scheduler and a priority inheritance

protocol. Each task is classified as being hard or soft. A

hard real-time task must complete by its deadline or fatal

damage is presumed to occur. A soft real-time task is not

as critical and is run even if its deadline cannot be met.

The hard periodic tasks are scheduled first; next, available

cycles are allocated to the soft task set.

As with MARS, lack of modularity makes the ARTS

concurrency control approach inappropriate for real-time

databases. Changes to periodic transactions scheduled under

the ARTS approach invalidates the static execution schedule.

In addition, no concurrency control is available between

periodic and event-driven transactions. Time slots for hard

periodic transactions are allocated in advance with

remaining time slots used for the soft transaction set. No

on-line capability exists to avoid the concurrency problems

that may arise during execution of these transactions.

The ARTS scheduling approach is also inappropriate for

use in real-time databases. It is not flexible enough to
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ensure that event-driven transactions complete by their

deadlines. In addition, the static preemption points

provided by this mechanism can cause concurrency control

problems for event-driven transactions. If a locking

protocol is used for access to shared data items, deadlocks

can form. Also, since periodic transactions are scheduled

in advance, priority inversion can form between periodic and

event-driven transactions.

Another static scheduling technique available in the

literature is Shih et al. [Shi89]. In their approach, each

task is divided into a mandatory subtask and an optional

subtask. The mandatory subtask is executed to accomplish a

minimal computation and the optional subtask is run to

decrease the error of the computation. The objective of

this protocol is to ensure each mandatory subtask will meet

its deadline. Once each mandatory subtask is guaranteed to

meet its deadline, the available processor cycles are

allocated to the optional subtasks to minimize the average

error of the mandatory subtask set. A system using this

protocol provides a tradeoff of computation accuracy for

that of computation timing requirements. The schedules are

developed by a preemptive algorithm using only the ready

times, deadlines, and processing requirements of the tasks.

This algorithm is inadequate for use in real-time

databases for two reasons. First of all, no concurrency

control mechanism is available to control the concurrent
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execution of dependent transactions. Secondly, the system

is not flexible enough to ensure event-driven transactions

can complete by their deadlines.

Another static approach presented in the literature,

though not incorporated into a real-time system, is that of

Sha et al. [Sha88b]. This approach is specifically oriented

to support a real-time database system. Their scheduler is

based on a nonserializable concurrency control approach

[Sha88a] and a priority ceiling protocol. Each task is

decomposed into a partially ordered set of elementary

transactions. Atomicity is accomplished at the elementary

transaction level rather than the task level. The database

is also decomposed into atomic data sets having the property

that each elementary transaction accessing an atomic data

set maintains the consistency requirements of that atomic

data set.

Their use of a nonserializable concurrency control

approach directly supports preemption of tasks. Preemption

is also supported by minimizing the duration of transaction

blocking. When blocking does occur, a priority management

technique is used to ensure that lower priority tasks do not

needlessly block higher priority tasks. The concurrency

control protocol used by each elementary transaction is a

locking protocol called the setwise two-phase lock.

Elementary transactions are restricted to accessing data

from one atomic data set, because holding locks across
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atomic data sets increases blocking duration. The setwise

two-phase lock uses priority inheritance and a priority

ceiling protocol to prevent deadlocks and to minimize chain

blockage to at most one elementary transaction. Since

allocation of locks on data objects is based on the priority

of the highest priority transaction accessing that object,

this approach is constrained to be a static protocol.

Event-driven tasks are handled by buffering them and

treating them as periodic.

The usefulness of their nonserializable real-time

concurrency control approach cannot be completely evaluated

until more research is accomplished in the area of

nonserializable concurrency control. However, in the

situation where the transactions and database cannot be

decomposed, their approach reduces to that of a two-phase

locking protocol.

The only drawback of this concurrency control approach

is their use of the priority ceiling protocol. This

protocol places too high a restriction on the concurrent

execution of transactions. This approach, however, has the

properties of consistency, correctness, and modularity.

The major limitation in their approach for real-time

transaction scheduling is that of flexibility. If the

majority of transactions in a real-time database system are

periodic, then their approach has all the desirable

characteristics of an effective real-time transaction
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scheduler. However, in a real-time database system where

many transactions are event-driven and these transactions

must complete by their deadline, their approach will not

adequately handle priority inversion between periodic and

event-driven transactions.

Dynamic Schedulers

The MARUTI real-time operating system [Lev89] has a

dynamic scheduler capable of providing a guarantee of

meeting deadlines of accepted tasks. Preallocation of all

required services and resources is done in order to provide

this guarantee. Upon verification that the new task's

deadline can be met, an allocator reserves the necessary

resources. Verification of scheduling feasibility is

accomplished through the use of a data structure called a

calendar. Jobs with non-deterministic execution time bounds

and nonreal-time jobs are executed off-line. Resource

allocation is independent of job scheduling with allocation

being accomplished off-line due to its unbounded execution

time.

The MARUTI system concurrency control approach is

inadequate to support a real-time database. Concurrency is

severely reduced by the MARUTI policy of preallocating

resources. Preallocation of resources, however, is a

consistent, correct, and modular approach to concurrency

control.
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The MARUTI system scheduler is also inadequate for use

in real-time databases because accepted transactions cannot

be preempted by transactions being scheduled. This lack of

preemption allows priority inversion to occur. Deadlocks,

however, are prevented by the preallocation process.

The approach taken in the Spring kernel [Sta89] is

based on the notion of predictability and on-line dynamic

guarantees of deadlines. Each task in a real-time system is

known and can be classified as either critical, essential,

or non-essential. Selective static preallocation of

resources is accomplished for critical tasks providing a

static guarantee of meeting their deadlines. The objective

is to ensure all critical tasks complete by their deadline

and as many as possible of the other tasks complete by their

deadline. The scheduling algorithm is executed off-line by

a system processor. Application tasks can run on both

system and application processors. If a single processor

cannot guarantee the timely completion of an essential task,

an attempt is made to schedule the task at another processor

(distributed scheduling). Code for tasks is replicated at

various nodes so that only some state information need be

transmitted during distributed scheduling. The algorithm

employs a heuristic function to determine feasible

schedules. Resource conflicts are avoided by scheduling

dependent tasks at different times. This algorithm can be
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extended to the case where each resource may have multiple

instances.

The concurrency control approach taken in the Spring

kernel is inadequate for use in a real-time database system.

The Spring kernel overly restricts the concurrent execution

of transactions. Dependent transactions must be executed at

different times to achieve consistency and correctness. The

scheduling of dependent transaction at different times,

however, is a consistent, correct, and modular concurrency

control approach.

The scheduling approach in the Spring kernel avoids all

of the issues important in developing an effective real-

time transaction scheduler. When dependent transactions are

scheduled at different times, the issues of deadlock,

priority inversion, and preemption are avoided. Because

these issues are avoided, the Spring kernel's scheduling

approach lacks the transaction management tools needed for

use in a real-time database. While this scheduling approach

ensures all critical tasks are accomplished by their

deadlines, it restricts all critical tasks to be

independent. The Spring kernel's avoidance of the issues of

deadlock, priority inversion, and preemption has resulted in

a scheduling approach unfit for use in real-time databases.

In the Hawk real-time system [Ho189] the scheduler

simply selects the highest priority task in the ready state

or currently running for execution. Deadlock prevention is
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accomplished by imposing a strict order on the locking of

resources.

The support provided for the concurrent execution of

transactions in the Hawk real-time system is very limited.

The policy of placing a strict order on the locking of

resources to avoid deadlock places too high a restriction on

the concurrent execution of transactions. However, the Hawk

system's concurrency approach does have the properties of

consistency, correctness, and modularity.

The Hawk scheduler is inadequate in its effort to

ensure transaction deadlines are met. The Hawk system does

not deal with the problem of priority inversion. Simply

selecting the highest priority task to execute is inadequate

since preempted tasks may hold locks on items that this new

task requires.

Another dynamic approach available in the literature is

Zhao et al. [Zha87]. Their approach is similar to the

approach taken in the Spring kernel [Sta89]. The approach

taken by Zhao et al. generates a preemptive schedule

considering both time and resource constraints of tasks.

When tasks enter the system they are scheduled if possible.

Scheduling is done by allocating time slices to each task

such that each task is executed in one or more slices and

completes by its deadline. The authors indicate that the

algorithm can be modified to handle multiple resource

instances.



37

A major drawback of this concurrency control approach

is the lack of consistency and correctness. Any transaction

can be preempted at any time without any regard to the

impact the preemption will have. As a result, transactions

cannot be guaranteed to execute correctly or leave the

database in a consistent state. The authors contend that

nonpreemption of selective tasks can be handled with slight

modifications to the algorithm. This modification, however,

will place too high a restriction on the concurrent

execution of dependent transactions. Modularity is missing

in this approach because transactions cannot be scheduled to

execute correctly without reference to the semantics of

other transactions.

The scheduling approach taken by Zhao et al. is

adequate for use in a real-time database system. Deadlocks

and priority inversion can be avoided by the algorithm if

the dynamic preemption points are established properly.

Table 4-1 provides a comparison of each algorithm's

concurrency control approach based on the desirable

properties of correctness, consistency, and modularity.

Table 4-2 provides a comparison of each algorithm's

scheduling technique based on the issues of deadlock,

priority inversion, and preemption. Also, each mechanism is

evaluated on its flexibility in handling time-driven and

event-driven transactions.
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The lack of modularity and flexibility for the

concurrent execution and scheduling of both periodic and

event-driven transactions make most existing real-time

concurrency control and scheduling techniques inadequate for

use in real-time databases.

Table 4-1 Comparison of Each Algorithm's
Concurrency Approach

Algorithm Concurrency Approach Correct Consistent Modular

MARS Predefined Yes Yes No
Interleavings

ARTS Predefined No No No
Interleavings

Shi89 Predefined Yes Yes No

Interleavings

Sha88b Restricted Locking Yes Yes Yes

MARUTI Preallocation of Yes Yes Yes
Resources

Spring No Interleavings Yes Yes Yes
Kernel For Dependent Tasks

Hawk Resource Ordering Yes Yes Yes

Zha87 Dynamically Defined No No No
Interleavings

Most of the existing techniques are biased toward

meeting the timing constraints of periodic tasks. A

real-time scheduler must be flexible enough to meet the

deadline of any transaction when that transaction has the

highest priority of all executable transactions.

Many of these techniques avoid deadlocks and resource

conflicts with too much restriction on concurrency. Other
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alternatives for avoiding deadlocks and resource conflicts

can be used so that the impact on concurrency is minimal.

Some of these schedulers do not adequately handle

preemption and priority inversion for both periodic and

event-driven transactions. Priority management tools must

be efficiently utilized in order to ensure the highest

priority transaction can complete by its deadline regardless

of whether it is periodic or event-driven.

Table 4-2 Comparison of Each Algorithm's
Scheduling Technique

Priority
Algorithm Deadlock Inversion Preemption Flexibility

MARS Prevention Static Preemptive Strictly TD
Prevention

ARTS Inadequate Inadequate Preemptive TD,
Limited ED

Shi89 Prevention Static Preemptive Strictly TD
Prevention

Sha88b Avoidance Inadequate Preemptive TD,
Limited ED

MARUTI Prevention Inadequate None Both TD,ED

Spring Prevention Inadequate None TD,

Kernel Limited ED

Hawk Prevention Inadequate Preemptive Both TD,ED

Zha87 Dynamic Dynamic Preemptive Both TD,ED
Avoidance Avoidance

TD: Time-driven
ED: Event-driven



CHAPTER 5
THE DATAFLOW SCHEDULER

We have seen in the previous chapter how existing real

time scheduling techniques are inadequate for scheduling

transactions in a real-time database system. Here I present

the dataflow scheduler, a real-time transaction scheduling

and concurrency control technique, that provides more

concurrency and flexibility than most existing real-time

schedulers. A unique aspect of this scheduler is that it

uses a roll-forward approach to resolving data item

conflicts. This technique results in more transactions

meeting their deadlines over that of conventional priority

based conflict resolution methods of restart and roll-back.

Conceotual Framework

I will use a database system for monitoring a

communications network as an example to illustrate the

application of the dataflow scheduler in a real-time

database system.

A communications network is composed of several sites.

Each of these sites communicate with adjacent sites by using

microwave, satellite, fiber optic, or cabling equipment.

Each site has a maintenance control unit that keeps track of

40
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the status of local equipment. The site maintenance control

unit can also perform equipment or circuit switching.

Maintenance responsibility for the network is

partitioned among the maintenance locations. Each partition

is assigned one primary and one secondary maintenance

location. The network manager accesses information at each

maintenance location to determine network maintenance status

and circuit availability. Maintenance locations dispatch

maintenance personnel to correct equipment failures in the

network.

Each location in the communications monitoring and

control system has a local database. The union of all local

databases comprises the global database. Data are accessed

at each location by on-site maintenance personnel during

troubleshooting of site equipment. This data are also

accessed by the responsible maintenance locations to

determine status of communications equipment at that site.

Transactions executing in this real-time database can

be modeled by tasks executing at various sites. Tasks can

be initiated in serial or in parallel. This type of

transaction modeling allows the separation of database

operations from nondatabase operations. It also allows

transactions to perform independent operations in parallel

at separate sites. Atomicity is provided at the transaction

level. In other words, either all or none of the
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transaction's tasks accessing the database are allowed to

commit.

Time-driven transactions are used to report site

equipment status periodically. Figure 5-1 represents a

simple periodic transaction that reads a site's equipment

status and updates this information at both primary and

secondary maintenance locations.

Transaction Tl:

begin serial
task A: read(sitel)
begin parallel

task B: update(primary)
task C: update(secondary)

end parallel
commit

end serial

Figure 5-1 A simple periodic transaction that reads
the status at sitel and updates both
primary and secondary maintenance locations

Event-driven transactions can be used to perform

various functions such as troubleshooting and equipment

switch-over. Figure 5-2 represents an event-driven

transaction that troubleshoots communications problems

between sitel and site2. Event-driven transactions can also

be used by the secondary maintenance location when the

primary location fails to report a site's status at the

proper time.

A simple, straight-forward approach is used to model

each task in a transaction task set. Each task is

restricted to accessing data at one site. A nonblocking
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commit protocol, the three phase commit [Ber87], can be used

by transactions to prevent task blocking under site

failures.

Transaction T2:

begin serial
begin parallel

task A: read(sitel)
task B: read(site2)

end parallel
commit
task C: troubleshoot and report

end serial

Figure 5-2 A simple event-driven transaction
to troubleshoot problems occurring between
sitel and site2

When a task issues a request for a data item, it is

given a local copy of that item if there are no conflicts

with other transactions holding a copy of that data item.

In this sense, data are visualized as flowing between tasks

at each site. This is where the name "dataflow scheduler"

comes from. Since updates are made on the local copies,

there is no database recovery necessary when a transaction

aborts, or is rolled back. This is similar to shadow paging

[Elm89, Kor86]. In this way, priority inversion can go

unchecked without affecting the scheduler's capability of

meeting tasks deadlines. Priority inversion is handled with

no restriction on the concurrent execution of tasks.

Each transaction task is assumed to have an execution

time equal to the execution time of its parent transaction.

In this way, each site can schedule tasks under the
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knowledge that a task's execution time is the maximum it

needs to execute and perform its commit exercise with the

parent transaction.

In this model, tasks are restricted to accessing data

items in exclusive mode. It is unknown whether shared

access will lead to better performance in a real-time

database where priority is usually given to transactions

performing database updates. Exclusive access is not a

limitation of the dataflow scheduler.

In order to separate scheduling overhead from

transaction execution, scheduling decisions can be made

during task execution on a system processor.

Priority Management

The dataflow scheduler uses two levels of priority in

selecting tasks for execution. First, tasks are given

"hard" priorities based on how critical it is that they

complete by their deadlines. Second, tasks with the same

hard priority are executed with the earliest deadline first.

Tasks of equal priority and deadline are executed on a

first-come-first-served basis. In this manner, the highest

priority task at a site in the system will be the one with

the highest hard priority and the earliest deadline.

When an executing task blocks due to a resource

conflict with a lower priority task, two different actions

can be taken. A determination is made as to whether the

lower priority task can complete without preventing
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completion of the higher priority task by its deadline. The

lower priority task is allowed to continue execution (rolled

forward) if the higher priority task can meet its deadline

afterwards. Otherwise, the lower priority task is

rolled-back to a "safe" point with the higher priority task

continuing. This safe point occurs immediately before the

point where the rolled-back task acquired the conflicting

data item.

Tasks that have completed execution but have not

received notification from their parent transaction to

commit by the expiration of their deadline are terminated.

A task that has completed execution and is uncommitted can

be rolled back if it is preventing a higher priority task

from meeting its deadline.

The resources required to implement the dataflow

scheduler are simple. The transaction compiler must

generate a task execution table for each task of a

transaction. In addition, each site must maintain a data

item allocation table for the data items at that site.

A sample task execution table is shown in Figure 5-3.

This table lists each data item required by the task in the

order it will be requested along with the location in the

task where the request is made. An attribute of

"time-spent" is assigned to each data item by the scheduler

when the task makes and is granted a request for that data
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item. In addition, each task has an execution time, entry

time, deadline, and hard priority included in the table.

Taskl: item location time-spent
execution time: 010 020 0000 ---

entry: 000 060 0001 ---
deadline: 025 090 OOAA ---
priority: 002 010 OOAB ---

Figure 5-3 Sample Task Execution Table

Each site scheduler must maintain a data item table to

keep track of data items assigned to tasks. A sample data

item table is shown in Figure 5-4. When a copy of a data

item is given to a task, that task's identification is

entered into the data item table location corresponding to

that particular data item. Modifications to this table will

need to be made to handle shared access modes.

Item Task
010 Taskl
030 Tapk4
070 Task5

Figure 5-4 Sample Site Data Item Table

The task execution tables for local tasks and the data

item table are accessed and updated at each site by the

local dataflow scheduler.

The task execution tables of Figure 5-5 are used to

illustrate the priority management technique of the dataflow

scheduler. The passage of time is represented by unit

transitions in the system real-time clock. Locations in the

task where resources are requested are presented in

hexadecimal code.
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Taski: item location time-spent
execution time: 010 020 0000

entry: 000 060 0001 ---
deadline: 025 090 OOAA ---
priority: 002 010 OOAB ---

Task2: item location time-spent
execution time: 005 005 0000

entry: 005 020 0001
deadline: 015
priority: 002

Task3: item location time-spent
execution time: 050 025 0000

entry: 010 065 0001 ---
deadline: 094 060 0002 ---
priority: 002 020 0130 ---

090 0C21 ---
095 0C22 ---

Task4: item location time-spent
execution time: 025 060 0000

entry: 020 020 00F3
deadline: 060 080 0200
priority: 003

Figure 5-5 Set of Task Tables used to Illustrate the
Dataflow Protocol Priority Management
Technique

Taskl, with a deadline of 025 and a hard priority of

002, enters the site at 000 real-time. Since it is the only

task, it is immediately selected to execute. At real-time

005, task2 enters the system. Since task2 has a deadline of

015 it is higher in execution priority than the currently

running task. Task2 is therefore selected to run. However,

task2 immediately blocks when requesting data item 020 held

by task1. A decision must now be made to either roll back

task1 or allow it to complete. Figure 5-6 represents the

status of taskl at the time it is preempted by task2. From

Figure 5-6, we can see that taski can complete by 010 real-
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time, if immediately selected to run. A check of the site

data item table will indicate no conflicts exists between

taskl and other tasks at the site. Based on this

information, taskl is allowed to run.

Taskl: item location time-spent
execution time: 010 020 0000 000

entry: 000 060 0001 000
deadline: 025 090 OOAA 005
priority: 002 010 OAO ---

Figure 5-6 Status of Taski When Task2 Enters the System

When taskl completes, task2 and task3 are in the

system. Since task2 has the earliest deadline, it is

selected to run. Upon completion of task2, task3 is

selected to run.

Task4 enters the system at 020 real-time. Since task4

has the highest hard priority with respect to task3, task3

is preempted to allow task4 to run. Figure 5-7 represents

the status of task3 at the time it is preempted by task4.

When task4 begins to execute it blocks because task3 holds

data item 060. At this point, the scheduler must decide to

either roll back task3 or allow it to complete. A check of

the remaining execution time of task3 reveals that allowing

it to complete would mean that task4 will not meet its

deadline. As a result, task3 is then rolled back to the

point where it requested data item 060.

Task4 now executes and completes at 045 real time.

Task3 is then selected to run and, assuming no other task

enters the system, will complete by its deadline at 091



49

real-time. Notice that the effect of rolling back task3 to

the point it requested data item 060 resulted in having

task3 complete at 091 real time. Restarting task3 would

have resulted in it completing at 095 real time--past its

deadline.

Task3: item location time-spent
execution time: 050 025 0000 000

entry: 010 065 001A 002
deadline: 094 060 0031 004
priority: 002 020 0130

090 0C21
095 0C22 ---

Figure 5-7 Status of Task3 When Task4 Enters the System

Algorithms for processing new task arrivals and

resolving data item conflicts between tasks are shown in

Figure 5-8.

PROCEDURE processnew arrival

BEGIN
IF new task deadline < current task deadline AND

new-_task-priority >= current_taskpriority THEN
execute(new task)

ELSE
defer(newtask)

END

PROCEDURE resolve data item conflict

BEGIN
IF (time leftconflicting_task + clock +
exec time current task < deadline currenttask) AND

other confliEts(conflictingtask) - FALSE THEN
execute(conflictingtask)

ELSE
roll_back(conflictingtask)

END

Figure 5-8 Algorithms for Processing New Task Arrivals
and Resolving Data Item Conflicts
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Since scheduling decisions are made off-line, the

dataflow scheduler need not wait for data item conflicts to

occur in order to decide how to handle a particular

occurrence. By using the task execution table and data item

table, the dataflow scheduler can investigate in advance any

conflict where a scheduling decision must be made.

Properties

The concurrency control approach in the dataflow

scheduler is consistent, correct, and modular. Database

consistency is not violated since each task is executed

serializably with respect to other tasks. Even though

transactions can run tasks in parallel, atomicity is at the

transaction level because each transaction task accessing

the database commits as a whole. Since all task schedules

are serializable and thus correct, the concurrency control

protocol is correct. Finally, concurrency control in the

dataflow scheduler is modular because tasks can be modified

and new tasks can enter the system without affecting the

correct execution of each task.

An important characteristic of the dataflow scheduler

is that it is deadlock free. A higher priority task is only

required to wait when execution of a lower priority task

does not prevent it from meeting its deadline. Otherwise,

conflicting tasks are rolled back to allow the priority task

to continue. This approach eliminates the circular wait

condition (Pet85] necessary for deadlocks to occur.
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The dataflow scheduler is also flexible and

predictable. This dynamic scheduling protocol gives equal

consideration to both periodic and event-driven transactions

based solely on the transaction's priority. A known

transaction set can be simulated under the scheduler to

determine its scheduling feasibility. Tables 5-1 and 5-2

provide a summary of the concurrency control and scheduling

characteristics of the dataflow scheduler.

Table 5-1 Concurrency Control Characteristics
of the Dataflow Scheduler

Concurrency Approach Correct Consistent Modular

Two-phase locking yes yes yes

Table 5-2 Scheduling Characteristics of the

Dataflow Scheduler

Deadlock Priority Inversion Preemption Flexibility

Avoidance Controlled With Preemptive Both TD, ED
No Performance
Degradation

TD: Time-driven, ED: Event-driven

Failure Recovery

Under the dataflow scheduler, recovery from task

failure or premature termination is easy. Since tasks have

their own personal copy of each data item granted, all

updates are performed on these copies. A failed task

requires no subsequent database recovery. A task waiting

for a data item held by a failed transaction is given a

"fresh" copy from the database. Under the dataflow

scheduler, the system is not burdened with the overhead of
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undoing work accomplished by a failed or prematurely

terminated task.

Problems can occur if there is a failure at the system

processor executing the dataflow scheduler. However, the

system can recover from such failures by checkpointing the

task execution tables and the data item table whenever a

task commits. All processing accomplished by uncommitted

tasks will be lost if the scheduler fails. When the

scheduler is brought back up, the data item table and each

task execution table are cleaned and each task restarted

with fresh copies of data items from the database.

Simulation Results

A simulation program was developed to compare the

performance of the dataflow scheduler's roll-forward

approach to data item conflict resolution to that of rolling

back or restarting a task. The simulation program, written

in Pascal, is provided in Appendix A. Modifications to the

program to simulate scheduling under the restart and roll-

back methods are listed in Appendix B.

Three sets of 20 tasks each (15 Time-driven and 5

Event-driven with randomly generated characteristics) termed

task set A, task set B, and task set C were executed by the

simulation program. Tables 5-3, 5-4, and 5-5 lists the

characteristics of task sets A, B, and C respectively. The

individual task parameters for each task set is provided in

Appendix C. Task priorities were selected randomly and vary
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from 0 to 9. Resource requirements were selected randomly

and vary from 1 to 8. Execution times were also selected

randomly and vary from 1 to 16. Deadlines are twice the

execution time. The maximum resource objects in the

simulation were 20. The amount of execution time surpassed

at the point where all resources had been acquired is

indicated by the TARA attribute.

Table 5-3 Characteristics of Task Set A

MAX MIN AVG

resources 7 1 4.1

priority 9 1 5.6

execution time 15 1 8.2

period (TD) 8343 485 4025

arrivals (ED) 18086 0 10334

TARA 8 0 2.6

TARA: Time All Resources Acquired

Table 5-4 Characteristics of Task Set B

MAX MIN AVG

resources 7 2 4.3

priority 9 1 4.5

execution time 15 1 9.2

period (TD) 8343 87 4246

arrivals (ED) 16143 628 8422

TARA 8 0 3.1

TARA: Time All Resources Acquired
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Table 5-5 Characteristics of Task Set C

MAX MIN AVG

resources 8 1 5.0

priority 9 0 4.6

execution time 15 2 8.1

period (TD) 3711 241 2073

arrivals (ED) 17221 788 10144

TARA 7 0 2.2

TARA: Time All Resources Acquired

The simulation results for each of the three task sets

are shown in Tables 5-6, 5-7, and 5-8.

Figures 5-9, 5-10, and 5-11 show the relationship

between the number of missed deadlines and task completions

for the task sets A, B, and C respectively. Simulation run-

time was selected at 8000, 10,000, 14,000, 18,000 and 22,000

seconds in order to increase the number of task completions.

For each task set, the dataflow scheduler's performance

exceeded that of the other two methods.

Since each scheduling technique provides a different

execution sequence, a check was made to see if a particular

method's sequence encountered a smaller number of

preemptions or data item conflicts. Figures 5-12, 5-13, and

5-14 compares the number of preemptions and conflicts

encountered by each method for task sets A, B, and C

respectively. The variation of preemptions and conflicts
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was very slight and therefore insignificant in improving the

performance of one method over that of another.

Table 5-6 Simulation Data for Task Set A

completed tasks 72 91 131 192 212 METHOD:

missed deadlines 16 20 28 37 44

preemptions 15 19 28 36 43 RESTART

conflicts 14 18 26 35 42

missed deadlines 16 20 27 38 42

preemptions 15 19 28 40 43 ROLL BACK

conflicts 14 18 27 39 43

missed deadlines 2 2 3 4 4

preemptions 15 19 28 40 43 DATAFLOW
SCHEDULER

conflicts 14 18 26 38 42

Table 5-7 Simulation Data for Task Set B

completed tasks 155 195 275 359 437 METHOD

missed deadlines 13 17 19 24 29

preemptions 19 22 27 32 35 RESTART

conflicts 13 16 18 23 25

missed deadlines 13 16 18 23 28

preemptions 19 22 27 32 35 ROLL BACK

conflicts 14 17 19 24 26

missed deadlines 4 4 6 10 13

preemptions 21 24 29 34 37 DATAFLOW
SCHEDULER

conflicts 17 20 22 27 29
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The simulation program did not monitor the number of

tasks of each priority that missed their deadlines. It is

not expected that reducing the total number of missed

deadlines will result in a significant increase in the

number of higher priority tasks that miss their deadlines.

This is an area of further research.

Table 5-8 Simulation Data for Task Set C

completed tasks 131 158 185 241 294 METHOD

missed deadlines 3 5 5 7 9

preemptions 4 7 8 12 14 RESTART

conflicts 3 4 4 4 4

missed deadlines 3 5 5 7 9

preemptions 4 7 8 12 14 ROLL BACK

conflicts 3 4 4 4 4

missed deadlines 3 4 4 6 8

preemptions 4 6 7 11 13 DATAFLOW
I I- - SCHEDULER

conflicts 3 4 4 4 4

The dataflow scheduler seemed to be fueled by the

occurrences of conflicts. In executing task set A, where

the number of conflicts nearly equalled the number of

preemptions, the number of missed deadlines totaled 4 from

212 completed tasks and 43 preemptions. When the number of

conflicts were low, the restart and roll back algorithms

performed nearly as well as the dataflow scheduler.
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Figure 5-9 Missed Deadlines For Task Set A
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Figure 5-10 Missed Deadlines For Task Set B
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Figure 5-11 Missed Deadlines For Task Set C
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Figure 5-12 Conflicts and Preemptions For Task Set A
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Figure 5-13 Conflicts and Preemptions For Task Set B
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Figure 5-14 Conflicts and Preemptions for Task Set C
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The roll-back method did not perform significantly

better than that of restart. This can be attributed to the

fact that each task accessed all of its data items by the

first one-third of its execution time. In this manner, any

roll-back of a task was almost equivalent to that of

restarting the task. The roll-back method will probably

perform much better than restart if tasks were to access

data items over their entire execution time. Tasks meeting

this characteristic were not simulated.

Discussion and Analysis

The dataflow scheduler has all the desirable properties

of a concurrency control and a real-time transaction

scheduling mechanism. The priority management technique

used in the dataflow scheduler ensures freedom from

deadlock. The scheduler is also flexible. Any transaction,

whether periodic or event-driven can be guaranteed to

complete by its deadline if its total computation time

allows this. This guarantee can be made at the design stage

by considering the worst case arrivals of the event-driven

transactions. In this manner, any task can be classified as

critical and given the highest priority. Transactions can

be modified and new transactions can enter the system

without impacting the dataflow scheduler. This property of

modularity allows a higher degree of flexibility than

existing real-time scheduling techniques. This scheduling

approach is also predictable. The interaction of known
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transactions can be simulated early in the design stage to

determine if system performance requirements will be met.

One might argue that the dataflow scheduler is too

flexible for use in a "hard" real-time database system.

Because the dataflow scheduler is predictable, the execution

of known transactions can be simulated under this technique.

Thus some degree of confidence that transactions will

complete by their deadlines can be attained at the system

design stage. Also, the dataflow scheduler can easily be

extended to support the parallel execution of transaction

tasks at each site. In this manner, sites with heavy or

unpredictable loads can be provided with more processing

power.

Starvation can occur when using the dataflow scheduler.

As with any priority based scheduling mechanism, this can be

avoided by increasing the priorities of waiting

transactions. The database designer can also perform a

worst-case analysis during the design stage and take actions

to ensure starvation does not occur.

One drawback of the dataflow scheduler is that its use

of a roll-forward approach to resolve the order of execution

of conflicting transactions may not be beneficial in every

case. To illustrate this point, consider transactions T3

and T4 of Figure 5-15. Tasks A and B of transaction T3

access information at the primary and secondary maintenance

locations respectively, and task C updates the network
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manager's status of the corresponding maintenance partition

in the communications network. Task D of transaction T4

accesses equipment status at sitel and tasks E and F updates

the primary and secondary maintenance location respectively.

Let the priority of transaction T3 be greater than that of

T4.

Transaction T3: Transaction T4:

begin serial begin serial
begin parallel task D: read(site)
task A: read(primary) begin parallel
task B: read(secondary) task E: update(secondary)

end parallel task F: update(primary)
task C: update(network) end parallel
commit commit
end serial end serial

Figure 5-15 Example Transactions T3 and T4

If task A begins execution at the primary maintenance

location before task F and task E begins execution at the

secondary maintenance location before task B, then the

dataflow scheduler's roll-forward approach may result in the

unnecesiary execution of task A. When task F becomes ready

to execute at the primary maintenance location it will

preempt task A. If there is a data item conflict between

tasks A and F, the system will allow task A to execute to

completion if it does not prevent task F from completing by

its deadline. This will result in the wasted execution of

task A. Because atomicity is at the transaction level, task

A cannot commit until task B does and task B will not

execute because the higher priority task E began execution
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at the secondary maintenance location before task B became

ready.

Another drawback of the dataflow scheduler is that

higher priority tasks may not meet their deadlines after

allowing a lower priority task to execute ahead of them.

This occurs when a higher priority task allows a lower

priority task to execute and is subsequently preempted by an

even higher priority task. In this manner, the set of tasks

that miss their deadlines may shift to the higher priority

end of the spectrum of tasks.

There are two ways of handling this problem. First,

the process of rolling forward a lower priority task can be

restricted so that critical tasks never have to wait.

Second, a worst case analysis can be accomplished at the

design stage to determine those tasks that can be allowed to

wait for lower priority tasks to complete.

It is unknown whether the amount of additional

concurrency provided by the roll-forward approach outweighs

these associated performance drawbacks. However, the

dataflow scheduler is still an effective tool for scheduling

tasks under resource and timing constraints.



CHAPTER 6
CONCLUSIONS AND FURTHER RESEARCH

Existing real-time concurrency control and scheduling

techniques are insufficient for use in a real-time database

system. A real-time database system is characterized as

having both periodic and event-driven transactions. These

scheduling mechanisms lack the flexibility necessary to

adequately handle the timing constraints of both periodic

and event-driven transactions.

A new integrated real-time concurrency control and

transaction scheduling mechanism, termed the dataflow

scheduler, was presented that has the flexibility needed to

handle both periodic and event-driven transactions. The

dataflow scheduler's technique for controlling the

concurrent execution of transactions under timing

constraints in a real-time database system provides more

concurrency than existing real-time concurrency control

protocols. Also, the dataflow scheduler's concurrency

protocol has the properties of consistency, correctness, and

modularity.

The dataflow scheduler is also flexible and predictable

enough to support dynamic changes in a real-time database.

Some existing real-time scheduling techniques are too static

67
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to support a changing environment. Other more dynamic

techniques lack the necessary priority management tools to

schedule both periodic and event-driven transactions to

finish by their deadlines. The dataflow scheduler schedules

transactions to meet their deadlines when they arrive,

regardless of whether they are periodic or event-driven.

Most existing mechanisms are biased toward meeting the

deadlines of periodic transactions. The predictability of

the dataflow scheduler allows a system manager to simulate

the interaction of known transactions.

These features of flexibility and predictability make

the dataflow scheduler appropriate for use in both

centralized and distributed real-time database systems.

Further research on the dataflow scheduler should

include the following:

(1) Performance comparisons to that of other real-

time scheduling techniques in similar environments.

(2) Extending the scheduler to allow execution of

independent transaction tasks on multiple processors within

a single site. This capability may be beneficial at sites

where execution loads are heavy or unpredictable.

(3) Extending the scheduler and corresponding data

structures to allow shared access modes for data items with

comparison to that of exclusive access.
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(4) Implementing the scheduler in a research-oriented

distributed real-time database system or other real-time

system requiring transaction capabilities.

(5) Determining whether the roll-forward approach is

beneficial in a distributed real-time database system where

sites are unaware of what is occurring at other sites.

(6) Extending the scheduler to consider rolling

forward the highest priority conflicting transaction rather

than the first conflicting transaction encountered.

(7) Evaluating the restart, roll-back, and roll-

forward conflict resolution methods based on the priorities

of the transactions that miss their deadlines.

Other areas of research within real-time database

systems include developing and implementing a flexible

transaction syntax to allow a larger degree of concurrency

when transactions execute independent tasks. Also, the use

of nonserializable concurrency control in distributed real-

time database applications requires more research.

With continued research in the areas of distributed

real-time concurrency control and transaction scheduling,

the knowledge necessary to implement an effective real-time

database system will soon be available.



APPENDIX A
SIMULATION PROGRAM

PROGRAM dataf low-scheduler;

CONST
max -time = 20000;
max resource = 20;
max-task = 20;
max-Priority =10;

max exec time =15;

max-num resource 8 ;

TYPE
task -id = 1..max -task;
resource_-id = 1..max-resource;
task-class = (time-driven, event-driven);

event-type = (arrival ,, atuerequest);
eventjptr = event-node;
event-node = RECORD

event : event type;
time : INTEGER;
id : task id;
next : eventJtr;
END;

resourceyptr - Aresource-node;
resource-node - RECORD

id : resource -id;
time : INTEGER;
next : resourceptr;
END;

statusptr = 'status -node;
status-node - RECORD

arrival : INTEGER;
deadline : INTEGER;
numpreempt : INTEGER;
num 'roll : INTEGER;
location : resourceptr;

*time spent : INTEGER;
time-left : INTEGER;
END;

70
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taskptr = Atasknode;
task-node = RECORD

id : INTEGER;
task-type : taskclass;
arrival-time : INTEGER;
exec time : INTEGER;
deadline : INTEGER;
priority : INTEGER;
resource-list : resourceptr;
status : statusptr;
next : taskyptr;
END;

VAR
clock : INTEGER;
taskl : taskptr;
task2 : taskptr;
task3 : taskptr;
task4 : taskptr;
task5 : taskptr;
task6 : task_ptr;
task7 : task_ptr;
task8 : taskptr;
task9 : taskptr;
task1O : task-ptr;
taskl0 : task-ptr;
taskl2 : task-ptr;
taskl3 : taskptr;
taskl4 : taskptr;
taskl4 : task_ptr;
taskl6 : task ptr;
taskl7 : task_ptr;
taski8 : task ptr;
taskl9 : task ptr;
task20 : taskptr;
eventlist : eventptr;
out : TEXT;
item table : ARRAY (O..maxresource] OF INTEGER;
queue : task ptr;
first event : event_ptr;
tot_preempt : INTEGER;
tot roll : INTEGER;
tot dead : INTEGER;
tot kill : INTEGER;
tottasks : INTEGER;
tot meet : INTEGER;
totrf : INTEGER;
df : REAL;
max-period : INTEGER;
runtime : INTEGER;
cc : REAL;
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PROCEDURE print final-status;

BEGIN
WRITELN('total tasks handled is: ',tot_tasks);
WRITELN( 'total tasks meet deadline is: ',tot-meet);
WRITELN( 'total preemptions: ',totpreempt);
WRITELN( 'total rollbacks: ',tot-roll);
WRITELN( 'total rollforward: ',tot -rf);
WRITELN('total deadline failures: ',tot-dead);
WRITELN('total killed: ',tot-kill);
WRITELN('clock is now: ',clock);
END;

PROCEDURE print item-table;
VAR

i :INTEGER;

BEGIN
WRITELN(out,'item table is:');
FOR i := 0 TO max-resource DO

WRITELN(out,'item ',i,'is ',item-table[i]);
END;

PROCEDURE print-task (task : task-ptr);

BEGIN
WRITELN(out);
IF task .task type = event-driven THEN

WRITELN(out,'task type is event driven')
ELSE WRITELN(out,'task type is time driven');

WRITELN(out, 'task arrival: ',task^ .arrival-time);
WRITELN(out,'exec time: ',taskA.exec-time);
WRITELN(out, 'deadline: ',task^ .deadline);
WRITELN (out, 'priority: ',task . priority);
END;

PROCEDURE print task-resource (task : taskyptr);
VAR

resource :resource-ptr;

BEGIN
WRITELN(out);
WRITELN(out,' id time');
resource :- task .resource_list;
WHILE resource <> NIL DO

BEGIN
WRITELN(out,resource .id:10, resourceA.time:1O);
resource := resourceA.next;
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END;
END;

FUNCTION resource (exec :INTEGER) :resourceptr;

VAR
top : resourceptr;
num resource : INTEGER;
temip 3 resourceptr;
tempi : resourceptr;

i : INTEGER;

BEGIN
num-resource :- ROUND(random*(max-num-resource - 1)) + 1;
new(top);
top^.id :- ROUND(random*max-resource/num-resource);
topA.time :- 0;
temp :=top;
FOR i1: 2 TO rum-resource DO

BEGIN
new(templ);
templ .id :- ROUND(random*max-resource/num-resource) +

tempA.id + 1;
templA.time :=ROUND(random*exec/num resource) +

temp'.next :=tempi;
temp :- tempi;
END;

IF num-resource - 1 THEN temp' .next := NIL
ELSE temp1 .next :- NIL;
resource :- top;
END;

PROCEDURE put-event (task-id : INTEGER;
time : INTEGER;
event : event-type);

VAR
eventi : eventyptr;
temp : eventyptr;

BEGIN
temp :- event -list;
IF time <- temp .time THEN

BEGIN
new(eventl);
eventlA.event :-event;
event1'A.time :-time;
eventlA.id t- task -id;
event1i.next :- event -list;
event -list :- eventi;
END
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ELSE
BEGIN
WHILE (time > temp^.time) AND (time > temp^.next^.time)

AND (temp^.next <> NIL) DO temp := temp-.next;
new(eventl);
eventl^.event := event;
eventlA.time := time;
eventl^.id := taskid;
eventl^.next := temp^.next;
temp^.next := eventl;
END;

END;

PROCEDURE createarrivals (task : task-ptr);

VAR
time : INTEGER;

BEGIN
time := task^.arrivaltime;
IF (task^.tasktype = eventdriven) AND (time < run-time)
THEN put event(task^.id, time, arrival);
IF task^.task-type = time-driven THEN

BEGIN
WHILE time < run-time DO

BEGIN
put event(task^.id, time, arrival);
time := time + task^.arrival time;
END;

END;
END;

PROCEDURE initialize;

VAR
temp : taskptr;
templ : taskptr;
top : taskptr;
i : INTEGER;

BEGIN
clock :- 0;
totpreempt := 0;
tot-roll : 0;
tot-dead : 0;
tot-kill : 0;
tottasks := 0;
tot-meet = 0;
tot rf := 0;
new(temp);
temp^.id : e;temp^.task-type := event-driven;
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temp . arrival Itime :=ROUND (random*max -time);
temp'.exec time :=ROUND(random*max -exec -time) + 1;
temp .deadline :ROUND(df*teMpA .exec-ti'me);
temp^.priority :=ROUND(random*maxpriority);
temp^ .resource -list := resource(temp .exec-time);
top := temp;

FOR i := 2 TO max-task DO
BEGIN
new(templ);
templv.id := i;
IF i <= 16 THEN templ-.task -type 2= time-driven
ELSE templA.task_type := event -driven;
IF temp1A.task type =time-driven THEN
templ JA arrival-time :=ROUND (random*max.yeriod)
ELSE
templ . arrival time 2=ROUND( random*max time);
templ'.exec time 2=ROUND(random*max exec time) + 1;
templ*A .deadline :=ROUND(df*temp1l .exec time);
templA.priority 2=ROUND(random*max-priority);
temp1 .resource list :=resource(templ^.exec-time);
temp-.next := tempi;
temp :tempi;
END;

tempA.next :NIL;

taski 2 top;
task2 :=taskl-.next;
task3 2=task2A.next;
task4 2=task3A.next;
taskS :=task4A.next;
task6 :=task5A.next;
task7 :=task6A.next;
task8 :=task7^.next;
task9 :=task8'.next;
tasklO : task9A.next;
taskil 2=tasklO^.next;
taskl2 :=task11 .next;
taskl3 :=task12 .next;
taskl4 2=taskl3".next;
task15 :=task14.next;
taskl6 :=task15 .next;
taskl7 :=taskl6.next;
taskl8 :=task17A.next;
taskl9 :=task18A.next;
task2O taskl9-.next;

tasklA.next 2=NIL;
task2A.next :=NIL;
task3A.next :=NIL;
task4^.next :=NIL;
task5A.next :=NIL;
task6A.next :=NIL;
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task7 .next :NIL;
taskV~next :=NIL;
task9 .next :=NIL;
task1OV.next :NIL;
taskll^.next :NIL;
taskl2^.next :NIL;
taskl3 .next :=NIL;
task14 .next :NIL;
task15^.next :NIL;
taskl6'^.next :NIL;
taskl7^.next :NIL;

taskl8A.next :NIL;
taskl9 .next :=NIL;
task2O^.next :=NIL;
new(event list);
event list-.event :=arrival;
event list-.time :=taskl^.arrival time;
event list^.id := 1;
event-list^.next := NIL;

create arrivals (task2);
create arrivals (task3);
create arrivals (task4);
create arrivals (task5);
create arrivals (task6);
create arrivals (task7);
create arrivals(task8);
create arrivals(task9);
create arrivals(tasklO);
create arrivals(taskll);
create arrivals(taskl2);
create arrivals(taskl3);
create arrivals(taskl4);
create arrivals(taskl5);
create -arrivals(taskl6);
create -arrivals(taskl7);
create arrivals(taskl8);
create arrivals(taskl9);
create-arrivals(task2O);

FOR i := 0 TO max-resource DO
item-table[i] := max-task + 1;

END;

FUNCTION pop event : eventptr;

BEGIN
pop_.event :=event-list;
event-list :=event-list^.next;
END;

PROCEDURE defer (task : taskyptr);
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VAR
temp s taskptr;
last : taskptr;

BEGIN
temp :=queue;
last :=queue;
WHILE (temp".priority > task".priority) AND

(tempA.next <> NIL) DO temp := temp^.next;
IF (temp^.priority = task^.priority) AND

(temp-.status" .deadline > task" status" deadline) THEN
BEGIN
task-.next :last".next;
lastA.next :task;

END
ELSE

BEGIN
taskA.next 2=temp"*.nex,,

temp".next :task;

END;
END;

PROCEDURE gen-stat (task : task-ptr);

VAR
temp : statusptr;

BEGIN
new(temp);
temp-.deadlile :=clock + taskA.deadiine;
tempA.locationl: task".resource list;
temp-.num -roll :=0;
temp-.numpreempt := 0;
temp-.arrival := clock;
temp".time -left :=task".exec-time;
temp".time-spelt :0;

task".status := temp;
END;

FUNCTION task-for (id 2INTEGER) :taskyptr;

BEGIN
CASE id OF

1 : task for =taski;

2 : task for 2=task2;
3 : task for :=task3;
4 task for :=task4;
5 task-for :=task5;
6 :task for 2=task6;
7 :task for =task7;

8 : task-for :=task8;
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9 : task for :=task9;
10 : task~for :=tasklO;
11 : task-for 3=taskil;
12 : task-for :=taskl2;
13 : task-for 3=taskl3;
14 : task -for :=taskl4;
15 : task -for 3=taskiS;
16 : task for :taskl6;
17 : task7-for 3=taskl7;
18 : task-for :taskl8;
19 : task7-for :taskl9;
20 : task-for :=task20;
END;

END;

PROCEDURE roll-back (task : taskyptr;
id : INTEGER);

VAR
stat : statusyptr;
templ,temp2 : resourceptr;

BEGIN
tot roll := tot roll + 1;
stat := task-.stEatus;
stat^.num roll := stat^.num roll + 1;
temp. := Eask .resource listE;
WHILE templA.id <> id DO0 templ := templ^.next;
temp2 := templ;
WHILE temp2 <> NIL DO

BEGIN
IF item table(temp2^.id] =task-.id THEN

item -table[temp2 .id] 3=max-task + 1;
temp2 := temp2 .next;
END;

stat^.location :=templ;
stat^.time -left 3=task'.exec -time - stat' location-.time;
stat . time spent :=stat . locationA time;
END;

PROCEDURE flush item-table;

VAR
temp : resourceyptr;

BEGIN
temp := queueA.resource-list;
WHILE temp <> NIL DO

BEGIN
item -table~tempA id] := max-task + 1;
temp :=temp^.next;

END;
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END;

PROCEDURE printstatus (status : statusptr);

BEGIN
IF clock < status^.deadline THEN tot-meet := tot-meet + 1
ELSE tot-dead := tot-dead + 1;
tot tasks := tot tasks + 1;
END;

PROCEDURE put nextevent;

VAR
stat : statusptr;

BEGIN
stat := queue^.status;
IF stat^.location = NIL THEN

BEGIN
IF event list = NIL THEN

put event(queue^.id,stat^.time left + clock,departure)
ELSE

BEGIN
IF stat^.time left + clock <= event list^.time THEN
put event(queue^.id,stat^.timeleft +

clock,departure);
END;

END
ELSE

BEGIN
IF event list-.time >= clock + stat^.locationA.time THEN

put event(queue^.id,clock +
stat^.location^.time,request)

END;
END;

FUNCTION taskinqueue (id : INTEGER) : BOOLEAN;

VAR
temp : taskyptr;

BEGIN
task in queue := FALSE;
temp := queue;
WHILE temp <> NIL DO

BEGIN
IF temp^.id = id THEN taskinqueue : TRUE;
temp := temp^.next;
END;

END;

PROCEDURE processarrival (id : INTEGER);
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VAR
task -stat : statusyptr;
qstat : statusptr;
task : taskjptr;

BEGIN
IF task in,.queue(id) THEN

BEGIN
tot kill := tot-kill + 1;
put next-event;
END

ELSE
BEGIN
task := task-for(id);
gen -stat(task);
IF queue = NIL THEN

BEGIN
put -event (id, clock, request);
queue := task;
queue^.next := NIL;
END

ELSE
BEGIN
IF task^.priority < queue-.priority THEN

BEGIN
defer(task);
put next-event;
END_

ELSE
BEGIN
task stat := task .status;
qstat :- queuel.status;
IF (task .priority = queue-.priority) AND
(task statA.deadline >= qstat'.deadline) THEN

BEGIN
defer(task);
put next-event;
END-

ELSE
BEGIN
taskA.next := qiaeue^.next;
queue^.next := task;
task :=queue;
queue :=queueA.next;
totpreempt :- tot-preempt + 1;
defer(task);
put -event(queu& .id,clock,request);
END;

END;
END;

END;
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END;

PROCEDURE process-departure;

BEGIN
printstatus(queue^.status);
flush item-table;
queue := queue^.next;
IF queue <> NIL THEN

BEGIN
put next event;
END; -

END;

PROCEDURE roll-forward (task : task ptr);

VAR
templ : taskptr;

BEGIN
tot rf := tot rf + 1;
templ : queue;
WHILE templ^.next^.id <> task^.id DO templ := templA.next;

templ^.next := templ.next^.next;
task^.next := queue;
queue := task;
END;

FUNCTION no-conflict (task : task ptr) : BOOLEAN;

VAR
temp : reerceptr;

BEGIN
no conflict := TRUE;
temp := task^A.statusA.location;
WHILE temp <> NIL DO

BEGIN
IF (item table(temp^.id] <> maxtask + 1) THEN

no conflict-:= FALSE;
temp := temp^.next;
END;

END;

PROCEDURE processrequest;

VAR
q_stat : status ptr;
task : taskptr;

BEGIN
q-stat := queue^.status;
q_stat^.time_spent := q_stat^.time_spent +



82

qstat . location . time;
qstat .time -left := queueA.exec-time -qstat^.time spent;
IF item table~qstat^.1ocation^.id] =max-task + 1 THEN

BEGIN
item-table~qstat .location- .id] :=queue' .id;
qstat .location := qstat'.location-.next;
put next-event;
END-

ELSE
BEGIN
task := task-for(item table(qstat^'.location^.d)
IF (no conflict(task)) AND (task^.status-.time left +

cloc~k + qstat^.time-left < qstat-.deadline) THEN
BEGIN
roll-forward(task);
put next-event;
END-

ELSE
BEGIN
roll back(task,c~stat . location . id);
itemC-table[qstat- .location- .id] := queue^ .id;
qstat .location : = qstat^.location . next;
put next event;
END;,

END;
END;

PROCEDURE execute;

VAR
event :eventptr;

BEGIN
WHILE event-list <> NIL DO

BEGIN
event :=pop event;
clock :=event'.time;
CASE eventA.event OF

arrival : process-arrival(eventA.id);
departure : process -departure;
request : process_request;
END;

END;
END;

BEGIN (* ---main---*
cc := random; cc:= random;
WRITE('enter df: ');
READLN(df);
WRITE('enter max-Period: 1);
READLN(maxperiod);
WRITE('enter run-time:')
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READLN (run -time);
ASSIGN(out, 'c:\tp\programs\out.dat');
REWRITE(out);
initialize;
new(queue);
first-event := pop event;
queue := task-for(first-eventA.id);
queue&.next := NIL;
clock := first event .time;
gen-stat(queue);
put event( first-event . id,clock,request);
exec~ute;
print-final-status;
END.



APPENDIX B
PROGRAM MODIFICATIONS

The following procedure (PROCESSREQUEST) should replace the
corresponding procedure in the simulation program in order
the simulate ROLL-BACK:

PROCEDURE process-request;

VAR
q_stat : statusptr;
task : task ptr;

BEGIN
q_stat := queue^.status;
q_stat^.timespent := qstatA.time spent +

q_stat^.locationA.time;
q_statA.time left := queueA.exec time - q_statA.time spent;
IF item table[qstatA.location^.d = max-task + 1 THEN

BEGIN
item table[q_statA.location^.id] :=queueA.id;
qstat^.location := qstatA.locationA.next;
put nextevent;
END

ELSE
BEGIN
task := taskfor(itemtable[q_stat^.location^.id]);
rollback(task,qstatA.location^.id);
itemtable[q_stat^.location^.id] :- queueA.id;
q_statA .location :- q_stat^.locationA.next;
put nextevent;
END;

END;

The following procedures (ROLLBACK, PROCESSREQUEST) should
replace the corresponding procedures in the simulation
program a simulate RESTART:

PROCEDURE rollback (task : task-ptr;

id : INTEGER);

VAR

84
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stat : statusptr;
templ,temp2 : resourceptr;

BEGIN
tot-roll := tot 'roll + 1;
stat := task--siatus;
statA'.num roll := stat .num roll + 1;
templ := Eask^.resource list;
WHILE tempi <> NIL DO

BEGIN
IF item table[temp1 .id] =task^.id THEN

item -table~templ^.id] max-task + 1;
tempi := temp1A.next;
END;

statA.location :=task^.resource -list;
stat .time left :taskA.exec time - stat.locationA~.time;
stat . time spent 2=statA~. location . time;
END;

PROCEDURE process-request;

VAR
qstat : statusptr;
task : taskyptr;

BEGIN
qstat := queueA.status;
q~statA.time spent :q~statA.time spent +

qstat . location . time;
qstat .time-left 2=queueA*.exec-time - qstatA.time spent;

IF item table(qstat".location .id] =max-task + 1 THEN
BEGIN
item table(qstatA .locationA .id] :=queueA .id;
q-stat' . location := c~statA .location*A .next;
put next-event;
END-

ELSE
BEGIN
task :- task_for(item-table[qstatA .locationA~.id]);
roll -back(task,qstatA.locationA.id);
item -table(c~stat .1ocationA.id] := queue-.id;
qstat . location :-= qstatA locationA ,.next;
put next event;
END;,

END;



APPENDIX C
SIMULATION TASK SETS

The following tables contain the values of the

individual task parameters (period/arrival, execution time,

deadline, and priority) for the simulation task sets A, B,

and C.

Table C-1 contains the parameter values of the time-

driven tasks for task set A; Table C-2 contains the

parameter values for the Event-driven tasks of task set A.

Table C-3 contains the parameter values of the time-driven

tasks of task set B; Table C-4 contains the parameter values

of the event-driven tasks of task set B. Table C-5 contains

the parameter values of the time-driven tasks of task set C;

Table C-6 contains the parameter values of the event-driven

tasks of task set C.

86
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Table C-I Parameters for the Time-driven
Tasks of Task Set A

Task ID Period Execution Time Deadline Priority

2 1456 7 2 4

3 538 5 14 9

4 2965 8 16 2

5 4507 1 2 6

6 5856 13 26 7

7 773 13 26 5

8 7058 10 20 9

9 2413 4 8 6

10 538 3 6 8

11 6057 4 8 6

12 6230 15 30 3

13 5362 14 28 7

14 485 9 18 7

15 8343 5 10 7

16 7800 9 18 7

Table C-2 Parameters for the Event-driven

Tasks of Task Set A

Task ID Arrival Execution Time Deadline Priority

1 0 1 2 9

17 18086 9 18 3

18 3608 15 30 5

19 16143 10 20 1

20 13833 9 18 1

.. . . . , l l l I I I
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Table C-3 Parameters for the Time-driven
Tasks of Task Set B

Task ID Period Execution Time Deadline Priority

2 738 8 16 1

3 2220 13 26 3

4 7445 1 2 1

5 87 13 26 7

6 773 13 26 5

7 7058 10 20 9

8 2413 4 8 6

9 538 3 6 8

10 6057 4 8 6

11 6230 15 30 3

12 5362 14 28 7

13 485 9 18 7

14 8343 5 10 7

15 7800 9 18 7

16 8139 9 18 3

Table C-4 Parameters for the Event-driven

Tasks of Task Set B

Task ID Arrival Execution Time Deadline Priority

1 628 14 28 2

17 3608 15 30 5

18 16143 10 20 1

19 13833 9 18 1

20 7899 6 12 1
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Table C-5 Parameters for the Time-driven
Tasks of Task Set C

Task ID Period Execution Time Deadline Priority

2 1472 13 26 3

3 3497 5 10 8

4 824 11 22 6

5 2821 16 26 8

6 3509 3 6 3

7 2439 12 24 7

8 3182 13 26 4

9 241 4 8 7

10 1260 11 22 7

11 1887 7 14 1

12 2694 2 4 9

13 1225 2 4 1

14 1951 2 4 9

15 3711 9 18 3

16 389 12 24 1

Table C-6 Parameters for the Event-driven

Tasks of Task Set C

Task ID Arrival Execution Time Deadline Priority

1 17221 4 8 3

17 788 4 8 0

18 16352 10 20 3

19 7218 6 12 6

20 9139 15 30 2
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