
(,.. FI1 F COPY ()

RADC-TR-89-259, Vol II (of twelve)
Interim Report
October 1969

AD-A218 154

NORTHEAST ARTIFICIAL
INTELLIGENCE CONSORTIUM ANNUAL
REPORT - 1988 Discussing, Using, and
Recognizing Plans (NLP)

Syracuse University

Stuart C. Shapiro and Beverly Woolf OTIC
! ELECTE 1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Mi. effort wa funded pa rtlly by the Laboratory Directors fund.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

90 02 20

S

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the Naional Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-259, Vol II (of twelve) has been reviewed and is approved
for publication.

APPROVED: L~'

SHARON M. WALTER
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: ffvM W2'.

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

UNCLASSIFIED
$ECURITY CLAssiFICATION or. TIlS PAGE

REPORT DOCUMENTATION PAGE OM~t00I
I a. REPORT SECURITY CLASSIFICATION I b. RESTRICTIVE MARKINGS
UNCLASSIFIED NIA
28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT
N/A Approved for public release;
2b. DECLASSIFICATION/IDOWNGRADING SCHEDULE distribution unlimited.
N/A____________________ _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A ___________VoI (f wavp

Go. NAME OF PERFORMING ORGANIZATION 1Gb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Northeast Artificial Of p0ilcabe)
Intelligence Consortium (NAIC) Rome_____ Air___ Development____Center ___________

Ic. ADDRESS (City, State, a&W ZIP Co*e) 7b. ADDRESS (City, State, and ZIP Code)
Science & Technology Center, Em 2-296
111 College Place, Syracuse University
Syracuse NY 13244-4100 ________Griffiss AFB NY 13441-5700
Ba. NAME OF FUNDING I/SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION I(if &Wpkable)
Rome Air Development Center COES F30602-85-C-0008
Be. ADDRESS (City. State, and Z1P Code) 10, SOURCE OF FUNDING NUMBERS

ELEMENT NO. NO. NO ACCESSION NO.

Griffiss AFB NY 13441-5700 62702F I 5581 ITS 27 r 13
11. TITLE (Include Secwrfly Oasutlatioe)
NORTHEAST ARTIFICIAL IN~TELLIGENCE CONSORTIUM ANNUAL REPORT -1988 Discussing, Using,
and Recognizing Plans (NLp)
12. PERSONAL. AUTHOR(S)
Stuart C. Shapiro, Beverly Woolf

13a. TPOFRPT13b. TIME COVERED 14. DATE OF REPORT (Yea, hMalth Day) 15 . PAGE COUNT

1,. ASAC(COSAtieo CODES It. SUBJECT TEM Cnlneo eenf A~u n yby block number)

The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems
Commuand, Rome Air Development Center, and the Office of Scientific Raseasrch. Its purpose is
to conduct pertinent research in artificial intelligence and to perform activities ancillary
to this research. This report describes progress that has been made in the fourth year of
the existence of the NAIC on the technical research tasks undertaken at the member universi-
ties. The topics covered in general are: versatile expert system for equipment maintenance,
distributed AI for communications system control, (a utomatic photointerpretation, time-
oriented problem solving, speech understanding systems,)koledge base maintenance, hardware
architectures for very large systems, knowledge based ;'easeoning and planning, and a knowledge
acquisition, assistance, and explanation system.

The specific topic for this volume is the recognition of plans expressed in natural language,
followed by their discussion and use.

20. OISTRIGUTION/AVAILABIUITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O UNCLASSIFIEDAUNLIMITEO (3 SAME AS RPT. C3 OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL L22b. TELEPHONE (Include Arts Code) I22c. OFFICE SYMBOL
Sharon M. Walter 30-3577 RD

DO F"t 1473. JUN 84 Pm'vidw edlfos areotbolot. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

Item 10. SOURCE OF FUNDING NUHBERS (Continued)

Program Proj ect Task Work Unit

Element Number Number Number Number

62702F 5581 27 23

61102F 2304 J5 01
61102F 2304 J5 15
33126F 2155 02 10
61101F LDYP 27 01

Item 16. SUPPLEMENTARY NOTATION (Continued)

Office of Sponsored Programs.

UNCLASSIFIED

m mmmmm mmmmms i• illlmnam liimi• ====moodl

2 DISCUSSING, USING, AND RECOGNIZING PLANS

Report submitted by:

Dr. Stuart C. Shapiro, Principal Investigator
Dr. Beverly Woolf, Principal Investigator

Deepak Kumar, Graduate Research Assistant
Syed S. Ali, Graduate Research Assistant

Penelope Sibun, Graduate Research Assistant
David Forster, Graduate Research Assistant

Scott Anderson, Graduate Research Assistant

Department of Computer Science
SUNY at Buffalo

226 Bell Hall
Buffalo, NY 14260

Computer and Information Science
Graduate Research Center
University of Massachusetts

Amherst, MA 01003

Accession For

NTIS GRA&I
DTIC TAB
Unannouncod

'Juwt. If Icat Ion-

By-

Distrit.ut ion/

Aval-. billty Codog

Avai aal

TABLE OF CONTENTS

2.1 INTRODUCTION 5
2.1.1 Objectives 5
2.1.2 Overview 6

2.2 MOTIVATIONS UNDERLYING OUR REPRESENTATIONS 9
2.2.1 Motivation for intensional representations of plans 9

2.3 INTENSIONAL REPRESENTATIONS 11
2.3.1 Planning is different from inference 11
2.3.2 The distinction between "acts" and "actions" 12
2.3.3 Primitive and Complex actions 13
2.3.4 Pre- and post-conditions 14
2.3.5 Types of actions 15
2.3.6 Modeling external effects of actions 16

2.4 THE PLANNING PARADIGM 17
2.4.1 The acting executive 17

2.5 SYNTAX AND SEMANTICS OF CONTROL ACTIONS 19

2.6 USING PLANS 23
2.6.1 The natural language front-end to a blocksworld 23
2.6.2 An annotated example 26
2.6.3 Discussing plans 32
2.6.4 Another Example 33

2.7 STRATEGIC PLANNING FRAMEWORK 45

2.8 PLAN RECOGNITION 49

2.9 DISCUSSION 51

2.10 CONCLUSION 53

2.11 TRIPS FUNDED BY RADC 59

2.12 NLP PUBLICATIONS IN 1988 61

2.13 CONFERENCES PARTIALLY SUPPORTED BY RADC IN 1988 63

3

2.A SNePS-2 USER'S MANUAL 65
2.A.1 Introduction... 67
2.A.2 SNePSUL Commands................................... 70
2.A.3 SNIP: The SNePS Inference Package......................... 78

2.B REFERENCE TO SITUATIONS 83
2.B.1 Introduction... 86
2.B.2 Types of Reference.................................... 87
2.B.3 The Definition of Situations.............................. 88
2.B.4 Processing.. 90
2.B.5 Conclusion...92
2.B.6 References.. 93

4

2 DISCUSSING, USING AND RECOGNIZING PLANS

2.1 INTRODUCTION

This project, also known as the Natural Language Planning project, is a joint project of
a research group at SUNY at Buffalo (UB), led by Dr. Stuart C. Shapiro, and a research
group at the University of Massachusetts at Amherst led by Dr. Beverly Woolf. The project
is devoted to the investigation of a knowledge representation design compatible with the
intensional knowledge representation theory previously developed by Dr. Shapiro and his
co-workers and capable of providing a natural language interacting system with the ability
to discuss, use, and recognize plans. The UB group is responsible for: the development,
improvement, and maintenance of the knowledge representation, reasoning, and natural
language processing software to be used in the project; for developing a representation of
plans and associated concepts; and for developing basic techniques for discussing plans in
English, and for plan recognition. The Massachusetts group is responsible for analyzing the
chosen domains, mainly the domain of tutoring interactions, for testing the developments
of the Buffalo group by trying to apply them to these domains, and for suggesting changes
to the representation of plans. With the support of the NAIC and of Texas Instruments,
both groups are using TI Explorers to do their work.

2.1.1 Objectives

The objectives of this project are to:

1. design a representation for plans and rules for reasoning about plans within an estab-
lished knowledge representation/reasoning (KRR) system; enhance the KRR system
so that it can act according to such plans;

2. write a grammar to direct an established natural language processing (NLP) system to
analyze English sentences about plans and represent the semantic/conceptual content
of the sentences in the representation designed for objective (1); the resulting NLP
system should be able to:

(a) accept sentences describing plans

(b) add the plans to its "plan library"

(c) answer questions about the plans in its plan library

(d) accept sentences describing the actions of others, and

(e) recognize when those actions constitute the carrying out of a plan in its plan
library.

5

The KRR system to be used is SNePS[18], and the NLP system to be modified for this pur-
pose is CASSIE[22]. The UB group is responsible for enhancing SNePS/CASSIE according
to the objectives listed above, using the Blocksworld as an initial development/testing do-
main. The U. Mass. group is responsible for testing the enhanced system in the specific
domains of tutoring and space launch narratives.

2.1.2 Overview

This report describes in detail how the objectives outlined above are being met. We dis-
cuss the design, implementation, and use of representations for plans to model a cognitive
agent whose behavior is driven by its beliefs, desires, and intentions. We will give the mo-
tivations underlying our representations for plans, goals, acts, actions, pre-conditions and
post-conditions. These representations are designed to satisfy constraints posed by the is-
sues involved in fulfilling the tasks mentioned above (natural language understanding, belief
representation, planning and problem solving, plan recognition, and text generation).

SNePS, the knowledge representation/reasoning system being used for this project,
and its associated Generalized Augmented Transition Network (GATN) grammar inter-
preter/compiler was implemented in Franz Lisp when this project started. Significant steps
have been taken to reimplement the software, now called SNePS-2, in Common Lisp. This
was crucial for cooperation between the UB and UMass groups, since both are using Com-
mon Lisp on TI Explorer Lisp Machines, but when 1988 began SNePS-2 was still missing
SNIP, the inference package that carries out reasoning, and the GATN interpreter/compiler.
With the help of the UMass group, the UB group has now completed the implementation
of the SNePS-2 version of the GATN interpreter/compiler, and enough of SNIP-2 has been
implemented (a superset of Horn Clause logic) to be useable by both groups. The current,
though still incomplete, draft of the SNePS-2 User Manual is included as an appendix to
this report.

Overview of the system

Our work is proceeding by implementing, experimenting with, and revising a system called
SNACTor. SNACTor begins with an empty knowledge-base. In the role of informant, we
interact with SNACTor using English sentences about the domain, instructing SNACTor
about the various actions that it can perform, and how to solve problems in that domain.
The input sentences are analyzed using a domain-specific grammar, the results of which are
new beliefs in the knowledge-base. A natural language generation grammar takes the new
beliefs and expresses them back in English to indicate SNACTor's understanding to the
informant. Requests to perform some action are sent to an acting executive that may then
generate and execute a plan to fulfill the request. The informant may also ask questions
about plans and the way the system would solve various problems.

A Generalized ATN grammar [19] is used for analyzing input sentences and for generating
English responses. SNACTor currently operates in a Blocksworld domain.

6

During FY87-88 the UMASS group developed a hybrid architecture for reasoning about
plans in multi-sentential narratives. The architecture contains both a strategic planning
framework, based on the SNePS-2/Cassie system described above, and a 'reactive-planning'
framework. It uses a deep representation of general world knowledge, objects and human
goals to guide comprehension of text and recognition of plans. We have also generated
an architecture for disambiguating example- or case- based anaphora, such as in the word
"situation" used to refer to a set of events or objects. Each of these research areas is
discussed below.

7

2.2 MOTIVATIONS UNDERLYING OUR REPRESENTATIONS

Our goals are to design and implement representations for plans to model a rational cog-
nitive agent whose behavior is driven by its beliefs, desires, and intentions. We now give
the motivations underlying our representations of plans, goals, acts, actions, pre-conditions
and post-conditions. As mentioned before these representations are designed to satisfy
constraints posed by issues in natural language understanding, belief representation, plan-
ning and problem solving, plan recognition, and text generation. A preliminary version of
this work appears as an extended abstract in [20]. Since then, there have been changes in
the design of our representations and planning techniques used. A detailed account of the
syntax, and semantics of our earlier representations can be found in [10].

2.2.1 Motivation for intensional representations of plans

Georgeff (1987) mentions the importance of "considering planning systems as rational
agents that are endowed with the psychological attitudes of belief, desire, and intention"
and the problem of using appropriate semantics that give an intensional account of these
notions. SNePS is an intensional propositional semantic network system [22] that has been
used for cognitive modeling, belief representation and reasoning, belief revision, and natu-
ral language understanding. A basic principle of SNePS is the Uniqueness Principle-that
there be a one-to-one mapping between nodes of the semantic network and concepts (men-
tal objects) about which information may be stored in the network. These concepts are
not limited to objects in the real world, but may be various ways of thinking about a single
real world object, such as The Morning Star vs. The Evening Star vs. Venus. They may be
abstract objects like properties, propositions, Truth, Beauty, fictional objects, and impos-
sible objects. They may include specific propositions as well as general propositions, and
even rules. Any concept represented in the network may be the object of propositions rep-
resented in the network giving properties of, or beliefs about it. For example, propositions
may be the objects of explicit belief (or disbelief) propositions. Rules are propositions
with the additional property that SNIP, the SNePS Inference Package, [13, 21] can use
them to drive reasoning to derive additional believed propositions from previous believed
propositions.

Plans are also mental objects. We can discuss plans with each other, reason about them,
formulate them, follow them, and recognize when others seem to be following them. An
Al system, using SNePS as its belief structure, should also be able to do these things. Re-
quiring that the system be able to use a single plan representation for all these tasks puts
severe constraints on the design of the representation. For instance, understanding natu-
ral language dialogue involving plans requires building plan representations from natural
language input. In natural language, the explication of plans generally takes the form of a
sequence of rather simple rules (e.g., "If you see John, tell him I'm looking for him," "To
pick up a block, you must first clear it"). These rules can contain indefinite and definite

9

noun phrases and anaphoric references corresponding to typed plan variables. The full
plan, including preconditions and effects of its component acts, must be constructed from
such a sequence of rules.

Once constructed, a plan must be usable as a specification for the behavior of the agent,
and must also be usable by the agent to understand other agents' actions. We are not
treating plans as schedules of events for third parties (or multiple agents) [11].

10

2.3 INTENSIONAL REPRESENTATIONS

We now give an overview of our representations and the motivations that led to them. We
use "goal," "plan," "act," and "action" in particular ways, and distinguish among them.
A goal is a proposition in one of two roles--either the role within another proposition that
some plan is a plan for achieving that goal (making it true in the then current world), or
the role as the object of the act of achieving it.

2.3.1 Planning is different from inference

We view a plan as a structured individual mental concept, i.e., it is not a proposition or
rule that might have a belief status. A plan is a structure of acts. (Among which may be
the achieving of some goal or goals.) The structuring syntax for plans is a special syntax,
differing, in particular, from that used for structuring reasoning rules. This is important
both for semantic clarity and to allow a system to be implemented that can both reason and
act efficiently. For contrast, consider standard (non-concurrent) Prolog or some arbitrary
production rule system. Such a system relies on a semantic ambiguity between the logical
& and the procedural and then. For example,

(2.3.1) p(X): -q(X),r(X)

either means "For any X, p(X) is true if q(X) and r(X) are true" or it means "For any
X, to do p on X, first do q on X and then do r on X." Guaranteeing the proper ordering
of behavior in the procedural interpretation is only possible by giving up the freedom to
reorder, for efficiency, the derivations of q(X) and r(X) in the logical interpretation. The
example is made more striking by appending

(2.3.2) q(Y) -s(Y), t(Y)

(2.3.3) r(Z) -s(Z),u(Z)

Under the logical interpretation, it would be efficient for the system to try finding true
instances of .(X) only once, instead of once when rule 2.3.2 is being used and once when
rule 2.3.3 is being used. This is the way SNIP has been implemented (see [13]). However,
under the procedural interpretation, it is perfectly reasonable to perform s(X) twice for
a given X, so the behavior that optimizes logical reasoning destroys procedural rule fol-
lowing. The fact that SNIP is optimized in this way for reasoning, and so cannot use its
reasoning rules as procedural rules, was what originally motivated this project to design a
planning/acting component for SNePS.

Believing is a state of knowledge; acting is the process of changing one state into another.
Reasoning rules pass a truth or a belief status from antecedent to consequent, whereas acting
rules pass an intention status from earlier acts to later acts. A reasoning rule can be viewed
as a rule specifying an act-that of believing some previously non-believed proposition, but

11

the believe action is already included in the semantics of the propositional connective, and,
as pointed out above, there is no reason to believe a proposition more than once (unless
it's disbelieved in the interim). The distinction between "believing and acting" in SNePS
was first outlined in [14].

2.3.2 The distinction between "acts" and "actions"

Lifschitz (1987) attempts to give a semantics of STRIPS by viewing STRIPS as a form
of logic and STRIPS operators as rules of inference in this logic. For us, an act is a
structured individual mental concept of something that can be performed by various actors
at various times. This is important for plan recognition-we must be able to recognize
that another agent is performing the same act that, if we were performing it, we would
be in the midst of carrying out one of a certain number of plans. By the Uniqueness
Principle, a single act must be represented by a single SNePS node, even if there are several
different structures representing propositions that several different actors performed that
act at different times. This argues for a representation of propositions more like that of
Almeida [1], rather than like more traditional case-based or frame-based representations.
In what we are calling "more traditional representations", there is a structure representing
the proposition with slots or arcs to the actor, the action, the object, etc. For example, to
represent the proposition,

(sl) John walked to the store.

there would be four representational symbols, one for John, one for walking (or PTRANS-
ing), one for the store, and one for the proposition itself, and the first three would be
connected with the fourth in nearly similar ways at similar distances (measured by path
length of arcs or slots). Almeida, however, took seriously that one could follow (sl) by

(s2) Mary did too.

and understand by that that John and Mary performed the same act-that of walking to
the store. The representation for (sl) would have to introduce a fifth symbol, for walking
to the store, which would be connected to the representation of the proposition at the same
distance as the representation of John. Now, however, the symbols for walking and the store
would be further from the symbol for the proposition. When (s2) is processed, the symbol
representing the proposition that Mary walked to the store would be connected to the same
symbol for walking to the store used for (sl). This symbol represents what we are calling
an act, and using it in the representation of both propositions follows by the Uniqueness
Principle from interpreting (sl) and (s2) as saying the John and Mary performed the same
act. Moreover, if the network contains the representation of any plan that involves walking
to the (same) store, that same act node would be used in the structure representing that
plan. Thus, John and Mary are directly connected to a plan that they may be engaged in.

An action is that component of an act that is what is done to the object or objects. In
(sl) and (s2), the action is walking. Achieving some goal is an act whose action is achieving,

12

and whose object is the particular proposition that is serving as the goal. Unfortunately
for our remaining discussion, but consistently with what has gone before, one can only
perform something that is an act (an action on an appropriate object), so instead of saying
"performing an act whose action is z," we will say "performing the action z," and hope
the reader will note the distinction between acts and actions.

Our representation of an act is a node with an ACTION arc to a node that represents
the action, and OBJECT1, ... , OBJECTN arcs to the required objects of the action. Thus,
the general syntax of an act is

Syn. 1: act ::= ACTION: action
OBJECT1: objectl

OBJECTN: objectN

Sem. 1: act is a structured individual node representing the act whose action is action
and objecti, ... , objectN are the objects of action. For example, the SNePSUL (the
SNePS command interpreter language) command for building a node representing the
act of saying "FOO" is:

(build action say objecti FO)

2.3.3 Primitive and Complex actions

Any behaving entity has a repertoire of primitive actions it is capable of performing. We
will say that an act whose action is primitive is a primitive act. That an action is primitive
is a belief held by SNACTor after we tell it. The belief is represented in the form of an
assertion saying that the action is a member of the class of primitive actions. This is similar
to the MEMBER-CLASS proposition used by CASSIE [22]. For example, the SNePSUL
command for asserting that saying is a primitive action is

(assert member say class primitive)

Non-primitive acts, which we will term complex, can only be performed by decomposing
them into a structure of primitive acts, the syntax of which is the same procedural syntax
a used in plans. That some plan p is a plan for carrying out some complex act a, is a
proposition we can assert to SNACTor using the following representation:

Syn. 2: plan-act-proposition ::= ACT: a
PLAN: p

Sem. 2: plan-act-proposition is a proposition node that represents that p is a plan for
carrying out act a.

p is a structure of acts. The structuring syntax for plans is described in terms of control
actions which are described later. That some plan p is a plan for achieving some goal g is
also a proposition we can assert to SNACTor:

13

Syn. 3: plan-goal-proposition GOAL: g
PLAN: p

Sem. 3: plan-goal-proposition is a proposition node that represents that p is a plan for
achieving goal g.

g is expressed as a domain specific proposition. Examples of these are given in a later
section (see 2.5).

When the time comes for the agent to perform a complex act, it must find a plan
that decomposes it. Using the above representations SNACTor may be told such plans.
SNACTor is also capable of doing classical planning in case it does not already know any
decompositions for a complex act. This is discussed later.

2.3.4 Pre- and post-conditions

The remaining notions we must consider are preconditions and effects (postconditions).
Whether we think of them as pre- and post-conditions of plans or of acts is irrelevant since
plans are kinds of acts. A pre-(post-)condition is just a proposition that must be (will be)
true or false before (after) an act is performed. But the proposition that a proposition p is
false is itself a proposition, so we can say that a pre-(post-)condition is a proposition that
must be (will be) true before (after) an act is performed. (We will rely on SNeBR, the
SNePS Belief Revision System [3] to remove inconsistent beliefs after believing the effects
of an act.) We have thus reduced the storage of pre- and post-conditions to two simple
kinds of propositions:

Syn. 4: precondition-proposition ::= ACT: a
PRECONDITION: p

Sem. 4: precondition-proposition is a node that represents that the pre-condition of some
act a is the proposition p.

For example,

(assert forall $block

ant (build member *block class block)
cq (build act (build action pickup objectl *block)

precondition (build property clear object *block)))

is the SNePSUL command to assert that before picking up any block first make sure that
it is clear (i.e. there is nothing on top of it).

Syn. 5: postcondition-proposition ::= ACT: a
EFFECT: p

14

Sem. 5: postcondition-proposition is a node that represents that the post-condition of some
act a is the proposition p.

For example,

(assert forall $block
ant (build member *block class block)

cq (build act (build action pickup objectl *block)

effect (build property holding object *block)))

is the SNePSUL command to assert that after picking up any block, it is being held.
Thus, effects and preconditions of an act are represented in the same way as other beliefs

about other mental objects; we do not need a special data structure (or an operator for-
malism) for acts in which pre- and post-conditions are special fields. Such a representation
also enables us to assert context-dependent effects of actions[27]; i.e., the effects of doing
some action are determined by the context in which the action is performed. For example,

(assert forall ($block $support)
&ant ((build member *block class block)

(build member *support class object)
(build rel on argi *block arg2 *support))

cq (build act (build action pickup objectl *block)

effect (build property clear object *support)))

asserts that if a block is on some support then after you pick up the block the support is
clear. The scope of the context being referred to is the set of beliefs held by the system at
the time the action is about to be performed. Using rules like these, context-dependency is
guaranteed by ensuring that the effect is conditional on the antecedents being true before
the act is performed. This is a more natural way of modeling actions and avoids the need
for specifying multiple operators for doing the same action in different situations, which is
a major criticism of earlier planners[6]. In section 2.6.4 we demonstrate this feature.

2.3.5 Types of actions

We discussed three kinds of acts: a primitive act is unstructured and is in the repertoire of
the agent; a complex act is unstructured-to perform it, the agent must find a plan for it; a
plan is a structured act-the structure determines how the agent performs the component
acts.

The structure of a plan can determine how the agent performs the component acts,
because the structure, itself, is a primitive action.

Primitive actions fall into three classes:

e external actions that affect the world;

9 mental actions that affect the agent's beliefs;

15

* control actions that affect the agent's intentions.

External actions are domain specific actions like pickup, putdown etc. in the Blocksworld.
The two mental actions that we have are believing a proposition, and disbelieving a propo-
sition. Our repertoire of control actions includes sequencing, conditional, iterative, and
achieve actions. A sequencing action represents the agent's intention to perform its object
actions in a given sequence. The conditional and iterative actions are modeled after Dijk-
stra's guarded-if and guarded-loop commands respectively [4]. The achieve action deduces
plans for achieving some proposition and forms the intention of performing one of them.
The conditional and iterative control actions enable the specification of non-linear partial
plans. We can also have an explicit representation of non-linear plans using an appropri-
ate control action. We have also designed a control action that can be used for posting
constraints on plan variables (as in [27]).

2.3.6 Modeling external effects of actions

As mentioned above, external actions are domain specific actions that affect the outside
world. For example, if the agent has an arm and is asked to pick up a block, the arm
actually moves to the block, grasps it, and then lifts it up. Depending on the set of
interfaces provided to the agent (like an arm, a speech synthesizer, etc.) we need to be
able to carry out the action in the external world. This is done by writing Common Lisp
functions that access the external interface. For instance, we can model the external effects
of the 'say' action by driving a speech synthesizer or by simply printing the message on
the screen. The define-primaction function enables us to do this. Thus, to model saying
something by printing it on the screen, we will have

(define-primaction say (n)
"n is the node representinb the act of saying. The node at the
end of objectl arc is printed. choose.ns and pathfrom are
SePS interface functions to access parts of a structured node."
(format t " 'A " (choose.ns (pathfrom 'object1 n))))

Thus when the agent executes the action represented by

(build action say object1 F00)

the above code for say is executed, resulting in 'FOO' appearing on the screen. How an
action gets scheduled to be executed is discussed in the next section. Section 2.6.1 has
some more examples of modeling primitive blocksworld actions.

16

2.4 THE PLANNING PARADIGM

Besides having a current set of beliefs about the world, the system also has beliefs about
plans for achieving goals, and about how complex actions can be decomposed into partial
plans. The overall architecture of the system is similar to that of the PRS system [9]
The acting executive (called an interpreter or a reasoning mechanism in PRS) manipulates
these components. It maintains an acting queue (referred to as a process stack in PRS)
that contains all the scheduled actions to be performed as a part of some plan and so it
represents the system's intentions. The system can also form its own intentions in response
to changing beliefs. SNIP, the SNePS inference package is used for several tasks: to find
plans for complex tasks; as part of the achieve action, to find a plan to achieve some goal;
and also as the truth criterion (also called the question answering procedure, see [5]). Hence,
it is used as the plan decision procedure in our system. SNIP is implemented on a simulated
multi-processing system. In the future, we will be able to do hypothetical reasoning using
SNeBR [2] for state-based plan projection.

2.4.1 The acting executive

We want the system to carry out plans, as well as to discuss them, reason about them, and
recognize them. Certainly, since the system is currently without eyes, hands, or mobility,
its repertoire of primitive actions is small, but, for now, as shown above, we can simulate
other actions by appropriate printed messages. SNACTor, the acting system is composed
of a queue of acts to be carried out, and an acting executive. The queue of acts represents
the system's intentions for carrying out the acts on the queue in that order. Intentions are
formed by either an explicit request from a user to do something, or by committing to a
plan that needs to be executed to fulfill a complex act or a goal. Explicit requests are made
using the perform command. For example,

(perform (build action say FO))

is an explicit request to the system to say 'FOO'. The act is put on the act-queue and the
acting executive takes charge. Currently, the acting executive is the following loop:

17

while act-queue is not empty do
if the first-act on the act-queue has preconditions

and they are not currently satisfied

then insert the achieving of them on the front of the act-queue

else remove the first-act from the act-queue;

deduce effects of first-act,

and insert the believing of them on the front

of the act-queue;

if first-act is primitive
then perform it

else deduce plans for carrying out first-act
(using SNIP and available rules),
choose one of them,
and insert it on the front of the act-queue

end if
end if

end while

Notice that the effects of the act about to be performed are retrieved and scheduled to
be believed before the act is actually performed. This guarantees that proper effects of
the act are retrieved depending on the context that exists at that time. This flexibility
in dynamically determining the effects of acts is what enables us to avoid having multiple
operators for the same action.

When preconditions for an act exist and some of them are found not to be true, we
schedule the achieving of all of them on the queue. The intention to perform the act is
now pushed behind the intention to achieve these preconditions. Once all the preconditions

are achieved, and we are ready to perform the act, they are checked again (just in case
achieving some precondition renders another one false). Later on, we intend to incorporate
critics, that will enable detecting of such conflicts, and more sophisticated reasoning about

plans.
From the above loop, it can be seen that at this stage of our work, we are assuming that

a plan will be found for every complex act, and that every act will be successful. These
assumptions will be removed as we proceed. SNACTor can also be made to do .. assical
planning in case it is not able to find a plan to achieve a goal. This is done in the spirit of
STRIPS[7] by reasoning about effects of actions. As mentioned above, SNeBR can be used
for hypothetical reasoning.

18

2.5 SYNTAX AND SEMANTICS OF CONTROL ACTIONS

We are now ready to examine the syntax and operational semantics of our current set of
control actions.

Syn. 6: sequence ::= ACTION: SNSEQUENCE

OBJECT1: acti
OBJECT2: act2

This means that a sequence act is represented by a node with an ACTION arc to the node,
SNSEQUENCE, an OBJECT1 arc to an act node, and an OBJECT2 arc to another act node.

Sem. 6: act2 is inserted on the front of the act queue, and then actl is inserted in front
of it.

For example, a plan to get a block on a support is to pick it up and then put it down on
the support. This can be derived using the plan-goal-proposition and snsequence as

(assert forall ($block $support)

&ant ((build member *block class block)

(build member *support class object))
cq (build plan (build action snsequence

objectl (build action pickup objectl *block)

object2 (build action putdown
objectl *block object2 *support))

goal (build rel on argi *block arg2 *support)))

Since either or both of actl and act2 can themselves be snsequence acts, we have a general
structure for plans of sequential actions.

Syn. 7: conditional ::= ACTION: SNIF
OBJECT1: {CONDITION: propositioni

THEN: acti}

This means that a conditional act is represented by a node with an ACTION arc to the node,
SNIF, and OBJECT1 arcs to an arbitrary number of nodes, each with a CONDITION arc to a
proposition node and a THEN arc to an act node.

Sem. 7: If no proposition is true, does nothing. Otherwise, arbitrarily chooses one acti
whose corresponding propositioni is true, and puts it on the front of the act queue.
(Based on Dijkstra's guarded if [4].)

For example, an act of saying 'HELLO' contingent upon having permission can be expressed
as

19

(build action snif
objectl (build condition (build have permission)

then (build action say objectl HELLO)))

Syn. 8: iteration ::= ACTION: SNITERATE
OBJECT1: {CONDITION: propositioni

THEN: acti}

Sem. 8: If no proposition is true, does nothing. Otherwise, arbitrarily chooses one acti
whose corresponding propositioni is true, and puts on the front of the act queue a
sequence whose OBJECT1 is acti and whose OBJECT2 is the iteration node itself.
(Based on Dijkstra's guarded loop [4].)

For example, the act of repeatedly saying 'HELLO' contingent upon having 'hello-permission'
and saying 'THERE' contingent upon having 'there-permission' can be expressed as

(build action sniterate
objectl ((build condition (build have hello-permission)

then (build action snsequence
objecti (build action say objectl HELLO)
object2 (build action forget

objectl (build have hello-permission))))
(build condition (build have there-permission)

then (build action snsequence

objectl (build action say objectl THERE)
object2 (build action forget

objectl (build have there-permission))))))

Syn. 9: achieve ::= ACTION: ACHIEVE
OBJECT1: proposition

Sem. 9: If proposition is true, does nothing. Otherwise, deduces plans for achieving propo-
sition, chooses one of them, and puts it on the front of the act queue.

For example, in order to achieve a state in which BLOCKA is clear we'll have the act

(perform (build action achieve
objecti (build property clear object BLOCKA)))

Thus, we can write plans for achieving goals as well as plans for decomposing a complex
act. The domain normally determines the kinds of plans required (i.e., goal-based or act-
decomposition based or both). However, as we will see, in the case of the blocksworld,
and possibly in other domains, it may become hard to distinguish between something that
characterizes a state and something that expresses an act. For example, "Clear BLOCKA"
could be interpreted as a command to perform the act of clearing BLOCKA or a goal to

20

achieve a state in which BLOCKA is clear. We axe still exploring this issue. In any case,
if required, we can model and use both interpretations.

Other control acts may be defined in the future, in particular a parameterized act that
uses a sensory act to identify some object, and then performs some action on the identified
object.

21

2.6 USING PLANS

In this section we will demonstrate how to model actions and do planning in the domain
of a blocksworld. We will show two different models-the first model (based on [15]) has
four primitive actions (pickup, putdoum, stack, and unstack); the second one has only two
(pickup, and putdown). We will demonstrate the first model through the natural language
interface. The second model will be explained in terms of SNePSUL commands so as to give
the reader an idea of how to directly use the planning facilities that we have implemented.

2.6.1 The natural language front-end to a blocksworld

The natural language understanding component is implemented in a Generalized ATN
grammar and is used for analyzing sentences and for generating English responses. SN-
ACTor begins with an empty knowledge-base. In the role of informant, we interact with
SNACTor using English sentences about the domain, instructing SNACTor about the vari-
ous actions that it can do, and how to solve problems in that domain. The input sentences
are analyzed using a domain-specific grammar, the results of which are new beliefs in
the knowledge-base. A natural language generation grammar takes the new beliefs and ex-
presses them back in English to show SNACTor's understanding to the informant. Requests
to do some action are sent to an acting executive that may then generate and execute a
plan to fulfill the request. The informant may also ask questions about plans and the way
the system would solve various problems.

As mentioned above, our model of the blocksworld consists of some rectangular blocks
on a table. The blocks are identified by names (like blocka, blockb, etc.). Beliefs about the
current state of the blocksworld are held using the following predicates:

ontable(x) x is on the table.

clear(x) x is dear (i.e., there is nothing on top of it).

on(x,y) x is on top of y.

These are represented in SNePS using the property-object proposition case-frames and the
rel-argl-arg2 proposition case frames.

Syn. 10: property-object-prop ::= PROPERTY: property
OBJECT: object

Sem. 10: property-object-prop is a proposition node representing the proposition that ob-
ject has property property.

This can be used to represent the ontable and clear predicates. For example, to assert
that BLOCKA is clear and is on the table, we have

23

(assert property clear object BLOCKA)
(assert property ontable object BLOCKA)

Syn. 11: rel-argl-arg2-prop ::= REL: relation
ARGI: objectl
ARG2: objecta

Sem. 11: rel-argl-arg2-prop is a proposition node representing that relation holds between
argl and arg2.

This can be used to represent the on predicate. For example, to assert that BLOCKC is
on top of BLOCKA, we have

(assert rel on argi BLOCKC arg2 BLOCKA)

Thus when we tell the system in English

Blockc is clear. Blockc is on the table. Blocka is clear.
Blocka is on blockc.

the sentences are analyzed by the natural language understanding system and the following
SNePSUL commands are executed to assert the beliefs expressed by the sentences

(ASSERT PROPERTY (BUILD LEI clear)
OBJECT (BUILD LEX blockc))

(ASSERT PROPERTY (BUILD LEX ontable)
OBJECT (BUILD LEX blockc))

(ASSERT PROPERTY (BUILD LEX clear)
OBJECT (BUILD LEI blocka))

(ASSERT REL (BUILD LEX on)
ARG1 (BUILD LEX blocka)
ARG2 (BUILD LEX blockc))

The LEX arcs are used by the system to represent that the name of the property (or rel) is
expressed in English (i.e., lexically) as "clear" or "on" etc. Thus appropriate morphological
analyses and syntheses can be applied to them during understanding and generation. This
is discussed in more detail in [22].

The generation component then takes over and expresses the resulting propositions in
English, which forms the system's response to demonstrate its understanding of what was
said

I understand that blockc is clear.
I understand that blockc is ontable.
I understand that blocka is clear.
I understand that blocka is on blockc.

24

Modeling primitive actions

We can ask the agent to perform the following primitive actions

pickup(x) This is an action specifying the agent to pick up x where x is some block.

putdown(x) This action can be executed when the agent is already holding x where x is
some block. This is a request to put the block on the table.

stack(x,y) This action is a request to put x on y. x and y are some specified blocks and
x is being held.

unstack(x,y) This is a request to pick up x from the top of y. x and y are some specified
blocks and x is on y.

The external interface to the blocksworld is simulated in the form of an appropriate mes-
sage. The system also creates a graphics window that graphically shows the state of the
blocksworld at any given instant. The primitive actions are appropriately interfaced so as
to simulate their external effects in the graphics window. The following Common Lisp code
specifies external effects of these actions:

(define-primaction pickup (n)
"Prints a message to indicate the execution of the pickup
primitive action. choose.ns, pathfrom, node, and node-na are
SNePS node-access functions. bw-pickup is the graphics interface
to the blocksworld window. It graphically shows the picking up
operation in the window."
(format t "-&Pickup -A from table.'-,"
(bw-pickup
(eval (node-na (choose.ns (pathfrom '(objectl lax) (node n))))))))

(define-primaction putdown (n)
"Prints a message to indicate the execution of the putdown
primitive action. choose.ns, pathfrom, node, and node-na are
bePS node-access functions. bw-putdown is the graphics interface
to the blocksworld window. It graphically shows the putdown

operation in the window."
(format t "'&Putdown 'A on table.'%"
(bw-putdown
(eval (node-na (choose.ns (pathfrom '(objecti lex) n)))))))

(define-primaction stack (n)
"Prints a message to indicate the execution of the stack
primitive action. choose.ns, pathfrom, node, and node-na are
SNePS node-access functions. bw-stack is the graphics interface

25

to the blocksworld window. It graphically shows the stacking
operation in the window."

(format t "-&Stack -A on 'A.-V
(bw-stack (eval node-na (choose.ns (pathfrom '(objectl lex) n)))

(oval node-na (choose.ns (pathfrom '(object2 lex) n))))))

(define-primaction unstack (n)
"Prints a message to indicate the execution of the unstack
primitive action. choose.ns, pathfrom, node, and node-na are
SNoPS node-access functions. bw-unstack is the graphics interface
to the blocksworld window. It gzaphically shows the unstacking
operation in the window."
(format t "-&Unstack -A from -A.'%0"
(bw-unstack (eval node-na (choose.ns (pathfrom '(objecti lex) n)))

(eval node-na (choose.ns (pathfrom '(object2 lex) n))))))

2.6.2 An annotated example

We wil now show how the system is instructed about a blocksworld. We begin by getting
into SNePS

> (sneps)

Welcome to SePS-2.0
1/10/1989 20:36:47

At this point we will load SNACTor, the parser, the ATN grammar, the lexicon, and define
the required arcs. Now, we are ready to get into the parser and start telling the system
about our blocksworld. We begin by informing it about the primitive actions.1

*((parse -1))

ATN parser initialization...
Input sentences in normal English orthographic convention.
May go beyond a line by having a space followed by a <CR>
To exit parser, write -end.

: Picking up is a prim itive action.
I understand that pickup is a primitive action.
Time (sec.): 2.15

'Sentences preceding with a colon (:) are inputs by the user. The rest are all system responses

26

After picking up a block
the block is not clear and
the block is not ontable and
the block is held.

I understand that after performing pickup on a block, the block
is not clear.

I understand that after performing pickup on a block, the block
is not ontable.

I understand that after performing pickup on a block, the block
is held.
Time (sec.): 5.883333

: Putting down is a primitive action.
I understand that putdown is a primitive action.
Time (sec.): 0.71666664

After putting down a block

the block is not held and
the block is clear and

the block is ontable.

I understand that after performing putdown on a block, the block
is not held.

I understand that after performing putdown on a block, the block

is clear.

I understand that after performing putdown on a block, the block
is ontable.

Time (sec.): 5.0

Stacking is a primitive action.
I understand that stack is a primitive action.
Time (sec.): 0.5833333

After stacking a block on another block
the latter block is not clear and
the former block is not held and
the former block is on the latter block and

27

the former block is clear.

I understand that after performing stack on a block and another

block, the latter block is not clear.

I understand that after performing stack on a block and another

block, the former block is not held.

I understand that after performing stack on a block and another

block, the former block is on the latter block.

I understand that after performing stack on a block and another

block, the former block is clear.

Time (sec.): 7.1833334

: Unstacking is a primitive action.

I understand that unstack is a primitive action.

Time (sec.): 1.8166667

After unstacking a block from another block

the former block is not clear and

the former block is not on the latter block and

the latter block is clear and

the former block is held.

I understand that after performing unstack on a block and another

block, the former block is not clear.

I understand that after performing unstack on a block and another

block, the former block is not on the latter block.

I understand that after performing unstack on a block and another

block, the latter block is clear.

I understand that after performing unstack on a block and another

block, the former block is held.

Time (sec.): 6.883333

At this point we have successfully told the system about the four primitive actions and

their effects. We now tell it about some plans.

If a block is on another block then

a plan to achieve that the former block is held

is to achieve that the former block is clear and then

28

unstack the former block from the latter block.

I understand that if a block is on another block then a plan
to achieve that the former block is held is by achieving that
the former block is clear and then performing unstack on the
former block and the latter block.
Time (sec.): 3.9

If a block is ontable and the block is clear then
a plan to achieve that the block is held

is to pick up the block.

I understand that if a block is clear and the block is ontable
then a plan to achieve that the block is held is by performing

pickup on the block.
Time (sec.): 2.9833333

A plan to achieve that a block is ontable
is to achieve that the block is held and then
put down the block.

I understand that a plan to achieve that a block is ontable is
by achieving that the block is held and then performing putdown
on the block.
Time (sec.): 3.4333334

A plan to achieve that a block is on another block
is to achieve that the latter block is clear and then
achieve that the former block is held and then
stack the former block on the latter block.

I understand that a plan to achieve that a block is on another
block is by achieving that the latter block is clear and then
achieving that the former block is held and then performing stack
on the former block and the latter block.
Time (sec.): 4.133333

If a block is on another block then

a plan to achieve that the latter block is clear
is to achieve that the former block is clear and then
achieve that the former block is ontable.

29

I understand that if a block is on another block then a plan
to achieve that the latter block is clear is by achieving that
the former block is clear and then achieving that the former
block is ontable.

Time (sec.): 3.7

A plan to pile a block on another block on a third block
is to achieve that the third block is ontable and then
achieve that the second block is on the third block and then
achieve that the first block is on the second block.

I understand that a plan for performing pile on a block and another
block and another block is by achieving that the third block
is ontable and then achieving that the second block is on the
third block and then achieving that the first block is on the
second block.
Time (sec.): 5.383333

Now the system knows plans for decomposing some complex acts (like piling) as well as
plans for achieving some goals. We are now ready to describe a state of blocks in the blocks
world to play with.

: blockc is clear. blockc is ontable.
I understand that blockc is clear.
I understand that blockc is ontable.
Time (see.): 0.65

: blockb is clear. blockb is ontable.
I understand that blockb is clear.
I understand that blockb is ontable.
Time (sec.): 1.68333334

: blocka is clear. blocka is ontable.
I understand that blocka is clear.
I understand that blocka is ontable.

Time (sec.): 0.6666667

We now ask it to do some simple things.

: pick up blockc.
I understand that you want me to perform the action of pickup

on blockc.

Pickup blockc from table.

30

Disbelieve blockc is clear. Disbelieve blockc is ontable.
Believe blockc is held.
Time (sec.): 4.0666666

: stack blockc on blocka.
I understand that you want me to perform the action of stack
on blockc and blocka.

Stack blockc on blocka.
Believe blockc is clear. Disbelieve blocka is clear.
Disbelieve blockc is held. Believe blockc is on blocka.
Time (sec.): 5.45

: pick up blockb
I understand that you want me to perform the action of pickup
on blockb.

Pickup blockb from table.
Disbelieve blockb is clear. Disbelieve blockb is ontable.
Believe blockb is held.

Time (sec.): 5.2833333

put down blockb.
I understand that you want me to perform the action of putdown
on blockb.

Putdown blockb on table. Disbelieve blockb is held.
Believe blockb is clear. Believe blockb is ontable.
Time (sec.): 5.5833335

blockc is on blocks and blockb is sitting on the table. We now ask it to pile blocka on
blockb on blockc.

: pile blocka on blockb on blockc.
I understand that you nant me to perform the action of pile on
blocka and blockb aad blockc.

SNACTor now goes into its acting executive which realizes that piling is a complex act and
so needs to be decomposed. This is where it uses beliefs acquired from our earlier dialog
and finds decompositions:

A plan to pile blocka on blockb on blockc is to achieve that blockc
is on the table and then achieve that blockb is on blockc and then
achieve that blocka is on blockb.

31

And this decomposition continues depth-first until it finds an appropriate action to execute.

Want to achieve blockc is ontable.
Want to achieve blockc is hold.
Want to achieve blockc is clear. Already Achieved.

Unstack blockc from blocka. Disbelieve blockc is on blocka.
Believe blocka is clear. Disbelieve blockc is clear.
Believe blockc is hold.

Putdown blockc on table. Believe blockc is clear.
Believe blockc is ontable. Disbelieve blockc is hold.

Want to achieve blockb is on blockc.
Want to achieve blockc is clear. Already Achieved.
Want to achieve blockb is hold.

Pickup blockb from table. Disbelieve blockb is clear.
Disbelieve blockb is ontable. Believe blockb is hold.

Stack blockb on blockc. Disbelieve blockb is hold.
Believe blockb is on blockc. Believe blockb is clear.
Disbelieve blockc is clear.

Want to achieve blocka is on blockb.
Want to achieve blockb is clear. Already Achieved.
Want to achieve blocka is hold.

Pickup blocka from table. Believe blocka is hold.
Disbelieve blocka is ontable. Disbelieve blocka is clear.

Stack blocka on blockb. Believe blocka is on blockb.
Disbelieve blocka is held. Believe blocka is clear.
Disbelieve blockb is clear.
Time (sec.): 311.25

2.6.3 Discussing plans

We have seen how we can instruct SNACTor about planning in a domain and how we can
describe situations to it and subsequently ask it to do things by using the plans it derives.
We can also ask questions about plans and the various beliefs that it holds. For example,

Is blocka on blockb?

32

Yes, blocka is on blockb.

Time (sec.): 1.8

: Is blocka ontable?

No, blocka is not ontable.

Time (sec.): 0.8333333

: Is blocka on blockc?
I really don't know if blocka is on blockc.

Time (sec.): 0.96666664

: How would you pile a block on another block on another block?
I understand that a plan for performing pile on a block and another
block and another block is by achieving that the third block
is ontable and then achieving that the second block is on the
third block and then achieving that the first block is on the
second block.
Time (sec.): 14.05

SNIP, the plan decision procedure, is used to derive an appropriate plan and respond to
the query.

2.6.4 Another Example

In this example we will present yet another model of the blocksworld. This time we will do
away with stack and unstack primitive actions. We will utilize context-dependent effects
as well as preconditions in modeling these actions. This time we will give SNePSUL code
instead of natural language dialog. This will also give the reader a better understanding of
how to use our representations.

The set of beliefs about the state of the blocksworld will be represented using clear and
on predicates. They will be used as defined above. We will treat table as just another
object. We will only have pickup and putdown primitive actions.

Modeling pickup

The external effects of pickup are modeled by the function

(define-primaction pickup (n)
"Prints a message to indicate the execution of the pickup
primitive action. choose.ns, pathfrom, node, and node-na are
SEePS node-access functions."

(format t "&Pickup "A.'%"
(chooso.ns (pathfrom '(objecti lox) (node n)))))

33

Since Pickup is a primitive action, we can assert

(assert member (build lox "pickup") class "primitive")

and now we go on to describe the preconditions of pickup. The only precondition for picking
up a block is to make sure that the block is clear. Thus

(assert forall $block
ant (build member *block class (buile lox "block"))
cq (build act (build action (build lox "pickup") objectl *block)

precondition (build property (build lox "clear")
object *block)))

From now on, everytime a pickup is to be performed, the system will check if the block to
be picked up is clear, if not, the acting executive will schedule the act of achieving that it
is clear before it is picked up. Effects of picking up a block are:

;#I: it is no longer clear
(assert forall *block

ant (build member *block class (build lox "block"))
cq (build act (build action (build lox "pickup") objectl *block)

effect (build min 0 max 0
arg (build property (build lex "clear")

object *block))))

;#2: it is no longer on whatever was supporting it
(assert forall (*block $support)

kant ((build member *block class (build lox "block"))
(build member *support class (build lox "object"))
(build rel (build lox "on") argI *block arg2 *support))

cq (build act (build action (build lox "pickup") objectl *block)
effect (build min 0 max 0

arg (build rel (build lox "on")

argi *block
arg2 *support))))

;#3: and its support is now clear.
(assert forall (*block $support)

kant ((build member *block class (build lox "block"))
(build member *support class (buile lox "object"))
(build rel (build lox "on") argi. *block arg2 *support))

cq (build act (build action (build lex "pickup") objectl *block)
effect (build property (build lox "clear")

object *support)))

34

;#4: the block is being held
(assert forall *block

ant (build member *block class (build lx "block"))
cq (build act (build action (build lex "pickup") objectl *block)

effect (build property (build lex "holding")
object *block)))

Notice that rules 2 and 3 are context-dependent effects.

Modeling putdown

The external effects of putdown are:

(define-primaction putdown (n)
"Prints a message to indicate the execution of the putdown
primitive action. choose.ns, pathfrom, node, and node-na are
SNePS node-access functions."

(format t "&'Putdown -A on -A.'%"
(choose.ns (pathfrom '(objectl lox) n))
(choose.ns (pathfrom '(object2 lex) n))))

Before putting down a block on a support we have to make sure that we are holding the
block and that the support is clear. Hence the preconditions for putdown are:

;#I: Make sure the block is being held
(assert forall (*block *support)

kant ((build member *block class (build lx "block"))
(build member *support class (build lex "object")))

cq (build act (build action (build lx "putdown")
objecti *block object2 *support)

precondition (build property (build lex "holding")

object *block)))

;#2: Make sure the support is clear
(assert forall (*block *support)

Unt ((build member *block class (build lox "block"))
(build member *support class (build lox "object")))

cq (build act (build action (build lox "putdown")
objectl *block object2 *support)

precondition (build property (build lox "clear")

object *support)))

And finally, after putting down a block on some support, we have the following effects:

35

;#I: The block is no longer being held
(assert forall (*block *support)

tant ((build member *block class (build lax "block"))
(build member *support class (build lox "object")))

cq (build act (build action (build lox "putdown")
objectl *block object2 *support)

effect (build min 0 max 0
arg (build property (build lax "holding")

object *block))))

;#2: The block is clear
(assert forall (*block *support)

Unt ((build member *block class (build lex "block"))
(build member *support class (build lex "object")))

cq (build act (build action (build lex "putdown")

objectl *block object2 *support)
effect (build property (build lox "clear")

object *block)))

;#3: The block is on the support
(assert forall (*block *support)

tant ((build member *block class (build lex "block"))
(build member *support class (build lox "object")))

cq (build act (build action (build lox "putdown")

objectl *block object2 *support)
effect (build rel (build lex "on")

argi *block arg2 *support)))

;#4: The support is not clear

(assert forall (*block *support)

tant ((build member *block class (build lex "block"))
(build member *support class (build lox "object")))

cq (build act (build action (build lox "putdown")

objectl *block object2 *support)
effect (build min 0 max 0

arg (build property (build lox "clear")

object *support))))

Plans

We will write rules for plans for doing the same kind of things that we did in the earlier
example. However, here we will notice that the plans are much simpler and more general.
For example, to achieve the goal of holding a block, we simply ask it to pick it up.

36

;#1: Plan rule for holding a block
(assert forall *block

ant (build member *block class (build lox "block"))

cq (build plan (build action (build lox "pickup")
objectl *block)

goal (build property (build lox "holding")
object *block)))

To get a block on a supporting object a general plan is to pick it up and then put it down
on the object.

;#2: Plan rule for getting a block on a support

(assert forall (*block *support)

kant ((build member *block class (build lox "block"))
(build member *support class (build lex "object")))

cq (build plan (build action (build lox "snsequence")

objectl (build action (build lox "pickup")
objectl *block)

object2 (build action (build lex "putdown")
objecti *block
object2 *support))

goal (build rel (build lox "on")
argi *block arg2 *support)))

If we need to clear a block that is a support for another block then a plan to do it is to
first pick up tne top block and then put it down on the table.-

;#3: Plan rule for clearing a support

(mssert forall (*block *support)

kant ((build member *block class (build lex "block"))
(build member *support class (buile lex "object"))
(build rel (build lex "on") argi *block arg2 *support))

cq (build plan (build action (build lex "snsequence")

objectl (build action (build lox "pickup")
objectl *block)

object2 (build action (build lex "putdown")
objectl *block
object2 (build lex "the-table")))

goal (build property (build lex "clear")
object *support)))

Finally, to build a pile of three blocks, we first put the third one on the table, then the
second one on the third one, and then the first one on the second one.

;#4: Plan rule for piling three blocks

37

(describe
(assert forall (*block *support $third-block)

&ant ((build member *block class (build lox "block"))
(build member *support class (build lox "block"))
(build member *third-block class (build lox "block")))

cq (build act (build action pile objecti *third-block
object2 *block

object3 *support)
plan (build action (build lox "snsequence")

object1 (build action (build lox "achieve")
objectl (build rel (build lex "on")

argi *third-block

arg2 "the-table"))
object2 (build action (build lex "snsequence")
objectl (build action (build lox "achieve")

objectl (build rel (build lex "on")
argi *support
arg2 *third-block))

object2 (build action (build lex "achieve")

objectl (build rel (build lex "on")
argi *block

arg2 *support))))))

Annotated example

We will describe a state of the blocksworld, we begin by getting into SNePS.

> (sneps)

Welcome to SNoPS-2.0

1/11/1989 13:46:26

At this point we load the Lisp definitions of the primitive actions and the rules described
above and assertions about which actions are primitive. In what follows, we describe a
state in which the blocks blocka, blockb, and blockc are clear and on the table.

(describe (assert property (build lox "clear")
object (build lox "blocka")))

(M29! (OBJECT (M28 (LEX blocka))) (PROPERTY (P110 (LEX clear))))
CPU time : 0.20 GC time : 0.00

(describe (assert rel (build lox "on")
argi (build lox "blocka")

38

arg2 (build lex "the-table")))
(M30! (ARGI (M28 (LEX blocka))) (ARG2 (M26 (LEX the-table)))

(REL (Mil (LEX on))))
CPU time : 0.15 GC time : 0.00

(describe (assert property (build lex "clear")
object (build lox "blockb")))

(M32! (OBJECT (M31 (LEX blockb))) (PROPERTY (M10 (LEX clear))))
CPU time : 0.17 GC time : 0.00

(describe (assert rel (build lex "on")
argi (build lex "blockb")
arg2 (build lex "the-table")))

(M33! (ARGI (M31 (LEX blockb))) (ARG2 (M26 (LEX the-table)))
(REL (Mil (LEX on))))

CPU time : 0.13 GC time : 0.00

(describe (assert property (build lex "clear")
object (build lex "blockc")))

(M35! (OBJECT (M34 (LEX blockc))) (PROPERTY (MIO (LEX clear))))
CPU time : 0.17 GC time : 0.00

(describe (assert rel (build lox "on")

argi (build lox "blockc")
arg2 (build lox "the-table")))

(M36! (ARGI (M34 (LEX blockc))) (ARG2 (M26 (LEX the-table)))
(EEL (MI1 (LEX on))))

CPU time : 0.22 GC time : 0.00

Now, we ask SNACTor to achieve a state in which blockb is on blockc.

(perform (build action (build lox "achieve")
objecti (build rel (build lox "on")

argi (build lox "blockb")
arg2 (build lox "blockc"))))

The acting executive acknowledges this by printing:

Want to achieve:
(M37 (ARGI (M31 (LEX blockb))) (ARG2 (M34 (LEX blockc)))

(REL (111 (LEX on))))

At this point it has found a plan using the plan rule 2 described above. Thus it is going to
try and pick up blockb and put it down on blockc. Before performing pickup on blockb, it

39

has to find if there are any preconditions and whether they are satisfied:2

Preconditions...
(N321 (OBJECT (M31 (LEX blockb))) (PROPERTY (MIO (LEX clear))))
Are satisfied.

Pickup blockb.
Disbelieve:
(M32 (OBJECT (M31 (LEx blockb))) (PROPERTY (M10 (LEX clear))))
Believe:
(M46! (OBJECT (M31 (LEX blockb))) (PROPERTY (M12 (LEX holding))))
Disbelieve:
(M33 (ARGI (M31 (LEX blockb))) (ARG2 (M26 (LEX the-table)))

(REL (M11 (LEX on))))
Believe:
(M50! (OBJECT (M26 (LEX the-table))) (PROPERTY ((10 (LEX clear))))

Since the precondition for pick up, i.e., blockb is clear was satisfied, it picked up blockb
and asserted the effects of doing thL. Now it is ready to execute the second part of the
plan, i.e. put down blockb on blockc. Once again, it will derive and test the predconditions
for putdown. Since they are satisfied, it will go ahead and complete the plan.

Preconditions...
(M35! (OBJECT (M34 (LEX blockc))) (PROPERTY (M1O (LEX clear))))
(146! (OBJECT (M31 (LEX blockb))) (PROPERTY (112 (LEX holding))))
Are satisfied.

Putdown blockb on blockc.
Believe:
(1(32! (OBJECT (M31 (LEX blockb))) (PROPERTY (10 (LEX clear))))
Believe:
(137! (ARGI (M31 (LEX blockb))) (ARG2 (M34 (LEX blockc)))

(REL (1(1 (LEX on))))
Disbelieve:
(146 (OBJECT (131 (LEX blockb))) (PROPERTY (M12 (LEX holding))))
Disbelieve:
(M35 (OBJECT (1M34 (LEX blockc))) (PROPERTY (M10 (LEX clear))))

CPU time : 50.30 GC time : 0.00

Let us now ask it to put blocka on blockc. Since blockb is sitting on top of blockc, it will
first have to take care of that. Let us give the command

2 An exclamation (!) in front of the node number indicates that it currently believes the proposition
represented by that node.

40

(preform (build action (build lox "achieve")
objectl (build rel (build lox "on")

argi (build lox "blocka")
arg2 (build lex "blockc"))))

Want to achieve:
(M68 (ARGI (M28 (LEX blocka))) (ARG2 (M34 (LEX blockc)))

(REL (Mil (LEX on))))

Once again it has found the same plan as before; i.e., first it should pick up blocka and
then put it down on blockc. Since blocka is clear it will pick it up and assert its effects:

Preconditions...
(M29! (OBJECT (M28 (LEX blocka))) (PROPERTY (10 (LEX clear))))
Are satisfied.

Pickup blocka.
I already believe:
(M50! (OBJECT (M26 (LEX the-table))) (PROPERTY (10 (LEX clear))*)i
Disbelieve:
(M29 (OBJECT (M28 (LEX blocka))) (PROPERTY (M10 (LEX clear))))
Believe:

(M771 (OBJECT (M28 (LEI blocka))) (PROPERTY (M12 (LEX holding))))
Disbelieve:

(M30 (ARGI (M28-(LEX blocka))) (ARG2 (M26 (LEX the-table)))
(REL (11 (LEX on))))

It has completed the first step of the plan and is now ready to put down blocka on blockc.
However, blockc is not clear since it has blockb sitting on it. Thus it has to take care of
that situation:

Preconditions...
(1135 (OBJECT (M34 (LEX blockc))) (PROPERTY (M10 (LEX clear))))
(M77! (OBJECT (M28 (LEX blocka))) (PROPERTY (M12 (LEI holding))))
Are not satisfied.

It notices that blockc is not clear, so before it puts blocka down on blockc it has to remove
blockb from the top of blockc. It creates a new intention to clear blockc.

Want to achieve:

(135 (OBJECT (M34 (LEX blockc))) (PROPERTY (10 (LEX clear))))

It uses plan rule 3 described above. Thus now it has to first pick up blockb, put it down
on the table, and then put down blocka on blockc.

41

Preconditions...
(M32! (OBJECT (M31 (LEX blockb))) (PROPERTY (MiO (LEX clear))))

Are satisfied.

Pickup blockb.
Believe:
(M35! (OBJECT (M34 (LEX blockc))) (PROPERTY (MIO (LEX clear))))

Disbelieve:
(M32 (OBJECT (M31 (LEX blockb))) (PROPERTY (MIO (LEX clear))))

Believe:
(M46! (OBJECT (M31 (LEX blockb))) (PROPERTY (M12 (LEX holding))))
Disbelieve:
(M37 (ARGi (131 (LEX blockb))) (ARG2 (M34 (LEX blockc)))

(REL (Mil (LEX on))))

Preconditions...
(M46! (OBJECT (131 (LEX blockb))) (PROPERTY (M12 (LEX holding))))
(M50 ! (OBJECT (126 (LEX the-table))) (PROPERTY (I0 (LEX clear))))
Are satisfied.

Putdown blockb on the-table.

Believe:
(M321 (OBJECT (431 (LEX blockb))) (PROPERTY (410 (LEX clear))))
Believe:
(M33! (ARG1 (M31 (LEX blockb))) (ARG2 (M26 (LEX the-table)))

(EEL (Mil (LEX on))))
Disbelieve:
(M46 (OBJECT (M31 (LEX blockb))) (PROPERTY (M12 (LEX holding))))

Now that it has gotten rid of blockb, it is now ready to put down blocka on blockc. This time
all the preconditions will be found to be satisfied and the plan will conclude successfully.
Since we haven't put any restrictions on how many blocks it can hold (this does make
things simpler) it did not put blocka down before picking up blockb.

Want to achieve:
(1477! (OBJECT (M28 (LEX blocka))) (PROPERTY (112 (LEI holding))))
Already Achieved.

Preconditions...
(M36! (OBJECT (M34 (LEX blockc))) (PROPERTY (MO (LEX clear))))
(177! (OBJECT (M28 (LEX blocka))) (PROPERTY (112 (LEX holding))))
Are satisfied.

Putdown blocka on blockc.

42

Disbelieve:
(M77 (OBJECT (M28 (LEX blocka))) (PROPERTY (M12 (LEX holding))))
Believe:
(M29! (OBJECT (M28 (LEX blocka))) (PROPERTY (M10 (LEX clear))))
Disbelieve:
(M35 (OBJECT (M34 (LEX blockc))) (PROPERTY (M10 (LEX clear))))
Believe:

(M68! (ARGI (M28 (LEX blocka))) (ARG2 (M34 (LEX blockc)))

(REL (M11 (LEX on))))
CPU time : 394.40 GC time : 0.00

43

2.7 STRATEGIC PLANNING FRAMEWORK

The current research of the U. Mass. group concerns the comprehension of the following
paragraph:

Nancy asked Tom if an inanimate object, such as a table, can exert a force.
Tom said he didn't think so. Nancy pointed to a pile of books on the table and
asked if the table exerts an upward force on the books. Tom said no. Nancy
placed the books on Tom's hand. Tom had to exert a great force to keep the
books steady. Nancy asked Tom to compare the two situations. Tom said the
table must also have exerted a force on the books.

The goal is to comprehend the paragraph, answer questions about it and recognize its
underlying plans. The system should answer questions such as:

Q: Why is Nancy asking Tom about books on the table?
A: Nancy created a specific example of the topic in order to find out if Tom
understood it.

Q: Why did Nancy place the books on Tom's hand?
A: Nancy used Tom's hand as an anchor example. After she asked about an ab-
stract concept, she provided an instantiation of the concept that gave Tom direct
experience of the topic.

Working with SUNY/Buffalo, the U. Mass group has sucessfully ported the SNePS-2
knowledge representation, inference, and parsing systems to UMASS. We have developed
domain knowledge and inference rules in SNePS-2 to support comprehension of the above
paragraph and have represented discourse and tutoring knowledge in terms of acts, precon-
ditions, goals, primitive actions, and complex actions.

For example, we have represented typical acts such as Ask-Question and Answer-Question
and typical plans such as Teach.by-Leading-Question and Teach-by-Analogy. Plans are used
to represent overarching tutoring strategies, such as Easier material will be presented be-
fore harder material and Ezamples are typically useful These generalized plans are then
used by the system to make top-down expectations about subsequent actions, to infer the
occurrence of unstated actions, and to explain actions which serve to satisfy goals.

Discourse and tutoring plans that guide human speakers are generally known to both
discussants. For example, a student can infer that a question is being asked as part of the
teacher's effort to teach a new or related concept. Plan recognition enables the discussants
to understand the underlying intent and nature of the dialogue.

45

Reactive Planning Framework However, strategic planning is computationally intract-
able, often producing a exponential search spaces. It places significant constraints on the
order of actions within a plan and makes clear predictions about later activities. For
example, plan recognition can succeed only if actions are clearly described in terms of how
they accomplish goals and subgoals. In fact, dialogue, and especially tutoring dialogues, are
frequently characterized by actions that do not satisfy goals. For example, an action might
be performed to achieve a goal, and that action might be thwarted causing the goal to be
abandoned. 'Real-life' dialogues are complex, uncertain, and immediate. They manifest a
kind of unpredictability that requires reactive planning.

In reactive planning domain knowledge is used to react to circumstances, rather than
using prestored plan to respond to events. Reactive planning is used in situations in which
the world does unexpected things, such as in a dialogue between two agents or when the
system can not anticipate a user's action in response to its own actions. It is also used
when exceptions exist causing plans to be rewritten, regenerated, or discarded. For example,
dialogue must allow for mixed-initiative and thus for interruptions and digression on the
part of the user.

The reactive planner employs deep knowledge of the domain, discourse strategies, and
tutoring actions to enhance its reasoning ability. Consider, for example, the lexical and
syntactic ambiguity in following sentence:

The spring is supported by the weight.

Here domain and situation knowledge is needed to comprehend the context. For example,
if the speaker was previously involved in a tutoring lesson about physics, the system would
not interpret the word 'spring' as it might if the speaker was previously describing a country
setting complete with river and springs.

The hybrid system uses strategic plans to provide deep expectation of the actions and
goals in the text. It uses reactive planning to help understand subtle points in the text.
The two planning frameworks compliment each other, supplementing and checking the
expectations provided by the other. In combination they describe how discourse is managed
and controlled in tutoring.

Our current research focus is to enhance our representation of domain and tutoring
knowledge in such a way that it will will augment the system's reactive planning capability.

Model Anaphora We have focused on a third research issue this year, namely Model
Anaphora [23]. Such anaphora are distinguished from demonstrative pronouns, (e.g., him,
her, and it) which refer to discourse segments in that they are the determination of the
reference of words such as "situation". Model anaphora have much richer semantics than
do pronoun anaphora.

The larger Model Anaphora are handled through use of a focus stack and a backward
search through a set of candidates describing the state of affairs of objects and people in
the narrative.

We can use the tutoring paragraph above to illustrate Model Anaphora. In the paragraph
Nancy definitively sets the topic of the paragraph with her first question to Tom. This places

46

"inanimate objects" and "force" in focus, as well as marking them as belonging to the topic.
Because of our domain knowledge of physics, we know that her second question, which is
more specific, is subsumed by her first, and does not change the topic. When Nancy refers
to "the two situations" without supplying a situation index, either "inanimate objects" or
"force" is probably the index she has in mind.

Supposing we take "force" as the situation index, we search in the Model for Model
Objects that match it. We find the first situation because "push" is a kind of force and
Nancy has asked Tom whether the books push up on the table. Hence, the books on the
table is a situation. The second situation is found because force is explicitly mentioned,
hence the books on Tom's hand is also a situation. Although force is mentioned in the
first sentence, "whether an inanimate object, such as a table, can exert a force," this is
discarded as a situation because it lacks concreteness.

We are presently implementing the two phases of processing Model Anaphora described
above. Specifically, we first find a situation index, defined as the key that picks the situation
out of the Model. Then, we search the focus stack for occurrences of the situation index
and determine whether any of these is part of a situation.

Situations are commonly referenced with phrases such as "the situation with X" or "the
X situation." These modifying phrases include the Situation Index for each of these Situa-
tions. A Situation Indez is a key that picks the situation out of the Model, distinguishing
foreground from background, so to speak.

The situation index is usually some common or unifying aspect of the situation. Indeed,
the situation index need not be explicitly mentioned in the text.. We conclude that elements
in focus, regardless of explicit mention in the text, are what are available as situation
indexes.

The architecture takes references that make explicit mention of the situation index to
be the canonical case; it processes other references by first determining the situation index
from the context, thereby reducing them to the canonical case. Thus, Model Anaphora is
a two-step process:

1. Determine the situation index. Where this is explicitly mentioned, the determi-
nation is trivial. Otherwise, the situation index must be computed from the context.

2. Using the situation index, search the stack of focus spaces and look for
matches. The matching Model Objects will yield a set of candidates, some of which
will be discarded because they are not states of affairs or because they lack concreteness
or tension. If this does not reduce the set of candidates to a single situation, we choose
the most recent candidate.

We claim that situations are states of affairs that exhibit concreteness and tension,
and that the process of referring to them involves a situation index. We believe that
Model Anaphora is a phenomenon common to a large class of nouns, including "case,"
"disaster," and "example." These nouns differ somewhat in their semantics, but they all
make individuation references to sets of Model Objects.

47

2.8 PLAN RECOGNITION

In this section we will briefly look at the beginning of a plan recognition component based
on our representations. The initial idea that we are exploring is based on the observation
that if an actor is performing an act that when we perform it we are are in the process of
executing some plan, the actor could possibly be performing the act as a part of a similar
plan. Expressed more clearly, we have the rule

if an actor z performs an act al,
and al is a PLAN-COMPONENT of a proposition p
then if a2 is the ACT of p

then z may be engaged in carrying out a2
and if g is a GOAL of a proposition p

then z may be trying to achieve g.

We can express the above rule using SNePS path-based inference [17, 24] as:

(define-path PLAN-COMPONENT
(compose PLAN

(kstar (or (compose (kstar OBJECT2) (or OBJECT1 OBJECT2))
(compose OBJECTI THEN)))))

This defines a virtual arc PLAN-COMPONENT to be one that goes from a plan-act-proposition
or a plan-goal-proposition to every act within the plan. For example, the following SNePS
node represents that the act of greeting someone (give-greetings) can be accomplished
by a plan to repeatedly say 'HELLO THERE' thus using the act defined in Section 2.3.5
above.

(M36! (ACT GIVE-GREETINGS)
(PLAN
(M32 (ACTION (6 (LEX SNITERATE)))

(OBJECT1
(27 (CONDITION (21 (LEX PERMISSION)))
(THEN
(26 (ACTION (Mi (LEX SESEQUENCE)))

(OBJECTI (M.S (ACTION (MIO (LEX SAY))) (OBJECTI HELLO)))
(OBJECT2 (M24 (ACTION (MS (LEX FORGET))) (OBJECTI (M21)))))))

(C31 (CONDITION (28 (LEX PERNISSION2)))
(THEN
(R30 (ACTION (MI)) (OBJECT (M19 (ACTION (ROi)) (OBJECT1 THERE)))
(OBJECT2 (29 (ACTION (16)) (OBJECT (R28)))))))))))

Next we give the plan recognition rule to SNACTor. This rule says that if someone is doing
an act which is part of some plan, assume that that person is engaged in the plan. Thus
we have

49

(assert forall ($agent $reported-act $planned-act)
&ant ((build agent *agent act *reported-act)

(build plan-component *reported-act act *planned-act))

cq (build agent *agent act *planned-act))

Now we tell the system that John performed the act of saying 'HELLO'.

(add agent john act (build action say objectl HELLO))

Now, let us ask about the act(s) that John performed

(describe (deduce agent john act *johns-acts))

(M38! (ACT (M18 (ACTION (N10 (LEX SAY))) (OBJECTI HELLO))) (AGENT JOHN))
(N52! (ACT GIVE-GREETINGS) (AGENT JOHN))

CPU time : 6.65 GC time : 0.00

As we can see, it comes back with a response saying that John is performing the acts of

saying 'HELLO' as well as give-greetings. We do not yet have a way of dealing with
"may be engaged in" nor with "may be trying to achieve," but this rule indicates our

approach to plan recognition within the design of the planning/acting SNePS component

described in this report.

50

2.9 DISCUSSION

Our goal is to model a rational cognitive agent whose behavior is driven by its beliefs,
desires, and intentions. We want our agent to do natural language understanding, reason
about beliefs, act rationally based on its beliefs, do plan recognition, and plan based text
generation. Doing all these tasks in a single coherent framework poses several constraints.
We are discovering that SNePS and its underlying theories contribute effectively towards
our goal. We have designed and implemented intensional propositional representations for
plans. This is a major advancement over operator-based descriptions of plans. Operator-
based formulations of actions tend to alienate the discussion of operators themselves. Op-
erators are usually specified in a different language than that used for representing beliefs
about states. Moreover, plans (or procedural networks) constructed from these operators
can only be accessed by specialized programs (critics, executors) and, like operators, are
represented in still another formalism. Our representations for acts, actions, goals, and
plans build upon and add to the intensional propositional representations of SNePS. This
framework enables us to tackle various tasks mentioned above in a uniform and coherent
fashion.

Our current system is being advanced in several directions. In the context of planning,
there are issues associated with conjunctive goals[26], non-linear plans [16, 25, 5], and
dealing with the effects of actions. As mentioned in [61 explicitly specifying the disbelieving
of propositions as a result of performing some action is not natural. We propose to use
belief revision (SNeBR) to detect inconsistencies after asserting the effects of an action.

Language used in planning contexts, is slightly more constrained than in arbitrary dis-
course. Sentences describing plans tend to be declarative, with a syntactically decomposable
structure invoi ojal, effect, and plan definition. Handling reference is simplified by the
assumption that common noun phrases correspond to typed variables. Indefinite noun
phrases introduce new variables, definite noun phrases refer to previously introduced vari-
ables. Natural language generation of plans and rules involves careful selection of relevant
attributes of these variables.

Our representation of acts and actions was partially motivated by our goals of doing
plan recognition. We are just starting work in this direction[20]. Some preliminary work
on plan-based natural language generation is reported in[20].

51

2.10 CONCLUSION

In this report, we have described the design, and aspects of the implementation, of an in-
tensional representation for plans. These representations have been constrained by issues in
cognitive modeling, belief representation, reasoning, and natural language understanding.
Plans are structured individual mental concepts, consisting of a structure of acts. Acts are
structured individual mental concepts of an action process independent of actor and time.
Actions are primitive or complex and fall into three classes-external, mental, and control.
The system models intentionality with a queue of acts, and may form new intentions based
on its current belief status. Currently, we have an implementation of a Blocksworld involv-
ing natural language dialogues about plans, planning and execution of Blocksworld plans,
and some examples of plan recognition.

53

Bibliography

[1] M. J. Almeida. Reasoning About the Temporal Structure of Narratives. PhD thesis,
Department of Computer Science, SUNY at Buffalo, Buffalo, NY, 1987. Technical
Report No. 87-10.

[2] J. ao P. Martins and S. C. Shapiro. Hypothetical reasoning. In Applications of Artificial
Intelligence to Engineering Problems: Proceedings of The 1st International Conference,
pages 1029-1042. Springer-Verlag, Berlin, 1986.

[3] J. ao P. Martins and S. C. Shapiro. A model for belief revision. Artificial Intelligence,
35(1):25-79, May 1988.

[4] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ,
1976.

[5] M. Drummond and A. Tate. Ai planning: A tutorial and review. Technical Report
AIAI-TR-30, Artificial Intelligence Applications Institute, University of Edinburgh,
Edinburgh, November 1987.

[6] M. E. Drummond. A representation of action and belief for automatic planning sys-
tems. In M. P. Georgeff and A. L. Lansky, editors, Reasoning about Actions and Plans
- Proceedings of the 1986 Workshop, pages 189-212, Los Altos, CA, 1987. AAAI and
CSLI, Morgan Kauffmann.

[7] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 5:189-208, 1971.

[8] M. P. Georgeff. Planning. In Annual Reviews of Computer Science Volume 2, pages
359-400. Annual Reviews Inc., Palo Alto, CA, 1987.

[9] M. P. Georgeff. An embedded reasoning and planning system. In J. Webber, J. Tenen-
berg, and J. Allen, editors, Advance Proceedings of The Rochester Planning Workshop-
From Formal Systems to Practical Systems, pages 79-101, October 1988.

[10] D. Kumar, S. S. Ali, and S. C. Shapiro. Discussing, Using, and Recognizing Plans
in SNePS-Preliminary Report. In P. V. S. Rao and P. Sadanandan, editors, Modern
Trends in Information Technology-Proceedings of the Seventh Biannual Convention
of South East Asia Regional Computer Confederation (SEARCC88), pages 177-182,
New Delhi, India, 1988. Tata McGraw-Hill Publishing Company.

[11] A. L. Lansky. A representation of parallel activity based on events, structure, and
causality. In M. P. Georgeff and A. L. Lansky, editors, Reasoning about Actions and
Plans - Proceedings of the 1986 Workshop, pages 123-160, Los Altos, CA, 1987. AAAI
and CSLI, Morgan Kauffmann.

55

[12] V. Lifschitz. On the semantics of STRIPS. In M. P. Georgeff and A. L. Lansky, editors,
Reasoning about Actions and Plans - Proceedings of the 1986 Workshop, pages 1-10,
Los Altos, CA, 1987. AAAI and CSLI, Morgan Kauffmann.

[13] D. P. McKay and S. C. Shapiro. Using active connection graphs for reasoning with re-
cursive rules. In Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, pages 368-374, Los Altos, CA, 1981. Morgan Kaufmann.

[14] E. J. Morgado and S. C. Shapiro. Believing and acting-a study of meta-knowledge
and meta-reasoning. In Proceedings of Encontro Portugues de Inteligencia Artificial
(EPIA), Oporto, Portugal, September 1985.

[15] N. J. Nilsson. Principles Of Artificial Intelligence. Tioga Publishing Company, Palo
Alto, CA, 1980.

[16] E. D. Sacerdoti. A Structure for Plans and Behavior. Elsevier North Holland, New
York, NY, 1977.

[17] S. C. Shapiro. Path-based and node-based inference in semantic networks. In D. Waltz,
editor, Tinlap-2: Theoretical Issues in Natural Languages Processing, pages 219-225,
New York, 1978. ACM.

[18] S. C. Shapiro. The SNePS semantic network processing system. In N. V. Findler, editor,
Associative Networks: The Representation and Use of Knowledge by Computers, pages
179-203. Academic Press, New York, 1979.

[19] S. C. Shapiro. Generalized augmented transition network grammars for generation from
semantic networks. The American Journal of Computational Linguistics, 8(1):12-25,
1982.

[20] S. C. Shapiro. Representing plans and acts. In J. W. Esch, editor, Proceedings of the
Third Annual Workshop on Conceptual Graphs, St. Paul, MN, August 1988. Sponsored
by AAAI.

[21] S. C. Shapiro, J. ao P. Martins, and D. P. McKay. Bi-directional inference. In Pro-
ceedings of the Fourth Annual Meeting of the Cognitive Science Society, pages 90-93,
Ann Arbor, MI, 1982.

[22] S. C. Shapiro and W. J. Rapaport. SNePS considered as a fully intensional propo-
sitional semantic network. In N. Cercone and G. McCalla, editors, The Knowledge
Frontier, pages 263-315. Springer-Verlag, New York, 1987.

[23] P. Sibun, S. Anderson, D. Forster, and B. Woolf. Reference to situation. Submitted
to the International Joint Conference on Artificial Intelligence, 1989.

[24] R. Srihari. Combining path-based and node-based reasoning in SNePS. Technical
Report 183, Department of Computer Science, SUNY at Buffalo, 1981. 52pp.

56

[251 A. Tate. Generating project networks. In Proceedings 5th IJCAI, pages 888-93, 1977.

[261 R. Waldinger. Achieving Several Goals Simultaneously, pages 94-136. Ellis Horwood,
Chichester, England, 1977.

[27] D. E. Wilkins. Practical Planning-Eztending the Classical Al Planning Paradigm.
Morgan Kaufmann, Palo Alto, CA, 1988.

57

2.11 TRIPS FUNDED BY RADC

SUNY at Buffalo, Department of CS, February 14-19, 1988, to work with the Natural
Language Planning research group: Shapiro.

SUNY at Buffalo, Department of CS, March 10-11, 1988, to work with the Natural Lan-
guage Planning research group: Shapiro.

First Annual CUNY Conference on Sentence Processing, New York, NY, March 24-27,
1988: Anderson.

SUNY at Buffalo, Department of CS, April 11-15, 1988, to work with the Natural Lan-
guage Planning research group: Shapiro.

NAIC Meeting, Rockwell International, Syracuse, NY, June 7, 1988: Shapiro.

26th Annual Meeting of the Association for Computational Linguistics, SUNY at Buf-
falo, and three meetings between the SUNYAB and U.Mass. researchers, June 7-10, 1988:
Shapiro, Woolf, Ali, Kumar, Sibun, Forster, Anderson.

RADC Meeting, Minnowbrook, NY, August 9-10, 1989: Shapiro Woolf, Anderson.

NAIC Committee Meeting, Syracuse University, September 27, 1988: Shapiro.

NAIC Fall Rochester Planning Workshop, University of Rochester, NY, October 27-29:
Shapiro, Kumar.

Second Annual RADC Technology Fair, Utica, New York, November 15, 1988: Shapiro.

59

2.12 NLP PUBLICATIONS IN 1988

Shapiro, S. C. and Rapaport, W. J., "Models and Minds: A Reply to Barnden", Northeast
Artificial Intelligence Consortium Technical Report TR-8737, Department of Computer
Science, SUNY at Buffalo, 13pp.

Kumar, D., Ali, S. and Shapiro, S. C., "Discussing, Using, and Recognizing Plans in SNePS
Preliminary Report - SNaCTor: An Acting System" in UBGCCS-88 Proceedings of the
Third Annual UB Graduate Conference on Computer Science Technical Report 88-03, De-
partment of Computer Science, SUNY at Buffalo, 62-69.

Kumar, D., All, S. and Shapiro, S. C., "Discussing, Using, and Recognizing Plans in SNePS-
Preliminary Report", Modern Trends in Information Technology-Proceedings of the Seventh
Biannual Convention of South East Asia Regional Computer Confederation, (SEARCC 88),
177-182.

Sibun, P., "Directing the Generation of Living Space Descriptions", COLING-88, The in-
ternational Conference on Computaitonal Linguistics, Budapest, Hungary.

Shapiro, S. C. "Representing Plans and Acts", Proceedings of the Third Annual Workshop
on Conceptual Graphs, American Association for Artificial Intelligence, Menlo Park, CA,
3.2.7-1 - 3.2.7-6 and appendix.

61

2.13 CONFERENCES PARTIALLY SUPPORTED BY RADC IN 1988

Third Annual University Of Buffalo Graduate-Conference in Computer Science
(UBGCCS-88)

Lynda Spahr was on the organizing committee for the Third Annual University Of Buf-
falo Graduate-Conference in Computer Science (UBGCCS-88), held in the the UB Center
for Tomorrow on March 15, 1988. Six speakers from SUNYAB and two each from the
Universities of Rochester, Waterloo, and Toronto participated. Scott Campbell, with Paul
Palumbo, edited Tech Report 88-03, "UBGCCS-88 Proceedings of the Third Annual UB
Graduate-Conference of Computer Science", S.S. Campbell, P.W. Palumbo, eds.

Deepak Kumar presented at the conference the paper, "Discussing, Using and Recog-
nizing Plans in SNePS Preliminary Report - SNACTor: An Acting System", by D. Kumar,
S. Ali and S. C. Shapiro.

Twenty-sixth Annual Meeting of the Association for Computational Linguistics
(ACL-88)

The Twenty-sixth Annual Meeting of the Association for Computational Linguistics was
held on the SUNY at Buffalo North Campus, June 7-10, 1988, partially supported by RADC
through the NAIC. The local arrangements were co-chaired by Dr. William J. Rapaport
and by Lynda Spahr, secretary at UB for the Northeast Artificial Intelligence Consortium.
Other RADC sponsored volunteers included Jiah-shing Chen, Scott S. Campbell, David
Satnik, Deepak Kumar and Syed Ali.

Founded in 1962, the Association for Computational Linguistics is the primary scien-
tific and professional society for natural-language processing research and applications. A
European chapter was established in 1982.

Approximately 330 linguists and artificial-intelligence researchers from universities and
industry in the U.S., Canada, and overseas attended this conference, which offered an
unparalleled opportunity for our faculty and graduate students.

Some of the topics that were discussed included: analogy, computerized lexicography,
discourse and narrative, machine translation, mathematical linguistics, natural-language
interfaces to databases, natural-language generation, parsing, speech-act theory, speech
perception and production, syntax and semantics of natural languages, tense and aspect,
and text processing.

There were also demonstrations of natural-language understanding systems by researchers
from CUBRC, Cornell University, IBM, NYU, UB's SNePS Research Group, SRI Interna-
tional, Sun Microsystems, Unisys, and USC/ISI. The arrangements for these were made by
Scott Campbell.

This was also the most successful ACL conference in terms of external support, with IBM,
DEC, Barrister, Calspan, and CUBRC donating a total of $4700 towards the conference.

63

Other financial support came from the SUNY Buffalo Conferences in the Disciplines, FNSM,
FSS, the Graduate Group in Cognitive Science, and the GRI in Cognitive and Linguistic
Sciences.

64

APPENDIX 2.A

SNePS-2 USER'S MANUAL

65

2.A SNePS-2 USER'S MANUAL

2.A.1 Introduction

General

SNePS (the Semantic Network Processing System) is a system for building, using, and re-
trieving from propositional semantic networks. SNePS-2, described in this manual, has been
implemented in Common Lisp, and runs on Texas Instruments Explorer Lisp Machines,
Symbolics Lisp Machines, HP9000 AI Workstations, VAX 11/785's, a Sperry 7000/40, and
an Encore Multimax. SNePS-2 differs in several respects from its predecessor, now called
SNePS-79, mostly because of theoretical decisions that were made since SNePS-79 was
implemented.

A semantic network, roughly speaking, is a labeled directed graph in which nodes repre-
sent concepts, arc labels represent binary relations, and an arc labeled R going from node
n to node m represents that the concept represented by n bears the relation represented
by R to the concept represented by m.

SNePS is called a propositional semantic network because every proposition represented
in the network is represented by a node, not by an arc. Relations represented by arcs are
called non-conceptual relations and may be thought of as part of the syntactic structure of
the node they emanate from. Whenever information is added to the network, it is added
in the form of a node with arcs emanating from it to other nodes.

Each concept represented in the network is represented by a unique node. This is
enforced by SNePS-2 in that whenever the user specifies a node to be added to the network
that would look exactly like one already there, in the sense of having the same set of arcs
going from it to the same set of other nodes, SNePS-2 retrieves the old one instead of
building the new one.

The core of SNePS-2 is a system for building nodes in the network, retrieving nodes that
have a certain pattern of connectivity to other nodes, and performing certain housekeeping
tasks, such as dumping a network to a file or loading a network from a file.

SNIP, the SNePS Inference Package, interprets certain nodes as representing reasoning
rules, called deduction rules. SNIP supports a variety of specially designed propositional
connectives and quantifiers, and performs a kind of combined forward/backward inference
called bi-directional inference.

SNaLPS, the SNePS Natural Language Processing System, consists of a morphological
analyzer, a morphological synthesizer, and a Generalized Augmented Transition Network
(GATN) Grammar interpreter/compiler. Using these facilities, one can write natural lan-
guage (and other) interfaces for SNePS.

The command language described in this manual is called SNePSUL, the SNePS User
Language. It is a Lispish language, usually entered by the user at the top-level SNePSUL
read-eval-print loop, but it can also be called from Lisp code or from GATN arcs. This
manual follows the style of Guy Steele's COMMON LIsP book, and assumes that the reader

67

is familiar that book and with Common Lisp.

Commands and Environments

A SNePSUL command is classified according to its role either as a procedure or as a func-
tion. A procedure is a command that performs some action but returns nothing, using
the Common Lisp (values) function. A function is a command that always returns some
value, possibly after having performed some action as a side effect. A function is imple-
mented directly as a Lisp function. For every SNePSUL command c, whether procedure or
function, (get c =coumand) has the value t.

A command is also classified according to the environment(s) in which it may legally
appear. A procedure can be entered only at the top level of SNePSUL. A function, however,
may appear in many different environments. For each environment, there is a symbol which
appears on the property list of commands that are legal in that environment. The five
environments and their symbols are:

The top level of SNePS-2 =topconmand
A relation-set position embedded in a command -rsfunction
A node-set position in build =bnsfunction
A node-set position in find or findassert -fnsfunction
A node-set position in any of the other commands -onsfunction

If c is a command and a is the symbol of an environment, (get c s) is t if c is legal in s,
and is nil if c is not legal in a.

Finally, a command can be classified according to the relation between its position and
the position of its arguments in the input line.

Most commands have an arbitrary number of arguments. They are called prefiz corn-
mands, because they can only be entered using Cambridge prefix notation:

(prefiz-command argument ... argument).

Some two-argument commands can be entered in infix position, and so are called infi
commands. When an infix command is used in infix position, SNePS rearranges the input
line to transform the form into a prefix form. Precedence is always from left to right. An
infix command can be used as

(infi-command argument argument)

or as

argument infix-command argument

with no parentheses.
Since SNePS always remembers the result of the last top-level function, an infix com-

mand can also be used as

infi-command argument

68

in which case SNePS recalls the result of the last function and makes it the first argument
for the infix command before rearranging the form to the prefix notation.

Similarly, some one-argument commands can be entered in postfix position and therefore
are called postfiz commands. A postfix command can be used as

(postfiz-command argument)

or as

argument postf v-command

with no parentheses, or just as

postfiz-command

in which case the result of the last function is used as argument.
Another kind of one-argument command, called macro commands, have one-character

names and are used as

macro-command argument

with no parentheses, and preferably with no space between the command and the argument.
Before passing it to the evaluator, the SNePS reader expands this form to a standard
Cambridge prefix form.

Types of Nodes

There are four types of nodes in the SNePS network: base, variable, molecular, and pattern.
Base nodes are distinguished by having no arcs emanating from them. A base node

may be created by the user's referring to it by name in the proper context. In such a case,
the name of a base node can be any Lisp symbol. If a number is used, the node's name
is a symbol whose symbol-name is a string of the characters that makes up the number.
If a string is used, the node's name is the symbol whose symbol-name is that string. A
base node may also be created using the # macro command, in which case the node's
name is Bz, where z is some integer. A base node is assumed to represent some conceptual
individual, object, class, property, etc. It is assumed that no two base nodes represent the
same conceptual individual.

Variable nodes also have no arcs emanating from them, but represent arbitrary individ-
uals or propositions, in much the same way that logical variables do. Variable nodes are
created using the * macro command. The name of a variable node is Vz, where z is some
number.

Molecular nodes and pattern nodes have arcs emanating from them. Molecular nodes
may represent propositions, including rules, or "structured individuals." A molecular node
that represents a proposition may be asserted or unasserted. Pattern nodes represent arbi-
trary propositions or arbitrary structured individuals, and are similar to open sentences in
predicate logic. Pattern nodes and unasserted molecular nodes are created by the build

69

function. Asserted molecular nodes are created by the assert function. An unasserted
molecular node may be asserted by using the ! postfix command. The name of a pattern
node is Pz, where z is a number. The name of a molecular node is Hz, where z is a number.
The name of an asserted molecular node is printed with a suffix of !.

Once any node is created, it may be referred to by its name. It is not necessary to
include the ! suffix to refer to an asserted molecular node.1

SNePSUL Variables

SNePSUL, the SNePS User Language, has variables which are entirely distinct from SNePS
variable nodes. The value of a SNePSUL variable is always a set of objects, nil if nothing
else. A SNePSUL variable may be given a value with the ?, #, or $ macro commands, or
with the = infix command. The value of a SNePSUL variable is obtained by using the *
macro command. SNePSUL variables created and maintained by SNePS are:

assertions The set of asserted nodes in the network.
couands The set of SNePSUL commands.
nodes The set of all nodes in the network.
relations The set of defined arc labels.
variables The set of SNePSUL variables.
varnodes The set of variable nodes in the network.

2.A.2 SNePSUL Commands

Entering the SNePS Environment

To enter the SNePS environment on the UNIX time-sharing mini-computers named Marvin,
Sybil, and Gort at SUNY/Buffalo, type the shell command -snerg/bin/sneps2; on the
TI Explorers in the Department of Computer Science at UB, just evaluate (sneps).

Entering and Leaving SNePS

The commands in this section move the user between the SNePSUL evaluator and the
Common Lisp evaluator. Although every SNePSUL function is a Common Lisp function,
the SNePSUL loop provides certain special facilities, so it is best to be in the proper top-
level loop for extended work.

(snaps)
Lisp function that brings the user into the SNePS read-eval-print loop.

(lisp)
SNePSUL function that returns the user to the LISP evaluator.

'Currently, including the I suffix in some contexts breaks SNePS, so you are advised not to think of it
as part of the name for input purposes

70

SNePSUL command that causes the next form to be evaluated by Lisp.

SNePSUL command that puts the user into an embedded Lisp read-eval-print loop un-
til the next occurrence of the form -- , whereupon the user is returned to the SNePSUL
loop.

(exit)
SNePSUL function that terminates Common Lisp and returns the user to the operating
system. Warning: This command is not currently bound to any function.

Using Auxiliary Files

The commands in this section provide for the use of auxiliary files for the storage of networks
or of sequences of commands.

(outnet file)
Stores the current network on the fie in a special SNePS format. The syntax for the file
specification is machine dependent.

(innet fie)
If file was created by a call to outnet, the current network will be initialized to the one
stored on file. Note: innet rewrites the entire network and several SNePSUL variables, so
it cannot be used to combine several networks. An error message is issued if file is not in
the appropriate format.

(intext file)
Reads a sequence of SNePSUL commands from the file and executes them, without echoing
them.

(dmo fde fkey :pause)
Reads a sequence of SNePSUL commands from the file, echoes them, and executes them.
If :paus. is t, SNePS will pause before each command is executed until the user enters
a carriage return. Each command may be preceded by an arbitrary number of comment
lines each beginning with ";". These lines will be echoed. demo prints the SNePS timing
of each command separately, as well as the timing of the entire demonstration. Warning:
Currently, the input file must end on a fresh line, not on the same line as the last command.

Defining Arc Labels

By relation in this manual, we mean any non-conceptual relation used to label network
arcs. Therefore "relation" and "arc label" are used interchangeably. Whenever an arc

71

labelled R goes from node z to node y, SNePS considers an arc labelled R- to go from
y to z. Relation names ending in the character #\- are reserved for this "reverse arc" or
"converse relation" labelling. Therefore no relation name may end with a #\-. The term
relation always refers to a normal, "forward" arc label. We will use the term unitpath to
mean either a relation name or the name of its converse relation.

(define {relation}*)
Defines each relation to be an arc label. The name of a relation must not end in the character
#\-. Each relation is added to the SNePSUL variable relations. An informative message
is given if a relation has previously been defined. Initially, SNePS has a set of relations
defined as if the following had been executed:

(define forall exists pevb
min max thresh threshmax emin emax etot
ant kant cq dcq arg default)

For uses of the predefined relations, see Sections 3.1.1, "Connectives," and 3.1.2, "Quanti-
fiers."

(undefine {relation}*)
Undefines each relation. If any relation is being used in the current network, the arcs are
not removed from the network structure, but they do become undefined. undefine is most
useful in correcting typographical errors in calls to define.

(define-path {relation path}*)
Declares the path-based inference rule,

V(nl, n2)path(ni, n2) =:. relation(ni, n,).

I.e., if a path of arcs specified by path is in the network going from node n, to node n2 ,
then the single arc labelled by relation is inferred as going from node n, to node n2 . See the
following section for the syntax of path. No relation may have more than one path-based
inference rule for it at any time. This is not a restriction, since a disjunction of paths is also
a path. Warning: A path-based inference rule will not be expanded recursively. I.e., no
relation (or converse relation) in the path will be expanded even if a path-based inference
rule has been declared for it. Warning: Currently, if relation already has a path-based
inference rule for it, you will not be able to change it.

(undef ins-path {relation path}*)
Deletes the given path-based inference rules. Warning: Currently, this is not implemented.

Syntax and Semantics of Paths

A unitpath is simply a single arc followed in the forward or the reverse direction. A path
can be a sequence of unitpaths, or a more complicated way of getting from one node to

72

another. Keep in mind the distinctions between relation, unitpath, and path, since there
are places where it matters.

unitpath ::= relation
Any single arc relation is also a unitpath.

unitpath ::= relation-
If R is a relation from node z to node y, then R- is a unitpath from y to z.

path ::= unitpath
Any single arc, either forward or backward, is a path.

path ::= (converse path)
If P is a path from node z to node y, then (converse P) is a path from y to z.

path ::= (compose path!)
If z 1 ,..., z, are nodes and P is a path from zi to zj+,, then

(compose P ... Pn-,)

is a path from z, to Zn. Note: If the symbol ! appears between Pi-1 and P, then zi must
be asserted. Example: After doing

(build member socrates class man),

the path

(compose member- class)

goes from socrates to man, but the path

(compose member- ! class)

doesn't. However, after doing

(assert member socrates class man),

both paths exist.

path ::= (kstar path)
If path P composed with itself zero or more times is a path from node z to node y, then
(kstar P) is a path from z to y.

path ::= (kplus path)
If path P composed with itself one or more times is a path from node z to node y, then
(kplus P) is a path from z to y.

73

path ::= (or {path}')
If P1 is a path from node z to node y or P2 is a path from z to y or ... or P, is a path from
z to y, then (or P P2 ... P,) is a path from z to y.

path ::= (and {path}*)
If P, is a path from node z to node y and P2 is a path from z to y and ... and P, is a path
from z to y, then (and P1 P 2 ... P,) is a path from z to y.

path ::= (not path)
If there is no path P from node z to node y, then (not P) is a path from z to y.

path ::= (relative-complement path path)
If P is a path from node z to node y and there is no path Q from z to y, then

(relative-complement P Q)

is a path from z to y.

path ::= (irrofloxive-restrict path)
If P is a path from node z to node y, and z 36 y, then

(irreflexive-restrict P)

is a path from z to y.

path ::= (exception path path)
If P is a path from node z to node y and there is no path Q from z to y with length less
than or equal to the length of P, then (exception P Q) is a path from z to y.

path ::= (domain-restrict (path node) path)
If P is a path from node z to node y and Q is a path from z to node z, then

(domain-restrict (Q z) P)

is a path from z to y.

path ::= (range-restrict path (path node))
If P is a path from node z to node y and Q is a path from y to node z, then

(range-restrict P (Q z))

is a path from z to y.

74

Building Networks

The commands of this section add information to the network, either in the form of a node,
a node and some arcs, or an assertion tag. It is not possible to add just an arc to the
network. Isolated nodes cannot be added to the network, so the commands # and $ can
only be used within the lexical context of a build, assert, or add.

We will use the term wire to mean a labelled arc and the node it points to. So a molecular
node has a set of wires coming out of it.

(build {relation nodeset}*)
(assert {relation nodeset}*)
(add {relation nodeset}*)
Puts a node in the network with an arc labelled relation to each node in the following
nodeset, and returns a singleton set containing the built node. The new node is added to
the value of the SNePSUL variable nodes. If this new node would look exactly like an
already existing node, i.e., would have exactly the same set of wires emanating from it,
then no node is built, but a singleton set containing the extant node is returned, build
creates an unasserted node, unless an asserted node exists in the network with a superset
of the wires of the new node, in which case the new node is also asserted. assert is
just like build, but creates the node as an asserted node. add is just like assert, but,
in addition, triggers forward inference. Note: where relation is specified in the syntax,
neither a converse relation nor a non-unit path is allowed.

(! node)
A postfix command that asserts node, and returns a singleton set containing node.
(assert ...) is equivalent to (! (build ...)) and to (build ...)!.

#symbol
A macro command that creates a new base node, assigns a singleton set containing the new
node as the value of the SNePSUL variable symbol, and returns that set. This may not be
used at the top-level SNePSUL loop, since that would create an isolated node.

$symbol
A macro command that creates a new variable node, assigns a singleton set containing the
new node as the value of the SNePSUL variable symbol, and returns that set. This may
not be used at the top-level SNePSUL loop, since that would create an isolated node.

Deleting Information

The commands of this section delete information from the network, and are mainly intended
for use after mistakes or when debugging.

(erase { nodeset}*)

75

Removes all nodes in all nodesets from the network along with any nodes that become
isolated in the process (that is, all nodes which no longer have any arcs connected to
them). Asks the user for permission to delete unasserted nodes dominated by nodes it
erases. Refuses to delete nodes that have arcs coming into them.

(resetnet)
Reinitializes the network to the state in which no nodes have been built. Leaves relations
defined and path-based inference rules declared.

(clear-infer)
Deletes any information placed in the "active connection graph" version of the network by
SNIP. I.e., all deduction rules are returned to their unactivated state as if no inference had
yet been performed.

Functions Returning Sets of Nodes or of Unitpaths

The functions described in this section neither add to nor delete from the network. Rather,
they compute and return sets either of nodes or of unitpaths.

({node})
A list of nodes at the top level of the SNePSUJL loop, or in a context where a node set is
required, is treated as an expression whose value is a set of the nodes in the list.

*symbol
A macro command function which returns the set of nodes in the value of the SNePSUL
variable symbol.

(- S-ezpression)
The set of nodes obtained by evaluating the LISP S-ezpression.

(k nodeset nodeset)
Infix function that returns the intersection of the two nodesets.

(+ nodeset nodeset)
Infix function that returns the union of the two nodesets.

(- nodeset nodeset)
Infix function that returns the set of nodes in the first nodeset but not in the second nodeset.

C- nodeset symbol)
Infix function that assigns the nodeset to be the value of the SNePSUL variable symbol.

76

(> unitpathset symbol)
Infix function that assigns the unitpathset to be the value of the SNePSUL variable symbol.

(- nodeset unitpathset)
Infix function that returns the set of those nodes in the nodeset which do not have any of
the unitpaths in the unitpathset emanating from them.

Displaying the Network

The commands in this section are various ways of printing, or otherwise displaying, the
information in the network.

(dump {nodeset}*)
Prints the name of each node in the nodeset, along with all arcs going from it or into it, and
the nodes that each arc points to or from. For a complete dump of the network, execute
(dump *nodes).

(describe {nodeset}*)
Similar to dump, but: describes only the molecular and pattern nodes in the nodesets;
describes all molecular and pattern nodes dominated by nodes it describes; describes any
node at most once-the second and later times, only the node's name is printed.

(surface { nodeset}*)
Generates a description of each node in each nodeset using the currently loaded GATN
grammar starting in state g.

(ginseng)
(gi-dump {nodeset}*)
(gi-desc {nodeset}')
Runs the Ginseng facility for drawing a graphical display of the SNePS network. First,
the user must position and size the Ginseng Window using the mouse. Once that is done,
two Ginseng menus are available: one, by clicking any mouse button on the Window
background; the other, by clicking any mouse button on a node displayed in the Window.
It is possible to go back and forth between the window running SNePS, and the Ginseng
window, so the network can be modified in the SNePS window, and the modification
may then be drawn in the Ginseng Window. ginseng gives an initially empty Ginseng
window. gi-dump initializes the window to contain the specified nodes and all nodes they
are connected to by a single arc. gi-deuc initializes the window to contain the specified
nodes and all nodes they dominate. Warning: Ginseng is currently available only on Texas
Instruments Explorers.

77

Retrieving Information

The functions in this section find nodes in the network, and return them.

(find {path nodeset})
(findassert {path nodeset}*)
(findconstant {path nodeset}*)
(findbase {path nodeset}*)
(findvariable {path nodeset}*)
(findpattern {path nodeset}*)
Returns the set of nodes such that each node in the set has every specified path going from
it to at least one node in the accompanying nodeset. (find class (man greek)) will find
nodes with a class arc to either man or greek, whereas (find class man class greek)
will find nodes with class arcs to both man and greek. find returns all appropriate nodes
in the network; findassert returns only asserted nodes; findconstant returns only base
or molecular nodes; findbase returns only base nodes; findvariable returns only variable
nodes; findpattern returns only pattern nodes.

?symbol
May be used in any find function in place of a nodeset, to stand for "any node." The scope
of these symbols is the outermost find function and all embedded find functions. After
return of the outermost find function, symbol will be a SNePSUL variable whose value will
be the set of nodes it matched.

(deduce [numb] {relation nodeset}*)
Like findassert, but uses SNIP to back-chain on any deduction rules in the network, and
returns all inferred nodes that satisfy the specification. Note that only relations may appear
in the specification, not any other unitpaths or paths. Neither may ?symbol variables appear
in the specification. The numb argument is optional. If numb is omitted, then deduce
continues until no more answers can be derived. If numb is a single integer, it specifies
the total number of answers requested. If numb is zero, no inference is done--only answers
already in the network are returned. Otherwise, numb must be a list of two numbers, (npos
nneg), and deduction terminates after at least npos positive and nneg negative instances
are derived.

2.A.3 SNIP: The SNePS Inference Package

Automatic inference may be triggered using the function deduce (see Sec. 2.2.10), a gener-
alization of find, or the function add (see Sec. 2.2.6), a generalization of assert. In order
for these to accomplish anything, deduction rules must exist in the network. A deduction
rule is a network structure dominated by a rule node. A rule node represents a logical
formula of molecular nodes, using connectives and quantifiers.

78

Representing Rules

Rules are placed in the network with the assert and add commands. The arcs needed to
build rules are predefined by SNePS.

Connectives

Connectives are the means by which simple propositions are compounded to make more
complicated ones. In classical logic, this compounding is accomplished by use of standard
connectives such as & (AND) and V (OR). A number of disadvantages exist in using
standard connectives in SNePS, primarily because of their binary nature and the size of
the network needed to store representations with standard connectives. To avoid these
problems, SNePS uses non-standard connectives. These non-standard connectives are as
adequate as standard connectives, but they take arbitrarily large sets of arguments and
express common modes of human reason simply. The non-standard connectives are: and-
entailment, or-entailment, numerical entailment, andor, thresh, non-derivable, and default.
SNePS determines which connective is being used from the set of predefined arcs emanating
from the rule node, and, in the cases of andor, thresh, and numerical entailment, which
have numerical parameters, by special arcs from the rule node to the parameters. An
explanation of each connective follows.

And-Entailment {A,,..., A.} &= {C.,..., C,} means that the conjunction of the an-
tecedents implies the conjunction of the consequents. An and-entailment rule is built with
the SNePSUL command:

(assert &ant (A,,...,
cq (C,,...,,C,))

Or-Entailment {A 1,..., A.} V=: {C 1,..., C,,} means that the disjunction of the an-
tecedents implies the conjunction of the consequents. An or-entailment rule is built with
the SNePSUL command:

(assert ant (A,...,A.)
cq (CI,...,,))

Note: or-entailment is more efficient than and-entailment, so if there is only one an-
tecedent, use ant rather than Uant.

Numerical Entailment {A 1,... , 4}i= , Ce} means that the conjunction of any
i of the antecedents implies the conjunction of the consequents. In other words, if i or more
of the antecedents are true, then all of the consequents are true. A numerical-entailment
rule is built with the SNePSUL command:

(assert thresh i
&ant (Ai,...,A,
cq (Ci,..., IC,))

79

AndOr {P 1 ,... ,P} means that at least i and at most j of the n propositions are true.
An andor rule is built with the SNePSUL command:

(assert nin i max jarg(P,...,P)

The following special cases of andor are representations of standard connectives: i =

j = n is AND; i = j = 0 is a generalization of NOR; and i = j = 1 is a generalization of
EXCLUSIVE OR.

Thresh W3'{P 1, ... , P} means that either fewer than i or more than j of then propositions
are true. j may be omitted, in which case it defaults to n - 1. A thresh rule is built with
the SNePSUL command:

(assert thresh i threshmax j
arg (P 1,..., P.))

If i = 1 and j is omitted, the thresh is a generalization of equivalence.

Non-derivable / P means that P is not derivable in the current network. Warning:
non-derivable has not yet been implemented in SNePS-2.

Quantifiers

Quantifiers permit the use of variables in deduction rules. The relations forall and exists,
are predefined quantifier relations. They are used to point to variable nodes, indicating for
which values of the variable node the rule holds. forall and exists represent universal and
existential quantifiers, respectively. SNePS-2 uses restricted quantification, which means
that every quantified expression must have a restriction as well as a scope.

The Universal Quantifier

V(Zis,..., z,.){Rj(zt), ... , ?tR(--,)) : {P,_(--,...- , Z,), ... ,? P,,(X,_,.... Z,,)}

means that for every substitution, a = {tl/zi, ... , t/z,} for which the following conditions
hold

9 t, satisfies the restriction Ri, 1 < i < n

* t # tj whenever i # j

* t. does not occur in the original rule, 1 < i < n

A Oz19... , z,)a, 1 < i < m is true. There may be fewer restrictions than variables if some
restriction contains more than one variable free, as long as every variable occurs in at least
one restriction. A universally quantified rule is built with the SNePSUL command:

80

(assert forall (zx,..&ant (Rj Cj),..., RCx,))
cq (P,(zXv...,2 O),...- , P,(zl,...- ,zX)))

The first occurrence of a variable must be preceded by the $ macro, and subsequent
occurrences must be preceded by the * macro.

If there is only one restriction, ant should be used instead of rant.

The Existential Quantifier

3(z,1,...-, ,,.){R,(-,,,),... n,(X,,)). {Pl(ZI., On),., P,,(X, ,..., -n))

means that for some substitution, a = {t 1 /zX1, t., / for which the following conditions
hold

" t satisfies the restriction R,, 1 < i < n

" t, j tj whenever i # j

" t, does not occur in the original rule, 1 < i < n

P(z,... ,z,)Or, 1 < i < m is true. There may be fewer restrictions than variables if some
restriction contains more than one variable free, as long as every variable occurs in at
least one restriction. Warning: the existential quantifier has not yet been implemented in
SNePS-2.

The Numerical Quantifier

k3,'(zj,..., Z,){Rj(zj),..., I (Z,)}. : Pl(Z,., On),., Pm(Xl,...-, On))

means that of the k substitutions, Or = {t1/z,... , t./z,} for which the following conditions
hold

* t satisfies the restriction X, 1 < i < n

" t, - tj whenever i 6 j

" t does not occur in the original rule, 1 < i < n

between i and j of them also make Pi(XI, ... , Z,0, 1 < i < m true. There may be fewer
restrictions than variables if some restriction contains more than one variable free, as long
as every variable occurs in at least one restriction. Warning: the numerical quantifier has
not yet been implemented in SNePS-2.

81

The Uniqueness Principle for Variables Currently, the Uniqueness Principle is not en-
forced by SNePS for variables. Therefore, it is advised that the Uniqueness Principle for
variables be followed by the SNePSUL user as a matter of style. This should be done as
follows. Every restriction used in a restricted quantifier should have a series of variables,

R . Every rule that uses R once should use zR as its variable. A rule that uses the, ,... rl

restriction R more than once should use z4 in the first use of R, z' in the second use of
R, etc. This can be done by using the $ macro to create each variable node the first time
the restriction occurs, and the * macro on all subsequent occasions, including subsequent
rules. For example, the two rules "Every dog is a pet" and "Every dog hates every cat"
might be entered as follows, assuming that the restrictions Dog(z) and Cat(y) have not
previously been used in the network:

(assert forall $dogl
ant (build member *dogl class dog)
cq (build member *dogl class pet))

(assert forall (*dogl $catl)
&ant ((build member *dogl class dog)

(build member *catl class cat))
cq (build agent *dogl act hates object *catl))

82

APPENDIX 2.B

REFERENCE TO SITUATIONS

83

Reference to Situations

Penelope Sibun
Scott D. Anderson

David Forster
Beverly Woolf

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

Email: sibun@cs.umass.edu or penniCumass.bitnet

Abstract

We discuss the definition and processing of words such as "situa-
tion," "example," and "case." In this paper, we restrict the discussion
to the word "situation." We have concluded that a Situation, the ref-
erent of this word, is an aggregate of model objects picked out by a
Situation Index. Situations are states of affairs characterized by con-
creteness and tension. We show further that context must inform the
comprehension of this difficult lexical item; and we conclude with a
discussion of how reference to situations interacts with text structure.

We thank James Pustejovsky for his many helpful suggestions and criticisms.
This work was supported in part by the Air Force Systems Command, Rome Air De-

velopment Center, Griffiss AFB, New York, 13441 under contract No. F30602-85-C-0008.
This contract supports the Northeast Artificial Intelligence Consortium (NAIC).

85

1 Introduction

Words such as "situation" are important because they occur frequently in
natural discourse, and they are interesting because they are like anaphoric
terms ("he," "it") and deictic terms ("this," "that"), but they have a much
richer semantics. Consider the following usage:

Penni and Scott are writing an IJCAI paper. Their first draft
was shot down by their fellow researchers. In this situation, they
squabbled more than usual.

Most people would agree that this paragraph contains a description of a
situation, and more importantly, that the lexical item "situatidn" success-
fully refers to it. However, understanding the exact reference of the word
"Situation" is complicated by three factors:

1. "Situation" places significant, but ill-defined, constraints on its possi-
ble referents. This example shows elements of concreteness (particu-

•lar people writing a particular paper), states (a bad first draft), and
change (such as increased squabbling). These are much more complex
constraints than the simple number, person, and gender features of
pronouns.

2. "Situation" is nevertheless a weak descriptor, because situations come
in so many different kinds--different sets of entities can be referred to
as a situation, depending on'the context.

3. Situations might not exist a priori, but instead be created a posteriori.

That is, the set of objects that make up the situation may not pre-
viously have been aggregated. The objects aggregated by "situation"

reside in the Model,' which is constructed in the process of understand-
ing the text.

This paper attempts to define the semantics and processing of situations.

1This Model is informed by, but is distinct from, our domain models, which contain
world knowledge of various possible domains of discourse. The Model may contain ex-
plicit structural or lexical information; this needs to be saved for some understanding tasks
(for example, Webber's discourse anaphora (1987)), but it is not necessary for processing
situations.

86

2 Types of Reference

Model Anaphora, which we define to be the determination of the reference
of words such as "situation," naturally extends other work on anaphora.
Many researchers have studied pronoun anaphora (coreference between a
noun phrase and a personal pronoun): Hobbs (1978), Grosz and Sidner
(1986), Hankamer and Sag (1976), and Webber (1983). Work on tempo-
ral anaphora (coreference between temporal expressions) has been done by
Partee (1984) and Hinrichs (1986), among others. Webber has also worked
on the reference of demonstratives such as "this" and "that"; she has termed
this variously as "event reference" (1987) and "discourse anaphora" (1988).
The 1987 paper also introduced the notion of individuating reference, which
plays a key role in our Model Anaphora.

Text comprehension involves reference, which we define as the link from
an expression in the text (for example, a noun phrase or a proposition) to a
Model Object,2 called the referent. The arrows in Figure 1 are examples of
such reference links.

Reference Links

M l

Sometime, the reerent ofan expresion is" t of hings n heMoel

........ ..-.... .. :....
-":.-.'.towo.-:

.... ..:-.-'.-: , , :........

Model Text

Figure 1: The reference links from the text to the Model.

Sometim8s, the referent of an expression is a se of things in the Model.
Such a set acts as an individual, in that it can be referred to, can have
qualities attributed to it, and can participate in relations. Webber (1987)

2A Model Object is any first-class object in the Model (essentially, a first-class object is
anything that can be pointed to). Therefore, Model Objects include relations, events, states,
and so forth, as well as physical objects. Recall that the Model records our understanding

of the text, and is distinct from domain models.

87

calls a reference that creates a new individual an individuating rejrence,
depicted in Figure 2. One can also view this as creating a new first-class
object, since only first-class objects can be referred to and predicated.

Individuating
Reference

I .,..,.....,,,.,.., ::,:...:.. :

....v:.-..............:....,.,.:.-

.: ..: ; ..:' ..:z.:i.:.......

.,:€ ...:.........:.....

..........

Model Text

Figure 2: An expression referring to a set of objects as though it
were an individual. The reference that creates this set
is called an individuating reference.

Not all aggregate model objects are the result of individuating reference:
some aggregates already exist as part of a domain model. For instance, the
story of Romeo and Juliet is clearly an aggregate, being composed of many
people and events, but it is easily available as a referent in discourse without
being created anew.

We believe that a situation is represented as an aggregate model object
and that the word "situation" is often used as an individuating reference.
There are two issues to address: defining just what can be termed a situation,
and processing a reference to a situation (which may involve an individuating
reference). The next-section deals with the problem of a proper definition of
this term, and Section 4 deals with processing.

3 The Definition of Situations

We have identified several factors which influence whether an expression de-
scribes a situation. Consider examples (1) through (4) below. When asked
to judge which examples can be characterized as situations, speakers gener-
ally agree that (4) can be a situation, but (1) cannot. However, there is less

88

agreement on whether the intermediate expressions may refer to situations.

(1) running
(2) running the Boston Marathon
(3a) James running the Boston Marathon
(3b) James having run the Boston Marathon

(4) James having run the Boston Marathon last April

It is possible to imagine contexts in which any of these phrases describes a
situation, but in some cases, the contexts are more natural and more available
than in others. We believe that these expressions differ by their concreteness.

Concreteness is characterized in the psychological literature by image-
ability (for example, Paivio et al., 1968). In our examples, the increasing
specificity supplies the details that aid in building up a mental image. Speci-
ficity, however, is not the right measure of a situation. Consider example
(5):

(5a) playing a violin

(5b) playing a Stradivarius

Most people judge these as equally good (or bad) as situations, yet (5b) is
clearly more specific, though it is no more concrete (imageable). This is sim-
ilar to Rosch's (1976) notion of basic level categories; one formulation of a
basic level is that it is the highest level for which the prototype is imageable
(hence, concrete). Thus, concepts at or below the basic level are equally con-
crete, and therefore their concreteness equally affects judgements of whether
something is a situation.

Intuitively, a situation is a state of affairs-a description of the world (or
some small part of it) at some point in time. Note that the questions "What
is the situation with X?" and "What is the state of X?" will elicit similar, if
not identical, descriptions. Certainly, the description may combine present
and past actions, especially those that are related (causally or otherwise) to
the current state of affairs:

The situation is that I dialed this long-distance number and
it's been over thirty seconds and it still hasn't rung. Strange.

Clearly, this situation includes the past action of dialing the phone. On the
other hand, a situation need not mention past actions. For example, the
situation at the beginning of Romeo and Juliet can adequately be described
as the feud between the Montagues and the Capulets, without mentioning

any particular actions.

89

A situation usually contains tenszon, which we take as potential for change.
In Example (6) below, (6a) is a better situation than (6b) because there is
a greater potential for change. Most people consider (6b) too uninteresting
to be a situation at all. Of course, in certain contexts, (6b) could be con-
sidered a situation: a textbook on erosion might discuss the changes in that
situation.

(6a) A boulder teetering on the edge of a cliff.
(6b) A boulder sitting in the middle of a plain.

Example (6) also demonstrates that tension need not result from agents and
their goals, as it does in the Romeo and Juliet situation.

We conclude that situations are states of affairs characterized by con-
creteness and tension. Concreteness reflects how easily people can construct
a mental image of the situation. Tension reflects people's judgements of the
potential for change.3 Obviously, judgements of these characteristics will
vary from person to person; nevertheless, they put significant constraints on
what can be a situation.

4 Processing

Situations are commonly'referenced with phrases such as "the situation with
X" or "the X situation." Sometimes, depending on X, more specific phrases
are used, as with "the situation in the Middle East," which is preferable
to "the situation with the Middle East." These modifying phrases include
the Situatirn Index for each of these Situations. A Situation Index is a key
that picks the situation out of the Model, distinguishing foreground from
background, so to speak.

The situation index is usually some common or unifying aspect of the
situation. Thus, if we speak of "the IJCAI paper situation," (see our first
example), the situation index unites the situation. This situation is also
successfully referred to by "the situation with Penni." Indeed, the situation
index need not be explicitly mentioned in the text. For example:

I was driving to work with the caroool, as usual, and the
engine threw a rod. It's shot, so now I've got to get a new one.
That's the situation with my car.

3 Some situations, unfortunately, seem to be ones in which people nevertheless judge there
to be little potential for change. For example, consider the situation of being trapped in the

center of a row at a boring lecture.

90

This reference is successful because the mention of "driving" and "engine"
bring "car" into focus (see Sidner 1979). Furthermore, replacing the referring
phrase with "the situation with the carpool" does not as easily refer to the
car situation. Therefore, we conclude that elements in focus, regardless of
explicit mention in the text, are what are available as situation indexes.

We take references that make explicit mention of the situation index to
be the canonical case; we process other references by first determining the
situation index from the context, thereby reducing them to the canonical
case. Thus, Model Anaphora is a two-step process:

1. Determine the situation index. Where this is explicitly mentioned,
the determination is trivial. Otherwise, the situation index must be
computed from the context.

2. Using the situation index, search the stack of focus spaces
and look for matches. Since we-take the focus spaces to comprise
Model Objects, the search will be through a subspace of the Model.
The matching Model Objects will yield a set of candidates, some of
which will be discarded because they are not states of affairs or because
they lack concreteness or tension. If this does not reduce the get of
candidates to a single situation, we choose the most recent candidate.

Our current research concerns the comprehension of the following para-
graph, so we will use it to illustrate Model Anaphora:

Nancy asked Tom if an inanimate object, such as a table,
can exert a force. Tom said he didn't think so. Nancy pointed
to a pile of books on the table and asked if the table exerts an
upward force on the books. Tom said no. Nancy placed the books
on Tom's hand. Tom had to exert a great force to keep the books
steady. Nancy asked Tom to compare the two situations. Tom
said the table must also have exerted a force on the books.

Nancy definitively sets the topic of the paragraph with her first question
to Tom. This places "inanimate objects" and "force" in focus, as well as
marking them as belonging to the topic. Because of our domain knowledge
of physics, we know that her second question, which is more specific, is
subsumed by her first, and does not change the topic. When Nancy refers to
"the two situations" without supplying a situation index, either "inanimate
objects" or "force" is probably the index she has in mind.

91

Supposing we take "force" as the situation index, we search in the Model
for Model Objects that match it. We find the first situation because "push"
is a kind of force and Nancy has asked Tom whether the books push up on

the table. Hence, the books on the table is a situation. The second situation

is found because force is explicitly mentioned, hence the books on Tom's

hand is also a situation.4 Although force is mentioned in the first sentence,
"whether an inanimate object, such as a table, can exert a force," this is

discarded as a situation because it lacks concreteness.
We have outlined the two phases of processing Model Anaphora and

have shown how we can find the referents for "situation" in an sample text.

The first step in the process is finding a situation index, which we have
defined as the key that picks the situation out of the Model. The second
step involves searching the focus stack for occurrences of the situation index
and determining whether any of these is part of a situation.

5 Conclusion

Model Anaphora is based on reference to objects in a Model, as opposed
to the structure of the text. For instance, we dh .nguish our work from
Webber's research showing that demonstrative pronouns refer to discourse

segments (1988). While many descriptions of situations will correspond to
discourse segments, other descriptions will be discontinuous or overlapping.
An example of the latter is the following, in which Frieda's situation overlaps
with Bjorn's:

Helga loves Bjorn who loves Frieda who loves Bant.

Because of our reliance on focus spaces, the structure of the text will affect
the availability of a situation to a bare reference (a referring phrase with no
situation index). For example, text intervening between the description of a
situation and the bare reference will usually make the reference confusing.

In conclusion, we claim that situations are states of affairs that exhibit

concreteness and tension, and that the process of referring to them involves a
situation index. We believe that Model Anaphora is a phenomenon common
to a large class of nouns, including "case," "disaster," and "example." These

nouns differ somewhat in their semantics, but they all make individuation

references to sets of Model Objects.

4Both situations are larger than we have described them here. For instance, Nancy would
include in her representations the forces involved in the two situations. Tom will, too, once
he understands the concept.

92

6 References

Grosz, B. and C. Sidner, "Attention, Intentions, and the Structure of
Discourse." In Computational Linguistics, Vol. 12, No 3, pp. 175-204,
1986.

Hankamer, J. and I. Sag. "Deep and Surface Anaphora." In Linguistic
Inquiry, 7(3), pp. 391-426, 1976.

Hinrichs, E. "Temporal Anaphora in Discourses of English." Linguis-
tics and Philosophy, 9(1), pp. 63-82, 1986.

Hobbs, J. "Resolving Pronoun References." In Lingua 44 pp. 311-338,
1978. Also in B. Grosz, K. Sparck-Jones, and B. Webber, eds., Read-
ings in Natural Language Processing, pp. 339-352, Morgan Kaufman
Publishers, Inc., 1986.

Paivio, A., J. Yuille, and S. Madigan. "Concreteness, Imagery, and
Meaningfulness Values for 925 Nouns." In Journal of Experimental
Psychology Monograph Supplement, 76, pp. 1-25, 1968.

Partee, B. "Nominal and Temporal Anaphora." In Linguistics and
Philosophy, 7(3), pp. .243-286, 1984.

Rosch, E., C. Mervis, W. Gray, D. Johnson, and P. Boyes-Braem.
"Basic Objects in Natural Categories." In Cognitive Psychology, 8,
pp. 382-439, 1976.

Sidner, C. Towards a Computational Theory of Definite Anaphora Com-
prehension In English Discourse. Technical Report TR-537, Massachusetts
Institute of Technology, 1979.

Webber, B. "So What Do We Talk About Now?" In M. Brady and
R. Berwick, Eds., Computational Models of Discourse, The MIT Press,
pp. 331-371, 1983.

Webber, B. "Event Reference." In Position Papers for TINLAP-3:

Theoretical Issues in Natural Language Processing-3, Las Cruces, NM,
pp. 137-142, 1987.

Webber, B. "Discourse Anaphora." In Proceedings of the 26th Annual
Meeting of the Association for Computational Linguistics, Buffalo, pp.
113-122, 1988.

93

