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7.1 Inmt..on:

The RPI task has been concerned with the development of expert systems techniques

for automated photointerpretation. More specifically, our efforts have been directed toward

the development, implementation and demonstration of techniques which will mimic the

job of a trained photoanalyst in interpreting objects in monochrome, single-frame aerial

images. This is a difficult task which requires a combination of numerical and symbolic

image processing techniques.

During the course of this effort we have developed a novel hierarchial, region-based

approach to automated photointerpretation (cf. [1]). Basically, this approach proceeds

by first segmenting the input image into disjoint regions which differ in tonal or textural

properties. The spatial relationships between different regions are then expressed in terms

of the associated adjacency graph where nodes represent regions and the connectivity

indicates regions which are spatially contiguous. Based upon knowledge of the underlying

spatial adjacency graph, together with various self and mutual region attributes or features,

the problem is then that of assigning interpretations, or object categroies, to each of the

nodes. This is generally a computationally explosive task. The novelty of our approach

is that we have been able to develop a computationally feasible approach to this symbolic

interpretation process.

The advantage of our approach is based upon two important properties: First, we

model the interpretation process as a Markov random field (MRF) defined on the adjacency

graph. Secondly, we make use of an efficient stochastic relaxation process to find the

most likely interpretation. The first assumption allows us to localize the search for good

interpretations while the second helps in avoiding the otherwise computationally explosive

nature of the search for optimum interpretations.

Our mz.ior effort during FY'88 has been in refining the region hierarchial approach,

improving the initial segmentation process and, finally, demonstrating the approach on

real-world aerial photographs. The present report is an attempt to document this progress

of the last year.

This final report is organized as follows: In Section 7.2 we provide a detailed de-

scription of the current states of our hierarchial, region-based approach to automated

7.1.1
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photointerpretation. This is followed, in Section 7.2 by a detailed development of an unsu-

pervised model-fitting approach to cluster validation with particular application to image

segmentation. This has been used in our image interpretation approach. In Section 7.3

we describe an implementation of this overall image interpretation approach on the TI

Explorer.

References for Section 7.1

1. J.W. Modestino, "A Hierarchial Region-Based Approach to Automated Photointer-

pretation," NAIC Final Report for FY'86.

2. H.L. Van Trees, Detection, Estimation and Modulation Theory I Wiley and Sons, New

York, 1968.

3. R. Kinderman and J.L. Snell, Markov Random Fields and Their Applications, Amer-

ican Mathematical Society, Providence, RI, 1980.
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7.2 A Markov-Random Field Model-Based ADvroach to Image Interpretation:

7.2.1 Intoucion:

In this section, a Markov random field (MRF) model-based approach to automated

image interpretation is described and demonstrated. This scheme is a region-based ap-

proach in which an image is first segmented into a collection of disjoint regions which

form the nodes of an adjacency graph. Once the adjacency graph has been determined,

imdge interpretation is achieved through assigning object labels, or interpretations, to the

segmented regions, or nodes, using domain knowledge, extracted feature measurements

and spatial relationships between the various regions. In this approach, the interpreta-

tion labels are modeled as a MRF on the corresponding adjacency graph and the image

interpretation problem is then formulated as a maximum a posteriori (MAP) estimation

rule given domain knowledge and region-based measurements. Simulated annealing is used

to find this best realization, or optimal MAP interpretation. Through the MRF model,

and its associated Gibbs distribution, this approach also provides a systematic method for

organizing and representing domain knowledge through appropriate design of the clique

functions describing the Gibbs distribution representing the pdf of the underlying MRF.

We provide a general methodology for design of the clique functions. Results of image in-

terpretation experiments performed on synthetic and real-world images using this approach

are described and appear promising.

7.2.2 Backfround:

Image interpretation is the process of understanding the meaning of an image through

identifying significant objects in the image and analyzing their spatial relationships. These

objects can be very simple, such as tools and work parts in an assembly line scene; or they

can be quite complicated and composed of many simpler objects, such as a runway area

full of airplanes in an airport scene.

The need for image interpretation can be found in many diverse fields of science

and engineering. For example, a major application of image interpretation is in remote-

sensing, or aerial/satellite photointerpretation, which is widely used in geological survey

and military air reconnaissance [1]- [3]. Image interpretation also plays an important part

in biomedical science and particle physics where much of the experimental results are
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recorded in the form of photographs [4]-[5].

Traditionally, the task of image interpretation is performed by well-trained and expe-

rienced human ezperts. However, analyzing a complex image is quite labor intensive. Fur-

thermore, as a result of the rapid advances in imaging/photographic technology, in many

of the previously mentioned applications the large amount of images generated would soon

overload the relatively small number of experts. Hence, much of the research in image

processing has been directed towards constructing automated (computerized) image inter-

pretation systems. Recent research in intelligent robots has created yet another need for

automated image interpretation. In this case, the robots need to understand what they

"see" with imaging sensors in order to be able to perform intelligent tasks in complex envi-

ronments [6]-[7]. Here, the robots have to rely entirely on automated image interpretation.

Most of the existing image interpretation techniques involve two major operations,

low-level and high-level processing. In low-level processing, the representation of an image

is transformed, through image processing operations, such as edge detection and region

segmentation, from a numerical representation, as an array of pixel intensities, to a symbolic

representation, as a set of spatially related image primitives, such as edges and regions.

Various features are then extracted from the primitives. These features may include: the

lengths of significant edges, average intensities of regions, shape and/or texture descriptors,

etc. Also extracted would be the spatial relationship between the image primitives. In high-

level processing, image domain knowledge is used to assign object labels, or interpretations,

to the primitives and construct a description as to "what is present in the image". In the

rest of this paper, we often refer to the object labels as interpretations and the overall

interpretations for all the primitives in the image as the interpretation of the image.

The main approach in early research on image interpretation was that of classification

14]-[5], 18] in which isolated image primitives are classified into a finite number of object

classes according to their feature measurements. However, since low-level processing often

produces erroneous or incomplete primitives and noise in the image may often cause mea-

surement errors in the features, the performance of image interpretation systems using the

classification approach is quite limited. Tne main problem here is that the rich knowledge

of the spatial constraints between objects, used by human experts, has not been used in
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the high-level processing.

To solve this problem, most of the recent techniques have adopted the knowledge-

based, or expert syatem, approach. In this approach, domain knowledge, and especially

spatial constraints, are used in high-level (some also in low-level) processing. Hence, an

ambiguous object may be recognized as the result of successful recognition of its neigh-

boring objects. Even more fundamentally, an object can be recognized from combining

the feature information from several spatially-related image primitives. Finally, low- level

processing errors may be corrected, or at least mitigated, through feedback from high-level

processing to low-level image processing.

The early work in knowledge-based image interpretation has been summarized in Na-

gao and Matsuyama [II], Binford [12] and Ohta [13]. Recently, a number of more sophisti-

cated experimental systems have been constructed for different application domains, such

as high-altitude aerial photographs [11], [14]-[i5], [16]-[181; airport scenes [19], [201-[21]

and outdoor scenes [13],[221-[241. Many of these systems are still undergoing continu-

ous improvements through architecture modification and domain extension. New ideas

and systems are constantly emerging, as can be seen in recent PRCV and SPIE confer-

ences and workshops, and several pertinent technical reports [251-[26],[211. While success

has been demonstrated to various degrees in these systems, developing a general, domain-

independent and sygtematic method for constructing knowledge-based image interpretation

systems is still an open problem [221.

In this paper, we describe a general, domain-independent, stochastic model- based

approach to the image interpretation problem. In this approach, the interpretation la-

bels to be assigned to the primitives of an image are modeled as a Markov random field

(MRF) defined on the spatial adjacency graph formed by the primitives, where the ran-

domness is used to model the uncertainty in the assignment of the labels. As a result,

the domain knowledge, whatever it may be, can be systematically represented in terms of

the clique functions associated with the underlying Gibbs probability distribution function

(pdf) describing the MRF. Under the MRF modeling assumption, image interpretation is

then formulated as the optimization problem of maximizing the a posteriori probability

of interpretation given domain knowledge and feature measurements. Then, simulated
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annealing is used to find the optimal set of interpretation labels. In this paper, we present

a special region-based version of this approach. That is, the primitives are segmented re-

gions; and for the sake of simplicity, we do not include feedback from high-level to low-level

processing. However, research is currently ongoing to include use of linear edge segments

as primitives as well as high-to-low level feedback [27]-[28]. This will also be discussed in

subsequent sections.

This paper is organized as follows. In the next section, we describe the MRF model-

based formulation for the image interpretation problem. Then, in Section 7.2.4, we will

show how domain knowledge can be organized into clique functions associated with the

MRF model. After the discussion of the implementation of the optimization (interpre-

tation) through the simulated annealing procedure in Section 7.2.5, we will present and

discuss results of image interpretation experiments performed on synthetic and real-world

images in Sections 7.2.6 and 7.2.7. Finally, a summary and directions for future research

are provided in Section 7.2.8.

7.2.3 The MRF Model-Based Approach to Imate Interpretation:

The MRF model, as an extension of the one-dimensional Markov process, has recently

attracted much attention in the image processing and computer vision community. The

main advantage of the MRF model is that it provides a general and natural model for the

interaction between spatially related random variables and there is a relatively efficient

optimization algorithm, simulated annealing, that can be used to find the globally optimal

realization which, in this case, corresponds to the maximum a posteriori (MAP) interpre-

tation. Up to now, the success of MRF models has been demonstrated mostly in low-level

image processing applications, such as region segmentation [29]-[361 and edge detection

1371, where they are defined on two- dimensional (2-D) lattices on which the images are

represented as 2-D arrays. For example, in stochastic model-based image segmentation,

the pixels are classified into a finite number of statistical claasa and the MRF is used to

model the spatial distribution of pixel classes, or region distributions 129]-[36]. However,

as demonstrated by Kinderman and Snell [38], the MRF can be defined, in general, on

graphs for which the 2-D lattice is a special case. In what follows, we will briefly review

the concepts associated with the MRF defined on graphs and show how this can be applied
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to the image interpretation problem. More comprehensive treatments on MRF's can be

found in [38]-[39].

A.) The MRF Model on Graphs.

Let G = {R, E} be a graph, where

R = {R, R2,...,RN),(1)

is the set nodes represented by R, i = 1, 2,..., N; E is the set of edges connecting them.

Suppose that there exists a neighborhood system on G, denoted by

n = {n(RI),n(R 2),...,n(RN)}, (2)

where n(R), i = 1,2,..., N, is the set of all the nodes in R that are neighbors of R., such

that

i.) R 0 n(R4), and

ii.) if Ry E n(P,) then R, E n(Ry).

Let

I = {Ili12,...,IN} (3)

be a family of random variables defined on R. Then, I is called a random field, where Ii

is the random variable associated with P&. Notice that the random variables Ii's here can

be numerical as well as symbolic, e.g., interpretation labels. We say I is a MRF on G with

respect to the neighborhood system n if and only if

i.) P[I] > 0, for all realizations of I;

ii.) Pr[IIIi,all Ry 0 R] = P[hJIIlRy E n(Ru)],

where P[.] and P['j-j are the joint and conditional pdf's, respectively. Intuitively, the MRF

is a random field with the property that the statistics at a particular node depends mainly

on that of its neighbors.

An important feature of the MRF model defined above is that its joint pdf has a

general functional form, known as the Gibbe distribution, which is defined based on the

concept of cliquea [38]-[391. Here, a clique associated with the graph G, denoted by c,
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is a subset of R such that it contains either a single node or several nodes that are all

neighbors of each other. If we denote the collection of all the cliques of G with respect

to the neighborhood system n as C(G,n), the general functional form of the pdf I of the

MRF can be expressed as the following Gibbs distribution:

P[I1 = Z-ezp[-U(I)], (4a)

where

U(I)- ,(I), (4b)
aeC(G,n)

is called the Gibb's energy function and V. (I)'s are called clique functions defined on the

corresponding cliques c E C(G,n). Finally,

a° r

is the normalization factor to make (4a) a valid pdf. Notice that the MRF pdf above

is quite rich in that the clique functions can be arbitrary as long as they depend only

on the nodes in the corresponding cliques. Due to this unique structure, in which the

global and local properties are related through cliques, the MRF model-based approach to

image interpretation provides potential advantages in knowledge representation, learning

and optimization, as will be discussed in more detail later. More importantly, this method

provides a useful mathematical framework for the study of image interpretation procedures.

B.) The MRF Model-baaed Formulatior

As described in Section 7.2.2, for the time being we restrict the image interpretation

problem to that of labeling segmented regions. Suppose for a given image, there are N

disjoint regions after segmentation, 2 denoted by R = {RI, R2 ,... , RN}. Then R can be

represented by a set of nodes in a connected graph, called the adjacency graph, denoted

'Actually, this is a probability mass function (pmf) due to the discrete nature of I although
we will not make this distinction in what follows and continue to use the term pdf.
2Clearly, the number N of segmented regions is a random variable depending upon the
image as well as the segmentation procedure.
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by G = {R, E}; where the edge set E is such that a node R. is connected to another

node Ri if and only if the corresponding regions are spatially adjacent. A neighborhood

system, denoted by n, can also be defined on the adjacency graph. For simplicity, in

what follows we define the neighbors of a node to be the nodes that are connected to it

directly by an edge of G, i.e., only spatial adjacent regions are neighbors. Now, given

the neighborhood system, we can also find the cliques for the adjacency graph. As an

illustration, we have shown in Fig. 7.2.1 the adjacency graph and all its cliques for a

particular synthetic conceptual image. This image is intended to represent a car on a road

between two fields with the sky as a background. In forming the adjacency graph, we

assume perfect segmentation of the image objects.

As described in Section 7.2.2, image interpretation is the process of assigning object

labels to the segmented regions according to domain knowledge and feature measure-

ment information (or meawurement,, in short) made on these regions. From the above

graphical formulation, the interpretation of the image can be represented as a vector

I(R) = {It, I2,..., IN}, defined on the adjacency graph G, where we use I(R) to empha-

size the relationship between interpretation and the symbolic representation in terms of

segmented regions. Here, Ii, i = 1, 2, ..., N, is the interpretation label for node R.; while

Ii E L and L = {LI, L2 ,... , LM} is the set of all the interpretation labels. In addition, we

consider Ii's as symbolic random variables to account for the uncertainty in assigning ob-

ject labels to segmented regions due to, e.g., image noise and segmentation errors. Hence,

I(R) is a random field. Let's denote the domain knowledge as K and all the measurements

made on the segmented regions as X(R). Now, we can define image interpretation as the

following optimization problem: for a given R, find Io(R), such that

lo(R) = arg max P[I(R) IK,X(R), (5)
Ke (L)I

where P[.j., .1 is the a posteriori pdf of the interpretation given the domain knowledge and

measurements, while {L}N is the set of all possible interpretation vectors of length N.

The formulation of (5) is also known as the maximum a posteriori (MAP) formulation.

Two problems must be solved in applying the above MAP approach to image inter-

pretation. Specifically, we need an explicit expression for the conditional pdf in (5) and
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an optimization method to avoid the computationally explosive nature of exhaustive com-

binatorial search. Feldman and Yakimovski [40], and Faugeras and Price [141-[15] have

considered similar formulations to that of (5) and proposed heuristic expressions for the a

posteriori pdf using the marginal pdf's of single and joint pdf's of pairs of interpretation

labels. They have also used different relaxation schemes to find local optimal solutions,

some of which have also been studied in [54]-[57]. On the other hand, the MRF model

discussed in A.) appears to provide a natural solution to the above two problems. More

specifically, assume that I(R) forms a MRF. Then, the pdf appearing in (5) is the Gibbs

distribution

P[I(R) I K,X(R)] = Z-'ezp[-U(I(R); KX(R))], (6a)

with energy function

U(I(R); K,X(R)) - Vo(I(R); K,X(R)), (6b)
cEC(Gn)

where the V.(.; ., .)'s are the clique functions. Indeed, as will be seen in the subsequent

sections, through imposing a neighborhood system and the Markov property of ii.), the

MRF model-based formulation provides a general and systematic approach for knowledge

representation and knowledge acquisition through appropriate construction of the clique

functions. For the optimization strategy, the simulated annealing procedure can be used

to find the globally optimal interpretation for the image. In addition, the approach of

[40],[14],[15] can be shown to be special cases with certain neighborhood structures and

clique functions. Finally, when used in the context of image interpretation, the MRF model

suggest that the interpretation for a particular region given those of all other regions, de-

pends only on the interpretations of its neighboring regions. This is often a reasonable

assumption in practical applications. For example, the identification of a region as a car

might depend on whether its neighboring regions are a road but has little to do with

the identity of the regions spatially far removed from it. In the rest of the paper, we

will model the interpretation vector I(R) as a MRF. Since simulated annealing is a rela-

tively well-defined procedure, we will concentrate on the knowledge engineering aspects of
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the image interpretation problem; that is, knowledge representation and learning through

constructing the pdf of the MRF.

Finally, we should point out that, although the MRF model-based approach is pre-

sented here in the form of a region-based approach, it can be extended to include other

primitives and to model the situation where interaction between high-level and low-level

processing (e.g., feedback) is used. When other primitives, such as linear edge segments,

are introduced they can be considered as nodes of a generalized adjacency graph; they

can also be considered as features associated with different regions rather than primitives

themselves. To model the high-level and low-level interaction during interpretation, the

adjacency graph can be considered as a dynamic graph which changes with time; subse-

quently, the MRF become also a dynamic model. Currently, these problems are under

active investigation.

7.2.4 The Desian of Clique Functions:

In the MRF model-based formulation of the preceding section, it is clear that the

optimal interpretation, Io(R), should be the one that minimizes the energy function, or

has the minimum energy. For a given image, the optimal interpretation depends on how the

energy function is defined. In general, we would like the optimal interpretation obtained

under the MRF assumption to be the one that is most consiatent with the measurements

and domain- knowledge. For example, in aerial photointerpretation, suppose we know

that a car has small area and would usually be on a road. An interpretation with a car

having large area or in the sky should obviously be considered not optimal. This type

of consistency requirement can be achieved by properly selecting the energy functional

or, rather, the corresponding clique functions. It will be seen in the following that, by

using the MRF model, the domain knowledge can be organized easily and systematically

as clique functions to provide a proper energy functional such that the consistency between

the interpretation, the measurements and domain knowledge is maintained.

Without loss of generality, we assume that all the clique functions are non- negative.

Then, a general principle for the selection of a clique function is the following.

If the interpretation of the regions (or region for a 8ingleton clique) in a clique tends
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to be consistent with the measurements and domain knowledge, the clique function

decreases, resulting in a decrease in the energy function; otherwise, the clique function

increases, resulting in a corresponding increase in the energy function.

In this way, an interpretation for the image that is most consistent with the measurements

and domain knowledge will have the minimum energy, or achieve the optimum. Based on

this principle, we now propose a general approach to defining clique functions from domain

knowledge. We first consider the clique functions for single-node cliques, and then extend

the result to the case of multiple-cliques.

A.) Clique Functions for Single-Node Cliques:

Let c be an arbitrary single-node clique with one node, R. Let the corresponding clique

function be denoted by V(I(R); K,X(R)), it depends only upon the single node R, its

interpretation I = I(R), and the measurements X(R) on the corresponding segmented

region R, as well as the domain knowledge represented by K. Suppose that X(R) has

m components, XL(R),X 2 (R),...,X,(R), representing measurement values of m well-

defined features of R, e.g., average gray level, area, standard deviation of gray-levels, etc.

Assuming the components of X(R) are independent, we can define a clique function for

clique c as

V(I(R); K,X(R)) - p()(I(R),K)B (' ) (I(R);K, X(R)), (7)

where BO(.;.,.), i = 1,2, ... , m, are called basis functions for the corresponding clique

function. These quantities are functions of the i'th feature measurement, X,(R), parame-

terized by the interpretation I(R) and, of course, depend upon the domain knowledge, K.

The p()(I,K)'s, are a set of non negative numbers

p(')(I,K) _ 0 ; i = 1,2,... ,m, (8a)

which can be conveniently normalized so that

in

E pO(') (I, K) = 1, (8b)
i .21
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and are weights associated with the basis functions. Here, p( ')(I, K) not only depends on

i but also on the interpretation I(R) as well as K.

Now the problem of designing clique functions becomes that of designing the basis

functions of the features and determining their weights. We first consider the design of

the basis functions. Without loss of generality, we assume that all the basis functions

are non-negative. Then, the consistency principle for designing clique functions (in the

previous Design Rule) applies to the design of the basis functions. Here, it is sufficient

to consider the design of a particular basis function for a single-node clique c, denoted

by Bc(I(R);K,X(R)), where, for notational simplicity, the index i has been dropped.

According to the consistency requirement between interpretation, measurements and do-

main knowledge, we want the basis function to be small when I(R), X(R) are consistent

according to K; otherwise, it should be large. One way to achieve this is to take a prob-

abilistic approach. In particular, we consider the a posteriori pdf P4[I(R) I K,X(R)].

This is the probability that, based on the domain knowledge, K, and the measurement,

X(R), the interpretation of the node R should be I(R). By definition, the probability

P[I(R) I K,X(R)], is such that for I(R) consistent with the measurements and domain

knowledge, it is large; otherwise it is small. Hence, a non-increasing function of this pdf

can be used as a basis function. For example, the logarithm of the pdf has been suggested

[38] as a reasonable basis function for general MRF's. In this case we can define

Be(I(R);K,X(R)) = -aLogP.[I(R) I K,X(R)], (9)

where a. is a positive weighting constant and -log(.) is a monotonically decreasing func-

tion. Another way of selecting the basis function is to use

Be(I(R);K,X(R)]) = a(1 - 0,P[I(R) I K,X(R)]), (10)

where a. and P. are positive constants, and .P.[I(R) I K, X(R)] < 1. Usually, we want

the normalization constants a. and P. to be such that 0 < B.(I(R);K,X(R)) < 1.

To find the pdf P0 [I(R) I K,X(R), Bayes's conditional pdf formula can be used.

That is,
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Po[I(R) I K,X(R)] = Pc[X(R) I K, I(R)]P[K,I(R)]P-'[K,X(R)], (11)

where the first term is the likelihood functional of the measurement conditioned on the

interpretation, which can be found easily under proper modeling assumptions, and the

second term is the prior pdf of the interpretations, which can be determined from a priori

information, or heuristically. Finally, the last term is the inverse of the pdf of X(R) which

does not depend on I and hence can be dropped in the basis function. For the sake of

simplicity, we assume the prior probability to be a constant; that is, the interpretations

are equally likely a priori, then the second term can also be dropped.

To further illustrate what we mean by P1(R) I K, X(R)I and how a basis function

can be defined from it, consider an example of a single node clique, c. Suppose we have

the following knowledge:

1. The node could be sky, field, car, road, denoted by interpretation labels L., L1 , Le

and L,.

2. The average gray-level, a feature of the objects above, should be close to G,, G1 , G

and G, respectively, and G. > G, > G, > G:.

3. The distribution of the measured average gray-level of the node, conditioned on each

label (sky, field, car, road), is Gaussian. That is, if the measured average gray-level

X(R) = G, then

P[X(R) I K,I(R) = L61 = ql 2 ezp 2  (12)

where 6 = a, f, c, r. Then, a possible basis function could be from (9)

Be(I(R); K,X(R)) a0 (1log21ra2 + (G -G6). (13)

Plots of several basis functions, including the one proposed by Modestino [41], are

shown in Fig. 7.2.2. Notice that these functions are all "window- like" functions. When

domain knowledge about a feature can be expressed in terms of a nominal value, as is in

the example above, the specification of the corresponding basis function can be greatly

simplified to that of merely constructing one of these window functions. The piecewise
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linear basis function is particularly interesting in that it is very easy to compute and, as

will be seen in later sections, it is relatively robust against measurement errors or image

noise. Hence, we give it a special notation, g(z; a,, a2 , b1 , b2); where z is the variable and

al,a2,blb2 are the four "corner points", with aL _< a2 _< b, _ b2 -. Similar functions have

been used in [221 for a rule-based image interpretation system and in the applications of

fuzzy set theory [42].

B.) Clique Functions for Multiple-Node Cliques:

The extension of the clique function design procedure from the case of single-node

cliques of A.) to the case of multiple-node cliques is quite straightforward. Here, we still

design clique functions through designing a set of basis functions, as indicated in expression

(7). However, the designing of the basis function is slightly more complicated here in that

we may have two types of basis functions. The first type is the basis function for feature

measurements, as in the case for single-node cliques. The features in this case could be

quantities such as mutual boundary length, contrast, etc. Basis functions for these feature

measurements can be designed in the same way as that in A.) using the window functions

of Fig. 7.2.2. The second type of basis functions are those for spatial constraints. The

constraints in this case could be statements such as "a car should be on (neighboring

to) the road", "a car should never be in the sky", etc. In this case, we can still use the

probabilistic approach in the spirit of (9)-(10). For example, consider an arbitrary clique c

with multiple nodes denoted by R, and interpretations L(R 0 ). Let P.[I.(R,) I K] be the

probability that the combination of interpretations I(R.) is valid according to domain

knowledge. For example, we might have

PO[1(R,) I K] = 1; if I, is a valid combination according to domain knowledge,

= 0; if I, is not a valid combination according to domain knowledge.

Similar to (9)-(10), we can define the basis function as

Bo(I.(R);K) = a0 (1 - P,[L (R) I K]). (14)

C.) The Selection of the Weights for the Basis Function,:

7.2.13



The weights of the basis functions in (7)-(8) control the contributions of the individual

basis functions to the value of a clique function. For simplicity, we may make them all

equal. In our current experiments we start with this simple scheme and then, if a feature

is too unreliable for a particular object type, we will reduce the corresponding weight. In

addition, adjustments are also made by trial-and-error through examining interpretation

results on representative training images. A more sophisticated approach, currently under

investigation, is to select a weight based on how powerful the corresponding feature is for

object recognition and discrimination. For example, consider an arbitrary weight, denoted

p(e) (I, K), for a single-node clique. It depends on the i'th feature and object label I. If

the i'th feature is good for discriminating different objects, or it is a good feature for

recognizing object I, the weight p( ) (I, K) should be relatively large; otherwise, relatively

small. A useful indication of whether a given feature is good for object discrimination

can be obtained from the inter-duster distances [43], where the clusters are formed by

the measurements of the feature from different objects. Similarly, a useful indication of

whether a feature is good for recognizing a particular type of object, say type I, can be

obtained from the intra-cluster standard deviation [43], where the cluster is formed by the

measurements of the i'th feature on many objects of type I.

D.) Remarks:

To conclude this section, we note several interesting points. First, through the design

of clique functions, we have a systematic approach for representing spatial knowledge;

that is, for organizing the domain knowledge into a set of well-defined clique functions.

This approach also provides guidelines as to what kind of knowledge one would want

for the purpose of image interpretation; basically, knowledge concerning objects spatially

related as members of different type of cliques. It seems that many of the "rules" in

the previous expert systems mentioned in Section 7.2.2 can be transformed into clique

functions, where the condition parts correspond to evaluating clique functions and the

action parts correspond to assigning labels.

Secondly, under the current neighborhood system assumptions, there are at most four

different clique types, as shown in Fig. 7.2.3, which contain at most four nodes. This is

due to the fact that the adjacency graph associated with the segmented regions is a planar
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graph, a graph without overpassing edges; while a clique containing five or more nodes

causes overpassing of edges in the graph. Hence, the design of clique functions is relatively

simple due to the small number of different clique types.

Finally, as has been pointed out in Section 7.2.3, the Gibbs distribution is a very

rich distribution in that, as long as the clique functions depend only on the corresponding

cliques, their form can be somewhat arbitrary. The general guidelines provided in this

section on designing clique functions are based on the considerations of the consistency

requirement in the image interpretation problem. While they provide useful insights into

the image interpretation problem and offer practical solutions, they are not necessarily the

only or the best choice.

7.2.5 Implementation Throuth Simulated Annealing:

In the last section, image interpretation is formulated as a MAP estimation problem.

Under the MRF modeling assumption, this becomes the problem of minimizing a prop-

erly defined energy function such that the interpretation obtained is most consistent with

measurements and domain knowledge. The simplest optimization method is an exhaustive

search procedure. This, however, results in an exponential complexity of O(MN), where

M is the number of labels and N is the number of nodes in the adjacency graph. An

alternative is the simulated annealing algorithm, a stochastic iterative optimization pro-

cedure, that will find the global maximum of the pdf of the MRF, or the minimum of the

energy function, without excessive computation [29],[48]. The simulated annealing algo-

rithm has been widely used in various applications involving combinatorial optimization,

such as VLSI layout 144], channel coding [45], image segmentation [461-[47].

For convenience, we rewrite this algorithm here in the context of a minimization

problem. Let the function to be minimized be E(x), where x is the indepdendent variable.

This algorithm can be loosely described as follows:

Simulated Annealnif

1) Select an initial "temperature" parameter To and randomly choose an initial variable

xO. Iteration begins.

2) At step k, perturb xk by :k+I = xk + Ax and compute AE = E(*k+,) - E(xk).

3) If AE < 0 accept the change; that is
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X;+l = Xk- + AX.

If AE > 0, accept the change only with probability p = e-AZ/T.

4) If there is a considerable drop in energy, or enough iterations, lower the temperature.

5) If the energy becomes stable and the temperature is very low, stop; otherwise go back

to (2).

For image interpretation, the implementation is straightforward when the definition of the

method of perturbation and the annealing schedule (i.e., how the temperature is lowered)

are decided. We first order all the nodes arbitrarily as node 1, 2, ..., N. Then, an iteration

is defined as one visit to all the nodes according to this order. When a node is visited, a

perturbation of the interpretation vector is performed through generating a new label for

this node from an uniform distribution of all the possible interpretations, LI, L 2 ,..., Lm,

where M is the number of different labels, or from the conditional probability distribution

of the MRF (i.e., the Gibbs sampler of [291). In our experiments, we found that the

two perturbation methods provide the same results in terms of converging to the optimal

interpretations, while the Gibbs sampler is more complicated in computation structure, so

we have mainly made use of the first approach for perturbation. Finally, for the annealing

schedule, the temperature is lowered after each iteration according to T+1 = aT where

0.5 < a < 1, which we have used successfully in an MRF model-based MAP image

segmentation procedure [46]. In particular, we have selected To = 1 and a = 0.92 for

all our experiments.

7.2.6 Interpretation of Synthetic Images:

After the discussion of the previous sections, it may be expected that the efficacy

of the MRF model-based approach depends on several factors, including the validity of

the MRF assumption, the quality of the segmentation, how powerful the features and

spatial constraints in the knowledge base are (as far as object recognition is concern), and

finally, how effective the simulated annealing is (convergence of interpretations). Before

applying the MRF approach to real-world image interpretation, then, it make sense to test

whether this approach would work at all under the somewhat ideal situation in which we

have acceptable segmentations and relatively strong features and spatial constraints in the
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domain knowledge. If the MRF model-based approach works well here, then it is reasonable

to expect that it will be effective for real-world image interpretation provided we can

produce good segmentations (or are able to deal with poor ones) and find strong features

and spatial constraints. We can create such an ideal situation through generating synthetic

images and studying the performance of the MRF model-based approach in interpreting

them. In this section, we describe some of the experimental results on synthetic images

taken from a more complete study [41],[461.

The synthetic images used in this experiment are variations from the conceptual image

of Fig. 7.2.1 which contains such objects as sky, road, field, and car, all of which appear as

regions of constant gray-levels. The assumed domain knowledge associated with this image

is shown in Table 7.2.1 where object features (with precise definitions in Table 7.2.2) and

spatial constraints are stated. In the experiments [41],[46], we have found that, compared to

other basis functions of Fig. 7.2.2, the piecewise-linear basis functions were more effective

for object recognition and less sensitive to segmentation error. Hence, all the results for

image interpretation in this paper have been obtained using clique functions composed of

this type of basis function. In Table 7.2.3, these clique functions are shown in terms of their

basis functions and weights for the synthetic image (corner points aL, a2, b1 , b2, weight p,

and a. for the basis function for spatial constraints). Finally, the segmentation algorithm

used here is a Gaussian model-based segmentation algorithm [491 which has been quite

effective for aerial photograph segmentation.

The experiments on the synthetic image described in this section contain three parts.

First, the "ideal image" of Fig. 7.2.1 is interpreted with result shown in Fig 7.2.4. In

this case, the extracted segmentation is perfect, as shown in Fig. 7.2.4 b, since all the

regions have constant gray levels. The interpretation result in Fig. 7.2.4 c, in which

different gray- levels indicate different object labels (as shown in Fig. 7.2.4 d), shows

that all the regions are correctly identified. This suggests that when the image is well-

segmented and the domain knowledge is sufficient, the MRF model-based approach is

effective. As reported in [46], starting from a random initial interpretation vector, the

simulated annealing converged within 25 iterations. In this, and the rest of the results of

this section, the clique functions of Table 7.2.3 have been used, and the number of iteration
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for the simulated annealing is set to 25.

In the second part of the experiments, the ideal image of Fig. 7.2.1 is corrupted

by additive white Gaussian noise to generate degraded images of different signal-to-noise

ratios (SNR's). These images, then, are presented for interpretation. Here, the added

noise should result in errors in segmentation and feature measurements. This is used to

study the performance of the MRF approach under moderately imperfect segmentation.

In [46] experiments have been performed for images with SNR of 20dB, 10dB, and 3dB

with similar results. Hence, the results are only shown in Fig. 7.2.5 for the 3dB case.

Again, all the objects are correctly identified. Here, the car has very a small area and

its identification might be most seriously affected by segmentation error. However, since

the road can be well identified, the car can still be identified partly due to the spatial

constraints between them. To be able to deal with more serious segmentation errors, such

as the case in which the car is split into several regions, the clique functions have to be

expanded to allow the merging of regions. This is currently under investigation [271.

In the last part of the experiments, we have consider the case where there are unknown

objects in the image for which no information is available in the knowledge base. There are

two main causes for unknown regions, e.g., the region belongs to an unknown object or the

region belongs to a known object but the feature measurements are far from the nominal

values of all known objects due to segmentation errors. In both cases, it is more desirable to

assign an "unknown" label to such regions than to risk making a mistake. Hence, we have

added an unknown label to the set of object labels. In this part, an "unknown" object

which is similar to a car is placed in the right "field" region of the images used in the

preceding experiments and the resulting image has been re-interpreted [46]. Here, we have

only shown the results for the ideal image and the image with 3dB SNR in Fig.'s 7.2.6 and

7.2.7, respectively. All the regions have been identified correctly and the unknown region

is not identified as a car since that will violate the spatial constraint in the knowledge base.

This example, to some extent, shows the flexibility of the MRF approach.

7.2.7 Intermretation of Real-World Images:

To test the practical applicability of the proposed MRF approach for image inter-

pretation, experiments have been performed on real-world images; in particular, aerial
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photographs, which have been digitized to 256 gray-level images of 256 x 256 pixels. Ex-

perimental results obtained here also provide further insights and useful guidelines on

how to effectively apply this general approach in practice. Since we have no control over

the generation process of the images involved, the task of interpreting real-world images

is much more complicated and difficult than that of interpreting synthetic images. We

have proceeded in two steps; namely, knowledge acquisition through constructing clique

functions of the MRF model and interpretation using simulated annealing.

A.) Knowledge Acquisition:

This is the process of gathering information about the objects of interest in real-

world images. This information is usually represented in terms of features and spatial

constraints. For example, we might like to obtain information about cars, such as "a car

has an average area of 800 pixels" and "a car is always on (neighboring to) a road". Here,

the area is a feature while the neighborhood relationship is a spatial constraint. Knowledge

acquisition is also a selection process in which we select certain features and constraints

from all the features and constraints we know about the objects to form a knowledge

base. The selection process is necessary, since some of the features and constraints are

not essential to interpretation, while they only add system complexity and computational

burden. In the selection of the features and constraints, we want to select the ones that

are powerful for object recognition and discrimination. At this point, this selection is

performed heuristically through trial-and-error. As a future goal, a general approach to

solve this problem, such as the one described in Section 7.2.4 C, needs to be found.

There are many sources for knowledge acquisition. For aerial photointerpretation,

one source of information/knowledge is from map information and characteristics of the

man-made objects in the area being photographed [20]. This approach is used often in

constructing practical photointerpretation systems and it usually involves a large amount

of information. A less complicated alternative is the training approach. In this approach, a

number of representative or training images are first segmented and interpreted by human

experts; knowledge is then extracted from these segmented and interpreted images. The

training approach is relatively simple, while not sacrificing generality in principle; hence

is very useful in experimental studies such as this. In this work, we make exclusive use of
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the training approach.

For simplicity, only one training image is used in this experiment which is an aerial

photograph as shown in Fig. 7.2.8. After human expert segmentation and interpretation

performed using an interactive display-segmentation facility at RPI [511, it has been found

to contain mainly the following types of objects: 1.)vegetation region (VEGE); 2.)shadow

(SHD1); 3.)shadow on the ground (SHD2); 4.)ground (GRND); and 5.)oil tank (OLTK).

The feature measurements selected for the objects includes: area, average gray-level, com-

pactness of an object, and contrast between two regions (see the definitions in Table 7.2.2).

The constraints selected for the objects include a number of neighboring relationships. For

the clique functions, we have used again the piecewise-linear basis functions for the fea-

tures and basis functions of (14) for spatial constraints. In particular, the corner points of

the basis function for a given feature of a given object is determined from observing the

mazimum and minimum of the measurements of that feature on this type of object identi-

fied by the human interpreter. "Guard intervals" are introduced around the the maximum

and minimum to determine the exact values of the four corner points. This, as well as the

selection of the weights, has been performed heuristically, since there are relatively few

objects of each type. When the number of objects of different types is large, the process of

determining the corner points can be automated [501. In Table 7.2.4, we have shown the

domain knowledge learned from the training data in the form of the basis functions from

which the clique functions are constructed. This set of basis functions and subsequent

clique functions have been used to obtain all the experimental results to be described in

this section.

B.) Interpretation Using Simulated Annealing:

In this experiment, interpretation has been performed on two test images. The first

one is the training image itself. This is used to verify the correctness and effectiveness

of the knowledge obtained in the form of clique functions from the training stage. Here

we have performed interpretation on the training image, using both manual segmentation

and computer segmentation, as shown in Fig.'s 7.2.8 and 7.2.9, respectively. Since the

computer segmentation provides comparable quality to that of the manual segmentation,

the subsequent interpretation results are both quite good. Here, most of the regions are
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correctly identified except that some of the oil tanks, which appear only partly in the image,

are labeled as unknown objects. The reason for this is that in the knowledge base, oil tanks

are characterized as circular objects, as reflected from the definition of the compactness in

Table 7.2.2 and the corner points for the corresponding basis functions in Table 7.2.4. In

other words, oil tanks that are only partly in the image were treated as unknown objects

in the training stage and hence, it is not surprising that they have been interpreted as so

in the interpretation stage. To recognize these "partial" oil tanks, more powerful shape

features should be used, as described below.

The second test image, as shown in Fig. 7.2.10 a, is "cut" from a larger image

(2048 x 2048), from which the training image is obtained, and contains similar objects to

those in the training image. This image is used to test the usefulness of the knowledge

and clique functions obtained from the training image. Notice that in the original image

the gray tone and texture of several oil tanks are so close to those of their surroundings

that they are very hard to extract even by human eyes; it is then not surprising that

the computer segmentation of several regions corresponding to oil tanks is rather poor,

as shown in Fig. 7.2.9 c, especially in their shapes. As a result, in the interpretation

results shown in Fig. 7.2.10 c, most of the regions are correctly identified except for these

oil tank regions. In fact, the compactness feature failed to be effective, since the regions

corresponding to the oil tanks have very noisy boundaries and some of them are only

partially in view. To solve this problem, Yu has proposed a more robust shape feature,

called partial compactness, for the oil tanks [52j. This feature is based on the idea of

obtaining a large number of estimates of the radius of a segmented region from random

points on the boundary of the region, as illustrated in Fig. 7.2.11. Here, we have shown

a set of three random points, A, B, and C, on the boundary of a segmented region. The

vertical equal division lines of AB and BC intersect at 0, resulting in a random estimate

of the radius r. In this way, every set of three random boundary points provides a random

estimate of radius. If a region is reasonably circular, or partially circular, the variance of

the random estimates tends to be small. It has been shown by Yu [511 that this feature is

quite powerful for recognizing both circular and partially circular objects, and is relatively

robust to noisy boundaries. An interpretation of the second image is performed, again,
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using the knowledge-base and clique functions of Table 7.2.4, except with the compactness

replaced by Yu's partial compactness (also shown in Table 7.2.2 and 7.2.4). As can be

seen from the interpretation results shown in Fig. 7.2.12 c, improvements are obtained

in that all the oil tanks are correctly identified. This justifies the points made in the

experiments on interpreting synthetic images, that the MRF model-based formulation is

quite powerful and feature selection is the crucial problem in applying it to real-world

image interpretation.

C.) Remark.:

In concluding this section, we want to point out that purpose of the set of sim-

ple experiments performed here is to understand some of the fundamental problems in

knowledge-based image interpretation, such as knowledge representation, the selection of

features and constraints, and the interaction between interpretations of different regions.

While this should provide useful insights into how to build practical systems, the knowl-

edge base and clique functions used here are not sufficient yet as a practical system. For

example, the features used in these experiments are neither meant to be sufficient nor the

best to use, as would have been done in building practical systems; but rather, they are

used here to demonstrate useful concepts and important issues related to the performance

of knowledge-based image interpretation systems. Finally, a practical system should also

incorporate the capability of recognizing complex objects composed of simpler ones; for

example, recognizing a runway area from road-like regions containing a number of air-

planes. It appears that the MRF model-based formulation can be use here to construct a

hierarchical representation for objects of different complexity. In this representation, the

regions corresponding to simple objects form a low-level MRF, while regions corresponding

to complex objects which are collections of simple object regions form a high-level MRF.

The optimal interpretation is the one that maximizes the pdf of this hierarchical MRF. In

fact, a similar hierarchical MRF model has been used successfully for image segmentation

using the pyramid image structures [531.

7.2.8 Sunmary and Euture Research:

In this paper, we have described an MRF model-based approach for automated image

interpretation demonstrated as a region-based approach. In this approach, an image is first
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segmented into a collection of disjoint regions of certain homogeneous image properties.

These regions, together with their spatial relationships, form an adjacency graph, and

image interpretation is achieved through assigning object labels, or interpretations, to the

regions using domain knowledge and measurements of features and spatial relationships

extracted from them. In this approach, the interpretations are modeled as a MRF on the

adjacency graph and the image interpretation problem is formulated as that of finding

the beat realization of the MRF given the domain knowledge and measurements. Through

the MRF model, this approach provides a systematic methodology for organizing and

representing domain knowledge through properly designed clique functions associated with

the pdf of the underlying MRF, which are to be designed in such a way that the optimal

interpretation found is most consistent with domain knowledge and measurements. In

particular, we have proposed a structure for the clique functions as a weighted sum of basis

functions of features and spatial constraints. Finally, the simulated annealing algorithm is

used to find the globally optimal interpretation.

To study the efficacy of the MRF model-based approach, image interpretation exper-

iments have been performed on both synthetic images and real-world aerial photographs.

In the experiments, we have found the piecewise-linear basis function provides robust per-

formance for the interpretation in the presence of measurement errors caused by imperfect

segmentation. We have also found that selecting powerful features and constraints are very

crucial to real-world image interpretation; when such features and constraints are used,

most of the objects in the image are correctly recognized.

Although the results here are still preliminary, they do suggest several a promising

directions for future research work. Specifically, future research should include the fol-

lowing three immediate research tasks. First of all, a more general approach is needed

to determine the weights and corner points for the piecewise-linear basis functions used

to construct of the clique functions. Secondly, work should be done to incorporate other

primitives, such as linear edge segments, and high-level to low-level feedback, such as the

split-and-merge of original segmented regions during interpretation, into the MRF model-

based approach, as described in Section II. Some preliminary results for these two task

have already been obtained [271-[281. Finally, the MRF model-based approach needs to be
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tested on more diverse real-world images, such as additional aerial photographs.
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Table 7.2. 1 • 3ummary of Assumed Knowledge for the Conceptual Image

a. a single region

Region Knowledge

Object Area Average
Type (No. of pixels) Gray Level

Car 800 -150

Sky .' 25000 - 200

Road 1- 11700 , 100

Field 2 13500 - 50

b. two regions

Mutual Knowledge

Object Boundary
Type Length Contrast Spatial Constraints

Sky, Car 0 -impossible combination

Field, Car 0 - impossible combination

Sky, Road - 56 -" 100 valid combination

Car, Road - 120 o 50 valid combination

Sky, Field - 100 , 150 valid combination

Road, Field .6 180 -' 150 valid combination

c. three regions

High - Order
Knowledge

Object Types Spatial Constraints

Sky, car, field impossible combination

Sky, car, road impossible combination

Sky, road, field valid combination

Road. car, field impossible combination
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Table 7.2.2 Definitions of Several Region-Based Features

a.) Features for a Single Region R

1. Area:

A = the number of pixels in the region R.

2. Average Gray Level:

A z(sjj),
A

where z(i,j)'s are gray levels of the pixels in R.

3. Standard Deviation of Gray Levels:

S ( (x(ii)- 2) /

4. Compactness (Kanai's):

47rA

where P is the perimeter of R

P = the number of boundary points of R.

5. Partial Compactness (Yu's):

C = sample standard deviation of r,

where r is the random measurement of the radius of region R as shown in Fig. 5.20.

b.) Features for Two Adjacent Regions R, and Ri

1. Boundary Length:
B i = Pi + P.

2

2. Contrast:

c,,= IG, - Gil.
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Table 7.2.3 Linear Basis Functions for te Syntmetic Image.

a. cliQues of a single node

Features

Area Average Gray Level

Label al. a2. bl,2. p al. a2. bl. b2. p

car 750.790.810.850.0.5 165.175.185.187.0.5

road 1500.11600.11900.12000.0.5 85.95.105.115.0.5

sky 19900.20000.65536.65536.0.5 193.195.205.215.0.5

field 13300,13400.13900,14000,0.5 0.0,55.65.0.5

b. cliques of two nodes
Features

Spatial

Boundary length Contrast Constraints

Labels al, a2. bi. 12, p al. a2. bI, 1:2. p 0c. p

sky, car 1.0, 1.0

field, car 1.0, 1.0

sky. road 0.0.55.65.0.5 85.95.105.115.0.5 0.0. 1.0

car. road 105.115,125.135.0.5 0.0.85.95.0.5 0.0. 1.0

road. field 140.150.1000.1000.0.5 35,45.55.65.0.5 0.0. 1.0

sky, field 85.95.105.115,0.5 140.150.257.257.0.5 0.0. 1.0

all others - - 0.S. 1.0

c. three regions

Labels efc. p

sky. car. field 1.0. 1.0

sky, car, road 1.0. 1.0

sky, road. field 0.0. 1.0

road. car, field 1.0, 1.0

all others 0.5, 1.0
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Table 7.2 .4 Know-eage And C:o.uO F ;CIOfS f, *"I* Aerial Pnotos

a basis function to! ctiques of a singi* node

Features

Area Average Gray Level

Label al.- a2. bi. b2. a ai. a2. 01. Q2. 0

weaetation 14500 12000 -,'Ion 11500 C 120 122 127-7300,5

snadow 1 ___________ 135.140,150.155.1 0

shadow 2 0.0,6500.7000.0.5. 105.110,140.145.0.5

ground -185.190.200.205.1.0

oil tank 4500 4500-64000-64000 200.205.256.256.0.33

a. basis function for clicues of a single node (cant.)F Features

Compactness Partial Compactness

Label al. a2. 01, b2. p at. a2. b1. U2. 0

vegetation____________ ____________

shadow I

shadow 2

around ___________________________

oil tank 0 0. 0~.0.95.0.95. 0 0.0.00. 10.0. 10.0. 1.0

b. basis function for features and spatial constraints
for cliques Of two nodes

Feature Spatial
onstraint

Contrast

Labiee al. a2. 01. U2. p Cic. 0

v! etation and sh1aaow, In 19 2M no 1 0 0 .

shadowl and shadow 2 0.5.30.35.1 0 0.0. 1.0

shadow I and ground 35.40.60.65.1.0 0.0. 1.0

Shadow I and Oil tank 45.50.75.50.1.0 0.0- 1 0

shadow 2 and ground 55.60.90.95.1.0 0.0. 1.0

shadow 2 and oil tank 75.S0.105.110.1 0 0.0. 1.0

ground and oil tank 0.5.25.30.1.0 0.0.1.0

vegetation and ail tank i1mpossible combinmationl 1 .0. 10

Oil tank and oil tank Impossible combination 1.0. 1.0

all other cases 10.5. 1 0
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a. a Gaussian function b. Wdest i no's f unct i on
basicforml y2/(1.iy 2)

c. ext ensi on t o k~odest ino's f unct Ion d. the piecewise, linear function
basi c f or m: yni (1 + n), nw5

Figure:7.2.2 Example of Different Basis Functions.
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o
a. a single node clique b. a two-node clique

0
o 0,

c. a three-node clique d. a four-node clique

overpass

e. five nodes can not form a clique

Figure 7.2.3 Illustration of All Possible Cliques

for a First-Order Neighborhood System.
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a. the original image b. the segmented image

.........

c. the interpreted image d. gray levels: labels

Figure 7.Z.4 Interpretation of the Ideal Image
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a. the original image b. the segmented image

ABEL 1: CA

A;BEL 3: ROA[

c. the interpreted image d. gray levels: labels

Figure 7.2.5 Interpretation of the 3dB SNR Image
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a. the original image b. the segmented image

-L BELI
6 L , -0i m

=F, ' -. t .. ...

c. the interpreted image d. gray levels: labels

Figure 7.2.6 Interpretation of the Ideal Image

with an Unknown Object
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a. the original image b. the segmented image

645.L 6. ,:

c. the interpreted image d. gray levels: labels

Figure 7.2.7 Interpretation of the 3dB SNR Image

with an Unknown Object
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a. the original image b. the segmented image

c. the interpreted image d. gray levels: labels

Figure 7.2.8 Interpretation of the Training Image
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a. the original image b. the segmented image

c. the interpreted image d. gray levels: labels

Figure7.2.9 Interpretation of the Training Image
with Computer Segmentation
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a. the original image b. the segmented image

c. the interpreted image d. gray levels: labels

Figure7.2. olnterpretation of the Test Image

with the Compactness Feature
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A

Z

Figure 7.2.11 Illustration of the Partial Compactness Feature.

7.2.43



a. the original image b. the segmented image

c. the interpreted image d. gray levels: labels

Figure 7.2.121nterpretation of the Test Image

with the Partial Compactness Feature
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7.3 A Model-Fitting ARoroach to Cluster Validation with ADplication to

Stochastic Model-Based Image Segmentation:

7.3.1 Introduction:

Clustering procedures have found wide application in statistical data analysis and

processing. The application of specific interest here is stochastic model-based image seg-

mentation where a clustering algorithm is used to estimate the model parameters for the

various image classes in an observed image. In this, and similar applications, it's gen-

erally the case that the clustering algorithm requires prior knowledge of the number of

clusters or data classes. For many applications, however, the number of clusters is not

known a priori and we would like to determine it directly from the data. This is known

as the cluster validation problem. For stochastic model-based image segmentation, the

solution of this problem directly affects the quality of the segmentation. In this work, we

propose a model-fitting approach to the cluster validation problem based upon Akaike's

Information Criterion (AIC). The explicit evaluation of the AIC is achieved through an

approximate maximum- likelihood (ML) estimation algorithm. We demonstrate the ef-

ficacy and robustness of the proposed approach through experimental results for both

synthetic mixture data, where the number of clusters is known, and to stochastic model-

based image segmentation operating on real-world images, for which the number of clusters

is unknown. This approach is shown to correctly identify the known number of clusters in

the synthetically generated data and to result in good subjective segmentations in aerial

photographs.

7.3.2 Preliminaries:

Clustering procedures are widely used in various applications of pattern classification

and statistical data analysis. In a clustering procedure, the observed data or entities are

grouped together to form a number of clusters in such a way that the entities within a

cluster are more similar to each other than to those in other clusters. The measure of

similarity, usually heuristically defined, is called the clu8ter criterion. For example, the

Euclidian distance can be used as a similarity measure when the data are finite dimensional

vectors.

For the past three decades, many clustering algorithms have been developed by re-
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searchers in such diverse fields as biology, statistical data analysis and pattern recognition,

using very different cluster criteria [1]. In some previous work [2]-[4] on stochastic model-

based image segmentation, clustering algorithms have been used to estimate the model

parameter vectors for different image classes directly from the observed image. Since the

nature of this work is related to statistical pattern recognition, the clustering algorithm

used was selected from those developed within the pattern recognition community. One of

the most successful clustering algorithms in this respect is the K-means algorithm [51,[6].

This algorithm is optimum in the sense that it minimizes the variance within each clus-

ter and has been widely used in unsupervised pattern recognition. However, an important

problem existing with most clustering algorithms, including the K-means algorithm, is that

the number of clusters in the data must be specified a priori before using the clustering

algorithm.

In some situations this number can be derived from prior knowledge about the data,

or sometimes can even be determined from visual inspection of the two- dimensional pro-

jection of the data. However, in many applications, such as our previous work on image

segmentation, it is desired to estimate this number directly from the observed data since

a priori knowledge is generally not available and the data are often vectors of dimension

higher than two so that the projection method is not satisfactory. Furthermore, even when

the data is two dimensional, visual inspection may not be successful if the data clusters

cannot be decided by observation. This problem is of great practical importance for many

clustering algorithms and is known as the cluster validation problem [7]. For stochastic

model-based image segmentation, such as the schemes described in [2]-[4], the solution of

this problem directly affects the quality of the resulting segmentation. If the estimated

number of clusters, or image classes, is too small, different homogeneous regions in the im-

age will not be well separated. Likewise, if this estimated number is too large, a relatively

homogeneous region may be separated into a number of smaller regions. Both of these

situations are to be avoided.

There is another class of clustering algorithms, known as hierarchical techniques, that

group data in several levels of nested partitions (clusterings). While conceptually they

do not require a priori specification of the number of clusters, in practice they require
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specification of a "cut" level to choose a particular partition which best represents the

number of clusters present. The problem here in choosing a "cut" level is then analogous

to specifying the number of clusters in the K-means type algorithms and the solution of

the later extends easily to the former as discussed in [21].

Most of the previously proposed solutions to the cluster validation problem can be

classified into two categories: heuristic approaches and statistical hypothesis testing ap-

proaches. In the heuristic approach, the number of clusters is determined by using some ad

hoc criteria. For example, for the K-means algorithm a typical approach is to look at the

plot of the average of the variances within the clusters under assumptions of different K,

the numbers of clusters. The value of K corresponding to the point where the curve begins

to saturate can then be taken as the estimated number of classes. Many ad hoc variations

of the K-means algorithms have been proposed based on similar ideas. In these algorithms,

the number K is increased or decreased according to criteria such as intra-cluster variance

and distance between clusters (e.g., the ISODATA algorithm in [61).

An example of more sophisticated heuristic techniques is the bootstrap scheme for

cluster validation proposed recently by Jain and Moreau [21]. In their approach, a number

of bootstrap data sets are first generated from the original data set. Then, under the

assumption of different number of clusters, the variance of a heuristically defined statistic

is computed on bootstrap data sets. The assumed number of clusters that results in

the least variance, or believed to provide the most stable clustering, is chosen as the

estimate of the number of clusters. Since different clustering procedures may give different

solutions using this technique, Jaln and Moreau have also defined a heuristic index to

determine whether the estimate obtained from a particular clustering procedure is valid.

This approach has been demonstrated to provide effective identification of the number of

clusters for synthetic data and real data from simple range images. However, as will be

discussed later, this method also has some limitations.

Several comprehensive survey studies of various heuristic techniques can be found

in [7],[21],[221,[41],[421. While some practical problems can be solved using the heuristic

approach, it does not provide a general solution to the cluster validation problem and, even

when applied to specific problems, many techniques have to be fine-tuned through trial-
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and-error. This, in part, reflects the difficult nature of the problem. More specifically,

as pointed out by Everitt [1] and Jain [7], clusters are generally very difficult to define

precisely.

To find generally applicable and mathematically rigorous solutions to cluster vali-

dation, many researchers have tried to formulate the problem as a statistical hypothesis

testing problem [81,[9],[41]-[43]. For example, hypothesis tests have been proposed to test

whether a given cluster should be divided into two. More general likelihood tests have been

attempted with the data modeled in terms of finite mixture distributions [9]. However,

due to the structure of the mixture distribution, the parameters, which characterize one

hypothesis (for example, the null hypothesis) are at the boundary of the parameter space

of the other hypothesis. This, in turn, violates the regularity conditions (cf. [91) which are

required for the validity of the asymptotic distribution theory for the generalized likelihood

ratio (GLR) test which exists for many simple hypothesis testing situations where each

of the hypotheses can be described as a single probability distribution. As a result, no

generally applicable GLR test is available at this point to determine the number of clusters

directly from observation data.

On the other hand, the problem we face is not unlike the one faced in developing a

theory to fit an autoregressive (AR) model to real-world data in which the order of the

model has to be decided before the model parameters can be estimated from the data.

Having observed that neither heuristic nor hypothesis testing approaches alone would

provide a satisfactory solution to determining the order of the model, hence the practical

fitting of a model to observation data, Akaike [10] suggested that the problem should

be viewed as a multiple decision problem. That is, rather than asking which hypothesis

is acting (which order is correct), we should ask which model best fits the data. The

goodness of fit, as pointed out later by Akaike (11], should be a properly defined entropy

function and the best fit should be obtained by maximizing this quantity. Based on

this maximum-entropy principle, Akaike proposed a criterion, generally called the AIC

(Akaike's Information Criterion), to determine both the order and the parameters of an

AR model for observed data. Although there have been some criticisms of the AIC as being

inconsistent, Akaike showed that the AIC is robust and optimal in a minimax sense. That
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is, it is optimal when there is no a priori knowledge about the distribution of the model

parameters. In addition, Akaike and others also extended the AIC to several Bayesian

variations called the BIC (Bayesian Information Criterion) [13],[14]. This class of criteria

can be shown to be AIC's averaged with respect to various a priori distributions for the

model parameters. Although the AIC criterion and its variations have achieved substantial

success, mostly in AR model fitting, their application is, of course, not limited to AR time

series modeling.

There has been little previous work on the application of the AIC to cluster validation.

Sclove [17] demonstrated a way to use the AIC to verify image segmentation results. After

segmenting a synthetic image under the assumption of two and three classes, the AIC was

used to verify that the segmentation with three classes is a better segmentation.

In this work, we have applied the AIC directly to cluster validation and to stochastic

model-based image segmentation. Our study has been conducted on both synthetic data

and real-world image data. Synthetic data is used to illustrate the efficacy and robust-

ness of the AIC. In particular, we show, through experimental results, that the AIC is

effective in correctly identifying the number of classes when the data is generated from

well-defined Generalized Gaussian mixtures even for small inter-cluster distances, or large

cluster overlap. Furthermore, the AIC can be made quite robust against model mismatch.

In the application to image segmentation, we use the AIC to determine the number of

distinct image classes modeled by parametric probability models. Our work is different

from Sclove's [17] in that we apply the AIC explicitly to the cluster validation problem and,

in the application to image segmentation, we use the AIC to decide the proper number of

classes in an image before segmentation.

This paper is organized as follows. In the next section, we will formulate the cluster

validation problem as a mixture model-fitting problem and describe how to determine the

number of clusters by using the AIC. Then, in Section 7.3.4 and 7.3.5, we discuss how the

AIC approach can be applied to cluster validation and image segmentation, respectively. In

Section 8/3/7, we demonstrate some experimental results in which the number of clusters,

or classs, is determined for synthetic mixture data and images using the AIC criterion.

We will also illustrate real-world image segmentation results obtained with the number of
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classes determined by the AIC. Finally, a summary and conclusions are provided in Section

7.3.7.

7.3.3 The AIC Criterion for Cluster Validation:

Basically, we want to determine the number of clusters by finding the best- fitting

random mixture distribution model to the data according to the AIC criterion. Suppose

that the sample data can be represented by N independent and identically distributed

(i.i.d.) random vectors, Y = {Yi, Y2,... , yN). Furthermore, assume that the data samples

are to be described by a mixture distribution. That is, for any yeY,

K

p(y) = E 7hkP(Y), (1)
k= 1

where the pk(y)'s are individual mixture-component or class probability density functions

(pdf's) with 7rk, the weights, satisfying

irk > 0, for k=1,2,...,K; (2a)

and

Irk -- 1. (2b)
k=t

Now the problem of cluster validation can be considered as determining K, the number

of mixture components, from the observed data where each component corresponds to a

distinct cluster. Assuming that the functional form of the component pdf's, pk(.), are

properly selected, we have formulated the problem of cluster validation as that of finding

the beat-fitting mixture model for the data Y. The goodness-of-fit employed here is a

properly defined information theoretic criterion, known as the AIC [i0], defined by

AIC(K) = -2log(maximum-likelihood of the model (K)) + 2K', (3a)

where

maximum-likelihood of the model (K) = p(YIA(L). (3b)

Here, &(K) is the maximum-likelihood (ML) estimate of the model parameter vector, a(K)ML

of the mixture model with K components. Usually, a(K) contains the component weights
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in (2) and model parameters for each of the component pdf's, while K' in (3a) is the

number of independently adjustable parameters of the K-component mixture model. The

AIC approach will select the number of clusters to be K 0 , if

Ko = arg min AIC(K), (4)

where K,,... is a pre-specified upper-limit for K. Using this minimum AIC principle, we

can compute the AIC(K) for K = 1,2,... ,Krnax, and determine Ko according to (4).

This approach, while shown to be a maximum-entropy principle [10],[11], has a simple

heuristic appeal. That is, if two models are about equally likely, the AIC will select the

one with smaller number of clusters.

Compared with the previously proposed heuristic techniques, the AIC provides some

potential advantages. Take Jain and Moreau's heuristic technique [21] as an example.

First of all, although the heuristics used are quite effective in the experimental results

provided in [21], little is known concerning how they would work in general; for example,

under some specific stochastic modeling assumptions on the data. Secondly, their method

is nonparametric while, in many applications, reasonable modeling assumptions can often

be made on the data. As a result, parametric methods such as the AIC which make use

of more priori information may provide a more precise description of the data. Thirdly,

a model-based approach, such as the AIC, provides a more unified and general approach

to the cluster validation problem. For example, to achieve effective identification of the

number of clusters for different types of data sets, such as hyperspherical mixtures, circular

mixtures or enlongated mixtures, Jain and Moreau employed different heuristic statistics

as criteria for cluster validation on a case-by-case basis and it does not seem clear how

this could be done for other types of mixtures. On the other hand, using a model-based

approach, such as the AIC approach, appropriate pdf models can be selected for different

types of mixture data and the criterion, in all cases, is based on likelihood functionals.

Finally, the computation of the AIC is basically ML estimation which requires only a

moderate amount of computation without using any bootstrap data sets which can lead

to quite computationally intensive procedures.

7.3.4 The ADilication of AIC to Cluster Validation:
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To apply the AIC approach to a given set of random data, we need to select a mixture

distribution model, estimate model parameters and, finally, compute the AIC for different

K. We discuss each of these issues in turn.

A.) The Generalized Gauauian Mizture:

For simplicity, we further assume the data vectors are m-dimensional and have condi-

tionally independent components given the class. That is, with y = {y(l), y( )),

the joint pdf given class k is acting is described by

P I(Y) -- = P ) Y') k= 1,2,...,K . (5)

i= I

Then the mixture-component, or class, pdf's can be specified through the component pdf's

of the data vectors. While the AIC is applicable under quite general mixture models as can

be seen from its definition in (3), in this work we have used a particular class of mixture

models, known as the generalized Gausaian mixture, to demonstrate the procedure of

applying the AIC to cluster validation and image segmentation. Let y('), i = 1,2,..., m

be a component of data vector yeY. Then a Gaussian component pdf given class k is

described by

) (0))[ (y(,) r _ Y )]k (6)

where m ), o) 2 are the mean and variance, respectively. Similarly, a generalized Gaussian

componenent pdf given class k is defined for a > 0 by

alk _ 1) ( l _ 1
Pi)(0)) - 2r(1/a) eP 1 ) mk)IJ (7a)

where is the men, -(117isithe) - Mi)

where m ) is the mean, r() is the Gamma function, and 1') is a parameter related to

the variance, o (i )2, by

1 [r(3/a) 1/2 (7b)

When a = 2, we have the Gaussian pdf; when a = 1, we have the Laplacian or exponential

pdf. Plots of a number of typical parametized one- dimensional, zero-mean, generalized
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Gaussian pdf's are shown in Fig. 7.3.1 for different values of a. When a > 1, the

distribution tends to a uniform pdf; when a < 1, the pdf tends to be more peaked around

the mean and also have heavier tails. The latter case results in many"outliers" associated

with the corresponding class or cluster. While the Gaussian mixture has often been used

to model cluster data, we use the generalized Gaussian model as a convenient model for

studing outliers in clusters and evaluating the relative robustness of the AIC.

B.) Estimation of Model Parameters:

After the mixture model is selected for the data, the computation in the AIC of

(3) mainly involves the ML estimation of the model parameters. The ML estimation

approach has been a very successful method in stochastic model parameter estimation

for the pdf's which contain only one component. Explicit solution can often be found

by solving the appropriate likelihood equation and the ML estimate in many cases is

consistent [18]. Even in the case where the true distribution of the data is not the same

as the model, the consistency property often still holds under mild regularity conditions

[19]. This result is especially important since, when we try to use a model to approximate

an unknown probability distribution using ML estimation, it's desirable that the estimates

be consistent. Unfortunately, some of these results do not readily extend to mixture

distributions [9]. First of all, explicit solution is impossible even for the two-component

case. Secondly, the likelihood surface often has singularity points which makes numerical

solution difficult. A major reason for this is that the data is incomplete in the sense that

we do not know a priori to which cluster a data vector belongs. However, a number of

approximate ML algorithms for this situation do exist. One of the more popular methods

is the so-called EM (expected maximum) algorithm [9], [24]. It has been shown that under

mild regularity conditions it does provide local maxima that are consistent [24]. However,

a disadvantage of the EM algorithm is its relatively slow convergence [24].

In this work, we use an approzimate ML estimation scheme using a clustering algo-

rithm. First of all, the K-means clustering algorithm is applied to the data to divide the

data into K groups. Then each group is assumed to correspond to the sample data for

one and only one mixture component. An ML estimate is then evaluated on each group

separately to estimate the parameters for the corresponding mixture component. Finally,
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the component weights, xrk, k = 1,2,... , K, can be estimated as the ratio of the number

of samples in a group to the total number of samples. This approximation transforms

the problem of ML estimation of a mixture to that of ML estimation of several individual

pdf's. In the next section, we demonstrate, through experimental results, that it provides

reasonably good estimates. This scheme also converges fast since the underlying clustering

algorithm is known to possess fast convergence properties.

There are two points that need to be noted in using the K-means algorithm for

mixture estimation. First, it has been pointed out by Titterington [23], among others, that

theoretically, the K-means algorithm results in asymptotically biased estimates. However,

we found that this did not seem to effect the performance of the AIC approach. As a matter

of fact, the K-means algorithm provides reasonably good estimates and the AIC computed

using this algorithm is quite effective in identifying the number of classes correctly in a

variety of experiments to be described later. In addition, compared to the EM algorithm,

the K- means algorithm is computationally more efficient. Hence, in the results of this

paper, we have used the K-means algorithm exclusively, although the use of the EM

algorithm for the AIC is currently under investigation. The second point is how to chose

the initial cluster centers, or seeda, when using the K-means algorithm since the result of

the clustering, being locally optimum, often depends on the choice of seeds. For example,

Jain and Moreau [21] suggest using several different sets of randomly selected seeds when

the K-means algorithm is used for a given specification of the number of clusters. While

this improves the data clustering, or classification, the amount of computation needed is

increased drastically. In our experiments, we have found that the results of parameter

estimation and the subsequent cluster identification using the AIC is relatively insensitive

to whether the K- means algorithm is used with one set or more than one set of random

seeds. Hence, in all the experiments, we use only one set of seeds selected from the

data randomly when using the K-means algorithm for a given K. In summary, the K-

means algorithm is used as a computationally efficient and reasonably accurate estimation

procedure. While it works well for our purposes, we do not claim it is the best procedure.

In the above clustering-estimation procedure, once the data are classifed, the model

parameter estimation problem reduces to obtaining ML estimates for the parameters of
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each of the mixture components. For example, in the Gaussian mixture case, it is well-

known [181 that the ML estimate of the mean is

- ) 1 (i)
m' N - t (8a)

where we suppress the subscript UNM" for convenience, while similarly

NA,

represents the ML estimate of the variance. Here, NA is the number of samples assigned

to clas k, while the ') 's represent the i'th component of the sample vectors assigned to

class k. The ML estimate of the mean of the generalized Gaussian is the same as (8a),

while the ML estimate of the variance can be conveniently related to the ML estimate of

q through (7b). More specifically, in Appendix A, we show that

2 r r(3/a) ]( a yi WNb

which clearly reduces to (8b) for a = 2.

C.) Computation of the AI.

There are two applicable expressions for the likelihood functional when using the AIC

criterion. If we consider the data vectors to be incomplete, that is, the class status of the

samples is unknown, we will have the standard likelihood expression for the mixture which,

from (1), becomes

pK (Yla) = (I w'p.Cy,). (10)
imi h=1

On the other hand, if we first classify the data by applying the K-means algorithm, we in

effect assign data vectors to hypotheses classes. In this case a data vector assigned to class

k can be considered coming from a particular class and has a probability irk of occurring.

The corresponding expression for the likelihood functional for correctly classified samples,

or complete data, then becomes
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K Nk

PK (Y A) = fl 7rm JI Pi,(Yk,), (11)
k=1 j=1

where NA < N is the number of samples in the kth cluster and YA, = 1,2,..., Nh are data

vectors associated with this cluster [9], [23]. Since we have used the K-means algorithm

for approximate ML estimation, each sample vector is assigned to a unique class. In what

follows, we will make use of the second likelihood functional as expressed by (11). The ML

estimate, a(), to be used in (3) in computing AIC(K) is then formed from the resulting

K class-conditional parameter estimates together with the estimated weights as described

above.

Now, the application of the above model-fitting approach to random data to determine

the number of clusters is straightforward, as described by the following steps:

1.) Start with K = 1.

2.) For each K = 1, 2,..., Knaz, compute AIC(K) using the approximate ML esti-

mation procedure.

3.) Announce that there are KO clusters if AIC(KO) is the minimum among all

AIC(K)'s obtained in step 2.).

7.3.5 Application of the AIC to Imaze Seamentation:

The model fitting approach to cluster validation can also be applied to stochastic

model-based image segmentation. In a stochastic model-based approach, an image is

segmented into regions of different statistical properties, or clase, that are modeled by

parametric random field models. In (27], we have considered simple independent Gaussian

random field models for the image classes. More specifically, let the image be a two-

dimensional (2-D) array on the lattice L, denoted by x, and described by

x = {z(i,j),(i,j)L}, L= {(m, n),1 < m, n < N}. (12)

Then an independent Gaussian random field can be represented by

x(ij) = f + w(i,j); (i,j)eL, (13)
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where f is a constant mean, w(i,j) is a 2-D zero-mean Gaussian white noise process with

variance u . In this paper, we will also consider two other image models; the AR model

and the Markov random field (MRF) model [281-[30]. In particular, we consider a simple

AR model, known as the first quarter-plane filter (FQPF) configuration, represented by

z(i,j) -- az(i- 1,j - 1) + bz(i - 1,j) + cz(i,j - 1) + w(i,j); (i,j)EL, (14)

where a, b, c are constant model coefficients, representing, respectively, the diagonal, hori-

zontal and vertical correlation between pixels, and w(i,j) is again a 2-D zero-mean white

Gaussian noise process with variance o. The MRF model considered in this paper is also

very simple, known as the binary isotropic auto (BIA) model [28]. It is represented by the

joint pdf

p(x) = Z-'ezp[-U(x)], (15a)

where U(.) is the Gibbs energy functional, defined as

U(x) = a E z2(i,j) + b 1:z(i,j)[z(i - 1,j) + z(i,j - 1)], (15b)
i,d 1,i

where the z(i,j) terms are binary and Z is a normalization factor to make (15a) a valid

pdf. For this model, a and b are the constant model parameters that control the average

level, and the horizontal and vertical correlation of the pixels, respectively. Since our

purpose here is to demonstrate the applicability of the AIC to different image models, the

models selected are rather simple. However, the method developed here is applicable to

more complex image models as long as they are parametric.

Under appropriate stochastic modeling assumptions for the different image classes, the

image segmentation problem can be formulated as a statistical decision problem, where

each pixel is assigned to one of a finite number of classes. Typical techniques of stochastic

model-based segmentation include ML and MAP segmentation procedures [21-[4], [31]-[37].

Before applying such a technique to an image, however, the model pa meters for each

class have to be estimated. In an unsupervised approach, which is the coihcern here, these
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parameters are estimated directly from the image. However, to estimate the model pa-

rameters, we first need to know how many classes there are in the image. The AIC-based

model-fitting approach described previously can be applied directly in determining the

number of classes in an image. Indeed, in this case, the algorithm outlined previously for

computing the AIC's can be applied once the corresponding random data vectors are spec-

ified and obtained. Rather than using all the pixels in the image (there are just too many),

the sample data vectors are chosen to be the estimated model parameter vectors obtained

from different spatial positions of a sliding estimation window on the image, as shown

in Fig. 7.3.2. Here, M 1 , NL determine the size of the rectangular window, while M 2 , N2

are the vertical and horizontal displacements, respectively, between two adjacent spatial

window positions. Hence, we perform cluster validation in the model parameter vector

space instead of the pixel space. The number of clusters, or image classes, would then

be the number of distinct clusters of different model parameter vectors. This scheme was

proposed in our previous work [27], under the assumption that the image classes are mod-

eled as independent Gaussian random fields; in which case the model parameter vectors

are two-dimensional, consisting of only the mean and variance computed within a sliding

estimation window on the image. In this paper, we will continue to use this scheme. How-

ever, we will also consider more complex models for the image classes such as the AR and

the MRF models in which case the model vectors need no longer be two-dimensional. For

example, the FQPF AR model has four-dimensional model parameter vector (a, b, c, w);

the BIA MRF model, on the other hand, has two-dimensional model parameter vector

(a, b). Again, we emphasize that this scheme does not have any restrictions on the models

for the image classes, as long as they are parametric. Once the model parameter vectors

are so obtained, the minimum AIC principle described above readily applies.

7.3.6 Experimental Results and Discussion:

In this section, we will present and discuss some experimental results on the model-

fitting approach utilizing the AIC applied to synthetic mixture data and various stochastic

and real-world image data. For synthetic data, we concentrate on the performance of the

AIC as a cluster validation criterion, e.g., its efficacy under different data distributions,

its performance under various degrees of overlap of the clusters and its robustness under
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model mismatch (in the sense when the model structure assumed in the AIC is different

from the actual data distribution). More specifically, we divide the study on synthetic data

into three parts. In the first part, we apply the AIC to identify the number of clusters

in different Gaussian mixtures where the data clusters are relatively well separated. In

the second part, we study the performance of the AIC for generalized Gaussian mixtures

under varing degrees of cluster overlap. In the third part, we study the relative performance

when the assumption of the model structure in the AIC is different from the actual data

distributions, again using the generalized Gaussian mixtures for illustration.

The study of the AIC on image data concerns the identification of the number of

image classes in synthetic or real images, where the image classes are modeled as random

fields such as Gaussian, AR and MRF's. In. this part, we have used both synthetic images

and real-world images. The synthetic images are realizations of mixtures of the previously

mentioned random field models and the number of clusters is specified when they are

generated. In the experiments, these synthetic images are used to demonstrate the efficacy

of the AIC in identifying the number of classes correctly when the number of classes

is well defined. For the real-world images we have used aerial photographs. In these

images, usually the true number of classes is not clear or well-defined as in the case of

synthetic images and the AIC is used to provide an objective way of determining the

number of classes as opposed to aubjective assessment. Notice that in this case, the various

classes are statistical models which may or may not correspond to distinct real-world

objects. The AIC criterion is used only to help segment the image into regions that are

statistically different, while object recognition and global image interpretation are usually

performed subsequently using the segmented image together with domain knowledge and

measurements made on the segmented regions [37].

A.) Synthetic Data: GaUssian Mizturer.

In this experiment, three two-dimensional (m = 2) Gaussian mixture data sets with

two, three and four components, or clusters, are generated as shown in Fig. 7.3.3. We

choose the data to be two-dimensional since it's then easy to display on a plane. There are

two objectives of this experiment: first, to see if the approximate ML estimates provide

a reasonable estimate of the true model parameters and, secondly, to see whether the
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AIC provides correct estimates of the number of clusters, even in this idealized case. The

results of the parameter estimates for all the test data sets under the correct assumptions

on the number of clusters are shown in Table 7.3.1. It can be observed that when the

assumption of the number of classes acting corresponds to the true but unknown value, the

parameter estimates are quite accurate. This is clearly the case here for the data clusters

which are reasonably well- separated, and also true for other experiments on synthetic

data, described below, where the clusters are overlaped. The K-means algorithm, which

may not be unbiased theoretically, does provide a reasonably effective and fast procedure

for mixture estimation and likelihood computation. This indicates that the approximate

ML estimation scheme using clustering is quite effective. In Table 7.3.2, we have shown

the AIC's computed for all the test data under the assumptions of different numbers of

clusters, with K,.. = 8. We find that the AIC does make correct decisions each time.

This indicates that when the data is indeed a Gaussian mixture and the clusters are well-

separated, the method proposed here tends to estimate the number of clusters correctly.

Additional examples are given for a much larger variety of Gaussian mixtures in [19] with

similar results.

B.) The Performance of the AIC versus the Distance between Clusters:

Here, we are interested in the performance of the AIC on a variety of data sets as a

function of the distance between clusters; in particular, when the distance is successively

reduced. For this purpose, synthetic two-dimensional random mixture data are generated

from a number of generalized Gaussian mixture models. For simplicity, in the generalized

Gaussian mixture model for each data set, there are three mixture-components with equal

component probabilities. That is, for each data set, Kt,,th = 3, and 7rl = 1 r2 = 7r3 =

1/3. In addition, we set the variances of each mixture-component to be 1.0 for all the data

(i) 2
-

sets; that is, ak = 1.0, k = 1,2,3; i = 1,2, for all data sets. In Fig.'s 7.3.4-7.3.7,
we have shown the 16 data sets generated for this experiment. In each figure, there are

four data sets generated with the same a, but with different distances between the three

clusters. Hence, the data sets in these figures are different in two ways. From one figure to

another, they differ in a, the characteristic exponent of the underlying generalized Gaussian

model; within each figure, they differ in d, the normalized distance between clusters. The
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normalized distance, d, for a data set is defined as

d = maxi. D(c,, c) (16a)

where ck is the mean, or cluster center, of the k'th cluster given by

1)= )= (i)).k = 1,2,3, (16b)

and

D(c,,c)= lci - cill (16c)

is the Euclidian distance between two cluster centers. 8k2 is the average intra-cluster

variance, defined as

=- [ kE= 1,2,3. (16d)

It is used, in general, to take into account the spread of the clusters. For the two-

dimensional data sets considered here, m = 2 and 6k = 1 for k = 1,2,3. Finally, in

each data set, the cluster centers are chosen to be on a circle centered at (15,15) with

radius r and 1200 apart. Hence, in all the data sets, d = v3r and is proportional to r.

The AIC's computed under the anumption of a generalized Gaussian mixture model

with ao = 3.0,2.0,1.0,0.5, respectively, are computed for each data set in Fig.'s 7.3.4-7.3.7,

with K,. = 5. The results are shown in Tables 7.3.3-7.3.6, respectively. Examining the

resulting AIC's, we can see that the AIC with different assumptions on a, denoted by

different ao's, correctly identifies the number of clusters for most of the data sets in Fig.'s

7.3.4-7.3.7 with cluster distances of r = 5.0,2.5,2.0; it breaks down only for data sets with

cluster distance of r = 1.5, when the clusters are so close that they are hard to distinguish

visually. Interestingly, however, in the case of r = 1.5, when the AIC provides erroneous

decisions, it generally suggests that there is only one cluster. An exception is the case

illustrated in Table 7.3.6 where the data is generated from a generalized Gaussian mixture

with a = 0.5, as in Fig. 7.3.7. In this case, the data clusters contain many "outliers";
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that is, data points that belong to a cluster but are relatively far from the cluster center.

The AIC computed based on assumptions of ao = 3.0,2.0, and sometimes 1.0, makes

erroneous decisions even for the data set with r >- 2.0 where the clusters are visually quite

distinguishable. On the other hand, the AIC's computed under the assumption of a0 = 0.5

still provide correct decisions, even for a = 0.5 and r = 1.5. In the latter case, the clusters

are still visually distinguishable, since a = 0.5 represents a pdf very peaked around the

mean and with heavy tails.

From these results, we can observe that when the data clusters are from the generalized

Gaussian class, and they do not contain many outliers (e.g., a > 2), the AIC not only makes

correct decisions when the clusters are far apart, it remains effective when the clusters are

relatively close, and only breaks down when the clusters tend to merge as one, in which

case it reasonably indicates that there is one cluster. When the data does contain many

outliers (e.g., a < 1), the AIC computed based on a heavy-tailed generalized Gaussian

component pdf assumptions (e.g., ao = 0.5) still provides correct results. This brings up

the next subject of discussion.

C.) Relative Robutnes.

In this part, we first study the robustness of the AIC under different generalized

Gaussian modeling assumptions; namely, the performance of the AIC when the assumed

value, ao, of the characteristic exponent differs from the true value, a. Some indication

of this behavior can already be seen from Tables 7.3.3-7.3.6. For example, taking the

Gaussian assumption as an illustration, we can observe that this choice (i.e., ao = 2) is

quite robust as long as there are not too many outliers in the data clusters, i.e., provided

a > 1. It breaks down quickly when there are too many outliers in the data clusters, i.e.,

a < 1. Similar observations can be made for the case of a0 = 3 and ao = 1.

An assumption of ao < 1, on the other hand, is quite robust. For example, the

assumption of a0 = 0.5 provides very robust performance and correct identification for all

the data sets with r = 5.0,2.5,2.0. Furthermore, with r = 1.5 it either provides correct

identification or suggests that there is only one cluster, which is quite reasonable.

To compare the relative robustness of the Gaussian assumption with that of a heavy-

tailed pdf (e.g., ao < 1), it is also instructive to look at the way variances of the mixture
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component pdf's are estimated under different assumptions on ao. Notice that, from

expression (8b), when there are many outliers, the estimate of the variance under the

Gaussian assumption will be degraded due to the influence of the outliers as a result of

the squaring operation on the data samples. On the other hand, from (9), when we adopt

an assumed generalized Gaussian model with ao < 1, the effect of the outliers in the

estimate of variance would be less compared to the Gaussian case (ao = 2). In Appendix

B, we show that the log maximum-likelihood functional in the AIC of (3) for a given data

set depends only on the variances of the mixture components, and the number of data

points assigned to each of the classes during the ML estimation process. In particular,

from expression (B8) of Appendix B, large intra-cluster variances tend to reduce the log

likelihood, or increase the AIC for a given K, the number of classes. Therefore, when

there are a considerable number of outliers in the true data clusters, they will affect the

estimate of the intra-cluster variances and hence the computed AIC and the corresponding

estimate of the number of classes. Furthermore, the outliers tend to affect AIC(K) more

for smaller K's. Consider the case, for example, where there are actually two clusters in

the data, relatively far apart but each containing a considerable number of outliers. When

we compute AIC(K) for K = 2 by the approximate ML algorithm described previously,

the K-means algorithm is used first to separate the data into two clusters. Suppose that

the separation is reasonably close to what the two clusters should be. Then, in each of the

clusters, the outliers, being far from the cluster center, would tend to increase the estimate

of the variance of the clusters, hence increasing the AIC. On the other hand, when we

compute AIC(K) for K > 2, the outliers in question will be closer to some cluster centers

than in the case of K = 2, since the new clusters are now formed from the original two

data clusters in the case of K = 2. As an extreme case, when K is equal to the number of

data points, all the data points will be cluster centers and the intra-cluster variance will be

zero. To summarize, if we compute the AIC under the Gaussian assumption, the outliers

will tend to affect the efficacy of the AIC, and this affect is more severe when the actual

number of data clusters is small. For other generalized Gaussian assumptions, the outliers

also affect the computed AIC's, and the effects on assumptions for ao > 1 is greater than

when ao < 1. Next, in order to provide more insight into the robustness problem, we look
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at it in the light of the theory of robust statistics.

Up to now, we have used the word robust in a loose sense. In particular, we have

said that a specific modeling assumption, for example, a generalized Gaussian mixture

assumption (e.g., ao = 0.5), is robust if the AIC computed based on it performs well when

the actual data is from a different distribution; for example, a Gaussian mixture. How-

ever, the word "robustness" has a more strict meaning in the theory of robust statistics

138],[39]. More specifically, an estimate of a parameter, such as the mean or variance, com-

puted under a given modeling assumption, is called robust if it is relatively insensitive to

small deviations of the actual data distribution from the assumed model. In our previous

examples using the synthetic data in Fig.'s 7.3.4-7.3.7, the AIC's computed under the gen-

eralized Gaussian modeling assumption of ao = 0.5 are quite insensitive to the actual data

distribution, for example, for a = 3,2,1. Here, the deviation of the model is characterized

by deviations in a, the characteriatic exponent of the distribution. However, in the theory

of robust statistics, more general deviations from the assumed model are considered. For

example, let the assumed model for the observed random variable, X, be a pdf denoted

by fo(z). A small deviation from the assumed model can be described as the mixture pdf

f(-) = (1 - NO) + eg(z), (17)

where g(z) could be any valid pdf, while e is a small positive number that describes the

fraction of gross error in observed data.

The theory of robust statistics concerns finding optimal robust estimators. Two im-

portant criteria for optimality are the minimax principle and the grosa-error-aenaitivity

criterion. The minimax principle provides the most efficient estimate of the given pa-

rameter for the worst deviation from the assumed model [38]. The gross-error-sensitivity

criterion provides the most efficient estimate under a given upper-bound of gross-error-

sensitivity. It has been shown that these two approaches provide the same results for

a number of important problems, such as the robust estimation of mean and variance

139J. In this work, we use some of the methods of robust statistics, in particular, methods

for robust variance estimation, to obtain more insight into the problem of robustness in

computing the AIC under different modeling assumptions. More specifically, we seek al-
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ternative methods for computing the AIC such that the efficacy will be preserved when the

data classes contains outliers and the actual data distribution deviates from the modeling

assumptions. Comprehensive treatment of the theory of robust statistics and its various

applications can be found in [38]-[40].

In this work, we take the following approach for robust estimation of the AIC. We

assume the data pdf deviates slightly from a Gaussian mixture due to outliers in each of

the actual data clusters. More specifically, we assume that the pdf of each of the mixture

components deviates from an assumed nominal Gaussian pdf. This can also be described

by expression (17), where fo(') is the Gaussian mixture component pdf and g(.) could

be any valid pdf. Under the Gaussian assumption, as pointed out previously, the log

likelihood of the AIC(K), for a given K, depends only on the intra- cluster variances and

the number of data points in each of the K clusters resulting from the K-means clustering

procedure. Hence, we should be able to achieve robust estimates for the AIC's through

using robust estimates of the intra-cluster variances. In this approach, when the AIC is

computed, we still use the expression based on a Gaussian assumption but we replace the

variance estimates of (8b) by robust estimates. Since we assume the components of the

data vectors are independent, we can look at the robust variance estimation for individual

components of the observed random data vectors of a given class.

The approach we take is based on the so-called influence functions as treated in [39].

Consider the problem of estimating a parameter (e.g., mean or variance) of an underlying

distribution from a number of i.i.d observations; for example, the ML estimation problem

in (8)-(9) of Section 7.3.4. An influence function is defined for a random observation, a

parameter, and a pdf. The pdf is usually the ideal, or nominal, model for the random

variable; for example, fo(') in (17) from which the teal data pdf deviates. The influence

function describes the asymptotic effect of a contaminated observation, or outlier, on the

estimate of the parameter (for example, the variance) for an assumed ideal pdf model. More

specifically, let the contaminated observation be denoted by z, the ideal pdf be denoted

by fo and the estimate of the statistic from a finite number of samples by T,, where n is

the number of samples. Furthermore, assume the estimates under consideration are Fisher

consistent under the ideal model, i.e., when fo is acting, lin _o. T, = T in probability,
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where T = T(fo) can be considered a functional of the underlying distribution. Usually,

this functional can be expressed as an expectation (or a function of it) with respect to this

underlying distribution. For example, in the case of the ML estimate, of variance in (8b),

we have

T = T(pM')) = J00 2()(y) dy

= E M,{Y 2}, (18)
PI,

or, for simplicity, T = ah . Then, in general, the influence function can be defined in

terms of z, T, and fo as [39]

a
INF(z, T, fo) = Ft[T((1 - t)fo + t85))] It=0  (19)

with T considered an appropriately defined functional of the indicated pdf, while 6. is the

delta-function pdf with the unit probability mass concentrated at z. In addition, T must

also be assumed Fisher consistent under the mixture pdf (1 - t)fo + t6fi for 0 < t < 1.

The influence function provides insights into the relative robustness of an estimate of

a parameter. For example, the influence function of the ML estimate of variance of (8b)

under a zero-mean unit-variance Gaussian assumption for fo can be shown to be [39]

INF(z,T, fo) = z 2 -1. (20)

From (20), we can see that when a contaminated observation is far from the mean (which is

zero here), it has a large effect on the resulting estimate of variance, T, due to the squaring

operation in the ML estimate of variance. This agrees with the intuitive observation made

in previous sections.

The component variance is, in general, a measure of the intra-cluster spread, or dis-

persion. Often it is possible to develop alternative measures of intra-cluster spread which

are less sensitive to outliers and can be utilized in place of the ML estimate of variance in

computing the AIC. For example, suppose we measure the intra-cluster spread in terms of

the mean absolute deviation
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h 'k T y ) E In! ) k (21)

j=1

and then square this to obtain the statistic In general, this is a biased estimate of

the true component variance, o,) 2 . Nevertheless, it is often the case that asymptotically

this statistic converges to a quantity proportional to the true variance with the constant of

proportionality independent of the data. This is the case, for example, with the generalized

Gaussian component distribution. It follows then from (B8) that asymptotically the log-
likelihood functional computed using the statistic ok given by (21) is equivalent to that

using the ML estimate of variance. This follows by arguments used in Appendix B in

demonstrating the equivalence of (Bll) and (B8) by eliminating data independent terms.

This then provides the rationale for using alternative statistics, such as given by (21), in

place of ML estimates. Furthermore, this statistic has an influence function

INF(x, T, fo) = 2i/~(z (22)

as is shown in Appendix C. Here, T = Ef0 ( Y}()Il, where the subscript indicates the

expectation is performed with respect to the pdf fo. Compared to the ML estimate,

the effect of the outlier is smaller. Indeed, it has been shown [38] that (21) is a more

robust estimate of variance when the real pdf deviates from the ideal Gaussian assumption

although it is less efficient under the ideal Gaussian assumption.

Now, this statistic can be extended to a simple heuristic method for estimation of the

intra-cluster spread to reduce the effects of the outliers. This estimator is given by

a r0 1 Nh2k,h -- -y _ (23)

where 0 < 3 < 1, and the subscript h indicates "heuristic". The corresponding influence

function is

INFh(z,T,fo) = 2A(I)(IzI - A(#)), (24a)
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where A(P) is a constant for specified P, given by

A(#) = E 0{IYI'*)}. (24b)

Here, T = A(#) 2 . In the next part, we will show that this heuristic scheme provides some

interesting results for identifying the number of classes in images. Finally, the influence

function for the optimal robust estimator (in the sense of both minimax and gross-error

criterion) in this case is

INF(z,T, fo)=z 2 -1; z 2 -1 < b;

= b; z 2 - 1 > b, (25)

where T -
( ) for b = +0o. This results in an estimate identical to the ML estimate

except that the observations will be "clipped" in such a way that in (8b), if the square

of the observed value minus the mean exceeds b, the squared value will be replaced by b.

In this scheme, b is a constant to be determined from the available information about the

deviation of the model; for example, the e in expression (17).

In Fig. 7.3.8, we have illustrated several of the influence functions discussed above.

As a comparison, we have also shown the influence function for the ML estimate computed

under a generalized Gaussian assumption, i.e., expression (9) with assumed characteristic

exponent ao = 0.5, 2.0, when the data distribution is described by (17) as a deviation from

the Gaussian assumption. This influence function can be shown, following the approach

in Appendix C, to be given by

INF(z, T, fo) = C(Co)INFh(z, T, fo), (26a)

where INFh (z, T, fo) is the influence function for the heuristic estimator in expression (24)

with 8 replaced by ao, while C(ao) is a constant for a specified a0 , given by

C(ao) - [ 'a] a2/ao-1(EfO{Iyji)I0,) 2 /ao 2 • (26b)
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Here, T = (Eo{IYJ(')' }) 2 / aO and ao is the assumed exponent for the generalized Gaus-

sian assumption. For example, with ao = 1 we find C(cto) = 2.0 indicating that the

influence function for the corresponding ML estimator increases twice as fast as that for

the statistic of (21), i.e., the special case of the heuristic estimator with P = 1.0.

It can be seen that, besides the optimal robust estimator, the heuristic estimator is

likely to be able to reduce the effects of outliers, while all the estimators are better than

the ML under the Gaussian assumption as far as combating outliers are concernedt (their

influence functions increase slower than that of the ML estimate).

Finally, we want to make two remarks. First of all, the estimators considered here are

not all robust in the strict sense of robust statistics, except the optimal robust estimator,

in that their influence functions are not bounded. However, the heuristic estimator will

greatly reduce the effect of the outliers since its influence function increases much slower

as the magnitude of the observation increases. Hence, this scheme may still be effective

in practice. Secondly, the heuristic estimator may perform better than the generalized

Gaussian model-based ML estimator when ao = P, since its influence function increases

slower than that of the generalized Gaussian. For example, we have already seen that

when ao = P = 1.0, C(ao), the ratio of the two influence functions for the generalized

Gaussian ML estimator of (9) and the heuristic estimator of (23), is 2.0; for ao - / = 0.5,

this ratio increases to 10.1. This means the influence function for the heuristic estimator

increases much slower in z than that of the ML estimator under the generalized Gaussian

assumption and that this improvement is greater for smaller ao = /. This behavior can

also be seen from the results in the next part.

D.) Application to Synthetic Images:

As described in Section 7.3.3, the AIC can be applied to determine the number of

stochastic classes in an image. This can be achieved by finding the number of clusters

in the sample model parameter vectors estimated from a sliding estimation window on

t should be noted that the curves in Fig. 7.3.8 for the Gaussian ML estimate and the

generalized Gaussian ML estimate for ao = 0.5 eventually cross indicating better outlier

rejection properties under this a0 assumption for large deviations.
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different spatial positions of the image. When these vectors are obtained, the procedure

of identifying the number of classes should be no different from that for the synthetic

random data described previously. In addition, the AIC-based model-fitting approach

does not put any restriction on the model for the image classes. On the other hand, the

parameter vectors obtained from the sliding estimation window might not be a Gaussian

mixture or even a generalized Gaussian mixture. If the image classes can be modeled by

the independent Gaussian assumption, the estimated mean and the estimated variance will

be approximately Gaussian. However, when the image classes are modeled as AR or MRF

models, the estimated model parameters need not be Gaussian mixtures. In this case, the

robust estimation procedures, described above, may be useful.

In Fig. 7.3.9, we have shown two two-class texture images of size 256 x 256 pixels.

In both cases, two textures are combined according to the region map shown in Fig. 7.3.9

a. In the first image (Fig. 7.3.9 b), the textures are realizations of the FQPF AR random

field characterized by parameter vector ah = (akb 1 , ,c,,,j,k = 1,2, as described pre-

viously. In this work, we have chosen a, = (-0.3,0.7,0.5,9.5),a2 = (-0.3,0.5,0.7,14.1).

A common mean of 100 is added to both classes. In the second image (Fig. 7.3.9 c),

the textures are realizations of the BIA MRF's, each characterized by a parameter vector

a, = (ah, bA), k = 1, 2. In this work, we have chosen aL = (-2.0, 1.0), a 2 = (2.9,-1.0).

For each image, the sample model parameter vectors are estimated from a 16 x 16

pixel sliding estimation window with horizontal and vertical displacement, M2 , N 2 , also

both 16 pixels; hence there are 256 sample moael parameter vectors for each image. The

sample model parameters for the MRF texture image, being two-dimensional, are plotted

in Fig. 7.3.10 b. Since the sample model parameter vectors for the AR textures are four-

dimensional, they cannot be plotted on a plane; only the the second and third components

of these vectors are plotted in Fig. 7.3.10 a. We can see from Fig. 7.3.10, the sample

parameter vectors for the MRF texture image do not show a clear clustering tendency; the

second and third components of the sample model vectors for the AR textures, however,

do show a tendency of two clusters. In Tables 7.3.7 and 7.3.8, we show the computed

AIC for the sample model parameter vectors for both images under the assumptions of a

generalized Gaussian mixture with ao = 3.0,2.0,1.0,0.5. The performance, as indicated in
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Table 7.3.8 a, for the MRF textures under all assumptions are relatively poor, as expected.

The performance indicated in Table 7.3.7 a for the second and third component of the AR

textures for all the assumptions of a0 is encouraging; the AIC makes correct decisions. On

the other hand, the AIC computed for all four components of the model vectors of the AR

texture image, as indicated in Table 7.3.7 b, is not so encouraging. K = 2 provides only

a local minimum of the AIC's computed. This may due to the fact that the geometrical

distribution of the model vectors with four components in the parameter vector space are

more complex than that for the case of two components and cause more data points to be

outliers. We want to point out, however, the relatively poor performance such as for the

MRF does not undermine the efficacy of the AIC but, rather, it points out the need for

more careful procedures for obtaining the model parameter vectors. More specifically, the

model vectors obtained from sliding estimation windows that contains contaminated data

from two texture classes should be detected and rejected such that the remaining set of

sample model parameter vectors do show a reasonable cluster tendency. In addition, the

success of the AIC on the second and third component of the AR model parameter vectors

justifies the efficacy of the AIC in that when the data does show a clustering tendency, the

AIC tends to make correct decisions.

An alternative for improving the estimates of the sample model parameter vectors

is to use the robust estimator in (23) or the optimal robust variance estimator of (25).

The computed AIC using the heuristic estimator with # = 0.5 and the optimal robust

estimator with ao = 2 for both the AR model parameter vectors (in four dimensions) and

the MRF model parameter vectors are shown in Tables 7.3.7 c and 7.3.8 b, respectively.

For the optimal robust estimator, the clipper threshold, b, is chosen heuristically to be two

or three times the variance estimated under the Gaussian assumption with two clusters

since, in this case, very little is known a priori about the model deviation (e.g., C). The

results are also shown in Table's 7.3.7 c and 7.3.8 b. In this case, correct decisions are

made. However, we see that for the optimal robust estimator to be more practical, some

scheme is needed to determine the "clipper threshold", b.

E.)Application to Real Image Data:

In this experiment, we attempt to apply the method described in the previous section
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to estimate the number of statistical image classes in real images. In particular, the images

are digitized aerial photographs of size 256 x 256. For simplicity, we consider the Gaussian

model of (13) for the image classes [2]. That is, each image class is modeled by an i.i.d.

Gaussian random field. Then, each image class can be characterized in terms of a model

parameter vector consisting of only two components; the mean and variance.

In Fig.'s 7.3.11 a and 7.3.12 a, we show two aerial photographs. The first contains a

building, roads and vegetation while the second contains an oil tank complex surrounded

by vegetation. The corresponding computed AIC's for different numbers of clusters are

shown in Table 7.3.9 with Kma = 10. The sliding estimation window is of size 16 x 16

pixels and the vertical and horizontal displacements, M 2 and N 2 in Fig. 7.3.2, are also

each 16 1 (els. The results suggest that in the first image there are four classes while for

the second image five classes best fits the data. The images are segmented using a ML

technique [2] with the corresponding model vectors estimated according to that suggested

by the AIC criterion and are shown in Fig.'s 7.3.11 and 7.3.12, along with the original

images. In these segmentations different tonal areas are well separated. For comparison

purpose we have also shown the results of the segmentation using from two up to six classes.

It can be seen from the results for both images that, when the assumed number of classes

is smaller than that determined by the AIC, a number of significant regions of reasonably

large size are missing from the segmentation. On the other hand, when the number of

classes is larger than that suggested by the AIC, no significant change in segmentation

will result from the increase of the number of classes except the appearance of some noisy

regions with small size. This suggests that the AIC model-fitting approach is a reasonable

objective approach for practical applications such as image segmentation.

7.3.7 Summary:

In this paper we described a model-fitting approach for determining the number of

clusters in observed random data and its applications to stochastic model- based image

segmentation. The problem, also known as cluster validation, is solved by finding a best-

fitting mixture distribution model to the observed data. The goodness of fit is determined

by the AIC criterion. An approximate ML parameter estimation scheme using clustering

is proposed to compute the AIC. Experimental results are also described to demonstrate
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the efficacy, relative robustness and practical applicability of this method.

In the experiments involving synthetic data, the AIC correctly determines the number

of clusters in the mixture data, continues to correctly identify the number of data clusters

as the distance between the clusters decreases and will, in general, suggest a single cluster

when the distance is so small that the data clusters appear visually to be merged. We

have investigated the robustness of the AIC under different modeling assumptions using

the generalized Gaussian mixture model. In particular, we have used the generalized

Gaussian mixture both in providing synthetic data for the experiments and as modeling

assumptions in computing the AIC's. The Gaussian mixture assumption is quite robust

when the data clusters do not contain many outliers. A generalized Gaussian assumption

with ft < 1 provides very robust performance even when the data clusters do contain many

outliers. We have also considered the robustness problem in the lit - of the theory of robust

statistics when the actual data is not a generalized Gaussian mixture, but some deviation

from a nominal Gaussian mixture. This leads to a heuristic variance estimator and an

optimal robust variance estimator for computing the AIC when the data pdf deviates from

the nominal Gaussian mixture assumption. This approach makes the performance of the

AIC more robust against outliers in the data clusters.

In the application to image data or image segmentation, we have used the AIC to

identify the number of image classes where they are modeled as the simple independent

Gaussian, or more complex AR and MRF models. The AIC computed using more ro-

bust variance estimators, such as the optimal robust variance estimator and the heuristic

variance estimator correctly identifies the number of classes in the synthetic AR or MRF

mixture images. For real aerial photo images, where the true number of classes is unknown,

the AIC computed based on a Gaussian mixture assumption provides identification results

that agree well with 8ubjective assessments.

This work also brings up several interesting issues for further investigation. For exam-

ple, it would be of interest to use the EM algorithm as the estimation method for computing

the AIC and compare the results with those described in this paper. Another interesting

issue is to further understand the theoret .; aspects of the minimum AIC principle; for

example, to characterize the performance of the AIC under different data distributions in
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terms of probability of correct decision. Finally, additional study is required on the appli-

cation of the AIC to image segmentation. More specifically, estimation methods should be

developed to reject sample model parameter vectors from sliding estimation windows that

contain a significant amount of data from more than one image class; or as an alternative,

robust estimation techniques, such as the ones described in this paper, need to be fur-

ther tested that will diminish the effects of such "contaminated" sample model parameter

vectors.
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Appendix A

Maximum-Likelihood Estimation for Generalized Gaussian Models

In this section, we will derive the ML estimate of the variance of a generalized pdf

model from a set of observations. For simplicity, we consider one-dimensional observations

and assume that the mean of the pdf is zero. Let x = {z, z 2 , ... XN} (here x is not used

for images as in Section 7.3.3) be a set of .s.d. observations of a random variable X with

a generalized Gaussian pdf

p(z) - 2zplla ,, - l l I, (Al)

where

7 r(3/) 2 (A2)

and c2 is the variance. Assume that a > 0 is known; we would like to estimate a 2 based on

the observation x. From equation (A2), this is equivalent to estimating ti. An ML estimate

of q, denoted by i7ML, is one that maximizes the likelihood functional with respect to tj

for given x. That is

iML = argmaxp(x(Xji), (A3)
VI

where

N
Px(xln) = P(ziI), (A4)

and the p(z,[,)'s are as in (Al). Maximizing (A3) is equivalent to maximizing the logarithm

of (A4), i.e.,

N
log{px(xll) } = jIog[p(zIi'i)]

= N [ 7 + 1o( 2 (/) (T lGiI). (A5)
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Taking the derivative of (A5) with respect to 17, setting it to zero and solving for 17, we

have

N

-( 0 o,(A6)

and thus

.. = (A7)

Finally,

rr(3Ic)1/ 2

L 17MLr(a) J (A8)
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Appendix B

The Expressions for the AIC Under Different Modeling Assumptions

In this section, we will show that, under the Gaussian or the generalized Gaussian

mixture assumption for the individual components, the log maximum likelihood in the

expression for the AIC will only depend on the the number of samples in each cluster and

the intra-cluster variances for each cluster.

We still use the notation established in Section 7.3.3. Suppose that the observed

data can be represented by N i.i.d. random vectors, Y = {yI,Y2,...,YN}. In [1], we

have shown for the approximate ML parameter estimation method which first performs a

clustering, the likelihood functional is

K Nh

PK(Y) -- H 'rN' H pk(Y,). (B1)
k= ~j=I

Taking the logarithm,

K N,.

log{pK(Y)} = Nklog7rk + F logPk(Yk) . (B2)
k=L (j=1

Assume the y's, yeY, are m-dimensional with independent components, then

K N,. m

Log{pK(Y)} - (icoglrc +=E E ogp)( ) , (B3)
k ---- j=-- i--1

where p(') (.) is the i'th component pdf of the k'th class of the random data. It is easily

seen that the ML estimates (for convenience, we suppress the subscript ML for all the ML

estimates) of the mixture weights, 7rk, pre given by

NA-=, ; k ,2,..., K. (4)

Replacing the model parameters in (B3) by their ML estimates then yields

tFor notational convenience, we have suppressed the functional dependence upon a in

writing pk,(Y) for pk(Yla) as in (11).
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log{pK(Y)} = -kl(N ic(' , (BS)

where "(') (y(')) is the pdf p() (Y()) with all parameters replaced by their corresponding ML

estimates. Now, we need to find the second term in the brackets under different modeling

assumptions.

1.) The Gaussian Mizture:

In the case of Gaussian mixture with ML estimates,

1 (') - &(')) 2

4i)2i(Yi) ]x k (B6)

Then

Nk

Nk (i) W .') 2

S[log2rahi) + (j) m2

= - MN+log27r-Nk log&,V)-E
i=1 j==1 k

2 t (B7)-- -lmNklog21r- Nk E loga( ) 2 (B7

If we substitute (B7) in (BS) and drop all the terms that do not depend on the data or the

order, K, of the mixture model, we will arrive at an equivalent log-likelihood functional,

or sufficient statistic, given by

LK (Y) N,, N(log&k - 1:lg().(B8)
k=1 i=1

It is indeed dependent only on the intra-cluster variance and the number of samples in

the clusters. This quantity can then be used in place of the log-likelihood functional in

computing AIC(K) according to (3).
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2.) The Generalized Gauaian Mizture:

The generalized Gaussian distribution has a similar exponential structure as the Gaus-

sian distribution. Hence, the derivation here is similar to the previous part. More specifi-

cally,

'()' () a'(i) [

.W W) 1 epL i)i)' - kj (B9
P Y 2r(1/a) emilhi k lB9

Then, similar to the Gaussian case, we have

NA, m

ogi) Log(r(,)) -Y, ,(
3=1 =

= -N log (4k - o( 2 B1)) m

Substituting this in (BS) and dropping the terms that do not depend on the data, we have

LK(Y) = ZN41ogNk - log ( (B11)

Notice that I/j (7') is proportional to the square root of the cluster component variance

A(;). Hence, (Bl) is of the same form as (B8) when we again eliminate data independent

terms.
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Appendix C

Examples of Influence Functions

In this section, we will derive the influence functions for the estimators outlined in

Section 7.3.4-C. For simplicity, assume that the observed data are i.i.d. random variables,

denoted by Y1, Y2,..., Y.. Assume the ideal pdf, fo, of the random variables is zero-mean,

unit-variance Gaussian. Then the influence function of the asymptotic limit of an estimate,

denoted by T, is defined as in (19) of Section 7.3.4-C, by

INF(x, T, fo) = a[T((1 - t)fo + t6Q)] I=o. (Cl)

Here, x is a contaminated observation, T is considered as a functional of the underlying

data distribution, and 6. is a delta-function pdf at x. For the examples we have considered

throughout this paper, T,,, the estimate of a statistic based on n samples is always related

to an averaging operator (e.g., (8), (9), (18), (23)); hence, T is always related to an

expectation operator. For example, for. the heuristic variance estimator of (23) in Section

7.3.4-C,

&2 = iI , (C2)

where 0 < P3< 1. In this case, T, =&n , hence,

T(f) = E2{IY '}, (C3)

where f is any valid pdf of Y, the random variable.

To find the influence function r- the heuristic variance estimator, we can take the

partial derivative of T in (C3) with respect to t, where f = (1 - t)fo + t6U.. Therefoie,

[T((1 - t)fo + t6.)]

- 2(E{IYI0}) (-Efo{YIO} + E6.{IYI'})

= 2(Ef {IYI'})(-Efo {IY'} + Ixi ). (C4)
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Here, we have used the following property of the expectation operator

E(I-tfl+tl, {Y} = (1 - t)E 1{Y} + tE,,{Y}, (C5a)

for pdf's f, and f2, and 0 < t < 1. We have also used the property of the delta-function

to obtain

E6 o{Y) = z. (C5b)

Finally, let t = 0 in (C4), the influence function for the heuristic variance estimator is

INFh(z,T,fo) = 2(Ef0 {IYI }) (Ixl - E,0 {IYI-}), (C6)

which is the same as (25) of Section Ell. Other influence functions discussed in this paper

can be found using the same procedure as presented above.
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K AIC (K) K AIC (K)

1 998 1 960

2 388 (min) 2 712

3 463 3 586 (min)

4 472 4 617

5 490 5 681

6 549 6 703

7 580 7 692

8 557 8 709

a.) Two-component b.) Three-component
Gaussian mixture Gaussian mixture

K AIC (K)

1 988

2 852

3 805

4 717 (min)

5 753

6 782

7 806

8 803

c.) Four-component
Gaussian mixture

Table 7.3.2

Computed AIC's for the Synthetic Data with K -8.
max
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Number of Assumed Exponential Parameter
Clusters

Intercluster K a. = 3.0 a. = 2.0 a, = 1.0 cr. = 0.5
Distance

1 1383 1310 1196 1105
2 1186 1121 1033 972

r = 5.0 3 669 (min) 544 (min) 352 (min) 205 (min)
4 713 582 385 239
5 738 602 403 258

1 820 719 563 442
2 887 773 601 472

r = 2.5 3 661 (min) 537 (min) 346 (min) 201 (min)
4 683 558 371 232
5 750 630 447 310

1 671 560 385 246
2 766 649 470 331

r = 2.0 3 628 (min) 505 (min) 316 (min) 170 (min)
4 676 556 379 249
5 681 562 385 252

1 508 (min) 386 (min) 196 (min) 49 (min)
2 600 480 299 162

r =1.5 3 556 432 244 96
4 598 482 315 188
5 596 478 306 175

Table 7.3.3

Computed AIC's for the Generalized Gaussian Mixture Data with a - 3.0.
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Number of Assumed Exponential Parameter
Clusters

Intercluster K a. = 3.0 ao = 2.0 ao = 1.0 ao = 0.5
Distance

1 1374 1300 1186 1095
2 1168 1095 994 925

r = 5.0 3 696 (min) 542 (min) 316 (min) 150 (min)
4 739 587 366 208
5 776 619 400 247

1 805 703 547 426
2 856 728 556 436

r = 2.5 3 668 (min) 519 (min) 298 (min) 134 (min)
4 702 556 343 187
5 744 599 390 239

1 656 542 369 236
2 780 650 464 327

r = 2.0 3 625 (min) 484 (min) 274 (min) 117 (min)
4 681 529 333 182
5 701 563 364 215

1 494 (min) 505 (min) 177 (min) 33 (min)
2 641 505 307 158

r = 1.5 3 552 411 207 52
4 590 452 262 127
5 615 478 278 126

Table 7.3.4

Computed AIC's for the Generalized Gaussian Mixture with a - 2.0
(the Gaussian Mixture).
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Number of Assumed Exponential Parameter
Clusters

Intercluster K a. = 3.0 a. = 2.0 a. = 1.0 a. = 0.5
Distance

1 1376 1356 1196 1113
2 1184 1092 965 880

r = 5.0 3 718 (min) 494 (min) 167 (min) -56 (min)
4 725 519 216 6
5 776 576 293 97

1 899 707 559 447
2 855 724 542 414

r = 2.5 3 656 (min) 450 (min) 146 (min) -69 (min)
4 664 473 193 -6
5 726 531 258 72

1 662 544 379 257
2 742 604 410 271

r = 2.0 3 614 (min) 413 (min) 117 (min) -93 (min)
4 635 442 164 56
5 692 499 235 56

1 506 (min) 366 174 37
2 632 475 257 103

r = 1.5 3 561 359 (min) 77 (min) -120 (min)
4 605 403 129 -56
5 652 456 187 -2

Table 7.3.5

Computed AIC's for the Generalized Gaussian Mixture with a - 1.0
(the Laplacian Mixture).
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Number of Assumed Exponential Parameter
Clusters _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Intercluster K a. = 3.0 a, = 2.0 a. = 1.0 ao = 0.5
Distance

1 1370 1299 1195 1120
2 1190 1078 914 802

r = 5.0 3 784 448 -64 (min) -41 (min)
4 694 (min) 404 (min) -48 -364
5 707 419 -18 -317

1 807 697 556 458
2 851 698 483 329

r = 2.5 3 656 358 -102 (min) -432 (min)
4 633 (min) 355 (min) -66 -364
5 600 378 -26 -293

1 668 533 370 261
2 744 572 343 183

r 2.0 3 642 334 -120 -433 (min)
4 556 (min) 282 (min) -123 (min) -404
5 578 311 -72 -303

1 531 (min) 353 150 21
2 641 432 179 20

r =1.5 3 625 309 -126 (min) -412 (min)
4 619 333 -29 -255
5 564 289 (min) -77 -312

Table 7.3.6

Computed AIC's for the Generalized Gaussian Mixture with a - 0.5.
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K co = 3.0 a. = 2.0 a. = 1.0 a. = 0.5

1 -109 -115 -122 -128
2 -122 (min) -130 (min) -142 (min) -150 (min)
3 -120 -127 -138 -146
4 -118 -125 -135 -143
5 -116 -123 -134 -142

a) AIC's computed for the second and third components of
the AR model vector.

K ao = 3.0 a. = 2.0 a. = 1.0 a. = 0.5

1 -155 -166 -181 -191
2 -190 -207 -230 -248
3 -189 -206 -229 -245
4 -191 -208 -231 -247
5 -192 (min) -209 (min) -234 (min) -250 (min)

b) AIC's computed for all four components of the AR model
vectors.

K Heuristic (/3 = 0.5) Robust (ao = 2.0)

1 -939 -1978
2 -1144 (min) -2179 (min)
3 -1075 -2149
4 -1057 -2153
5 -1032 -2136

c) AIC's computed with the heuristic variance estimator
with/3 = 0.5 and the robust estimator with ao = 2.0

Table 7.3.7

Computed AIC's for the Two-Class AR Texture Image
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K a. = 3.0 a= 2.0 ao = 1.0 a. = 0.5

1 196 161 114 78
2 -81 -174 -304 -393
3 -77 -175 310 -404
4 -151 (min) -240 (min) -367 (min) -457 (min)
5 -141 -232 -358 -445

a) AIC's computed based on generalized Gaussian
assumptions.

K Heuristic (13 = 0.5) Robust (ao = 2.0)

1 41 -310
2 -106 (min) -331 (min)
3 -62 -287
4 -39 -290
5 -4 -274

b) AIC's computed with the heuristic and robust variance
estimator.

Table 7.3.8

AIC's Computed for the Two-Class MRF Texture Images.
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K AIC (K) K AIC (K)

1 526 1 882

2 534 2 768

3 511 3 705

4 506 (min) 4 679

5 515 5 664 (min)

6 518 6 682

7 519 7 674

8 512 8 677

9 518 9 670

10 526 10 672

a.) Road Scene b.) Oil Tank Scene

Table 7.3.9

Computed AIC's for the Real Image Data with K -10.max
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Examples of Synthetic Gaussian Mixture Data.
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a) The Two-Class Region Map

b) The Two-Class AR Texture Image c) The Two-Class MRF Texture Image

Figure 7.3.9

Example of Texture Images
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Sample Model Parameter Vectors for the Texture Images
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a.) Original Image b.) 2-Class Segmentation

c.) 3-Class Segmentation d.) 4-Class Segmentation
Suggested by AIC criterion

e.) 5-Class Segmentation f.) 6-Class Segmentation

Figure 7.3.11

Segmented Road Scene According to the AIC criterion.
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a.) Original Image b.) 2-Class Segmentation

c.) 3-Class Segmentation d.) 4-Class Segmentation

e.) 5-Class Segmentation f.) 6-Class Segmentation
Suggested by AIC

Figure 7.3,12

Segmented Oil Tank Scene According to the AIC criterion.
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7.4 The Photointerpretation Workstation:

7.4.1 Introduction:

The conceptual approach to automated photointerpretation developed under this ef-

fort has been described in some detail in previous sections. As mentioned in Section 7.1, we

have implemented this approach in the TI/Explorer. This implementation makes use of an

object-oriented based menu system and provides a fast, interactive means of performing

computer vision research based on rapid clique function prototyping. The TI/Explorer

implementation has been called the Photointerpretation Workstation. The remainder of

this section is devoted to a description of the Photointerpretation Workstation.

7.4.2 Bkyround

The photointerpretation workstation is a TI/Explorer based AI tool for performing

computer vision research on continuous-tone images.

Our motivation for using the Explorer as a computational platform is based, in part,

on the severe limitation in the data structures available in a FORTRAN programming

environment. We have found the traditional data processing environment to be too re-

strictive.

Our objective is to move to an environment with a rich set of data structures. With

the Explorer as our target system, we hope to reap the benefits of programming using an

object-oriented paradigm.

7.4.3 Overview of PI Workstation

The Photo Interpretation Workstation (PIWS) is based on the TI Explorer. The

PIWS is an interactive, fast, object-oriented, dedicated, hybrid test bed for photointer-

pretation. The hybrid nature of the PIWS comes from the TMS32030 DSP chip which

is capable of 20 MFLOP of throughput on vectorized operations. In particular, we feel

that this will allow for fast image segmentations. Because of the proliferation of Explorers

within the NAIC, the PIWS should be readily portable.

7.4.4 User Interface

First, let's take a look at the programming environment. Using the flavor system,

we are able to take advantage of the multiple-inheritance A.K.O. (A Kind Of) hierarchy.
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This enables us to program in a much more flexible fashion. For example, suppose that we

wanted to define a flavor, we might use a form similar to that which is presented in Fig.

7.4.1.

Here we can see that the user has defined a region flavor and made an instance of

this flavor, called rl. This object, ri, may be sent a message, such as :area, and its

area information is then returned. If we define a method, called :compactness, we may

send the message, :compactness to the rl instance, just as if it were an instance variable.

The message is treated differently, however, since every instance of the region flavor must

calculate its own compactness from given instance variables.

This is a very general approach. Let's look at how this is applied to the clique

function. Recall that a typical clique function looks something like that illustrated in Fig.

7.4.2. With corner points A,B,C, and D, the clique function flavor might look like Fig.

7.4.3.

Here we see that the corner points become instance variables of the clique flavor.

The user has created an instance of the clique flavor and set the atom cl equal to it.

It is possible to then define a method for the clique function which uses region-based

calculations to design its own corner points. In Fig. 7.4.4, we see an example of the use of

the clique flavor.

Here we see the true flexibility of the flavor system. We have defined a label flavor

which contains a clique function for each feature. We broadcast to a list of regions the

message featurel and then calculate the average of each-feature in the feature list. This is

then returned as a list of feature averages whenever the label flavor is sent the :get-features

message. This is of great assistance when designing clique functions.

7.4.5 S

The PIWS does not support image processing type hardware (yet). There is no color

display, no continuous-tone images, and no image digitization capability. Still we are able

to display dithered images. For example, the image in Fig. 7.4.5 is displayed on a 700 by

700 pixel segment of the screen. The effective resolution is about 128 by 128 and up to

9 levels of grey are represented. Using this technique we can also represent a segmented

'Here broadcast is a function which sends a message to each item in the list.
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image as in Fig. 7.4.6.

In Fig. 7.4.7, we see a print made from the screen of the PIWS.

This PIWS frame is made up of five panes:

1. the "region pane,

2. the "labels" pane,

3. a "typeout window" pane,

4. the "PIWS Command Menu" pane and

5. a "status of photo' pane.

In the 'regions" pane we can see the name of the region 2 followed by an assigned

interpretation label. This was assigned as a result of the annealing process. The first-order

energy level for the assignment follows with an overall energy for the label assignments at

the bottom of the region pane. The features for each area are also present.

In the labels pane we see the clique functions with the weight for each of the assign-

ments. Both panes are scroll windows and will scroll if the mouse is bumped up against

the left hand side of the pane.

Each of the regions in the region pane is a mouse sensitive item. If the mouse comes

near any of the items they are highlighted (this indicates that they are mouse sensitive).

If the mouse is cliqued over region v2, the display results as in Fig. 7.4.8.

Here we can see that the vegetation label is highlighted. This indicates the present

computer interpretation. All of the items in this pop-up menu are mouse sensitive and

may be changed by the user. A similar technique is applied for the clique function pane,

as indicated in Fig. 7.4.9.

7.4.6 Future Work

Currently, we input a symbolic description of the image. No segmentation is performed

on the Explorer. We would like to perform all the photopreprocessing on the Explorer. This

includes segmentation, histogram equalization, hand segmentation, hand interpretation,

and image display. We feel that use of the TMS 32020 DSP will speed up the segmentation

of the images.

2 Note these names were assigned to a training image. They are the result of human

interpretation.
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The Programming Environment

* The Flavor System
Using the flavor system:

(defflavor region
(area 100)

(.

(setq rl (make-instance 'region))

(send rl :area)

(defmethod (region :compactness) (
(....))

* This provides us with a flexible, object
oriented data structure.

Figure 7.4.1

A Flavor Example
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A Clique Function

f (x; A, B,C, D)

A B C D

Figure 7.4.2

A Clique Function

7.4.5



The Clique Flavor

(defflavor clique
(a 0)
(b 0)
(c 0)
(d 0)
(.

0)

(setq cl (make-instance 'clique))

Figure 7.3.3

The Clique Flavor
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Using the Clique flavor

(setq grass (make-instance 'label))
/* a human interpretation */

(send grass :add-regions rl r2 r3...)
(send grass :add-clique cl)
(send grass :design-clique-function)

(defmethod (label :design-clique-function)
()

(send self :get-features)

(defmethod (label :ge-features) ()
(loop for each-feature in

feature-list do
(send each-feature :set-av.erage
(average

(broadcast regions :feature))

Figure 7.4.4

Using the Clique Flavor
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A Dithered Grey-Tone Image
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A Segmented Image
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