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THE OPEN-ENDED COAXIAL LINE: A RIGOROUS VARIATIONAL TREATMENT

T E Hodgetts

INTRODUCTION

This paper presents a rigorous theoretical analysis of the open-ended coaxial line
with an infinite ground plane or flange .4&-11"'adiating into a semi-infinite lossy
medium. This configuration has become popular for measuring the complex permittivity of
liquids and bio-medical specimens, because it does not require a sample of a special
shape. However, the theoretical analysis has previously only been performed by
approximate methods; the best of these seems to be the point-matching technique.
employed by Mosig et al [I], (discussed with attention to numerical detail by
but there are several others in the literature (see the bibliography o ,[3]). QThe present
treatment employs the variational methods described by Collin [4 and iapplied to the
behaviour of enclosed coaxial-line discontinuities by Whinnery et al [5], Sofrlo [6], Bianco
et al [7] and the present author [8]. # )

THE ELECTROMAGNETIC FIELD EQUATIONS V 11, C L

We begin by outlining the forms of the fields relevant to the problem. These have
been discussed at length by many writers (e.g Jones [9], Kerns and Beatty [10] and the

present author [8]), so this section will be little more than a statement of notation without
further formal references.

A region of space which is linear, isotropic and homogeneous, and contains no free

charges or current-carrying elements, will support a monochromatic electromagnetic field
specified by the six space components of the conventional complex field vectors E and H,
which are related by the complex monochromatic forms of Maxwell's equations:

curl E + jwpll - 0 div 11 - 0

curl H- jceE - 0 div _E -

In eqns (I), c is the angular frequency, so that the time variation of the fields is as
exp(jwt) where j is the square root of (-I), and p and f are the permeability and
complex permittivity of the medium in the space region. The complex permittivity is
defined in the usual way, having a real part equal to the ordinary absolute permittivity
and an imaginary part equal to (-/cor) where a is the conductivity of the medium. In
our problem there are two regions, bounded by an interface between them (at the
end-plane of the coaxial line) and by various perfect conductors (the flange and the
cylinders of the coaxial line); eqns (I) apply separately to each region.

Both regions have rotational symmetry about the axis of the coaxial line, so it is
convenient to use cylindrical polar co-ordinates (p, p, z). When this is done, it turns
out that the six space components of E and H de-couple into two sets, (H, E Ez)
and (E1,,HP,Hz). The field in the coaxial line far from its end necessarify has
components belonging only to the first of these sets (at normal working frequencies); and
it is possible to satisfy all the conditions at the interface and the bounding conductors
without introducing components in the second set, which can therefore be discarded.

Equations (I) comprise eight scalar equations. Remembering that we have rotational
symmetry - so that all the field components are independent of P - and discarding the
four equations which relate to the irrelevant (null) components (EVI,, Hp, Hz), we have
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four significant equations, one of which is an immediate consequence of the other three.
(This redundancy follows directly from eqns (1); if we take the divergences of the two
(vector) equations involving curls, the other two (scalar) equations follow immediately.)
The three remaining equations are

E 1 a
- (- ][ B.P (PH)]A

(PH) 1 3 (PH + 8 (pH) + k2(pH) - 0 (3)

where k2 = ( 2pe (as usual) and the unit vectors (p, f, l) form a right-handed set (see

Fig 1 ).

MODES IN THE COAXIAL LINE

The tangential electric field on any perfectly-conducting surface is zero. The
directions tangential to the cylinders of the coaxial line are i and z; hence, from eqns
(2),

T- (pH) - 0 at p - r and p - R (4)

where r and R are the radii of the inner and outer conductors.

This condition has no explicit z-dependence, so eqn (3) can be solved subject to it
by separating the variables p and z. The equation in z is harmonic or exponential; the
equation in p is a close relative of Bessel's equation. A separation constant appears,
which is constrained to take only particular values (by eqn (4)). The complete field for
z < 0 (within the line; see Fig 1) can now be written down (after [8] and [9]) as
follows.

The equation

J0 (kIr)Y0 (kiR) - J0(kIR)Y0 (kIr) - 0 (5)

has a set of real, positive and simple zeros ki, where i is an integer numbering the zeros
in ascending magnitude, and J0 and Y0 are Bessel's functions of the first and second
kinds of order 0 (Watson [11]). For each i we define a constant Ci satisfying

C i  - J0 (kIr)/Y 0 (kIr) - J0 (kiR)/Y 0 (kiR) (6)

(which is consistent with eqn (5)), and we also define three functions of p, thus
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Z(kiP) - Ja(kiP) + CiY (k1 p) (7)

where a is one of the integers 0, 1 or 2 (2 being only rarely required); the Z. will only
be used with arguments of the form (kip) so that the required value of C i is always
obvious. From eqns (6) and (7), the mode constants ki now satisfy

Z0 (kr) - Z0 (kiR) - 0 (8)

for all i. Also, from [8] or [9],

d d
T- (xJ,(x)) - xJo (x) and L (xY,(x)) - xYo (x),

so d (kiP)Z (k 1P)] - (kiP)Zo(kiP) (9)

The field components then are

H (z <) _ 1 a0e-JkAz - rekAz ]

flAP

+ ,j aie Zl(ki) (l0a)

[e-Jz  JkAZl

E (z <0) - - a0 + rA e i

p p 01 A j

+ ae Z1 (k p) (lOb)

E (Z <0 -1! ae• Z0 (kiP) (10c)

where the suffix A denotes region A in Fig 1, and

2 2 2 2

S 2A a andand A (1)
k A EA
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with kA, 17A and the yi being positive (if EA is purely real), or having positive real arts
(if (A is complex). (It is assumed that the frequency is low enough for all the -yi to
have positive real parts, so that only the ordinary coaxial transmission-line mode
propagates freely, all other modes decaying exponentially away from the plane z = 0 even
in the lossless case.) The remaining parameters, FA, a0 and the ai , are to be determined
later. This representation may be compared with that in [2].

THE FIELD IN THE UNBOUNDED DIELECTRIC REGION

The specification of the unbounded field is considerably more complicated. Symm
[21 takes it directly from a result given by Lewin [12]; however, as we have started from
first principles (eqns (1)), it is appropriate to take the treatment somewhat further back so
as to show more clearly the connection between the results for the bounded and
unbounded cases, and to justify the transformation of variables used by Symm [2].

We begin with a theorem quoted in [12] from Baker and Copson [13]; the proof of
this is an exercise in pure mathematics, not physics, and the reader is referred to [13] for
the details. (To apply the theorem we change temporarily to Cartesian co-ordinates,
retaining the z-direction and taking the x-z plane as the p = 0 plane; see Fig 1).

Let i, be a solution of Helmholtz' equation in region B of Fig 1; that is, V2 1, +
kB 2 v = 0, where kB2 = W2 PB(B and kB is positive (for real EB) or has a positive real
part and a negative imaginary one (for complex fB) (compare eqns (11) and the text
immediately following them). Let ;, further have no singularities in the positive-z
half-space, and satisfy the radiation condition at infinity; and let the function (r/fz)(z_0)
(defined, if necessary, as the limit as z tends to zero from above) be denoted by (x,y).
Then, in the positive-z half-space,

1 exp(-jkBD)

,'(x', y', z') - - 1 j B(x,y) D dxdy (12)

where D is the positive square root of ((x - x') 2 + (y - y,) 2 + z, 2 ) and the double
integral extends over the whole z = 0 plane. (As before, a harmonic time factor exp(jwt)
has been suppressed.)

Now, region B satisfies the same symmetry conditions as region A, from which it
was deduced that the field in region A has only components (H,,, EP, Ez). We infer
that the same is true of the field in region B, since the two regions are connected by
continuity conditions on the tangential components of E and H at the z = 0 plane. We
cannot, however, apply eqn (12) immediately to the reduced set of field components,
because the critical components H, and E do not satisfy Helmholtz' equation; but the
Cartesian components of E and H do satisfy it. It is easiest to establish this result and
deduce its consequences if we follow the treatment in [9], where it is shown that, subject
to the assumptions already made, the electromagnetic field in a region such as B can be
expressed in terms of two scalar functions satisfying the damped wave equation (normally
taken as the magnitudes of Hertzian vectors with directions fixed along the z-axis). Using
the implied time-harmonic factor with the results in [9], the Cartesian field components
are

E - a 2  M a2M . an
x - - BHx -TX + B B UY
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a211 a 82M an
E Y- ay~ + jW 3- PB Ny - TyFz -J'uB'B N

E a 2 H 2M + 2 M (13)
Z AB -I B

where the complex scalars IT and M now satisfy Helmholtz' equation.

We now wish to prove that

aH aH

Y - - jweBE and 3Z X - jwe BE (14)

Given that Hz is zero in region B, these results in fact follow directly from eqns (13).
A less direct, but more physically instructive, way of establishing eqns (14) is by
transforming into the (p, so, z) co-ordinates and discarding derivatives of HT and M with
respect to p - the E and H fields are independent of o, so common sense would be

contradicted if rH and M were not also independent of it. We then find that the
components (H ,, EP, Ez) depend only on rH, and (E., HP, Hz) depend only on M; as
this second set of components is null, we may discard M, and eqns (13) then simplify to
forms from which eqns (14) follow without further assumptions.

It is also clear from eqns (13), whether or not the terms in M are discarded, that
Hx and H., satisfy Helmholtz' equation - because rT and M do so, and therefore so do all
their Cartesian derivatives (as can be shown by differentiating Helmholtz' equation and
inverting the order). Hence we may set H x or Hy for P in eqn (12), taking the
corresponding (c/az) from eqns (14); then

jwf B I Iexp(-jk BD)

H(X',y' ,z') - + J Ex(x,y,O) D dxdy
I D(15)

jW(B exp(-jk BD)
Hx(X',y',z') - - J Ey(x,y,O) D dxdy

Now, by taking components in the various orthogonal directions in Fig I it is easy to

show that

H - H cos po' - H sin V)' (in the primed co-ordinates)y x

and

E - E coso- E sin p

E (in the unprimed co-ordinates)

E - E sin + E cos
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using x = p cos i, y = p sin p and similar primed equations. We substitute from these
equations for Ex and Ey in eqns (15); then we multiply the first of eqns (15) by (cos ip')
and the second by (- sin o'), add, and combine the two integrals into one. We thus
obtain, remembering that E is zero,

JB ex "P(-~jkBD)

H (x',y',z') - J E (x,y,O) cos (P - p') D dxdy

We now complete the conversion back to cylindrical polar co-ordinates. Since E is
tangential to the z = 0 plane over which we are integrating, it vanishes for all radi p
less than r or greater than R, since these parts of z = 0 are occupied by perfect
conductors (Fig 1); and the differential area (dxdy) transforms into (pdedp), as is well
known. The last equation then becomes

J RB R 2 exp(-jkBD)

H- (p',- Z') J EP(p, ,O)cos(, - P') D pd~odp (16)

r0

where now D2 = p2 + p' 2 - 2pp' cos( p - v') + z12 , and the dependence of Ep on P

and of H P on ,' is only formal. This is the result given by Symm [2].

CURRENT, VOLTAGE, ADMITTANCE AND REFLECTION COEFFICIENT

It is possible to carry on the analysis from here in terms of the principal models
"voltage reflection coefficient" TA (introducted in eqns (10)) or in terms of current,
voltage and admittance. The latter representation is quite logical (since we have a
terminated two-conductor system) and is more satisfying to microwave engineers; but it
requires a lengthy discussion to justify it rigorously (eg. [10]). For convenience we shall
proceed in terms of the reflection coefficient; the link with admittance can then be made
using the standard equation ([8],[10])

y 1 - rFA (7Y- A (17)
7- 1 + r0 A

where Yo is the characteristic admittance of the coaxial line and is 21-/(17AQn(R/r)).

INTEGRAL RELATIONS AND ORTHOGONALITY

It is well known that the modes in modal expansions like eqns. (10) satisfy integral
relations which make them mutually orthogonal. The necessary relations for our problem
are quoted in (81 from [11] and are

f )2 pdp - Qp

J (0p)pdp - l p2 Z2(l) Z0 (0oP)Z 2 (OP)]
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S Z(Op)pdp Zo(Op)

Zl(0) 2Plpdp a 2 PZl (01 P)Z0 (02P) - 01PZ l (82 P)Z0 (6lP)] (18)

Z1(6p)Z1(02p)pd (02 _ 2(8
(061 * 2) 1 2

The last two of these are the orthogonality relations properly so called, as can be seen by
taking the integration from r to R, setting the O's equal to one or two of the k i and
using eqn (8).

VARIATIONAL FIELD REPRESENTATIONS

We are now ready to tackle the heart of the problem. Let the field components
H and E at z = 0 be denoted by the forms H and E By allowing z to tend to 0
in eqns (10) and (16) we obtain two representations of k*,; these must be equal, since
the tangential components of H are continuous across the plane z = 0, but in some of
what follows it will be convenient to distinguish them, as H+ and H- according to the
sign of z. H , and E are functions only of p, because of the cylindrical symmetry.

From eqns (10) and (16), with some interchanges of p and p' for convenience,

a0 (1 - r'A) - 7Ap[~ +Y[14A[ iZ1ikPj

H- +7A A + 1 j.AajZl(kip)j

A- [jH1+ + A ]aZ(kp)j(9

aAP a i r(

R 27r

+ = Ep(p )Cos( 0 - -) DO d p o

r 0

2 2 '2
where Do  - p + p - 2pp'cos(; - ').

It is possible for the integrand in eqn (19) to become singular; to deal with this problem
a suitable approach to the limit will be used.

Now, from eqns (10), (18) and (8), with interchanges of integration and summation,
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R
a0 (l + rA)Qn(R/r) " J [E - Y aiZ (kiP)] dp

r 1-1

R R
- E dp - Y a1 J Z (k P)dP

r i-1 r

R

- J E Pdp ; and similarly
r

R R [ a(i+rA) 0
a i Z (k p)pdp - r ZI(klp)p Ep P a_,_ZI(k P ) dp

r r P'-1
i '0i

R

- J EpZ1 (kiP)Pdp

r

Substituting these results for a0 and ai into eqn (19) gives us

A- 1 + r
A] 27 ExpZ (kBO) t pt

r r

+~~ f E] J I (P, )Cos ( ]Pn ~
rO0

This equation contains the quantity (21r/(i7AQn(Rir)))(Ol - rA)/(1 + r1.J), which by eqn
(17) we are entitled to call the terminating admittance Y of the coaxial line. Let us now
multiply the equation by an arbitrary function F' of p and integrate from r to R; we
then have

R R

27,- Z'(kip)pdp}-l f E EZ (k p)pdp] f Y Z (k P)pdp}
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+ WE Jw R R 2w () W cs - 0)ep-kBD0)pp'dpo'dp'dp (20)
R R 2 ir [x(JB D0O

r r 00 J

In eqn (20) the function E is the exact form of the radial electric field E p at the
plane z = 0. We desire now to choose the function E o so that we obtain the best
possible value for Y when we use (as we inevitably must) an approximation to Ep. To
do this, we consider the effect on eqn (20) of a small change in E or E p. In the
terminologyof the calculus of variations (eg [4], [8]) the first variation of eqn (20) with
respect to E'P is

y [ R Edp] [ R 6Edp] + b[ R E ,dp][ Rt Edp]

I ki P)P I P E~ 1 kP)d [J&Z 1 k)d]r r r r

R '"R -2i -

r r0 -

R R
or [ - jEZd][ J d p -

r r

J pa1 ip [-j]~ 1 ) EJ Z (kp)pdp fb 7 EZ I(kiP)pdP

r [ i-i r r r

R 2i, rexp(-jkBD0 ) 1

+ jW R R 2E () (')os(ex(j B D 0-d pp' d dp

r r 0 0

R R
or 6[ 7 E dP]} (21) d]

rr

9 The integrand in brace brackets here vanishes, on account of the equation preceding eqn
(20); hence .5Y is zero for variations of 'p From the symmetry of eqn (20), we canimmediately deduce a counterpart to eqn (21) with Einterchanged with (and p

interchanged with p'), and it then follows that setting Ep= E#makes 6Y vanish for
variations of E, also. This is the optimum form, since first-order errors in Epthen only
cause second-order errors in Y. The vanishinL variation property can also be used in
reverse, after Ritz ([4],[8]), as follows. Putting E = Ep in eqn (20) gives us

I f Ed~ Z-kp~

r

R9

... ... .. . . . . -- ,- , , f m E mm mP dp m(21)m mn m l - I



o1 [F jo'. A H [ ZR k P P P 2 R E Z (k p d 2 (22)
Yj r r I

R R 2r exp(-jkBD0)

+ jwe B I IJ E P(p)E (P')cos( cp - 'P')I D p p'dpdp'dp
r rO o J

If an approximate form for Ep, containing adjustable parameters, is inserted into eqn (22),
it will represent Ep as well as it can when the first variations of the equation with
respect to the adjustable parameters all vanish. Before applying this technique, however,
we will first transform the triple integral in the equation into a more tractable form.

REPRESENTATION OF THE PROPAGATION FACTOR

The factor (exp(-jkBD0 )/D0 ) - sometimes called the propagation factor - usually
appears in analyses of this kind, and has a large body of literature associated with it in
classical electromagnetics and optical diffraction theory, including the Sommerfeld dipole
problem which is perhaps the present problem's nearest relative (see Banos [14] for a
very full discussion and bibliography). The integral transform we need is, in fact,
discussed by Bateman [15] in the context of Sommerfeld's work. However, it is unsafe
simply to quote the result from [151, as a branch-point integral is involved and
considerable care is needed. Accordingly, we shall prove it directly, following the method
given by Jeffreys and Jeffreys [16].

We note first that (exp(-jkBD0 )/D0) is the limit as z' tends to zero of
(exp(-jkBD)/D) (see eqns (12) and (16)), and it is this latter form which we shall
represent, so that the limit can be taken later (see the comment following eqn (19)).

2r

exp(_Qz')J 0 [D0 (k2+ Q2 ) exp- Q(z' + jDcoso) + jk Dosina do

0
(23)

where Do, z' and kB have the meanings already used, Q is a general complex number
with a non-negative real part, and J 0 is the Bessel's function of the first kind and order
0 already introduced. (The sign of the square root on the left-hand side is of no
consequence, since J 0 is an even function.) This result is easily proved by removing the
factor exp(-Qz') from both sides, expanding the remaining exponential integrand as an
absolutely convergent series with infinite convergence radius, and integrating it term by
term; the equation then reduces to

3a[Dj(k 2 + Q2 )] - (-I)~ [D2 (Q 2 + k 2]n
OtOBn-0 (2 n!)

which is true by definition (eg. [16]).

Next, we consider the integral

10



exp(-z' (s 2 _ k2)2)

j (2 10 (sD )sds Isay) (24
0 ( k-B

in whi-h the path of integration is the positive real axis, and we introduce the temporary
requirements that z' is strictly positive and kB is strictly complex; the square root has its
natural definition (approximately equal to s for large s on the integration path). If we
change the variable of integration to this natural square root, which we will call Q, we
then have

Oo

- P z'Q) r k 2 B

jkB

where the lower limit of integration is fixed by continuity (since (s2 - kB 2 ) has a positive
imaginary part for all real s) and the square root in the argument of J0 causes no trouble
as remarked above. Since also the Q in the denominator is cancelled by the Q in the
numerator, we have an integrand which is well-behaved in the entire complex finite
Q-plane; this makes it unnecessary to specify the path of integration in detail, and (more
importantly) allows us to substitute from eqn (23) and interchange the order of integration
of the resulting double integral, which also has a well-behaved integrand; so

=1 ex[-Q(z'+Sexp + jD0coso)+ jkBD0sino dQdo
0 jkB

The integration over Q can be performed at sight, remembering that z' is strictly positive
so that exp(-z'Q) tends to zero as Q tends to infinity; we then have

1 -2, exp(_JkBz' + kBD0Cose + JkBD0sino)
J z' + jD cosod
0 0

This integral is transformed by the substitution t = exp(jo), which (contrary to
appearances) does not introduce a branch point (because all the occurrences of a are
trigonometric, except the differential do which can be written as d0/(jO)). We then have

(2 ) exp(.JkBz' + kBD 00)

-i i d3
(0) oz' + JD0( 2 + 1)

where the path of integration is anti-clockwise around the unit circle in the complex
O-plane. This integrand has two simple poles at the points (jz'/D0 ) ± jy(l + (z'/D)2),
and since z' is strictly positive it is clear that the contour only encloses the pole at 0 =

(jz'/D0 ) - j./(l + (z'/D0 )2 ). We then obtain, from eqn (24),

11



C exp(-z'(s2 - k2 exp(-JkBD)
J 2 k2fB J0 (sD0 )sds D B (25)

0 (S  k)2D

remembering that D2 = D02 + z' 2 from the definitions of D and Do . This form may
now be used in the triple integral in eqn (22), with the limit as z° tends to zero being
taken later - this is physically justified by the continuity of the transverse field
components at the plane z = 0, and is logically justified by the flow of the argument
from eqn (16) to eqn (22). The triple integral accordingly becomes the limit as z' tends
to zero of

R R 2E P - exp(-z'(s 2
- k2)2) ]

I f E2 J0 (sD0 )sds dy,

r r 0 0 (s k B)

dp'dp

INTEGRATION OVER °

We now consider the term in square brackets in the last expression, still maintaining
the temporary requirements that z' is strictly positive and kB is strictly complex. As
before, we can remove the branch-point by temporarily transforming from the variable s
to the previously defined variable Q. We may then invert the order of integration and
transform back to the variable s, and the bracketed part of the expression becomes

t 2
-s I 2rJ0(sD0)c os (,p - ' )de ' ds (26)

0 (s - 2 J 0

The integral in brace brackets can be evaluated in closed form; and, remarkably, the
integration variables p and p' are separated in the process. We remark first that Do
depends on p,' only through cos(y, - y,'), and this property is preserved for the whole
integrand; and, moreover, if F represents an arbitrary well-behaved function we have

2,r 2r

J F[cos( - ') dp' - JI Fcos(O' - 0)1do'

0 0

(2w ,-,)

- J F(cos ip') dp'

(2 r-0) 0

- J F(cos ,') d,' + J F[cos(2w + o')}d(2r + i')
0 -y,

12



(21r- p) 21r

- J F(cos Po')d,' + J F(cos *' )d~p'
0 (2w-p)

21r
J F(cos i')d'
0

Hence the brace-bracketed integral may be written as

27r

f J 0 [/(sp) 2 + )(p') - (sp)(spI)cosp' csodsp&o
0

using the definition of D0 . Now J 0 has a triangular expansion given in [16] and [11] as
(in our notation)

- J0 (sP)J 0 (sp') + , 2cos(mW')Jm(SP)Jm(SP')

where Jm denotes the Bessel function of the first kind and of order m. This series has
an exponential tail, since the asymptotic formula in [9] for the Bessel functions of the
first kind of fixed argument and large variable order shows that Jm(w) (regarded as a
function of m) decays exponentially to zero as soon as m significantly exceeds (tew), e
being the base of natural logarithms. We may therefore interchange the order of
integration and summation after substituting this series into the expression above for the
brace-bracketed integral in eqn (26). All the integrals over P' then vanish, except the
one where the index m is 1; and the brace-bracketed integral is simply given by

f } - 2J 1 (sp)j 1 (sp')

Hence, from eqn (26) and the expression before it, the triple integral in eqn (22) is the
limit as z' tends to zero of

R R 00 exp(-z'(s 2 - k2

f f E (p)Ep (p')PP' f 2 2 1 2wsJ(sP)J(sp')dsdp'dp

r r 0 (S kB

13



(This method of integrating over sp' is described by Morse and Feshbach [17] in the

context of a similar problem.)

THE RITZ PROCEDURE

We now apply to the exact equation (22) the Ritz procedure of successive
approximations described immediately after that equation. We want an approximate form
for Ep which depends in a convenient way on adjustable parameters, approaches the exact
form if enough parameters are used, and (for stability) satisfies the boundary and
consistency conditions (implied by eqns (2) and (4)) at every approximation stage. The
natural form is the one obtained by truncating the series expression for Ep at z = 0 from
eqn (10), namely

N
- 1 - 1E Wp) + k 1Z( )(27)

for the Nth approximation, where &0 and the om are the adjustable parameters (the
factor km has been included for later convenience). The mode functions 1/p and the
ZI(kmp) are an orthogonal complete set (see [4] and [8]), so the form (27) can represent
as accurately as we please in the mean any function in the relevant range of p and
satisfying the relevant boundary conditions, if N is sufficiently large. At each
approximation stage we substitute fp into eqn (22), adjust every parameter for a vanishing
first variation, and calculate the corresponding value of Y (say, YN for the Nth order).
Since tp depends linearly on its adjustable parameters, there is at each stage only one
stationary point where the variations with respect to every parameter vanish; hence, since
the exact E is also stationary in this sense, as N tends to infinity Ep tends to E in the
m n and YN tends to Y, and so Y can be found by calculating suitable YN and
extrapolating to infinity using a suitable procedure for accelerating convergence.

We substitute from eqn (27) first into the expression above for the triple integral in
eqn (22). The result is a finite double sum of triple integrals, and the limit as z' tends
to zero may be taken subsequently in each of these (provided they all remain convergent,
which we shall see they do); we then have for this part of eqn (22)

I I ! ;0 + k a Z (k P) o0 + knzi(kP') "
r r M I1 n-I

exp(-z' (s2 - k2) i)

PP 0 2 k2)B 2wsJ 1(SP)J 1(sp')dsdp'dp

0 (S k B)

- I ++ 2 I + +o, or I
0 .Im mm o m M Om m n mnM1 m-1 n-I

m n
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where the integrals I satisfy Imn = Inm and are given by

R R exp(-z'(s 2 - 2 ) f)

o0 r i 1 2  k 2  2rsJ 1(Sp)Ji(sp')dsdp'dp (28a)

r r 0 -S B)

R R exp(-z'( 2  k 2- )

'Om - J ( S 2 k 2) (kmp)Z 1 (k mp) . 2 rsJ1 (sp)J l (sp')

r r 0 ( B)

dsdp'dp (28b)

R R - exp(-z'(s 2 
-k) )

mnn f I 1 n k)rn - r r 0 (s 2  k2 ) (m)l(kmP)(knP')Z 1 (knp)"

(m-n,mon) 
B

.2rsJ(SP)J 1 (sp')dsdp'dp (28c)

Still maintaining the temporary requirements that z' is strictly positive and kB is strictly
complex, we can once more remove the branch-point from each of the I-integrals by
temporarily transforming from the variable s to the previously-defined variable Q; we may
then invert the order of integration, transform back to the variable s, and integrate first
over p' and p. The p' and p integrals are all special cases of eqns (18), with a
Z-function which is a degenerate form with Ci (in the notation of eqn (7)) always zero.
As a consequence of the fixed Ci it does not matter that the arguments of J1 are not of
the form (kip) or (kip'), and on applying eqns (18) and recalling eqn (8) we obtain

R

i J 1 (sp)dp - s-l[J0 (sr) - J 0 (sR)]

r
(29)

R k (kr)ZI(km r)sJ 0 (sr) _ (kmR)Z1 (kmR)sJ 0 (sR)
i (kmP)Z 1 (kmp)J1 (sp)dp - 2 2
r s -kr m

with an identical pair of equations in p' and kn. Using eqns (29), each of the I-integrals
can be reduced to a one-dimensional integral over s.

To complete the application of eqn (27) to eqn (22), we substitute into the
remaining integrals involving E_ in that equation; using the orthogonality relations in eqns
(18), we obtain for the Nt order approximate admittance

-c ( [ R,2Z2 -k r 2 2kr

YNo0 n(R/r) - Kw A ]I ki R
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+ IW I I I + 2! at at ,

J'B 0j I00 +  c0 L; m lom + ;m nlmn

m-1 n- n-I

(30)

SIMPLIFICATION AND APPLICATION

Eqn (30) is homogeneous in the &'s; it also contains many appearances of factors
(kir)ZI(kir) and (kiR)Zl(kiR). From eqns (7), (6) and (18) we have

(kr)Z1(k r) - [Y0(kIr)]'1(kir)[Jl(kr)Y0 (kir)- J0 (kIr)Y1 (kIr)]

Y(ki)](k r) tkir) Okir) Y Y(k r) dJ(kr)

The expression in braces is the Wronskian of the zeroth-order Bessel functions evaluated

at (kir), and is given in [8] from [9] as 2/(w(kir)); hence

(kir)ZI(kir) - 2/[irY0 (kir)]

and similarly (31)

(k iR)Z 1(kiR) - 2/[,7rY 0 (kiR)]

Let us now write

a I(kir)ZI(kir) - a ia o0

Substituting this and eqns (31) into eqn (30) and dividing by a02 gives

Y.n (R/r) - 21jue iAla2 1~ ]jJ[ Y(k 1r) 2 I

+ 2wjwetlo 2 Orm16rn + Q~%in ]t (32)2 .[16B mu m n'mn

m -1 m-I n-I

where the integrals are now the limits as z' tends to zero of

I, to 00ex , 2 - k2 1 [ 0 (sr) - J0 (SR) 
2 ds

00 j I-zB s(s2 _2s
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02 s(J(sr)-J 0(sR)(J(sr)-[Y 0 (kr)/Y(kR)]J0 (sR)]

lo exp(s 2  - k2) ds
0 (S - kB S kM

Acodn t h smpoiJorua o Bess[l'ssJ (eg.[[9]2 2h fats Jsr

Co s[Y 0 (kr)/Y0 (kR)j(SR)

mn0 " I- 2 2d T 2 2.
0 (S kk)B S) M

S0 (sr) - ]( (knr)/Y0(k R )] 0(SR) ds

According to the asymptotic formulae for Bessel's J0 (eg. [9]), the factors J0(sr)
and 30(sR) tend to zero like s- as s tends to infinity; hence the integrands of all thse
integrals tend to zero like (exp(-z's)(s-3 )) when approaching their upper limits. This
form is (algebraically) convergent even when z' is set equal to zero, so we can now take
the limit and obtain

I 0 f ds (33a)060 .v 2 2 d
0 S( 2 k( B) -

0m0 s[J0 (sr) 0(sR)][J0(sr) [ Y0(kr)/Y0(k R)]I 0 (sR)]Id 3b
1'M 2 2 2- 2 d2(3b

o (S kB)(S k)

Gs3 (J0 (sr)-[Y 0 (kmr)/Y 0(k R)]J 0(sR)] [J0(sr)-[Y0(k nr)/Y 0 (k nR)]J0 (sR)] dmn ds f2 2 F
0 (S 2 - k2 ) (s 2  k2 )(S 2 

- k2
n ) (330

The integrands of these integrals have several false singularities and (in certain
circumstances) one true one. We shall discuss these later; first we complete the treatment
of eqn (32), which is now an easy matter. Taking the partial derivatives of YN with
respect to each of the c's gives us, on equating them to zero and remembering that

Imn = Inm,

n I n + am B [Y (kR) j - m ( 4)

(m-I ... , N)

These N simultaneous linear equations in the N unknowns 0m determine the am of the
Nth order approximation, and the corresponding admittance YN is then obtained from eqn
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(32). One further simplification is possible; if we multiply each of eqns (34) by its
corresponding cem and sum over all m, we obtain

[ A 2 1 [Yo(kr) 2
L n Ll ml IT LY 0(k R) j-

" 6M

m-1

and so eqn (32) reduces to

2INJ" EB 100 - 1.Yjw B [160 l' (35)
Qn 2(R/r) m 1-I

It will be noticed that none of the coefficients or right-hand sides in these equations
depend explicitly on N; hence, calculating the complete set for a given N provides nearly
all the information needed to determine the approximate admittances for every smaller N.
This is very useful, as it allows several YN to be economically calculated and then
supplied to an accelerated-convergence routine for the extrapolation to infinite N.

SINGULAR BEHAVIOUR

At first sight, the integrands of eqns (33) become infinite on the path of
integration, at s = 0 in I'00, s = km in IOm and at s = km or kn in I'mn. In fact, the
numerators of the integrands have compensating zeros at all these points, so these
singularities are illusory. From eqn (5), or equivalently from eqns (8), (7) and (6),
(JO(sr)-(YO(kmr)/Y 0 (kmR))J 0 (sR)) has a zero at s = km (and since J0 is an even function
there is also a zero at s = -km, although this is not directly relevant); similarly there is
compensation at s = kn in l'mn, even when kn = km However, since the zeros in the
numerators of the integrands are generally simple, the integrands remain finite at the false
singular points rather than vanishing at them; this behaviour presents a numerical problem
which is discussed further below.

There is no such problem at s = 0. Since (J 0 (sr) - J 0 (sR)) is of order (s2 ) in
that neighbourhood, the integrand of I'00 has a triple zero, rather than a pole, at s = 0;
the same is also true of the other integrands, although again this is not directly relevant
since they do not have apparent poles.

It remains to consider the behaviour of the integrands near s = kB. Eqns (33)
were established with kB taken as strictly complex, while s is purely real on the path of
integration; so in principle there is no problem here either. However, when the medium
in region B is lossless, it is to be expected that the behaviour is given by the limit of the
behaviour with a slightly lossy medium as the losses tend to zero, so we must show that
this limit is well-behaved when the singular point at s = kB moves onto the path of
integration.

We begin by confirming that the singu!tar square root is itself well-defined. The
original definition, for strictly complex kB, was that (s2 - kB 2 ) J tends to s as s tends to
positive real infinity. Over the real half-range of s, from 0 to =, (S2 - kB 2 ) has a fixed

18



positive imaginary part and a real part which is large and positive for large s, falling to
zero as s decreases to (real part of (kB2)) 1 and then decreasing further to -(real part of
(kB 2 )). Accordingly, the phase angle of (S2 - kB 2 )f starts infinitesimally greater than
zero for large positive s, and with decreasing s it increases monotonically to (7/2 + phase
(kB)), where (-r/2) < phase (kB) < 0 since kB has a positive real part and a negative
imaginary one. In the limiting case, when the negative imaginary part of kB tends to
zero, the phase of (s2 - kB) is zero for s > kB and jumps to ir/2 for s < kB,
corresponding to a pure positive real for large s and a pure positive imaginary for small
S.

The easiest way to prove now that the integrals converge for real kB is by means
of the transformation previously used which removes the singularity for all kB. Recalling
the treatment of eqn (24) above, let us write Q = (S2 - kB 2 )J, where the definition of
the square root has just been examined; then, for instance, eqn (33a) gives

(S 2 k 2 2

0B 
(Q +k B)

+ o [J 0 (sr) - J 0 (sR)1 2 ds (36)

+ I s(s2 - kB)1

where: S is some convenient fixed large positive real (greater than (real part of (kB 2 )) ),
the square roots in the Bessel function arguments are trouble-free because J0 is an even
function, and the path of the first integral passes through Q = 0 when kB is real. (As in
treating eqn (24), we use the differential transformation s ds = QdQ.) The second integral
here has already been shown to converge, having satisfactory behaviour as s tends to
infinity. The integrand of the first integral is well-behaved over the entire finite complex
Q plane, the apparent poles at Q = ±jkB being cancelled by (double) zeros of the
numerator, and the range of integration is finite; hence this integral is also finite. The
other I-integrals can be treated in the same way with the same result; their apparent
difficulties at s = ±km become apparent difficulties at Q = t(km2 - kB2 )1 and are still
compensated as discussed earlier in this section.

NUMERICAL EVALUATION

We must now consider how the I-integrals are to be evaluated in practice.

It is tempting to try to reduce them using contour integration, but there does not
seem to be any satisfactory way of doing this. There is an extensive literature on the
Sommerfeld problem already mentioned (see [14]) which leads to integrals of somewhat
similar form; but all the techniques employed with them succeed essentially because their
integrands depend linearly on Bessel's J0 , and not on 302 as in the present problem.
We must therefore use an essentially numerical approach.

We consider first the problem of the infinite upper limit of integration in eqns (33).
The parts of the integrands involving Bessel functions may all be written as

[J 0 (sr) - yMJ 0 (sR))[J 0 (sR) - ynJ 0 (sR)]
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where: m and n are the indices used in eqns (33), yo is 1, and Ym = YO(kmr)/Yo(kmR)
for non-zero m. For large s, this expression may be reduced using the asymptotic
expansion of J0 from [11]; thus

J() W [ Cos. X~t~ + 1- sinx X + 0 [X-21 (37)

and so, neglecting terms of third and higher inverse orders,

[J0 (sr) - ymJ0 (sR)] [J0 (sr) - ynJ0(sR)]

2 1 [s1

. { cos[sr _ + -sinsr

-J Im ~~Cos [sR 1 + [g.1]sin sR -

([ [cossr + i-]sin[ ,- s cd

S- ossR + sinsR -

+ [Ymyn[2r co 2 R ] + [-L ,sin[, - . Cos SR

.nns 4,,Ril I midi I l

[Ym + n j 1[o

s(rR)f 
osIS

+ (.Lsin sr - ir Cos~s -

+ [~sin sR - iCos sr- iJ]

- ! [L]I + Cos 2sr - 'ii + [2-sin[2sr-
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+ [YMyn][I + cos[2sR v41- + sin 2sR

- Yms y I[cos[sr + R) - 1 ir] + Coss(R 

srO°l 'II
+ rrs'in sin[s(r + R) - 4 ] - sin(s(R - r)]]I

sin[s(r + R) - + sIn[s(R - r)]

1 eo {[ent + sn(2sr) by pcos(2sr)]

+ [m n][ 1 + sin(2sR) - cost2sR]

- ~ ]sin s(R+r) +COs[sRr)--1Cos s(R+r) +sins(R-r)

f9-6o kcosi s(R + r)] - sin[s(R - r)] 111 (38)

The remaining factors in the integrands of eqns (33) may be written using the first-order
binomial theorem as

[1 [ + [1 Jk2 + k 2 + k2]] (39)

where ko 0. At first sight this expression is inconsistent with eqn (37), in which terms
of two inverse orders above the principal terms were neglected. However, the
development of eqn (37) proceeds by powers of (sr)-1 and (sR)-l. These are of
comparable magnitude, since R is roughly (2r) for most practical cases, and (from r8J) the
first mode constant kl is approximately wir(R - r); so (sr)-1 (which is larger than (sR)-'
and therefore determines the rate of decrease of successive terms) is approximately
kl/(,rL), where L is the lowest value of s to which the asymptotic form is applied. We
are therefore neglecting in e n (37) terms of relative size (kl/(irL.)) 2 but retaining terms
of relative size ((JkB 2 + kmn + kn 2)/L2). This is quite reasonable; at the Nth order of
approximation to the admittance, kmn and kn run up to kN, which is roughly (Nkl), so
the ratio of the two relative sizes is roughly (wN) 2 - a substantial number even for
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typical N of 6 or 8. Also, kB2 can be much larger than k1
2 for high-permittivity

dielectrics, and moreover the imaginary part of kB 2 affects the real part of the admittance
(which is usually smaller than the imaginary part and more difficult to calculate
accurately). It is therefore quite reasonable to use expression (39) with eqn (38); and on
combining them and discarding some higher-order product terms, we obtain as the
asymptotic form of the integrands of eqns (33) the expression

11+ sn(2sr) - 1Jcos(2sr)

+I+ s In(2sr)] (1 [k2 + k2+ k 2]]

+ x ~ 1+ sIn(2sR) 1 _ . cos(2sR)

(1 + sin(2sR)[] [k 2 + k2+ k 2]j

-[ ][sin[s(R + r)] + cos[s(R - r))

I)cos s(R + r)] + s lns(R -r)]

cos 1 coss(R + r)] -sins(R r)]

+sin[s(R + r)) + Cos0s(R r) I k2 + k- 2 + 2) (40)

The integration of expression (40) between the lower limit L (already introduced) and the
infinite upper limit is easily performed, using asymptotic integration for the trigonometric
terms; eg.

f ,!,, , dx - -idx
L x L X L x

- cos L I sfn x 00- ODf(I+l)slnx dx

L ~ a I T L X - -

cos L +I s In L + r0 C 2

L I Li7
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CO

Hence J {expression (40)1 ds
L

1 ii + cos<2Lr) + 3sin(2Lr) + sin(2Lr)id 2r2L3  4rL 8rL

rcos(2Lr) [r1 2 + 2 + 21
+ +lk B +k + ki

4rL 2r2L

+ y m [n 11+ cos(2LR) + 7sin(2LR)

2L' 2 RL 8RL

r_____ cos(2LR) rk + +R2

4RL 2R2L 5  J k}j

-(Y + m) cos(L(R+r)) + 3sln(L(R+r))[ (rR) (R+r)L3  (rR) (R+r)2 L4

sin(L(R-r)) + 3cos(L(R-r))

(r)0(R-r)L3  (rR)(R-r)2L4

+ sin(L(R+r)) cos(L(R-r))

8(rR) r(R+r)L 4  8(rR) r(R-r)L

+ sin(L(R+r)) + cos(L(R-r))

8(rR) R(R+r)L
4  8(rR)R(R-r)L

4

+[ cos(L(R+r)) sln(L(R-r)) 1lk 2 +k2 +k 211i(1
t(rR)(R+r)L5 (rR)i(R-r)L5 4 2 m n

where some higher terms have been neglected. The orders of approximation in eqn (41)
have been chosen to give satisfactory relative accuracy (a few parts per million) for N
about 6 or 8, R comparable with (2r), L about k6 0 (note that L is not dimensionless) and
the magnitude of (B (relative) less than about 1000 at the highest frequency at which the
coaxial transmission-line mode propagates alone (the cut-off frequencies of the various
kinds of higher mode are discussed in [8]). (The magnitude of the smallest of the
complete integrals in eqns (33) is readily assessed to be 0(l/(kN 2 R)), and this quantity is
used as the reference.)

To complete the integrations in eqns (33), we must also integrate from 0 to L.
There are three problems associated with integration over this range: the integrands
oscillate rapidly (the shortest period in s is (w/R), as is shown by the asymptotic analysis
above, and this is of the order of kI while L is about k6 0 ); most of the integrands
reduce to 0/0 at s = km and/or s = kn; and the integrands all become very large, or
even infinite, when s2 equals the real part of kB2. We will discuss each of these
problems separately.
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The reduction to 0/0 is eliminated as follows. Using l'Hopital's theorem, we can
evaluate each integrand accurately at the false singular point (or points) in terms of
Bessel's J1. Each integrand can also be directly evaluated at fixed points close to the
false singular point, with a modest loss of significant figures (say, 3, if s = 1.001 km or
0.999 km). Within the range spanned by the fixed points we can then use interpolation
which keeps the loss of significant figures to the level already accepted (say, 3) provided
the order of interpolation is chosen with regard to the accuracy expected in the Bessel
functions. In the author's program four points are used and differences up to the third
are retained, corresponding to 12 significant figures in the raw Bessel functions.

In order to treat the other two problems (the rapid oscillations of the integrands
and the behaviour when s2 is near kB2 ) we must first consider how the numerical
integration should be done. The integrands in eqns (33) are rather complicated functions
of the integration variable s, which makes it desirable to keep to a minimum the number
of evaluations of each integrand; accordingly, Gaussian integration was chosen, using a
four-point routine for eighth-order accuracy. An elementary integrator of this kind is
normally embedded in a controlling subroutine which calls it recursively (or in a loop),
with successively smaller sub-ranges of integration until the desired accuracy is achieved.
In the present problem, we can eliminate this sub-division by making a virtue out of
necessity; since the shortest period in s is (r/R), it is convenient and satisfactory to use
preset sub-ranges of length (ir/(4R)), each of which can be treated to satisfactory accuracy
using a single four-point elementary Gaussian integration. This method has the happy
consequence that all the integrands in eqns (33) - ((N+)(N+2)/2) of them, for the Nth
approximation - are evaluated at the same values of s, so the values of J 0 (sr) and J 0 (sR)
which appear in them can be determined once and for all; this leads to a very substantial
saving of computation time, since these Bessel functions dominate the time required to
evaluate an integrand.

It is easy to identify the preset sub-range within which s2 becomes equal to the
real part of kB 2 . This sub-range, its immediate neighbour above, and its immediate
neighbour below (if the frequency is high enough for it to have a neighbour below), are
collectively treated separately from all the other sub-ranges, thereby isolating the
neighbourhood of the singular or near-singular point; this amount of isolation is sufficient
to keep the magnitudes of the integrands within sensible bounds over the rest of the range
0 to L. Integration over the three special sub-ranges is performed using the elementary
four-point Gaussian integrator adaptively (that is, with recursively-nested calls); this is
slow, but is accurate and straightforward to program. The three sub-ranges are treated
together as one, but the first of the internal adaptive subdivisions is always taken at the
point s = (real part of (kB 2 ))J, which should guarantee that no attempt will be made to
evaluate an infinite integrand when kB is purely real; for further security the program
changes a purely real kB to one with a very small (negative) imaginary part.

A Gaussian integrator, whether adaptive or elementary, is normally designed to
integrate a real function over a real range. It is a trivial matter, however, to extend this
to the integration of a complex function of a real variable over a real range, since all the
calculations performed during the integration are linear in the calculated values of the
function. The integrands in eqns (33) are only complex on account of the factor (s2 -
kB2 )j - which is, of course, complex for some values of s even if kB is purely real -
and this complex square root can be evaluated and stored, like the values of Jo(sr) and
J 0 (sR), for each of the repeated values of s as described above. (A complex square root
can be extracted using two real square roots.)

The rest of the numerical mathematics is comparatively trivial (see [8)). For some
convenient moderately-sized N (6 or 8, say) the I-integrals are calculated and their values
used to determine the ca's in eqn (34), from which YN follows using eqn (35). Using
only eqns (34) and (35), without calculating any more I-integrals, we can also determine
Yi for i = I (or even 0) to i = (N-I). The resulting set of Y's can then be processed
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by an accelerated-convergence routine (such as the one described in [8]) to find the true

coaxial terminating admittance Y.

CONCLUSION

A rigorous theoretical treatment of the open-ended coaxial line with infinite flange
has been presented, together with all the essential computational details required to
calculate its equivalent admittance at the plane of the open end. The treatment requires
the numerical evaluation of one-dimensional integrals only; there are no multiple integrals
involved.
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