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Abstract

A new technique for proving timing properties for timing-based algorithms is described; it
is an extension of the mapping techniques previously used in proofs of safety properties for
asynchronous concurrent systems. The key to the method is a way of representing a system
with timing constraints as an automaton whose state includes predictive timing information.
Timing assumptions and timing requirements for the system are both represented in this way.
A multivalued mapping from the "assumptions automaton" to the "requirements automaton" is
then used to show that the given system satisfies the requirements. The technique is illustrated
with two simple examples, a resource manager and a signal relay. The technique is shown to
be complete, that is, if some automaton with certain timing assumptions has certain timing
behavior, than there exists a mapping from the "assumptions automaton" to the "requirements
automaton".

Keywords: Timing properties, timing-based algorithms, formal specification, formal verifica-
tion, assertional reasoning, possibilities mappings, timed automata, I/O automata.
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1 Introduction

Assertional reasoning is a very useful technique for proving safety properties of sequential and
concurrent algorithms. This proof method involves describing the algorithm of interest as a
state machine, and defining a predicate known as an assertion on the states of the machine.
One proves inductively that the assertion is true of all the states that are reachable in a
computation of the machine, i.e., that it is an invariant of the machine. The assertion is
defined so that it implies the safety property to be proved.

One kind of assertional reasoning uses a mapping to describe a correspondence between
the given algorithm and a higher.level algorithm used as a specification of correctness. (See,
for example, [La83, Ly86, LT87].) Such mappings may be single-valued or multivalued.

So far, assertional reasoning has been used primarily to prove properties of sequential algo-
rithms and synchronous and asynchronous concurrent algorithms. It would also be nice to use
this technique to prove properties of concurrent algorithms whose operation depends on time,
e.g., algorithms that use clocks that tick at approximately predictable rates. Also, the kinds of
properties generally proved using assertional reasoning have been "ordinary" safety properties;
it would be nice to use similar methods to prove timing properties (upper and lower bounds
on time) for algorithms that have timing assumptions. For example, predictable performance
is often a desirable characteristic of real-time systems [SR89]; assertional techniques could be
very helpful in proving such performance properties.

In this paper, we describe one way in which assertional reasoning can be used to prove tim-
ing properties for algorithms that have timing assumptions. Our method involves constructing
a multivalued mapping from an automaton representing the given algorithm to another au-
tomaton representing the timing requirements. The key to our method is a way of representing
a system with timing constraints as an automaton whose state includes predictive timing in-
formation. Timing assumptions and timing requirements for the system are both represented
in this way, and the mappings we construct map from the "assumptions automaton" to the
"requirements automaton".

The formal model we use to describe our method is the timed automaton model, a slight
variant of the time constrained automaton model of [MMT88]. We use this model to state
the requirements to be satisfied, to define the basic architectural and timing assumptions,
to describe the algorithms, and to prove their correctness and timing properties. A timed
automaton is a pair (A, b), consisting of an I/0 automaton [LT87, LT89], together with a
boundmap, which is a formal description of the timing assumptions for the components of the
system. We introduce the notion of a timing condition to state upper and lower bounds on
the difference between the times at which certain events or states appear in ,- execution; the
conditions imposed by a boundmap are timing conditions of a particular ; I An automaton
and a set of timing conditions, (in particular, a timed automaton) generates a set of tim cd
executions and a corresponding set of timed behaviors.

While convenient for specifying timing assumptions and requirements, timed automata are
not directly suited for carrying out assertional proofs about timing pr,.:,orties, because tim-



ing constraints are described by specially-defined timing conditions rather than being built
into the automaton itself. We therefore require a way of incorporating timing condlitinns into
an automaton definition. We do this by means of a general construction of an automaton
time(A,U), for a given timed automaton A, and a set U of timing conditions. The automaton
time(A,U) is an ordinary I/O automaton (not a timed automaton) whose state includes pre-
dictive information describing the first and last times at which various events can next occur:
this information is designed to enforce the timing conditions in U.

In the special case that U represents the conditions imposed by a boundmap b for A,
time(A,U) is the automaton time(A) defined in [AtL89]; this is denoted by time(A, b) in this
paper.

The timing requirements to be proved for an algorithm described as a timed automaton,
(A,b), are described as a set of timing conditions, U, for A. We deflne the requirements
automaton to be time(A,U). Thus, we build into the state of the requirements automaton
predictive information about the first and last times at which certain events of interest can
next occur.

The problem of showing that a given algorithm (A,b) satisfies the timing requirements
is then reduced to that of showing that any behavior of the automaton time(A, b) is also a
behavior of time(A,U). We do this by using invariant assertion techniques; in particular, we
demonstrate a multivalued mapping from time(A,b) to time(A,U).

In order to demonstrate the use of our technique, we apply it to two simple examples. The
first example is a timing-dependent system consisting of two concuriently-operating compo-
nents, which we call a clock and a manager. The clock ticks at an approximately known rate.
The manager monitors the clock ticks, and after a certain number have occurred, it issues a
GRANT (of a resource). It then continues counting ticks; whenever sufficiently many have
occurred since the previous GRANT event, the manager issues another GRANT. We give
careful proofs of upper and lower bounds on the amount of timo prior to the first GRANT
event and in between each successive pair of GRANT events.

The second example is an asynchronous (not timing-dependent) system consisting of a
"line" of processes. Each process waits to receive a SIGNAL from the process at its left and
then sends a SIGNAL to the process at its right. We give careful proofs of upper and lower
bounds on the time to propagate a SIGNAL from the left end to the right end of the line.
Both of these examples are extremely simple; however, the ideas they embody also appear in
many more realistic examples.

The mappings we provide for both of these examples have a particularly interesting and
simple form - a set of inequalities relating the time bounds to be proved to those that can be
computed from the state. These inequalities contain information about how the bounds are to
be satisfied.

Another interesting aspect of the second example is that the proof is carried out using a
hierarchy of automata, rather than just a pair of automata; the given system is the lowest level.
and the requirements automaton is the highest level in the hierarchy. We define a mapping
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for each level in the hierarchy; the composition of the entire collection of mappings is the
mapping needed to show correctness. The hierarchical proof is especially interesting because
its assertional reasoning corresponds closely to the more "operational" reasoning that might
be used in an alternative proof based on recurrences.

Technically, mapping techniques of the sort used in this paper are only capable of proving
safety properties, but not liveness properties. Timing properties have aspects of both safety
and liveness. A timing lower bound asserts that an event cannot occur before a certain amount
of time has elapsed; a violation of this property is detectable after a finite prefix of a timed
execution, and so a timing lower bound can be regarded as a safety property. A timing upper
bound asserts that an event must occur before a certain amount of time has elapsed. This
can be regarded as making two separate claims: that the designated amount of time does in
fact elapse (a liveness property), and that that time cannot elapse without the event having
occurred (a safety property). In this paper, we assume the liveness property that time increases
without bound, so that all the remaining properties that need to be proved in order to prove
either upper or lower time bounds are safety properties. Thus, our mapping technique provides
complete proofs for timing properties without requiring any special techniques (e.g., variant
functions or temporal logic methods) for arguing liveness.

We show that this method is complete: If every behavior of (A, b) is also a behavior of
time(A,U) then is there necessarily a strong possibilities mapping (in the form of inequali-
ties) from time(A, b) to time(A, U). Related completeness results for the usage of refinement
mappings to prove properties of non timing-based algorithms were proved in [AbL88] and
[M89].

There has been some prior work on using assertional reasoning to prove timing properties.
In particular, Haase [H81], Shankar and Lamn [SL87], Tel [T88], Schneider [S88], Lewis [Le89]
and Shaw [S89] have all developed models for timing-based systems that incorporate time
information into the state, and have used invariant assertions to prove timing properties. In
[T88] and [Le89], in fact, the information that is included is similar to ours in that it is also
predictive timing information (but not exactly the same information as ours). None of this
work has been based on mappings, however.

Several other, quite different formal approaches to proving timing properties have also been
developed. Some representative papers describing these other methods are [BH81], [KVR83],
[JM87J, [Ho87J, [Zw88], [JS88], and [GF88].

The rest of the paper is organized as follows. Section 2 contains a description of the un-
derlying formal models: I/O automata, timed automata and timing conditions. Section 3
contains the general construction used to produce the time(A,U) automata, and some prop-
erties of these automata. Section 4 contains our first example, a simple resource-granting
manager using a clock; the section contains a description of the algorithm, a description of the
corresponding requirements automaton, and a correctness proof. Section 5 contains a method
of handling systems with finite executions. Section 6 contains the second example - a simple
signal propagation system, with a treatment similar to the first example. Section 7 contains a
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proof of the completeness of our method. We conclude with a discussion in Section 8. Some
of the more technical proofs are relegated to an Appendix.

2 Formal Model

In this section, we present the definitions for the underlying formal model. In particular, we
define I/O automata, timed automata and timing conditions. We also present some of their
relevant properties.

2.1 I/O Automata

We begin by summarizing some of the key definitions for the I/O automaton model. We refer
the reader to [LT87, LT89] for a complete presentation of the model and its properties.

An 1/0 automaton consists of the following components: acts(A), a set of actions, classified
as output, input and internal (input and output actions are called external); states(A), a set of
states, including a distinguished subset, start(A), of start states; steps(A), a set of steps, where
a step is defined to be a (state, action, state) triple; and part(A), a partition of the locally
controlled (output and internal) actions into equivalence classes; the partition groups together
actions that are to be thought of as under the control of the same underlying process.

An action ?r is said to be enabled in a state s' provided that there is a step of the form
(S', ir,s). An automaton is required to be input enabled, which means that every input action
must be enabled in every state. For any set II C acts(A), we denote by enabled(A, H) the set
of states of A in which some action in IT is enabled, and by disabled(A, II) be the set of all
states of A not in enabled(A, 11), that is, disabled(A, II) = states(A) \ enabled(A, ll).

An execution fragment of an I/0 automaton A is a sequence (finite or infinite) of alternating
states and actions

So, 7ri1, Sl I ... ••,Si+-1, 7 i, Si,•••

where for every i, (ai.li, a,) E steps(A). (If the sequence is finite, then it is required to

end with a state.) An execution is an execution fragment with so E start(A). The schedule
of an execution a is the subsequence consisting of the actions appearing in a and is denoted
sched(a). The behavior of an execution a of A is the subsequence of a consisting of external
actions appearing in a and is denoted beh(a). The schedules and behaviors of A are just those
of the executions of A.

Concurrent systems are modeled by compositions of I/O automata, as defined in [LT87,
LT891. In order to be composed, automata must be strongly compatible; this means that no
action can be an output of more than one component, that internal actions of one component
are not sh.icd by any other component, and that no action is shared by infinitely many
corn ponents. The result of such a composition is another I/O automaton. The hiding operator
can be applied to reclassify output actions as internal actions.
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2.2 Timed Automata

In this subsection, we augment the I/O automaton model to allow discussion of timing as-
sumptions. The treatment here is similar to the one described in [AtL89] and is a special case
of the definitions proposed earlier in [MMT88].

A boundmap for an I/O automaton A is a a mapping that associates a closed subinterval
of [0,oo] with each class in part(A), where the lower bound of each interval is not cc and the
upper bound is nonzero. Intuitively, the interval associated with a class C by the boundmap
represents the range of possible lengths of time between successive times when C "gets a
chance" to perform an action. We sometimes use the notation bt(C) to denote the lower
bound assigned by boundmap b to class C, and b,(C) for the corresponding upper boulid. A
timed automaton is a pair (A,b), where A is an I/O automaton and b is a boundmap for A.

We require notions of "timed execution", "timed schedule" and "timed behavior" for timed
automata, corresponding to executions, schedules and behaviors for ordinary I/O automata.
These will all include time components. We begin by defining the basic type of sequence that
underlies the definition of a timed execution.

A timed sequence (for an I/O automaton A) is a (finite or infinite) sequence of alternating
states and (action,time) pairs,

SO, (rl, tl), Sl, (72,t2), ...

ending in a state if the sequence is finite, where the states are from states(A) and the actions
are from acts(A).1 Define to = 0. The times to,t 1 , ... are required to be nondecreasing, and if
the sequence is infinite then the times are also required to be unbounded. For any finite timed
sequence a define tend(a) to be the time of the last event in a, if a contains any (action,time)
pairs, or 0, if a contains no such pairs. We denote by ord(a) (the "ordinary" part of a) the
sequence

SO, 7r"1, 81l, 7r2, .

i.e., a with time components removed.

Definition 2.1 Suppose (A,b) is a timed automaton. Then a timed sequence ar is a timed
execution of (A, b) provided that ord(a) is an execution of A and a satisfies the following
conditions, for each class C E part(A) and every i.

1. Suppose b,,(C) < oo. If si E enabled(A,C) and either i = 0 or si-1 E disabled(A,C)
or 7ri E C, then there exists j > i with ti < ti + b,,(C) such that (it' 'r rj E C or
sj E disabled(A,C).

2. If s, E enabled(A,C) and either i = 0 or si-I E disabled(A,C) or ri E C, then there
does not exist j > i with tj < ti + bt(C) and rj in C.

'We usually omit reference to the automaton A, as it is clear from the context.
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The first condition says that, starting from when an action in C occurs or first gets enabled,
within time bu(C) either some action in C occurs or there is a point at which no such action
is enabled. Note that if b ,(C) = oo, no upper bound requirement is imposed. The second
condition says that, again starting from when an action in C occurs or first gets enabled, no
action in C can occur before time bt(C) has elapsed.

The timed schedule of a timed execution of a timed automaton (A, b) is the subsequence
consisting of the (action,time) pairs, and the timed behavior is the subsequence consisting of the
(action,time) pairs for which the action is external. The timed schedules and timed behaviors
of (A, b) are just those of the timed executions of (A, b).

We model each timing-dependent concurrent system as a single timed automaton (A, b),

where A is a composition of ordinary I/O automata (possibly with some output actions
hidden) .2

2.3 Timing Conditions

The conditions imposed by a boundmap are appropriate for describing the timing assumptions
of many systems. However, in order to describe the timing requirements that are to be proved
for these systems, it is convenient to generalize these conditions. For example, a bound is often
required on the time between two particular events, e.g., a request and a corresponding grant.
It is convenient to have a notation that permits explicit description of such a condition, without
reference to the underlying partition classes. Therefore, in this subsection, we generalize the
conditions expressed by boundmaps to more general "timing conditions".

Let A be an I/O automaton. A timing condition for A is a tuple of the form (Tf,,t. Tstep, b, fI, S).
where:

* Ttart C start(A) and Tstep g steps(A), are the triggers.

* b is a closed interval of the form [bt, b], where bt 5 co and b,, # 0,

" II C acts(A), and

* S C states(A) is the disabling set.

We require that a timing condition satisfy the following technical conditions:

1. Tstart fl S 0, and

2. if (s', 7r, s) E 1tp then s S.
2 An equivale.t way of looking at each system is as a composition of timed automata. An appropriate

definitio: for a composition of timed automata is developed in [MMT88], together with theorems showing the
equivalence of the two viewpoints.
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A timing condition (Tar,tTetip, b, R, S) is designed to specify upper and lower bounds on
the time until the next occurrence of an event in the action set H, measured from certain
points during an execution; the particular bounds are given by the interval b. The trigger
Tt.,t specifies those start states from which we wish to begin measuring the time, while the
trigger Ttep specifies those steps after which we wish to begin measuring. In both cases, the
numerical bounds are the same.

Primarily because we wish this generalization to include conditions imposed by boundmaps
as a special case, we must include a way of disabling the bound measurements. (In the case
of boundmaps, when all the actions in a partition class become disabled simultaneously, the
bound measurement also becomes disabled.) Thus, the disabling set S is defined to be a set of
states that cause the bound measurement to become suspended. Conditions 1. and 2. simply
say that the disabling 'et does not include any states that the triggers designate as states in
which to start the bound measurement.

We sometimes write the timing condition (Tstart, Tstep, b, II, S) in the form

( T~,t, T.Upn) b (IT, S).

A timing condition can be used to specify only a lower bound or only an upper bound, by
making the other bound trivial (0 for lower bounds, oo for upper bounds).

Now we define what it means for a timed sequence to satisfy a timing condition. The
definition is closely related to the definition we gave earlier of a timed execution; we will show
the precise connection in Lemma 2.1.

Definition 2.2 Let a be the timed sequence so, (7r1,t 1 ), .... Then a satisfies a timing con-

dition (Tajart, Tup ) - (I, S) if the following conditions hold:

1. Suppose bu < oo.

(a) If so E T,,,,g then there exists j > 0 with ti < b, such that either 7rj E H or sj E S.

(b) If(si-1, 7ri,si) E Tstp then there exists j > i with tj < ti +bu such that either rj E I
or sj E S.

2. (a) If so E Tatart and if there exists j > 0 with tj < bt such that irj E H, then there
exists k,0 < k < j, such that sk E S.

(b) If (si-1, r,si) E Ttup and if there exists j > i with tj < t, + b, such that 7rj E H,
then there exists k,i < k < j, such that sk E S.

Let U be a set of timing conditions for an I/O automaton A. We say that a timed sequence

a is a timed execution of (A, U) provided that ord(a) is an execution of A and a satisfies every
timing condition U E U.

7



To justify this new use of the term "timed execution", and as an example of the use of
timing conditions, we show how to express the notion of "timed execution" of (A, b) in terms of
timing conditions. Given an arbitrary timed automaton (A, b), we define the set 1 1b of timing
conditions that axe associated with b. For each class C in the partition of A, i-b includes one
timing condition, cond(C) = (Tatart(C), Tep(C)) b(C) (II(C), S(C)), defined as follows.

" Tort(C) = start(A) n enabled(A, C), that is, the set of start states of A in which some
action from C is enabled,

" T,,ep(C) is the set of steps (s',ir,s) of A such that s E enabled(A, C) and either s' E
disabled(A, C) or ir E C,

" II(C) = C, and

" S(C) = disabled(A, C).

Note that this definition satisfies the two requirements for timing conditions.

Lemma 2.1 Suppose (A,b) is a timed automaton. Let a be a timed sequence and suppose that
ord(a) is an execution of A. Then the following two statements are equivalent.

1. a is a timed execution of (A,b).

2. For every class C E part(A), a satisfies the timing condition cond(C).

Proof: Let
a = so, (rit),s,...

be a timed sequence such that ord(a) is an execution of A. First assume that a is a timed
execution of (A,b). Let C E part(A); we show that a satisfies cond(C). The upper bound is
a simple substitution. For the lower bound we check only triggering start states, the case of
triggering steps is similar. If so E T~tiri(C), then So E enabled(A, C). Assume that 7rj E C, for
some j > 0. Then from Condition 2. of Definition 2.1 it follows that tj bl(C), which suffices.

Now assume that a satisfies cond(C) for each C E part(C); we show that a is a timed
execution of (A, b). Again, the upper bound holds easily and the only interesting case to verify
is the lower bound. Assume, by way of contradiction, that for some class C E part(A), there
exists an i > 0, such that si E enabled(A,C) and either i = 0 or si-1 E disabled(A,C) or
iri E C, and that there exists j > i, such that ti < ti + be(C) and rj E C. Since a satisfies
cond(C), and since S(C) = disabled(A, C), it follows that there is some k, i < k < j, such
that Sk E disabled(A,C). Let k0 be the largest such k. But then (sk0 ,lr,sk0 +:) E T8tIP(C).
tj < tk0.+l + b, (C) and there is no k, k0 < k' < j such that sk, E S(C); this contradicts the
fact that a satisfies cond(C).

8



Lemma 2.1 implies the following corollary.

Corollary 2.2 Suppose (A, b) is a timed automaton. Then a timed sequence a is a timed
execution of(A, b) if and only if it is a timed execution of (A,Ub).

We note that the definition we use for timing condition may not be the most general
condition needed to capture all interesting timing requirements. It does capture many, however;
we will have more to say about this matter in the conclusions section.

3 Incorporating Timing Conditions into I/O Automata

In order to use invariant assertion techniques to reason about timed automata, we define an
ordinary I/O automaton time(A,U) corresponding to a given timed automaton A with timing
conditions U. This new automaton has the timing restrictions imposed by U on A built into
its transition rules, based on predictions about when the next event from each set of actions
will occur. In this section, we give the construction of time(A,U) and also give results relating
the executions and behaviors of time(A,U) to the timed executions and timed behaviors of
(A,U).

A special and important example of this construction is when U is the set of conditions
corresponding to a boundmap for A, i.e., U6. In this case, we denote the automaton by
time(A, b).3 In order to provide a concrete example of the construction we present an explicit
description of time(A, b) in Section 3.2. Other special cases of the general construction will be
the requirements automata for the two examples we consider in Sections 4 and 6.

3.1 The General Construction

Given any I/O automaton A and set U of timing conditions for A, we define the ordinary I/O
automaton time(A,U) as follows. We write each timing condition U E U as

(Tot,i(U),Totep(U)) 6.2 (II(U), S(U))

The automaton time(A,U) has actions of the form (7r, t), where 7r is an action of A and t is a
nonnegative real number, with the classification of actions the same as for A. Each of its states
consists of a state, As, of A (the "A-state"), augmented with a component Ct (the "current
time"), and, for each timing condition U E U, two components Ft(U) and JI'(U) (the "firsL
time" and "last time" for each timing condition). Ct represents the time of the last preceding
event. The Ft(U) and Lt(U) components represent, respectively, the first and last times at
which the tin'ing condition U specifies that an action in If(U) should occur.

3 This automaton was denoted time(A) in [AtL89].
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We use record notation to denote the various components of the state of time(A,U); for
instance, s.As denotes the state of A included in state s of time(A,U). Each initial :tate of
time(A,U) consists of an initial state s of A, plus Ct = 0, plus values of Ft(U) and Lt(U)
with the following property: if s.As E Tst.t(U) then s.Ft(U) = bt(U) and s.Lt(U) = b"(U);
otherwise, s.Ft(U) = 0 and s.Lt(U) = oo. That is, if the start state of A is in the trigger set
of U, then the predicted times are the ones specified in U; otherwise, they are set to default
values.

If (7r,t) is an action of time(A,U), then (s',(ir,t),s) is a step of time(A,U) exactly if the
following conditions hold.

1. (s'.As, r,s.As) is a step of A.

2. s'.Ct < t = s.Ct.

3. For all U E U, if r E 1(U), then

(a) s'.Ft(U) < t < s'.Lt(U).

(b) if (s'.As, r,s.As) E Tatep(U) then s.Ft(U) = t + b1(U) and s.Lt(U) = t + b"(U),

(c) if (s'.As,ir,s.As) 0 Totep(U) then s.Ft(U) = 0 and s.Lt(U) = oo.

4. For all U E U, if 7r 1(U), then

(a) t < s'.Lt(U),

(b) if (s'.As, r, s.As) E T.ep(U) then s.Ft(U) = t+bj(U) and s.Lt(U) = min(s'.Lt(U), t+
b,,(U), and

(c) if (s'.As,r,s.As) 0 T.tep(U) and s.As S(U) then s.Ft(U) = s'.Ft(U) and
s.Lt(U) = s'.Lt(U), and

(d) if s.As E S(U) then s.Ft(U) = 0 and s.Lt(U) = oo.

Note that if s is a reachable state of time(A,b) and if s.As E S(U) then s.Ft(U) = 0 and
s.Lt(U) = c.

Intuitively, Condition 1. says that the automaton time(A,U) is correctly simulating the
state transitions of A, and Condition 2. says that Ct components are monotonically nonde-
creasing, i.e., the new time is at least as great as the previous time. Condition 3. deals with
properties involving timing conditions U that include 7r in their action sets: Condition 3(a)
says that the time at which the event ir occurs must be between the bounds specified for U;
Condition 3(b) says that a triggering step involving r imposes new time predictions for U,
whereas Condition 3(c) says that a non-triggering step involving 7r does not impose any such
predictions. Condition 4. deals with properties involving timing conditions U that do not in-
clude ir in their action sets: Condition 4(a) says that ir can only occur if U does not require
any other action to be scheduled first. Condition 4(b) says that a triggering step involving r
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imposes new time predictions for U. Note that in this case, there may already be old predic-
tions in effect for this time condition; the effect of taking the min for the Lt(U) component
is to require both the new predictions and any old predictions to be satisfied.4 Condition
4(c) says that a non-triggering (and non-disabling) step involving 7r does not impose any new
time predictions for U. Condition 4(d) says that a disabling step involving 7r sets the time
predictions for U back to their defaults.

The partition classes for time(A,U) are derived one-for-one from those of A. 5

We now relate the timed executions of (A,U) to the executions of the corresponding I/O
automaton time(A,U). In order to do so we introduce a technical definition and some lemmas.
Notice that the definition of a timed execution contains aspects of both safety and liveness.
Sometimes it it useful to focus on the safety aspects alone. The next definition restrict attention
to the safety portions of Definition 2.2.

Definition 3.1 Let a be the finite timed sequence so, (7rl, tj ),s , ..., send. Then a semi-satisfies
ba timing condition (T.,t, te,) + (II, S) if the following conditions hold:

1. Suppose b. < oo.

(a) If so E Ttt then either temd(a) < bu or there exists j > 0 with tj < b,, such that
either irj E II or sj E S.

(b) If (si-j,7ri,sj) E Tote then either t,,d(a) < ti + b, or there exists j > i with
tj < ti + b, such that either 7rj E Hl or sj E S.

2. (a) If so E Tt,,t and if there exists j > 0 with tj < be such that 1ri E 11, then there
exists k,0 < k < j, such that sk E S.

(b) If(si. 1 ,iri, si) E Tote and if there exists j > i with tj < ti + bt such that rj E H,
then there exists k,i < k < j, such that sk E S.

The only differences between this definition and Definition 2.2 are the "either" clauses. These
clauses allow an action to fail to occur if insufficient time has passed. Now suppose U is a set
of timing conditions for an I/0 automaton A. A timed sequence a is a timed semi-execution
of (A,U) if ord(a) is an execution of A and for any timing condition U E U, a semi-satisfies
U.

An observation we use later is the following, saying that the limit of a sequence of timed
semi-executions in which the time components are unbounded must be a timed execution.

'The min is necessary because in case there is a prior prediction, it will surely be no greater than the new
prediction, so the min will be the first term s'.Lt(U). However, if there is no prior prediction then s'.Lt(U) = oo
so the min will be the second term t+b.(U). We could have similarly written s.Ft(U) = max(s'.Ft(U), t+bt(U)),
but that is unnecessary because it is always the case that s'.Ft(U) 5 be(U).

51t seems that we never need them, however, since the partition classes are used to enforce fairness to the
components of the system; in time(A, U) the timing conditions guarantee that each component gets a fair chance
to operate.
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Lemma 3.1 Let {a,}i 1 be a sequence of timed semi-executions of (A,U) such that

1. for any i > 1, ai is a prefix of ai+l, and

2. lim-.oo tend(aj) = 00.

Then there exists a unique infinite timed execution a of (A, U) such that for any i > 1, a, is
a prefix of a.

Proof: Straightforward. U

If a is an execution of time(A,U), we define project(a) to be the timed sequence obtained
from a by mapping each occurrence of a state s in a to s.As (while keeping the (action,time)
pairs intact). We first show the following simple correspondence between semi-executions of
(A,U) and finite executions of time(A,U).

Lemma 3.2 1. If a' is a timed semi-execution of (A,U), then there exists an execution a
of time(A,U) such that a' = project(a).

2. If a is a finite execution of time(A,U), then project(a) is a timed semi-execution of
(A,U).

Proof: 1. Suppose that a' is a given timed semi-execution of (A,U). Then there is a
unique timed sequence a whose states are states of time(A,U), that has a' = project(a),
whose initial state is the unique start state of time(A,U), and each of whose steps satisfies
Conditions 1, 3(b), 3(c), 4(b), 4(c) and 4(d) of the definition of time(A,U), plus the
equality part of Condition 2. of the definition of time(A,U). The fact that a' is a timed
sequence in which, by definition, the time components are non-decreasing, implies the
inequality part of 2. Condition 2. of Definition 3.1 ensures the lower bound part of 3(a)
of the definition of time(A,U), while Condition 3. of Definition 3.1 ensures the upper
bound part of 3(a) and also 4(a) of the definition of time(A,U).

2. By Condition 1. of the definition of time(A,U), ord(project(a) is an execution of the
ordinary I/O automaton A. It remains to show that for every timing condition U E
U, project(a) semi-satisfies U. The initialization and Conditions 3(a) and 4(a) of the
definition of time(A,U) ensure property 1(a) of Definition 3.1. Conditions 3(b), 4(b),
3(a) and 4(a) of the definition of time(A,U) ensure property 1(b) of Definition 3.1. The
initialization and Condition 3(a) of the definition of time(A,U) ensure property 2(a)
of Definition 3.1, while Conditions 3(b), 4(b), 3(a) and 4(a) ensure property 2(b) of
Definition 3.1.
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We can use these lemmas to prove the following result for infinite sequences:

Lemma 3.3 1. If a' is an infinite timed execution of (A,U), then there exists an infinite
execution a of time(A,U) in which the time components of the actions are unbounded,
such that a' = project(a).

2. If a is an infinite execution of time(A,U) in which the time components of the actions
are unbounded, then project(a) is a timed execution of (A, U).

Proof: 1. By the same reasoning as for part 1. of Lemma 3.2; the time components are
unbounded since a' is an infinite timed sequence.

2. Let a = so, (ri, ti), sl,... and let ai = So, (7r, ti),... , si, for all i > 0. Since ai is a finite
execution of time(A,U), a = project(ai) is a timed semi-execution of (A,U), by part (2)
of Lemma 3.2. Since the time components of the actions in a are unbounded, it follows
that limi-oo tend(a ) = oo. Lemma 3.1 implies that project(a) is a timed execution of
(A,U).

3.2 Special Case: The Automaton time(A, b)

A very important special case of the construction described in the previous subsection is the
case of time(A,Ub); this automaton is the result of incorporating the boundmap timing condi-
tions of a timed automaton (A, b) into the automaton transitions. As shorthand, we will some-
times refer to this automaton as time(A, b) instead of time(A, Ub), suppressing explicit mention
of the timing conditions Ub. We will also sometimes write Ft(C) instead of Ft(cond(C)) for
partition class C, and similarly for the other state components.

Because the conditions imposed by a boundmap are fundamental and common instances of
timing conditions, and in order to provide an example to illustrate the time(A,U) definition,
we now give an explicit definition of time(A, b), by instantiating the general definition.

Each of the states of time(A,b) consists of As, a state of A, plus Ct, plus, for each class
C of the partition, two times, Ft(C) and Lt(C). Each initial state of time(A) consists of an
initial state s of A, plus Ct = 0, plus values of Ft(C) and Lt(C) with the following property:
if there is an action in C enabled in s, then s.Ft(C) = be(C) and s.Lt(C) = bu(C). Otherwise,
s.Ft(C) = 0 and s.Lt(C) = oo.

If (7r, t) is an action of time(A), then (s', (ir, t), s) is a step of time(A) exactly if the following
conditions hold.

1. (s'.As, 7r, s.As) is a step of A.

2. s'.Ct < t = s.Ct.
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3. If 7r E C, then

(a) s'.Ft(C) < t < s'.Lt(C).

(b) if s.AS E enabled(A, C), then s.Ft(C) = t + be(C) and s.Lt(C) = t + b,,(C), and
(c) if s.AS E disabled(A, C), then s.Ft(C) = 0 and s.Lt(C) = 00.

4. For all classes D such that 7r is not in clazs D,

(a) t < s'.Lt(D),

(b) if s.As E enabled(A, D) and s'.As E disabled(A, D) then s.Ft(D) = t + bj(D) and
s.Lt(D) = t + b,,(D),

(c) if s.As E enabled(A,D) and s'.As E enabled(A,D) then s.Ft(D) = s'.Ft(D) and
s.Lt(D) = s'.Lt(D), and

(d) if s.As E disabled(A, D) then s.Ft(D) = 0 and s.Lt(D) = o0.

In this special case, it is easy to check that for any class C of the partition, any reachable
state s in which the Lt(C) and Ft(C) components have non-default values must have s.As E
enabled(A, C). This definition is obtained from the general one by direct application of the
definitions; the only condition that may appear to be slightly different is 4(b), where the general
definition uses a min expression for the new value of Lt(U). However, in the special case, any
reachable state s' in which case 4(b) applies must have s'.As E disabled(A, D); therefore, the
remark above implies that the first term in the min expression always has the value 00, and so
the min expression can be simplified as given.

In each of our examples in this paper, we will apply the time(A, b) construction to a timed
automaton A modeling the entire system.

3.3 Sufficient Condition

We want to have a sufficient condition for satisfying a set of timing conditions. We define a
new kind of mapping, a strong possibilities mapping. Such a mapping is only defined from
automata of the form time(A,U) to time(A, 1)), where U and V) are sets of timing conditions
for A.

Definition 3.2 Let A be a timed automaton and let U and V be sets of timing conditions for
A. Let f be a mapping from states of time(A, U) to sets of states of time(A, V). The mapping
f is a strong possibilities mapping from time(A,U) to time(A,V) provided that the following
conditions hold:

1. For every start state so of A, there is a start state uo of B such that uo E f(so).

2. If s' is a reachable state of A, u' E f(s') is a reachable state of B, and (s', r, s) is a step
of A, then there is a step (u', r, u) of B such that u E f(s).
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S. If u E f(s), then u.As = s.As; that is, the mapping is constrained to be the identity on
A's state components.

Theorem 3.4 Suppose that there is a strong possibilities mapping from time(A, U) to time(A, V).
Then any infinite timed execution of (A, U) is a timed execution of (A, V).

Proof: Let a be an infinite timed execution of (A,U). Then Lemma 3.3 part 1 implies that
a = project(a') for some infinite execution a' of time(A,U). Since there is a strong possibilities
mapping from time(A,U) to time(A, V), there is an execution a" of time(A, V) such that a' and
a" are identical except for the time prediction state components. Therefore, a = project(a").
Since a" is infinite and has its time components unbounded (because the same is true of a'),
Lemma 3.3 part 2 implies that a is a timed execution of (A, V). U

Thus a mapping proof yields, in this case, all the timing properties we require, including
both safety and liveness properties. The mapping immediately yields the safety properties.
(Recall that the safety properties are the lower bounds, as well as the upper bounds that
assert that time cannot elapse without a certain event having occurred.) But when these
safety properties are combined with the property that a timed execution is infinite and our
assumption that the time in infinite timed executions is unbounded (so that time increases
without bound), they also imply that the events in question must eventually occur.

4 First Example: Resource Manager

Now we present our first example, a simple resource-granting system adapted from an algorithm
in [AtL89]. The system consists of two components, a clock and a manager. The clock ticks
at an approximately-predictable rate, and the manager counts ticks in order to decide when
to grant a resource. We wish to analyze the time until the first grant, and the time between
each successive pair of grants.

We describe the algorithm and its timing assumptions as a timed automaton (A, b). The
required timing behavior is presented as a set of timing conditions.U; we prove that the
algorithm satisfies the requirements by demonstrating a strong possibilities mapping from
time(A,b) to time(A,U).

4.1 The Algorithm

The algorithm consists of two components, a clock and a manager. The clock has only one
action, the output TICK, which is always enabled, and has no effect on the clock's state. It
can be described as the particular one-state automaton with the following steps.6

'In the notation we use for automata, a separate description is given for the steps involving each action.
Instead of listing the steps, we provide a "precondition" which describes the set of states in which the action
is enabled, and an "effect" which describes the changes caused by the action. Input actions do not have a
precondition, because they are always enabled.
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TICK
Precondition:

true
Effect:

none

The boundmap associates the interval [cI, c2], where 0 < cl _< c2 < oo, with the single
class, { TICK}, of the partition. For convenience, we overload the notation and designate this
singleton class as TICK also. This means that successive TICK events occur with intervening
times in the given interval.

The manager has one input action, TICK, one output action, GRANT and one internal
action, ELSE. The manager waits a particular number k > 0 of clock ticks before issuing each
GRANT, counting from the beginning or from the last preceding GRANT. The manager's
state has one component: TIMER, holding an integer, initially k.

The manager's algorithm is as follows:

TICK
Effect:

TIMER := TIMER -1

GRANT
Precondition:

TIMER < 0
Effect:

TIMER := k

ELSE
Precondition:

TIMER > 0
Effect:

none

Notice that ELSE is enabled exactly when GRANT is not enabled. The effect of including
the ELSE action is to ensure that the automaton continues taking steps at its "own pace", at
approximately regular intervals.

Thus, in the situation we are modeling, when the GRANT action's precondition becomes
satisfied, the action does not occur instantly - the action waits until the automaton's next
local step occurs.7

?An alternative situation is one in which the manager is interrupt-driven, that is, whenever the precondition
of a GRANT becomes true, the GRANT occurs shortly thereafter. This situation could be modeled by
omitting the ELSE action. The two automata have slightly different timing properties. In this paper, we only
consider the first assumption.
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The partition groups the GRANT and ELSE actions into a single equivalence class LOCAL,
with which the boundmap associates the interval [0,1], where 0 < I < oo. We assume that
cl > 1.8 Fix A to be the I/O automaton which is the composition of the clock and manager,
with the TICK output action converted to an internal action; thus, the only external action
of A is the output action GRANT. Also, let b be the boundmap described above. We wish to
show that all the timed behaviors of (A, b) satisfy certain upper and lower bounds on the time
up to the first GRANT and the time between consecutive pairs of GRANT events.

Note that our resource manager is much simpler than the usual examples; in particular,
there is no REQUEST input action that triggers the GRANT output. We do not think that
such added structure would add much to the conceptual difficulty of the example or expose any
interesting property of the methodology we suggest here; however, it would make the analysis
somewhat longer.

We begin our analysis by stating some invariant properties of the algorithm. In order to
do this, we need timing information to be included in the state, so we consider the automaton
time(A, b), constructed as described in Section 3.2. Notice that in this case, the automaton
time(A,b) has the following components, As, Ct, Ft(TICK), Lt(TICK), Ft(LOCAL), and
Ft(LOCAL).

The next lemma states invariant properties of the automaton time(A, b). Notice that the
second property involves the time components of the state. The proof of this lemma is fairly
technical and appears in full detail in Appendix A.

Lemma 4.1 The following are true about any reachable state s of time(A, b).

1. s.TIMER> 0.

2. If s.TIMER = 0 then s.Ft(TICK) _ s.Lt(LOCAL) + cl - 1.

We close this subsection with a proof of a basic property of time(A, b) (for this fixed (A, b)).

Lemma 4.2 All timed ezecutions of (A,b) are infinite.

4.2 The Requirements Automaton

We wish to show the following, for any timed behavior /3 of (A, b):

1. There are infinitely many GRANT events in )3.

2. If t is the time of the first GRANT event in /3, then k • cl t < k • c2 + I.

gAgain, a different assumption would change the timing analysis.
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3. If tj and t 2 axe the times of any two consecutive GRANT events in #, then

k . cl - <_ t 2 - t 1 _ k C2 + L.

We let P denote the set of sequences of (action,time) pairs satisfying the above three condi-
tions.

We will specify P in terms of another I/O automaton, called the requirements automaton.
We define two timing conditions, G1 for the time until the initial GRANT event and G2 for
the time between successive GRANT events. The requirements automaton B is defined to be
time(A, {G 1, G2}).

We now define the conditions. The first condition, G1, is (Ttari(G1),0) b(g,) (11(G) 0),
where

" Tatar,(Gi) is the (singleton) set of start states of A,

" be(GI) = k.c l and b,(G 1) = k. c2 + l, and

" II(G) = {GRANT}.

The second condition, G2 , is (0, T~tp(G2)) } (II(G 2), 0), where

" Ttep(G2) = {(s', r,s) E steps(A) : r = GRANT},

" bt(G 2) = k.cl - I and bu(G 2) = kC2 + i, and

" 1(G 2) = {GRANT}.

Note that the behaviors of B and the sequences in P both consist of elements that are pairs,
an action of A together with a time. Furthermore, if a is a timed execution of (A, {GI, G2})
then beh(a) is in P.

By Lemma 4.2 all the timed executions of (A,b) are infinite. Thus, by Theorem 3.4, all we
need to do is to show a strong possibilities mapping from time(A,b) to time(A, {GI, G2}) = B.
The complete formal proof appears in the next section.

4.3 The Mapping

In this section, we present a strong possibilities mapping from time(A, b) to B, thereby showing
that all schedules of time(A, b) are also schedules of B. This fact is then used to prove
Theorem 4.4, which says that all timed behaviors of (A,b) are in P.

We define a mapping f so that a state u of B is in the image set f(s) exactly if the following
conditions hold.
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1. If s.TIMER > 0 then

(a) min(u.Lt(GI),u.Lt(G2)) >_ s.Lt(TICK) + (s.TIMER - 1)c2 + 1, and

(b) max(u.Ft(G1), u.Ft(G2)) _ s.Ft(TICK) + (s.TIMER - 1)cl.

2. If s.TIMER = 0 then

(a) min(u.Lt(Gi),u.Lt(G2)) > s.Lt(LOCAL), and

(b) max(u.Ft(G1),u.Ft(G2)) < s.Ct.

The inequalities should be interpreted as giving explicit upper and lower bounds for the
time of the next GRANT event, in terms of the values of the variables in the state of tim (A, b).
Intuitively, the right-hand side of the inequality describes how the bounds will be satislied; for
example, in the case of inequality 1(a), a TICK event must happen within time Lt(TICK),
and then after TIMER - 1 additional ticks, each happening after at most c2 time, TIMER will
become 0, thus enabling the GRANT, which will happen within at most time 1.

If we think of the value of min(Lt(Gi),Lt(G2)) as indicating an upper bound on the time
when a GRANT will next occur, then it should not be surprising that any sufficiently large
number (with respect to the values of the variables in the state of time(A)) could be used
as the value of this minimum. This just indicates that any such value could be proved to
be an upper bound. Similarly, any sufficiently small number could be used as the value for
max(Ft(Gi),Ft(G2)), a lower bound on the time when a GRANT event will next occur.

Thus, the inequalities comprising the strong possibilities mapping express the fact that any
sufficiently large number (with respect to the values of the variables in the state of time(A, b))
should be provable as an upper bound for the time for the next GRANT, and any sufficiently
small number should be provable as a lower bound.9

The given mapping is obviously multivalued, because it is described in terms of inequalities.
It seems possible to use a single-valued mapping for this example by complicating the definition
of the requirements automaton; however, since the requirements automaton is serving as the
problem specification, that does not seem like a good idea. More discussion of the issue of
multivalued vs. single-valued mappings appears in [Ly89].

Although (we think that) the correspondence between time(A, b) and B described by f is
easy to understand, verifying formally that f is indeed a strong possibilities mapping is a fairly
long and mechanical process. The complete proof appears in Appendix A.

Lemma 4.3 The mapping f is a strong possibilities mapping.

'Note that if we simply replaced the inequalities with equations, the resulting mapping would not be a
strong possibilities mapping. For example, suppose that a clock tick occurs within less than the maximum c2.
Then the right-hand side expression in 1(a) would evaluate after the step to an earlie time than before the
step. On the other hand, the corresponding step in the requirements automaton would not change the value of
Ltime(GRANT); the correspondence thus would not be preserved.
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Now we can put the pieces together.

Theorem 4.4 All timed behaviors of (A,b) are in P.

Proof: Let /3 be a timed behavior of (A,b). Let a be a timed execution of (A,b) such that
/3 - beh(a). By Lemma 4.2, a is infinite. By Lemma 4.3, there exists a strong possibilities
mapping from time(A, b) to time(A, fG 1, G2}). Thus, by Theorem 3.4, a is a timed execution
of (A, fG 1,G 2}). This implies that 03 E P. U

5 Dummification

When all the timed executions of a timed automaton are infinite as in the previous example,
then Theorem 3.4 suffices to prove all the timing conditions, including the liveness parts.
Unfortunately, there are many examples where the timed automaton has timed executions
that are finite. Since it is much more straightforward to use our proof method when all
complete executions are infinite, we augment such timed automata to have only infinite timed
executions. For a timed automaton (A,b) we define a variant (,,b), which augments A with
a "dummy" component that always has locally-controlled actions enabled. All of the timed
executions of (A,b) will be infinite, and the executions of (A,b) and (A, b) are very closely
related (see Lemma 5.3 below). Thus, we will be able to reason about (A,b) and obtain
consequences for the original timed automaton (A, b).

For any timed automaton (A, b), define (A, b), the dummification of (A, b), as follows. We
augment the automaton A with a single new component called the dummy. Assume, w.l.o.g.,
that NULL . actions(A). The dummy has a single action, an output NULL (which is not
shared by any of the other components). It has only one state, in which NULL is enabled. The
boundmap associates any interval [ni,n 2] such that 0 < n1 :5 n 2 < cc with the new singleton
partition class, NULL. Let A be the automaton composed of A and the dummy. Also, let b be
the boundmap that is identical to b except for the addition of the new interval [n1, n2] for the
new partition class, NULL.

Lemma 5.1 Let (A,b) be a timed automaton, and let (A,b) be the dummification of (A,b).
Then all timed executions of (A, b) are infinite.

If 5 is a timed sequence for A, define undum(5) to be the result of removing the following
from 5: the dummystate component and the NULL steps. We have the following lemma.

Lemma 5.2 Tet (A, b) be a timed automaton.

1. If a is a timed execution of (A,b) then undum(&) is a timed execution of (A,b).
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2. Let a be a timed execution of (A,b). Th(c,, there exists a timed execution & of (A,b) o,,'c
that a = undum(&).

Suppose that U = (Ttart,Tstep,b,II,S) is a timing condition for an I/O autorinatmi I
Then we define a corresponding timing condition & = (T5 tart, Tstep, b, 1t, S) for A, as fol nw,
Ttalrt = Ti 4,1 x {dummystate), T, tep = {((s',dummystate),ir,(s,dummystate)) I(', e.)
Toteoa 1b = b, ft = II, and S = S x {dummystate}. If U is a set of timing conditiois F.,:- .1
then define 0 = { C U E U}.

Lemma 5.3 Let U be a set of timing conditions for A and let a be the set of timing conditiol.
for A defined above.

1. If & is a timed execution of (A,U) then undum(&) is a timed execution of (A,U).

2. If a is a timed execution of (A,U) then any timed sequence & such that a = undum(&)
and ord(Er) is an execution of A is a timed execution of (A,l1).

Theorem 5.4 Let (A, b) be a timed automaton, and let (A, b) be the dummification of (A, b).
Let U be a set of timing conditions for A. Assume that there is a strong possibilities mapping
from time(A,b) to time(A,a). Then every timed execution of (A,b) satisfies U.

Proof: Let a be a timed execution of (A,b). By Lemma 5.2, there is a timed execution
& of (A,b) such that a = undum(5). By Lemma 5.1, 6 is infinite. Since there is a strong
possibilities mapping from time(A, b) to time(A,Ui), Theorem 3.4 implies that & is a timed
execution of (A,U). Thus, by Lemma 5.3 part 1, a is a timed execution of (A,U), as needed.
M

6 Second Example: Signal Relay

Now we present our second example, a simple signal relay. The system is a composition of a
collection of n + 1 processes, PO,..., Pn, organized as a line. Po generates SIGNALo (once),
and the intermediate processes relay it, so that P eventually generates SIGNALn. We wish
to analyze the total delay a signal incurs, as a function of its delay at each of the relaying
processes.

Again, we describe the algorithm and its timing assumptions as a timed automaton (A, b),
and the required timing behavior as a set of timing conditions U. This time, however, we do
not simply present a direct mapping from time(A,b) to time(A,U) (although , could have).
Rather, we use a sequence of intermediate automata, exhibiting strong po-ii ,4 ties mappings
between each consecutive pair of automata in the sequence. The style of the reasoning involved
corresponds closely to that of a proof Lased on recurrence inequalities. (In fact, this example
was inspired by the recurrence-inequality proof sketch in [LG89] for the tournament mutual
exclusion algorithm of [PF77]).
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6.1 The Algorithm

The algorithm consists of n + 1 automata, Po,...,Pn, where n > 1. Po has one action, the
output SIGNALo. The state of Po consists of ome component, FLAG, a Boolean value, initially
true.

P0's algorithm is as follows:

SIGNA Lo
Precondition:

FLAG = true
Effect:

FLAG:= false

The boundmap associates the interval [0, oo] with the single class, {SIGNALo}, of the
partition. As before, we also designate this class as SIGNALo; we use similar notational
conventions for the remaining singleton classes in the paper.

Each automaton Pi, 1 < i < n, has an input action SIGNALi_. and an output action
SIGNALi. Each automaton state contains the single component FLAG, holding a Boolean
value, initially false.

The algorithm for Pi is:

SIGNAL,_1
Effect:

FLAG := true

SIGNALi
Precondition:

FLAG = true
Effect:

FLAG := false

The boundmap associates the interval [d1,d 2], where 0 < d, < d2 < oo, with the single
class, SIGNAL,, of the partition for Pi.

Now we fix A to be the timed automaton which is the composition of all the Pi's, with all
actions except SIGNALo and SIGNAL, made internal, and b to be the boundmap described
above. We will prove that if a SIGNALo occurs, then the difference between the time it occurs
and the time at which a later SIGNAL, occurs is at least n • dl and at most n • d2.

Note that -i1 the timed executions of (A, b) are finite, thus we will apply dummification (as
described in the previous section) to make all the timed executions be infinite.

We first state the following simple invariant about A. The proof is by a simple induction.
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Lemma 6.1 In any reachable state a of A, if SIGNALi is enabled in s, then for all j $ i,
0 < j < n, SIGNAL is not enabled in s.

6.2 The Requirements Automaton

We wish to show the following, for any timed behavior 3 of (A, b):

1. If SIGNALo event occurs in 3, then a single later SIGNAL, event occurs in /3.

2. If tj is the time of a SIGNALo event and t2 is the time of the corresponding SIGNAL
event then:

n di < t2 -tl < n.d 2.

We let Q denote the set of sequences of (action, time) pairs satisfying the above two conditions.

We will specify Q in terms of a requirements automaton. Towards this end, we define the

following timing condition, UO,, = (0, To,n) + (Io,n, 0), where

" T0,n = {(s',ir,s) E steps(A):r = SIGNALo},

" bo, =[n. di, n. d2] and

" Io,n = {SIGNALh}.

Notice that if a is a timed execution of (A, {T0,n}) then beh(a) is in Q. The requirements
automaton B is time(A, {Uo,n}).

By Theorem 5.4 all we need to do is to show a strong possibilities mapping from time(A,b)
to B. The complete formal proof appears in the next section.

6.3 The Intermediate Requirements Automata

One way of proceeding would be to exhibit a strong possibilities mapping directly from
time(A,b) to B, following the pattern of the first example. However, an alternative and
attractive strategy might be based on the recursive structure of the line of processes. For
instance, one might give a recursive analysis of the time between any SIGNALk, 0 < k < n - 2
and SIGNAL, in terms of the time between SIGNALk+l and SIGNALn. Thus, the analysis
would be based on recurrence inequalities. Several examples of such recurrence inequality anal-
yses (for upper bounds only) appear in [LG89]; the analysis of the Peterson-Fischer ([PF77])
tournament algorithm in [LG89, p. 26-30] is a particularly good example of this proof style.

Recurrence inequality proofs, however, have an "operational" style that is very different
from the assertional style we are describing here. We would like to be able to utilize the power
of the recurrence analysis within our assertional framework. In order to do this, instead of
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proceeding to show directly that every schedule of time(A, b) is a schedule of B by a strong
possibilities mapping, we proceed using a hierarchy of intermediate requirements automata.
Each intermediate requirements automaton, Bk, includes the same timing conditions as arc
given by the boundmap b, for partition classes SIGNALo, ...,SIGNALk, plus a new timing
condition that provides bounds on the time between SIGNALk and a subsequent SIGNAL,.
The recursive argument described above, expressing the time between SIGNALk and SIGNAL,
in terms of the time between SIGNALk+l and SIGNAL,,, is then captured formally by a strong
possibilities mapping from Bk to Bk+l.

In this subsection, we define the intermediate automata.

First, for every k, 0 < k < n - 1, we define a timing condition stating that the time between
SIGNALk and SIGNAL,, (if SIGNALk occurs) is in the interval [(n - k)dl, (n - k)d 2]. (In
particular, the condition will imply that each SIGNALk is actually followed by a corresponding
SIGNAL,,). When k = n - 1, this condition will be the same as the timing condition assigned
by the boundmap b to the class containing SIGNAL,,. On the other hand, when k = 0, this
condition is the same as the condition U0,n previously defined, i.e., the timing condition we
wish to prove.

Formally, for any 0 < k < n - 1,10 we define the following timing condition, Uk,, =

(0, Tk,,,) ' - (Irk,,, 0), where

* Tk,,, = {(s',ir,s) E steps(A) :wr = SIGNALk},

" bk,, = [(n - k). di, (n - k) .d 2], and

* I1k,n= {SIGNAL,}.

For any k,0 < k < n - 1, let Uk be the set of timing conditions that includes Uk,n and the
conditions assigned by boundmap b to the partition classes SIGNALo,...,SIGNALk. Let Bk
denote the I/O automaton time(A,Uk ).

In the next subsection, we will show the existence of a strong possibilities mapping from
Bk to Bk-1, for every k, 1 < k < n - 1. This implies that there is a strong possibilities
mapping from Bn- 1 to B0 . Moreover, there is a trivial strong possibilities mapping from B0 to
the requirements automaton B (which just ignores the timing conditions associated by b with
the partition class SIGNALo). Similarly, there is a trivial strong possibilities mapping from
time(A,b) to Bn- 1 (which simply renames the state components associated with SIGNAL,.).
Therefore, this mapping proof will imply the existence of a strong possibilities mapping from
time(A,b) to B.

6.4 The Mapping

In this subsection, we fix a particular value of k, 1 < k < n - 1, and show the existence of a
strong po.sibilities mapping, fk, from Bk to Bk-1.

"The redefinition of Uo,. is consistent with the prior definition.
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Recall that the timing conditions included in Bk are those for Uk,n, SIGNALo ..., SIGNALk
and NULL, while those included in Bk-1 are those for Uk-i,,,, SIGNALo, ...,SIGNALk_ 1 and
NULL, For the sake of convenience we denote by Ft(k, n) (respectively, Lt(k, n)) the Ft (rc
spectively, Lt) component of the state of Bk that is associated with Uk,n. Also, as we did iii
our construction of time(A,b), we denote by Ft(C) (respectively, Lt(C)) the Ft (respectively,
Lt) components that are associated by the boundmap b with each partition class C. We also
use the notation FLAGi, 0 < i < n, to denote the FLAG component of Pi.

Now we define fk so that a state u E states(Bk.) is in the image set fk-(s), for s E
states(Bk), exactly if the following hold.

s.Lt(k, n) if s.FLAGi = true{.~ - 1, n)for some i,k + 1< i < nu.Lt(k - 1,n) s.Lt(SIGNALk) + (n - k)d2 if s.FLAGk = true

00 otherwise,
and J s.Ft(k, n) if s.FLAGi = true

u.Ft(k - 1, n) for some i,k + 1 < i < n1 < .Ft(SIGNALk) + (n - k)dl if s.FLAGk = true0otherwise.

and every other component of state u of Bk1 is equal to the corresponding component of
the state s; notice that by Lemma 6.1 if FLAGk = true then FLAG = false for all i 5 k,
0 < i 9 n, thus the mapping is well defined.

Intuitively, the inequalities give upper and lower bounds for the time of the next SIGNAL,
event, in terms of the values of the variables in the state of time(A, b). For example, in the case
of the upper bound, if the signal has already propagated past process Pk, then within the time
that is stored in s.Lt(k, n), a SIGNALn event must occur (because the component s.Lt(k, n)
keeps track of the latest time at which a SIGNAL,, event must occur, once a SIGNALk event
has occurred). If the signal has only gotten as far as process Pk, however, then s.Lt(k, n)
will not contain any useful information, so an alternative bound is used. In this case, within
time s.Lt(SIGNALk), a SIGNALk event must occur, and then after (n - k) additional signal
propagation steps, each taking at most time d2 , a SIGNAL, event must occur. The lower
bound has a similar meaning.

The proof of the following lemma is a straightforward case analysis and it appears in
Appendix A.

Lemma 6.2 If 1 < k < n - 1 then the mapping fk is a strong possibilitic. )ping from Bk
to Bk- 1 .

By considering the composition f, o ... o f,,-1 and the trivial mappings from B3 o to B and
from time(A,b) to B,,-,, we obtain the following corollary.
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Corollary 6.3 There exists a strong possibilities mapping from time(A, ) to B.

Now we can put the pieces together.

Theorem 6.4 All timed behaviors of (A,b) are in Q.

Proof: Let 6 be a timed behavior of (A,b). Let a be a timed execution of (A, b) such that
/# = beh(a). By Corollary 6.3, there exists a strong possibilities mapping from time(A,b) to

time(A, {Uo, }). Thus, by Theorem 5.4, a is a timed execution of (A, {Uo, }). This implies
that 0 EQ.

7 Completeness

Theorem 7.1 Let (A,b) be a timed automaton, and let (A,b) be the dummification of (A,b).
Let U be a set of timing conditions for A. Suppose that every timed execution of (A, b) satisfies
U. Then there is a strong possibilities mapping from time(A,b) to time(A,UC).

Proof: The following technical claim is used many times in the proof.

Claim 7.2 Let a be an infinite execution]]] of time(A,b) in which the time components of the
actions are unbounded. Then, for every U E U, project(a) satisfies U.

Proof: Lemma 3.3 part 2 implies that project(a) is a timed execution of(A, b). By Lemma 5.2
part 1 undum(project(a)) is a timed execution of (A,b). Thus, by the assumption of the
theorem, undum(project(a)) satisfies U. Then Lemma 5.3 part 2 implies that project(a)
satisfies U. a

Before defining the mapping, we introduce a few preliminary definitions. Define for each state
s of time(A,b) the set Ext(s) to be the set of infinite execution fragments of time(A,b) starting
with s in which the time components of the actions are unbounded. Since, by Lemma 5.1, all
timed executions of (A, b) are infinite, there is at least one such fragment starting with s, for
any state s reachable in an execution of tireJA, b). Thus, the set Ext(s) is not empty, for any
state s reachable in an execution of time(A,b).

If U E U is a timing condition for A, then let U be the dummification of U as defined
above, U = , Let a E Ext(s) be

SO, (7r", tl),S 1 , (7 2 , t2),. .

where so = s, and let to = s.Ct. Define firstr(a) as follows. If there exists j > 0 such that

7rj E HI(O) or sj.As E S(O), then first u(a) = ti where

i = min{j > 0 I 7rj E I1(U) or sj.As E S(U)}
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Otherwise, firstr,(a) = o. Intuitively, this is the first time an action from H(U) or a state from
S(U) occurs in a (if at all). Let io = min{j _! 0 I irj E fl(U)} (oo if there is no 7rj E 11(U)),
and let ii = min{j _ 0 1 si.As E S(U)} (oo if there is no sj.As E S(U)). If io < ii then define
firstJ)y(a) = ti., otherwise, firstHIg(a) = 0o. Intuitively, this is the first time an action
from 11(U) occurs before a state from S(U) occurs (if at all).

We now define the mapping f. Let s be a state reachable in an execution of (time(A, b))
and let u E states(time(A, U)). Then u E f(s) if the following hold for any timing condition

u.Lt(U) sup{first&(a) I a E Ext(s)} (1)

and u.Ft([U) _ inf{firstII&(a) I a E Ext(s)} (2)

and every other component of u is equal to the corresponding component of the state s. We
now prove that f is a strong possibilities mapping from time(A,b) to time(A,U). Clearly, it
satisfies Condition 3. of Definition 3.2.

To show f satisfies Condition 1. of Definition 3.2, let so be a start state of time(A, b); we
have to show that there is a start state uo of time(A,U) such that uo E f(so). Let Uo be the
unique start state of time(A,a) with so.As = uo.As.

We check the inequalities for each U E a separately. If so.As E Tt.rt(Uj), then, if b,(U) =
o then uo.Lt(U) = o and inequality (1) for U is trivially satisfied. If b,(U) < 00, then, for
any a E Ext(so), where

a = o, (7, tl ),sl,(1r2, t2),.

Claim 7.2 implies that project(a) satisfies U, and hence there exists j > 0 with tj < b,(U)
such that either 7rj E II(U) or sj E S(U) (Condition 1(a) of Definition 2.2). Hence, for any
a E Ext(so), firstry(a) < b,,(U). By the definition of time(A,U), we have uo.Lt(U) = b,(U),
so inequality (1) for U is satisfied.

To show inequality (2) for U, note that for any a E Ezt(so), where

a = so,(,r,t1),s,(7r2,t 2),... ,

Claim 7.2 implies that project(a) satisfies U, and hence if there exists j > 0 with tj < bt(U)
such that iri E 11(U), then there exists k,0 < k < j, such that Sk.As E S(U) (Condition 2(b)
of Definition 2.2). Thus first.llf,(a) 2! bj(U) = u.Ft(U), and inequality (2) for UJ is satisfied.

If so.As V Tst.,(U), then the definition of time(A,U) implies that uo.Ft(U) = 0 and
uo.Lt(U) = 0o. Thus, inequalities (1) and (2) for U are trivially satisfied.

Since the inequalities are satisfied for any U E U we have u0 E f(so). Thus, we have shown
that f satisfies Condition 1. of Definition 3.2; we now show that f satisfies Condition 2. of
Definition 3.2.

Let s' be a reachable state of time(A,b), and let Q0 ,S' be an execution of time(A, b). Let
U' E f(s'). Assume (s',(7r,t),s) is a step of time(A,b); we have to show that there exists a
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step (u', (r, t),u) of time(A,U) such that u E f(s). Let u be the state of time(At,U ) achieved
by applying the time A,U) definition to u', with u.Ct = t and u.As = s.As. We check the
inequalities for each U E U separately, and there are two major cases:

1. 7r E 11(U). We first need to show that u'.FtCU) < t < u'.Lt(U) (so that (r, t) is enabled
in u'). If s'.As E S(U) then also u'.As E S(U) and by an earlier observation u'.Lt = 00,
so clearly t < u'.Lt(U). So assume s'.As 0 S(U); by the induction hypothesis,

u'.Lt(U) > sup{firstF,(a) I a E Ext(s')}

> firstv(s',(r,t),s,0)

for some 0 E Ext(s). However, since s'.As 0 S(U) it follows that first&(s', (7r, t), s,,3) t.

Thus, we have t < u'.Lt(U). To see that u'.Ft(U) < t, notice that if s'.As E S(U) then
u'.Ft(U) = 0, and the inequality is trivially satisfied. Otherwise, by the induction
hypothesis,

u'.Ft(U) <_inffflrst_ffV,(a) I a E Ext(s')}

<first -Hu (s",Or, t), s' 0 )

for some 0 E Ext(s). Since s'.As 0 S(U) and r E 11(U), firstI(s',(r,t),,) = t.

Thus, u'.Ft(U) :_ t, as needed.

We now show that inequalities (1) and (2) are satisfied for U.

If (s'.As, r,s.As) E Tatp(U1), the timing condition U is restarted. Formally, the definition
of time(A,U) implies that u.Lt(U) = t + b,(U) and u.Ft(U) = t + bt(U). If b,(U) = oo
then u.Lt(U) = 00 and inequality (1) for U is trivially satisfied. If b"(U) < oo, then, for
any a E Ext(s), where

at = *0, (i1", tl),Sl, (1 2 , t2),.••,

and so = s, Claim 7.2 implies that project(aoa) satisfies U, and hence there exists j > 0
with 1, < t+b,(U) such that either rj E 1(U) or sj E S(U) (Condition 1(b) of Definition
2.2). Hence, for any a E Ezt(s), firstU(a) 5 t + b,,(U). Since u.Lt(U) = t + bu(O),
inequality (1) for U is satisfied.

To show inequality (2) for U, note that for any a E Ext(s)

a = So,( r,i 1 ), 1 1,(r 2 , t 2 ),... ,

where so = s, Claim 7.2 implies that project(aoa) satisfies U, and hence if there exists
j > 0 with tj < t + bt(U) such that 7rj E H(U), then there exists k,0 < k < j, such that
Sk E S(U) (Condition 2(b) of Definition 2.2). Thus first_.7I,(a) _ t + bt(U) = u.Ft(UI),
and inequality (2) for U is satisfied.

If (s'.As,7r,s.As) V T,,,(U), then the timing condition U is not restarted, and its
predictions are set to default values. Formally, the time(A,0) definition implies that
u.Lt((/) = co and u.Ft(U) = 0. Thus, inequalities (1) and (2) for U are trivially satis-
fied.
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2. r % I(U). We first need to show that t < u'.Lt(U) (so that (r, t) is enabled in u'). If
s'.As E S(U) then also u'.As E S(Uj and by an earlier observation u'.Lt = oo, so clearly
t : u'.Lt(U). So assume s'.As 0 S(U); by the induction hypothesis,

u'.Lt(U) _ sup{firstU(a) I a E Ext(s')}

> first (s', (r,t), s,3)

for some / E Ext(s). However, since s'.As 0 S(U) it follows that firstr(s', (r, t),s,0) > t.

Thus, we have t < u'.Lt (U).

We now show that inequalities (1) and (2) are satisfied for U.

If (s'.Aa, r,s.As) E Tiep(U), then the timing condition U is restarted, unless it was al-
ready in effect. Formally, the definition of time(A,t ) implies that u.Lt(U) = min{u'.Lt U), t+
bu(U)} and u.Ft(U) = t + b(U). Assume u.Lt(U) = u'.Lt(U). If s'.As E S(U)
then also u'.As E S(U) and by definition u'.Lt = 00, and inequality (1) for U is
trivially satisfied. So assume s'.As 0 S(U); since ir 0 1(U), for any a E Ext(s),
firstr(a) = firstry(s', (r, t),a ). Note that 8', (7r, t),a E Ext(s'). Thus,

supffirstry(a) Ia E Ezt(s)}

= sup{firstr,(',(r,t),a) I a E Ext(s)}

< sup{firstr(a') a' E Ext(s')}

" u'.Li(U)

by the induction hypothesis,

-u.Lt(U)

as needed. If u.Lt(U) = t + bu(U), then inequality (1) for U follows as in Case 1.
Inequality (2) for U follows as in Case 1.

If s.As E S(U) then the timing condition U is disabled. Formally, the time(A,a) def-
inition implies that u.Lt(U) = oo and u.Ft(U) = 0. Thus, the inequalities for U are
trivially satisfied.

Otherwise, (s'.As,7r,s.As) V Tt,,(UJ) and s.As . S(U), and the predictions for U con-
tinue as before. Formally, the time(A,-2 definition implies that u.Lt(U) = u'.Lt(F])
and u.Ft(U) = u'.Ft(U). If s'.As E S(U) then also u'.As E S(U) and by definition
u'.Lt = oo, and inequality (1) for U is trivially satisfied. So assume s'.As . S(U); since
7" rl(U), for any a E Ext(s), firstry(a) = firstr(a', (r, t), a). Note that W', (r, t), a E
Ext(s'). Thus,

sup{firstr,(a) Ia E Ext(s)}

= sup{firstj(s',(7rt),a) a E Ext(.)}
< sup{firstr(a') I a' E Ext(s')}

< u'.Lt(U)
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by the induction hypothesis,

= u.Lt(U)

as needed. Inequality (2) for U follows as in Case 1.

8 Conclusions and Further Work

In this paper we have described a way to carry out assertional proofs for timing properties. We
have shown how to specify an algorithm and its timing assumptions, as well as its performance
requirements, in terms of timed automata and timing conditions. We have shown how to
convert such specifications into ordinary (not timed) I/O automata by building predictive
timing information into the automaton states. Then the goal of proving timing conditions
can often be met by demonstrating the existence of a strong possibilities mapping from the
automaton corresponding to the algorithm (with its timing assumptions) to the automaton
corresponding to the performance requirements.

We have presented two examples of this method. The first is the analysis of the rate at which
a simple resource manager system issues grants; the second is the analysis of the propagation
delay of a signal along a line of relay processes. The second example also illustrates how our
method can be applied hierarchically, in a way that corresponds to proofs using recurrences.
We have shown that this method is complete, i.e., if a timed I/O automaton satisfies a set of
timing conditions then a strong possibilities mappings can be exhibited between the appropiate
automata.

A good technique for proving timing properties of timing-dependent or asynchronous sys-
tems should be rigorous, simple and general. Our technique is certainly rigorous, and we think
it is also quite simple. Prior work on proving timing properties has usually had an operational
style much like that of liveness proofs, where time bounds are obtained by bounding how long
it takes for intermediate milestones to occur. (See [LG89] for several examples.) In contrast,
the method presented in this paper has an assertional style. Such a style seems to us to lead
to proofs that are somewhat simpler; they are straightforward to generate (although they may
involve analyzing a large number of cases), and are easier to check - in fact, proofs of the sort
we have given in this paper ought to be machine-checkable with current proof technology.

As for generality, it is not yet clear to us how generally applicable this method will be.
It is quite likely that the specific time(A,U) construction we use will not be general enough
to express all interesting examples of performance requirements. For example, one might
want to consider performance requirements that specify that a resource manager is supposed
to respond to requests as long as they do not arrive too far apart in time (see the "cement
mixer" example in [FG89]). For another example, one might want to consider a specification
that says that one event 7r triggers two later events, 4' and 0, with 4' occurring within a
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certain interval of time after 7r and V5 occurring within a certain interval of time after $. Both
of these examples illustrate more complicated requirements than can be expressed directly
as timing conditions. It may be possible to force such examples to fit into our definitions
by adding auxiliary variables or actions; alternatively, it may be necessary or desirable to
generalize the time(A,U) construction to allow more general kinds of timing conditions. If
the time(A,U) construction is generalized, then we would hope that many of the same ideas,
e.g., the incorporation of predictive timing information into the state and the use of mappings

that take the form of inequalities, will still be useful. Even if the time(A,U) construction is
generalized, we wonder whether there is a single generalization that will cover all interesting
examples. We leave all of this as a subject for future work.

It remains to apply this technique to other, more complex examples than the ones in this
paper. One particularly good example to try is the full tournament mutual exclusion algorithm
from [PF77]. Its prior analysis using recurrences suggests that it may be a good candidate for
hierarchical proof as in our second example. This is an example of an asynchronous algorithm;
good sources for timing-dependent algorithms to analyze are the areas of real-time computing
and communication.

We have already seen how our method can express ideas previously expressed using recur-
rences. It remains to see how our technique combines with other methods for time analysis
such as methods based on bounded temporal logic (e.g., [BH81]). Also, it remains to see how
proofs using our techniques can be applied in a modular way for the verification of timing
properties of large and complex timing-based systems.
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A Proofs of Lemmas

A.1 Proof of Lemma 4.1

Proof: By induction on the length of an execution leading to a. If the length = 0, then
.TIMER = k > 0, so the conditions are easily seen to be true. So suppose that (a', (7, t), s)

is a step of time(A, b), where s' is reachable in n steps and the conditions are true for a'. We
consider cases.

Case 1: ir = GRANT.
Then the effect of GRANT implies that &.TIMER = k > 0, which implies both conditions.

Case 2: ir = ELSE.
The precondition of ELSE implies that s'.TIMER > 0. Since s.TIMER = s'.TIMER, we
also have &.TIMER > 0, which implies both conditions.

Case 3: ir = TICK.
Suppose that s.TIMER < 0, Then s'.TIMER = 0, by the inductive hypothesis. The induc-
tive hypothesis also implies that s'.Ft(TICK) s'.Lt(LOCAL) + cl - 1. Since cl > 1 (by an
assumption), this implies that s'.Ft(TICK) > s'.Lt(LOCAL). But then TICK is not enabled
in as ', a contradiction. Thus, s.TIMER > 0, showing the first property.

Now, s.Ft(TICK) = t + cl and s.Lt(LOCAL) <_ t + 1. This implies that

s.Ft(TICK) _ s.Lt(LOCAL) + cl -I,

showing the second property. U

A.2 Proof of Lemma 4.3

Proof: We begin by giving an explicit description of B, by instantiating the general definition
of time(A,U) for the case where U is the given set of conditions. We use this explicit description
in the proof below.

Each state of B has components As, holding a state of A, plus Ct, Ft(Gi), Lt(Gi), Ft(G2)
and Lt(G2 ). Each initial state of B consists of an initial state a of A, plus Ct = 0, plus
Ft(GI) = k . cl, Lt(GI) = k . c2 + 1, Ft(G2) = 0 and Lt(G2) = o. If (ir, t) is an action of B,
then (a', (Tr, t), s) is a step of B exactly if the following conditions hold.

1. (s'.A, ir, a.As) is a step of A.

2. s'.Ct < t = s.Ct.

3. If 7r = GRANT then

(a) s'.Ft(GI) < t < s'.Lt(GI) and .s'.Ft(G2 ) < t < s'.Lt(G2 ),
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(b) s.Ft(G2 ) = t + k . cl - I and s.Lt(G2 ) = t + k . c2 + ,

(c) s.Ft(Gi) = 0 and s.Lt(G2) = 00.

4. If r = ELSE or TICK, then

(a) t < s'.Lt(Gi) and t < s'.Lt(G2),

(b) s.Ft(GI) = s'.Ft(GI), s.Lt(GI) = '.Lt(GI), s.Ft(G2) = 3'.Ft(G2 ), and s.Lt(G 2) =
s'.Lt( G2).

Let s and u be the unique start states of time(A, b) and B, respectively. Then s.TIMER =
k > 0. Also,

min(u.Lt(Gi),u.Lt(G2)) = k . c2 + I and s.Lt(TICK) = c2.

It follows that

min(u.Lt(GI),u.Lt(G2)) = s.Lt(TICK) + (s.TIMER - 1)c2 + 1.

Furthermore,
max(u.Ft(G1),u.Ft(G2 )) = k. cl and s.Ft(TICK) = cl,

so that
max(u.Ft(GI), u.Ft(G2)) = s.Ft(TICK) + (s.TIMER - 1)ci.

This suffices to show the initial condition.

Now consider a step (j' , (7r, t), a) of time(A, b), where s' is a reachable state of time(A, b),
and suppose that u' is a reachable state of B such that ui' E f(s'). We argue that (7r,t) is
enabled in u'. The first thing we must show is that

t < min(u'.Lt(GI), u'.Lt(G2)).

If this is not the case, then
t > min(u'.Lt(Gi), u.Lt(G2)).

Since s' is a reachable state of time(A, b), Lemma 4.1 implies that s'.TIMER > 0. Then since
u' E f(s'), it follows that either

min(u'.Lt(Gi), u'.Lt(G2)) > s.Lt( TICK)

or min(u'.Lt(GI), u'.Lt(G2))> '.Lt(LOCAL).

Therefore, either
t > a'.Lt(TICK) or t > s'.Lt(LOCAL).

Either case contradicts the operation of time(A, b).

The other thing we must show is that if 7r = GRANT, then

max(u'.Ft(Gi),u'.Ft(G2)) _ t .
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Since (GRANT, t) is enabled in s', it must be that s'.TIMER < 0, and Lemma 4.1 then

implies that s'.TIMER = 0. Since u' E f(s'), we have

max(u'.Ft(Gl), u'.Ft(G2)) < s'.Ct .

This mears that
max(u'.Ft(Gl), u'.Ft(G2)) < s'.Ct < s.Ct =t

as needed.

Now we consider cases.

Case 1: 7r = GRANT. Then define u so that

u.Ft(Gi) = 0,

u.Lt(Gl) = oo,

u.Ft(G2) = t + k "cl - I and

u.Lt(G2 ) = t + k. C2 + I-

(Other components are exactly as in s.) The preconditions already checked imply that (u', (7r, t), u)

is a step of B. It remains to show that u E f(s). The effects of the GRANT action imply that
s.TIMER = k > 0. Thus, we must show that

min(u.Lt(GI), u.Lt(G2)) > s.Lt(TICK) + (s.TIMER - 1)c2 + 1

and
max(u.Ft(Gj), u.Ft(G2)) : s.Ft(TICK) + (s.TIMER - 1)c1 .

To see the first inequality, note that

s.Lt(TICK) < t + c2 ;

thus,

s.Lt(TICK) + (s.TIMER - 1)c2 + 1

< t+c 2 +(k-1)c 2 +l

= t+k c 2 +l,

which shows the first inequality.

To see the second inequality, note that max(u.Ft(Gj),u.Ft(G2 )) = t + k • cl - 1. The

definition of fime(A,b) implies that

s.Ct < s'.Lt(LOCAL).
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Lemma 4.1 implies that

s'.Ft(TICK) _ s'.Lt(LOCAL) + cl - I.

Therefore,

s.Ft(TICK) + (s.TIMER - 1)cj = s'.Ft(TICK) + (s.TIMER - 1)cl

> s'.Lt(LOCAL) + Cl - I + (s.TIMER - 1)Cl

> t + c, - l+ (.TIMER- 1)cl

= t+k cl-l,

which implies the second inequality.

Case 2: r = ELSE. Then define u so that

u.Ft(GI) = u'.Ft(Gi),

u.Lt(GI) = u'.Lt(G1),

u.Ft(G2 ) = u'.Ft(G2), and

u.Lt(G2) = u'.Lt(G2).

(Other components are exactly as in a.) The preconditions already checked imply that (u', (ir, t), u)

is a step of B. It remains to show that u E f(a). Since (ELSE, t) is enabled in time(A,b), we

have '.TIMER > 0. Since s.TIMER = s'.TIMER, we also have .TIMER > 0. Thus, we
must show that

min(u.Lt(Gi), u.Lt(G2)) _ s.Lt(TICK) + (s.TIMER - 1)c2 + 1,

and
max(u.Ft(G),u.Ft(G2)) _ s.Ft(TICK) + (s.TIMER - 1)cl.

To see the first inequality, note that the inductive hypothesis implies that

min(u'.Lt(Gi), u'.Lt(G2 )) >_ s'.Lt(TICK) + (s'.TIMER - 1)c2 + I.

But
min(u.Lt(Gi), u.Lt(G2)) min(u'.Lt(Gi), u'.Lt(G2)),

and
s.Lt(TICK) s'.Lt(TICK).

Therefore, the first inequality holds.

To see the second inequality, note that the inductive hypothesis implies that

max(u'.Ft(Gi), u'.Ft(G2)) !5 s'.Ft(TICK) + (s'.TIMER - 1)c1 .
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But
max(u.Ft(Gj), u.Ft(G2)) = max(u'.Ft(01 ), u'.Ft(G2)),

and
s.Ft(TICK) = s'.Ft(TICK).

Therefore, the second inequality holds.

Case 3: 7r = TICK. Then define u so that

u.Ft(GI) = u'.Ft(Gi),

u.Lt(Gi) = u'.Lt(Gi),

u.Ft(G2) = u'.Ft(G2), and

u.Lt(G2 ) = u'.Lt(G2).

(Other components are exactly as in s.) The preconditions already checked imply that (u', (ir, t), u)
is a step of B. It remains to show that u E f(s). Note that s.TIMER = s'.TIMER - 1.
There axe two subcases to consider.

1. s.TIMER > 0.

Then we must show that

min(u.Lt(GI), u.Lt(G2)) >_ s.Lt(TICK) + (s.TIMER - 1)c2 + 1,

and
max(u.Ft(Gi), u.Ft(G2 )) s.Ft(TICK) + (s.TIMER - 1)cl.

To see the first inequality, note that the inductive hypothesis implies that

min(u'.Lt(G1), u'.Lt(G2)) >_ '.Lt(TICK) + (s'.TIMER - 1)c2 + 1.

But
min(u.Lt(GI), u.Lt(G2 )) = min(u'.Lt(Gi), u'.Lt(G2)),

s.Lt(TICK) = t + c2 ,

and
t < s'.Lt(TICK).

Therefore, we have

min(u.Lt(GI), u.Lt(G2 )) = min(u'.Lt(G), u'.Lt(G2))
> s'.Lt(TICK) + (s'.TIMER- 1)c2 + 1

= s'.Lt(TICK) + ((s.TIMER + 1) - 1)c2 + I

= c2 + s'.Lt(TICK) + (s.TIMER - 1)c2 + I

= s.Lt(TICK) - t + s'.Lt(TICK) + (a.TIMER - 1)c2 + I.
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Since the definition of time(A, 5) implies that

8'.Lt(TICK) ! t,

the first inequality follows.

To see the second inequality, note that the inductive hypothesis implies that

max(u'.Ft(G1 ), u'.F(G2 )) s'.Ft(TICK) + (s'.TIMER - 1)ci.

But
max(u.Ft(Gi), u.Ft(G2 )) = max(u'.Ft(G ), u'.Ft(G2 )),

and
a.Ft(TICK) = t + ci.

Furthermore, by the definition of time(A, b),

t > s'.Ft(TICK).

Hence,

max(u.Ft(Gi), u.Ft(G2)) = max(u'.Ft(GI), ts'.Ft(G2 ))
5 .s'.Ft(TICK) + (s'.TIMER - l)cl

= S'.Ft(TICK) + ((s.TIMER + 1) - 1)cl
= c, + s'.Ft(TICK) + (s.TIMER - 1)cl

5 cl + t + (s.TIMEI? - 1)cl

=s.Ft(TICK) + (s.TIMER - cl

as needed.

2. &.TIMERO= .

Then we must show that

min(u.Lt(Gi ), u.Lt(G2)) ! s.Lt(LOCAL)

and
max(u.Ft(Gj),u.Ft(G2)) <- S.Ct.

Note that s'.TIMER = 1.

To see the first claim, note that a'.TIMER > 0, so the inductive hypothesis implies that

min(u'.Lt(Gi),tt'.Lt(0r4) s'.Lt(TICK) +(s'.TIMER -1)C 2 +1
=S'.Lt(TICK)+l1
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Furthermore, note that the definition of time(A, b) implies that

t < s'.Lt(TICK).

Hence

min(u.Lt(GI),u.Lt(G2)) = min(u'.Lt(Gi),u'.Lt(G2 ))

> s'.Lt(TICK) + 1.

> s'.Ct + l

> s.Lt(LOCAL),

which shows the first claim.

To see the second claim, note that s'.TIMER > 0, so the inductive hypothesis implies
that

max(u'.Ft(Gi),u'.Ft(G2 )) :_ s'.Ft(TICK) + (s'.TIMER- 1)cl

= s'.Ft(TICK).

Now, s'.Ft(TICK) < t, so that

max(u'.Ft(Gi),u'.Ft(G2)) < t.

But

max(u.Ft(Gi),u.Ft(G2)) = max(u'.Ft(G1 ),u'.Ft(G2))

< t = s.Ct ,

as needed.

A.3 Proof of Lemma 6.2

Proof: We begin by giving an explicit description of Bk, by instantiating the general defi-
nition of time(A,U) for the case where U = Uk. We use this explicit description in the proof
below.

Each state of Bk has component As, holding a state of A, plus Ct, Ft(k, n), Lt(k, n),
Ft(SIGNALi) and Lt(SIGNAL), for every i, 0 5 i < k, Ft(NULL) and Lt(NULL). Each initial
state of Bk consists of an initial state s of A, plus Ct = 0, Ft(NULL) = ni, Lt(NULL) = n2,
all other Ft components equal to 0, and all other Lt components equal to oo. If (ir, t) is an
action of Bk, then (s', (ir, t), s) is a step of Bk exactly if the following conditions hold.

1. (s'.As, ir, s.As) is a step of A.
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2. s'.Ct < t = s.Ct.

3. t < s'.Lt(k, n), t < s'.Lt(SIGNAL,) for all i, 0 < i < k, and t < s'.Lt(NULL),

4. If r = SIGNALi, for 0 O i < k - 1, then

(a) s'.Ft(SIGNAL,) < t,
(b) s.Ft(SIGNALj) = 0 and s.Lt(SIGNALi) = 00,

(c) s.Ft(SIGNALj+i) = t + dl and s.Lt(SIGNALi+i) = t + d2 , and

(d) s.Ft(k,n) = 9'.Ft(k,n), 9.Lt(k,n) = s'.Lt(k,n), and s.Ft(C) = s'.Ft(C) and
s.Lt(C) = s'.Lt(C) for all partition classes C {SIGNALI, SIGNAL+1 }.

5. If ir = SIGNALk, then

(a) s'.Ft(SIGNALk) < t,

(b) s.Ft(SIGNALk) = 0 and s.Lt(SIGNALk) = 00,

(c) s.Ft(k, n) = t + (n - k) . di and s.Lt(k, n) = t + (n - k) . d2 , and

(d) s.Ft(C) = s'.Ft(C) and s.Lt(C) = .'.Lt(C) for all partition classes C 5 SIGNALk.

6. If r = SIGNALi, for k + 1 < i < n - 1, then

(a) s.Ft(k,n) = s'.Ft(k,n), s.Lt(k,n) = s'.Lt(k,n), and s.Ft(C) = s'.Ft(C) and
s.Lt(C) -s'.Lt(C) for all partition classes C.

7. If r = SIGNAL,, then

(a) s'.Ft(k, n) < t,

(b) s.Ft(k, n) = 0 and s.Lt(k, n) = oo.

(c) s.Ft(C) = s'.Ft(C) and s.Lt(C) = s'.Lt(C) for all partition classes C.

8. If 7r = NULL then

(a) 3'.Ft(NULL) < t,

(b) s.Ft(NULL) = ni and s.Lt(NULL) = n 2, and

(c) s.Ft(k,n) = s'.Ft(k,n), .Lt(k,n) = s'.Lt(k,n), and s.Ft(C) = s'.Ft(C) and
s.Lt(C) = s.'.Lt(C) for all partition classes C 0 NULL.

The description of Bk-.1 is similar, but with k - 1 replacing k. We now present the proof
of Lemma 6.2. Let s and u be the unique start states of Bk and Bk-1, respectively. Then
u.Lt(k - 1, n) = o and u.Ft(k - 1,n) = 0, so the inequalities clearly hold, implying that
u E fk(s).

Now consider a, step (s',(7r,t),s) of Bk, where 3' is a reachable state of Bk, and suppose
that u' is a reachable state of Bk-1 such that u' E fk(s'). We first argue that (7r,t) is enabled
in u'.
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There are two key facts that we must show. The first is that

t < u'.Lt(k - 1,n).

The inductive hypothesis implies that:

J s'.Lt(k, n) if s'.FLAGi = true

u'.Lt(k - 1, n) for some i,k + 1 < i < n
s'.Lt(SIGNALk) + (n - k)d 2 if s'.FLAGk = trueo0 otherwise,

First suppose that u'.Lt(k- 1, n) _ s'.Lt(k, n); then since (7r,t) is enabled in s', it must be that
t < s'.Lt(k, n). Thus, t < u'.Lt(k - 1, n) in this case. Second, suppose that u'.Lt(k - 1, n) _
s'.Lt(SIGNALk) + (n - k)d2  _ s'.Lt(SIGNALk). Since (r, t) is enabled in .', it must be that
t < s'.Lt(SIGNALk). Therefore, t < u'.Lt(k - 1, n) in this case. The only remaining case is
that u'.Lt(k - 1, n) = oo, in which case the condition clearly holds.

The second key fact to show is that if ir = SIGNALn, then

t > u'.Ft(k - 1,n).

So suppose that r = SIGNAL,. Since r is enabled in s', it must be that a'.FLAG, = true.
Since u' E fk(s'), s'.FLAGk = true, and k < n, the definition of fk implies that

u'.Ft(k - 1, n) !_ s'.Ft(k, n)

But t > s'.Ft(k, n) since (7r, t) is enabled in s'. Therefore, t > u'.Ft(k - 1, n), as needed.

Thus, (7r,t) is enabled in u'. To complete the proof, we must show that (for 8', u' and
7r as described above) there exists a state u of Bk-1 such that (u', (ir, t), u) is a step of Bk-1
and u E fk(s). We define u to be the unique state defined by u.As = s.As and Ft and Lt
components as implied by the construction of Bk-1, such that (u, (ir, t), u) is a step of Bk-.1;

it remains to show that u E fk(a). We consider cases.

Case 1: 7r = SIGNALi, for 0 < i < k - 2.

Then u.Ft(k - 1, n) = 0 and u.Lt(k - 1, n) = oo, which immediately imply the inequalities.
Also, since u.Ft(SIGNAL,) = s.Ft(SIGNALi) = 0 and u.Lt(SIGNALi) = s.Lt(SIGNALi) =
oo, and all components of u' other than u'.Ft(k - 1,n) and u'.Lt(k - 1,n) have the same
value as the corresponding components of s', it follows that all components of u other than
u.Ft(k - 1, n) and u.Lt(k - 1, n) have the same value as the corresponding components of s.
Therefore, u E fk(s).

Case 2: r = SIGNALk_.1

Thc

u.Lt(k-l,n) = t+(n-(k-1))d2 =t+(n-k+1)d 2,
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u.Ft(k-1,n) = t+(n-(k-1))d =t+(n-k+1)dl,

s.Lt(SIGNALk) = t + d2,

a.Ft(SIGNALk) = t + dl,

and s.FLAGk = true.

Thus we have

u.Lt(k - 1, n) = t + (n - k + 1)d2 = t + d2 + (n - k)d 2 = s.Lt(SIGNALk) + (n - k)d 2

and

u.Ft(k - 1,n) = t + (n - k + 1)dl = t + di + (n - k)dj = s.Ft(SIGNALk) + (n - k)dl.

This implies the inequalities. The equivalence of corresponding components of u and s is
straightforward, as in Case 1.

Case 3: v = SIGNALk.

Then

u.Lt(k - 1,n) = u'.Lt(k- 1,n),
u.Ft(k - 1, n) = u'.Ft(k - 1, n),

,.Lt(k, n) = t + (n- )d2,
s.Ft(k,n) = t+(n-k)dl,

s3'.FLAGk = true,

and s.FLAGk+l = true.

Since 8.FLAGk+l = true, the inequalities we need to show are:

u.Lt(k - 1, n) > s.Lt(k, n) and u.Ft(k - 1, n) < s.Ft(k, n).

For the upper bound,

u.Lt(k - 1, n) = u'.Lt(k - 1, n)
> s'.Lt(SIGNALk) + (n - k)d 2

since u' E fk(s') and s'.FLAGk, = true,

> t+(n-k)d2

since t < s'.Lt(SIGNALk) by the fact

that (r, t) is enabled in s',

= 9.Lt(k, n).
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For the lower bound we get, using similar reasoning,

u.Ft(k - 1, n) = u'.Ft(k - 1, n)
< 8'.Ft(SIGNALk) + (n - k)dl

< t+(n-k)dl
IS.Ft(k, n).

The equivalence of corresponding components of u and . is again straightforward.

Case 4: ir = SIGNAL,, for k + 1 <i < n - 1.

This step does not change any Ft or Lt component of either Bk or Bk-1. Thus, the
inequalities and equivalences are all preserved.

Case 5: 7r = SIGNALn.

Then u.Lt(k - 1,n) = co and u.Ft(k - 1,n) = 0, so that the inequalities axe immediate;
the equivalences are again straightforward.

Case 6: 7 = NULL.

This step does not change any of the Ft or Lt components involved in the inequalities, so
that the inequalities are preserved. Since the only changes to Ft and Lt components made by
this step axe to set u.Ft(NULL) = s.Ft(NULL) = t + n1 and u.Lt(NULL) = s.Lt(NULL) =
t + n2, the equivalences are again straightforward.
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