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A BAYESIAN APPROACH TO ACOUSTIC IMAGING AND OBJECT

CLASSIFICATION BY HIGH FREQUENCY SONAR

INTRODUCTION

Simply stated, the objective of this work is to determine an optimum (in some sense)

space-time signal processor for object classification by a high frequency sonar. Only active sonar

operating at a frequency and range of the order or 10 kHz (or greater)d and several kilometers,

respectively, is addressed. Applications of such a sonar are to underwater vehicles, principally

weapons and Unmanned Undersea Vehicles (UUVs). The approach is to formulate the

classification problem as a statistical decision among several alternative hypotheses, each

corresponding to a particular class of true or false target. (The null hypothesis corresponds to only

noise in the data.) The criterion for optimality of the test is the Bayes risk, which is to be

minimized. This criterion leads to a test based on the likelihood ratio, the ratio of the likelihood

functions of the measured data. The data consist of a discrete set of time series representing

measurements of the received pressure field at the various positions of the transducer elements in

the sonar array. In general, the measurements can be represented as a vector-valued stochastic

processes x(t), the components corresponding to the measurements at the element positions within

the receive array. The process x(t) is composed of signal and noise, also vector-valued processes.
The signal's statistical properties vary among the alternative hypotheses that correspond to the

various classes of real and false targets. As shown subsequently, the signal itself is modeled as a

randomly weighted sum of time-delayed replicas of the waveform of the transmitted signal. The

received signal is then statistically characterized by a multivariate probability density function (pdf)

of the random weights. The pdf (its family or, more simply, its moments) differs for each of the
various signal (i.e., target) classes. The principal results in this report are derived assuming a

Gaussian multivariate pdf; however, the non-Gaussian case as well as more general signal models

are discussed.

In summary, the active sonar classification is approached as a likelihood ratio test of multiple,

alternative hypotheses versus a noise-only null hypothesis. The data are, in general, vector-valued

stochastic processes representing measurements from individual elements within a sonar array. An

explicit form is assumed for the received signal model, which is statistically characterized for each



alternative hypothesis (target class). Explicit results are derived for the likelihood ratio, and

various performance characteristics are shown. Moreover, the optimal processor is examined from

the perspective of acoustic image processing. Generalizations of the results are indicated and in

some cases addressed in detail (e.g., the case of moving targets).
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CLASSIFICATION PROBLEM

The sonar detection problem is usually formulated as a statistical hypothesis test (references
1 and 2), and the test is binary. Under the null hypothesis )'b, the observations or data (i.e., the
sensors' outputs) consist of noise alone; under the alternative hypothesis H, the observations

consist of noise and a signal that is the sensors' response to the presence of a target or other
interesting object. The sonar classification problem can be similarly formulated except that the test
is not binary. What distinguishes the classification problem is that there are at least two alternative
hypotheses because, in addition to the signal produced by the real target, another signal can appear

in the observations. In the case of active sonar, this other signal results from the sensors'
responses to the pressure field scattered from an object, distinct from the real target; but it

resembles in some significant way the signal produced by the real target.

In general, there may be several of these false-target signals each corresponding to a distinct

class of scattering objects (either natural or man-made) and each, along with additive noise,
representing additional alternative hypotheses regarding the constitution of the data. It follows that
the classification problem can be formulated as a multiple hypothesis test with a null hypothesis 90

and alternative (exhaustive and mutually exclusive) hypotheses 97(, where i = 1,2,..., I, and I > 1:

5% : x(t) --n(t), (la)

Hi: x(t) = si(t) + n(t), i = 1,2.1, (1b)

where

t denotes time, and T1 < t < T2, T, and T2 being the endpoints of the observation interval,
x(t) = [xI(t), x2(t),...,XN(t)] " , an N x I complex vector,

xn(t) denotes the output from nth sensor element (e.g., the nth transducer element in an

acoustic array),

si(t) = [Sil,(t), si2(t),..., SiN (t)]T, an N x 1 complex vector,

Sin (t) denotes the signal component in the nth sensor output,
n(t) = [nl(t), n2(t),..., nN(t)IT, an N x 1 complex vector,

nn(t) denotes the noise component in the nth sensor output,

n = 1,2,..., N, and vT denotes the transpose of any vector v.

The vector x(t) is a stochastic process that is the output (voltage) of an array of acoustic

transducers and comprises the data. Let sl(t) be the signal component of x(t) corresponding to the

3



real target; si(t) is the false signal component in x(t) corresponding to each of the false target
hypotheses Hi, i = 2,3,...,I. The statistical hypothesis test decides among ,%, H,..., 'j based on

measurement over the interval [T1,T2] of x(t) or, more precisely, realizations of the vector-valued
process x(t). Note that, in general, si(t) is a stochastic process, i = 1,2,...,I.

These processes are assumed to be zero-mean, and the signals and noise are uncorrelated;

that is,

E[n(t)] = 0, (2)

E[si(t)] = 0, i = 1,2,...,I, (3)

and thus

E[x(t)IlHj] = 0, i = 0,l1....I, (4)

and
E[n(tl) st (t2)] = 0, (5)

for all t, tI, t2 in [T1,T2] (vt denotes the complex conjugae- transpose of any vector v). The
N x N covariance matrices Kn (tI,t 2 ) and Ksi (tl,t2) are defined by

Kn(tt,t 2) - E[n(tl)n (t2 )], (6)

Ksi(tt,t 2) - E[si(tt)s4(t 2)], i = 1,2,...,I, (7)

and

Kxi(tl,t 2) = Efx(tl)x t (t2)lHi], i = 0,1 ,.... (8)

for all t,t 2 in[T1 ,T2]. Then, from equations (1.) and 1 5 1.

K xi(tl,t2) = Ksi(t,t2) + Kn(t,t2), i = 1.2 .. A. (9)

and
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Kx0 (t1,t2) = Kn(t 1 ,t2 ),

for all tl,t 2 in [T1,T21. Note that, from equation (8),

Kt (tl,t 2 ) = Ki(t2 ,tl), (10)

for all tl,t 2 in[T1 ,T2] and i 0,1,2,...,I.

For the binary case (I = 1), the optimal (Bayesian) test for vector-valued processes (N > 1)

is derived in references 3 and 4 based on the vector-valued Karhunen-Lo~ve expansion (reference

5). The optimal (minimum probability of error) test in the general case of multiple alternative

hypotheses (I > 2) is given in reference 6, but is restricted to the scalar case (N = 1) and is not

directly applicable to multiple channels (sensors). Multiple alternatives and vector-valued data are

treated in reference 7, but only when the signal vector is assumed known a priori for all alterna-

tives. In a treatment of diversity reception (reference 8), a similar case is addressed wherein a

multiplicative, random disturbance is present along with additive noise; however, the multiplicative

noise is identical under all alternative hypotheses. Hence, such a model does not apply to the

classification problem as formulated here. When the signal and noise processes are stationary,

then, of course, the covariance matrix, of the data x(t) can be written as Kxi(tl,t2) = lxi(ti - t 2 ),

for all ti,t2 in [T1,T2] and i = 0,1,2,...,I. In this case the analysis proceeds using the spectral

density matrix which exists as the Fourier transform of Rli 0i - t2). This is well-covered in the

literature; references 9 - 13 are representative. The signals and noise received by passive sonar

can usually be assumed to be stationary. However, when active sonar is used, the signals and

noise (reverberation) are inherently nonstationary; they are received as the pressure field

backscattered from complex objects (i.e., objects with nonuniform scattering strength). Therefore,

it is the inherent nonstationarity of the signals that is the basis for the discrimination. To assume

stationarity would be to overlook a characteristic feature of the signal that reveals the spatial

character of a scattering object.

In addition to reference 6 cited previously, there are theoretical treatments of the general

classification problem, references 14 and 15, for example. While these address the case of

I _> 2, they typically consider only the case of a scalar process (N = 1). Moreover. they do not

introduce models of the signal processes (other than the Gaussian assumption). Signals must be

5



modeled to infuse into the classifier their distinguishing physical characteristics. In the next

section, a simple but general model of the signal processes is introduced; it applies to active sonar.

In summary, the unique contribution presented herein is the systematic integration of all of

the essential features of the active sonar classification process: (1) multiple alternative hypotheses

(I >_ 2); (2) multiple channels (sensors) represented by vector-valued processes (N > 2);

(3) a stochastic, but not necessarily stationary, model of the alternative signal processes that

applies to the active sonar problem; (4) an optimal (Bayesian) decision rule where the costs of

errors (incorrect decisions) are not necessarily identical. Moreover, a concise expression for the

optimal processor is derived.

6



SIGNAL MODEL

The ith signal vector is, as in equation (1), given by

Si(t) = [si1(t),si2(t) ..... SiN (t)] T ,  i= 12...I

Let the nth component of si(t) be represented as a sum of time-delayed and amplitude-weighted
replicas of the transmitted waveform f(t); i.e., let, for n = 1,2,...,N,

Ki

sin(t) = I aikf(t - 'ink), T1 < t < T2, (11)
k=1

where, for each i = 1,2,...I, {aik) Ki is a sequence of complex random variables with the following

properties:

E(aik) = 0, (12)

and

E(aj al) = [Kai]j18 ik'  (13)

where j, k, 1 = 1,2,...,Ki; Kai is the (Ki x Ki) covariance matrix of the random variables
aik} Ki i 1,2,...,I; and 8 ik is the Kronecker delta function.

I 1

If it is assumed that a given object - the ith one - is a set of Ki distinct stationary

scatterers, then the signal model, equation (11), is interpreted as follows. The index k is over the

set of scatterers: each value of k corresponds to one and only one scatterer, aik is its scattering
coefficient; -rink is the delay from the instant (t = 0) of transmission (from a reference transducer
element in the array) to reception by the nth element of the array of the waveform scattered by the
kth scatterer. Under this interpretation, analogous to the so-called Lagrangian (or material)
description in fluid mechanics, Ki and the delays (injk}K i are not fixed at known values within a

reference coordinate system. In general, they would be treated as random variables (at least for
naturally occurring false targets); thus, specification of their joint distribution function is required.
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Moreover, Ki must, in general, be assumed to be a random variable having a discrete distribution

such as the Poisson, for example. This random model obtains from the empirical observation that

naturil objects that appear as false targets are, at sufficiently high frequencies, ensembles of

reflecting facets whose spatial distributions are random. Since determination of realistic probability

distribution functions of the appropriate random variables is difficult, the Lagrangian description is

problematic and will not be further considered.

A more suitable alternative is the Eulerian (or spatial) description. Following this

description, aik is interpreted as the random scattering coefficient corresponding to a specific

volume element fixed within a given (three-dimensional) coordinate system. The origin of the

coordinate system is conveniently fixed at some reference point, a transducer element in the

receiving array, for example, as in figure 1. The figure illustrates an example with spherical

coordinates and a unifomn planar array in a nonrefractive medium. "I he set of volume elements

defines a region in the medium, a so-called test region, for which one and only one of {q}I is

true. More precisely, the test region is defined as a set of disjoint volume elements called cells that,

it is assumed, contain at most one scatterer. Otherwise, the cell size remains, for now,

unspecified. When the test region is occupied by the ith object, the scattering from the region is

characterized by the set of coefficients {aki1 I, for i = 1,2,...,I. The delay 'ti1k is now the delay

from t = 0 to reception at the nth transducer element of the waveform scattered from the kth cell

(or, more precisely, that part of the ith object that occupies the kth cell). It can be assumed that, for

each X-; i = 1,2,... I, the test region and its decomposition are specified a priori. Thus, the

number of cells Ki and the position of each cell (and, hence, the values of the delays {(tjikJ Ki ) are

specified constants for all i = 1,2,...,I. Of course, as search for the actual target progresses, the

test region will shift in some prescribed way through the insonified volume during each transmit

cycle. The values of (-rink Ki and Kti will change accordingly.

By adopting the Eulerian description, the randomness of the signal is characterized in the

model solely by the statistical properties of the coefficients (ajk I , which, to second order, are

specified by the covariance matrix Kai, i = 1,2,...,I. In what follows, Kai is not required to be of

full rank; therefore, the model allows for coherence among the waveforms scattered from each cell.

In practice, the dimensions and decomposition of test regions and estimates of Kai will be

determined directly from both experimental data and calculations from scattering models of the

hypotheszed cargets. Of course, the dimensions of the test regions would match, roughly at least,

the characteristic dimensions of the targets.
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To summarize, equation (11) is rewritten in vector form:

si(t) = Fi(t)ai, T1 < t 5 T2, i = 1,2,...,I, (14)

where si(t) is as in equation (1); ai = [ail,ai2,...,aiKi]T, a Ki x 1 complex vector; Fi(t) is an

N X Ki complex matrix with elements given by [Fi(t)]nk = f(t - Tin), n = 1,2,...,N and

k = 1,2,...Ki. The following assumptions pertain to equation (14):

1. Implicit in equation (14) is that scattering from a given cell is frequency independent at

least over the band of f(t); otherwise, the summand on the right side of equation (14) would be a

temporal convolution.

2. The test region comprises Ki disjoint volume elements (cells) that contain, at most, one

scattering facet. 00

3. f(t), the transmit waveform, is known and has finite energy J If(t)12dt = Ef;

otherwise, f(t) is arbitrary, as consistent with assumption 1.

4. E(aJ- = 0, i = 1,2....I, as previously indicated.

5. Neither the scatterers nor the sonar platform is in motion (this assumption will be

relaxed later).

It follows from equation (14) that the covariance matrix of si(t) is given by

Ksi(tl,t 2) = Fi(ti)Kai Fi(t 2), (15)

and

E[si(t)] = 0, i = 1,2,...,I, (16)

reiterating equation (3). Furthermore, from equation (15), the trace of Ksi(t,t) is given by,

for i = 1,2,...,I,

tr[Ksi(t,t)] = tr[Ft(t)Fi(t)Kai], (17)

and, therefore, the total energy in the received signal is given by

10



f tr[Ksi(t,t)ldt = NEf tr[@iKai], (18)
T2

where Di is the positive definite, Hermitian (Ki x Ki) matrix,

T"2

i = - J F T (t)Fi(t)dt, (19)

and is the normalized waveform correlation matrix. If, for example, the scattering is incoherent
from cell to cell, then the matrix Kai is diagonal and equation (18) becomes

TI

f tr[Ks(t,t)]dt = NEf tr[Kai], (20)
T2

as expected.

Note that this kind of signal model is more flexible than it might first appear. The matrix Kj

can account for coherence among the signals scattering from the cells in the test region. As
mentioned above, incoherent scattering is characterized by letting Kai be diagonal (but not

necessarily of full rank, since some diagonal terms may be identically zero when the corresponding

cell is empty). When coherent scattering occurs, Kai will have off-diagonal terms accounting for

correlations between pairs from { ai } 1K corresponding usually to neighboring cells.

NOISE MODEL

The zero-mean noise process n(t) in equation (1) has covariance matrix Kn(t1,t 2) such that

T2

f tr[Kn(t,t)Idt <oo . (21)
T1



It is assumed that n(t) always contains a white noise component; the colored noise component has
a covariance matrix with elements that are uniformly bounded and continuous for all t1,t2 , in

[T1 ,T2 ].

Furthermore, it is assumed that for the noise process n(t) there exists a reversible whitening
filter with an impulse response (N x N) matrix W(tl,t 2); so that if w(t) is a vector-valued, white

noise process, then

T2

w(t) = f W(t,'t)n(t)d't, T1 
< t 5 T2. (22)

T1

which leads to

T2 T2

2 8(tl - t2 )I = ; W(tl,tc)Kn(t,')W*(',t 2 )dtdT' (23)

for ti, t2 in [T1,T2]; N./2 is the spectral density level of the white noise; I is the N x N identity

matrix. Define y(t) by

T2

y(t) = W(t,r)x(r)d'r, T1 -< t < T2; (24)

then the model given by equations (1) and (14) is transformed to

910: y(t) = w(t), (25a)

Hij: y(t) =G(t)ai + w(t), (25b)

where Gi(t) is the N x Ki matrix given by

T2

Gi(t)= W(t,t)Fj(t)dr, (26)

12



for i = 1,2,...,I and T1 < t -<T2.Equations (25) are of the same form as equations (1) and (14):

Gi(t) replaces Fi(t), both being the known, matrix-valued functions that pre-multiply the random
vector ai. Because W(tl,t 2) is reversible, it can be applied to x(t), as in equation (24), to facilitate

the solution to the optimal decision problem, i.e., the optimal hypotheses test given the data, x(t).

The reversibility of W(tl,t2) is defined as the existence of an inverse W-(t 1 t 2) such that

T2

f W-'(tt)W('t1,t2)dr = 8(t, - t2 )l, (27)
T1

for tl,t2 both in [T1,T 2]. The reversibility of W(tl,t2) is a sufficient condition for the equivalence
of equations (25) and equations (1) and (14) for both the decision problem and the estimation

problem (reference 1). The estimation problem will be discussed briefly in the next section. In
what follows, it is assumed that the noise process is white and that the form given by equations (1)

and (14) holds, understanding that an identical form is obtained if the noise is colored and a

(reversible) prewhitening filter is applied as explained.

ESTIMATION OF ai

Before developing the optimal hypothesis test (classifier), it is instructive to first determine

the optimal estimator of the random vector ai from the data x(t), which under 9% (i = 1,2,...,I) are

given by the linear model (combining equations (lb) and (14))

x(t) = Fi(t)ai + n(t), T1 < t s T2. (28)

An estimator ii is sought that, under t(, is a minimum variance estimator of ai and that is

unbiased and linear as follows:

E(fiij) = E(a), (29)

and

T 2

Ai f Hi(t)x(t) dt, i = 1,2,...,I, (30)
T3

13



where Hi(t) is a Ki x N matrix function to be determined. Note that E(ai) = 0 and E[n(t)] = 0;

therefore, E[x(t)I[J = 0; and, thus, E(Aj) = 0, for i = 1,2,...,I. Let ei represent the estimation

error, ej = i - aj, and consider the quadratic form q(i) given by

q(ii) = E(e VeilH),

where V is any Ki x Ki positive definite matrix and -i is any estimator that satisfies equations (29)

and (30). Then q(-i) is minimized when Si = i and Hi(t) satisfies the special form of the Wiener-
Hopf equation (references 18 and 19) given by

Tj

E[aixt(t)(9j] = f Hj(tr)E[x(T)xt(t)[jl]dr, (31)
T2

for i = 1,2,...,I and T1 < t 5 T2. From equation (28),

E[aixt(t)[21i] = Ka F (t), i = 1,2,...,I, (32)

since E[aint(t)] = 0 for all t in [TI,T 2]. From equations (9) and (15),

E[x(tl)xt(t 2 )l i] = Fi(tj)KaiFt(t2) +-N 8(tl - t2)I, i = 1,2,...,I, (33)

where, as explained before, it has been assumed that

Kn(t,t 2) =- 8(tI - t2)1, Tj < t1 ,t2 < T2.

Equation (31) becomes

TI

K iFt(t) = f Hi(')Fi()dt K8 iF (t) + N9Hi(t), (34)
T2
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for i = 1,2,...,1 and T1 < t _ T2. Now, let Hi(t) = H Ft(t), where Hi is a Ki x Ki matrix to e
determined, and substitute into equation (34). This yields, for i = 1,2,...,1, the solution for Hi

given by

Hi = Ka I + fiKai, (35)

where as before Di is the normalized waveform correlation (Ki x Ki) matrix given by

T"2

1Di f F (t)Fi(t)dt. (36)(li-NEf TF

Note that equation (34) is a matrix form of the Fredholm integral equation of the second kind. A
unique solution exists since, in this case, the components of the matrix Ksi(tl,t 2) = Fi(t)KaiF (t2)
are continuous in t1, t2 over [T1,T2] and are uniformly bounded. The optimal (under 94) estimator

ii is then given by (from equations (30) and (35)):

T2

2Ka [I + PNiiKa;] f F i (t)x(t)dt, i = 1 .... I, (37)

2NEf
where PN = No

It can be shown, using equation (37), that the estimation error covariance matrix is given by

E[(Sii-ai) (i- ai)tl- = Kai[I + PNt)K,,]I . I = 1.2. . (38)

Note that this estimation error covariance is conditional on 4 being true. Of course, the estimator
ii given by equation (37) applies only when .' is true: t[s ipphcability will become apparent when

the optimal classifier is developed in subsequent sections.

Equation (38) shows explicitly the dependence of the e,,timation error covariance on a priori

information regarding the ith scattering object's spaual properties. Moreover, the dependence on
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system characteristics - the array geometry and the transmitted waveform - is explicitly
represented by the matrix (Di. Thus, the effect of alternative array and waveform designs can be

evaluated directly through equation (38). For example, the performance of sparse (two-

dimensional) arrays of receive transducers can be assessed for acoustic imaging applications.

OPTIMAL BAYES CLASSIFIER

The optimal classifier considered here is a test of the multiple hypotheses , that is
optimal according to the Bayes criterion. An optimal Bayes test is one that minimizes the risk (i.e.,
the expected loss) in applying a given decision rule. Theoretical details and proof can be found in a
variety of texts (references 1, 20, and 21). The Bayesian risk !&is defined as (reference 20)

I I
R= 2:Y cijpjPr[Jdrj], (39)

i=0 j=0

where cij is the cost of deciding hypothesis 9J when Hj is true; pj is Pr(N, the a priori probability

of 9; Pr[99l] is the probability that a given decision rule chooses 4( when 94 is true;

i, j =0,1,2,...,I. Note that

Ip=I

ij=i=0

and

Pr[) ijkij p(xlHj)dx, (40)

where p(xl- ) is the conditional probability density function of a measurement vector x given 91j;

Z1 is a region in the sample space of x such that 9( is chosen if a realization of x is contained in Zi;

the regions {ZJ}0 are disjoint and cover the entire sample space. Here x instead of x(t) is used for
reasons given in the next section. It can be shown (reference 20) that the risk Ris minimized by

the following decision rule:

16



choose Hk if Dk(x) = max (Do(x),D1 (x),...,Dj(x)), (41)

where Di is the so-called discriminant score defined as

Di(x) =- cijpjp(x 1H), i = 0,1,2,...,I. (42)
j=0

Note that for the special case of cij = 1 - 5ij, Ris the total probability of error and Di reduces to

Di(x) = pip(xO ) + c, i = 0,1,2,...,I, where c is a constant independent of i. In this special case,

Di(x) is directly proportional to Pr[9ilx], the a posteriori probability of the hypothesis 94, since

Pr[Hjlx] - p(xlhji)pi (43)
Sp(xlHi)Pi

i=0

The decision rule defined by equations (41) and (43) is the so-called maximum a posteriori

decision rule. In this report, the decision rule is not restricted to this special case, but preserved in

the more general form of the decision rule of equation (42).

Now, observe that equation (42) can be written as follows:

I

Di(x) = p(xl-)X %ijA i(x), (44)
j=1

where

Ai(x) = p(xk 910

which is the likelihood ratio of 57 with respect to 96 for i = 1,2,...,. Note that AO = I and hi is

defined by

X.ij = -'CiP j, i,j = 0,1,2,.. .,.I.

Since the factor p(xl-A) is common to all Di(x), an equivalent decision rule is given by
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choose Hk if Ek(X) = max {E0(x),Ej(x),...,E(x)), (45)

where Ei(x) is defined by

I
Ei(x) -- XijAj(x), i = 0,1,...,I. (46)

j=0

Note that while the decision statistic Ei(x) is a linear function of the likelihood ratios (Ai(x))}0 it is

not in general a linear function of the data x. The functional dependency on x obtains, of course,
from the specific distributional form assumed for the likelihood functions p(xI9%), i = 0,1,2,...,I.

The linear dependency of Ei(x) on the set of constants {Xij )0, which in this report are called

classifier weights, is convenient. Of course, strict adherence to the Bayesian formalism requires
values for each cost cij and each a priori probability pj to compute the corresponding weight Xij.

Specification of these values is usually impractical; although, assuming equal a priori probabilities,
i.e., assuming pj = 1/(I + 1), j = 0,1,2 .... I, may be reasonable. Moreover, the costs (however

"cost" may be defined in this context) of correct decisions {cij }0 may be reasonably set to zero.
Given these assumptions,

0 i j

Xi= c ij = 0,1 .... I. (47)

Further specification of the costs is difficult given that a meaningful cost measure (such as time

spent searching by the sonar platform) can even be defined in the first place. It would not be
reasonable to assume, as in the case that leads to the maximum a posteriori decision rule, that all

errors have identical costs. For example, consider the case I = 2. Let 6 denote noise only, i,
denote real target and noise, and 9L6 denotefalse target and noise; then perhaps c02 = c20, but

certainly c02 < c12 or C21, for example.

These difficulties become compounded as I increases, since the number of error types is
I(I+l). Nonetheless, the Bayesian decision rule given by equations (44) and (45) does give

structure to classifier design and shows how the likelihood ratios (Ai(x))1 figure in the design.

This structure, when applied to experimental data, offers a method of determining the coefficients

(Xij) empirically (given auxiliary constraints like equation (47), for example). One possible

approach is to: (1) specify values of the probabilities of each type of error (except one); (2)
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determine from experimental data empirical operating characteristics curves by iterative variation of
the coefficients X iij), selecting values corresponding to the assigned error probabilities.

A theoretical approach to determining the coefficients {X j) is to apply a generalization of the
Neyman-Pearson Lemma (references 7,20, and 21) to the multiple hypothesis test directly instead

of using the Bayes criterion. However, this approach leads to a decision rule equivalent to that

specified by equations (45) and (46) except that the coefficients { ij) could, in principle, be
expressed directly as functions of the specified error probabilities.

LIKELIHOOD RATIO

REPRESENTATION OF x(t)

Before proceeding further, the technical problems of a discrete representation of the vector-
valued process x(t) must be addressed. This will facilitate development of the optimal Bayes test

as will be shown in the next section. An expansion is sought of the form

M
x(t) = l.i.m. xmqjm(t), (48)M --"M1

where { xm) are (scalar) random variables, (%(t)) is a set of deterministic, orthonormal N x 1

vector-valued functions (complete over CN x(T 1,Tz]), and "l.i.m." denotes limit in the mean square

sense. Equation (48) can be restated as

x(t) = 1.i.m. XM(t), (49)M--"

where XM(t) is defined by

M

XM(t) = xMPm(t). (50)
m=1

Since (Tm(t)) is a set of orthonormal functions, then
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T-7

Xm f TsK (t)XM(t)dt, m = 1,2....M. (51)
T1

First consider n(t), a white noise process. It can be shown (given methods in reference 5)
that its Karhunen-Loive expansion can be made with any complete set of orthonormal

functions; i.e.,

M
n(t) = l.i.m. I nmm(t), (52)

M+ m=1

where

T2

nm= f T (t)n(t)dt, (53)
T1

from which it follows that, for all m,n = 1,2,...,

* _N 0EtflfLn- (54)

since Kn(t1 ,t2) = (Nd2)5(t1 -t 2) I for all t,t2 in [T1 ,T 2].

The next step is to expand si(t) using the set {Pm(t)); i.e., expand si(t) as

M

Si(t) " l.i.m. X sim m(t), i = 0,1,2,...[.

An expansion is sought such that only the random sequence (s }) depends on i, where, as before,
the index denotes the hypothesis 5(. Note that the set (m(t)) is to be independent of i, and

orthogonality leads to

T2

Si f 'P (t)si(t)dt, m = 1,2,... (55)
T2
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Here it is assumed that si(t) is of the form given by equation (14)

si(t) = Fi(t)ai,

where Fi(t) is a deterministic (N x Ki) matrix, and ai is a random (K x 1) vector. The matrix Fi(t)

can be expressed as

Fi(t) = [fiI(t),fi2(t) ..... fiKi(t)], (56)

where fik(t) is an (N x 1) vector that is deterministic and can, therefore, be expanded by the

complete set {Pm(t) }:

M

fik(t) =  ira I fikm'm(t), k = 1,2,..., Ki, (57)

and

T,)

fi - f 'P (t)fik(t)dt, m = 1,2,.... (58)
Tj

By writing equation (14) as

Ki

si(t) = I aikfik(t), (59)
k=1

si(t) can then be expressed, using equation (57), as

M (Ksi(t) = Um 2: aikfikm m(t), (60)
M4 m= Ik=(

which is the desired expansion with
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Ki

Sim = Y aikfikm, m = 1,2,...; = 1,2....I. (61)
k= 1

Now, x(t) can be expanded as in equation (48) where, under -, the sequence {xm is given

by

Xm = Sim + nm, m = 1,2,..., (62)

with the sequences ( sin) and (nm) being defined by equations (61) and (53), respectively. If the
vector x is defined as x = [XIx2 .... XM]T, then, under Hi,

x = si + n, (63)

where si and n are similarly defined vectors. Then, the following hold:

E(xl~i) = 0, (64)

since si(t) and n(t) are zero-mean proces, -,s;

E(xxlsH) = E(isi) + (No/2)I, (65)

from the independence of si(t) and n(t) and from equation (54). If equation (61) is written in

matrix form as

si = Fiai, (66)

where Fi is the M x Ki matrix with components [Fj'mk = fik, then E(sisit ) is given by

E(sis ) = FiKaiF i'. (67)

The matrix Fi can be compactly expressed, using equation (58), as

TI

Fi= 2 W(t)Fi(t)dt, (68)
22
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where the N x M matrix P(t) is defined by

T(t) = (T1(t),T2(t) ..... M(t)]. (69)

In summary, x is a truncated discrete representation of the process x(t) in terms of the

complete set of orthogonal vector-valued functions (Wm(t)}:

T1

x = fTt(t)x(t)dt, (70)
T2

which is equation (51) in matrix form. Moreover, for all i = 0, 1,2.... I, Kxi (defined as the

covariance matrix of x, i.e., Kxi = E(xxtlI-.)) is given by

Kx0  N 1, (71a)

Kxi FjKajFj + No I (71b)

It should be pointed out that, in this case, equation (48) is not the Karhunen-Lo~ve expansion

of x(t), since the coefficients{ xm} are not mutually uncorrelated. The vector-valued functions need
only form a complete (orthogonal) set; otherwise, they are arbitrary. In general, the Karhunen-

Lo6ve expansion of x(t) under all '% does not exist for I _> 2. The bases for the Karhunen-Lo6ve

expansion are the vector-valued eigenfunctions of the covariance matrix Kxi(tj,t 2) that, of course,

vary with i; i.e., for i = 1,2,...,.,

T1

f Kxi(t,T)eim(T)d'r = Ximeim(t), (72)
T2

for t in [T1 ,T2] and m = 1,2,...M. The vector-valued eigenfunctions {eim(t)) and the

corresponding eigenvalues (Xin) are not, in general, independent of i. Since the detection
problem is the binary test (I = 1), the Karhunen-Loive expansion can be applied (references 3 and

4). However, the classification problem is at least ternary (I 2 2) and coefficients that are mutually

uncorrelated under each .( cannot, in general, be found. At any rate, such uncorrelated

coefficients are unnecessary for the development herein.
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GAUSSIAN CASE

If x(t) is a complex Gaussian process then, as is well known, a linear functional like that in
equation (70) produces a Gaussian vector x with mean and covariance matrix given by equations
(64) and (71), respectively. Explicitly, the probability density function of x conditioned on ,TJ is

given by,

p(x9lj - 1 exp[-xtK Ix], for i = 0,1,2,...,I, (73)

where IKil is the determinant of Kxi (and the symbol x is used for the variable in the function

p(.lA) as well for the random (vector) variable).

The likelihood ratio in equation (44) is given by

Ai(x) - p(xH, i = 0,1,2,...I,
p(xI91(b)'

which under the Gaussian assumption becomes

Ai(x) = -Kx-- exp[-xt(Kxi - Kxo)X] (74)
IKxji

for i = 1,2,...,. For the case of continuous sampling, that is, for the process x(t) for all t in
[T1,T2], the likelihood ratio is defined as (references 3 and 4)

Ajx(t)] = l.i.m. Ai(x), i = 1,2..... (75)M--)"

Therefore, it is now necessary to determine

l.i.m. xtK'xIx ,

and
l.i.m. Ko

M----IKxj'

for i = 0,1,2,...,I.
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Assume that x(t) can be expanded in terms of the complete orthonormal (CON) set ({m(t)}

under all i = 0,1,2,...,I as in equations (49) and (50). Indeed, this has been shown to be so, at

least for the model of x(t) adopted herein, viz., equation (28). Then, from equation (70),

T2  T2

Kxi = f f Pt(tD)Kxi(tl,t 2)'(t 2)dtjdt2. (76)
Ti T1

Now, express IK1 in the following form:
1

T2 T2
K-! = " f f T(tl)Qxi(tl,t2)T(t2)dtldt2, (77)

X, T1 T1

where the (N x N) matrix function Qxj(t 1,t2) is to be determined. It can be seen immediately from

equation (77) that

T2 T2

IxK,1  T1  TI x (t)Qxi(t1 ,t2)XM(t 2)dtdt2. (78)

since from equation (50), written in vector form,

XM(t) = 'P(t)x, (79)

where the matrix P(t) is defined by equation (69). Then

T2 T2

L.i.m. x!K x = f f xt(t1)Qxi(t1,t 2)x(t 2)dtjdt 2, (80)
M4 Xi T 1  Ti

for i = 0,1,2,...,1.

What remains is to derive an integral equation for Qxi(t,t 2). As it turns out, the equation is

easy to solve for the assumed model of x(t) under the alternative A for all i = 0,1,2,...,1. Multiply

equations (76) and (77) to get
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f fJ f f 'it(ti)K 1 (ti,t)P(t){t(t')Qxi(t, 2)Tf(t2)dtidtdtdt 2, (81)

where the integrals are each over Tb,T2] and I is M x M in this case. Next recognize that
M

801- t2)I = UiM I 'm(ti)t(t 2 ) = ima q(t 1 )qt(t2), (82)
M-n m1 M.--

for any tl,t 2 in [T1,T 2]. Pre-multiplying equation (81) by P(t1 '), then post-multiplying it by

T''t(t 2'), and taking the limit as M -- -, yields, invoking equation (82),

8(t'l- t'2) I = f f f f 8(t', - tj)Kxj(t,O8(t - t')Qx1(t',t2)5(t 2 - t'2)dtldtdt'dt2, (83)

which reduces to (after dropping primes), for all i = 0,1,2.I.

T24. Kxi(tl,t)Qxi(t,t2)dt = 8(t, - t2 )I, T, < t1 ,t2 S T2. (84)

It can now be seen the Qi(t,t2) is the inverse kernel of K,,(tl,t,) as defined by the matrix-integral

equation (84). Clearly, since Kx0(tl,t 2) = (No/2)8(t - t2)1 for tl,t 2 in [T1,T 2], then

QX0(tt 2) = N7-(t 1 - t2)1. (85)

Now, for i = 1,2,...,I, equation (84) becomes, using equation (9) with

Kn(tj,t 2) = (Nd2)5(ti - t2 )I,

T2

f Ksi(t,t)Qxi(t,t 2)dt + (No/2)Qxj(ti,t 2) = 8(t, - t:)1. T, S t<,t2 ST 2. (86)
T1

Define Hi(t1 ,t2) by the following equation, for i = 1.2.. .1.

Qxj(tt,t2) = (2/No)8(t1 - t2)I - Hi(t1,t2), TS ti. t.: S T, (87)

Then, equation (86) becomes
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T2

f Ksi(t,t)Hi(t,t2)dt + Hi(tl,t 2) = (2/N 0 )Ksi(t 1 ,t2). (88)
T 1

Equation (88) is the important matrix integral equation that must be solved to gain an explicit

expression for the likelihood ratio functional of equation (75). Using equations (80), (85), and

(87), it can be seen that Ai[x(t)]becomes

Ai[x(t)] = yOi ex f fxf~t)Hi(t~t2 )x(t 2 )dtldt2J, (89)
T1 T1

where

;Y~ 1 K '0

m -- IKxil '

which can be assumed for now to exist. Equations (88) and (89) define the likelihood ratio that

obtains at least for the case when x(t) can be expanded in terms of a CON set ({m(t)) that is

independent of i = 0,1,2,...,I.

Equation (88) is now solved in closed form for the special case of Ksi(ti,t 2) given by

equation (15), viz.,

Ksi(tl,t 2) = Fi(ti)Kai Fi (t2), T1 < tl,t2 <T, i = 1,2....

It is straightforward to prove that Hi (tl,t 2 ) is given by

Hi(tl,t 2) = (2/No) 2Fi(t1 )Hi Ft(t2), (90)

where Hi is as in equation (35), viz.,

Hi = Kai I + 2NE f DiKazi]
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This can be shown by substituting equations (15) and (90) into equation (88) and solving the

resultant matrix equation for Hi. With hindsight, of course, it can be shown that equations (35)
and (90) specify the solution by direct substitution into equation (88), given Ki(tl,t2) as in

equation (15). In summary, equation (89), the likelihood ratio functional, becomes

Ai[x(t)] = Yoiexp 2 t(tl)Fi(tl)H iF(t 2)x(t 2)dtldt2 ]. (91)

Equation (91) can be written in several alternative forms as follows:

Ai[x(t)] = ' 0iexp(yitHiY1), (92)

where

T2

2 f F t (t)x(t)dt. (93)Ni=O T I

Thus, yi is the output of a matrix matched filter operation. Another form is

Ai[x(t)] = foieX x t(t) ti(tdt (94)

where

gi(t) = Fi(t)dji.

Under , Ai is the MVLU (minimum variance, linear, unbiased) estimator of ai and is given by

equation (37). Thus, gi(t) is the optimal estimator of si(t) and equation (94) represents the familiar
"estimate and match" structure.
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Example: The Ternary Problem

Certain assumptions can now be made regarding the classifier decision statistic as previously

given by equation (46) rewritten in terms of the likelihood ratio functional

Ei[x(t)] = % XijAj[x(t)], i = 0,1,2,...,I. (95)
j=o

First, let cii= 0 and pi= p where 0 < p < 1 and i = 0,1,2,...,I. By this, it is assumed that each

hypothesis is equally probable a priori and that the costs of correct decisions are zero. Moreover,
it is assumed that the cost of deciding 9( given 5'% as true is independent of i; i.e., let cio = co, any

non-negative constant, for all i = 1,2,...,I. With these assumptions, equation (95) becomes for the

case of I = 2 the ternary case:

Eo[.] = ,.olAl[.] + ?.o 2A2[.], (96a)

E[' = XO + X12 A2 ['], (96b)

E21'] = X. + X21A 1[.], (96c)

where Xo = -cop. Using the decision rule prescribed by equations (45) and (46), the following

obtains:

choose 940 if El[.] < Eo [-] and E2[1.] < Eo[.]; (97a)

choose H, if El[.] > Eo[.] and El[.] > E2[.]; (97b)

choose H2 if E21.] > Eo[.] and E2[. > El[.]. (97c)

In the above comparisons, Ei[.] > Eo[.], i = 1,2,...,I are tests for detection of the corresponding

signals si(t). On the other hand, the comparison El[.] > E2[.] represents the classification of the
data x(t) given that both signals have been correctly detected; it is this test that discriminates

between the alternative target classes. By using equations (96b) and (96c), the classifier rule

becomes (remembering that X12 ,X2 1 < 0):
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choose l1if 2.- > otherwise, choose If2. (98)
A2[.] X2

Taking the logarithm, as usual, and using equation (89), inequality (98) becomes:

2 T2 T2

N- Tf I xt(t1)[H 1 (t1 ,t2) - H2 (t l ,t 2)]x(t 2)dtldt2 > 112, (99)
T11

where 112 = In (X12 y02A 21yo). For the special case when Hi(tl,t 2) is as specified by equations

(35) and (90), the above becomes, defining L 12 as the logarithm of the likelihood ratio,

L 12 
= yt(H1 - H2)y > 1 12, (100)

where the additional assumption is made that Fi(t) = F(t) for i = 1,2, and y is defined by

T2

Y = Joo Ft(t)x(t)dt.

This new assumption implies that for each alternative hypothesis (signal class), the time delay set

can now be written as {T k}, i.e., independently of the index i. It is not an overly restrictive

assumption, as it turns out. There is flexibility in defining the common test region (as previously

defined and illustrated in figure 1), since it is not required for Kai to have full rank.

At this juncture, the distribution of the test statistic L12, under i or H, can be derived,

invoking the Gaussian assumption and certain other assumptions. The classifier performance can

then be calculated as a function of the critical parameters describing both the system (array, signal

design, etc.) and the set of scattering objects. The performance results, viz., operating

characteristic curves, will be presented in a later section. But first, properties of the estimator ii
will be studied further. As shown by equation (94) estimation of Si and its error variance matrix

(equation 38) will clarify certain of the classifier's properties such as resolution.
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VARIANCE OF i AND RESOLUTION

The MVLU (under 94) estimator Si can be written as, from equations (35), (37), and (93),

ii = Hiyi, i=1,2,...I. (101)

Note that, given the definition of yi, the following holds:

Yi = PN~iai + vi, (102)

where the noise term vi is now given by

T2

vi= f F (t)n(t)dt.
TI

Equation (102) is characteristic of a class of so-called inverse problems where, in this case, the
inverse operator is Hi. Observe that when either PN -"+ - or N I --+ 0,Hi approaches ci-1; i.e.,

when a priori knowledge is either unnecessary because of high signal-to-noise ratio or is
altogether absent, ii is simply the maximum likelihood estimator*

dii = D I_ -yi. (103)
PN

In this case, the inverse operator, while theoretically nonsingular, may be ill-conditioned.

Recall that from the definition of (Di (equation (19)).

N T2

[(Di]ik - I f I - inj)f(t - Tink)dt, j.k. ( ..... K,. (104a)
n=1 T1

or, using Parseval's theorem,

-t

Kai .-+ 0 in the sense that the minimum eigenvalue or qK, -. ,-
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fIf(o))12 n ex[-oco - -

where f(o)) denotes the Fourier transform of f(t). (To economize on notation, the meaning of f(.)

changes implicitly here depending on whether t or co appears in the argument.)

From equation (104b) it is clear that, as resolution increases, i.e., as the differences

{ rinj -rink decrease, the elements of Di approach unity, and the matrix becomes ill-conditioned.

When the positive definite, Hermitian matrix (Di is ill-conditioned, c(CDi), its so-called condition

number, is large; c(OO is defined by c((Di) = Il(I / 11II(-II, where 1I1I is any matrix norm (references

22 and 23). For the 2-norm, c( i) = 'l(il2 / III 112 = X 'OAi, where Xik and X . are the maximum

and minimum, respectively, eigenvalues of Di. Consider further the maximum likelihood

estimator given by equation (103) by examining the sensitivity of ii to pertrubations in both 0, and

yi. Let Sfi and 8yi be arbitrary perturbations of ii and yi, respectively, and suppose that the

perturbation 50i of (Di is ,nall enough that a < 1, where a = l1iI 1Dil. Then, the following

well-known inequ,,t kreference 23) holds (for any vector norm and consistent matrix norm):

11ad'! <  (1 - a)Ic(Oi) +(05)

Equation (105) reveals the decreased sensitivity of ii to perturbations both of the data yi (viz.,

measurement noise) and of the matrix (Di as c(Di) decreases. The perturbation of (Di may represent

uncertain variations in the array geometry and test region (e.g., the set {tiA 1). However, the

introduction of K i has, in addition to the Bayesian statistical interpretation, the algebraic effect of

conditioning the inverse Hi = [Kai + PNi]"1, which can be thus written when exists. Note

that for actual computation, the form of Hi given by equation (35) is used in case Ki is singular.
These effects will be illustrated in later examples.

It is significant that the estimation problem (or the inverse problem as just discussed) can be

physically interpretated as an acoustic imaging process. From equation (38), the variance of the

estimation error is, as given previously,

var(iilg ) = Hi i = 1,2,...,1,

where equation (35) again is
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Hi-K + pN= 1,+ i- .....

and Di, given by equation (19), can be rewritten, using Parseval's theorem as

i - fN J F t (co)Fi(uco- ,  (106)

where Fi(co) denotes the Fourier transform of Fi(t). Since the elements of Fi(t) are given by

[Fi(t)]nk = f(t - ink), for n = 1,2,...,N and k = 1,2,...,Ki, then equation (106) becomes

00

(Di f((0J~ptC0)p dco= J If(i) 2 P ( Co)P(o)-, (107)
-- W 27

where f(co), as before, is the Fourier transform of f(t) and the N x Ki matrix Pi(O) is defined by

[Pi(co)]n = exp(-io)ir), n = 1,2,...,N; k=1,2,...,K. (108)

(Equation (107) is simply equation (104b) with matrix notation.) The matrix Pi(Co) completely

defines the geometry of the receiving array of point transducer elements and the geometry of the
test region, as previously defined, for the ith object. Of course, it is actually the set of time delays
{Tink}K i that describes the geometry, and these delays are further specified as follows. Referring

to figure 2, one can see that for i = 1,2,...,l

c'rin = IlrikI1 + Itrik - dlI, k = 1,2,...,Ki, n = 1,2,...,N, (109)

where rik is the position vector fixing the origin of the kth cell of the ith object's test region; and dn
is the position vector for the nth element in the receiving array. A nonrefractive medium with

sound speed c is assumed. A Taylor series expansion in terms of dn about 0 on the right side of

equation (109) gives, showing only first order terms,

T

cnkr l + .... (110)
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where cai = r&IIrikli, the unit vector along rik. To neglect higher order terms is to assume that

each of the Ki cels is in the Fraunhofer zone of the array. Note that the second order terms

correspond to the Fresnel zone approximation. Here it is assumed that for the array dimensions

and distances of interest, the Fraunhofer approximation applies and equation (110) without the

higher order terms is taken to be exact. In this case, (Di becomes

[Di]jk Jf(0) 2exp[io(jji- trik)] exp[-iw(aij - cik)Tdndcl L (111[ ik-- NEf_ f= 
IJ2ai

where cik = 2c irikil, j,k, = 1,2,...,Ki and n=1,2,...,N.

ORIGIN OF kth CELL

r 

ik

C IME DELAY ink = I/c[[rikII + Ilrik -dn1I]

nth ELEMENT IN RECEIVING ARRAY
0 d n

c = SOUND SPEED

Figure 2. Nomenclature for Nonrefractive Medium

Example: Two-dimensional case and linear array.

Consider the case where ctk = [sin0k, cos0k,0]T, k = 1,2,...,K. (The subscript i can be

temporarily dropped for this example.) For a uniform linear array, dn = [(n - l)d, 0,0]T.

n = 1,2,...,N, as shown in figure 3.
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Further assume in this example that all cells are within a single range annulus, i.e., assume that

Tk = T1 for ail k. Equation (111) then becomes

s lf0 i n U jk] er -i (---- -dljk I ,C (112)
sin l( kdUjk 3

where ujk = sinGj - sin6k, j,k = 1,2,...,K. Now let the cells be uniform in angular extent; i.e., let

6 = (k - 1)AB, k = 1,2,...,K. The values of A@ specify the angular resolution of the processor

(equation (103)) with (D given by equation (112)). To proceed with calculations, let Ka be given

by

2

Ka =Cal (113)

km CELL

Y Ok

Figure 3. Example: Two-dimensional (.i. and Linear Array
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The example represents the case of scattering strength uniformly distributed, within a range

annulus, among K sectors of angular extent Azo. The variance of i, var(i), is

var(A) = H = [Ka' + PNE]-1 ,  (114)

which, for this example, becomes

var(') = a-[I + PNC I- 1. (115)

The quantity of interest here is termed the variance ratio, the trace of the error variance matrix

normalized by the trace of K., and is given by, for this example,

tr[var(A)] 1 2 (1
2 Ktr[I +PNa(] , (116)

Ka

where (D is given by equation (112). The variance ratio provides a means of calculating a measure of

the variance reduction achieved by the processor (i.e., fi, the estimator of a) as a function of

important parameters such as PNG (received signal-to-noise ratio) and the resolution parameter Ae.

For the example, the variance ratio is calculated (see figure 4) for N = 8, ood/c = rt, K = 2,3,8

(angle cells each of width AO). It is assumed that If(Co)) 2 is narrowband at center frequency co) and is

approximated by Ef'(w - co) in equation (113). The results of these calculations are shown in

figure 5. Note that for a uniform linear array, the beamwidth BW, as measured between the first

nulls, is given by, for center wavelength X0.

BW = 2sin-l ) , (117)

and is, for this example BW = 29". The curves in figure 5 clearly illustrate the tradeoff between

resolution and error variance; as the processor attempts greater angular resolution, i.e., as AO

decreases, the error variance increases. The tradeoff is more pronounced as the received signal-to-
2.

noise ratio PNoa increases and as the number of cells increases. To precisely specify angular
resolution in terms of AO, the variance ratio tr[var (A)]/tr(Kaj and the number of cells must be first

specified. Corresponding values of AO as a function of PNCa or, more practically, increments of
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2
PNaa can be determined. For example, referring to figures 6 and 7, if a variance ratio of

10-2 (-20 dB) is specified, then for K = 2 cells a change in resolution from A9 = BW/2 (= 14.5")
2to Ae = BW/8 (= 3.62"), a fourfold improvement, requires an increase in PNaa of about 6 dB.

2
However, to acheive this same improvement, but for K = 8 cells, PNqa must be increased by about

60 dB. This example reveals the strong dependence of resolution on the number of cells to be

resolved. Note that in both cases, K = 2 and K = 8, the curve for AO = BW/2 (= 14.5") nearly

coincides with the curve corresponding to 1 = I, which represents so-called ideal resolution and is

independent of K; in this case, the variance ratio is given simply by

tr[var (A)1 1 (118)
tr[K8 ] -l2+PN1I+PN'ya

Further insight into the resolving power of the combination of a particular array and

waveform is gained by an eigenanalysis of the correlation matrix (D. In this example, (D is a

K x K matrix with elements given by equation (112). In general, (D is Hermitian and positive

definite, and thus has spectral decomposition given by

K

(D 1 %keketk, (119)
k=1

where X, X2 2! ... - 2-K are the ordered, real positive eigenvalues of (Di, and {ek} are the

corresponding eigenvectors for n=l,2,...,K.
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Figure 6. Variance Ratio tr[var (A)]/tr[Ka,] vs Angle Cell Width A6 and Received
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Figure 8 shows / 1 versus k and AO for the narrowband case (If(o0) 2 j = Ef8(o - Oo)). As

AO decreases, the condition number C[] = X l/K increases rapidly and 0 becomes sensitive to

noise (and other perturbations as shown in reference 22). However, as shown previously in this

example, the introduction of a priori information in the form of a Ka can, with sufficient received
signal-to-noise ratio pNOa, reduce the variance of i, thereby compensating for an ill-conditioned

1.0

k/ 1 8.9

-6.9

. -4.9
AO(DEG)

0.09

6 7 8

EIGENVALUE INDEX (k)

Figure 8. Eigenvalue Spread for Narrowband 0
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Up to now, the waveform in this example has been assumed to be narrowband and

approximated by EfS(co - co.). To examine the effect of bandwidth, assume that If(o) 2 is given by

If(o0) 2 ={(20rB)-,' , 5 c B, (120)

where wo and B are the center frequency and bandwidth, respectively. Figures 9 through 11 show

(Xk/)q versus k and B/fo for various values of AB (BW/8,BW/4,3BW/8). In this case, K = 16 to

determine if increased bandwidth can (in this example) significantly increase values of Xk for

k > N = 8. Note that the rank of (D is minimal (N, K) for the narrowband approximation (actually

single frequency). This is clear from equation (107), since P(co) is N x K. For the case at hand,

i.e., for N = 8, K = 16 increased bandwidth does not significantily amplify Xk for k > 8, except for

values of B/fo impractically large for the kinds of sonar systems under consideration. Of course,

this conclusion applies to this example and is qualified accordingly. Further examination of

equation (107) should produce generalizations regarding the conditionedness of (D as it depends on

array and waveform design.
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CLASSIFIER PERFORMANCE

This section outlines the performance of the optimum processor for the binary classification

problem. It briefly covers some of the components of performance prediction, and then presents

selected results. Both the details of classification performance prediction and a large number of

performance examples are developed in appendix A.

Abrief review of the conditions of the problem is given first. The test region is assumed to

be identical under each hypothesis; each scattering coefficient covariance matrix is assumed to have

full rank, and the noise is assumed to be both temporally and spatially white. For the binary

problem tere are two hypotheses: H and 91. Under these conditions, the sufficient statistic for

deciding whether the received signal was from object I or 2 was given in equation (100) (a number

of equations will be repeated here for continuity),

L=y t (H1 - H2 )y

where y is given in equation (93),

T

y J Ft(t)x(t)dt
No0

and, from equation (35),

Hi = Kai [I + pAKaj]-I = [Ki + PND] , = 1,2.

Classification performance is a function of the distribution of the scalar random variable L,

under H, or H 2. If Pij is defined to be the probability of selecting object i when object j occurred,

then

pll(0l) = J p(LIHI)dL, (121a)
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p12(1) = f p(LIH2)dL, (121b)
'1

where p(LIJ4) is the probability density function of L conditioned on the ith hypothesis (i = 1,2),
and r1 is the decision threshold. P 11 is a measurement of correct classification, while P 12 yields a

measure of incorrect classification.

It is shown in appendix B that L is a complex quadratic form in the Gaussian vector y (note
that the matrix H, - H2 is Hermitian but not necessarily positive definite ). The characteristic

function of quadratic forms in complex Gaussian vectors is well known and for the current

problem it can be shown to be (reference 23):

MiUo) E[exp OL)5.x] = [det (C1Uco))] , i = 1,2, (122a)

where

Ci(joc) = I -jcoKyi(HI - H2), i = 1,2, (122b)

and det (.) is the determinant.

The probability density functions of interest can then be written as

p(L7A) = f f MijOo)exp(-jL)dco, i = 1,2 . (123)

In general, considering the complexity of the matrices Hi (i = 1,2) any performance

evaluation based on equations (122) would have to be made on a per case basis by numerical

means and would not necessarily yield any insight into the classification performance of the
processor in general. If the following simplifying assumptions are made, some insight into the

processor performance may be gained. First, assume that the waveform and the array are capable

of perfect resolution in range and angle (for the particular test region assumed). That is, assume

=I. (124)
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Also assume that, under each hypothesis, the K scatterers in the test volume are statistically

independent so the Kai now represents a discrete version of the conventional scattering function

(reference 2). Thus, Kai is a diagonal matrix (i = 1,2).

Given these assumptions, it can be shown that, under each hypothesis, L consists of the sum

of K independent random variables:

K

k= I

2 2

where lk = 2  (125)
l+Ok1PN l+alPN

Here Yk is the kth element of the vector y, PN is the input signal-to-noise ratio PN 2NEf/N,,and
2ai is the kth diagonal element of Kai (scattering strength of the kth cell under the ith hypothesis).

Thus, under each of the two hypotheses, L is equal to the sum and/or difference (note that the

bracketed term can be positive or negative) of independent, not necessarily identically distributed,

exponential random variables. Its density functions p(LIA), i = 1, 2, can be found from equation

(123) via residue theory. These can be used to solve for Pij (ij = 1,2) of equations (121).

Before addressing a specific set of target descriptions, some additional points should be

made. The test volume is assumed to be identical for each hypothesis, and comprises K cells with

an independent specular scatterer in each cell. If under a specific hypothesis no target is present,

and the scattered return is due to reverberation alone, all cells in the test volume will possess

uniform scattering strength. If, in addition to reverberation, a target is present under a specific

hypothesis, the uniform scattering strength of a number of the cells (5 K) in the test volume may

be replaced with new scattering strengths; the number of cells, their location, and the magnitude of

their scattering strengths will vary according to the target. Thus, it is assumed that each individual

scatterer falls into one of two categories, target-like or reverberation, and the difference between

hypotheses H, and .I is due to the number, location, and scattering strength of the target-like

scatterers. Thus, although their number may be different, it is assumed in these examples that

reverberation scatterers are of equal strength under both hypotheses.
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Because perfect resolution has been assumed, it is possible to index the K cels arbitrarily,
but identically, under both H, and H2-(. Thus, the following convention will be adopted: from the
K test cells, find the total J, such that J < K and

2 2 = 1,22....J. (126)
Oj * j2'

The remaining K - J cells of equal scattering strength do not contribute to equation (125). The
specific ordering of the J cells with unequal scattering strengths can be arbitrary as mentioned

before. In light of this, the intersection of reverberation cells under H, and 1 does not enter into
the problem; this is also the case for the intersection of any target-like cells of equal strength.

As an example, assume that each target is comprises of scatterers of constant strength.
Under hypothesis 1, the target consists of M cells, each with a receive signal-to-noise ratio

2
(GilPN, k = 1,...,M) of 03. Under hypothesis 2, the target comprises J > M cells, the same M
cells as under hypothesis 1, and J-M additional cells, each with a receive signal-to-noise ratio

2(a;,PN, k = 1,...J) of f (see figure 12 for an example of the test volume geometry). In addition,
it is assumed that the total target scattering strength under each hypothesis is equal
(M3 = J'). Due to the unequal number of target scatterers, a number J - M of reverberation

scatterers, each with a receive signal-to-noise ratio equal to y, must be accounted for.

In figure 13 performance curves have been plotted for some representative values of 13, 4, Y,
M, and J. Here M and 13 are held constant, and J is increased, thus W is decreased. Reverberation

is set equal to a constant value in each curve (y = W/4). The results indicate that, for a given P12

(probability of incorrect classification), there is a particular set of targets, characterized by some
M', 13', and J', Ve', for which the spreading of the fixed total receive energies, M'13', and J'V, make
them the most easily distinguished among all of the targets with constant total signal-to-noise

ratios. This result, the spreading of the total fixed receive energy over a particular number of

independent channels (cells) for maximum performance, is an example of the well-known
"diversity" phenomenon (reference 2).

49



..... ... ......
.... ... ....

.. ...0. ........
.. . .. .

.. ... ..

.~~ .. . . .

. .... ..

.. ...0. ... .o ....

l~ ...... 0,

.. .. . .. ...

.. . ... ...

.... .. . ....

...... ... . .... .. ... .. . E.
. . . .. . . .

5 ...0..... ....



1.0..

0 .8 --- - - -- -- -- -- - --- - - - - - - -- - -- - - - -- - - -- - - -

J 20

0.6 -- ----- ------------- - - - - - - -

2 2.5 1 5 0.625

10 0.5 1 5 0.125

20 0.25 1 5 0.0625
0.0-

0.0 0.2 0.4 0.6 0.8 1.0

P12

Figure 13. Receiver Operating Characteristic (ROC) Curve;

MB =JP=5; m =1; Y =/4; vary J =2, 10, 20

51



EXTENSIONS

Important extensions of this work will be considered for future research. Several are

discussed below.

MOVING OBJECTS

Throughout this report, it has been assumed that no relative motion exists between the array

and the scattering objects. Consider now the case of a rigid body moving with constant velocity;

that is, if Vik(t) is the velocity of the kth cell corresponding to the ith object, then for a rigid body

Vik(t) = Vi(t), k = 1,2,...,Ki, (127)

and for uniform motion

Vi(t) = Vi, T 1 < t5 <T 2. (128)

Vi

rik(t - t')

rik(0) rik(t "f X'- d n

0 dn

Figure 14. Nomenclature for Object Motion
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As can be seen in figure 14, Vi is relative to a coordinate system with its origin fixed at the

receiving array's reference. Moreover, the array elements are assumed to be stationary within this

coordinate system. The signal scattered from ith object and received at the nth array element is

now given by

Ki

sim(t) = I aikfjt - Tink(t)], T1 < t < T2, (129)
k=1

where the "tin(t) is defined as in equation (11) except that it is now a function of time'.

An expression for -Tink(t) is developed here for completeness. First, for notational simplicity

suppress for now the subscripts and time dependence of tjr,(t), denoting it simply by t. Then,

=t' +t". (130)

where the delay T' is the return delay (from scatterer to array element) and is the implicit solution of

the equation

c'T' = Ilrk(t -c'') - dnll; (131)

and the delay t" is the delay from the array reference 0 to the scattering cell and is given by

cr" = Jlrk(t- T')II, k = 1,2,...,K; n = 1,2,...,N. (132)

(Note that the subscript i has been suspended for now.) An approximate solution to the above

obtains as follows. Let V = Vrk + Vck where Vrk = (V. ak)ak and ctk is, as before, the unit

vector rk/ IlrkI and rk = rk(O). Thus, Vrk and V,, are the (orthogonal) down-range and cross-

range, components of Vk respectively.

Since

rk(t) = Vt + rk, T1 < t ! T2 , (133)

• ~dtia(t),-o

Amplitude scaling by (1 - dt ) to conserve the waveform's energy is neglected.
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then

rk(t) = (rk + Vrkt)Ctk + Vckt (134)

where rk = lirkl and Vrk = 1IVrk1l.

Defining dcnk by dcnk -dn - (a k. dn)ak and substituting equation (134) into equation (131)

yields

CT, = 1 L[rk- " dn + Vrk(t- t')]ak-dcnk + Vck(t- t')II. (135)

Ignoring the cross-range terms in equation (135), viz., dnk and V,, one can make the following:

CT' = rk - ak - dn + Vrk(t - 'C'). (136)

Solving for T'(t) yields

1

'(t)- (rk- ak dn + Vrkt). (137a)

Using equations (132), (135) with Vck- 0, and (137a), one can express T"(t) as

1 (rk + ='Vk " dn + Vrkt). (137b)"()-C4-Vrk

Then, from equations (130) and (137), it follows that (restoring the subscript where appropriate

and the subscripts k, n on r)

t-Tink(t) = t- (1 i - ik (138)

where

Pik = c - Virk (139)i-C +- Virk

and, as before, tik = 2 rk/c.
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Equation (139) is, of course, the familiar expression for the Doppler effect of temporal

dilation or contraction. In the second term on the right side of equation (138), assume that Iu 2 1

then,

1
t - Cink(t) = Pik(t - 'tik --- aik" dn). (140)

Now, for moving objects, the signal model becomes, from equations (129) and (140),

Ki

sin(t) = I aikf [3ik(t - "rink)], T, -< t < T2 , (141)
k=1

where, as before (see equation (110)),

Tink = 'ik - 1aik - dn. (142)

Define the N x Ki matrix Fi(t;Vi) by

[Fi(t;V)]nk = f [3ik(t - ik)], Ti < t < T2, (143)

where n = 1,2,...,N, and k = 1,2,...,K i. Note that Fi(t;O) = F,(t), as previously defined

(see equation (14)). In vector form, equation (141) is

si(t) = Fi(t;Viai (144)

The results previously derived for the case of Vi = 0 (i = 12.....I) can now be applied by

substituting Fi(t;Vi) for Fi(t). The matrix Di now becomes 'D,V,), which is defined by

T2

Di(V') f F t (t;V')Fi(t;Vi)dt; (145a)

and, of course, Di = Di(O). Again using Parseval's theorem. 0,V) can be written as
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00

fN f.iIIPkI n do)(15b
10i(Vi)]jk = (NEt[ij11PikD1 I exp(io)([Oikr - ij3tinj)) d (l45b)n=l1 2n1

This equation shows explicitly how the Doppler effect, viz 3ik, figures into the spatial

resolution (and ambiguity) of the processor. This case will be further developed in a sequel to this

report. The expression for ., (Vj) can be interpreted in terms of the synthetic aperture effect. The

effect on resolution of the processor can be characterized by examining the dependence of the

variance ratio (equation (116)) on Vck (and, of course, the other important parameters such as A8,

PN, etc). Moreover, the eigenanalysis shown in equations (111) and (112) can be modified to

accommodate the synthetic aperture effect. Such analyses should reveal important interre-

lationships among object scattering characteristics (as modeled herein), waveform and array

design, and motion induced effects within the unifying framework of the Bayes-optimal classifier.

NON-GAUSSIAN SIGNAL

To determine the Bayes-optimal classifier, x(t) was assumed to be a vector-valued Gaussian

stochastic process. Recall that the model for x(t) is given by (under "7, i = 1,2,..., I)

x(t) = si(t) + n(t),

Ki

sin(t) = I aikf(t - rink), n =
k=1

and the noise process n(t) was assumed to be white and Gaussian. The scattering coefficients

{ aik) were not necessarily assumed to be Gaussian; however, the sum si"(t) was assumed to be

Gaussian, implicitly invoking the central limit theorem as is usually done. Suppose that the

probability density function (pdf) of the random vector ai, denoted by gi ('), is now introduced

explicitly and that it is not necessarily Gaussian. Since x is the discrete representation of the

process x(t) as per equation (70), let the conditional pdf of x given ai = Ai (and given 9() be

denoted by p(xlAi; _V, where Ai is some arbitrary realization of the random vector ai. Then, the

pdf of x given 14 can be expressed as

p(xl = .f p(xlAi;Hi)gi(Ai)dAi. (146)
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The likelihood ratio in equation (44) is now

Ai _ ff fp(xIAi;4)
Ai(x) f p(xli;o) gi(AidAi; (147)

or, as expected,

Ai(x) = Aj(xIAi)gi(Ai)dAi, (148)

where Ai(xlAi )is the conditional likelihood ratio defined by

Ai(xAi) = p(xlAi;/i) (149)
p(x12*i)

By equations (63) and (66), under X and given ai = Ai.

x = Fi Ai + n, (150)

where n and Fi are as previously defined (equations (53) and (68), respectively). Then,

Ai(xIAi) = pn(x-FiAi) (151)
pn(x)

where p) is the pdf of n. It is easy to show that if p(.) is the Gaussian pdf, then the
conditional likelihood ratio depends on x only through yi = FitKlx, the matched filter/beam-

former operation (with prewhitening). This is so regardless of the particular form of gi('); of

course, the particular functional dependence of A() on yi is determined by g('), and is not, in

general, quadratic as when ai is Gaussian. Future work will address alternatives to the Gaussian

assumption with emphasis on the case of non-Gaussian stochastic signals and Gaussian noise.

Much of the literature on the non-Gaussian (detection) problem focuses on the case of non-

Gaussian noise and of a signal that is either known or stochastic. However, the non-Gaussian

character of the signal is not explicitly characterized in the same way the noise is. The pdf of the

signal is not explicitly introduced; usually, only its mean and covariance appear, as in the case of

the locally optimal Bayes detectors (see references 25 and 26, for general treatment). Expansions

including third and even higher order moments should be investigated, taking into account the

important distinguishing features of the classification problem as formulated in this report. This
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includes the possibility - a likely one in some important applications - that the distribution of the

random signals will vary among alternative hypotheses {9(}.

CONCLUSIONS

The active sonar classification problem can approached as a likelihood ratio test of multiple,

alternative hypotheses versus a noise-only null hypothesis. The data are, in general, vector-valued

stochastic processes representing measurements from individual elements within a sonar array.

Given an explicit form for the received signal model, which is statistically characterized for each

alternative hypothesis (target class), explicit results can be derived for the likelihood ratio and

various performance characteristics. Moreover, the optimal processor can be interpreted as an

acoustic image processor. Generalizations of the results have been indicated and in some cases

addressed in detail (e.g., the case of moving targets).
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APPENDIX A
A CONTINUOUS MODEL FOR THE_ SIGNAL

In this appendix an optimal estimator of the random field ai(r) is derived. The field ai(r)

appears in the signal model given by

s1(t,d) = a(r)f(t - t(r,d))dr, (A-1)

where si(t,d) is the signal at position d and time t; f(t) is the transmitted waveform; the delay r(r,d)

for a non-refractive medium with sound speed c is given by

tr(r,d) = i (Hr - dl + r). (A-2)

The region P. contains the ith object. Assume that si(t,d) is measured at N discrete sensor

positions dn, n = 1,2,...,N, as is usual in practice. Then,

sin(t) =f ai(r)f(t - T(r,dn)dr, (A-3)

Ki
where smn(t) = si(t,dr,), n = 1,2,....N. When a(r) = ai5(r - rj13, equation (A-3) reduces to the

discrete model of equation (11) with Tjijk = -t(rik,dn) The problem addressed here is the

estimation of the field ai(r) given the measurements x(t), where under the hypothesis J"(

x(t) = si(t) + n(t), (A-4)

Twhere s(t) = [1 1(t),Si2(t),...,SiN(t)] , x(t) = [Xl(t),X2(t),...,XN(t)]T, and
Tn(t) = [n1(t),n2(t),...,nN(t)I , the measurement noise. (In the remainder of this appendix the

subscript i will be deleted.)

Assume the following about the random Field a(r):

E[a(r)] = 0, (A-5)
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and assume that the covariance Ka(rI,r2) = E(a(rl)a*(r 2)] is known for all rl,r2 6 R Regarding

the noise, assume, for now, that E(n(t)) = 0 for all t e [T1,T2] and that Kn(t1 ,t2) = E(n(tj),nt(t 2))
is known for all tl,t 2 e [T1,T 2]; moreover, assume that E[a(r)n*(t)] = 0. Then, the following

relations hold for E[x(t)] and Kx(tl,t 2) = E[x(tl)xt(t 2)]:

E[x(t)] = 0, (A--6)

and

Kx(tl,t 2) = f J Ka(rl,r 2)f(tl,rl)ft(t2,r 2 )drldr2 + Kn(t1 ,t2), (A-7)

T
where f(t,r) = [f(t - Tr (r,dl),f(t - t(r,d2),...,f(t - t(r,dN)]. Now, let a(r) denote the best

(minimum variance) linear, unbiased estimator of a(r) for all r e R; thus,

E[i(r)] = E[a(r)], (A-8)

and the variance Ca(r) of the error i(r) - a(r) is given by

Ca(r) = Ela(r) - a(r)12].

Since d(r) is a linear estimator, it is of the form

1(r) = f hT(r,t)x(t)dt, (A-9)

where the vector-valued function h(r,t) is to be determined, and temporal integration is over

[T1,T,]. From the orthogonal projection lemma

cov[(i(r), (a(r) - i(r))] = 0; (A-10)

or, from equations (A-5) and (A-8),

E(I(r)12) = E[(a(r)a*(r)]. (A-1I1)
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Now from equation (A-9),

E[II(r)12] = J f hT(r,ti)Kx(ti,t 2)h *(r,t2)dtidt 2, (A-12)

and

E[a(r)=i(r)] f E[a(r)xt(t)h'(r,t)ldt. (A-13)

Combining equations (A-12) and (A-13) according to equation (A-11) yields

f [E[a(r)xt(t 2)] - fhT(r,t)Kx(tl,t 2)dti ) h*(r,t2)dt2 = 0 (A-14)

identically for all r e P, Therefore, the expression within [] of equation (A-14) must be

identically zero for h(r,t) * 0; that is,

E[a(r)xt(t)] = hT(r,t')Kx(t,t')dt', (A-15)

the Weiner-Hopf equation.

Since

x(t) - J a(r)f(t,r)dr + n(t), (A-16)

then

E[a(r)xt(t)I = f (t,r')Ka(r,r')dr'. (A-17)

Substituting equations (A-7) and (A- 17) into the Weiner-Hopf equation gives
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f fr(t,r')K,(r,r')dr' = f f .f hTrtft,~t.r'r'f~~'d'r

+ f hT(r,t')K,,(t',t)dt'. (A- 18)

Now, define a function ^Krl,r2) over Rx Rsuch that

hT(r,t) f y(r,r')ft(t,r')dr. (A- 19)

T'hen, equation (A- 18) becomes

f ft(t,r') Ka(r, r')dr'= f f f f y(r,r"')ft(t',r"')f(t'r')dt'K,,(r',r")ft(t,r")dr'dr"dr...

+ f f y(r,r')t(t,r')Kn(t',t)dt'dr'. (A-20)

Defining the signal (spatial) correlation function O(rI,r2) by

O(rj,r2) = f ft(t,rj)f(t,r 2)dt (A-2 1)

makes equation (A-20) become

f t-t(t,r') Ka(r,r')dr' = f f f y~~")(",'K~'r)(t,r")dr'dr"dr"'.

+ JN y(r, r') f-,(t, r') dr', (A-22)
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No

where it is now assumed that Kn(tl,t 2) =- ( - t2)I, a white noise process. After rearranging

terms, one can write equation (A-22) as

f [K,(rr")-f f y(r,r"')O(r"',r')Ka(r',r")dr'dr"'- N Y(r,r")'(t,r")dr" = 0. (A-23)

Since f(t,r) * 0 for all t e [T 1 ,T2] and re , then the expression within C-] in equation (A-23) is

identically zero; that is,

Sy(r ,r') f 0(r',r")Ka(r",r 2 )dr'dr" + i y(r,r2) = Ka(ri,r2). (A-24)

Define the function P3(rj,r 2) over Rx Rby

[3(ri,r 2) - f (rl,r')Ka(r',r 2)dr'; (A-25)

then, equation (A-24) can be written as

2y(rlr')3(r',r2)dr' + y(rl,r 2) = Ka(rl,r2). (A-26)
R2

In summary, the minimum variance, linear, unbiased estimator of the random field a(r) is
given by, combining equations (A-9) and (A- 19),

d(r) = f y(r,r')f r(t,r')x(t)dtdr', (A-27)

where the kemal 7(rl,r2) is the solution to the 'ntegral equation (A-26).

To complete this treatment of the continuuus model an expression for the error variance C,(r)
= E[(r) - a(r)12] is derived. Now, C,(r) can be written as

Ca(r) = E (a*(r)[a(r) - A(r)] } - E( (*(r)(a(r) - 1(r)] ). (A-28)
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The second term on the right of equation (A-28) vanishes because of the orthogonal projection
lemma, equation (A-10). Next, by substituting equation (A-16) into equation (A-27), i(r)

becomes

.(r) = f f yr,r')4(r',r")a(r")dr'dr"

+ f f y(r,r')ft(t,r)n(t)dr'dt. (A-29)

From equation (A-29), E ( a*(r)[a(r) -a(r)] } becomes

Efa*(r)[a(r) - d(r)]} = Ka(r,r) -f f y(r,r')O(r',r")Ka(r",r)dr'dr". (A-30)
R R

The second term on the right of equation (A-29) is uncorrelated with a*(r) since E[(a*(r)n(t)] = 0.

The expression for Ca(r) becomes, using the definition of P(rl,r 2) in equation (A-25),

Ca(r) = Ka(r,r) - '(r,r')P3(r',r)dr', (A-31)

which finally becomes, using equation (A-26),

C,(r) = 2 Kr,r), (A-32)

where, as before, " rl,r2) is the solution to the integral equation (A-26).
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APPENDIX B

PERFORMANCE FOR THE BINARY CLASSIFICATION PROBLEM

BACKGROUND

This appendix addresses the problem of determining the performance of the optimum

processor for the binary classification problem described in the main text. The intent is to first
present the details of classification performance prediction for the general binary case. It is shown

that analytic solutions to classification performance prediction are difficult to obtain for general

target geometries and array/waveform configurations; therefore, simplifying assumptions are made

so that analytic solutions can be derived. These are used to illustrate fairly simple but instructive

cases.

The conditions of the problem can be briefly restated as follows: the test region is assumed

to be identical under each hypothesis; each scattering coefficient covariance matrix is assumed to

have full rank, and the noise is assumed to be both temporally and spatially white. For the binary

problem there are two hypotheses: H, and -. Under these conditions, the sufficient statistic for

deciding whether the received signal was from object 1 or 2 was shown in equation (100) to be

L = yt( H, - H2 ) y, (B-1)

where

T2

Y = f Ft(t) x(t) dt, (B-2)

and

Hi " Kai I + pN(DKai [Ka + PNDJ i" 1, 2. (B-3)
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PERFORMANCE MEASURE

Classification performance is a function of the distribution of the scalar random variable L

under HI or 942. If Pij is defined to be the probability of selecting object i when object j

occurred,then

00

P11(1) = f p(LIH1) dL, (B-4a)

TI

P22 () = f p(LI2i) dL, (B-4b)

and

P12(71) = f p(Ll-2) dL, (B-5a)

P21('I) = f p(LIH1) dL, (B-5b)
-00

where p (LI.1- is the probability density function of L conditioned on the ith hypothesis (i = 1, 2),

and r is the decision threshold. P11 and P22 are measures of correct classification, while P12 and

P21 yield measures of incorrect classification.

General Matrices

Let us determine the density functions p(LJC), i = 1.2. Note that y is a linear functional of

the vector-valued, complex Gaussian process x(t); therefore, it is also a complex Gaussian vector

with

E [ylI94-d = 0, i = 1, 2, (B-6)

and
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Kyi a E [y YtlI94'] = p2 (D Kaj Ot + pq (D, i = 1, 2, (B-7)

where E [.] denotes expectation.

L is therefore a complex quadratic form in the Gaussian vector y (note that the matrix
Hi - H2 is Hermetian but not necessarily positive definite). The characteristic function of

quadratic forms in complex Gaussian vectors is well known and for the current problem it can be

shown to be (reference 23)

Mijo) a E [exp(o)L)i(] { det [C1(jo))] } i = 1,2, (B-8a)

where

Ci(jco) = I -jo)Ky i (HI - H2), i = 1,2, (B-8b)

and det [.] is the determinant.

Moreover, it can be shown that (reference 25)

KMijo) = rj (I - jCO)ki) - ' ,  (B-80)

k=I

where ki is the kth eigenvalue of the matrix (HI - H 2), Kyi, i = 1,2. The probability density

functions of interest can then be written as

00

p( LL4) - L f MiJjco) exp(-jcoL) dwo, i = 1,2. (B-9)

Diagonal Matric¢s

In general, considering the complexity of the matrices Hi (i = 1, 2), any performance
evaluation based on equation (B-8) would have to be made on a per case basis by numerical means
and would not necessarily yield any insight into the classification performance of the processor. If
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the following simplifying assumptions are made, some insight into processor performance may be
gained. First, assume that the waveform and the array are capable of perfect resolution in range

and angle (for the particular test region assumed). That is, assume

(D= I. (B-10)

Also, assume that under each hypothesis, the K scatterers in the test volume are statistically
independent so that Kai now represents a discrete version of the conventional scattering function

(reference 2). Thus, Kai is a diagonal matrix (i = 1,2). Given these assumptions, Hi, Kyj, and
therefore Ci(jco) can be shown to be diagonal matrices and equation (B-8) can then be written as

K
K Ic)=~ i = 1, 2, (B-l11)

Mi(o) = P
k=1 [CUjO)]kk'

where [CiUc))]kk is the kth diagonal element of Ci(jco). Thus, under each hypothesis, L consists

of the sum of K independent random variables

K

L= I lk,
k=1

where

I ki2
lkk=  

21k +--- i 1: Y k "

Here PN is the input signal-to-noise ratio = 2NEf/No, and a2 is the kth diagonal element of Kai
(scattering strength of the kth cell under the ith hypothesis).

The density functions for lk (k = 1,2,...,K) will now be determined. If a generalized receive
signal-to-noise ratio dki = PN i = 2 a2 NEf/No is defined for each cell then

S1(B- 12a)
[C(jwO)]kk - (l-joaxkI)'

where
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akl dkl-dk2 (B-12b)

and

1 1 (B- 13a)[C2(0C.)]kk- (1-jco0ak2)(-1a

where

dkl-dk2 (B-13b)Zk2- =dkl+1

Therefore, each of the K components Ik of L is distributed as follows:

27cJ lakil kP ,k, - I-0 Ci o)]kexP(-cIk -o .o.,Lexp (_ lk) AL,,' o

(B-14)=o, JI <0.
aki

Under each of the two hypotheses, L is equal to the sum and/or difference (note aid can be
positive or negative) of independent, not necessarily identically distributed, exponential random
variables. Its density functions p(L9i') (i = 1, 2) can be found from equation (B-9) via residue

theory. These functions can be used to solve for Pij (ij = 1, 2) of equations (B-4) and (B-5).

Some examples will now be investigated by specifying values for the scattering strengths aki
or, equivalently, the generalized receive signal-to-noise ratios dki (k = 1, 2, ..., K and i = 1, 2).
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PERFORMANCE EXAMPLES

Before addressing specific target descriptions, some additional points should be made. The
test volume is assumed to be identical for each hypothesis, and it comprises K cells with an
independent specular scatterer in each cell. If under a specific hypothesis no target is present, and
the scattered return is due to reverberation alone, all cells in the test volume will posseses uniform
scattering strength. If, in addition to reverberation, a target is present under a specific hypothesis,
the uniform scattering strength of a number of the cells (5 K) in the test volume may be replaced
with new scattering strengths; the number of cells, their location, and the magnitude of their
scattering strengths will vary according to the target. Thus, it is assumed that each individual
scatterer falls into one of two categories: target-like or reverberation, and the difference between
hypotheses H, and H2 is due to the number, location, and scattering strength of the target-like
scatterers. Thus, although their number may be different, it is assumed in these examples that
reverberation scatterers are of equal strength under both hypotheses.

Because perfect resolution has been assumed, it is possible to index the K cells arbitrarily,
but identically, under both H, and H2. Thus, the following convention will be adopted: from the
K test cells, find the total J such that J < K and,

djl * dj2 , j = 1, 2, ..... J. (B -15)

-he remaining K - J cells of equal scattering strength do not contribute to either equation (B- 12) or
(B-13) and, therefore, have no effect on the characteristic function in equation (B-1 1). The

specific ordering of the J cells with unequal scattering strengths can be arbitrary as mentioned
zefore. In light of this, the intersection of reverberation cells under H and z does not enter into

the problem; this is also the case for the intersection of any target-like cells of equal strength.

Two examples will now be examined. See table B- 1 for a summary of the target

descriptions.
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Table B-1. Target Descriptions

H-H Comments

Case 1. J target cells J target cells Assume 3 > TP.
dkl = 3, k = 1,2, ... , J dk2 = , k = 1, 2, ... J Targets collocated under i, r42.

K - J reverberation cells K - J reverberation cells K - J reverberation cells do not
dkl = y, k = J + 1, ... , K dk2 

= y, k = J + 1...K affect performance

Case 2. M < J target cells J target cells Assume M3 = JPF and y < 'F < 13.
dkl = [3,k=1,2, ... , M dk2 

= Tk= 1,2,... J
K - M reverberation cells K - J reverberation cells K - J reverberation cells do not
dkl = ,y, k = J + 1, ... , K dkl = y, k = J + 1. K affect performance, but J - M + 1

reverberation cells do.

Case I

The target is located in the exact same J cells under each hypothesis, and each target is
assumed to have uniform scattering strength (see figure B- I f for an example of the test volume
geometry). Under these conditions, performance is a function of the number of target cells J and
their relative strengths 3 and xV; the remaining K - J cells that correspond to reverberation do not

affect performance (see equations (B-12b) and (B-I 3b))
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IYPOTHESIS I

z

AZIMUTH

z

AZIMUTH

D REVERBERATION CELL (y)

* TARGET CELL H1 (13)

t TARGET CELL H2 ('1)

Figure B-i a. Example of a Two-dimensional Test Volume for Case 1; K = 36 Test Cells;

J = 10 Target Cells (Note: Target cell locations identical under each hypothesis.)
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cckl =- -K, k= 1,2 ... ,

V+1

(B- 16a)
=0, k=J+1, J+2 ,..., K,

ak2 = -- =v, k 1,2 ... , J,
13+1

(B-16b)

=0, k=J+ 1, J+2 ... , K.

Since 13 > 4f, K and v are both positive. Thus, under each hypothesis, L follows a gamma

distribution:

p(LIHf) - (L)J-1 exp for L _ 0,KJ(J-1)!K

(B- 17a)

=0, for L < 0.

and

p(LI-)-=(L)J-I exp (-Lt), for L 0,vJr(J- 1)!

(B-17b)

=0, for L<0.

This yields the following expressions for classifier perforM, n1C.

P11(ij) = exp - =J lk (B-18a)

J- 1 Ti k  ( j "q( .,(; I- q l )k
P12(k) = exp - ' T - - - , k (B-18b)

Pl2rV)ex( k=IO k! Vk Kk

since v - c/(1 +i).
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Figure B-2 shows the performance curve (P1 versus P12) for some representative values of
43, f, and J. In this example, both the scattering strength ratio (13AiV) and total target receive signal-

to-noise ratios (J3 and JW) are held constant as the number of cells encompassed by the target is
increased; therefore, the individual cell receive signal-to-noise ratios (3 and W) decrease. Each
target in this example can be thought of as belonging to a class of targets characterized by constant
target receive signal-to-noise ratio (J13 or JW).

The results indicate that, for a given P12 (probability of incorrect classification), there is a
particular set of targets (characterized by J', 13' and J', %'), taken from the two classes, that are

most easily distinguished from each other. This is also represented in figure B-3, where P11

(probability of correct classification) is plotted as a function of the number of cells J for a fixed
P12. A family a curves, parameterized by fixed scattering strength ratio 134f is shown. This plot
illustrates that there is a partitioning of the independent target scattering strengths into a particular
number of cells, for which performance is best. This result, spreading of the total fixed receive
energy over a particular number of independent channels (target cells) for maximum performance,
is an example of the well-known "diversity" phenomenon (reference 2). Of course, in the present
example, the system designer has no control over the target physics so that the result indicates
only which set of targets within the class are most easily distinguished from each other.

As a second example of Case 1, let the number of target cells under each hypothesis J and the
total target receive signal-to-noise ratio under 94, JW remain fixed. Let the individual cell receive
signal-to-noise ratio under H, 13 increase. As in the first example, the remaining K - J
reverberation cells do not affect performance.

As expected, performance improves with increased 13. The results, shown in figure B-4,
have a number of interesting interpretations. First, as 3 is increased, the performance gain can be
viewed as the result of increasing the total target receive signal-to-noise ratio under i relative to

that under H'. Second, assume that Wt = y, that is, assume that hypothesis 2 represents
reverberation only; all K cells under ,42 have a receive signal-to-noise ratio of WV. Although K - J
reverberation cells do not affect performance, J of the cells now do. As 13 is increased, the

performance gain can be viewed as increasing the total target receive signal-to-noise ratio under H
relative to the total receive signal-to-noise ratio of J of the reverberation cells under n42. Third,
assume that 13 = y, that is, assume that hypothesis I represents reverberation only. Recall that

13 > xV, so that in this interpretation greater performance gains are made as the total receive signal-
to-noise ratio of the reverberation increases beyond that of the target. This interpretation could

have relevance to target strength reduction efforts.
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Figure B-2. Receiver Operating Characteristic (ROC) Curve for Case 1;
JP = 10:, PP = 2: P/TP = 5; Vary J = 2, 10, 20
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As in example 1, each target comprises scatterers of constant strength. Under hypothesis I,

the target consists of M cells. Under hypothesis 2, the target comprises J > M cells, the same M

cells as under hypothesis 1, and J - M additional cells (see figure B-lb for an example of the test

volume geometry). In addition, it is assumed that the total target scattering strength under each

hypothesis is equal (Mp = RV). Because of the unequal number of target scatterers, a number

only J - M of reverberation scatterers must be accounted for. The results are as follows:

cik I = - , k = 12,..., M, (B-19a)

Cak--= -X, k=M + 1, M+ 2,.-..J, (B-19b)

and

a -l..-t -v, k =1, 2,..... M , (B- 19c)

ak2 - , k-M+ 1, M+2....J. (B-19d)
,+1

Since < x'V < P, both X and . are negative resulting in L (under each hypothesis) being

equivalent to the difference of two independent gamma-dismtuted random variables. Therefore,

KJ-2M LM -1 M-1 rM\KMXM L
p(LIHfj) = - (~ ) M, ~ exp I' ~ 0

(M)(K )F(J-M) (+)mLm

=-~ (-)(_1) mJ-M-1 F(M+m)KmLm exp(! , L < 0, (B-20a)

F(J-M) (K+X)M m=0 F(M)(K+?-)mLm
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and

p(UL =VJ-2M LM- 1 M-1 -) FJ m M x,( 0
r~)(~w-mM=_ F(J-M) (v+gQm Lm exp

F(J-M) (v + 4)M m=O r(m)(v+)mLm ep yL<0(B2b

where f(* is the gammna function.

This yields the following expressions for classifier performance:

PuI(rl) = 1 )CJ-M,(JM+m) XM
M= (K+x)J-mr(J-m)m! (K+X)m

M-4 KJ-mr(j-m+m) %m 7(M-m,7l/K), ri 0,
m=O (K+X)j-mr(j-m)m! (K+X,)m

J-M-1 Ki-mr(j-m+m) Xm

m=O (K+X)J-MF(J-M)M! (K+X)m

+ E I ? XMF(M+m) _____ J-M JM4,jT <0

(B-21a)

while
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M-1

-1 vJ-Mr(J-M+m) ptm

m=O (V+A)J-MF(J-M)m! (v+P.)m

M-1 v-rjmm L-IvJMF(J-M+m) p (tm  "M-mr/v), 11 > 0,

m=o (v+.)J-Mr(J-M)m! (v+.)m

and

J-M-1
P12() = I vF(JM+m) pm

m=0 (v+.)J-Mf(J-M)m! (v+.)m

J-M-+ I .Mr(M+m) 1 vJ-M y(J-M-.,rl/.t), T1 < 0,

m=O (v+.)MF(M)m! (J-M-1-m)! (v+p.)JM

(B-21b)

y

where y(a,y) =f exp(-t) t a-i dt is the incomplete gamma function.
0

Figures B-5 through B-8 plot the performance curves for representative values of j3, XV, y, M,

and J. In figure B-5, all parameters except y (reverberation) are held constant. In this example, y
runs from a minimum value of zero to its limiting value of W. As expected, classifier performance

degrades with increased reverberation.

In figure B-6, reverberation is set to zero (y = 0), M and 3 are held constant, and J is
increased (thus W decreases). As in case 1 (figure B-2), the diversity phenomenon is evident. For

a given P12, there is a particular set of targets taken from the two classes characterized by constant
(and now equal) receive signal-to-noise ratios (M3 or JW) for which the spreading of this received

energy over some J channels provides for best performance.

In figure B-7, reverberation is set equal to a constant valut (y = xV /4), M and 3 are held

constant, and J is increased (these parameters are comparable to those in figure B-6). When
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1.0

INCREASING REVERBERATION (y)

0 .6 - -- --- - .- - - - - - - -. ....... .. .. .

P11

0 .4 -- --- - - -- - - - - - -

0 .2 - ------- ------ .... -------

0.0 -. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0.0 0.2 0.4 60.8 1.0
P.,

Figure B-5. Receiver Operating Charn.:cr-i:i ROC) Curve for Case 2-,
M =1-, J =20,~=5i TK airy y= 0,.0.05,.0.1. 0.25
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1.0-
J= 10

0.8 ---- -- ------ -

J 20

0 .6 .. . . . . .. . . . . J = 2 ----------------- ---------------- --------------

Pl

0 .4 ... ................ ................ ................ ...........--

* J '1 M [ Y")

0 .2 - ------------ .---------------- 2 2 .5 1 5 0

10 0.5 1 5 0

20 0.25 1 5 0

0.0- I I I
0.0 0.2 0.4 0.6 0.8 1.0

P12

Figure B-6. Receiver Operating Characteristic (ROC) Curve for Case 2;

M N==5;M= ;y=O, varyJ=2, 1020
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1.0-

0 .8 - - - - -- - - - - - - - - - --- - - - - - -' - - - - - -

J 20

PH1  J= 10:

0 .4 ----- --- - -- - - - - - - - - - - - --- - - - - - -- - - - - - -- - - - - -

0.2 -- M------- --- -----
2 2.5 1 5 0.625

10 0.5 1 5 0.125

20 0.25 1 5 0.0625
0.0-

0.0 0.2 0.4 0.6 0.8 1.0

P12

Figure B-7. Receiver Operating Characteristic (ROC) Curve for Case 2:
MP = J'P=5; M= 1:;y ='-/4; vary J= 2, 10, 20
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1.0 -

M=2

M=I:

0.8 - ---------- --------------- ------ 6 ..-------. 6--------

0.6 M=4 ------ :---------------- ----------- U----- --------- :--------

0.2 ---- ----- --------------- -------- 6-------- -------

0.0-
0.0 0.2 0.4 0.6 0.8 1.0

p12

Figure B-8. Receiver Operating Characteristic (ROC) Curve for Case 2;
Mo = JP = 10; J = 20; y = , vary M =1, 2, 4
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compared with figure B-6, it can be seen that for a given P12 optimum performance can shift to a

new set of targets within the class.

In figure B-8, reverberation is set to its limiting value (y = yi), J and Wi are held constant, and

M is increased (thus P decreases). In this example, hypothesis 2 corresponds to reverberation,

while the target in hypothesis 1 spreads its fixed receive energy over an increasing number of cells.

The diversity effect implies that, for a given P12, there is particular target (from among the class

characterized by constant receive signal-to-noise ratio) that is most easily detected in the

reverberation.

SUMMARY

Performance measures for the binary classification problem have been addressed. The

sufficient statistic was shown to be a Hermitian form in the Gaussian vector y. A method for

determining the necessary probability density functions via characteristic functions was given. In

general, the determination of the characteristic functions requires a numerical approach; therefore,

certain assumptions were made in order to present some general results. A number of examples

were presented for the case of a sonar system capable of infinite resolution and targets

characterized by independent scatterers. In many cases diversity was present. That is, for a given

probability of misclassification, there was a best partitioning of the fixed total receive energy of a

target among the cells in the test volume.

A treatment of the general problem (finite resolution, correlated scatterers) will provide

further incight into the performance capability of the optimum processor. This is the subject of a

relatec _,vestigation, the results of which will be reported in the near future.
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